src/share/vm/opto/type.hpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 499
b8f5ba577b02
child 580
f3de1255b035
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 // This class defines a Type lattice.  The lattice is used in the constant
    31 // propagation algorithms, and for some type-checking of the iloc code.
    32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    33 // float & double precision constants, sets of data-labels and code-labels.
    34 // The complete lattice is described below.  Subtypes have no relationship to
    35 // up or down in the lattice; that is entirely determined by the behavior of
    36 // the MEET/JOIN functions.
    38 class Dict;
    39 class Type;
    40 class   TypeD;
    41 class   TypeF;
    42 class   TypeInt;
    43 class   TypeLong;
    44 class   TypeNarrowOop;
    45 class   TypeAry;
    46 class   TypeTuple;
    47 class   TypePtr;
    48 class     TypeRawPtr;
    49 class     TypeOopPtr;
    50 class       TypeInstPtr;
    51 class       TypeAryPtr;
    52 class       TypeKlassPtr;
    54 //------------------------------Type-------------------------------------------
    55 // Basic Type object, represents a set of primitive Values.
    56 // Types are hash-cons'd into a private class dictionary, so only one of each
    57 // different kind of Type exists.  Types are never modified after creation, so
    58 // all their interesting fields are constant.
    59 class Type {
    60 public:
    61   enum TYPES {
    62     Bad=0,                      // Type check
    63     Control,                    // Control of code (not in lattice)
    64     Top,                        // Top of the lattice
    65     Int,                        // Integer range (lo-hi)
    66     Long,                       // Long integer range (lo-hi)
    67     Half,                       // Placeholder half of doubleword
    68     NarrowOop,                  // Compressed oop pointer
    70     Tuple,                      // Method signature or object layout
    71     Array,                      // Array types
    73     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    74     RawPtr,                     // Raw (non-oop) pointers
    75     OopPtr,                     // Any and all Java heap entities
    76     InstPtr,                    // Instance pointers (non-array objects)
    77     AryPtr,                     // Array pointers
    78     KlassPtr,                   // Klass pointers
    79     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    81     Function,                   // Function signature
    82     Abio,                       // Abstract I/O
    83     Return_Address,             // Subroutine return address
    84     Memory,                     // Abstract store
    85     FloatTop,                   // No float value
    86     FloatCon,                   // Floating point constant
    87     FloatBot,                   // Any float value
    88     DoubleTop,                  // No double value
    89     DoubleCon,                  // Double precision constant
    90     DoubleBot,                  // Any double value
    91     Bottom,                     // Bottom of lattice
    92     lastype                     // Bogus ending type (not in lattice)
    93   };
    95   // Signal values for offsets from a base pointer
    96   enum OFFSET_SIGNALS {
    97     OffsetTop = -2000000000,    // undefined offset
    98     OffsetBot = -2000000001     // any possible offset
    99   };
   101   // Min and max WIDEN values.
   102   enum WIDEN {
   103     WidenMin = 0,
   104     WidenMax = 3
   105   };
   107 private:
   108   // Dictionary of types shared among compilations.
   109   static Dict* _shared_type_dict;
   111   static int uhash( const Type *const t );
   112   // Structural equality check.  Assumes that cmp() has already compared
   113   // the _base types and thus knows it can cast 't' appropriately.
   114   virtual bool eq( const Type *t ) const;
   116   // Top-level hash-table of types
   117   static Dict *type_dict() {
   118     return Compile::current()->type_dict();
   119   }
   121   // DUAL operation: reflect around lattice centerline.  Used instead of
   122   // join to ensure my lattice is symmetric up and down.  Dual is computed
   123   // lazily, on demand, and cached in _dual.
   124   const Type *_dual;            // Cached dual value
   125   // Table for efficient dualing of base types
   126   static const TYPES dual_type[lastype];
   128 protected:
   129   // Each class of type is also identified by its base.
   130   const TYPES _base;            // Enum of Types type
   132   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   133   // ~Type();                   // Use fast deallocation
   134   const Type *hashcons();       // Hash-cons the type
   136 public:
   138   inline void* operator new( size_t x ) {
   139     Compile* compile = Compile::current();
   140     compile->set_type_last_size(x);
   141     void *temp = compile->type_arena()->Amalloc_D(x);
   142     compile->set_type_hwm(temp);
   143     return temp;
   144   }
   145   inline void operator delete( void* ptr ) {
   146     Compile* compile = Compile::current();
   147     compile->type_arena()->Afree(ptr,compile->type_last_size());
   148   }
   150   // Initialize the type system for a particular compilation.
   151   static void Initialize(Compile* compile);
   153   // Initialize the types shared by all compilations.
   154   static void Initialize_shared(Compile* compile);
   156   TYPES base() const {
   157     assert(_base > Bad && _base < lastype, "sanity");
   158     return _base;
   159   }
   161   // Create a new hash-consd type
   162   static const Type *make(enum TYPES);
   163   // Test for equivalence of types
   164   static int cmp( const Type *const t1, const Type *const t2 );
   165   // Test for higher or equal in lattice
   166   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   168   // MEET operation; lower in lattice.
