src/share/vm/opto/type.hpp

Wed, 21 May 2008 10:45:07 -0700

author
kvn
date
Wed, 21 May 2008 10:45:07 -0700
changeset 598
885ed790ecf0
parent 580
f3de1255b035
child 631
d1605aabd0a1
child 656
1e026f8da827
permissions
-rw-r--r--

6695810: null oop passed to encode_heap_oop_not_null
Summary: fix several problems in C2 related to Escape Analysis and Compressed Oops.
Reviewed-by: never, jrose

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 // This class defines a Type lattice.  The lattice is used in the constant
    31 // propagation algorithms, and for some type-checking of the iloc code.
    32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    33 // float & double precision constants, sets of data-labels and code-labels.
    34 // The complete lattice is described below.  Subtypes have no relationship to
    35 // up or down in the lattice; that is entirely determined by the behavior of
    36 // the MEET/JOIN functions.
    38 class Dict;
    39 class Type;
    40 class   TypeD;
    41 class   TypeF;
    42 class   TypeInt;
    43 class   TypeLong;
    44 class   TypeNarrowOop;
    45 class   TypeAry;
    46 class   TypeTuple;
    47 class   TypePtr;
    48 class     TypeRawPtr;
    49 class     TypeOopPtr;
    50 class       TypeInstPtr;
    51 class       TypeAryPtr;
    52 class       TypeKlassPtr;
    54 //------------------------------Type-------------------------------------------
    55 // Basic Type object, represents a set of primitive Values.
    56 // Types are hash-cons'd into a private class dictionary, so only one of each
    57 // different kind of Type exists.  Types are never modified after creation, so
    58 // all their interesting fields are constant.
    59 class Type {
    60 public:
    61   enum TYPES {
    62     Bad=0,                      // Type check
    63     Control,                    // Control of code (not in lattice)
    64     Top,                        // Top of the lattice
    65     Int,                        // Integer range (lo-hi)
    66     Long,                       // Long integer range (lo-hi)
    67     Half,                       // Placeholder half of doubleword
    68     NarrowOop,                  // Compressed oop pointer
    70     Tuple,                      // Method signature or object layout
    71     Array,                      // Array types
    73     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    74     RawPtr,                     // Raw (non-oop) pointers
    75     OopPtr,                     // Any and all Java heap entities
    76     InstPtr,                    // Instance pointers (non-array objects)
    77     AryPtr,                     // Array pointers
    78     KlassPtr,                   // Klass pointers
    79     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    81     Function,                   // Function signature
    82     Abio,                       // Abstract I/O
    83     Return_Address,             // Subroutine return address
    84     Memory,                     // Abstract store
    85     FloatTop,                   // No float value
    86     FloatCon,                   // Floating point constant
    87     FloatBot,                   // Any float value
    88     DoubleTop,                  // No double value
    89     DoubleCon,                  // Double precision constant
    90     DoubleBot,                  // Any double value
    91     Bottom,                     // Bottom of lattice
    92     lastype                     // Bogus ending type (not in lattice)
    93   };
    95   // Signal values for offsets from a base pointer
    96   enum OFFSET_SIGNALS {
    97     OffsetTop = -2000000000,    // undefined offset
    98     OffsetBot = -2000000001     // any possible offset
    99   };
   101   // Min and max WIDEN values.
   102   enum WIDEN {
   103     WidenMin = 0,
   104     WidenMax = 3
   105   };
   107 private:
   108   // Dictionary of types shared among compilations.
   109   static Dict* _shared_type_dict;
   111   static int uhash( const Type *const t );
   112   // Structural equality check.  Assumes that cmp() has already compared
   113   // the _base types and thus knows it can cast 't' appropriately.
   114   virtual bool eq( const Type *t ) const;
   116   // Top-level hash-table of types
   117   static Dict *type_dict() {
   118     return Compile::current()->type_dict();
   119   }
   121   // DUAL operation: reflect around lattice centerline.  Used instead of
   122   // join to ensure my lattice is symmetric up and down.  Dual is computed
   123   // lazily, on demand, and cached in _dual.
   124   const Type *_dual;            // Cached dual value
   125   // Table for efficient dualing of base types
   126   static const TYPES dual_type[lastype];
   128 protected:
   129   // Each class of type is also identified by its base.
   130   const TYPES _base;            // Enum of Types type
   132   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   133   // ~Type();                   // Use fast deallocation
   134   const Type *hashcons();       // Hash-cons the type
   136 public:
   138   inline void* operator new( size_t x ) {
   139     Compile* compile = Compile::current();
   140     compile->set_type_last_size(x);
   141     void *temp = compile->type_arena()->Amalloc_D(x);
   142     compile->set_type_hwm(temp);
   143     return temp;
   144   }
   145   inline void operator delete( void* ptr ) {
   146     Compile* compile = Compile::current();
   147     compile->type_arena()->Afree(ptr,compile->type_last_size());
   148   }
   150   // Initialize the type system for a particular compilation.
   151   static void Initialize(Compile* compile);
   153   // Initialize the types shared by all compilations.
