src/share/vm/memory/allocation.cpp

Fri, 28 Jun 2013 02:25:07 -0700

author
amurillo
date
Fri, 28 Jun 2013 02:25:07 -0700
changeset 5321
2b9380b0bf0b
parent 5251
eaf3742822ec
parent 5307
e0c9a1d29eb4
child 5368
cf9d71d3e474
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "os_bsd.inline.hpp"
    50 #endif
    52 void* StackObj::operator new(size_t size)       { ShouldNotCallThis(); return 0; }
    53 void  StackObj::operator delete(void* p)        { ShouldNotCallThis(); }
    54 void* StackObj::operator new [](size_t size)    { ShouldNotCallThis(); return 0; }
    55 void  StackObj::operator delete [](void* p)     { ShouldNotCallThis(); }
    57 void* _ValueObj::operator new(size_t size)      { ShouldNotCallThis(); return 0; }
    58 void  _ValueObj::operator delete(void* p)       { ShouldNotCallThis(); }
    59 void* _ValueObj::operator new [](size_t size)   { ShouldNotCallThis(); return 0; }
    60 void  _ValueObj::operator delete [](void* p)    { ShouldNotCallThis(); }
    62 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    63                                  size_t word_size, bool read_only,
    64                                  MetaspaceObj::Type type, TRAPS) {
    65   // Klass has it's own operator new
    66   return Metaspace::allocate(loader_data, word_size, read_only,
    67                              type, CHECK_NULL);
    68 }
    70 bool MetaspaceObj::is_shared() const {
    71   return MetaspaceShared::is_in_shared_space(this);
    72 }
    75 bool MetaspaceObj::is_metaspace_object() const {
    76   return Metaspace::contains((void*)this);
    77 }
    79 void MetaspaceObj::print_address_on(outputStream* st) const {
    80   st->print(" {"INTPTR_FORMAT"}", this);
    81 }
    83 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    84   address res;
    85   switch (type) {
    86    case C_HEAP:
    87     res = (address)AllocateHeap(size, flags, CALLER_PC);
    88     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    89     break;
    90    case RESOURCE_AREA:
    91     // new(size) sets allocation type RESOURCE_AREA.
    92     res = (address)operator new(size);
    93     break;
    94    default:
    95     ShouldNotReachHere();
    96   }
    97   return res;
    98 }
   100 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
   101   return (address) operator new(size, type, flags);
   102 }
   104 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   105     allocation_type type, MEMFLAGS flags) {
   106   //should only call this with std::nothrow, use other operator new() otherwise
   107   address res;
   108   switch (type) {
   109    case C_HEAP:
   110     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   111     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   112     break;
   113    case RESOURCE_AREA:
   114     // new(size) sets allocation type RESOURCE_AREA.
   115     res = (address)operator new(size, std::nothrow);
   116     break;
   117    default:
   118     ShouldNotReachHere();
   119   }
   120   return res;
   121 }
   123 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   124     allocation_type type, MEMFLAGS flags) {
   125   return (address)operator new(size, nothrow_constant, type, flags);
   126 }
   128 void ResourceObj::operator delete(void* p) {
   129   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   130          "delete only allowed for C_HEAP objects");
   131   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   132   FreeHeap(p);
   133 }
   135 void ResourceObj::operator delete [](void* p) {
   136   operator delete(p);
   137 }
   139 #ifdef ASSERT
   140 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   141     // Set allocation type in the resource object
   142     uintptr_t allocation = (uintptr_t)res;
   143     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   144     assert(type <= allocation_mask, "incorrect allocation type");
   145     ResourceObj* resobj = (ResourceObj *)res;
   146     resobj->_allocation_t[0] = ~(allocation + type);
   147     if (type != STACK_OR_EMBEDDED) {
   148       // Called from operator new() and CollectionSetChooser(),
   149       // set verification value.
   150       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   151     }
   152 }
   154 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   155     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   156     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   157 }
   159 bool ResourceObj::is_type_set() const {
   160     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   161     return get_allocation_type()  == type &&
   162            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   163 }
   165 ResourceObj::ResourceObj() { // default constructor
   166     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   167       // Operator new() is not called for allocations
   168       // on stack and for embedded objects.
