src/share/vm/opto/type.hpp

Wed, 07 May 2008 08:06:46 -0700

author
rasbold
date
Wed, 07 May 2008 08:06:46 -0700
changeset 580
f3de1255b035
parent 548
ba764ed4b6f2
child 598
885ed790ecf0
permissions
-rw-r--r--

6603011: RFE: Optimize long division
Summary: Transform long division by constant into multiply
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 // This class defines a Type lattice.  The lattice is used in the constant
    31 // propagation algorithms, and for some type-checking of the iloc code.
    32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    33 // float & double precision constants, sets of data-labels and code-labels.
    34 // The complete lattice is described below.  Subtypes have no relationship to
    35 // up or down in the lattice; that is entirely determined by the behavior of
    36 // the MEET/JOIN functions.
    38 class Dict;
    39 class Type;
    40 class   TypeD;
    41 class   TypeF;
    42 class   TypeInt;
    43 class   TypeLong;
    44 class   TypeNarrowOop;
    45 class   TypeAry;
    46 class   TypeTuple;
    47 class   TypePtr;
    48 class     TypeRawPtr;
    49 class     TypeOopPtr;
    50 class       TypeInstPtr;
    51 class       TypeAryPtr;
    52 class       TypeKlassPtr;
    54 //------------------------------Type-------------------------------------------
    55 // Basic Type object, represents a set of primitive Values.
    56 // Types are hash-cons'd into a private class dictionary, so only one of each
    57 // different kind of Type exists.  Types are never modified after creation, so
    58 // all their interesting fields are constant.
    59 class Type {
    60 public:
    61   enum TYPES {
    62     Bad=0,                      // Type check
    63     Control,                    // Control of code (not in lattice)
    64     Top,                        // Top of the lattice
    65     Int,                        // Integer range (lo-hi)
    66     Long,                       // Long integer range (lo-hi)
    67     Half,                       // Placeholder half of doubleword
    68     NarrowOop,                  // Compressed oop pointer
    70     Tuple,                      // Method signature or object layout
    71     Array,                      // Array types
    73     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    74     RawPtr,                     // Raw (non-oop) pointers
    75     OopPtr,                     // Any and all Java heap entities
    76     InstPtr,                    // Instance pointers (non-array objects)
    77     AryPtr,                     // Array pointers
    78     KlassPtr,                   // Klass pointers
    79     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    81     Function,                   // Function signature
    82     Abio,                       // Abstract I/O
    83     Return_Address,             // Subroutine return address
    84     Memory,                     // Abstract store
    85     FloatTop,                   // No float value
    86     FloatCon,                   // Floating point constant
    87     FloatBot,                   // Any float value
    88     DoubleTop,                  // No double value
    89     DoubleCon,                  // Double precision constant
    90     DoubleBot,                  // Any double value
    91     Bottom,                     // Bottom of lattice
    92     lastype                     // Bogus ending type (not in lattice)
    93   };
    95   // Signal values for offsets from a base pointer
    96   enum OFFSET_SIGNALS {
    97     OffsetTop = -2000000000,    // undefined offset
    98     OffsetBot = -2000000001     // any possible offset
    99   };
   101   // Min and max WIDEN values.
   102   enum WIDEN {
   103     WidenMin = 0,
   104     WidenMax = 3
   105   };
   107 private:
   108   // Dictionary of types shared among compilations.
   109   static Dict* _shared_type_dict;
   111   static int uhash( const Type *const t );
   112   // Structural equality check.  Assumes that cmp() has already compared
   113   // the _base types and thus knows it can cast 't' appropriately.
   114   virtual bool eq( const Type *t ) const;
   116   // Top-level hash-table of types
   117   static Dict *type_dict() {
   118     return Compile::current()->type_dict();
   119   }
   121   // DUAL operation: reflect around lattice centerline.  Used instead of
   122   // join to ensure my lattice is symmetric up and down.  Dual is computed
   123   // lazily, on demand, and cached in _dual.
   124   const Type *_dual;            // Cached dual value
   125   // Table for efficient dualing of base types
   126   static const TYPES dual_type[lastype];
   128 protected:
   129   // Each class of type is also identified by its base.
   130   const TYPES _base;            // Enum of Types type
   132   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   133   // ~Type();                   // Use fast deallocation
   134   const Type *hashcons();       // Hash-cons the type
   136 public:
   138   inline void* operator new( size_t x ) {
   139     Compile* compile = Compile::current();
   140     compile->set_type_last_size(x);
   141     void *temp = compile->type_arena()->Amalloc_D(x);
   142     compile->set_type_hwm(temp);
   143     return temp;
   144   }
   145   inline void operator delete( void* ptr ) {
   146     Compile* compile = Compile::current();
   147     compile->type_arena()->Afree(ptr,compile->type_last_size());
   148   }
   150   // Initialize the type system for a particular compilation.
   151   static void Initialize(Compile* compile);
   153   // Initialize the types shared by all compilations.
   154   static void Initialize_shared(Compile* compile);
   156   TYPES base() const {
   157     assert(_base > Bad && _base < lastype, "sanity");
   158     return _base;
   159   }
   161   // Create a new hash-consd type
   162   static const Type *make(enum TYPES);
   163   // Test for equivalence of types
   164   static int cmp( const Type *const t1, const Type *const t2 );
   165   // Test for higher or equal in lattice
   166   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   168   // MEET operation; lower in lattice.
