src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Tue, 24 Jul 2012 10:51:00 -0700

author
twisti
date
Tue, 24 Jul 2012 10:51:00 -0700
changeset 3969
1d7922586cf6
parent 3500
0382d2b469b2
child 4037
da91efe96a93
permissions
-rw-r--r--

7023639: JSR 292 method handle invocation needs a fast path for compiled code
6984705: JSR 292 method handle creation should not go through JNI
Summary: remove assembly code for JDK 7 chained method handles
Reviewed-by: jrose, twisti, kvn, mhaupt
Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class RegisterSaver {
    49   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    50   // Capture info about frame layout
    51   enum layout {
    52                 fpu_state_off = 0,
    53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    54                 st0_off, st0H_off,
    55                 st1_off, st1H_off,
    56                 st2_off, st2H_off,
    57                 st3_off, st3H_off,
    58                 st4_off, st4H_off,
    59                 st5_off, st5H_off,
    60                 st6_off, st6H_off,
    61                 st7_off, st7H_off,
    63                 xmm0_off, xmm0H_off,
    64                 xmm1_off, xmm1H_off,
    65                 xmm2_off, xmm2H_off,
    66                 xmm3_off, xmm3H_off,
    67                 xmm4_off, xmm4H_off,
    68                 xmm5_off, xmm5H_off,
    69                 xmm6_off, xmm6H_off,
    70                 xmm7_off, xmm7H_off,
    71                 flags_off,
    72                 rdi_off,
    73                 rsi_off,
    74                 ignore_off,  // extra copy of rbp,
    75                 rsp_off,
    76                 rbx_off,
    77                 rdx_off,
    78                 rcx_off,
    79                 rax_off,
    80                 // The frame sender code expects that rbp will be in the "natural" place and
    81                 // will override any oopMap setting for it. We must therefore force the layout
    82                 // so that it agrees with the frame sender code.
    83                 rbp_off,
    84                 return_off,      // slot for return address
    85                 reg_save_size };
    88   public:
    90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    91                                      int* total_frame_words, bool verify_fpu = true);
    92   static void restore_live_registers(MacroAssembler* masm);
    94   static int rax_offset() { return rax_off; }
    95   static int rbx_offset() { return rbx_off; }
    97   // Offsets into the register save area
    98   // Used by deoptimization when it is managing result register
    99   // values on its own
   101   static int raxOffset(void) { return rax_off; }
   102   static int rdxOffset(void) { return rdx_off; }
   103   static int rbxOffset(void) { return rbx_off; }
   104   static int xmm0Offset(void) { return xmm0_off; }
   105   // This really returns a slot in the fp save area, which one is not important
   106   static int fpResultOffset(void) { return st0_off; }
   108   // During deoptimization only the result register need to be restored
   109   // all the other values have already been extracted.
   111   static void restore_result_registers(MacroAssembler* masm);
   113 };
   115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   116                                            int* total_frame_words, bool verify_fpu) {
   118   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   119   int frame_words = frame_size_in_bytes / wordSize;
   120   *total_frame_words = frame_words;
   122   assert(FPUStateSizeInWords == 27, "update stack layout");
   124   // save registers, fpu state, and flags
   125   // We assume caller has already has return address slot on the stack
   126   // We push epb twice in this sequence because we want the real rbp,
   127   // to be under the return like a normal enter and we want to use pusha
   128   // We push by hand instead of pusing push
   129   __ enter();
   130   __ pusha();
   131   __ pushf();
   132   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   133   __ push_FPU_state();          // Save FPU state & init
   135   if (verify_fpu) {
   136     // Some stubs may have non standard FPU control word settings so
   137     // only check and reset the value when it required to be the
   138     // standard value.  The safepoint blob in particular can be used
   139     // in methods which are using the 24 bit control word for
   140     // optimized float math.
   142 #ifdef ASSERT
   143     // Make sure the control word has the expected value
   144     Label ok;
   145     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   146     __ jccb(Assembler::equal, ok);
   147     __ stop("corrupted control word detected");
   148     __ bind(ok);
   149 #endif
   151     // Reset the control word to guard against exceptions being unmasked
   152     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   153     // into the on stack copy and then reload that to make sure that the
   154     // current and future values are correct.
   155     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   156   }
   158   __ frstor(Address(rsp, 0));
   159   if (!verify_fpu) {
   160     // Set the control word so that exceptions are masked for the
   161     // following code.
   162     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   163   }
   165   // Save the FPU registers in de-opt-able form
   167   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   168   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   169   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   170   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   171   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   172   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   173   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   174   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   176   if( UseSSE == 1 ) {           // Save the XMM state
   177     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   178     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   179     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   180     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   181     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   182     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   183     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   184     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   185   } else if( UseSSE >= 2 ) {
   186     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   187     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   188     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   189     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   190     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   191     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   192     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   193     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   194   }
   196   // Set an oopmap for the call site.  This oopmap will map all
   197   // oop-registers and debug-info registers as callee-saved.  This
   198   // will allow deoptimization at this safepoint to find all possible
   199   // debug-info recordings, as well as let GC find all oops.
   201   OopMapSet *oop_maps = new OopMapSet();
   202   OopMap* map =  new OopMap( frame_words, 0 );
   204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   206   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   210   // rbp, location is known implicitly, no oopMap
   211   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   229   // %%% This is really a waste but we'll keep things as they were for now
   230   if (true) {
   231 #define NEXTREG(x) (x)->as_VMReg()->next()
   232     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   233     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   234     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   235     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   236     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   237     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   238     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   239     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   240     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   241     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   242     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   243     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   244     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   245     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   246     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   247     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   248 #undef NEXTREG
   249 #undef STACK_OFFSET
   250   }
   252   return map;
   254 }
   256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   258   // Recover XMM & FPU state
   259   if( UseSSE == 1 ) {
   260     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   261     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   262     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   263     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   264     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   265     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   266     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   267     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   268   } else if( UseSSE >= 2 ) {
   269     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   270     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   271     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   272     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   273     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   274     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   275     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   276     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   277   }
   278   __ pop_FPU_state();
   279   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   281   __ popf();
   282   __ popa();
   283   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   284   __ pop(rbp);
   286 }
   288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   290   // Just restore result register. Only used by deoptimization. By
   291   // now any callee save register that needs to be restore to a c2
   292   // caller of the deoptee has been extracted into the vframeArray
   293   // and will be stuffed into the c2i adapter we create for later
   294   // restoration so only result registers need to be restored here.
   295   //
   297   __ frstor(Address(rsp, 0));      // Restore fpu state
   299   // Recover XMM & FPU state
   300   if( UseSSE == 1 ) {
   301     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   302   } else if( UseSSE >= 2 ) {
   303     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   304   }
   305   __ movptr(rax, Address(rsp, rax_off*wordSize));
   306   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   307   // Pop all of the register save are off the stack except the return address
   308   __ addptr(rsp, return_off * wordSize);
   309 }
   311 // The java_calling_convention describes stack locations as ideal slots on
   312 // a frame with no abi restrictions. Since we must observe abi restrictions
   313 // (like the placement of the register window) the slots must be biased by
   314 // the following value.
   315 static int reg2offset_in(VMReg r) {
   316   // Account for saved rbp, and return address
   317   // This should really be in_preserve_stack_slots
   318   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   319 }
   321 static int reg2offset_out(VMReg r) {
   322   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   323 }
   325 // ---------------------------------------------------------------------------
   326 // Read the array of BasicTypes from a signature, and compute where the
   327 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   328 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   329 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   330 // as framesizes are fixed.
   331 // VMRegImpl::stack0 refers to the first slot 0(sp).
   332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   333 // up to RegisterImpl::number_of_registers) are the 32-bit
   334 // integer registers.
   336 // Pass first two oop/int args in registers ECX and EDX.