   154   static void Initialize_shared(Compile* compile);
   156   TYPES base() const {
   157     assert(_base > Bad && _base < lastype, "sanity");
   158     return _base;
   159   }
   161   // Create a new hash-consd type
   162   static const Type *make(enum TYPES);
   163   // Test for equivalence of types
   164   static int cmp( const Type *const t1, const Type *const t2 );
   165   // Test for higher or equal in lattice
   166   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   168   // MEET operation; lower in lattice.
   169   const Type *meet( const Type *t ) const;
   170   // WIDEN: 'widens' for Ints and other range types
   171   virtual const Type *widen( const Type *old ) const { return this; }
   172   // NARROW: complement for widen, used by pessimistic phases
   173   virtual const Type *narrow( const Type *old ) const { return this; }
   175   // DUAL operation: reflect around lattice centerline.  Used instead of
   176   // join to ensure my lattice is symmetric up and down.
   177   const Type *dual() const { return _dual; }
   179   // Compute meet dependent on base type
   180   virtual const Type *xmeet( const Type *t ) const;
   181   virtual const Type *xdual() const;    // Compute dual right now.
   183   // JOIN operation; higher in lattice.  Done by finding the dual of the
   184   // meet of the dual of the 2 inputs.
   185   const Type *join( const Type *t ) const {
   186     return dual()->meet(t->dual())->dual(); }
   188   // Modified version of JOIN adapted to the needs Node::Value.
   189   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   190   // Currently, it also works around limitations involving interface types.
   191   virtual const Type *filter( const Type *kills ) const;
   193   // Returns true if this pointer points at memory which contains a
   194   // compressed oop references.
   195   bool is_ptr_to_narrowoop() const;
   197   // Convenience access
   198   float getf() const;
   199   double getd() const;
   201   const TypeInt    *is_int() const;
   202   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   203   const TypeLong   *is_long() const;
   204   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   205   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   206   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   207   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   208   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   209   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   210   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   211   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   212   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   213   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   214   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   215   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   216   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   217   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   218   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   219   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   220   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   221   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   222   const TypeInstPtr  *is_instptr() const;        // Instance
   223   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   224   const TypeAryPtr   *is_aryptr() const;         // Array oop
   225   virtual bool      is_finite() const;           // Has a finite value
   226   virtual bool      is_nan()    const;           // Is not a number (NaN)
   228   // Special test for register pressure heuristic
   229   bool is_floatingpoint() const;        // True if Float or Double base type
   231   // Do you have memory, directly or through a tuple?
   232   bool has_memory( ) const;
   234   // Are you a pointer type or not?
   235   bool isa_oop_ptr() const;
   237   // TRUE if type is a singleton
   238   virtual bool singleton(void) const;
   240   // TRUE if type is above the lattice centerline, and is therefore vacuous
   241   virtual bool empty(void) const;
   243   // Return a hash for this type.  The hash function is public so ConNode
   244   // (constants) can hash on their constant, which is represented by a Type.
   245   virtual int hash() const;
   247   // Map ideal registers (machine types) to ideal types
   248   static const Type *mreg2type[];
   250   // Printing, statistics
   251   static const char * const msg[lastype]; // Printable strings
   252 #ifndef PRODUCT
   253   void         dump_on(outputStream *st) const;
   254   void         dump() const {
   255     dump_on(tty);
   256   }
   257   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   258   static  void dump_stats();
   259   static  void verify_lastype();          // Check that arrays match type enum
   260 #endif
   261   void typerr(const Type *t) const; // Mixing types error
   263   // Create basic type
   264   static const Type* get_const_basic_type(BasicType type) {
   265     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   266     return _const_basic_type[type];
   267   }
   269   // Mapping to the array element's basic type.
   270   BasicType array_element_basic_type() const;
   272   // Create standard type for a ciType:
   273   static const Type* get_const_type(ciType* type);
   275   // Create standard zero value:
   276   static const Type* get_zero_type(BasicType type) {
   277     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   278     return _zero_type[type];
   279   }
   281   // Report if this is a zero value (not top).
   282   bool is_zero_type() const {
   283     BasicType type = basic_type();
   284     if (type == T_VOID || type >= T_CONFLICT)
   285       return false;
   286     else
   287       return (this == _zero_type[type]);
   288   }
   290   // Convenience common pre-built types.
   291   static const Type *ABIO;
   292   static const Type *BOTTOM;
   293   static const Type *CONTROL;
   294   static const Type *DOUBLE;
   295   static const Type *FLOAT;
   296   static const Type *HALF;
   297   static const Type *MEMORY;
   298   static const Type *MULTI;
   299   static const Type *RETURN_ADDRESS;
   300   static const Type *TOP;
   302   // Mapping from compiler type to VM BasicType
   303   BasicType basic_type() const { return _basic_type[_base]; }
   305   // Mapping from CI type system to compiler type:
   306   static const Type* get_typeflow_type(ciType* type);
   308 private:
   309   // support arrays
   310   static const BasicType _basic_type[];
   311   static const Type*        _zero_type[T_CONFLICT+1];
   312   static const Type* _const_basic_type[T_CONFLICT+1];
   313 };
   315 //------------------------------TypeF------------------------------------------
   316 // Class of Float-Constant Types.