   169   const Type *meet( const Type *t ) const;
   170   // WIDEN: 'widens' for Ints and other range types
   171   virtual const Type *widen( const Type *old ) const { return this; }
   172   // NARROW: complement for widen, used by pessimistic phases
   173   virtual const Type *narrow( const Type *old ) const { return this; }
   175   // DUAL operation: reflect around lattice centerline.  Used instead of
   176   // join to ensure my lattice is symmetric up and down.
   177   const Type *dual() const { return _dual; }
   179   // Compute meet dependent on base type
   180   virtual const Type *xmeet( const Type *t ) const;
   181   virtual const Type *xdual() const;    // Compute dual right now.
   183   // JOIN operation; higher in lattice.  Done by finding the dual of the
   184   // meet of the dual of the 2 inputs.
   185   const Type *join( const Type *t ) const {
   186     return dual()->meet(t->dual())->dual(); }
   188   // Modified version of JOIN adapted to the needs Node::Value.
   189   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   190   // Currently, it also works around limitations involving interface types.
   191   virtual const Type *filter( const Type *kills ) const;
   193   // Returns true if this pointer points at memory which contains a
   194   // compressed oop references.  In 32-bit builds it's non-virtual
   195   // since we don't support compressed oops at all in the mode.
   196   LP64_ONLY(virtual) bool is_narrow() const { return false; }
   198   // Convenience access
   199   float getf() const;
   200   double getd() const;
   202   const TypeInt    *is_int() const;
   203   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   204   const TypeLong   *is_long() const;
   205   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   206   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   207   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   208   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   209   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   210   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   211   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   212   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   213   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   214   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   215   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   216   const TypeNarrowOop  *is_narrowoop() const;        // Java-style GC'd pointer
   217   const TypeNarrowOop  *isa_narrowoop() const;       // Returns NULL if not oop ptr type
   218   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   219   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   220   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   221   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   222   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   223   const TypeInstPtr  *is_instptr() const;        // Instance
   224   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   225   const TypeAryPtr   *is_aryptr() const;         // Array oop
   226   virtual bool      is_finite() const;           // Has a finite value
   227   virtual bool      is_nan()    const;           // Is not a number (NaN)
   229   // Special test for register pressure heuristic
   230   bool is_floatingpoint() const;        // True if Float or Double base type
   232   // Do you have memory, directly or through a tuple?
   233   bool has_memory( ) const;
   235   // Are you a pointer type or not?
   236   bool isa_oop_ptr() const;
   238   // TRUE if type is a singleton
   239   virtual bool singleton(void) const;
   241   // TRUE if type is above the lattice centerline, and is therefore vacuous
   242   virtual bool empty(void) const;
   244   // Return a hash for this type.  The hash function is public so ConNode
   245   // (constants) can hash on their constant, which is represented by a Type.
   246   virtual int hash() const;
   248   // Map ideal registers (machine types) to ideal types
   249   static const Type *mreg2type[];
   251   // Printing, statistics
   252   static const char * const msg[lastype]; // Printable strings
   253 #ifndef PRODUCT
   254   void         dump_on(outputStream *st) const;
   255   void         dump() const {
   256     dump_on(tty);
   257   }
   258   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   259   static  void dump_stats();
   260   static  void verify_lastype();          // Check that arrays match type enum
   261 #endif
   262   void typerr(const Type *t) const; // Mixing types error
   264   // Create basic type
   265   static const Type* get_const_basic_type(BasicType type) {
   266     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   267     return _const_basic_type[type];
   268   }
   270   // Mapping to the array element's basic type.
   271   BasicType array_element_basic_type() const;
   273   // Create standard type for a ciType:
   274   static const Type* get_const_type(ciType* type);
   276   // Create standard zero value:
   277   static const Type* get_zero_type(BasicType type) {
   278     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   279     return _zero_type[type];
   280   }
   282   // Report if this is a zero value (not top).
   283   bool is_zero_type() const {
   284     BasicType type = basic_type();
   285     if (type == T_VOID || type >= T_CONFLICT)
   286       return false;
   287     else
   288       return (this == _zero_type[type]);
   289   }
   291   // Convenience common pre-built types.
   292   static const Type *ABIO;
   293   static const Type *BOTTOM;
   294   static const Type *CONTROL;
   295   static const Type *DOUBLE;
   296   static const Type *FLOAT;
   297   static const Type *HALF;
   298   static const Type *MEMORY;
   299   static const Type *MULTI;
   300   static const Type *RETURN_ADDRESS;
   301   static const Type *TOP;
   303   // Mapping from compiler type to VM BasicType
   304   BasicType basic_type() const { return _basic_type[_base]; }
   306   // Mapping from CI type system to compiler type:
   307   static const Type* get_typeflow_type(ciType* type);
   309 private:
   310   // support arrays
   311   static const BasicType _basic_type[];
   312   static const Type*        _zero_type[T_CONFLICT+1];
   313   static const Type* _const_basic_type[T_CONFLICT+1];
   314 };
   316 //------------------------------TypeF------------------------------------------
   317 // Class of Float-Constant Types.
   318 class TypeF : public Type {
   319   TypeF( float f ) : Type(FloatCon), _f(f) {};
   320 public:
   321   virtual bool eq( const Type *t ) const;
   322   virtual int  hash() const;             // Type specific hashing
   323   virtual bool singleton(void) const;    // TRUE if type is a singleton
   324   virtual bool empty(void) const;        // TRUE if type is vacuous
   325 public:
   326   const float _f;               // Float constant
   328   static const TypeF *make(float f);
   330   virtual bool        is_finite() const;  // Has a finite value
   331   virtual bool        is_nan()    const;  // Is not a number (NaN)
   333   virtual const Type *xmeet( const Type *t ) const;
   334   virtual const Type *xdual() const;    // Compute dual right now.