   337 // Pass first two float/double args in registers XMM0 and XMM1.
   338 // Doubles have precedence, so if you pass a mix of floats and doubles
   339 // the doubles will grab the registers before the floats will.
   341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   343 // units regardless of build. Of course for i486 there is no 64 bit build
   346 // ---------------------------------------------------------------------------
   347 // The compiled Java calling convention.
   348 // Pass first two oop/int args in registers ECX and EDX.
   349 // Pass first two float/double args in registers XMM0 and XMM1.
   350 // Doubles have precedence, so if you pass a mix of floats and doubles
   351 // the doubles will grab the registers before the floats will.
   352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   353                                            VMRegPair *regs,
   354                                            int total_args_passed,
   355                                            int is_outgoing) {
   356   uint    stack = 0;          // Starting stack position for args on stack
   359   // Pass first two oop/int args in registers ECX and EDX.
   360   uint reg_arg0 = 9999;
   361   uint reg_arg1 = 9999;
   363   // Pass first two float/double args in registers XMM0 and XMM1.
   364   // Doubles have precedence, so if you pass a mix of floats and doubles
   365   // the doubles will grab the registers before the floats will.
   366   // CNC - TURNED OFF FOR non-SSE.
   367   //       On Intel we have to round all doubles (and most floats) at
   368   //       call sites by storing to the stack in any case.
   369   // UseSSE=0 ==> Don't Use ==> 9999+0
   370   // UseSSE=1 ==> Floats only ==> 9999+1
   371   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   372   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   373   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   374   uint freg_arg0 = 9999+fargs;
   375   uint freg_arg1 = 9999+fargs;
   377   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   378   int i;
   379   for( i = 0; i < total_args_passed; i++) {
   380     if( sig_bt[i] == T_DOUBLE ) {
   381       // first 2 doubles go in registers
   382       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   383       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   384       else // Else double is passed low on the stack to be aligned.
   385         stack += 2;
   386     } else if( sig_bt[i] == T_LONG ) {
   387       stack += 2;
   388     }
   389   }
   390   int dstack = 0;             // Separate counter for placing doubles
   392   // Now pick where all else goes.
   393   for( i = 0; i < total_args_passed; i++) {
   394     // From the type and the argument number (count) compute the location
   395     switch( sig_bt[i] ) {
   396     case T_SHORT:
   397     case T_CHAR:
   398     case T_BYTE:
   399     case T_BOOLEAN:
   400     case T_INT:
   401     case T_ARRAY:
   402     case T_OBJECT:
   403     case T_ADDRESS:
   404       if( reg_arg0 == 9999 )  {
   405         reg_arg0 = i;
   406         regs[i].set1(rcx->as_VMReg());
   407       } else if( reg_arg1 == 9999 )  {
   408         reg_arg1 = i;
   409         regs[i].set1(rdx->as_VMReg());
   410       } else {
   411         regs[i].set1(VMRegImpl::stack2reg(stack++));
   412       }
   413       break;
   414     case T_FLOAT:
   415       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   416         freg_arg0 = i;
   417         regs[i].set1(xmm0->as_VMReg());
   418       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   419         freg_arg1 = i;
   420         regs[i].set1(xmm1->as_VMReg());
   421       } else {
   422         regs[i].set1(VMRegImpl::stack2reg(stack++));
   423       }
   424       break;
   425     case T_LONG:
   426       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   427       regs[i].set2(VMRegImpl::stack2reg(dstack));
   428       dstack += 2;
   429       break;
   430     case T_DOUBLE:
   431       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   432       if( freg_arg0 == (uint)i ) {
   433         regs[i].set2(xmm0->as_VMReg());
   434       } else if( freg_arg1 == (uint)i ) {
   435         regs[i].set2(xmm1->as_VMReg());
   436       } else {
   437         regs[i].set2(VMRegImpl::stack2reg(dstack));
   438         dstack += 2;
   439       }
   440       break;
   441     case T_VOID: regs[i].set_bad(); break;
   442       break;
   443     default:
   444       ShouldNotReachHere();
   445       break;
   446     }
   447   }
   449   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   450   return round_to(stack, 2);
   451 }
   453 // Patch the callers callsite with entry to compiled code if it exists.
   454 static void patch_callers_callsite(MacroAssembler *masm) {
   455   Label L;
   456   __ verify_oop(rbx);
   457   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   458   __ jcc(Assembler::equal, L);
   459   // Schedule the branch target address early.
   460   // Call into the VM to patch the caller, then jump to compiled callee
   461   // rax, isn't live so capture return address while we easily can
   462   __ movptr(rax, Address(rsp, 0));
   463   __ pusha();
   464   __ pushf();
   466   if (UseSSE == 1) {
   467     __ subptr(rsp, 2*wordSize);
   468     __ movflt(Address(rsp, 0), xmm0);
   469     __ movflt(Address(rsp, wordSize), xmm1);
   470   }
   471   if (UseSSE >= 2) {
   472     __ subptr(rsp, 4*wordSize);
   473     __ movdbl(Address(rsp, 0), xmm0);
   474     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   475   }
   476 #ifdef COMPILER2
   477   // C2 may leave the stack dirty if not in SSE2+ mode
   478   if (UseSSE >= 2) {
   479     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   480   } else {
   481     __ empty_FPU_stack();
   482   }
   483 #endif /* COMPILER2 */
   485   // VM needs caller's callsite
   486   __ push(rax);
   487   // VM needs target method
   488   __ push(rbx);
   489   __ verify_oop(rbx);
   490   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   491   __ addptr(rsp, 2*wordSize);
   493   if (UseSSE == 1) {
   494     __ movflt(xmm0, Address(rsp, 0));
   495     __ movflt(xmm1, Address(rsp, wordSize));
   496     __ addptr(rsp, 2*wordSize);
   497   }
   498   if (UseSSE >= 2) {
   499     __ movdbl(xmm0, Address(rsp, 0));
   500     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   501     __ addptr(rsp, 4*wordSize);
   502   }
   504   __ popf();
   505   __ popa();
   506   __ bind(L);
   507 }
   510 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   511   int next_off = st_off - Interpreter::stackElementSize;
   512   __ movdbl(Address(rsp, next_off), r);
   513 }
   515 static void gen_c2i_adapter(MacroAssembler *masm,
   516                             int total_args_passed,
   517                             int comp_args_on_stack,
   518                             const BasicType *sig_bt,
   519                             const VMRegPair *regs,
   520                             Label& skip_fixup) {
   521   // Before we get into the guts of the C2I adapter, see if we should be here
   522   // at all.  We've come from compiled code and are attempting to jump to the
   523   // interpreter, which means the caller made a static call to get here
   524   // (vcalls always get a compiled target if there is one).  Check for a
   525   // compiled target.  If there is one, we need to patch the caller's call.
   526   patch_callers_callsite(masm);
   528   __ bind(skip_fixup);
   530 #ifdef COMPILER2
   531   // C2 may leave the stack dirty if not in SSE2+ mode
   532   if (UseSSE >= 2) {
   533     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   534   } else {
   535     __ empty_FPU_stack();
   536   }
   537 #endif /* COMPILER2 */
   539   // Since all args are passed on the stack, total_args_passed * interpreter_
   540   // stack_element_size  is the
   541   // space we need.
   542   int extraspace = total_args_passed * Interpreter::stackElementSize;
   544   // Get return address
   545   __ pop(rax);
   547   // set senderSP value
   548   __ movptr(rsi, rsp);
   550   __ subptr(rsp, extraspace);
   552   // Now write the args into the outgoing interpreter space
   553   for (int i = 0; i < total_args_passed; i++) {
   554     if (sig_bt[i] == T_VOID) {
   555       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   556       continue;
   557     }
   559     // st_off points to lowest address on stack.