   169   const Type *meet( const Type *t ) const;
   170   // WIDEN: 'widens' for Ints and other range types
   171   virtual const Type *widen( const Type *old ) const { return this; }
   172   // NARROW: complement for widen, used by pessimistic phases
   173   virtual const Type *narrow( const Type *old ) const { return this; }
   175   // DUAL operation: reflect around lattice centerline.  Used instead of
   176   // join to ensure my lattice is symmetric up and down.
   177   const Type *dual() const { return _dual; }
   179   // Compute meet dependent on base type
   180   virtual const Type *xmeet( const Type *t ) const;
   181   virtual const Type *xdual() const;    // Compute dual right now.
   183   // JOIN operation; higher in lattice.  Done by finding the dual of the
   184   // meet of the dual of the 2 inputs.
   185   const Type *join( const Type *t ) const {
   186     return dual()->meet(t->dual())->dual(); }
   188   // Modified version of JOIN adapted to the needs Node::Value.
   189   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   190   // Currently, it also works around limitations involving interface types.
   191   virtual const Type *filter( const Type *kills ) const;
   193   // Returns true if this pointer points at memory which contains a
   194   // compressed oop references.  In 32-bit builds it's non-virtual
   195   // since we don't support compressed oops at all in the mode.
   196   LP64_ONLY(virtual) bool is_narrow() const { return false; }
   198   // Convenience access
   199   float getf() const;
   200   double getd() const;
   202   const TypeInt    *is_int() const;
   203   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   204   const TypeLong   *is_long() const;
   205   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   206   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   207   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   208   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   209   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   210   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   211   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   212   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   213   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   214   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   215   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   216   const TypeNarrowOop  *is_narrowoop() const;        // Java-style GC'd pointer
   217   const TypeNarrowOop  *isa_narrowoop() const;       // Returns NULL if not oop ptr type
   218   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   219   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   220   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   221   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   222   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   223   const TypeInstPtr  *is_instptr() const;        // Instance
   224   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   225   const TypeAryPtr   *is_aryptr() const;         // Array oop
   226   virtual bool      is_finite() const;           // Has a finite value
   227   virtual bool      is_nan()    const;           // Is not a number (NaN)
   229   // Special test for register pressure heuristic
   230   bool is_floatingpoint() const;        // True if Float or Double base type
   232   // Do you have memory, directly or through a tuple?
   233   bool has_memory( ) const;
   235   // Are you a pointer type or not?
   236   bool isa_oop_ptr() const;
   238   // TRUE if type is a singleton
   239   virtual bool singleton(void) const;
   241   // TRUE if type is above the lattice centerline, and is therefore vacuous
   242   virtual bool empty(void) const;
   244   // Return a hash for this type.  The hash function is public so ConNode
   245   // (constants) can hash on their constant, which is represented by a Type.
   246   virtual int hash() const;
   248   // Map ideal registers (machine types) to ideal types
   249   static const Type *mreg2type[];
   251   // Printing, statistics
   252   static const char * const msg[lastype]; // Printable strings
   253 #ifndef PRODUCT
   254   void         dump_on(outputStream *st) const;
   255   void         dump() const {
   256     dump_on(tty);
   257   }
   258   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   259   static  void dump_stats();
   260   static  void verify_lastype();          // Check that arrays match type enum
   261 #endif
   262   void typerr(const Type *t) const; // Mixing types error
   264   // Create basic type
   265   static const Type* get_const_basic_type(BasicType type) {
   266     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   267     return _const_basic_type[type];
   268   }
   270   // Mapping to the array element's basic type.
   271   BasicType array_element_basic_type() const;
   273   // Create standard type for a ciType:
   274   static const Type* get_const_type(ciType* type);
   276   // Create standard zero value:
   277   static const Type* get_zero_type(BasicType type) {
   278     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   279     return _zero_type[type];
   280   }
   282   // Report if this is a zero value (not top).
   283   bool is_zero_type() const {
   284     BasicType type = basic_type();
   285     if (type == T_VOID || type >= T_CONFLICT)
   286       return false;
   287     else
   288       return (this == _zero_type[type]);
   289   }
   291   // Convenience common pre-built types.
   292   static const Type *ABIO;
   293   static const Type *BOTTOM;
   294   static const Type *CONTROL;
   295   static const Type *DOUBLE;
   296   static const Type *FLOAT;
   297   static const Type *HALF;
   298   static const Type *MEMORY;
   299   static const Type *MULTI;
   300   static const Type *RETURN_ADDRESS;
   301   static const Type *TOP;
   303   // Mapping from compiler type to VM BasicType
   304   BasicType basic_type() const { return _basic_type[_base]; }
   306   // Mapping from CI type system to compiler type:
   307   static const Type* get_typeflow_type(ciType* type);
   309 private:
   310   // support arrays
   311   static const BasicType _basic_type[];
   312   static const Type*        _zero_type[T_CONFLICT+1];
   313   static const Type* _const_basic_type[T_CONFLICT+1];
   314 };
   316 //------------------------------TypeF------------------------------------------
   317 // Class of Float-Constant Types.