   317 class TypeF : public Type {
   318   TypeF( float f ) : Type(FloatCon), _f(f) {};
   319 public:
   320   virtual bool eq( const Type *t ) const;
   321   virtual int  hash() const;             // Type specific hashing
   322   virtual bool singleton(void) const;    // TRUE if type is a singleton
   323   virtual bool empty(void) const;        // TRUE if type is vacuous
   324 public:
   325   const float _f;               // Float constant
   327   static const TypeF *make(float f);
   329   virtual bool        is_finite() const;  // Has a finite value
   330   virtual bool        is_nan()    const;  // Is not a number (NaN)
   332   virtual const Type *xmeet( const Type *t ) const;
   333   virtual const Type *xdual() const;    // Compute dual right now.
   334   // Convenience common pre-built types.
   335   static const TypeF *ZERO; // positive zero only
   336   static const TypeF *ONE;
   337 #ifndef PRODUCT
   338   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   339 #endif
   340 };
   342 //------------------------------TypeD------------------------------------------
   343 // Class of Double-Constant Types.
   344 class TypeD : public Type {
   345   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   346 public:
   347   virtual bool eq( const Type *t ) const;
   348   virtual int  hash() const;             // Type specific hashing
   349   virtual bool singleton(void) const;    // TRUE if type is a singleton
   350   virtual bool empty(void) const;        // TRUE if type is vacuous
   351 public:
   352   const double _d;              // Double constant
   354   static const TypeD *make(double d);
   356   virtual bool        is_finite() const;  // Has a finite value
   357   virtual bool        is_nan()    const;  // Is not a number (NaN)
   359   virtual const Type *xmeet( const Type *t ) const;
   360   virtual const Type *xdual() const;    // Compute dual right now.
   361   // Convenience common pre-built types.
   362   static const TypeD *ZERO; // positive zero only
   363   static const TypeD *ONE;
   364 #ifndef PRODUCT
   365   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   366 #endif
   367 };
   369 //------------------------------TypeInt----------------------------------------
   370 // Class of integer ranges, the set of integers between a lower bound and an
   371 // upper bound, inclusive.
   372 class TypeInt : public Type {
   373   TypeInt( jint lo, jint hi, int w );
   374 public:
   375   virtual bool eq( const Type *t ) const;
   376   virtual int  hash() const;             // Type specific hashing
   377   virtual bool singleton(void) const;    // TRUE if type is a singleton
   378   virtual bool empty(void) const;        // TRUE if type is vacuous
   379 public:
   380   const jint _lo, _hi;          // Lower bound, upper bound
   381   const short _widen;           // Limit on times we widen this sucker
   383   static const TypeInt *make(jint lo);
   384   // must always specify w
   385   static const TypeInt *make(jint lo, jint hi, int w);
   387   // Check for single integer
   388   int is_con() const { return _lo==_hi; }
   389   bool is_con(int i) const { return is_con() && _lo == i; }
   390   jint get_con() const { assert( is_con(), "" );  return _lo; }
   392   virtual bool        is_finite() const;  // Has a finite value
   394   virtual const Type *xmeet( const Type *t ) const;
   395   virtual const Type *xdual() const;    // Compute dual right now.
   396   virtual const Type *widen( const Type *t ) const;
   397   virtual const Type *narrow( const Type *t ) const;
   398   // Do not kill _widen bits.
   399   virtual const Type *filter( const Type *kills ) const;
   400   // Convenience common pre-built types.
   401   static const TypeInt *MINUS_1;
   402   static const TypeInt *ZERO;
   403   static const TypeInt *ONE;
   404   static const TypeInt *BOOL;
   405   static const TypeInt *CC;
   406   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   407   static const TypeInt *CC_GT;  // [1]   == ONE
   408   static const TypeInt *CC_EQ;  // [0]   == ZERO
   409   static const TypeInt *CC_LE;  // [-1,0]
   410   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   411   static const TypeInt *BYTE;
   412   static const TypeInt *CHAR;
   413   static const TypeInt *SHORT;
   414   static const TypeInt *POS;
   415   static const TypeInt *POS1;
   416   static const TypeInt *INT;
   417   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   418 #ifndef PRODUCT
   419   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   420 #endif
   421 };
   424 //------------------------------TypeLong---------------------------------------
   425 // Class of long integer ranges, the set of integers between a lower bound and
   426 // an upper bound, inclusive.
   427 class TypeLong : public Type {
   428   TypeLong( jlong lo, jlong hi, int w );
   429 public:
   430   virtual bool eq( const Type *t ) const;
   431   virtual int  hash() const;             // Type specific hashing
   432   virtual bool singleton(void) const;    // TRUE if type is a singleton
   433   virtual bool empty(void) const;        // TRUE if type is vacuous
   434 public:
   435   const jlong _lo, _hi;         // Lower bound, upper bound
   436   const short _widen;           // Limit on times we widen this sucker
   438   static const TypeLong *make(jlong lo);
   439   // must always specify w
   440   static const TypeLong *make(jlong lo, jlong hi, int w);
   442   // Check for single integer
   443   int is_con() const { return _lo==_hi; }
   444   bool is_con(int i) const { return is_con() && _lo == i; }
   445   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   447   virtual bool        is_finite() const;  // Has a finite value
   449   virtual const Type *xmeet( const Type *t ) const;
   450   virtual const Type *xdual() const;    // Compute dual right now.