   560     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   561     int next_off = st_off - Interpreter::stackElementSize;
   563     // Say 4 args:
   564     // i   st_off
   565     // 0   12 T_LONG
   566     // 1    8 T_VOID
   567     // 2    4 T_OBJECT
   568     // 3    0 T_BOOL
   569     VMReg r_1 = regs[i].first();
   570     VMReg r_2 = regs[i].second();
   571     if (!r_1->is_valid()) {
   572       assert(!r_2->is_valid(), "");
   573       continue;
   574     }
   576     if (r_1->is_stack()) {
   577       // memory to memory use fpu stack top
   578       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   580       if (!r_2->is_valid()) {
   581         __ movl(rdi, Address(rsp, ld_off));
   582         __ movptr(Address(rsp, st_off), rdi);
   583       } else {
   585         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   586         // st_off == MSW, st_off-wordSize == LSW
   588         __ movptr(rdi, Address(rsp, ld_off));
   589         __ movptr(Address(rsp, next_off), rdi);
   590 #ifndef _LP64
   591         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   592         __ movptr(Address(rsp, st_off), rdi);
   593 #else
   594 #ifdef ASSERT
   595         // Overwrite the unused slot with known junk
   596         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   597         __ movptr(Address(rsp, st_off), rax);
   598 #endif /* ASSERT */
   599 #endif // _LP64
   600       }
   601     } else if (r_1->is_Register()) {
   602       Register r = r_1->as_Register();
   603       if (!r_2->is_valid()) {
   604         __ movl(Address(rsp, st_off), r);
   605       } else {
   606         // long/double in gpr
   607         NOT_LP64(ShouldNotReachHere());
   608         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   609         // T_DOUBLE and T_LONG use two slots in the interpreter
   610         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   611           // long/double in gpr
   612 #ifdef ASSERT
   613           // Overwrite the unused slot with known junk
   614           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   615           __ movptr(Address(rsp, st_off), rax);
   616 #endif /* ASSERT */
   617           __ movptr(Address(rsp, next_off), r);
   618         } else {
   619           __ movptr(Address(rsp, st_off), r);
   620         }
   621       }
   622     } else {
   623       assert(r_1->is_XMMRegister(), "");
   624       if (!r_2->is_valid()) {
   625         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   626       } else {
   627         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   628         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   629       }
   630     }
   631   }
   633   // Schedule the branch target address early.
   634   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   635   // And repush original return address
   636   __ push(rax);
   637   __ jmp(rcx);
   638 }
   641 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   642   int next_val_off = ld_off - Interpreter::stackElementSize;
   643   __ movdbl(r, Address(saved_sp, next_val_off));
   644 }
   646 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
   647                         address code_start, address code_end,
   648                         Label& L_ok) {
   649   Label L_fail;
   650   __ lea(temp_reg, ExternalAddress(code_start));
   651   __ cmpptr(pc_reg, temp_reg);
   652   __ jcc(Assembler::belowEqual, L_fail);
   653   __ lea(temp_reg, ExternalAddress(code_end));
   654   __ cmpptr(pc_reg, temp_reg);
   655   __ jcc(Assembler::below, L_ok);
   656   __ bind(L_fail);
   657 }
   659 static void gen_i2c_adapter(MacroAssembler *masm,
   660                             int total_args_passed,
   661                             int comp_args_on_stack,
   662                             const BasicType *sig_bt,
   663                             const VMRegPair *regs) {
   665   // Note: rsi contains the senderSP on entry. We must preserve it since
   666   // we may do a i2c -> c2i transition if we lose a race where compiled
   667   // code goes non-entrant while we get args ready.
   669   // Adapters can be frameless because they do not require the caller
   670   // to perform additional cleanup work, such as correcting the stack pointer.
   671   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   672   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   673   // even if a callee has modified the stack pointer.
   674   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   675   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   676   // up via the senderSP register).
   677   // In other words, if *either* the caller or callee is interpreted, we can
   678   // get the stack pointer repaired after a call.
   679   // This is why c2i and i2c adapters cannot be indefinitely composed.
   680   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   681   // both caller and callee would be compiled methods, and neither would
   682   // clean up the stack pointer changes performed by the two adapters.
   683   // If this happens, control eventually transfers back to the compiled
   684   // caller, but with an uncorrected stack, causing delayed havoc.
   686   // Pick up the return address
   687   __ movptr(rax, Address(rsp, 0));
   689   if (VerifyAdapterCalls &&
   690       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   691     // So, let's test for cascading c2i/i2c adapters right now.
   692     //  assert(Interpreter::contains($return_addr) ||
   693     //         StubRoutines::contains($return_addr),
   694     //         "i2c adapter must return to an interpreter frame");
   695     __ block_comment("verify_i2c { ");
   696     Label L_ok;
   697     if (Interpreter::code() != NULL)
   698       range_check(masm, rax, rdi,
   699                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   700                   L_ok);
   701     if (StubRoutines::code1() != NULL)
   702       range_check(masm, rax, rdi,
   703                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   704                   L_ok);
   705     if (StubRoutines::code2() != NULL)
   706       range_check(masm, rax, rdi,
   707                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   708                   L_ok);
   709     const char* msg = "i2c adapter must return to an interpreter frame";
   710     __ block_comment(msg);
   711     __ stop(msg);
   712     __ bind(L_ok);
   713     __ block_comment("} verify_i2ce ");
   714   }
   716   // Must preserve original SP for loading incoming arguments because
   717   // we need to align the outgoing SP for compiled code.
   718   __ movptr(rdi, rsp);
   720   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   721   // in registers, we will occasionally have no stack args.
   722   int comp_words_on_stack = 0;
   723   if (comp_args_on_stack) {
   724     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   725     // registers are below.  By subtracting stack0, we either get a negative
   726     // number (all values in registers) or the maximum stack slot accessed.
   727     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   728     // Convert 4-byte stack slots to words.
   729     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   730     // Round up to miminum stack alignment, in wordSize
   731     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   732     __ subptr(rsp, comp_words_on_stack * wordSize);
   733   }
   735   // Align the outgoing SP
   736   __ andptr(rsp, -(StackAlignmentInBytes));
   738   // push the return address on the stack (note that pushing, rather
   739   // than storing it, yields the correct frame alignment for the callee)
   740   __ push(rax);
   742   // Put saved SP in another register
   743   const Register saved_sp = rax;
   744   __ movptr(saved_sp, rdi);
   747   // Will jump to the compiled code just as if compiled code was doing it.
   748   // Pre-load the register-jump target early, to schedule it better.
   749   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   751   // Now generate the shuffle code.  Pick up all register args and move the
   752   // rest through the floating point stack top.
   753   for (int i = 0; i < total_args_passed; i++) {
   754     if (sig_bt[i] == T_VOID) {
   755       // Longs and doubles are passed in native word order, but misaligned
   756       // in the 32-bit build.
   757       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   758       continue;
   759     }
   761     // Pick up 0, 1 or 2 words from SP+offset.
   763     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   764             "scrambled load targets?");
   765     // Load in argument order going down.
   766     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   767     // Point to interpreter value (vs. tag)
   768     int next_off = ld_off - Interpreter::stackElementSize;
   769     //
   770     //
   771     //
   772     VMReg r_1 = regs[i].first();
   773     VMReg r_2 = regs[i].second();
   774     if (!r_1->is_valid()) {
   775       assert(!r_2->is_valid(), "");
   776       continue;
   777     }
   778     if (r_1->is_stack()) {
   779       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   780       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   782       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   783       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   784       // we be generated.