   169       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   170     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   171       // For some reason we got a value which resembles
   172       // an embedded or stack object (operator new() does not
   173       // set such type). Keep it since it is valid value
   174       // (even if it was garbage).
   175       // Ignore garbage in other fields.
   176     } else if (is_type_set()) {
   177       // Operator new() was called and type was set.
   178       assert(!allocated_on_stack(),
   179              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   180                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   181     } else {
   182       // Operator new() was not called.
   183       // Assume that it is embedded or stack object.
   184       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   185     }
   186     _allocation_t[1] = 0; // Zap verification value
   187 }
   189 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   190     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   191     // Note: garbage may resembles valid value.
   192     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   193            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   194                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   195     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   196     _allocation_t[1] = 0; // Zap verification value
   197 }
   199 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   200     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   201     assert(allocated_on_stack(),
   202            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   203                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   204     // Keep current _allocation_t value;
   205     return *this;
   206 }
   208 ResourceObj::~ResourceObj() {
   209     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   210     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   211       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   212     }
   213 }
   214 #endif // ASSERT
   217 void trace_heap_malloc(size_t size, const char* name, void* p) {
   218   // A lock is not needed here - tty uses a lock internally
   219   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   220 }
   223 void trace_heap_free(void* p) {
   224   // A lock is not needed here - tty uses a lock internally
   225   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   226 }
   228 //--------------------------------------------------------------------------------------
   229 // ChunkPool implementation
   231 // MT-safe pool of chunks to reduce malloc/free thrashing
   232 // NB: not using Mutex because pools are used before Threads are initialized
   233 class ChunkPool: public CHeapObj<mtInternal> {
   234   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   235   size_t       _num_chunks;   // number of unused chunks in pool
   236   size_t       _num_used;     // number of chunks currently checked out
   237   const size_t _size;         // size of each chunk (must be uniform)
   239   // Our three static pools
   240   static ChunkPool* _large_pool;
   241   static ChunkPool* _medium_pool;
   242   static ChunkPool* _small_pool;
   244   // return first element or null
   245   void* get_first() {
   246     Chunk* c = _first;
   247     if (_first) {
   248       _first = _first->next();
   249       _num_chunks--;
   250     }
   251     return c;
   252   }
   254  public:
   255   // All chunks in a ChunkPool has the same size
   256    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   258   // Allocate a new chunk from the pool (might expand the pool)
   259   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   260     assert(bytes == _size, "bad size");
   261     void* p = NULL;
   262     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   263     // should be done outside ThreadCritical lock due to NMT
   264     { ThreadCritical tc;
   265       _num_used++;
   266       p = get_first();
   267     }
   268     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   269     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   270       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   271     }
   272     return p;
   273   }
   275   // Return a chunk to the pool
   276   void free(Chunk* chunk) {
   277     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   278     ThreadCritical tc;
   279     _num_used--;
   281     // Add chunk to list
   282     chunk->set_next(_first);
   283     _first = chunk;
   284     _num_chunks++;
   285   }
   287   // Prune the pool
   288   void free_all_but(size_t n) {
   289     Chunk* cur = NULL;
   290     Chunk* next;
   291     {
   292     // if we have more than n chunks, free all of them
   293     ThreadCritical tc;
   294     if (_num_chunks > n) {
   295       // free chunks at end of queue, for better locality
   296         cur = _first;
   297       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   299       if (cur != NULL) {
   300           next = cur->next();
   301         cur->set_next(NULL);
   302         cur = next;
   304           _num_chunks = n;
   305         }
   306       }
   307     }
   309     // Free all remaining chunks, outside of ThreadCritical
   310     // to avoid deadlock with NMT
   311         while(cur != NULL) {
   312           next = cur->next();
   313       os::free(cur, mtChunk);
   314           cur = next;
   315         }
   316       }
   318   // Accessors to preallocated pool's
   319   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   320   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   321   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   323   static void initialize() {
   324     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   325     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   326     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   327   }
   329   static void clean() {
   330     enum { BlocksToKeep = 5 };
   331      _small_pool->free_all_but(BlocksToKeep);
   332      _medium_pool->free_all_but(BlocksToKeep);
   333      _large_pool->free_all_but(BlocksToKeep);
   334   }
   335 };
   337 ChunkPool* ChunkPool::_large_pool  = NULL;
   338 ChunkPool* ChunkPool::_medium_pool = NULL;
   339 ChunkPool* ChunkPool::_small_pool  = NULL;
   341 void chunkpool_init() {
   342   ChunkPool::initialize();
   343 }
   345 void
   346 Chunk::clean_chunk_pool() {
   347   ChunkPool::clean();
   348 }
   351 //--------------------------------------------------------------------------------------
   352 // ChunkPoolCleaner implementation
   353 //
   355 class ChunkPoolCleaner : public PeriodicTask {
   356   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   358  public:
   359    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   360    void task() {
   361      ChunkPool::clean();
   362    }
   363 };
   365 //--------------------------------------------------------------------------------------
   366 // Chunk implementation
   368 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) {
   369   // requested_size is equal to sizeof(Chunk) but in order for the arena
   370   // allocations to come out aligned as expected the size must be aligned
   371   // to expected arena alignment.