   451   virtual const Type *widen( const Type *t ) const;
   452   virtual const Type *narrow( const Type *t ) const;
   453   // Do not kill _widen bits.
   454   virtual const Type *filter( const Type *kills ) const;
   455   // Convenience common pre-built types.
   456   static const TypeLong *MINUS_1;
   457   static const TypeLong *ZERO;
   458   static const TypeLong *ONE;
   459   static const TypeLong *POS;
   460   static const TypeLong *LONG;
   461   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   462   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   463 #ifndef PRODUCT
   464   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   465 #endif
   466 };
   468 //------------------------------TypeTuple--------------------------------------
   469 // Class of Tuple Types, essentially type collections for function signatures
   470 // and class layouts.  It happens to also be a fast cache for the HotSpot
   471 // signature types.
   472 class TypeTuple : public Type {
   473   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   474 public:
   475   virtual bool eq( const Type *t ) const;
   476   virtual int  hash() const;             // Type specific hashing
   477   virtual bool singleton(void) const;    // TRUE if type is a singleton
   478   virtual bool empty(void) const;        // TRUE if type is vacuous
   480 public:
   481   const uint          _cnt;              // Count of fields
   482   const Type ** const _fields;           // Array of field types
   484   // Accessors:
   485   uint cnt() const { return _cnt; }
   486   const Type* field_at(uint i) const {
   487     assert(i < _cnt, "oob");
   488     return _fields[i];
   489   }
   490   void set_field_at(uint i, const Type* t) {
   491     assert(i < _cnt, "oob");
   492     _fields[i] = t;
   493   }
   495   static const TypeTuple *make( uint cnt, const Type **fields );
   496   static const TypeTuple *make_range(ciSignature *sig);
   497   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   499   // Subroutine call type with space allocated for argument types
   500   static const Type **fields( uint arg_cnt );
   502   virtual const Type *xmeet( const Type *t ) const;
   503   virtual const Type *xdual() const;    // Compute dual right now.
   504   // Convenience common pre-built types.
   505   static const TypeTuple *IFBOTH;
   506   static const TypeTuple *IFFALSE;
   507   static const TypeTuple *IFTRUE;
   508   static const TypeTuple *IFNEITHER;
   509   static const TypeTuple *LOOPBODY;
   510   static const TypeTuple *MEMBAR;
   511   static const TypeTuple *STORECONDITIONAL;
   512   static const TypeTuple *START_I2C;
   513   static const TypeTuple *INT_PAIR;
   514   static const TypeTuple *LONG_PAIR;
   515 #ifndef PRODUCT
   516   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   517 #endif
   518 };
   520 //------------------------------TypeAry----------------------------------------
   521 // Class of Array Types
   522 class TypeAry : public Type {
   523   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   524     _elem(elem), _size(size) {}
   525 public:
   526   virtual bool eq( const Type *t ) const;
   527   virtual int  hash() const;             // Type specific hashing
   528   virtual bool singleton(void) const;    // TRUE if type is a singleton
   529   virtual bool empty(void) const;        // TRUE if type is vacuous
   531 private:
   532   const Type *_elem;            // Element type of array
   533   const TypeInt *_size;         // Elements in array
   534   friend class TypeAryPtr;
   536 public:
   537   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   539   virtual const Type *xmeet( const Type *t ) const;
   540   virtual const Type *xdual() const;    // Compute dual right now.
   541   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   542 #ifndef PRODUCT
   543   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   544 #endif
   545 };
   547 //------------------------------TypePtr----------------------------------------
   548 // Class of machine Pointer Types: raw data, instances or arrays.
   549 // If the _base enum is AnyPtr, then this refers to all of the above.
   550 // Otherwise the _base will indicate which subset of pointers is affected,
   551 // and the class will be inherited from.
   552 class TypePtr : public Type {
   553   friend class TypeNarrowOop;
   554 public:
   555   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   556 protected:
   557   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   558   virtual bool eq( const Type *t ) const;
   559   virtual int  hash() const;             // Type specific hashing
   560   static const PTR ptr_meet[lastPTR][lastPTR];
   561   static const PTR ptr_dual[lastPTR];
   562   static const char * const ptr_msg[lastPTR];
   564 public:
   565   const int _offset;            // Offset into oop, with TOP & BOT
   566   const PTR _ptr;               // Pointer equivalence class
   568   const int offset() const { return _offset; }
   569   const PTR ptr()    const { return _ptr; }
   571   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   573   // Return a 'ptr' version of this type
   574   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   576   virtual intptr_t get_con() const;
   578   virtual const TypePtr *add_offset( int offset ) const;
   580   virtual bool singleton(void) const;    // TRUE if type is a singleton
   581   virtual bool empty(void) const;        // TRUE if type is vacuous
   582   virtual const Type *xmeet( const Type *t ) const;
   583   int meet_offset( int offset ) const;
   584   int dual_offset( ) const;
   585   virtual const Type *xdual() const;    // Compute dual right now.
   587   // meet, dual and join over pointer equivalence sets
   588   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   589   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   591   // This is textually confusing unless one recalls that
   592   // join(t) == dual()->meet(t->dual())->dual().