   318 class TypeF : public Type {
   319   TypeF( float f ) : Type(FloatCon), _f(f) {};
   320 public:
   321   virtual bool eq( const Type *t ) const;
   322   virtual int  hash() const;             // Type specific hashing
   323   virtual bool singleton(void) const;    // TRUE if type is a singleton
   324   virtual bool empty(void) const;        // TRUE if type is vacuous
   325 public:
   326   const float _f;               // Float constant
   328   static const TypeF *make(float f);
   330   virtual bool        is_finite() const;  // Has a finite value
   331   virtual bool        is_nan()    const;  // Is not a number (NaN)
   333   virtual const Type *xmeet( const Type *t ) const;
   334   virtual const Type *xdual() const;    // Compute dual right now.
   335   // Convenience common pre-built types.
   336   static const TypeF *ZERO; // positive zero only
   337   static const TypeF *ONE;
   338 #ifndef PRODUCT
   339   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   340 #endif
   341 };
   343 //------------------------------TypeD------------------------------------------
   344 // Class of Double-Constant Types.
   345 class TypeD : public Type {
   346   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   347 public:
   348   virtual bool eq( const Type *t ) const;
   349   virtual int  hash() const;             // Type specific hashing
   350   virtual bool singleton(void) const;    // TRUE if type is a singleton
   351   virtual bool empty(void) const;        // TRUE if type is vacuous
   352 public:
   353   const double _d;              // Double constant
   355   static const TypeD *make(double d);
   357   virtual bool        is_finite() const;  // Has a finite value
   358   virtual bool        is_nan()    const;  // Is not a number (NaN)
   360   virtual const Type *xmeet( const Type *t ) const;
   361   virtual const Type *xdual() const;    // Compute dual right now.
   362   // Convenience common pre-built types.
   363   static const TypeD *ZERO; // positive zero only
   364   static const TypeD *ONE;
   365 #ifndef PRODUCT
   366   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   367 #endif
   368 };
   370 //------------------------------TypeInt----------------------------------------
   371 // Class of integer ranges, the set of integers between a lower bound and an
   372 // upper bound, inclusive.
   373 class TypeInt : public Type {
   374   TypeInt( jint lo, jint hi, int w );
   375 public:
   376   virtual bool eq( const Type *t ) const;
   377   virtual int  hash() const;             // Type specific hashing
   378   virtual bool singleton(void) const;    // TRUE if type is a singleton
   379   virtual bool empty(void) const;        // TRUE if type is vacuous
   380 public:
   381   const jint _lo, _hi;          // Lower bound, upper bound
   382   const short _widen;           // Limit on times we widen this sucker
   384   static const TypeInt *make(jint lo);
   385   // must always specify w
   386   static const TypeInt *make(jint lo, jint hi, int w);
   388   // Check for single integer
   389   int is_con() const { return _lo==_hi; }
   390   bool is_con(int i) const { return is_con() && _lo == i; }
   391   jint get_con() const { assert( is_con(), "" );  return _lo; }
   393   virtual bool        is_finite() const;  // Has a finite value
   395   virtual const Type *xmeet( const Type *t ) const;
   396   virtual const Type *xdual() const;    // Compute dual right now.
   397   virtual const Type *widen( const Type *t ) const;
   398   virtual const Type *narrow( const Type *t ) const;
   399   // Do not kill _widen bits.
   400   virtual const Type *filter( const Type *kills ) const;
   401   // Convenience common pre-built types.
   402   static const TypeInt *MINUS_1;
   403   static const TypeInt *ZERO;
   404   static const TypeInt *ONE;
   405   static const TypeInt *BOOL;
   406   static const TypeInt *CC;
   407   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   408   static const TypeInt *CC_GT;  // [1]   == ONE
   409   static const TypeInt *CC_EQ;  // [0]   == ZERO
   410   static const TypeInt *CC_LE;  // [-1,0]
   411   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   412   static const TypeInt *BYTE;
   413   static const TypeInt *CHAR;
   414   static const TypeInt *SHORT;
   415   static const TypeInt *POS;
   416   static const TypeInt *POS1;
   417   static const TypeInt *INT;
   418   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   419 #ifndef PRODUCT
   420   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   421 #endif
   422 };
   425 //------------------------------TypeLong---------------------------------------
   426 // Class of long integer ranges, the set of integers between a lower bound and
   427 // an upper bound, inclusive.
   428 class TypeLong : public Type {
   429   TypeLong( jlong lo, jlong hi, int w );
   430 public:
   431   virtual bool eq( const Type *t ) const;
   432   virtual int  hash() const;             // Type specific hashing
   433   virtual bool singleton(void) const;    // TRUE if type is a singleton
   434   virtual bool empty(void) const;        // TRUE if type is vacuous
   435 public:
   436   const jlong _lo, _hi;         // Lower bound, upper bound
   437   const short _widen;           // Limit on times we widen this sucker
   439   static const TypeLong *make(jlong lo);
   440   // must always specify w
   441   static const TypeLong *make(jlong lo, jlong hi, int w);
   443   // Check for single integer
   444   int is_con() const { return _lo==_hi; }
   445   bool is_con(int i) const { return is_con() && _lo == i; }
   446   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   448   virtual bool        is_finite() const;  // Has a finite value
   450   virtual const Type *xmeet( const Type *t ) const;
   451   virtual const Type *xdual() const;    // Compute dual right now.
   452   virtual const Type *widen( const Type *t ) const;
   453   virtual const Type *narrow( const Type *t ) const;
   454   // Do not kill _widen bits.
