src/share/vm/memory/allocation.cpp

Mon, 17 Jun 2013 11:17:49 +0100

author
chegar
date
Mon, 17 Jun 2013 11:17:49 +0100
changeset 5251
eaf3742822ec
parent 5249
ce9ecec70f99
parent 5208
a1ebd310d5c1
child 5321
2b9380b0bf0b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "os_bsd.inline.hpp"
    50 #endif
    52 void* StackObj::operator new(size_t size)       { ShouldNotCallThis(); return 0; }
    53 void  StackObj::operator delete(void* p)        { ShouldNotCallThis(); }
    54 void* StackObj::operator new [](size_t size)    { ShouldNotCallThis(); return 0; }
    55 void  StackObj::operator delete [](void* p)     { ShouldNotCallThis(); }
    57 void* _ValueObj::operator new(size_t size)      { ShouldNotCallThis(); return 0; }
    58 void  _ValueObj::operator delete(void* p)       { ShouldNotCallThis(); }
    59 void* _ValueObj::operator new [](size_t size)   { ShouldNotCallThis(); return 0; }
    60 void  _ValueObj::operator delete [](void* p)    { ShouldNotCallThis(); }
    62 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    63                                  size_t word_size, bool read_only,
    64                                  MetaspaceObj::Type type, TRAPS) {
    65   // Klass has it's own operator new
    66   return Metaspace::allocate(loader_data, word_size, read_only,
    67                              type, CHECK_NULL);
    68 }
    70 bool MetaspaceObj::is_shared() const {
    71   return MetaspaceShared::is_in_shared_space(this);
    72 }
    74 bool MetaspaceObj::is_metadata() const {
    75   // GC Verify checks use this in guarantees.
    76   // TODO: either replace them with is_metaspace_object() or remove them.
    77   // is_metaspace_object() is slower than this test.  This test doesn't
    78   // seem very useful for metaspace objects anymore though.
    79   return !Universe::heap()->is_in_reserved(this);
    80 }
    82 bool MetaspaceObj::is_metaspace_object() const {
    83   return Metaspace::contains((void*)this);
    84 }
    86 void MetaspaceObj::print_address_on(outputStream* st) const {
    87   st->print(" {"INTPTR_FORMAT"}", this);
    88 }
    90 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    91   address res;
    92   switch (type) {
    93    case C_HEAP:
    94     res = (address)AllocateHeap(size, flags, CALLER_PC);
    95     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    96     break;
    97    case RESOURCE_AREA:
    98     // new(size) sets allocation type RESOURCE_AREA.
    99     res = (address)operator new(size);
   100     break;
   101    default:
   102     ShouldNotReachHere();
   103   }
   104   return res;
   105 }
   107 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
   108   return (address) operator new(size, type, flags);
   109 }
   111 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   112     allocation_type type, MEMFLAGS flags) {
   113   //should only call this with std::nothrow, use other operator new() otherwise
   114   address res;
   115   switch (type) {
   116    case C_HEAP:
   117     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   118     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   119     break;
   120    case RESOURCE_AREA:
   121     // new(size) sets allocation type RESOURCE_AREA.
   122     res = (address)operator new(size, std::nothrow);
   123     break;
   124    default:
   125     ShouldNotReachHere();
   126   }
   127   return res;
   128 }
   130 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   131     allocation_type type, MEMFLAGS flags) {
   132   return (address)operator new(size, nothrow_constant, type, flags);
   133 }
   135 void ResourceObj::operator delete(void* p) {
   136   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   137          "delete only allowed for C_HEAP objects");
   138   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   139   FreeHeap(p);
   140 }
   142 void ResourceObj::operator delete [](void* p) {
   143   operator delete(p);
   144 }
   146 #ifdef ASSERT
   147 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   148     // Set allocation type in the resource object
   149     uintptr_t allocation = (uintptr_t)res;
   150     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   151     assert(type <= allocation_mask, "incorrect allocation type");
   152     ResourceObj* resobj = (ResourceObj *)res;
   153     resobj->_allocation_t[0] = ~(allocation + type);
   154     if (type != STACK_OR_EMBEDDED) {
   155       // Called from operator new() and CollectionSetChooser(),
   156       // set verification value.