   593   PTR join_ptr( const PTR in_ptr ) const {
   594     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   595   }
   597   // Tests for relation to centerline of type lattice:
   598   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   599   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   600   // Convenience common pre-built types.
   601   static const TypePtr *NULL_PTR;
   602   static const TypePtr *NOTNULL;
   603   static const TypePtr *BOTTOM;
   604 #ifndef PRODUCT
   605   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   606 #endif
   607 };
   609 //------------------------------TypeRawPtr-------------------------------------
   610 // Class of raw pointers, pointers to things other than Oops.  Examples
   611 // include the stack pointer, top of heap, card-marking area, handles, etc.
   612 class TypeRawPtr : public TypePtr {
   613 protected:
   614   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   615 public:
   616   virtual bool eq( const Type *t ) const;
   617   virtual int  hash() const;     // Type specific hashing
   619   const address _bits;          // Constant value, if applicable
   621   static const TypeRawPtr *make( PTR ptr );
   622   static const TypeRawPtr *make( address bits );
   624   // Return a 'ptr' version of this type
   625   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   627   virtual intptr_t get_con() const;
   629   virtual const TypePtr *add_offset( int offset ) const;
   631   virtual const Type *xmeet( const Type *t ) const;
   632   virtual const Type *xdual() const;    // Compute dual right now.
   633   // Convenience common pre-built types.
   634   static const TypeRawPtr *BOTTOM;
   635   static const TypeRawPtr *NOTNULL;
   636 #ifndef PRODUCT
   637   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   638 #endif
   639 };
   641 //------------------------------TypeOopPtr-------------------------------------
   642 // Some kind of oop (Java pointer), either klass or instance or array.
   643 class TypeOopPtr : public TypePtr {
   644 protected:
   645   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   646 public:
   647   virtual bool eq( const Type *t ) const;
   648   virtual int  hash() const;             // Type specific hashing
   649   virtual bool singleton(void) const;    // TRUE if type is a singleton
   650   enum {
   651    UNKNOWN_INSTANCE = 0
   652   };
   653 protected:
   655   int xadd_offset( int offset ) const;
   656   // Oop is NULL, unless this is a constant oop.
   657   ciObject*     _const_oop;   // Constant oop
   658   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   659   ciKlass*      _klass;       // Klass object
   660   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   661   bool          _klass_is_exact;
   662   bool          _is_ptr_to_narrowoop;
   664   int           _instance_id;  // if not UNKNOWN_INSTANCE, indicates that this is a particular instance
   665                                // of this type which is distinct.  This is the  the node index of the
   666                                // node creating this instance
   668   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   670   int dual_instance()      const { return -_instance_id; }
   671   int meet_instance(int uid) const;
   673 public:
   674   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   675   // Respects UseUniqueSubclasses.
   676   // If the klass is final, the resulting type will be exact.
   677   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   678     return make_from_klass_common(klass, true, false);
   679   }
   680   // Same as before, but will produce an exact type, even if
   681   // the klass is not final, as long as it has exactly one implementation.
   682   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   683     return make_from_klass_common(klass, true, true);
   684   }
   685   // Same as before, but does not respects UseUniqueSubclasses.
   686   // Use this only for creating array element types.
   687   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   688     return make_from_klass_common(klass, false, false);
   689   }
   690   // Creates a singleton type given an object.
   691   static const TypeOopPtr* make_from_constant(ciObject* o);
   693   // Make a generic (unclassed) pointer to an oop.
   694   static const TypeOopPtr* make(PTR ptr, int offset);
   696   ciObject* const_oop()    const { return _const_oop; }
   697   virtual ciKlass* klass() const { return _klass;     }
   698   bool klass_is_exact()    const { return _klass_is_exact; }
   700   // Returns true if this pointer points at memory which contains a
   701   // compressed oop references.
   702   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   704   bool is_instance()       const { return _instance_id != UNKNOWN_INSTANCE; }
   705   uint instance_id()       const { return _instance_id; }
   706   bool is_instance_field() const { return _instance_id != UNKNOWN_INSTANCE && _offset >= 0; }
   708   virtual intptr_t get_con() const;
   710   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   712   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   714   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   716   // corresponding pointer to klass, for a given instance
   717   const TypeKlassPtr* as_klass_type() const;
   719   virtual const TypePtr *add_offset( int offset ) const;
   721   // returns the equivalent compressed version of this pointer type
   722   virtual const TypeNarrowOop* make_narrowoop() const;
   724   virtual const Type *xmeet( const Type *t ) const;
   725   virtual const Type *xdual() const;    // Compute dual right now.
   727   // Do not allow interface-vs.-noninterface joins to collapse to top.
   728   virtual const Type *filter( const Type *kills ) const;
   730   // Convenience common pre-built type.
   731   static const TypeOopPtr *BOTTOM;
   732 #ifndef PRODUCT
   733   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   734 #endif
   735 };
   737 //------------------------------TypeInstPtr------------------------------------
   738 // Class of Java object pointers, pointing either to non-array Java instances
   739 // or to a klassOop (including array klasses).
   740 class TypeInstPtr : public TypeOopPtr {
   741   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   742   virtual bool eq( const Type *t ) const;
   743   virtual int  hash() const;             // Type specific hashing
   745   ciSymbol*  _name;        // class name
   747  public:
   748   ciSymbol* name()         const { return _name; }
   750   bool  is_loaded() const { return _klass->is_loaded(); }
   752   // Make a pointer to a constant oop.