   785       if (!r_2->is_valid()) {
   786         // __ fld_s(Address(saved_sp, ld_off));
   787         // __ fstp_s(Address(rsp, st_off));
   788         __ movl(rsi, Address(saved_sp, ld_off));
   789         __ movptr(Address(rsp, st_off), rsi);
   790       } else {
   791         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   792         // are accessed as negative so LSW is at LOW address
   794         // ld_off is MSW so get LSW
   795         // st_off is LSW (i.e. reg.first())
   796         // __ fld_d(Address(saved_sp, next_off));
   797         // __ fstp_d(Address(rsp, st_off));
   798         //
   799         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   800         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   801         // So we must adjust where to pick up the data to match the interpreter.
   802         //
   803         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   804         // are accessed as negative so LSW is at LOW address
   806         // ld_off is MSW so get LSW
   807         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   808                            next_off : ld_off;
   809         __ movptr(rsi, Address(saved_sp, offset));
   810         __ movptr(Address(rsp, st_off), rsi);
   811 #ifndef _LP64
   812         __ movptr(rsi, Address(saved_sp, ld_off));
   813         __ movptr(Address(rsp, st_off + wordSize), rsi);
   814 #endif // _LP64
   815       }
   816     } else if (r_1->is_Register()) {  // Register argument
   817       Register r = r_1->as_Register();
   818       assert(r != rax, "must be different");
   819       if (r_2->is_valid()) {
   820         //
   821         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   822         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   823         // So we must adjust where to pick up the data to match the interpreter.
   825         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   826                            next_off : ld_off;
   828         // this can be a misaligned move
   829         __ movptr(r, Address(saved_sp, offset));
   830 #ifndef _LP64
   831         assert(r_2->as_Register() != rax, "need another temporary register");
   832         // Remember r_1 is low address (and LSB on x86)
   833         // So r_2 gets loaded from high address regardless of the platform
   834         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   835 #endif // _LP64
   836       } else {
   837         __ movl(r, Address(saved_sp, ld_off));
   838       }
   839     } else {
   840       assert(r_1->is_XMMRegister(), "");
   841       if (!r_2->is_valid()) {
   842         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   843       } else {
   844         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   845       }
   846     }
   847   }
   849   // 6243940 We might end up in handle_wrong_method if
   850   // the callee is deoptimized as we race thru here. If that
   851   // happens we don't want to take a safepoint because the
   852   // caller frame will look interpreted and arguments are now
   853   // "compiled" so it is much better to make this transition
   854   // invisible to the stack walking code. Unfortunately if
   855   // we try and find the callee by normal means a safepoint
   856   // is possible. So we stash the desired callee in the thread
   857   // and the vm will find there should this case occur.
   859   __ get_thread(rax);
   860   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   862   // move methodOop to rax, in case we end up in an c2i adapter.
   863   // the c2i adapters expect methodOop in rax, (c2) because c2's
   864   // resolve stubs return the result (the method) in rax,.
   865   // I'd love to fix this.
   866   __ mov(rax, rbx);
   868   __ jmp(rdi);
   869 }
   871 // ---------------------------------------------------------------
   872 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   873                                                             int total_args_passed,
   874                                                             int comp_args_on_stack,
   875                                                             const BasicType *sig_bt,
   876                                                             const VMRegPair *regs,
   877                                                             AdapterFingerPrint* fingerprint) {
   878   address i2c_entry = __ pc();
   880   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   882   // -------------------------------------------------------------------------
   883   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
   884   // to the interpreter.  The args start out packed in the compiled layout.  They
   885   // need to be unpacked into the interpreter layout.  This will almost always
   886   // require some stack space.  We grow the current (compiled) stack, then repack
   887   // the args.  We  finally end in a jump to the generic interpreter entry point.
   888   // On exit from the interpreter, the interpreter will restore our SP (lest the
   889   // compiled code, which relys solely on SP and not EBP, get sick).
   891   address c2i_unverified_entry = __ pc();
   892   Label skip_fixup;
   894   Register holder = rax;
   895   Register receiver = rcx;
   896   Register temp = rbx;
   898   {
   900     Label missed;
   902     __ verify_oop(holder);
   903     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   904     __ verify_oop(temp);
   906     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   907     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   908     __ jcc(Assembler::notEqual, missed);
   909     // Method might have been compiled since the call site was patched to
   910     // interpreted if that is the case treat it as a miss so we can get
   911     // the call site corrected.
   912     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   913     __ jcc(Assembler::equal, skip_fixup);
   915     __ bind(missed);
   916     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   917   }
   919   address c2i_entry = __ pc();
   921   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   923   __ flush();
   924   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   925 }
   927 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   928                                          VMRegPair *regs,
   929                                          int total_args_passed) {
   930 // We return the amount of VMRegImpl stack slots we need to reserve for all
   931 // the arguments NOT counting out_preserve_stack_slots.
   933   uint    stack = 0;        // All arguments on stack
   935   for( int i = 0; i < total_args_passed; i++) {
   936     // From the type and the argument number (count) compute the location
   937     switch( sig_bt[i] ) {
   938     case T_BOOLEAN:
   939     case T_CHAR:
   940     case T_FLOAT:
   941     case T_BYTE:
   942     case T_SHORT:
   943     case T_INT:
   944     case T_OBJECT:
   945     case T_ARRAY:
   946     case T_ADDRESS:
   947       regs[i].set1(VMRegImpl::stack2reg(stack++));
   948       break;
   949     case T_LONG:
   950     case T_DOUBLE: // The stack numbering is reversed from Java
   951       // Since C arguments do not get reversed, the ordering for
   952       // doubles on the stack must be opposite the Java convention
   953       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   954       regs[i].set2(VMRegImpl::stack2reg(stack));
   955       stack += 2;
   956       break;
   957     case T_VOID: regs[i].set_bad(); break;
   958     default:
   959       ShouldNotReachHere();
   960       break;
   961     }
   962   }
   963   return stack;
   964 }
   966 // A simple move of integer like type
   967 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   968   if (src.first()->is_stack()) {
   969     if (dst.first()->is_stack()) {
   970       // stack to stack
   971       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
   972       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
   973       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
   974       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
   975     } else {
   976       // stack to reg
   977       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
   978     }
   979   } else if (dst.first()->is_stack()) {
   980     // reg to stack
   981     // no need to sign extend on 64bit
   982     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   983   } else {
   984     if (dst.first() != src.first()) {
   985       __ mov(dst.first()->as_Register(), src.first()->as_Register());
   986     }
   987   }
   988 }
   990 // An oop arg. Must pass a handle not the oop itself
   991 static void object_move(MacroAssembler* masm,
   992                         OopMap* map,
   993                         int oop_handle_offset,
   994                         int framesize_in_slots,
   995                         VMRegPair src,
   996                         VMRegPair dst,
   997                         bool is_receiver,
   998                         int* receiver_offset) {
  1000   // Because of the calling conventions we know that src can be a
  1001   // register or a stack location. dst can only be a stack location.
  1003   assert(dst.first()->is_stack(), "must be stack");
  1004   // must pass a handle. First figure out the location we use as a handle
  1006   if (src.first()->is_stack()) {
  1007     // Oop is already on the stack as an argument
  1008     Register rHandle = rax;
  1009     Label nil;
  1010     __ xorptr(rHandle, rHandle);
  1011     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
  1012     __ jcc(Assembler::equal, nil);
  1013     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
  1014     __ bind(nil);
  1015     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1017     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1018     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1019     if (is_receiver) {
  1020       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1022   } else {
  1023     // Oop is in an a register we must store it to the space we reserve
  1024     // on the stack for oop_handles
  1025     const Register rOop = src.first()->as_Register();
  1026     const Register rHandle = rax;
  1027     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
  1028     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1029     Label skip;
  1030     __ movptr(Address(rsp, offset), rOop);
  1031     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1032     __ xorptr(rHandle, rHandle);
  1033     __ cmpptr(rOop, (int32_t)NULL_WORD);
  1034     __ jcc(Assembler::equal, skip);
  1035     __ lea(rHandle, Address(rsp, offset));
  1036     __ bind(skip);
  1037     // Store the handle parameter
  1038     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
  1039     if (is_receiver) {
  1040       *receiver_offset = offset;
  1045 // A float arg may have to do float reg int reg conversion
  1046 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1047   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1049   // Because of the calling convention we know that src is either a stack location
  1050   // or an xmm register. dst can only be a stack location.