   372   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   373   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   374   size_t bytes = ARENA_ALIGN(requested_size) + length;
   375   switch (length) {
   376    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   377    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   378    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   379    default: {
   380      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   381      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   382        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   383      }
   384      return p;
   385    }
   386   }
   387 }
   389 void Chunk::operator delete(void* p) {
   390   Chunk* c = (Chunk*)p;
   391   switch (c->length()) {
   392    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   393    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   394    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   395    default:                 os::free(c, mtChunk);
   396   }
   397 }
   399 Chunk::Chunk(size_t length) : _len(length) {
   400   _next = NULL;         // Chain on the linked list
   401 }
   404 void Chunk::chop() {
   405   Chunk *k = this;
   406   while( k ) {
   407     Chunk *tmp = k->next();
   408     // clear out this chunk (to detect allocation bugs)
   409     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   410     delete k;                   // Free chunk (was malloc'd)
   411     k = tmp;
   412   }
   413 }
   415 void Chunk::next_chop() {
   416   _next->chop();
   417   _next = NULL;
   418 }
   421 void Chunk::start_chunk_pool_cleaner_task() {
   422 #ifdef ASSERT
   423   static bool task_created = false;
   424   assert(!task_created, "should not start chuck pool cleaner twice");
   425   task_created = true;
   426 #endif
   427   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   428   cleaner->enroll();
   429 }
   431 //------------------------------Arena------------------------------------------
   432 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   434 Arena::Arena(size_t init_size) {
   435   size_t round_size = (sizeof (char *)) - 1;
   436   init_size = (init_size+round_size) & ~round_size;
   437   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   438   _hwm = _chunk->bottom();      // Save the cached hwm, max
   439   _max = _chunk->top();
   440   set_size_in_bytes(init_size);
   441   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   442 }
   444 Arena::Arena() {
   445   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   446   _hwm = _chunk->bottom();      // Save the cached hwm, max
   447   _max = _chunk->top();
   448   set_size_in_bytes(Chunk::init_size);
   449   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   450 }
   452 Arena *Arena::move_contents(Arena *copy) {
   453   copy->destruct_contents();
   454   copy->_chunk = _chunk;
   455   copy->_hwm   = _hwm;
   456   copy->_max   = _max;
   457   copy->_first = _first;
   459   // workaround rare racing condition, which could double count
   460   // the arena size by native memory tracking
   461   size_t size = size_in_bytes();
   462   set_size_in_bytes(0);
   463   copy->set_size_in_bytes(size);
   464   // Destroy original arena
   465   reset();
   466   return copy;            // Return Arena with contents
   467 }
   469 Arena::~Arena() {
   470   destruct_contents();
   471   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   472 }
   474 void* Arena::operator new(size_t size) {
   475   assert(false, "Use dynamic memory type binding");
   476   return NULL;
   477 }
   479 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   480   assert(false, "Use dynamic memory type binding");
   481   return NULL;
   482 }
   484   // dynamic memory type binding
   485 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   486 #ifdef ASSERT
   487   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   488   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   489   return p;
   490 #else
   491   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   492 #endif
   493 }
   495 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   496 #ifdef ASSERT
   497   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   498   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   499   return p;
   500 #else
   501   return os::malloc(size, flags|otArena, CALLER_PC);
   502 #endif
   503 }
   505 void Arena::operator delete(void* p) {
   506   FreeHeap(p);
   507 }
   509 // Destroy this arenas contents and reset to empty
   510 void Arena::destruct_contents() {
   511   if (UseMallocOnly && _first != NULL) {
   512     char* end = _first->next() ? _first->top() : _hwm;
   513     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   514   }
   515   // reset size before chop to avoid a rare racing condition
   516   // that can have total arena memory exceed total chunk memory
   517   set_size_in_bytes(0);
   518   _first->chop();
   519   reset();
   520 }
   522 // This is high traffic method, but many calls actually don't
   523 // change the size
   524 void Arena::set_size_in_bytes(size_t size) {
   525   if (_size_in_bytes != size) {
   526     _size_in_bytes = size;
   527     MemTracker::record_arena_size((address)this, size);
   528   }
   529 }
   531 // Total of all Chunks in arena
   532 size_t Arena::used() const {
   533   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   534   register Chunk *k = _first;
   535   while( k != _chunk) {         // Whilst have Chunks in a row
   536     sum += k->length();         // Total size of this Chunk
   537     k = k->next();              // Bump along to next Chunk
   538   }
   539   return sum;                   // Return total consumed space.