   157       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   158     }
   159 }
   161 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   162     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   163     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   164 }
   166 bool ResourceObj::is_type_set() const {
   167     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   168     return get_allocation_type()  == type &&
   169            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   170 }
   172 ResourceObj::ResourceObj() { // default constructor
   173     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   174       // Operator new() is not called for allocations
   175       // on stack and for embedded objects.
   176       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   177     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   178       // For some reason we got a value which resembles
   179       // an embedded or stack object (operator new() does not
   180       // set such type). Keep it since it is valid value
   181       // (even if it was garbage).
   182       // Ignore garbage in other fields.
   183     } else if (is_type_set()) {
   184       // Operator new() was called and type was set.
   185       assert(!allocated_on_stack(),
   186              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   187                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   188     } else {
   189       // Operator new() was not called.
   190       // Assume that it is embedded or stack object.
   191       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   192     }
   193     _allocation_t[1] = 0; // Zap verification value
   194 }
   196 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   197     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   198     // Note: garbage may resembles valid value.
   199     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   200            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   201                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   202     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   203     _allocation_t[1] = 0; // Zap verification value
   204 }
   206 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   207     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   208     assert(allocated_on_stack(),
   209            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   210                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   211     // Keep current _allocation_t value;
   212     return *this;
   213 }
   215 ResourceObj::~ResourceObj() {
   216     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   217     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   218       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   219     }
   220 }
   221 #endif // ASSERT
   224 void trace_heap_malloc(size_t size, const char* name, void* p) {
   225   // A lock is not needed here - tty uses a lock internally
   226   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   227 }
   230 void trace_heap_free(void* p) {
   231   // A lock is not needed here - tty uses a lock internally
   232   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   233 }
   235 //--------------------------------------------------------------------------------------
   236 // ChunkPool implementation
   238 // MT-safe pool of chunks to reduce malloc/free thrashing
   239 // NB: not using Mutex because pools are used before Threads are initialized
   240 class ChunkPool: public CHeapObj<mtInternal> {
   241   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   242   size_t       _num_chunks;   // number of unused chunks in pool
   243   size_t       _num_used;     // number of chunks currently checked out
   244   const size_t _size;         // size of each chunk (must be uniform)
   246   // Our three static pools
   247   static ChunkPool* _large_pool;
   248   static ChunkPool* _medium_pool;
   249   static ChunkPool* _small_pool;
   251   // return first element or null
   252   void* get_first() {
   253     Chunk* c = _first;
   254     if (_first) {
   255       _first = _first->next();
   256       _num_chunks--;
   257     }
   258     return c;
   259   }
   261  public:
   262   // All chunks in a ChunkPool has the same size
   263    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   265   // Allocate a new chunk from the pool (might expand the pool)
   266   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   267     assert(bytes == _size, "bad size");
   268     void* p = NULL;
   269     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   270     // should be done outside ThreadCritical lock due to NMT
   271     { ThreadCritical tc;
   272       _num_used++;
   273       p = get_first();
   274     }
   275     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   276     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   277       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   278     }
   279     return p;
   280   }
   282   // Return a chunk to the pool
   283   void free(Chunk* chunk) {
   284     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   285     ThreadCritical tc;
   286     _num_used--;
   288     // Add chunk to list
   289     chunk->set_next(_first);
   290     _first = chunk;
   291     _num_chunks++;
   292   }
   294   // Prune the pool
   295   void free_all_but(size_t n) {
   296     Chunk* cur = NULL;
   297     Chunk* next;
   298     {
   299     // if we have more than n chunks, free all of them
   300     ThreadCritical tc;
   301     if (_num_chunks > n) {
   302       // free chunks at end of queue, for better locality
   303         cur = _first;
   304       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   306       if (cur != NULL) {
   307           next = cur->next();
   308         cur->set_next(NULL);
   309         cur = next;
   311           _num_chunks = n;
   312         }
   313       }
   314     }
   316     // Free all remaining chunks, outside of ThreadCritical
   317     // to avoid deadlock with NMT
   318         while(cur != NULL) {
   319           next = cur->next();
   320       os::free(cur, mtChunk);
   321           cur = next;
   322         }
   323       }
   325   // Accessors to preallocated pool's
   326   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   327   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   328   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   330   static void initialize() {
   331     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   332     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   333     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   334   }
   336   static void clean() {
   337     enum { BlocksToKeep = 5 };
   338      _small_pool->free_all_but(BlocksToKeep);
   339      _medium_pool->free_all_but(BlocksToKeep);
   340      _large_pool->free_all_but(BlocksToKeep);
   341   }
   342 };
   344 ChunkPool* ChunkPool::_large_pool  = NULL;
   345 ChunkPool* ChunkPool::_medium_pool = NULL;
   346 ChunkPool* ChunkPool::_small_pool  = NULL;
   348 void chunkpool_init() {
   349   ChunkPool::initialize();
   350 }
   352 void
   353 Chunk::clean_chunk_pool() {
   354   ChunkPool::clean();
   355 }
   358 //--------------------------------------------------------------------------------------
   359 // ChunkPoolCleaner implementation
   360 //
   362 class ChunkPoolCleaner : public PeriodicTask {
   363   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   365  public:
   366    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   367    void task() {
   368      ChunkPool::clean();
   369    }
   370 };
   372 //--------------------------------------------------------------------------------------
   373 // Chunk implementation
   375 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) {
   376   // requested_size is equal to sizeof(Chunk) but in order for the arena
   377   // allocations to come out aligned as expected the size must be aligned
   378   // to expected arena alignment.