   455   virtual const Type *filter( const Type *kills ) const;
   456   // Convenience common pre-built types.
   457   static const TypeLong *MINUS_1;
   458   static const TypeLong *ZERO;
   459   static const TypeLong *ONE;
   460   static const TypeLong *POS;
   461   static const TypeLong *LONG;
   462   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   463   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   464 #ifndef PRODUCT
   465   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   466 #endif
   467 };
   469 //------------------------------TypeTuple--------------------------------------
   470 // Class of Tuple Types, essentially type collections for function signatures
   471 // and class layouts.  It happens to also be a fast cache for the HotSpot
   472 // signature types.
   473 class TypeTuple : public Type {
   474   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   475 public:
   476   virtual bool eq( const Type *t ) const;
   477   virtual int  hash() const;             // Type specific hashing
   478   virtual bool singleton(void) const;    // TRUE if type is a singleton
   479   virtual bool empty(void) const;        // TRUE if type is vacuous
   481 public:
   482   const uint          _cnt;              // Count of fields
   483   const Type ** const _fields;           // Array of field types
   485   // Accessors:
   486   uint cnt() const { return _cnt; }
   487   const Type* field_at(uint i) const {
   488     assert(i < _cnt, "oob");
   489     return _fields[i];
   490   }
   491   void set_field_at(uint i, const Type* t) {
   492     assert(i < _cnt, "oob");
   493     _fields[i] = t;
   494   }
   496   static const TypeTuple *make( uint cnt, const Type **fields );
   497   static const TypeTuple *make_range(ciSignature *sig);
   498   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   500   // Subroutine call type with space allocated for argument types
   501   static const Type **fields( uint arg_cnt );
   503   virtual const Type *xmeet( const Type *t ) const;
   504   virtual const Type *xdual() const;    // Compute dual right now.
   505   // Convenience common pre-built types.
   506   static const TypeTuple *IFBOTH;
   507   static const TypeTuple *IFFALSE;
   508   static const TypeTuple *IFTRUE;
   509   static const TypeTuple *IFNEITHER;
   510   static const TypeTuple *LOOPBODY;
   511   static const TypeTuple *MEMBAR;
   512   static const TypeTuple *STORECONDITIONAL;
   513   static const TypeTuple *START_I2C;
   514   static const TypeTuple *INT_PAIR;
   515   static const TypeTuple *LONG_PAIR;
   516 #ifndef PRODUCT
   517   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   518 #endif
   519 };
   521 //------------------------------TypeAry----------------------------------------
   522 // Class of Array Types
   523 class TypeAry : public Type {
   524   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   525     _elem(elem), _size(size) {}
   526 public:
   527   virtual bool eq( const Type *t ) const;
   528   virtual int  hash() const;             // Type specific hashing
   529   virtual bool singleton(void) const;    // TRUE if type is a singleton
   530   virtual bool empty(void) const;        // TRUE if type is vacuous
   532 private:
   533   const Type *_elem;            // Element type of array
   534   const TypeInt *_size;         // Elements in array
   535   friend class TypeAryPtr;
   537 public:
   538   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   540   virtual const Type *xmeet( const Type *t ) const;
   541   virtual const Type *xdual() const;    // Compute dual right now.
   542   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   543 #ifndef PRODUCT
   544   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   545 #endif
   546 };
   548 //------------------------------TypePtr----------------------------------------
   549 // Class of machine Pointer Types: raw data, instances or arrays.
   550 // If the _base enum is AnyPtr, then this refers to all of the above.
   551 // Otherwise the _base will indicate which subset of pointers is affected,
   552 // and the class will be inherited from.
   553 class TypePtr : public Type {
   554   friend class TypeNarrowOop;
   555 public:
   556   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   557 protected:
   558   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   559   virtual bool eq( const Type *t ) const;
   560   virtual int  hash() const;             // Type specific hashing
   561   static const PTR ptr_meet[lastPTR][lastPTR];
   562   static const PTR ptr_dual[lastPTR];
   563   static const char * const ptr_msg[lastPTR];
   565 public:
   566   const int _offset;            // Offset into oop, with TOP & BOT
   567   const PTR _ptr;               // Pointer equivalence class
   569   const int offset() const { return _offset; }
   570   const PTR ptr()    const { return _ptr; }
   572   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   574   // Return a 'ptr' version of this type
   575   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   577   virtual intptr_t get_con() const;
   579   virtual const TypePtr *add_offset( int offset ) const;
   581   virtual bool singleton(void) const;    // TRUE if type is a singleton
   582   virtual bool empty(void) const;        // TRUE if type is vacuous
   583   virtual const Type *xmeet( const Type *t ) const;
   584   int meet_offset( int offset ) const;
   585   int dual_offset( ) const;
   586   virtual const Type *xdual() const;    // Compute dual right now.
   588   // meet, dual and join over pointer equivalence sets
   589   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   590   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   592   // This is textually confusing unless one recalls that
   593   // join(t) == dual()->meet(t->dual())->dual().
   594   PTR join_ptr( const PTR in_ptr ) const {
   595     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   596   }
   598   // Tests for relation to centerline of type lattice:
   599   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   600   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   601   // Convenience common pre-built types.
