src/share/vm/memory/allocation.cpp

Thu, 23 May 2013 12:44:18 +0100

author
chegar
date
Thu, 23 May 2013 12:44:18 +0100
changeset 5249
ce9ecec70f99
parent 5247
7ee0d5c53c78
parent 5103
f9be75d21404
child 5251
eaf3742822ec
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "os_bsd.inline.hpp"
    50 #endif
    52 void* StackObj::operator new(size_t size)       { ShouldNotCallThis(); return 0; }
    53 void  StackObj::operator delete(void* p)        { ShouldNotCallThis(); }
    54 void* StackObj::operator new [](size_t size)    { ShouldNotCallThis(); return 0; }
    55 void  StackObj::operator delete [](void* p)     { ShouldNotCallThis(); }
    57 void* _ValueObj::operator new(size_t size)      { ShouldNotCallThis(); return 0; }
    58 void  _ValueObj::operator delete(void* p)       { ShouldNotCallThis(); }
    59 void* _ValueObj::operator new [](size_t size)   { ShouldNotCallThis(); return 0; }
    60 void  _ValueObj::operator delete [](void* p)    { ShouldNotCallThis(); }
    62 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    63                                 size_t word_size, bool read_only, TRAPS) {
    64   // Klass has it's own operator new
    65   return Metaspace::allocate(loader_data, word_size, read_only,
    66                              Metaspace::NonClassType, CHECK_NULL);
    67 }
    69 bool MetaspaceObj::is_shared() const {
    70   return MetaspaceShared::is_in_shared_space(this);
    71 }
    73 bool MetaspaceObj::is_metadata() const {
    74   // GC Verify checks use this in guarantees.
    75   // TODO: either replace them with is_metaspace_object() or remove them.
    76   // is_metaspace_object() is slower than this test.  This test doesn't
    77   // seem very useful for metaspace objects anymore though.
    78   return !Universe::heap()->is_in_reserved(this);
    79 }
    81 bool MetaspaceObj::is_metaspace_object() const {
    82   return Metaspace::contains((void*)this);
    83 }
    85 void MetaspaceObj::print_address_on(outputStream* st) const {
    86   st->print(" {"INTPTR_FORMAT"}", this);
    87 }
    89 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    90   address res;
    91   switch (type) {
    92    case C_HEAP:
    93     res = (address)AllocateHeap(size, flags, CALLER_PC);
    94     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    95     break;
    96    case RESOURCE_AREA:
    97     // new(size) sets allocation type RESOURCE_AREA.
    98     res = (address)operator new(size);
    99     break;
   100    default:
   101     ShouldNotReachHere();
   102   }
   103   return res;
   104 }
   106 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) {
   107   return (address) operator new(size, type, flags);
   108 }
   110 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   111     allocation_type type, MEMFLAGS flags) {
   112   //should only call this with std::nothrow, use other operator new() otherwise
   113   address res;
   114   switch (type) {
   115    case C_HEAP:
   116     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   117     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   118     break;
   119    case RESOURCE_AREA:
   120     // new(size) sets allocation type RESOURCE_AREA.
   121     res = (address)operator new(size, std::nothrow);
   122     break;
   123    default:
   124     ShouldNotReachHere();
   125   }
   126   return res;
   127 }
   129 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   130     allocation_type type, MEMFLAGS flags) {
   131   return (address)operator new(size, nothrow_constant, type, flags);
   132 }
   134 void ResourceObj::operator delete(void* p) {
   135   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   136          "delete only allowed for C_HEAP objects");
   137   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   138   FreeHeap(p);
   139 }
   141 void ResourceObj::operator delete [](void* p) {
   142   operator delete(p);
   143 }
   145 #ifdef ASSERT
   146 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   147     // Set allocation type in the resource object
   148     uintptr_t allocation = (uintptr_t)res;
   149     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   150     assert(type <= allocation_mask, "incorrect allocation type");
   151     ResourceObj* resobj = (ResourceObj *)res;
   152     resobj->_allocation_t[0] = ~(allocation + type);
   153     if (type != STACK_OR_EMBEDDED) {
   154       // Called from operator new() and CollectionSetChooser(),
   155       // set verification value.
   156       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   157     }
   158 }
   160 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   161     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   162     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   163 }
   165 bool ResourceObj::is_type_set() const {
   166     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   167     return get_allocation_type()  == type &&
   168            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   169 }
   171 ResourceObj::ResourceObj() { // default constructor
   172     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   173       // Operator new() is not called for allocations
   174       // on stack and for embedded objects.