   379   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   380   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   381   size_t bytes = ARENA_ALIGN(requested_size) + length;
   382   switch (length) {
   383    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   384    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   385    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   386    default: {
   387      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   388      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   389        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   390      }
   391      return p;
   392    }
   393   }
   394 }
   396 void Chunk::operator delete(void* p) {
   397   Chunk* c = (Chunk*)p;
   398   switch (c->length()) {
   399    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   400    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   401    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   402    default:                 os::free(c, mtChunk);
   403   }
   404 }
   406 Chunk::Chunk(size_t length) : _len(length) {
   407   _next = NULL;         // Chain on the linked list
   408 }
   411 void Chunk::chop() {
   412   Chunk *k = this;
   413   while( k ) {
   414     Chunk *tmp = k->next();
   415     // clear out this chunk (to detect allocation bugs)
   416     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   417     delete k;                   // Free chunk (was malloc'd)
   418     k = tmp;
   419   }
   420 }
   422 void Chunk::next_chop() {
   423   _next->chop();
   424   _next = NULL;
   425 }
   428 void Chunk::start_chunk_pool_cleaner_task() {
   429 #ifdef ASSERT
   430   static bool task_created = false;
   431   assert(!task_created, "should not start chuck pool cleaner twice");
   432   task_created = true;
   433 #endif
   434   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   435   cleaner->enroll();
   436 }
   438 //------------------------------Arena------------------------------------------
   439 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   441 Arena::Arena(size_t init_size) {
   442   size_t round_size = (sizeof (char *)) - 1;
   443   init_size = (init_size+round_size) & ~round_size;
   444   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   445   _hwm = _chunk->bottom();      // Save the cached hwm, max
   446   _max = _chunk->top();
   447   set_size_in_bytes(init_size);
   448   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   449 }
   451 Arena::Arena() {
   452   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   453   _hwm = _chunk->bottom();      // Save the cached hwm, max
   454   _max = _chunk->top();
   455   set_size_in_bytes(Chunk::init_size);
   456   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   457 }
   459 Arena *Arena::move_contents(Arena *copy) {
   460   copy->destruct_contents();
   461   copy->_chunk = _chunk;
   462   copy->_hwm   = _hwm;
   463   copy->_max   = _max;
   464   copy->_first = _first;
   466   // workaround rare racing condition, which could double count
   467   // the arena size by native memory tracking
   468   size_t size = size_in_bytes();
   469   set_size_in_bytes(0);
   470   copy->set_size_in_bytes(size);
   471   // Destroy original arena
   472   reset();
   473   return copy;            // Return Arena with contents
   474 }
   476 Arena::~Arena() {
   477   destruct_contents();
   478   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   479 }
   481 void* Arena::operator new(size_t size) {
   482   assert(false, "Use dynamic memory type binding");
   483   return NULL;
   484 }
   486 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   487   assert(false, "Use dynamic memory type binding");
   488   return NULL;
   489 }
   491   // dynamic memory type binding
   492 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   493 #ifdef ASSERT
   494   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   495   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   496   return p;
   497 #else
   498   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   499 #endif
   500 }
   502 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   503 #ifdef ASSERT
   504   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   505   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   506   return p;
   507 #else
   508   return os::malloc(size, flags|otArena, CALLER_PC);
   509 #endif
   510 }
   512 void Arena::operator delete(void* p) {
   513   FreeHeap(p);
   514 }
   516 // Destroy this arenas contents and reset to empty
   517 void Arena::destruct_contents() {
   518   if (UseMallocOnly && _first != NULL) {
   519     char* end = _first->next() ? _first->top() : _hwm;
   520     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   521   }
   522   // reset size before chop to avoid a rare racing condition
   523   // that can have total arena memory exceed total chunk memory
   524   set_size_in_bytes(0);
   525   _first->chop();
   526   reset();
   527 }
   529 // This is high traffic method, but many calls actually don't
   530 // change the size
   531 void Arena::set_size_in_bytes(size_t size) {
   532   if (_size_in_bytes != size) {
   533     _size_in_bytes = size;
   534     MemTracker::record_arena_size((address)this, size);
   535   }
   536 }
   538 // Total of all Chunks in arena
   539 size_t Arena::used() const {
   540   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   541   register Chunk *k = _first;
   542   while( k != _chunk) {         // Whilst have Chunks in a row
   543     sum += k->length();         // Total size of this Chunk
   544     k = k->next();              // Bump along to next Chunk
   545   }
   546   return sum;                   // Return total consumed space.