   602   static const TypePtr *NULL_PTR;
   603   static const TypePtr *NOTNULL;
   604   static const TypePtr *BOTTOM;
   605 #ifndef PRODUCT
   606   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   607 #endif
   608 };
   610 //------------------------------TypeRawPtr-------------------------------------
   611 // Class of raw pointers, pointers to things other than Oops.  Examples
   612 // include the stack pointer, top of heap, card-marking area, handles, etc.
   613 class TypeRawPtr : public TypePtr {
   614 protected:
   615   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   616 public:
   617   virtual bool eq( const Type *t ) const;
   618   virtual int  hash() const;     // Type specific hashing
   620   const address _bits;          // Constant value, if applicable
   622   static const TypeRawPtr *make( PTR ptr );
   623   static const TypeRawPtr *make( address bits );
   625   // Return a 'ptr' version of this type
   626   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   628   virtual intptr_t get_con() const;
   630   virtual const TypePtr *add_offset( int offset ) const;
   632   virtual const Type *xmeet( const Type *t ) const;
   633   virtual const Type *xdual() const;    // Compute dual right now.
   634   // Convenience common pre-built types.
   635   static const TypeRawPtr *BOTTOM;
   636   static const TypeRawPtr *NOTNULL;
   637 #ifndef PRODUCT
   638   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   639 #endif
   640 };
   642 //------------------------------TypeOopPtr-------------------------------------
   643 // Some kind of oop (Java pointer), either klass or instance or array.
   644 class TypeOopPtr : public TypePtr {
   645 protected:
   646   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id ) : TypePtr(t, ptr, offset), _const_oop(o), _klass(k), _klass_is_exact(xk), _instance_id(instance_id) { }
   647 public:
   648   virtual bool eq( const Type *t ) const;
   649   virtual int  hash() const;             // Type specific hashing
   650   virtual bool singleton(void) const;    // TRUE if type is a singleton
   651   enum {
   652    UNKNOWN_INSTANCE = 0
   653   };
   654 protected:
   656   int xadd_offset( int offset ) const;
   657   // Oop is NULL, unless this is a constant oop.
   658   ciObject*     _const_oop;   // Constant oop
   659   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   660   ciKlass*      _klass;       // Klass object
   661   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   662   bool          _klass_is_exact;
   664   int          _instance_id;   // if not UNKNOWN_INSTANCE, indicates that this is a particular instance
   665                                // of this type which is distinct.  This is the  the node index of the
   666                                // node creating this instance
   668   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   670   int dual_instance()      const { return -_instance_id; }
   671   int meet_instance(int uid) const;
   673 public:
   674   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   675   // Respects UseUniqueSubclasses.
   676   // If the klass is final, the resulting type will be exact.
   677   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   678     return make_from_klass_common(klass, true, false);
   679   }
   680   // Same as before, but will produce an exact type, even if
   681   // the klass is not final, as long as it has exactly one implementation.
   682   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   683     return make_from_klass_common(klass, true, true);
   684   }
   685   // Same as before, but does not respects UseUniqueSubclasses.
   686   // Use this only for creating array element types.
   687   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   688     return make_from_klass_common(klass, false, false);
   689   }
   690   // Creates a singleton type given an object.
   691   static const TypeOopPtr* make_from_constant(ciObject* o);
   693   // Make a generic (unclassed) pointer to an oop.
   694   static const TypeOopPtr* make(PTR ptr, int offset);
   696   ciObject* const_oop()    const { return _const_oop; }
   697   virtual ciKlass* klass() const { return _klass;     }
   698   bool klass_is_exact()    const { return _klass_is_exact; }
   699   bool is_instance()       const { return _instance_id != UNKNOWN_INSTANCE; }
   700   uint instance_id()       const { return _instance_id; }
   701   bool is_instance_field() const { return _instance_id != UNKNOWN_INSTANCE && _offset >= 0; }
   703   virtual intptr_t get_con() const;
   705   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   707   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   709   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   711   // corresponding pointer to klass, for a given instance
   712   const TypeKlassPtr* as_klass_type() const;
   714   virtual const TypePtr *add_offset( int offset ) const;
   716   // returns the equivalent compressed version of this pointer type
   717   virtual const TypeNarrowOop* make_narrowoop() const;
   719 #ifdef _LP64
   720   virtual bool is_narrow() const {
   721     return (UseCompressedOops && _offset != 0);
   722   }
   723 #endif
   725   virtual const Type *xmeet( const Type *t ) const;
   726   virtual const Type *xdual() const;    // Compute dual right now.
   728   // Do not allow interface-vs.-noninterface joins to collapse to top.
   729   virtual const Type *filter( const Type *kills ) const;
   731   // Convenience common pre-built type.
   732   static const TypeOopPtr *BOTTOM;
   733 #ifndef PRODUCT
   734   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   735 #endif
   736 };
   738 //------------------------------TypeInstPtr------------------------------------
   739 // Class of Java object pointers, pointing either to non-array Java instances
   740 // or to a klassOop (including array klasses).
   741 class TypeInstPtr : public TypeOopPtr {
   742   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   743   virtual bool eq( const Type *t ) const;
   744   virtual int  hash() const;             // Type specific hashing
   746   ciSymbol*  _name;        // class name
   748  public:
   749   ciSymbol* name()         const { return _name; }
   751   bool  is_loaded() const { return _klass->is_loaded(); }
   753   // Make a pointer to a constant oop.