   540 }
   542 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   543   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   544 }
   546 // Grow a new Chunk
   547 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   548   // Get minimal required size.  Either real big, or even bigger for giant objs
   549   size_t len = MAX2(x, (size_t) Chunk::size);
   551   Chunk *k = _chunk;            // Get filled-up chunk address
   552   _chunk = new (alloc_failmode, len) Chunk(len);
   554   if (_chunk == NULL) {
   555     return NULL;
   556   }
   557   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   558   else _first = _chunk;
   559   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   560   _max =  _chunk->top();
   561   set_size_in_bytes(size_in_bytes() + len);
   562   void* result = _hwm;
   563   _hwm += x;
   564   return result;
   565 }
   569 // Reallocate storage in Arena.
   570 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   571   assert(new_size >= 0, "bad size");
   572   if (new_size == 0) return NULL;
   573 #ifdef ASSERT
   574   if (UseMallocOnly) {
   575     // always allocate a new object  (otherwise we'll free this one twice)
   576     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   577     if (copy == NULL) {
   578       return NULL;
   579     }
   580     size_t n = MIN2(old_size, new_size);
   581     if (n > 0) memcpy(copy, old_ptr, n);
   582     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   583     return copy;
   584   }
   585 #endif
   586   char *c_old = (char*)old_ptr; // Handy name
   587   // Stupid fast special case
   588   if( new_size <= old_size ) {  // Shrink in-place
   589     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   590       _hwm = c_old+new_size;    // Adjust hwm
   591     return c_old;
   592   }
   594   // make sure that new_size is legal
   595   size_t corrected_new_size = ARENA_ALIGN(new_size);
   597   // See if we can resize in-place
   598   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   599       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   600     _hwm = c_old+corrected_new_size;      // Adjust hwm
   601     return c_old;               // Return old pointer
   602   }
   604   // Oops, got to relocate guts
   605   void *new_ptr = Amalloc(new_size, alloc_failmode);
   606   if (new_ptr == NULL) {
   607     return NULL;
   608   }
   609   memcpy( new_ptr, c_old, old_size );
   610   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   611   return new_ptr;
   612 }
   615 // Determine if pointer belongs to this Arena or not.
   616 bool Arena::contains( const void *ptr ) const {
   617 #ifdef ASSERT
   618   if (UseMallocOnly) {
   619     // really slow, but not easy to make fast
   620     if (_chunk == NULL) return false;
   621     char** bottom = (char**)_chunk->bottom();
   622     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   623       if (*p == ptr) return true;
   624     }
   625     for (Chunk *c = _first; c != NULL; c = c->next()) {
   626       if (c == _chunk) continue;  // current chunk has been processed
   627       char** bottom = (char**)c->bottom();
   628       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   629         if (*p == ptr) return true;
   630       }
   631     }
   632     return false;
   633   }
   634 #endif
   635   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   636     return true;                // Check for in this chunk
   637   for (Chunk *c = _first; c; c = c->next()) {
   638     if (c == _chunk) continue;  // current chunk has been processed
   639     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   640       return true;              // Check for every chunk in Arena
   641     }
   642   }
   643   return false;                 // Not in any Chunk, so not in Arena
   644 }
   647 #ifdef ASSERT
   648 void* Arena::malloc(size_t size) {
   649   assert(UseMallocOnly, "shouldn't call");
   650   // use malloc, but save pointer in res. area for later freeing
   651   char** save = (char**)internal_malloc_4(sizeof(char*));
   652   return (*save = (char*)os::malloc(size, mtChunk));
   653 }
   655 // for debugging with UseMallocOnly
   656 void* Arena::internal_malloc_4(size_t x) {
   657   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   658   check_for_overflow(x, "Arena::internal_malloc_4");
   659   if (_hwm + x > _max) {
   660     return grow(x);
   661   } else {
   662     char *old = _hwm;
   663     _hwm += x;
   664     return old;
   665   }
   666 }
   667 #endif
   670 //--------------------------------------------------------------------------------------
   671 // Non-product code
   673 #ifndef PRODUCT
   674 // The global operator new should never be called since it will usually indicate
   675 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   676 // that they're allocated on the C heap.