   175       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   176     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   177       // For some reason we got a value which resembles
   178       // an embedded or stack object (operator new() does not
   179       // set such type). Keep it since it is valid value
   180       // (even if it was garbage).
   181       // Ignore garbage in other fields.
   182     } else if (is_type_set()) {
   183       // Operator new() was called and type was set.
   184       assert(!allocated_on_stack(),
   185              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   186                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   187     } else {
   188       // Operator new() was not called.
   189       // Assume that it is embedded or stack object.
   190       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   191     }
   192     _allocation_t[1] = 0; // Zap verification value
   193 }
   195 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   196     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   197     // Note: garbage may resembles valid value.
   198     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   199            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   200                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   201     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   202     _allocation_t[1] = 0; // Zap verification value
   203 }
   205 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   206     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   207     assert(allocated_on_stack(),
   208            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   209                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   210     // Keep current _allocation_t value;
   211     return *this;
   212 }
   214 ResourceObj::~ResourceObj() {
   215     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   216     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   217       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   218     }
   219 }
   220 #endif // ASSERT
   223 void trace_heap_malloc(size_t size, const char* name, void* p) {
   224   // A lock is not needed here - tty uses a lock internally
   225   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   226 }
   229 void trace_heap_free(void* p) {
   230   // A lock is not needed here - tty uses a lock internally
   231   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   232 }
   234 //--------------------------------------------------------------------------------------
   235 // ChunkPool implementation
   237 // MT-safe pool of chunks to reduce malloc/free thrashing
   238 // NB: not using Mutex because pools are used before Threads are initialized
   239 class ChunkPool: public CHeapObj<mtInternal> {
   240   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   241   size_t       _num_chunks;   // number of unused chunks in pool
   242   size_t       _num_used;     // number of chunks currently checked out
   243   const size_t _size;         // size of each chunk (must be uniform)
   245   // Our three static pools
   246   static ChunkPool* _large_pool;
   247   static ChunkPool* _medium_pool;
   248   static ChunkPool* _small_pool;
   250   // return first element or null
   251   void* get_first() {
   252     Chunk* c = _first;
   253     if (_first) {
   254       _first = _first->next();
   255       _num_chunks--;
   256     }
   257     return c;
   258   }
   260  public:
   261   // All chunks in a ChunkPool has the same size
   262    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   264   // Allocate a new chunk from the pool (might expand the pool)
   265   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   266     assert(bytes == _size, "bad size");
   267     void* p = NULL;
   268     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   269     // should be done outside ThreadCritical lock due to NMT
   270     { ThreadCritical tc;
   271       _num_used++;
   272       p = get_first();
   273     }
   274     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   275     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   276       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   277     }
   278     return p;
   279   }
   281   // Return a chunk to the pool
   282   void free(Chunk* chunk) {
   283     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   284     ThreadCritical tc;
   285     _num_used--;
   287     // Add chunk to list
   288     chunk->set_next(_first);
   289     _first = chunk;
   290     _num_chunks++;
   291   }
   293   // Prune the pool
   294   void free_all_but(size_t n) {
   295     Chunk* cur = NULL;
   296     Chunk* next;
   297     {
   298     // if we have more than n chunks, free all of them
   299     ThreadCritical tc;
   300     if (_num_chunks > n) {
   301       // free chunks at end of queue, for better locality
   302         cur = _first;
   303       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   305       if (cur != NULL) {
   306           next = cur->next();
   307         cur->set_next(NULL);
   308         cur = next;
   310           _num_chunks = n;
   311         }
   312       }
   313     }
   315     // Free all remaining chunks, outside of ThreadCritical
   316     // to avoid deadlock with NMT
   317         while(cur != NULL) {
   318           next = cur->next();
   319       os::free(cur, mtChunk);
   320           cur = next;
   321         }
   322       }
   324   // Accessors to preallocated pool's
   325   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   326   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   327   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   329   static void initialize() {
   330     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   331     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   332     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   333   }
   335   static void clean() {
   336     enum { BlocksToKeep = 5 };
   337      _small_pool->free_all_but(BlocksToKeep);
   338      _medium_pool->free_all_but(BlocksToKeep);
   339      _large_pool->free_all_but(BlocksToKeep);
   340   }
   341 };
   343 ChunkPool* ChunkPool::_large_pool  = NULL;
   344 ChunkPool* ChunkPool::_medium_pool = NULL;
   345 ChunkPool* ChunkPool::_small_pool  = NULL;
   347 void chunkpool_init() {
   348   ChunkPool::initialize();
   349 }
   351 void
   352 Chunk::clean_chunk_pool() {
   353   ChunkPool::clean();
   354 }
   357 //--------------------------------------------------------------------------------------
   358 // ChunkPoolCleaner implementation
   359 //
   361 class ChunkPoolCleaner : public PeriodicTask {
   362   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   364  public:
   365    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   366    void task() {
   367      ChunkPool::clean();
   368    }
   369 };
   371 //--------------------------------------------------------------------------------------
   372 // Chunk implementation
   374 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) {
   375   // requested_size is equal to sizeof(Chunk) but in order for the arena
   376   // allocations to come out aligned as expected the size must be aligned
   377   // to expected arena alignment.