   753   static const TypeInstPtr *make(ciObject* o) {
   754     return make(TypePtr::Constant, o->klass(), true, o, 0);
   755   }
   757   // Make a pointer to a constant oop with offset.
   758   static const TypeInstPtr *make(ciObject* o, int offset) {
   759     return make(TypePtr::Constant, o->klass(), true, o, offset);
   760   }
   762   // Make a pointer to some value of type klass.
   763   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   764     return make(ptr, klass, false, NULL, 0);
   765   }
   767   // Make a pointer to some non-polymorphic value of exactly type klass.
   768   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   769     return make(ptr, klass, true, NULL, 0);
   770   }
   772   // Make a pointer to some value of type klass with offset.
   773   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   774     return make(ptr, klass, false, NULL, offset);
   775   }
   777   // Make a pointer to an oop.
   778   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = 0 );
   780   // If this is a java.lang.Class constant, return the type for it or NULL.
   781   // Pass to Type::get_const_type to turn it to a type, which will usually
   782   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   783   ciType* java_mirror_type() const;
   785   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   787   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   789   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   791   virtual const TypePtr *add_offset( int offset ) const;
   793   virtual const Type *xmeet( const Type *t ) const;
   794   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   795   virtual const Type *xdual() const;    // Compute dual right now.
   797   // Convenience common pre-built types.
   798   static const TypeInstPtr *NOTNULL;
   799   static const TypeInstPtr *BOTTOM;
   800   static const TypeInstPtr *MIRROR;
   801   static const TypeInstPtr *MARK;
   802   static const TypeInstPtr *KLASS;
   803 #ifndef PRODUCT
   804   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   805 #endif
   806 };
   808 //------------------------------TypeAryPtr-------------------------------------
   809 // Class of Java array pointers
   810 class TypeAryPtr : public TypeOopPtr {
   811   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
   812   virtual bool eq( const Type *t ) const;
   813   virtual int hash() const;     // Type specific hashing
   814   const TypeAry *_ary;          // Array we point into
   816 public:
   817   // Accessors
   818   ciKlass* klass() const;
   819   const TypeAry* ary() const  { return _ary; }
   820   const Type*    elem() const { return _ary->_elem; }
   821   const TypeInt* size() const { return _ary->_size; }
   823   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   824   // Constant pointer to array
   825   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   827   // Convenience
   828   static const TypeAryPtr *make(ciObject* o);
   830   // Return a 'ptr' version of this type
   831   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   833   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   835   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   837   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   839   virtual bool empty(void) const;        // TRUE if type is vacuous
   840   virtual const TypePtr *add_offset( int offset ) const;
   842   virtual const Type *xmeet( const Type *t ) const;
   843   virtual const Type *xdual() const;    // Compute dual right now.
   845   // Convenience common pre-built types.
   846   static const TypeAryPtr *RANGE;
   847   static const TypeAryPtr *OOPS;
   848   static const TypeAryPtr *NARROWOOPS;
   849   static const TypeAryPtr *BYTES;
   850   static const TypeAryPtr *SHORTS;
   851   static const TypeAryPtr *CHARS;
   852   static const TypeAryPtr *INTS;
   853   static const TypeAryPtr *LONGS;
   854   static const TypeAryPtr *FLOATS;
   855   static const TypeAryPtr *DOUBLES;
   856   // selects one of the above:
   857   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   858     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   859     return _array_body_type[elem];
   860   }
   861   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   862   // sharpen the type of an int which is used as an array size
   863   static const TypeInt* narrow_size_type(const TypeInt* size, BasicType elem);
   864 #ifndef PRODUCT
   865   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   866 #endif
   867 };
   869 //------------------------------TypeKlassPtr-----------------------------------
   870 // Class of Java Klass pointers
   871 class TypeKlassPtr : public TypeOopPtr {
   872   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   874   virtual bool eq( const Type *t ) const;
   875   virtual int hash() const;             // Type specific hashing
   877 public:
   878   ciSymbol* name()  const { return _klass->name(); }
   880   // ptr to klass 'k'
   881   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   882   // ptr to klass 'k' with offset
   883   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   884   // ptr to klass 'k' or sub-klass
   885   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   887   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   889   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   891   // corresponding pointer to instance, for a given class
   892   const TypeOopPtr* as_instance_type() const;
   894   virtual const TypePtr *add_offset( int offset ) const;
   895   virtual const Type    *xmeet( const Type *t ) const;
   896   virtual const Type    *xdual() const;      // Compute dual right now.
   898   // Convenience common pre-built types.
   899   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   900   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   901 #ifndef PRODUCT
   902   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   903 #endif
   904 };
   906 //------------------------------TypeNarrowOop----------------------------------
   907 // A compressed reference to some kind of Oop.  This type wraps around
   908 // a preexisting TypeOopPtr and forwards most of it's operations to
   909 // the underlying type.  It's only real purpose is to track the
   910 // oopness of the compressed oop value when we expose the conversion
   911 // between the normal and the compressed form.