  1052   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
  1054   if (src.first()->is_stack()) {
  1055     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
  1056     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1057   } else {
  1058     // reg to stack
  1059     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1063 // A long move
  1064 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1066   // The only legal possibility for a long_move VMRegPair is:
  1067   // 1: two stack slots (possibly unaligned)
  1068   // as neither the java  or C calling convention will use registers
  1069   // for longs.
  1071   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1072     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1073     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1074     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1075     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1076     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1077   } else {
  1078     ShouldNotReachHere();
  1082 // A double move
  1083 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1085   // The only legal possibilities for a double_move VMRegPair are:
  1086   // The painful thing here is that like long_move a VMRegPair might be
  1088   // Because of the calling convention we know that src is either
  1089   //   1: a single physical register (xmm registers only)
  1090   //   2: two stack slots (possibly unaligned)
  1091   // dst can only be a pair of stack slots.
  1093   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1095   if (src.first()->is_stack()) {
  1096     // source is all stack
  1097     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1098     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1099     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1100     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1101   } else {
  1102     // reg to stack
  1103     // No worries about stack alignment
  1104     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1109 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1110   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1111   // which by this time is free to use
  1112   switch (ret_type) {
  1113   case T_FLOAT:
  1114     __ fstp_s(Address(rbp, -wordSize));
  1115     break;
  1116   case T_DOUBLE:
  1117     __ fstp_d(Address(rbp, -2*wordSize));
  1118     break;
  1119   case T_VOID:  break;
  1120   case T_LONG:
  1121     __ movptr(Address(rbp, -wordSize), rax);
  1122     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1123     break;
  1124   default: {
  1125     __ movptr(Address(rbp, -wordSize), rax);
  1130 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1131   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1132   // which by this time is free to use
  1133   switch (ret_type) {
  1134   case T_FLOAT:
  1135     __ fld_s(Address(rbp, -wordSize));
  1136     break;
  1137   case T_DOUBLE:
  1138     __ fld_d(Address(rbp, -2*wordSize));
  1139     break;
  1140   case T_LONG:
  1141     __ movptr(rax, Address(rbp, -wordSize));
  1142     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1143     break;
  1144   case T_VOID:  break;
  1145   default: {
  1146     __ movptr(rax, Address(rbp, -wordSize));
  1152 static void save_or_restore_arguments(MacroAssembler* masm,
  1153                                       const int stack_slots,
  1154                                       const int total_in_args,
  1155                                       const int arg_save_area,
  1156                                       OopMap* map,
  1157                                       VMRegPair* in_regs,
  1158                                       BasicType* in_sig_bt) {
  1159   // if map is non-NULL then the code should store the values,
  1160   // otherwise it should load them.
  1161   int handle_index = 0;
  1162   // Save down double word first
  1163   for ( int i = 0; i < total_in_args; i++) {
  1164     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1165       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1166       int offset = slot * VMRegImpl::stack_slot_size;
  1167       handle_index += 2;
  1168       assert(handle_index <= stack_slots, "overflow");
  1169       if (map != NULL) {
  1170         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1171       } else {
  1172         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1175     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
  1176       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1177       int offset = slot * VMRegImpl::stack_slot_size;
  1178       handle_index += 2;
  1179       assert(handle_index <= stack_slots, "overflow");
  1180       if (map != NULL) {
  1181         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
  1182         if (in_regs[i].second()->is_Register()) {
  1183           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
  1185       } else {
  1186         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1187         if (in_regs[i].second()->is_Register()) {
  1188           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
  1193   // Save or restore single word registers
  1194   for ( int i = 0; i < total_in_args; i++) {
  1195     if (in_regs[i].first()->is_Register()) {
  1196       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1197       int offset = slot * VMRegImpl::stack_slot_size;
  1198       assert(handle_index <= stack_slots, "overflow");
  1199       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1200         map->set_oop(VMRegImpl::stack2reg(slot));;
  1203       // Value is in an input register pass we must flush it to the stack
  1204       const Register reg = in_regs[i].first()->as_Register();
  1205       switch (in_sig_bt[i]) {
  1206         case T_ARRAY:
  1207           if (map != NULL) {
  1208             __ movptr(Address(rsp, offset), reg);
  1209           } else {
  1210             __ movptr(reg, Address(rsp, offset));
  1212           break;
  1213         case T_BOOLEAN:
  1214         case T_CHAR:
  1215         case T_BYTE:
  1216         case T_SHORT:
  1217         case T_INT:
  1218           if (map != NULL) {
  1219             __ movl(Address(rsp, offset), reg);
  1220           } else {
  1221             __ movl(reg, Address(rsp, offset));
  1223           break;
  1224         case T_OBJECT:
  1225         default: ShouldNotReachHere();
  1227     } else if (in_regs[i].first()->is_XMMRegister()) {
  1228       if (in_sig_bt[i] == T_FLOAT) {
  1229         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1230         int offset = slot * VMRegImpl::stack_slot_size;
  1231         assert(handle_index <= stack_slots, "overflow");
  1232         if (map != NULL) {
  1233           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1234         } else {
  1235           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1238     } else if (in_regs[i].first()->is_stack()) {
  1239       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1240         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1241         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1247 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1248 // keeps a new JNI critical region from starting until a GC has been
  1249 // forced.  Save down any oops in registers and describe them in an
  1250 // OopMap.
  1251 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1252                                                Register thread,
  1253                                                int stack_slots,
  1254                                                int total_c_args,
  1255                                                int total_in_args,
  1256                                                int arg_save_area,
  1257                                                OopMapSet* oop_maps,
  1258                                                VMRegPair* in_regs,
  1259                                                BasicType* in_sig_bt) {
  1260   __ block_comment("check GC_locker::needs_gc");
  1261   Label cont;
  1262   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1263   __ jcc(Assembler::equal, cont);
  1265   // Save down any incoming oops and call into the runtime to halt for a GC
  1267   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1269   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1270                             arg_save_area, map, in_regs, in_sig_bt);
  1272   address the_pc = __ pc();
  1273   oop_maps->add_gc_map( __ offset(), map);
  1274   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
  1276   __ block_comment("block_for_jni_critical");
  1277   __ push(thread);
  1278   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1279   __ increment(rsp, wordSize);
  1281   __ get_thread(thread);
  1282   __ reset_last_Java_frame(thread, false, true);
  1284   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1285                             arg_save_area, NULL, in_regs, in_sig_bt);
  1287   __ bind(cont);
  1288 #ifdef ASSERT
  1289   if (StressCriticalJNINatives) {
  1290     // Stress register saving
  1291     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1292     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1293                               arg_save_area, map, in_regs, in_sig_bt);
  1294     // Destroy argument registers
  1295     for (int i = 0; i < total_in_args - 1; i++) {
  1296       if (in_regs[i].first()->is_Register()) {
  1297         const Register reg = in_regs[i].first()->as_Register();
  1298         __ xorptr(reg, reg);
  1299       } else if (in_regs[i].first()->is_XMMRegister()) {
  1300         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1301       } else if (in_regs[i].first()->is_FloatRegister()) {
  1302         ShouldNotReachHere();
  1303       } else if (in_regs[i].first()->is_stack()) {
  1304         // Nothing to do
  1305       } else {
  1306         ShouldNotReachHere();
  1308       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1309         i++;
  1313     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1314                               arg_save_area, NULL, in_regs, in_sig_bt);
  1316 #endif
  1319 // Unpack an array argument into a pointer to the body and the length
  1320 // if the array is non-null, otherwise pass 0 for both.