   335   // Convenience common pre-built types.
   336   static const TypeF *ZERO; // positive zero only
   337   static const TypeF *ONE;
   338 #ifndef PRODUCT
   339   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   340 #endif
   341 };
   343 //------------------------------TypeD------------------------------------------
   344 // Class of Double-Constant Types.
   345 class TypeD : public Type {
   346   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   347 public:
   348   virtual bool eq( const Type *t ) const;
   349   virtual int  hash() const;             // Type specific hashing
   350   virtual bool singleton(void) const;    // TRUE if type is a singleton
   351   virtual bool empty(void) const;        // TRUE if type is vacuous
   352 public:
   353   const double _d;              // Double constant
   355   static const TypeD *make(double d);
   357   virtual bool        is_finite() const;  // Has a finite value
   358   virtual bool        is_nan()    const;  // Is not a number (NaN)
   360   virtual const Type *xmeet( const Type *t ) const;
   361   virtual const Type *xdual() const;    // Compute dual right now.
   362   // Convenience common pre-built types.
   363   static const TypeD *ZERO; // positive zero only
   364   static const TypeD *ONE;
   365 #ifndef PRODUCT
   366   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   367 #endif
   368 };
   370 //------------------------------TypeInt----------------------------------------
   371 // Class of integer ranges, the set of integers between a lower bound and an
   372 // upper bound, inclusive.
   373 class TypeInt : public Type {
   374   TypeInt( jint lo, jint hi, int w );
   375 public:
   376   virtual bool eq( const Type *t ) const;
   377   virtual int  hash() const;             // Type specific hashing
   378   virtual bool singleton(void) const;    // TRUE if type is a singleton
   379   virtual bool empty(void) const;        // TRUE if type is vacuous
   380 public:
   381   const jint _lo, _hi;          // Lower bound, upper bound
   382   const short _widen;           // Limit on times we widen this sucker
   384   static const TypeInt *make(jint lo);
   385   // must always specify w
   386   static const TypeInt *make(jint lo, jint hi, int w);
   388   // Check for single integer
   389   int is_con() const { return _lo==_hi; }
   390   bool is_con(int i) const { return is_con() && _lo == i; }
   391   jint get_con() const { assert( is_con(), "" );  return _lo; }
   393   virtual bool        is_finite() const;  // Has a finite value
   395   virtual const Type *xmeet( const Type *t ) const;
   396   virtual const Type *xdual() const;    // Compute dual right now.
   397   virtual const Type *widen( const Type *t ) const;
   398   virtual const Type *narrow( const Type *t ) const;
   399   // Do not kill _widen bits.
   400   virtual const Type *filter( const Type *kills ) const;
   401   // Convenience common pre-built types.
   402   static const TypeInt *MINUS_1;
   403   static const TypeInt *ZERO;
   404   static const TypeInt *ONE;
   405   static const TypeInt *BOOL;
   406   static const TypeInt *CC;
   407   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   408   static const TypeInt *CC_GT;  // [1]   == ONE
   409   static const TypeInt *CC_EQ;  // [0]   == ZERO
   410   static const TypeInt *CC_LE;  // [-1,0]
   411   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   412   static const TypeInt *BYTE;
   413   static const TypeInt *CHAR;
   414   static const TypeInt *SHORT;
   415   static const TypeInt *POS;
   416   static const TypeInt *POS1;
   417   static const TypeInt *INT;
   418   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   419 #ifndef PRODUCT
   420   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   421 #endif
   422 };
   425 //------------------------------TypeLong---------------------------------------
   426 // Class of long integer ranges, the set of integers between a lower bound and
   427 // an upper bound, inclusive.
   428 class TypeLong : public Type {
   429   TypeLong( jlong lo, jlong hi, int w );
   430 public:
   431   virtual bool eq( const Type *t ) const;
   432   virtual int  hash() const;             // Type specific hashing
   433   virtual bool singleton(void) const;    // TRUE if type is a singleton
   434   virtual bool empty(void) const;        // TRUE if type is vacuous
   435 public:
   436   const jlong _lo, _hi;         // Lower bound, upper bound
   437   const short _widen;           // Limit on times we widen this sucker
   439   static const TypeLong *make(jlong lo);
   440   // must always specify w
   441   static const TypeLong *make(jlong lo, jlong hi, int w);
   443   // Check for single integer
   444   int is_con() const { return _lo==_hi; }
   445   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   447   virtual bool        is_finite() const;  // Has a finite value
   449   virtual const Type *xmeet( const Type *t ) const;
   450   virtual const Type *xdual() const;    // Compute dual right now.
   451   virtual const Type *widen( const Type *t ) const;
   452   virtual const Type *narrow( const Type *t ) const;
   453   // Do not kill _widen bits.
   454   virtual const Type *filter( const Type *kills ) const;
   455   // Convenience common pre-built types.