   912 class TypeNarrowOop : public Type {
   913 protected:
   914   const TypePtr* _ooptype;
   916   TypeNarrowOop( const TypePtr* ooptype): Type(NarrowOop),
   917     _ooptype(ooptype) {
   918     assert(ooptype->offset() == 0 ||
   919            ooptype->offset() == OffsetBot ||
   920            ooptype->offset() == OffsetTop, "no real offsets");
   921   }
   922 public:
   923   virtual bool eq( const Type *t ) const;
   924   virtual int  hash() const;             // Type specific hashing
   925   virtual bool singleton(void) const;    // TRUE if type is a singleton
   927   virtual const Type *xmeet( const Type *t ) const;
   928   virtual const Type *xdual() const;    // Compute dual right now.
   930   virtual intptr_t get_con() const;
   932   // Do not allow interface-vs.-noninterface joins to collapse to top.
   933   virtual const Type *filter( const Type *kills ) const;
   935   virtual bool empty(void) const;        // TRUE if type is vacuous
   937   static const TypeNarrowOop *make( const TypePtr* type);
   939   static const TypeNarrowOop* make_from_constant(ciObject* con) {
   940     return make(TypeOopPtr::make_from_constant(con));
   941   }
   943   // returns the equivalent oopptr type for this compressed pointer
   944   virtual const TypePtr *make_oopptr() const {
   945     return _ooptype;
   946   }
   948   static const TypeNarrowOop *BOTTOM;
   949   static const TypeNarrowOop *NULL_PTR;
   951 #ifndef PRODUCT
   952   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   953 #endif
   954 };
   956 //------------------------------TypeFunc---------------------------------------
   957 // Class of Array Types
   958 class TypeFunc : public Type {
   959   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
   960   virtual bool eq( const Type *t ) const;
   961   virtual int  hash() const;             // Type specific hashing
   962   virtual bool singleton(void) const;    // TRUE if type is a singleton
   963   virtual bool empty(void) const;        // TRUE if type is vacuous
   964 public:
   965   // Constants are shared among ADLC and VM
   966   enum { Control    = AdlcVMDeps::Control,
   967          I_O        = AdlcVMDeps::I_O,
   968          Memory     = AdlcVMDeps::Memory,
   969          FramePtr   = AdlcVMDeps::FramePtr,
   970          ReturnAdr  = AdlcVMDeps::ReturnAdr,
   971          Parms      = AdlcVMDeps::Parms
   972   };
   974   const TypeTuple* const _domain;     // Domain of inputs
   975   const TypeTuple* const _range;      // Range of results
   977   // Accessors:
   978   const TypeTuple* domain() const { return _domain; }
   979   const TypeTuple* range()  const { return _range; }
   981   static const TypeFunc *make(ciMethod* method);
   982   static const TypeFunc *make(ciSignature signature, const Type* extra);
   983   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
   985   virtual const Type *xmeet( const Type *t ) const;
   986   virtual const Type *xdual() const;    // Compute dual right now.
   988   BasicType return_type() const;
   990 #ifndef PRODUCT
   991   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   992   void print_flattened() const; // Print a 'flattened' signature
   993 #endif
   994   // Convenience common pre-built types.
   995 };
   997 //------------------------------accessors--------------------------------------
   998 inline bool Type::is_ptr_to_narrowoop() const {
   999 #ifdef _LP64
  1000   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1001 #else
  1002   return false;
  1003 #endif
  1006 inline float Type::getf() const {
  1007   assert( _base == FloatCon, "Not a FloatCon" );
  1008   return ((TypeF*)this)->_f;
  1011 inline double Type::getd() const {
  1012   assert( _base == DoubleCon, "Not a DoubleCon" );
  1013   return ((TypeD*)this)->_d;
  1016 inline const TypeF *Type::is_float_constant() const {
  1017   assert( _base == FloatCon, "Not a Float" );
  1018   return (TypeF*)this;
  1021 inline const TypeF *Type::isa_float_constant() const {
  1022   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1025 inline const TypeD *Type::is_double_constant() const {
  1026   assert( _base == DoubleCon, "Not a Double" );
  1027   return (TypeD*)this;
  1030 inline const TypeD *Type::isa_double_constant() const {
  1031   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1034 inline const TypeInt *Type::is_int() const {
  1035   assert( _base == Int, "Not an Int" );
  1036   return (TypeInt*)this;
  1039 inline const TypeInt *Type::isa_int() const {
  1040   return ( _base == Int ? (TypeInt*)this : NULL);
  1043 inline const TypeLong *Type::is_long() const {
  1044   assert( _base == Long, "Not a Long" );
  1045   return (TypeLong*)this;
  1048 inline const TypeLong *Type::isa_long() const {
  1049   return ( _base == Long ? (TypeLong*)this : NULL);
  1052 inline const TypeTuple *Type::is_tuple() const {
  1053   assert( _base == Tuple, "Not a Tuple" );
  1054   return (TypeTuple*)this;
  1057 inline const TypeAry *Type::is_ary() const {
  1058   assert( _base == Array , "Not an Array" );
  1059   return (TypeAry*)this;
  1062 inline const TypePtr *Type::is_ptr() const {
  1063   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1064   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1065   return (TypePtr*)this;