  1321 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1322   Register tmp_reg = rax;
  1323   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1324          "possible collision");
  1325   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1326          "possible collision");
  1328   // Pass the length, ptr pair
  1329   Label is_null, done;
  1330   VMRegPair tmp(tmp_reg->as_VMReg());
  1331   if (reg.first()->is_stack()) {
  1332     // Load the arg up from the stack
  1333     simple_move32(masm, reg, tmp);
  1334     reg = tmp;
  1336   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1337   __ jccb(Assembler::equal, is_null);
  1338   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1339   simple_move32(masm, tmp, body_arg);
  1340   // load the length relative to the body.
  1341   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1342                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1343   simple_move32(masm, tmp, length_arg);
  1344   __ jmpb(done);
  1345   __ bind(is_null);
  1346   // Pass zeros
  1347   __ xorptr(tmp_reg, tmp_reg);
  1348   simple_move32(masm, tmp, body_arg);
  1349   simple_move32(masm, tmp, length_arg);
  1350   __ bind(done);
  1353 static void verify_oop_args(MacroAssembler* masm,
  1354                             int total_args_passed,
  1355                             const BasicType* sig_bt,
  1356                             const VMRegPair* regs) {
  1357   Register temp_reg = rbx;  // not part of any compiled calling seq
  1358   if (VerifyOops) {
  1359     for (int i = 0; i < total_args_passed; i++) {
  1360       if (sig_bt[i] == T_OBJECT ||
  1361           sig_bt[i] == T_ARRAY) {
  1362         VMReg r = regs[i].first();
  1363         assert(r->is_valid(), "bad oop arg");
  1364         if (r->is_stack()) {
  1365           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1366           __ verify_oop(temp_reg);
  1367         } else {
  1368           __ verify_oop(r->as_Register());
  1375 static void gen_special_dispatch(MacroAssembler* masm,
  1376                                  int total_args_passed,
  1377                                  int comp_args_on_stack,
  1378                                  vmIntrinsics::ID special_dispatch,
  1379                                  const BasicType* sig_bt,
  1380                                  const VMRegPair* regs) {
  1381   verify_oop_args(masm, total_args_passed, sig_bt, regs);
  1383   // Now write the args into the outgoing interpreter space
  1384   bool     has_receiver   = false;
  1385   Register receiver_reg   = noreg;
  1386   int      member_arg_pos = -1;
  1387   Register member_reg     = noreg;
  1388   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
  1389   if (ref_kind != 0) {
  1390     member_arg_pos = total_args_passed - 1;  // trailing MemberName argument
  1391     member_reg = rbx;  // known to be free at this point
  1392     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1393   } else if (special_dispatch == vmIntrinsics::_invokeBasic) {
  1394     has_receiver = true;
  1395   } else {
  1396     guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
  1399   if (member_reg != noreg) {
  1400     // Load the member_arg into register, if necessary.
  1401     assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1402     assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1403     VMReg r = regs[member_arg_pos].first();
  1404     assert(r->is_valid(), "bad member arg");
  1405     if (r->is_stack()) {
  1406       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1407     } else {
  1408       // no data motion is needed
  1409       member_reg = r->as_Register();
  1413   if (has_receiver) {
  1414     // Make sure the receiver is loaded into a register.
  1415     assert(total_args_passed > 0, "oob");
  1416     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1417     VMReg r = regs[0].first();
  1418     assert(r->is_valid(), "bad receiver arg");
  1419     if (r->is_stack()) {
  1420       // Porting note:  This assumes that compiled calling conventions always
  1421       // pass the receiver oop in a register.  If this is not true on some
  1422       // platform, pick a temp and load the receiver from stack.
  1423       assert(false, "receiver always in a register");
  1424       receiver_reg = rcx;  // known to be free at this point
  1425       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
  1426     } else {
  1427       // no data motion is needed
  1428       receiver_reg = r->as_Register();
  1432   // Figure out which address we are really jumping to:
  1433   MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
  1434                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1437 // ---------------------------------------------------------------------------
  1438 // Generate a native wrapper for a given method.  The method takes arguments
  1439 // in the Java compiled code convention, marshals them to the native
  1440 // convention (handlizes oops, etc), transitions to native, makes the call,
  1441 // returns to java state (possibly blocking), unhandlizes any result and
  1442 // returns.
  1443 //
  1444 // Critical native functions are a shorthand for the use of
  1445 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1446 // functions.  The wrapper is expected to unpack the arguments before
  1447 // passing them to the callee and perform checks before and after the
  1448 // native call to ensure that they GC_locker
  1449 // lock_critical/unlock_critical semantics are followed.  Some other
  1450 // parts of JNI setup are skipped like the tear down of the JNI handle
  1451 // block and the check for pending exceptions it's impossible for them
  1452 // to be thrown.
  1453 //
  1454 // They are roughly structured like this:
  1455 //    if (GC_locker::needs_gc())
  1456 //      SharedRuntime::block_for_jni_critical();
  1457 //    tranistion to thread_in_native
  1458 //    unpack arrray arguments and call native entry point
  1459 //    check for safepoint in progress
  1460 //    check if any thread suspend flags are set
  1461 //      call into JVM and possible unlock the JNI critical
  1462 //      if a GC was suppressed while in the critical native.
  1463 //    transition back to thread_in_Java
  1464 //    return to caller
  1465 //
  1466 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1467                                                 methodHandle method,
  1468                                                 int compile_id,
  1469                                                 int total_in_args,
  1470                                                 int comp_args_on_stack,
  1471                                                 BasicType* in_sig_bt,
  1472                                                 VMRegPair* in_regs,
  1473                                                 BasicType ret_type) {
  1474   if (method->is_method_handle_intrinsic()) {
  1475     vmIntrinsics::ID iid = method->intrinsic_id();
  1476     intptr_t start = (intptr_t)__ pc();
  1477     int vep_offset = ((intptr_t)__ pc()) - start;
  1478     gen_special_dispatch(masm,
  1479                          total_in_args,
  1480                          comp_args_on_stack,
  1481                          method->intrinsic_id(),
  1482                          in_sig_bt,
  1483                          in_regs);
  1484     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1485     __ flush();
  1486     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1487     return nmethod::new_native_nmethod(method,
  1488                                        compile_id,
  1489                                        masm->code(),
  1490                                        vep_offset,
  1491                                        frame_complete,
  1492                                        stack_slots / VMRegImpl::slots_per_word,
  1493                                        in_ByteSize(-1),
  1494                                        in_ByteSize(-1),
  1495                                        (OopMapSet*)NULL);
  1497   bool is_critical_native = true;
  1498   address native_func = method->critical_native_function();
  1499   if (native_func == NULL) {
  1500     native_func = method->native_function();
  1501     is_critical_native = false;
  1503   assert(native_func != NULL, "must have function");
  1505   // An OopMap for lock (and class if static)
  1506   OopMapSet *oop_maps = new OopMapSet();
  1508   // We have received a description of where all the java arg are located
  1509   // on entry to the wrapper. We need to convert these args to where
  1510   // the jni function will expect them. To figure out where they go
  1511   // we convert the java signature to a C signature by inserting
  1512   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1514   int total_c_args = total_in_args;
  1515   if (!is_critical_native) {
  1516     total_c_args += 1;
  1517     if (method->is_static()) {
  1518       total_c_args++;
  1520   } else {
  1521     for (int i = 0; i < total_in_args; i++) {
  1522       if (in_sig_bt[i] == T_ARRAY) {
  1523         total_c_args++;
  1528   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1529   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1530   BasicType* in_elem_bt = NULL;
  1532   int argc = 0;
  1533   if (!is_critical_native) {
  1534     out_sig_bt[argc++] = T_ADDRESS;
  1535     if (method->is_static()) {
  1536       out_sig_bt[argc++] = T_OBJECT;
  1539     for (int i = 0; i < total_in_args ; i++ ) {
  1540       out_sig_bt[argc++] = in_sig_bt[i];
  1542   } else {
  1543     Thread* THREAD = Thread::current();
  1544     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1545     SignatureStream ss(method->signature());
  1546     for (int i = 0; i < total_in_args ; i++ ) {
  1547       if (in_sig_bt[i] == T_ARRAY) {
  1548         // Arrays are passed as int, elem* pair
  1549         out_sig_bt[argc++] = T_INT;
  1550         out_sig_bt[argc++] = T_ADDRESS;
  1551         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1552         const char* at = atype->as_C_string();
  1553         if (strlen(at) == 2) {
  1554           assert(at[0] == '[', "must be");
  1555           switch (at[1]) {
  1556             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1557             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1558             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1559             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1560             case 'I': in_elem_bt[i]  = T_INT; break;
  1561             case 'J': in_elem_bt[i]  = T_LONG; break;
  1562             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1563             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1564             default: ShouldNotReachHere();
  1567       } else {
  1568         out_sig_bt[argc++] = in_sig_bt[i];
  1569         in_elem_bt[i] = T_VOID;
  1571       if (in_sig_bt[i] != T_VOID) {
  1572         assert(in_sig_bt[i] == ss.type(), "must match");
  1573         ss.next();
  1578   // Now figure out where the args must be stored and how much stack space
  1579   // they require.