   456   static const TypeLong *MINUS_1;
   457   static const TypeLong *ZERO;
   458   static const TypeLong *ONE;
   459   static const TypeLong *POS;
   460   static const TypeLong *LONG;
   461   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   462   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   463 #ifndef PRODUCT
   464   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   465 #endif
   466 };
   468 //------------------------------TypeTuple--------------------------------------
   469 // Class of Tuple Types, essentially type collections for function signatures
   470 // and class layouts.  It happens to also be a fast cache for the HotSpot
   471 // signature types.
   472 class TypeTuple : public Type {
   473   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   474 public:
   475   virtual bool eq( const Type *t ) const;
   476   virtual int  hash() const;             // Type specific hashing
   477   virtual bool singleton(void) const;    // TRUE if type is a singleton
   478   virtual bool empty(void) const;        // TRUE if type is vacuous
   480 public:
   481   const uint          _cnt;              // Count of fields
   482   const Type ** const _fields;           // Array of field types
   484   // Accessors:
   485   uint cnt() const { return _cnt; }
   486   const Type* field_at(uint i) const {
   487     assert(i < _cnt, "oob");
   488     return _fields[i];
   489   }
   490   void set_field_at(uint i, const Type* t) {
   491     assert(i < _cnt, "oob");
   492     _fields[i] = t;
   493   }
   495   static const TypeTuple *make( uint cnt, const Type **fields );
   496   static const TypeTuple *make_range(ciSignature *sig);
   497   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   499   // Subroutine call type with space allocated for argument types
   500   static const Type **fields( uint arg_cnt );
   502   virtual const Type *xmeet( const Type *t ) const;
   503   virtual const Type *xdual() const;    // Compute dual right now.
   504   // Convenience common pre-built types.
   505   static const TypeTuple *IFBOTH;
   506   static const TypeTuple *IFFALSE;
   507   static const TypeTuple *IFTRUE;
   508   static const TypeTuple *IFNEITHER;
   509   static const TypeTuple *LOOPBODY;
   510   static const TypeTuple *MEMBAR;
   511   static const TypeTuple *STORECONDITIONAL;
   512   static const TypeTuple *START_I2C;
   513   static const TypeTuple *INT_PAIR;
   514   static const TypeTuple *LONG_PAIR;
   515 #ifndef PRODUCT
   516   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   517 #endif
   518 };
   520 //------------------------------TypeAry----------------------------------------
   521 // Class of Array Types
   522 class TypeAry : public Type {
   523   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   524     _elem(elem), _size(size) {}
   525 public:
   526   virtual bool eq( const Type *t ) const;
   527   virtual int  hash() const;             // Type specific hashing
   528   virtual bool singleton(void) const;    // TRUE if type is a singleton
   529   virtual bool empty(void) const;        // TRUE if type is vacuous
   531 private:
   532   const Type *_elem;            // Element type of array
   533   const TypeInt *_size;         // Elements in array
   534   friend class TypeAryPtr;
   536 public:
   537   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   539   virtual const Type *xmeet( const Type *t ) const;
   540   virtual const Type *xdual() const;    // Compute dual right now.
   541   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   542 #ifndef PRODUCT
   543   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   544 #endif
   545 };
   547 //------------------------------TypePtr----------------------------------------
   548 // Class of machine Pointer Types: raw data, instances or arrays.
   549 // If the _base enum is AnyPtr, then this refers to all of the above.
   550 // Otherwise the _base will indicate which subset of pointers is affected,
   551 // and the class will be inherited from.
   552 class TypePtr : public Type {
   553   friend class TypeNarrowOop;
   554 public:
   555   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   556 protected:
   557   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   558   virtual bool eq( const Type *t ) const;
   559   virtual int  hash() const;             // Type specific hashing
   560   static const PTR ptr_meet[lastPTR][lastPTR];
   561   static const PTR ptr_dual[lastPTR];
   562   static const char * const ptr_msg[lastPTR];
   564 public:
   565   const int _offset;            // Offset into oop, with TOP & BOT
   566   const PTR _ptr;               // Pointer equivalence class
   568   const int offset() const { return _offset; }
   569   const PTR ptr()    const { return _ptr; }
   571   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   573   // Return a 'ptr' version of this type
   574   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   576   virtual intptr_t get_con() const;
   578   virtual const TypePtr *add_offset( int offset ) const;
   580   virtual bool singleton(void) const;    // TRUE if type is a singleton
   581   virtual bool empty(void) const;        // TRUE if type is vacuous
   582   virtual const Type *xmeet( const Type *t ) const;
   583   int meet_offset( int offset ) const;
   584   int dual_offset( ) const;
   585   virtual const Type *xdual() const;    // Compute dual right now.
   587   // meet, dual and join over pointer equivalence sets
   588   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   589   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   591   // This is textually confusing unless one recalls that
   592   // join(t) == dual()->meet(t->dual())->dual().
   593   PTR join_ptr( const PTR in_ptr ) const {
   594     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   595   }
   597   // Tests for relation to centerline of type lattice:
   598   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   599   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   600   // Convenience common pre-built types.
   601   static const TypePtr *NULL_PTR;
   602   static const TypePtr *NOTNULL;
   603   static const TypePtr *BOTTOM;
   604 #ifndef PRODUCT
   605   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   606 #endif
   607 };
   609 //------------------------------TypeRawPtr-------------------------------------
   610 // Class of raw pointers, pointers to things other than Oops.  Examples
   611 // include the stack pointer, top of heap, card-marking area, handles, etc.