   378   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   379   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   380   size_t bytes = ARENA_ALIGN(requested_size) + length;
   381   switch (length) {
   382    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   383    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   384    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   385    default: {
   386      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   387      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   388        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   389      }
   390      return p;
   391    }
   392   }
   393 }
   395 void Chunk::operator delete(void* p) {
   396   Chunk* c = (Chunk*)p;
   397   switch (c->length()) {
   398    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   399    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   400    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   401    default:                 os::free(c, mtChunk);
   402   }
   403 }
   405 Chunk::Chunk(size_t length) : _len(length) {
   406   _next = NULL;         // Chain on the linked list
   407 }
   410 void Chunk::chop() {
   411   Chunk *k = this;
   412   while( k ) {
   413     Chunk *tmp = k->next();
   414     // clear out this chunk (to detect allocation bugs)
   415     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   416     delete k;                   // Free chunk (was malloc'd)
   417     k = tmp;
   418   }
   419 }
   421 void Chunk::next_chop() {
   422   _next->chop();
   423   _next = NULL;
   424 }
   427 void Chunk::start_chunk_pool_cleaner_task() {
   428 #ifdef ASSERT
   429   static bool task_created = false;
   430   assert(!task_created, "should not start chuck pool cleaner twice");
   431   task_created = true;
   432 #endif
   433   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   434   cleaner->enroll();
   435 }
   437 //------------------------------Arena------------------------------------------
   438 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   440 Arena::Arena(size_t init_size) {
   441   size_t round_size = (sizeof (char *)) - 1;
   442   init_size = (init_size+round_size) & ~round_size;
   443   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   444   _hwm = _chunk->bottom();      // Save the cached hwm, max
   445   _max = _chunk->top();
   446   set_size_in_bytes(init_size);
   447   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   448 }
   450 Arena::Arena() {
   451   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   452   _hwm = _chunk->bottom();      // Save the cached hwm, max
   453   _max = _chunk->top();
   454   set_size_in_bytes(Chunk::init_size);
   455   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   456 }
   458 Arena *Arena::move_contents(Arena *copy) {
   459   copy->destruct_contents();
   460   copy->_chunk = _chunk;
   461   copy->_hwm   = _hwm;
   462   copy->_max   = _max;
   463   copy->_first = _first;
   465   // workaround rare racing condition, which could double count
   466   // the arena size by native memory tracking
   467   size_t size = size_in_bytes();
   468   set_size_in_bytes(0);
   469   copy->set_size_in_bytes(size);
   470   // Destroy original arena
   471   reset();
   472   return copy;            // Return Arena with contents
   473 }
   475 Arena::~Arena() {
   476   destruct_contents();
   477   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   478 }
   480 void* Arena::operator new(size_t size) {
   481   assert(false, "Use dynamic memory type binding");
   482   return NULL;
   483 }
   485 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   486   assert(false, "Use dynamic memory type binding");
   487   return NULL;
   488 }
   490   // dynamic memory type binding
   491 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   492 #ifdef ASSERT
   493   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   494   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   495   return p;
   496 #else
   497   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   498 #endif
   499 }
   501 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   502 #ifdef ASSERT
   503   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   504   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   505   return p;
   506 #else
   507   return os::malloc(size, flags|otArena, CALLER_PC);
   508 #endif
   509 }
   511 void Arena::operator delete(void* p) {
   512   FreeHeap(p);
   513 }
   515 // Destroy this arenas contents and reset to empty
   516 void Arena::destruct_contents() {
   517   if (UseMallocOnly && _first != NULL) {
   518     char* end = _first->next() ? _first->top() : _hwm;
   519     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   520   }
   521   // reset size before chop to avoid a rare racing condition
   522   // that can have total arena memory exceed total chunk memory
   523   set_size_in_bytes(0);
   524   _first->chop();
   525   reset();
   526 }
   528 // This is high traffic method, but many calls actually don't
   529 // change the size
   530 void Arena::set_size_in_bytes(size_t size) {
   531   if (_size_in_bytes != size) {
   532     _size_in_bytes = size;
   533     MemTracker::record_arena_size((address)this, size);
   534   }
   535 }
   537 // Total of all Chunks in arena
   538 size_t Arena::used() const {
   539   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   540   register Chunk *k = _first;
   541   while( k != _chunk) {         // Whilst have Chunks in a row
   542     sum += k->length();         // Total size of this Chunk
   543     k = k->next();              // Bump along to next Chunk
   544   }
   545   return sum;                   // Return total consumed space.