  1580   int out_arg_slots;
  1581   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1583   // Compute framesize for the wrapper.  We need to handlize all oops in
  1584   // registers a max of 2 on x86.
  1586   // Calculate the total number of stack slots we will need.
  1588   // First count the abi requirement plus all of the outgoing args
  1589   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1591   // Now the space for the inbound oop handle area
  1592   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
  1593   if (is_critical_native) {
  1594     // Critical natives may have to call out so they need a save area
  1595     // for register arguments.
  1596     int double_slots = 0;
  1597     int single_slots = 0;
  1598     for ( int i = 0; i < total_in_args; i++) {
  1599       if (in_regs[i].first()->is_Register()) {
  1600         const Register reg = in_regs[i].first()->as_Register();
  1601         switch (in_sig_bt[i]) {
  1602           case T_ARRAY:  // critical array (uses 2 slots on LP64)
  1603           case T_BOOLEAN:
  1604           case T_BYTE:
  1605           case T_SHORT:
  1606           case T_CHAR:
  1607           case T_INT:  single_slots++; break;
  1608           case T_LONG: double_slots++; break;
  1609           default:  ShouldNotReachHere();
  1611       } else if (in_regs[i].first()->is_XMMRegister()) {
  1612         switch (in_sig_bt[i]) {
  1613           case T_FLOAT:  single_slots++; break;
  1614           case T_DOUBLE: double_slots++; break;
  1615           default:  ShouldNotReachHere();
  1617       } else if (in_regs[i].first()->is_FloatRegister()) {
  1618         ShouldNotReachHere();
  1621     total_save_slots = double_slots * 2 + single_slots;
  1622     // align the save area
  1623     if (double_slots != 0) {
  1624       stack_slots = round_to(stack_slots, 2);
  1628   int oop_handle_offset = stack_slots;
  1629   stack_slots += total_save_slots;
  1631   // Now any space we need for handlizing a klass if static method
  1633   int klass_slot_offset = 0;
  1634   int klass_offset = -1;
  1635   int lock_slot_offset = 0;
  1636   bool is_static = false;
  1638   if (method->is_static()) {
  1639     klass_slot_offset = stack_slots;
  1640     stack_slots += VMRegImpl::slots_per_word;
  1641     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1642     is_static = true;
  1645   // Plus a lock if needed
  1647   if (method->is_synchronized()) {
  1648     lock_slot_offset = stack_slots;
  1649     stack_slots += VMRegImpl::slots_per_word;
  1652   // Now a place (+2) to save return values or temp during shuffling
  1653   // + 2 for return address (which we own) and saved rbp,
  1654   stack_slots += 4;
  1656   // Ok The space we have allocated will look like:
  1657   //
  1658   //
  1659   // FP-> |                     |
  1660   //      |---------------------|
  1661   //      | 2 slots for moves   |
  1662   //      |---------------------|
  1663   //      | lock box (if sync)  |
  1664   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1665   //      | klass (if static)   |
  1666   //      |---------------------| <- klass_slot_offset
  1667   //      | oopHandle area      |
  1668   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1669   //      | outbound memory     |
  1670   //      | based arguments     |
  1671   //      |                     |
  1672   //      |---------------------|
  1673   //      |                     |
  1674   // SP-> | out_preserved_slots |
  1675   //
  1676   //
  1677   // ****************************************************************************
  1678   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1679   // arguments off of the stack after the jni call. Before the call we can use
  1680   // instructions that are SP relative. After the jni call we switch to FP
  1681   // relative instructions instead of re-adjusting the stack on windows.
  1682   // ****************************************************************************
  1685   // Now compute actual number of stack words we need rounding to make
  1686   // stack properly aligned.
  1687   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1689   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1691   intptr_t start = (intptr_t)__ pc();
  1693   // First thing make an ic check to see if we should even be here
  1695   // We are free to use all registers as temps without saving them and
  1696   // restoring them except rbp. rbp is the only callee save register
  1697   // as far as the interpreter and the compiler(s) are concerned.
  1700   const Register ic_reg = rax;
  1701   const Register receiver = rcx;
  1702   Label hit;
  1703   Label exception_pending;
  1705   __ verify_oop(receiver);
  1706   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1707   __ jcc(Assembler::equal, hit);
  1709   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1711   // verified entry must be aligned for code patching.
  1712   // and the first 5 bytes must be in the same cache line
  1713   // if we align at 8 then we will be sure 5 bytes are in the same line
  1714   __ align(8);
  1716   __ bind(hit);
  1718   int vep_offset = ((intptr_t)__ pc()) - start;
  1720 #ifdef COMPILER1
  1721   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1722     // Object.hashCode can pull the hashCode from the header word
  1723     // instead of doing a full VM transition once it's been computed.
  1724     // Since hashCode is usually polymorphic at call sites we can't do
  1725     // this optimization at the call site without a lot of work.
  1726     Label slowCase;
  1727     Register receiver = rcx;
  1728     Register result = rax;
  1729     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1731     // check if locked
  1732     __ testptr(result, markOopDesc::unlocked_value);
  1733     __ jcc (Assembler::zero, slowCase);
  1735     if (UseBiasedLocking) {
  1736       // Check if biased and fall through to runtime if so
  1737       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1738       __ jcc (Assembler::notZero, slowCase);
  1741     // get hash
  1742     __ andptr(result, markOopDesc::hash_mask_in_place);
  1743     // test if hashCode exists
  1744     __ jcc  (Assembler::zero, slowCase);
  1745     __ shrptr(result, markOopDesc::hash_shift);
  1746     __ ret(0);
  1747     __ bind (slowCase);
  1749 #endif // COMPILER1
  1751   // The instruction at the verified entry point must be 5 bytes or longer
  1752   // because it can be patched on the fly by make_non_entrant. The stack bang
  1753   // instruction fits that requirement.
  1755   // Generate stack overflow check
  1757   if (UseStackBanging) {
  1758     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1759   } else {
  1760     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1761     __ fat_nop();
  1764   // Generate a new frame for the wrapper.