   612 class TypeRawPtr : public TypePtr {
   613 protected:
   614   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   615 public:
   616   virtual bool eq( const Type *t ) const;
   617   virtual int  hash() const;     // Type specific hashing
   619   const address _bits;          // Constant value, if applicable
   621   static const TypeRawPtr *make( PTR ptr );
   622   static const TypeRawPtr *make( address bits );
   624   // Return a 'ptr' version of this type
   625   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   627   virtual intptr_t get_con() const;
   629   virtual const TypePtr *add_offset( int offset ) const;
   631   virtual const Type *xmeet( const Type *t ) const;
   632   virtual const Type *xdual() const;    // Compute dual right now.
   633   // Convenience common pre-built types.
   634   static const TypeRawPtr *BOTTOM;
   635   static const TypeRawPtr *NOTNULL;
   636 #ifndef PRODUCT
   637   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   638 #endif
   639 };
   641 //------------------------------TypeOopPtr-------------------------------------
   642 // Some kind of oop (Java pointer), either klass or instance or array.
   643 class TypeOopPtr : public TypePtr {
   644 protected:
   645   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id ) : TypePtr(t, ptr, offset), _const_oop(o), _klass(k), _klass_is_exact(xk), _instance_id(instance_id) { }
   646 public:
   647   virtual bool eq( const Type *t ) const;
   648   virtual int  hash() const;             // Type specific hashing
   649   virtual bool singleton(void) const;    // TRUE if type is a singleton
   650   enum {
   651    UNKNOWN_INSTANCE = 0
   652   };
   653 protected:
   655   int xadd_offset( int offset ) const;
   656   // Oop is NULL, unless this is a constant oop.
   657   ciObject*     _const_oop;   // Constant oop
   658   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   659   ciKlass*      _klass;       // Klass object
   660   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   661   bool          _klass_is_exact;
   663   int          _instance_id;   // if not UNKNOWN_INSTANCE, indicates that this is a particular instance
   664                                // of this type which is distinct.  This is the  the node index of the
   665                                // node creating this instance
   667   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   669   int dual_instance()      const { return -_instance_id; }
   670   int meet_instance(int uid) const;
   672 public:
   673   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   674   // Respects UseUniqueSubclasses.
   675   // If the klass is final, the resulting type will be exact.
   676   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   677     return make_from_klass_common(klass, true, false);
   678   }
   679   // Same as before, but will produce an exact type, even if
   680   // the klass is not final, as long as it has exactly one implementation.
   681   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   682     return make_from_klass_common(klass, true, true);
   683   }
   684   // Same as before, but does not respects UseUniqueSubclasses.
   685   // Use this only for creating array element types.
   686   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   687     return make_from_klass_common(klass, false, false);
   688   }
   689   // Creates a singleton type given an object.
   690   static const TypeOopPtr* make_from_constant(ciObject* o);
   692   // Make a generic (unclassed) pointer to an oop.
   693   static const TypeOopPtr* make(PTR ptr, int offset);
   695   ciObject* const_oop()    const { return _const_oop; }
   696   virtual ciKlass* klass() const { return _klass;     }
   697   bool klass_is_exact()    const { return _klass_is_exact; }
   698   bool is_instance()       const { return _instance_id != UNKNOWN_INSTANCE; }
   699   uint instance_id()       const { return _instance_id; }
   700   bool is_instance_field() const { return _instance_id != UNKNOWN_INSTANCE && _offset >= 0; }
   702   virtual intptr_t get_con() const;
   704   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   706   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   708   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   710   // corresponding pointer to klass, for a given instance
   711   const TypeKlassPtr* as_klass_type() const;
   713   virtual const TypePtr *add_offset( int offset ) const;
   715   // returns the equivalent compressed version of this pointer type
   716   virtual const TypeNarrowOop* make_narrowoop() const;
   718 #ifdef _LP64
   719   virtual bool is_narrow() const {
   720     return (UseCompressedOops && _offset != 0);
   721   }
   722 #endif
   724   virtual const Type *xmeet( const Type *t ) const;
   725   virtual const Type *xdual() const;    // Compute dual right now.
   727   // Do not allow interface-vs.-noninterface joins to collapse to top.
   728   virtual const Type *filter( const Type *kills ) const;
   730   // Convenience common pre-built type.
   731   static const TypeOopPtr *BOTTOM;
   732 #ifndef PRODUCT
   733   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   734 #endif
   735 };
   737 //------------------------------TypeInstPtr------------------------------------
   738 // Class of Java object pointers, pointing either to non-array Java instances
   739 // or to a klassOop (including array klasses).
   740 class TypeInstPtr : public TypeOopPtr {
   741   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   742   virtual bool eq( const Type *t ) const;
   743   virtual int  hash() const;             // Type specific hashing
   745   ciSymbol*  _name;        // class name
   747  public:
   748   ciSymbol* name()         const { return _name; }
   750   bool  is_loaded() const { return _klass->is_loaded(); }
   752   // Make a pointer to a constant oop.
   753   static const TypeInstPtr *make(ciObject* o) {
   754     return make(TypePtr::Constant, o->klass(), true, o, 0);
   755   }
   757   // Make a pointer to a constant oop with offset.