   677 // Commented out in product version to avoid conflicts with third-party C++ native code.
   678 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   679 // from jdk source and causing data corruption. Such as
   680 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   681 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   682 //
   683 #ifndef ALLOW_OPERATOR_NEW_USAGE
   684 void* operator new(size_t size){
   685   assert(false, "Should not call global operator new");
   686   return 0;
   687 }
   689 void* operator new [](size_t size){
   690   assert(false, "Should not call global operator new[]");
   691   return 0;
   692 }
   694 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
   695   assert(false, "Should not call global operator new");
   696   return 0;
   697 }
   699 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
   700   assert(false, "Should not call global operator new[]");
   701   return 0;
   702 }
   704 void operator delete(void* p) {
   705   assert(false, "Should not call global delete");
   706 }
   708 void operator delete [](void* p) {
   709   assert(false, "Should not call global delete []");
   710 }
   711 #endif // ALLOW_OPERATOR_NEW_USAGE
   713 void AllocatedObj::print() const       { print_on(tty); }
   714 void AllocatedObj::print_value() const { print_value_on(tty); }
   716 void AllocatedObj::print_on(outputStream* st) const {
   717   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   718 }
   720 void AllocatedObj::print_value_on(outputStream* st) const {
   721   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   722 }
   724 julong Arena::_bytes_allocated = 0;
   726 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   728 AllocStats::AllocStats() {
   729   start_mallocs      = os::num_mallocs;
   730   start_frees        = os::num_frees;
   731   start_malloc_bytes = os::alloc_bytes;
   732   start_mfree_bytes  = os::free_bytes;
   733   start_res_bytes    = Arena::_bytes_allocated;
   734 }
   736 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   737 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   738 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   739 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   740 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   741 void    AllocStats::print() {
   742   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   743                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   744                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   745 }
   748 // debugging code
   749 inline void Arena::free_all(char** start, char** end) {
   750   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   751 }
   753 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   754   assert(UseMallocOnly, "should not call");
   755   // free all objects malloced since resource mark was created; resource area
   756   // contains their addresses
   757   if (chunk->next()) {
   758     // this chunk is full, and some others too
   759     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   760       char* top = c->top();
   761       if (c->next() == NULL) {
   762         top = hwm2;     // last junk is only used up to hwm2
   763         assert(c->contains(hwm2), "bad hwm2");
   764       }
   765       free_all((char**)c->bottom(), (char**)top);
   766     }
   767     assert(chunk->contains(hwm), "bad hwm");
   768     assert(chunk->contains(max), "bad max");
   769     free_all((char**)hwm, (char**)max);
   770   } else {
   771     // this chunk was partially used
   772     assert(chunk->contains(hwm), "bad hwm");
   773     assert(chunk->contains(hwm2), "bad hwm2");
   774     free_all((char**)hwm, (char**)hwm2);
   775   }
   776 }
   779 ReallocMark::ReallocMark() {
   780 #ifdef ASSERT
   781   Thread *thread = ThreadLocalStorage::get_thread_slow();
   782   _nesting = thread->resource_area()->nesting();
   783 #endif
   784 }
   786 void ReallocMark::check() {
   787 #ifdef ASSERT
   788   if (_nesting != Thread::current()->resource_area()->nesting()) {
   789     fatal("allocation bug: array could grow within nested ResourceMark");
   790   }
   791 #endif
   792 }
   794 #endif // Non-product

mercurial