  1068 inline const TypePtr *Type::isa_ptr() const {
  1069   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1070   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1073 inline const TypeOopPtr *Type::is_oopptr() const {
  1074   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1075   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1076   return (TypeOopPtr*)this;
  1079 inline const TypeOopPtr *Type::isa_oopptr() const {
  1080   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1081   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1084 inline const TypeRawPtr *Type::isa_rawptr() const {
  1085   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1088 inline const TypeRawPtr *Type::is_rawptr() const {
  1089   assert( _base == RawPtr, "Not a raw pointer" );
  1090   return (TypeRawPtr*)this;
  1093 inline const TypeInstPtr *Type::isa_instptr() const {
  1094   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1097 inline const TypeInstPtr *Type::is_instptr() const {
  1098   assert( _base == InstPtr, "Not an object pointer" );
  1099   return (TypeInstPtr*)this;
  1102 inline const TypeAryPtr *Type::isa_aryptr() const {
  1103   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1106 inline const TypeAryPtr *Type::is_aryptr() const {
  1107   assert( _base == AryPtr, "Not an array pointer" );
  1108   return (TypeAryPtr*)this;
  1111 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1112   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1113   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1114   return (TypeNarrowOop*)this;
  1117 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1118   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1119   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1122 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1123   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1126 inline const TypeKlassPtr *Type::is_klassptr() const {
  1127   assert( _base == KlassPtr, "Not a klass pointer" );
  1128   return (TypeKlassPtr*)this;
  1131 inline bool Type::is_floatingpoint() const {
  1132   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1133       (_base == DoubleCon) || (_base == DoubleBot) )
  1134     return true;
  1135   return false;
  1139 // ===============================================================
  1140 // Things that need to be 64-bits in the 64-bit build but
  1141 // 32-bits in the 32-bit build.  Done this way to get full
  1142 // optimization AND strong typing.
  1143 #ifdef _LP64
  1145 // For type queries and asserts
  1146 #define is_intptr_t  is_long
  1147 #define isa_intptr_t isa_long
  1148 #define find_intptr_t_type find_long_type
  1149 #define find_intptr_t_con  find_long_con
  1150 #define TypeX        TypeLong
  1151 #define Type_X       Type::Long
  1152 #define TypeX_X      TypeLong::LONG
  1153 #define TypeX_ZERO   TypeLong::ZERO
  1154 // For 'ideal_reg' machine registers
  1155 #define Op_RegX      Op_RegL
  1156 // For phase->intcon variants
  1157 #define MakeConX     longcon
  1158 #define ConXNode     ConLNode
  1159 // For array index arithmetic
  1160 #define MulXNode     MulLNode
  1161 #define AndXNode     AndLNode
  1162 #define OrXNode      OrLNode
  1163 #define CmpXNode     CmpLNode
  1164 #define SubXNode     SubLNode
  1165 #define LShiftXNode  LShiftLNode
  1166 // For object size computation:
  1167 #define AddXNode     AddLNode
  1168 #define RShiftXNode  RShiftLNode
  1169 // For card marks and hashcodes
  1170 #define URShiftXNode URShiftLNode
  1171 // Opcodes
  1172 #define Op_LShiftX   Op_LShiftL
  1173 #define Op_AndX      Op_AndL
  1174 #define Op_AddX      Op_AddL
  1175 #define Op_SubX      Op_SubL
  1176 // conversions
  1177 #define ConvI2X(x)   ConvI2L(x)
  1178 #define ConvL2X(x)   (x)
  1179 #define ConvX2I(x)   ConvL2I(x)
  1180 #define ConvX2L(x)   (x)
  1182 #else
  1184 // For type queries and asserts
  1185 #define is_intptr_t  is_int
  1186 #define isa_intptr_t isa_int
  1187 #define find_intptr_t_type find_int_type
  1188 #define find_intptr_t_con  find_int_con
  1189 #define TypeX        TypeInt
  1190 #define Type_X       Type::Int
  1191 #define TypeX_X      TypeInt::INT
  1192 #define TypeX_ZERO   TypeInt::ZERO
  1193 // For 'ideal_reg' machine registers
  1194 #define Op_RegX      Op_RegI
  1195 // For phase->intcon variants
  1196 #define MakeConX     intcon
  1197 #define ConXNode     ConINode
  1198 // For array index arithmetic
  1199 #define MulXNode     MulINode
  1200 #define AndXNode     AndINode
  1201 #define OrXNode      OrINode
  1202 #define CmpXNode     CmpINode
  1203 #define SubXNode     SubINode
  1204 #define LShiftXNode  LShiftINode
  1205 // For object size computation:
  1206 #define AddXNode     AddINode
  1207 #define RShiftXNode  RShiftINode
  1208 // For card marks and hashcodes
  1209 #define URShiftXNode URShiftINode
  1210 // Opcodes
  1211 #define Op_LShiftX   Op_LShiftI
  1212 #define Op_AndX      Op_AndI
  1213 #define Op_AddX      Op_AddI
  1214 #define Op_SubX      Op_SubI
  1215 // conversions
  1216 #define ConvI2X(x)   (x)
  1217 #define ConvL2X(x)   ConvL2I(x)
  1218 #define ConvX2I(x)   (x)
  1219 #define ConvX2L(x)   ConvI2L(x)
  1221 #endif

mercurial