   758   static const TypeInstPtr *make(ciObject* o, int offset) {
   759     return make(TypePtr::Constant, o->klass(), true, o, offset);
   760   }
   762   // Make a pointer to some value of type klass.
   763   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   764     return make(ptr, klass, false, NULL, 0);
   765   }
   767   // Make a pointer to some non-polymorphic value of exactly type klass.
   768   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   769     return make(ptr, klass, true, NULL, 0);
   770   }
   772   // Make a pointer to some value of type klass with offset.
   773   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   774     return make(ptr, klass, false, NULL, offset);
   775   }
   777   // Make a pointer to an oop.
   778   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = 0 );
   780   // If this is a java.lang.Class constant, return the type for it or NULL.
   781   // Pass to Type::get_const_type to turn it to a type, which will usually
   782   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   783   ciType* java_mirror_type() const;
   785   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   787   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   789   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   791   virtual const TypePtr *add_offset( int offset ) const;
   793   virtual const Type *xmeet( const Type *t ) const;
   794   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   795   virtual const Type *xdual() const;    // Compute dual right now.
   797   // Convenience common pre-built types.
   798   static const TypeInstPtr *NOTNULL;
   799   static const TypeInstPtr *BOTTOM;
   800   static const TypeInstPtr *MIRROR;
   801   static const TypeInstPtr *MARK;
   802   static const TypeInstPtr *KLASS;
   803 #ifndef PRODUCT
   804   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   805 #endif
   806 };
   808 //------------------------------TypeAryPtr-------------------------------------
   809 // Class of Java array pointers
   810 class TypeAryPtr : public TypeOopPtr {
   811   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
   812   virtual bool eq( const Type *t ) const;
   813   virtual int hash() const;     // Type specific hashing
   814   const TypeAry *_ary;          // Array we point into
   816 public:
   817   // Accessors
   818   ciKlass* klass() const;
   819   const TypeAry* ary() const  { return _ary; }
   820   const Type*    elem() const { return _ary->_elem; }
   821   const TypeInt* size() const { return _ary->_size; }
   823   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   824   // Constant pointer to array
   825   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = 0);
   827   // Convenience
   828   static const TypeAryPtr *make(ciObject* o);
   830   // Return a 'ptr' version of this type
   831   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   833   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   835   virtual const TypeOopPtr *cast_to_instance(int instance_id) const;
   837   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   839   virtual bool empty(void) const;        // TRUE if type is vacuous
   840   virtual const TypePtr *add_offset( int offset ) const;
   842   virtual const Type *xmeet( const Type *t ) const;
   843   virtual const Type *xdual() const;    // Compute dual right now.
   845 #ifdef _LP64
   846   virtual bool is_narrow() const {
   847     return (UseCompressedOops && klass() != NULL && _offset != 0);
   848   }
   849 #endif
   851   // Convenience common pre-built types.
   852   static const TypeAryPtr *RANGE;
   853   static const TypeAryPtr *OOPS;
   854   static const TypeAryPtr *BYTES;
   855   static const TypeAryPtr *SHORTS;
   856   static const TypeAryPtr *CHARS;
   857   static const TypeAryPtr *INTS;
   858   static const TypeAryPtr *LONGS;
   859   static const TypeAryPtr *FLOATS;
   860   static const TypeAryPtr *DOUBLES;
   861   // selects one of the above:
   862   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   863     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   864     return _array_body_type[elem];
   865   }
   866   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   867   // sharpen the type of an int which is used as an array size
   868   static const TypeInt* narrow_size_type(const TypeInt* size, BasicType elem);
   869 #ifndef PRODUCT
   870   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   871 #endif
   872 };
   874 //------------------------------TypeKlassPtr-----------------------------------
   875 // Class of Java Klass pointers
   876 class TypeKlassPtr : public TypeOopPtr {
   877   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   879   virtual bool eq( const Type *t ) const;
   880   virtual int hash() const;             // Type specific hashing
   882 public:
   883   ciSymbol* name()  const { return _klass->name(); }
   885   // ptr to klass 'k'
   886   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   887   // ptr to klass 'k' with offset
   888   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   889   // ptr to klass 'k' or sub-klass
   890   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   892   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   894   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   896   // corresponding pointer to instance, for a given class
   897   const TypeOopPtr* as_instance_type() const;
   899   virtual const TypePtr *add_offset( int offset ) const;
   900   virtual const Type    *xmeet( const Type *t ) const;
   901   virtual const Type    *xdual() const;      // Compute dual right now.
   903 #ifdef _LP64
   904   // Perm objects don't use compressed references, except for static fields
   905   // which are currently compressed
   906   virtual bool is_narrow() const {
   907     if (UseCompressedOops && _offset != 0 && _klass->is_instance_klass()) {
   908       ciInstanceKlass* ik = _klass->as_instance_klass();
   909       return ik != NULL && ik->get_field_by_offset(_offset, true) != NULL;
   910     }
   911     return false;
   912   }
   913 #endif
   915   // Convenience common pre-built types.
   916   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   917   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   918 #ifndef PRODUCT
   919   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   920 #endif
   921 };
   923 //------------------------------TypeNarrowOop----------------------------------------
   924 // A compressed reference to some kind of Oop.  This type wraps around
   925 // a preexisting TypeOopPtr and forwards most of it's operations to
   926 // the underlying type.  It's only real purpose is to track the
   927 // oopness of the compressed oop value when we expose the conversion
   928 // between the normal and the compressed form.