   547 }
   549 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   550   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   551 }
   553 // Grow a new Chunk
   554 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   555   // Get minimal required size.  Either real big, or even bigger for giant objs
   556   size_t len = MAX2(x, (size_t) Chunk::size);
   558   Chunk *k = _chunk;            // Get filled-up chunk address
   559   _chunk = new (alloc_failmode, len) Chunk(len);
   561   if (_chunk == NULL) {
   562     return NULL;
   563   }
   564   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   565   else _first = _chunk;
   566   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   567   _max =  _chunk->top();
   568   set_size_in_bytes(size_in_bytes() + len);
   569   void* result = _hwm;
   570   _hwm += x;
   571   return result;
   572 }
   576 // Reallocate storage in Arena.
   577 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   578   assert(new_size >= 0, "bad size");
   579   if (new_size == 0) return NULL;
   580 #ifdef ASSERT
   581   if (UseMallocOnly) {
   582     // always allocate a new object  (otherwise we'll free this one twice)
   583     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   584     if (copy == NULL) {
   585       return NULL;
   586     }
   587     size_t n = MIN2(old_size, new_size);
   588     if (n > 0) memcpy(copy, old_ptr, n);
   589     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   590     return copy;
   591   }
   592 #endif
   593   char *c_old = (char*)old_ptr; // Handy name
   594   // Stupid fast special case
   595   if( new_size <= old_size ) {  // Shrink in-place
   596     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   597       _hwm = c_old+new_size;    // Adjust hwm
   598     return c_old;
   599   }
   601   // make sure that new_size is legal
   602   size_t corrected_new_size = ARENA_ALIGN(new_size);
   604   // See if we can resize in-place
   605   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   606       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   607     _hwm = c_old+corrected_new_size;      // Adjust hwm
   608     return c_old;               // Return old pointer
   609   }
   611   // Oops, got to relocate guts
   612   void *new_ptr = Amalloc(new_size, alloc_failmode);
   613   if (new_ptr == NULL) {
   614     return NULL;
   615   }
   616   memcpy( new_ptr, c_old, old_size );
   617   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   618   return new_ptr;
   619 }
   622 // Determine if pointer belongs to this Arena or not.
   623 bool Arena::contains( const void *ptr ) const {
   624 #ifdef ASSERT
   625   if (UseMallocOnly) {
   626     // really slow, but not easy to make fast
   627     if (_chunk == NULL) return false;
   628     char** bottom = (char**)_chunk->bottom();
   629     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   630       if (*p == ptr) return true;
   631     }
   632     for (Chunk *c = _first; c != NULL; c = c->next()) {
   633       if (c == _chunk) continue;  // current chunk has been processed
   634       char** bottom = (char**)c->bottom();
   635       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   636         if (*p == ptr) return true;
   637       }
   638     }
   639     return false;
   640   }
   641 #endif
   642   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   643     return true;                // Check for in this chunk
   644   for (Chunk *c = _first; c; c = c->next()) {
   645     if (c == _chunk) continue;  // current chunk has been processed
   646     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   647       return true;              // Check for every chunk in Arena
   648     }
   649   }
   650   return false;                 // Not in any Chunk, so not in Arena
   651 }
   654 #ifdef ASSERT
   655 void* Arena::malloc(size_t size) {
   656   assert(UseMallocOnly, "shouldn't call");
   657   // use malloc, but save pointer in res. area for later freeing
   658   char** save = (char**)internal_malloc_4(sizeof(char*));
   659   return (*save = (char*)os::malloc(size, mtChunk));
   660 }
   662 // for debugging with UseMallocOnly
   663 void* Arena::internal_malloc_4(size_t x) {
   664   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   665   check_for_overflow(x, "Arena::internal_malloc_4");
   666   if (_hwm + x > _max) {
   667     return grow(x);
   668   } else {
   669     char *old = _hwm;
   670     _hwm += x;
   671     return old;
   672   }
   673 }
   674 #endif
   677 //--------------------------------------------------------------------------------------
   678 // Non-product code
   680 #ifndef PRODUCT
   681 // The global operator new should never be called since it will usually indicate
   682 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   683 // that they're allocated on the C heap.