   754   static const TypeInstPtr *make(ciObject* o) {
   755     return make(TypePtr::Constant, o->klass(), true, o, 0);
   756   }
   758   // Make a pointer to a constant oop with offset.
   759   static const TypeInstPtr *make(ciObject* o, int offset) {
   760     return make(TypePtr::Constant, o->klass(), true, o, offset);
   761   }
   763   // Make a pointer to some value of type klass.
   764   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   765     return make(ptr, klass, false, NULL, 0);
   766   }
   768   // Make a pointer to some non-polymorphic value of exactly type klass.
   769   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   770     return make(ptr, klass, true, NULL, 0);
   771   }
   773   // Make a pointer to some value of type klass with offset.
   774   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   775     return make(ptr, klass, false, NULL, offset);
   776   }
   778   // Make a pointer to an oop.
   779   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = 0 );
   781   // If this is a java.lang.Class constant, return the type for it or NULL.
   782   // Pass to Type::get_const_type to turn it to a type, which will usually
   783   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   784   ciType* java_mirror_type() const;
   786   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   788   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   790   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   792   virtual const TypePtr *add_offset( int offset ) const;
   794   virtual const Type *xmeet( const Type *t ) const;
   795   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   796   virtual const Type *xdual() const;    // Compute dual right now.
   798   // Convenience common pre-built types.
   799   static const TypeInstPtr *NOTNULL;
   800   static const TypeInstPtr *BOTTOM;
   801   static const TypeInstPtr *MIRROR;
   802   static const TypeInstPtr *MARK;
   803   static const TypeInstPtr *KLASS;
   804 #ifndef PRODUCT
   805   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   806 #endif
   807 };
   809 //------------------------------TypeAryPtr-------------------------------------
   810 // Class of Java array pointers
   811 class TypeAryPtr : public TypeOopPtr {
   812   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
   813   virtual bool eq( const Type *t ) const;
   814   virtual int hash() const;     // Type specific hashing
   815   const TypeAry *_ary;          // Array we point into
   817 public:
   818   // Accessors
   819   ciKlass* klass() const;
   820   const TypeAry* ary() const  { return _ary; }
   821   const Type*    elem() const { return _ary->_elem; }
   822   const TypeInt* size() const { return _ary->_size; }
   824   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   825   // Constant pointer to array
   826   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   828   // Convenience
   829   static const TypeAryPtr *make(ciObject* o);
   831   // Return a 'ptr' version of this type
   832   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   834   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   836   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   838   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   840   virtual bool empty(void) const;        // TRUE if type is vacuous
   841   virtual const TypePtr *add_offset( int offset ) const;
   843   virtual const Type *xmeet( const Type *t ) const;
   844   virtual const Type *xdual() const;    // Compute dual right now.
   846 #ifdef _LP64
   847   virtual bool is_narrow() const {
   848     return (UseCompressedOops && klass() != NULL && _offset != 0);
   849   }
   850 #endif
   852   // Convenience common pre-built types.
   853   static const TypeAryPtr *RANGE;
   854   static const TypeAryPtr *OOPS;
   855   static const TypeAryPtr *BYTES;
   856   static const TypeAryPtr *SHORTS;
   857   static const TypeAryPtr *CHARS;
   858   static const TypeAryPtr *INTS;
   859   static const TypeAryPtr *LONGS;
   860   static const TypeAryPtr *FLOATS;
   861   static const TypeAryPtr *DOUBLES;
   862   // selects one of the above:
   863   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   864     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   865     return _array_body_type[elem];
   866   }
   867   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   868   // sharpen the type of an int which is used as an array size
   869   static const TypeInt* narrow_size_type(const TypeInt* size, BasicType elem);
   870 #ifndef PRODUCT
   871   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   872 #endif
   873 };
   875 //------------------------------TypeKlassPtr-----------------------------------
   876 // Class of Java Klass pointers
   877 class TypeKlassPtr : public TypeOopPtr {
   878   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   880   virtual bool eq( const Type *t ) const;
   881   virtual int hash() const;             // Type specific hashing
   883 public:
   884   ciSymbol* name()  const { return _klass->name(); }
   886   // ptr to klass 'k'
   887   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   888   // ptr to klass 'k' with offset
   889   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   890   // ptr to klass 'k' or sub-klass
   891   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   893   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   895   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   897   // corresponding pointer to instance, for a given class
   898   const TypeOopPtr* as_instance_type() const;
   900   virtual const TypePtr *add_offset( int offset ) const;
   901   virtual const Type    *xmeet( const Type *t ) const;
   902   virtual const Type    *xdual() const;      // Compute dual right now.
   904 #ifdef _LP64
   905   // Perm objects don't use compressed references, except for static fields
   906   // which are currently compressed
   907   virtual bool is_narrow() const {
   908     if (UseCompressedOops && _offset != 0 && _klass->is_instance_klass()) {
   909       ciInstanceKlass* ik = _klass->as_instance_klass();
   910       return ik != NULL && ik->get_field_by_offset(_offset, true) != NULL;
   911     }
   912     return false;
   913   }
   914 #endif
   916   // Convenience common pre-built types.