   929 class TypeNarrowOop : public Type {
   930 protected:
   931   const TypePtr* _ooptype;
   933   TypeNarrowOop( const TypePtr* ooptype): Type(NarrowOop),
   934     _ooptype(ooptype) {
   935     assert(ooptype->offset() == 0 ||
   936            ooptype->offset() == OffsetBot ||
   937            ooptype->offset() == OffsetTop, "no real offsets");
   938   }
   939 public:
   940   virtual bool eq( const Type *t ) const;
   941   virtual int  hash() const;             // Type specific hashing
   942   virtual bool singleton(void) const;    // TRUE if type is a singleton
   944   virtual const Type *xmeet( const Type *t ) const;
   945   virtual const Type *xdual() const;    // Compute dual right now.
   947   virtual intptr_t get_con() const;
   949   // Do not allow interface-vs.-noninterface joins to collapse to top.
   950   virtual const Type *filter( const Type *kills ) const;
   952   virtual bool empty(void) const;        // TRUE if type is vacuous
   954   static const TypeNarrowOop *make( const TypePtr* type);
   956   static const TypeNarrowOop* make_from_constant(ciObject* con) {
   957     return make(TypeOopPtr::make_from_constant(con));
   958   }
   960   // returns the equivalent oopptr type for this compressed pointer
   961   virtual const TypePtr *make_oopptr() const {
   962     return _ooptype;
   963   }
   965   static const TypeNarrowOop *BOTTOM;
   966   static const TypeNarrowOop *NULL_PTR;
   968 #ifndef PRODUCT
   969   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   970 #endif
   971 };
   973 //------------------------------TypeFunc---------------------------------------
   974 // Class of Array Types
   975 class TypeFunc : public Type {
   976   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
   977   virtual bool eq( const Type *t ) const;
   978   virtual int  hash() const;             // Type specific hashing
   979   virtual bool singleton(void) const;    // TRUE if type is a singleton
   980   virtual bool empty(void) const;        // TRUE if type is vacuous
   981 public:
   982   // Constants are shared among ADLC and VM
   983   enum { Control    = AdlcVMDeps::Control,
   984          I_O        = AdlcVMDeps::I_O,
   985          Memory     = AdlcVMDeps::Memory,
   986          FramePtr   = AdlcVMDeps::FramePtr,
   987          ReturnAdr  = AdlcVMDeps::ReturnAdr,
   988          Parms      = AdlcVMDeps::Parms
   989   };
   991   const TypeTuple* const _domain;     // Domain of inputs
   992   const TypeTuple* const _range;      // Range of results
   994   // Accessors:
   995   const TypeTuple* domain() const { return _domain; }
   996   const TypeTuple* range()  const { return _range; }
   998   static const TypeFunc *make(ciMethod* method);
   999   static const TypeFunc *make(ciSignature signature, const Type* extra);
  1000   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
  1002   virtual const Type *xmeet( const Type *t ) const;
  1003   virtual const Type *xdual() const;    // Compute dual right now.
  1005   BasicType return_type() const;
  1007 #ifndef PRODUCT
  1008   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
  1009   void print_flattened() const; // Print a 'flattened' signature
  1010 #endif
  1011   // Convenience common pre-built types.
  1012 };
  1014 //------------------------------accessors--------------------------------------
  1015 inline float Type::getf() const {
  1016   assert( _base == FloatCon, "Not a FloatCon" );
  1017   return ((TypeF*)this)->_f;
  1020 inline double Type::getd() const {
  1021   assert( _base == DoubleCon, "Not a DoubleCon" );
  1022   return ((TypeD*)this)->_d;
  1025 inline const TypeF *Type::is_float_constant() const {
  1026   assert( _base == FloatCon, "Not a Float" );
  1027   return (TypeF*)this;
  1030 inline const TypeF *Type::isa_float_constant() const {
  1031   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1034 inline const TypeD *Type::is_double_constant() const {
  1035   assert( _base == DoubleCon, "Not a Double" );
  1036   return (TypeD*)this;
  1039 inline const TypeD *Type::isa_double_constant() const {
  1040   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1043 inline const TypeInt *Type::is_int() const {
  1044   assert( _base == Int, "Not an Int" );
  1045   return (TypeInt*)this;
  1048 inline const TypeInt *Type::isa_int() const {
  1049   return ( _base == Int ? (TypeInt*)this : NULL);
  1052 inline const TypeLong *Type::is_long() const {
  1053   assert( _base == Long, "Not a Long" );
  1054   return (TypeLong*)this;
  1057 inline const TypeLong *Type::isa_long() const {
  1058   return ( _base == Long ? (TypeLong*)this : NULL);
  1061 inline const TypeTuple *Type::is_tuple() const {
  1062   assert( _base == Tuple, "Not a Tuple" );
  1063   return (TypeTuple*)this;
  1066 inline const TypeAry *Type::is_ary() const {
  1067   assert( _base == Array , "Not an Array" );
  1068   return (TypeAry*)this;
  1071 inline const TypePtr *Type::is_ptr() const {
  1072   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1073   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1074   return (TypePtr*)this;
  1077 inline const TypePtr *Type::isa_ptr() const {