   684 // Commented out in product version to avoid conflicts with third-party C++ native code.
   685 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   686 // from jdk source and causing data corruption. Such as
   687 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   688 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   689 //
   690 #ifndef ALLOW_OPERATOR_NEW_USAGE
   691 void* operator new(size_t size){
   692   assert(false, "Should not call global operator new");
   693   return 0;
   694 }
   696 void* operator new [](size_t size){
   697   assert(false, "Should not call global operator new[]");
   698   return 0;
   699 }
   701 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
   702   assert(false, "Should not call global operator new");
   703   return 0;
   704 }
   706 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
   707   assert(false, "Should not call global operator new[]");
   708   return 0;
   709 }
   711 void operator delete(void* p) {
   712   assert(false, "Should not call global delete");
   713 }
   715 void operator delete [](void* p) {
   716   assert(false, "Should not call global delete []");
   717 }
   718 #endif // ALLOW_OPERATOR_NEW_USAGE
   720 void AllocatedObj::print() const       { print_on(tty); }
   721 void AllocatedObj::print_value() const { print_value_on(tty); }
   723 void AllocatedObj::print_on(outputStream* st) const {
   724   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   725 }
   727 void AllocatedObj::print_value_on(outputStream* st) const {
   728   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   729 }
   731 julong Arena::_bytes_allocated = 0;
   733 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   735 AllocStats::AllocStats() {
   736   start_mallocs      = os::num_mallocs;
   737   start_frees        = os::num_frees;
   738   start_malloc_bytes = os::alloc_bytes;
   739   start_mfree_bytes  = os::free_bytes;
   740   start_res_bytes    = Arena::_bytes_allocated;
   741 }
   743 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   744 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   745 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   746 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   747 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   748 void    AllocStats::print() {
   749   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   750                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   751                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   752 }
   755 // debugging code
   756 inline void Arena::free_all(char** start, char** end) {
   757   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   758 }
   760 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   761   assert(UseMallocOnly, "should not call");
   762   // free all objects malloced since resource mark was created; resource area
   763   // contains their addresses
   764   if (chunk->next()) {
   765     // this chunk is full, and some others too
   766     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   767       char* top = c->top();
   768       if (c->next() == NULL) {
   769         top = hwm2;     // last junk is only used up to hwm2
   770         assert(c->contains(hwm2), "bad hwm2");
   771       }
   772       free_all((char**)c->bottom(), (char**)top);
   773     }
   774     assert(chunk->contains(hwm), "bad hwm");
   775     assert(chunk->contains(max), "bad max");
   776     free_all((char**)hwm, (char**)max);
   777   } else {
   778     // this chunk was partially used
   779     assert(chunk->contains(hwm), "bad hwm");
   780     assert(chunk->contains(hwm2), "bad hwm2");
   781     free_all((char**)hwm, (char**)hwm2);
   782   }
   783 }
   786 ReallocMark::ReallocMark() {
   787 #ifdef ASSERT
   788   Thread *thread = ThreadLocalStorage::get_thread_slow();
   789   _nesting = thread->resource_area()->nesting();
   790 #endif
   791 }
   793 void ReallocMark::check() {
   794 #ifdef ASSERT
   795   if (_nesting != Thread::current()->resource_area()->nesting()) {
   796     fatal("allocation bug: array could grow within nested ResourceMark");
   797   }
   798 #endif
   799 }
   801 #endif // Non-product

mercurial