   917   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   918   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   919 #ifndef PRODUCT
   920   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   921 #endif
   922 };
   924 //------------------------------TypeNarrowOop----------------------------------------
   925 // A compressed reference to some kind of Oop.  This type wraps around
   926 // a preexisting TypeOopPtr and forwards most of it's operations to
   927 // the underlying type.  It's only real purpose is to track the
   928 // oopness of the compressed oop value when we expose the conversion
   929 // between the normal and the compressed form.
   930 class TypeNarrowOop : public Type {
   931 protected:
   932   const TypePtr* _ooptype;
   934   TypeNarrowOop( const TypePtr* ooptype): Type(NarrowOop),
   935     _ooptype(ooptype) {
   936     assert(ooptype->offset() == 0 ||
   937            ooptype->offset() == OffsetBot ||
   938            ooptype->offset() == OffsetTop, "no real offsets");
   939   }
   940 public:
   941   virtual bool eq( const Type *t ) const;
   942   virtual int  hash() const;             // Type specific hashing
   943   virtual bool singleton(void) const;    // TRUE if type is a singleton
   945   virtual const Type *xmeet( const Type *t ) const;
   946   virtual const Type *xdual() const;    // Compute dual right now.
   948   virtual intptr_t get_con() const;
   950   // Do not allow interface-vs.-noninterface joins to collapse to top.
   951   virtual const Type *filter( const Type *kills ) const;
   953   virtual bool empty(void) const;        // TRUE if type is vacuous
   955   static const TypeNarrowOop *make( const TypePtr* type);
   957   static const TypeNarrowOop* make_from_constant(ciObject* con) {
   958     return make(TypeOopPtr::make_from_constant(con));
   959   }
   961   // returns the equivalent oopptr type for this compressed pointer
   962   virtual const TypePtr *make_oopptr() const {
   963     return _ooptype;
   964   }
   966   static const TypeNarrowOop *BOTTOM;
   967   static const TypeNarrowOop *NULL_PTR;
   969 #ifndef PRODUCT
   970   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   971 #endif
   972 };
   974 //------------------------------TypeFunc---------------------------------------
   975 // Class of Array Types
   976 class TypeFunc : public Type {
   977   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
   978   virtual bool eq( const Type *t ) const;
   979   virtual int  hash() const;             // Type specific hashing
   980   virtual bool singleton(void) const;    // TRUE if type is a singleton
   981   virtual bool empty(void) const;        // TRUE if type is vacuous
   982 public:
   983   // Constants are shared among ADLC and VM
   984   enum { Control    = AdlcVMDeps::Control,
   985          I_O        = AdlcVMDeps::I_O,
   986          Memory     = AdlcVMDeps::Memory,
   987          FramePtr   = AdlcVMDeps::FramePtr,
   988          ReturnAdr  = AdlcVMDeps::ReturnAdr,
   989          Parms      = AdlcVMDeps::Parms
   990   };
   992   const TypeTuple* const _domain;     // Domain of inputs
   993   const TypeTuple* const _range;      // Range of results
   995   // Accessors:
   996   const TypeTuple* domain() const { return _domain; }
   997   const TypeTuple* range()  const { return _range; }
   999   static const TypeFunc *make(ciMethod* method);
  1000   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1001   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1003   virtual const Type *xmeet( const Type *t ) const;
  1004   virtual const Type *xdual() const;    // Compute dual right now.
  1006   BasicType return_type() const;
  1008 #ifndef PRODUCT
  1009   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1010   void print_flattened() const; // Print a 'flattened' signature
  1011 #endif
  1012   // Convenience common pre-built types.
  1013 };
  1015 //------------------------------accessors--------------------------------------
  1016 inline float Type::getf() const {
  1017   assert( _base == FloatCon, "Not a FloatCon" );
  1018   return ((TypeF*)this)->_f;
  1021 inline double Type::getd() const {
  1022   assert( _base == DoubleCon, "Not a DoubleCon" );
  1023   return ((TypeD*)this)->_d;
  1026 inline const TypeF *Type::is_float_constant() const {
  1027   assert( _base == FloatCon, "Not a Float" );
  1028   return (TypeF*)this;
  1031 inline const TypeF *Type::isa_float_constant() const {
  1032   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1035 inline const TypeD *Type::is_double_constant() const {
  1036   assert( _base == DoubleCon, "Not a Double" );
  1037   return (TypeD*)this;
  1040 inline const TypeD *Type::isa_double_constant() const {
  1041   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1044 inline const TypeInt *Type::is_int() const {
  1045   assert( _base == Int, "Not an Int" );
  1046   return (TypeInt*)this;
  1049 inline const TypeInt *Type::isa_int() const {
  1050   return ( _base == Int ? (TypeInt*)this : NULL);
  1053 inline const TypeLong *Type::is_long() const {
  1054   assert( _base == Long, "Not a Long" );
  1055   return (TypeLong*)this;
  1058 inline const TypeLong *Type::isa_long() const {
  1059   return ( _base == Long ? (TypeLong*)this : NULL);
  1062 inline const TypeTuple *Type::is_tuple() const {
  1063   assert( _base == Tuple, "Not a Tuple" );
  1064   return (TypeTuple*)this;
  1067 inline const TypeAry *Type::is_ary() const {