  1078   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1079   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1082 inline const TypeOopPtr *Type::is_oopptr() const {
  1083   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1084   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1085   return (TypeOopPtr*)this;
  1088 inline const TypeOopPtr *Type::isa_oopptr() const {
  1089   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1090   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1093 inline const TypeRawPtr *Type::isa_rawptr() const {
  1094   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1097 inline const TypeRawPtr *Type::is_rawptr() const {
  1098   assert( _base == RawPtr, "Not a raw pointer" );
  1099   return (TypeRawPtr*)this;
  1102 inline const TypeInstPtr *Type::isa_instptr() const {
  1103   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1106 inline const TypeInstPtr *Type::is_instptr() const {
  1107   assert( _base == InstPtr, "Not an object pointer" );
  1108   return (TypeInstPtr*)this;
  1111 inline const TypeAryPtr *Type::isa_aryptr() const {
  1112   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1115 inline const TypeAryPtr *Type::is_aryptr() const {
  1116   assert( _base == AryPtr, "Not an array pointer" );
  1117   return (TypeAryPtr*)this;
  1120 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1121   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1122   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1123   return (TypeNarrowOop*)this;
  1126 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1127   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1128   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1131 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1132   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1135 inline const TypeKlassPtr *Type::is_klassptr() const {
  1136   assert( _base == KlassPtr, "Not a klass pointer" );
  1137   return (TypeKlassPtr*)this;
  1140 inline bool Type::is_floatingpoint() const {
  1141   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1142       (_base == DoubleCon) || (_base == DoubleBot) )
  1143     return true;
  1144   return false;
  1148 // ===============================================================
  1149 // Things that need to be 64-bits in the 64-bit build but
  1150 // 32-bits in the 32-bit build.  Done this way to get full
  1151 // optimization AND strong typing.
  1152 #ifdef _LP64
  1154 // For type queries and asserts
  1155 #define is_intptr_t  is_long
  1156 #define isa_intptr_t isa_long
  1157 #define find_intptr_t_type find_long_type
  1158 #define find_intptr_t_con  find_long_con
  1159 #define TypeX        TypeLong
  1160 #define Type_X       Type::Long
  1161 #define TypeX_X      TypeLong::LONG
  1162 #define TypeX_ZERO   TypeLong::ZERO
  1163 // For 'ideal_reg' machine registers
  1164 #define Op_RegX      Op_RegL
  1165 // For phase->intcon variants
  1166 #define MakeConX     longcon
  1167 #define ConXNode     ConLNode
  1168 // For array index arithmetic
  1169 #define MulXNode     MulLNode
  1170 #define AndXNode     AndLNode
  1171 #define OrXNode      OrLNode
  1172 #define CmpXNode     CmpLNode
  1173 #define SubXNode     SubLNode
  1174 #define LShiftXNode  LShiftLNode
  1175 // For object size computation:
  1176 #define AddXNode     AddLNode
  1177 #define RShiftXNode  RShiftLNode
  1178 // For card marks and hashcodes
  1179 #define URShiftXNode URShiftLNode
  1180 // Opcodes
  1181 #define Op_LShiftX   Op_LShiftL
  1182 #define Op_AndX      Op_AndL
  1183 #define Op_AddX      Op_AddL
  1184 #define Op_SubX      Op_SubL
  1185 // conversions
  1186 #define ConvI2X(x)   ConvI2L(x)
  1187 #define ConvL2X(x)   (x)
  1188 #define ConvX2I(x)   ConvL2I(x)
  1189 #define ConvX2L(x)   (x)
  1191 #else
  1193 // For type queries and asserts
  1194 #define is_intptr_t  is_int
  1195 #define isa_intptr_t isa_int
  1196 #define find_intptr_t_type find_int_type
  1197 #define find_intptr_t_con  find_int_con
  1198 #define TypeX        TypeInt
  1199 #define Type_X       Type::Int
  1200 #define TypeX_X      TypeInt::INT
  1201 #define TypeX_ZERO   TypeInt::ZERO
  1202 // For 'ideal_reg' machine registers
  1203 #define Op_RegX      Op_RegI
  1204 // For phase->intcon variants
  1205 #define MakeConX     intcon
  1206 #define ConXNode     ConINode
  1207 // For array index arithmetic
  1208 #define MulXNode     MulINode
  1209 #define AndXNode     AndINode
  1210 #define OrXNode      OrINode
  1211 #define CmpXNode     CmpINode
  1212 #define SubXNode     SubINode
  1213 #define LShiftXNode  LShiftINode
  1214 // For object size computation:
  1215 #define AddXNode     AddINode
  1216 #define RShiftXNode  RShiftINode
  1217 // For card marks and hashcodes
  1218 #define URShiftXNode URShiftINode
  1219 // Opcodes
  1220 #define Op_LShiftX   Op_LShiftI
  1221 #define Op_AndX      Op_AndI
  1222 #define Op_AddX      Op_AddI
  1223 #define Op_SubX      Op_SubI
  1224 // conversions
  1225 #define ConvI2X(x)   (x)
  1226 #define ConvL2X(x)   ConvL2I(x)
  1227 #define ConvX2I(x)   (x)
  1228 #define ConvX2L(x)   ConvI2L(x)
  1230 #endif

mercurial