   546 }
   548 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   549   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   550 }
   552 // Grow a new Chunk
   553 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   554   // Get minimal required size.  Either real big, or even bigger for giant objs
   555   size_t len = MAX2(x, (size_t) Chunk::size);
   557   Chunk *k = _chunk;            // Get filled-up chunk address
   558   _chunk = new (alloc_failmode, len) Chunk(len);
   560   if (_chunk == NULL) {
   561     return NULL;
   562   }
   563   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   564   else _first = _chunk;
   565   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   566   _max =  _chunk->top();
   567   set_size_in_bytes(size_in_bytes() + len);
   568   void* result = _hwm;
   569   _hwm += x;
   570   return result;
   571 }
   575 // Reallocate storage in Arena.
   576 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   577   assert(new_size >= 0, "bad size");
   578   if (new_size == 0) return NULL;
   579 #ifdef ASSERT
   580   if (UseMallocOnly) {
   581     // always allocate a new object  (otherwise we'll free this one twice)
   582     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   583     if (copy == NULL) {
   584       return NULL;
   585     }
   586     size_t n = MIN2(old_size, new_size);
   587     if (n > 0) memcpy(copy, old_ptr, n);
   588     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   589     return copy;
   590   }
   591 #endif
   592   char *c_old = (char*)old_ptr; // Handy name
   593   // Stupid fast special case
   594   if( new_size <= old_size ) {  // Shrink in-place
   595     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   596       _hwm = c_old+new_size;    // Adjust hwm
   597     return c_old;
   598   }
   600   // make sure that new_size is legal
   601   size_t corrected_new_size = ARENA_ALIGN(new_size);
   603   // See if we can resize in-place
   604   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   605       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   606     _hwm = c_old+corrected_new_size;      // Adjust hwm
   607     return c_old;               // Return old pointer
   608   }
   610   // Oops, got to relocate guts
   611   void *new_ptr = Amalloc(new_size, alloc_failmode);
   612   if (new_ptr == NULL) {
   613     return NULL;
   614   }
   615   memcpy( new_ptr, c_old, old_size );
   616   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   617   return new_ptr;
   618 }
   621 // Determine if pointer belongs to this Arena or not.
   622 bool Arena::contains( const void *ptr ) const {
   623 #ifdef ASSERT
   624   if (UseMallocOnly) {
   625     // really slow, but not easy to make fast
   626     if (_chunk == NULL) return false;
   627     char** bottom = (char**)_chunk->bottom();
   628     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   629       if (*p == ptr) return true;
   630     }
   631     for (Chunk *c = _first; c != NULL; c = c->next()) {
   632       if (c == _chunk) continue;  // current chunk has been processed
   633       char** bottom = (char**)c->bottom();
   634       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   635         if (*p == ptr) return true;
   636       }
   637     }
   638     return false;
   639   }
   640 #endif
   641   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   642     return true;                // Check for in this chunk
   643   for (Chunk *c = _first; c; c = c->next()) {
   644     if (c == _chunk) continue;  // current chunk has been processed
   645     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   646       return true;              // Check for every chunk in Arena
   647     }
   648   }
   649   return false;                 // Not in any Chunk, so not in Arena
   650 }
   653 #ifdef ASSERT
   654 void* Arena::malloc(size_t size) {
   655   assert(UseMallocOnly, "shouldn't call");
   656   // use malloc, but save pointer in res. area for later freeing
   657   char** save = (char**)internal_malloc_4(sizeof(char*));
   658   return (*save = (char*)os::malloc(size, mtChunk));
   659 }
   661 // for debugging with UseMallocOnly
   662 void* Arena::internal_malloc_4(size_t x) {
   663   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   664   check_for_overflow(x, "Arena::internal_malloc_4");
   665   if (_hwm + x > _max) {
   666     return grow(x);
   667   } else {
   668     char *old = _hwm;
   669     _hwm += x;
   670     return old;
   671   }
   672 }
   673 #endif
   676 //--------------------------------------------------------------------------------------
   677 // Non-product code
   679 #ifndef PRODUCT
   680 // The global operator new should never be called since it will usually indicate
   681 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   682 // that they're allocated on the C heap.