  1068   assert( _base == Array , "Not an Array" );
  1069   return (TypeAry*)this;
  1072 inline const TypePtr *Type::is_ptr() const {
  1073   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1074   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1075   return (TypePtr*)this;
  1078 inline const TypePtr *Type::isa_ptr() const {
  1079   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1080   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1083 inline const TypeOopPtr *Type::is_oopptr() const {
  1084   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1085   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1086   return (TypeOopPtr*)this;
  1089 inline const TypeOopPtr *Type::isa_oopptr() const {
  1090   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1091   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1094 inline const TypeRawPtr *Type::isa_rawptr() const {
  1095   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1098 inline const TypeRawPtr *Type::is_rawptr() const {
  1099   assert( _base == RawPtr, "Not a raw pointer" );
  1100   return (TypeRawPtr*)this;
  1103 inline const TypeInstPtr *Type::isa_instptr() const {
  1104   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1107 inline const TypeInstPtr *Type::is_instptr() const {
  1108   assert( _base == InstPtr, "Not an object pointer" );
  1109   return (TypeInstPtr*)this;
  1112 inline const TypeAryPtr *Type::isa_aryptr() const {
  1113   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1116 inline const TypeAryPtr *Type::is_aryptr() const {
  1117   assert( _base == AryPtr, "Not an array pointer" );
  1118   return (TypeAryPtr*)this;
  1121 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1122   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1123   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1124   return (TypeNarrowOop*)this;
  1127 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1128   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1129   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1132 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1133   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1136 inline const TypeKlassPtr *Type::is_klassptr() const {
  1137   assert( _base == KlassPtr, "Not a klass pointer" );
  1138   return (TypeKlassPtr*)this;
  1141 inline bool Type::is_floatingpoint() const {
  1142   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1143       (_base == DoubleCon) || (_base == DoubleBot) )
  1144     return true;
  1145   return false;
  1149 // ===============================================================
  1150 // Things that need to be 64-bits in the 64-bit build but
  1151 // 32-bits in the 32-bit build.  Done this way to get full
  1152 // optimization AND strong typing.
  1153 #ifdef _LP64
  1155 // For type queries and asserts
  1156 #define is_intptr_t  is_long
  1157 #define isa_intptr_t isa_long
  1158 #define find_intptr_t_type find_long_type
  1159 #define find_intptr_t_con  find_long_con
  1160 #define TypeX        TypeLong
  1161 #define Type_X       Type::Long
  1162 #define TypeX_X      TypeLong::LONG
  1163 #define TypeX_ZERO   TypeLong::ZERO
  1164 // For 'ideal_reg' machine registers
  1165 #define Op_RegX      Op_RegL
  1166 // For phase->intcon variants
  1167 #define MakeConX     longcon
  1168 #define ConXNode     ConLNode
  1169 // For array index arithmetic
  1170 #define MulXNode     MulLNode
  1171 #define AndXNode     AndLNode
  1172 #define OrXNode      OrLNode
  1173 #define CmpXNode     CmpLNode
  1174 #define SubXNode     SubLNode
  1175 #define LShiftXNode  LShiftLNode
  1176 // For object size computation:
  1177 #define AddXNode     AddLNode
  1178 #define RShiftXNode  RShiftLNode
  1179 // For card marks and hashcodes
  1180 #define URShiftXNode URShiftLNode
  1181 // Opcodes
  1182 #define Op_LShiftX   Op_LShiftL
  1183 #define Op_AndX      Op_AndL
  1184 #define Op_AddX      Op_AddL
  1185 #define Op_SubX      Op_SubL
  1186 // conversions
  1187 #define ConvI2X(x)   ConvI2L(x)
  1188 #define ConvL2X(x)   (x)
  1189 #define ConvX2I(x)   ConvL2I(x)
  1190 #define ConvX2L(x)   (x)
  1192 #else
  1194 // For type queries and asserts
  1195 #define is_intptr_t  is_int
  1196 #define isa_intptr_t isa_int
  1197 #define find_intptr_t_type find_int_type
  1198 #define find_intptr_t_con  find_int_con
  1199 #define TypeX        TypeInt
  1200 #define Type_X       Type::Int
  1201 #define TypeX_X      TypeInt::INT
  1202 #define TypeX_ZERO   TypeInt::ZERO
  1203 // For 'ideal_reg' machine registers
  1204 #define Op_RegX      Op_RegI
  1205 // For phase->intcon variants
  1206 #define MakeConX     intcon
  1207 #define ConXNode     ConINode
  1208 // For array index arithmetic
  1209 #define MulXNode     MulINode
  1210 #define AndXNode     AndINode
  1211 #define OrXNode      OrINode
  1212 #define CmpXNode     CmpINode
  1213 #define SubXNode     SubINode
  1214 #define LShiftXNode  LShiftINode
  1215 // For object size computation:
  1216 #define AddXNode     AddINode
  1217 #define RShiftXNode  RShiftINode
  1218 // For card marks and hashcodes
  1219 #define URShiftXNode URShiftINode
  1220 // Opcodes
  1221 #define Op_LShiftX   Op_LShiftI
  1222 #define Op_AndX      Op_AndI
  1223 #define Op_AddX      Op_AddI
  1224 #define Op_SubX      Op_SubI
  1225 // conversions
  1226 #define ConvI2X(x)   (x)
  1227 #define ConvL2X(x)   ConvL2I(x)
  1228 #define ConvX2I(x)   (x)
  1229 #define ConvX2L(x)   ConvI2L(x)
  1231 #endif

mercurial