   683 // Commented out in product version to avoid conflicts with third-party C++ native code.
   684 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   685 // from jdk source and causing data corruption. Such as
   686 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   687 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   688 //
   689 #ifndef ALLOW_OPERATOR_NEW_USAGE
   690 void* operator new(size_t size){
   691   assert(false, "Should not call global operator new");
   692   return 0;
   693 }
   695 void* operator new [](size_t size){
   696   assert(false, "Should not call global operator new[]");
   697   return 0;
   698 }
   700 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant){
   701   assert(false, "Should not call global operator new");
   702   return 0;
   703 }
   705 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant){
   706   assert(false, "Should not call global operator new[]");
   707   return 0;
   708 }
   710 void operator delete(void* p) {
   711   assert(false, "Should not call global delete");
   712 }
   714 void operator delete [](void* p) {
   715   assert(false, "Should not call global delete []");
   716 }
   717 #endif // ALLOW_OPERATOR_NEW_USAGE
   719 void AllocatedObj::print() const       { print_on(tty); }
   720 void AllocatedObj::print_value() const { print_value_on(tty); }
   722 void AllocatedObj::print_on(outputStream* st) const {
   723   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   724 }
   726 void AllocatedObj::print_value_on(outputStream* st) const {
   727   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   728 }
   730 julong Arena::_bytes_allocated = 0;
   732 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   734 AllocStats::AllocStats() {
   735   start_mallocs      = os::num_mallocs;
   736   start_frees        = os::num_frees;
   737   start_malloc_bytes = os::alloc_bytes;
   738   start_mfree_bytes  = os::free_bytes;
   739   start_res_bytes    = Arena::_bytes_allocated;
   740 }
   742 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   743 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   744 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   745 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   746 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   747 void    AllocStats::print() {
   748   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   749                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   750                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   751 }
   754 // debugging code
   755 inline void Arena::free_all(char** start, char** end) {
   756   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   757 }
   759 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   760   assert(UseMallocOnly, "should not call");
   761   // free all objects malloced since resource mark was created; resource area
   762   // contains their addresses
   763   if (chunk->next()) {
   764     // this chunk is full, and some others too
   765     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   766       char* top = c->top();
   767       if (c->next() == NULL) {
   768         top = hwm2;     // last junk is only used up to hwm2
   769         assert(c->contains(hwm2), "bad hwm2");
   770       }
   771       free_all((char**)c->bottom(), (char**)top);
   772     }
   773     assert(chunk->contains(hwm), "bad hwm");
   774     assert(chunk->contains(max), "bad max");
   775     free_all((char**)hwm, (char**)max);
   776   } else {
   777     // this chunk was partially used
   778     assert(chunk->contains(hwm), "bad hwm");
   779     assert(chunk->contains(hwm2), "bad hwm2");
   780     free_all((char**)hwm, (char**)hwm2);
   781   }
   782 }
   785 ReallocMark::ReallocMark() {
   786 #ifdef ASSERT
   787   Thread *thread = ThreadLocalStorage::get_thread_slow();
   788   _nesting = thread->resource_area()->nesting();
   789 #endif
   790 }
   792 void ReallocMark::check() {
   793 #ifdef ASSERT
   794   if (_nesting != Thread::current()->resource_area()->nesting()) {
   795     fatal("allocation bug: array could grow within nested ResourceMark");
   796   }
   797 #endif
   798 }
   800 #endif // Non-product

mercurial