  1765   __ enter();
  1766   // -2 because return address is already present and so is saved rbp
  1767   __ subptr(rsp, stack_size - 2*wordSize);
  1769   // Frame is now completed as far as size and linkage.
  1770   int frame_complete = ((intptr_t)__ pc()) - start;
  1772   // Calculate the difference between rsp and rbp,. We need to know it
  1773   // after the native call because on windows Java Natives will pop
  1774   // the arguments and it is painful to do rsp relative addressing
  1775   // in a platform independent way. So after the call we switch to
  1776   // rbp, relative addressing.
  1778   int fp_adjustment = stack_size - 2*wordSize;
  1780 #ifdef COMPILER2
  1781   // C2 may leave the stack dirty if not in SSE2+ mode
  1782   if (UseSSE >= 2) {
  1783     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1784   } else {
  1785     __ empty_FPU_stack();
  1787 #endif /* COMPILER2 */
  1789   // Compute the rbp, offset for any slots used after the jni call
  1791   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1793   // We use rdi as a thread pointer because it is callee save and
  1794   // if we load it once it is usable thru the entire wrapper
  1795   const Register thread = rdi;
  1797   // We use rsi as the oop handle for the receiver/klass
  1798   // It is callee save so it survives the call to native
  1800   const Register oop_handle_reg = rsi;
  1802   __ get_thread(thread);
  1804   if (is_critical_native) {
  1805     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
  1806                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  1809   //
  1810   // We immediately shuffle the arguments so that any vm call we have to
  1811   // make from here on out (sync slow path, jvmti, etc.) we will have
  1812   // captured the oops from our caller and have a valid oopMap for
  1813   // them.
  1815   // -----------------
  1816   // The Grand Shuffle
  1817   //
  1818   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1819   // and, if static, the class mirror instead of a receiver.  This pretty much
  1820   // guarantees that register layout will not match (and x86 doesn't use reg
  1821   // parms though amd does).  Since the native abi doesn't use register args
  1822   // and the java conventions does we don't have to worry about collisions.
  1823   // All of our moved are reg->stack or stack->stack.
  1824   // We ignore the extra arguments during the shuffle and handle them at the
  1825   // last moment. The shuffle is described by the two calling convention
  1826   // vectors we have in our possession. We simply walk the java vector to
  1827   // get the source locations and the c vector to get the destinations.
  1829   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
  1831   // Record rsp-based slot for receiver on stack for non-static methods
  1832   int receiver_offset = -1;
  1834   // This is a trick. We double the stack slots so we can claim
  1835   // the oops in the caller's frame. Since we are sure to have
  1836   // more args than the caller doubling is enough to make
  1837   // sure we can capture all the incoming oop args from the
  1838   // caller.
  1839   //
  1840   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1842   // Mark location of rbp,
  1843   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1845   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1846   // Are free to temporaries if we have to do  stack to steck moves.
  1847   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1849   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
  1850     switch (in_sig_bt[i]) {
  1851       case T_ARRAY:
  1852         if (is_critical_native) {
  1853           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  1854           c_arg++;
  1855           break;
  1857       case T_OBJECT:
  1858         assert(!is_critical_native, "no oop arguments");
  1859         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1860                     ((i == 0) && (!is_static)),
  1861                     &receiver_offset);
  1862         break;
  1863       case T_VOID:
  1864         break;
  1866       case T_FLOAT:
  1867         float_move(masm, in_regs[i], out_regs[c_arg]);
  1868           break;
  1870       case T_DOUBLE:
  1871         assert( i + 1 < total_in_args &&
  1872                 in_sig_bt[i + 1] == T_VOID &&
  1873                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1874         double_move(masm, in_regs[i], out_regs[c_arg]);
  1875         break;
  1877       case T_LONG :
  1878         long_move(masm, in_regs[i], out_regs[c_arg]);
  1879         break;
  1881       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1883       default:
  1884         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1888   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1889   // the normal JNI call code.
  1890   if (method->is_static() && !is_critical_native) {
  1892     //  load opp into a register
  1893     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1895     // Now handlize the static class mirror it's known not-null.
  1896     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1897     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1899     // Now get the handle
  1900     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1901     // store the klass handle as second argument
  1902     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1905   // Change state to native (we save the return address in the thread, since it might not
  1906   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1907   // points into the right code segment. It does not have to be the correct return pc.
  1908   // We use the same pc/oopMap repeatedly when we call out
  1910   intptr_t the_pc = (intptr_t) __ pc();
  1911   oop_maps->add_gc_map(the_pc - start, map);
  1913   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1916   // We have all of the arguments setup at this point. We must not touch any register
  1917   // argument registers at this point (what if we save/restore them there are no oop?
  1920     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1921     __ movoop(rax, JNIHandles::make_local(method()));
  1922     __ call_VM_leaf(
  1923          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1924          thread, rax);
  1927   // RedefineClasses() tracing support for obsolete method entry
  1928   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1929     __ movoop(rax, JNIHandles::make_local(method()));
  1930     __ call_VM_leaf(
  1931          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1932          thread, rax);
  1935   // These are register definitions we need for locking/unlocking
  1936   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1937   const Register obj_reg  = rcx;  // Will contain the oop
  1938   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1940   Label slow_path_lock;
  1941   Label lock_done;
  1943   // Lock a synchronized method
  1944   if (method->is_synchronized()) {
  1945     assert(!is_critical_native, "unhandled");
  1948     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1950     // Get the handle (the 2nd argument)
  1951     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1953     // Get address of the box
  1955     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1957     // Load the oop from the handle
  1958     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1960     if (UseBiasedLocking) {
  1961       // Note that oop_handle_reg is trashed during this call
  1962       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1965     // Load immediate 1 into swap_reg %rax,
  1966     __ movptr(swap_reg, 1);
  1968     // Load (object->mark() | 1) into swap_reg %rax,
  1969     __ orptr(swap_reg, Address(obj_reg, 0));
  1971     // Save (object->mark() | 1) into BasicLock's displaced header
  1972     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1974     if (os::is_MP()) {
  1975       __ lock();
  1978     // src -> dest iff dest == rax, else rax, <- dest
  1979     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1980     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1981     __ jcc(Assembler::equal, lock_done);
  1983     // Test if the oopMark is an obvious stack pointer, i.e.,
  1984     //  1) (mark & 3) == 0, and
  1985     //  2) rsp <= mark < mark + os::pagesize()
  1986     // These 3 tests can be done by evaluating the following
  1987     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1988     // assuming both stack pointer and pagesize have their
  1989     // least significant 2 bits clear.
  1990     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1992     __ subptr(swap_reg, rsp);
  1993     __ andptr(swap_reg, 3 - os::vm_page_size());
  1995     // Save the test result, for recursive case, the result is zero
  1996     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1997     __ jcc(Assembler::notEqual, slow_path_lock);
  1998     // Slow path will re-enter here
  1999     __ bind(lock_done);
  2001     if (UseBiasedLocking) {
  2002       // Re-fetch oop_handle_reg as we trashed it above
  2003       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  2008   // Finally just about ready to make the JNI call
  2011   // get JNIEnv* which is first argument to native
  2012   if (!is_critical_native) {
  2013     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  2014     __ movptr(Address(rsp, 0), rdx);
  2017   // Now set thread in native
  2018   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  2020   __ call(RuntimeAddress(native_func));
  2022   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  2023   // arguments off of the stack. We could just re-adjust the stack pointer here
  2024   // and continue to do SP relative addressing but we instead switch to FP
  2025   // relative addressing.
  2027   // Unpack native results.
  2028   switch (ret_type) {
  2029   case T_BOOLEAN: __ c2bool(rax);            break;
  2030   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  2031   case T_BYTE   : __ sign_extend_byte (rax); break;
  2032   case T_SHORT  : __ sign_extend_short(rax); break;
  2033   case T_INT    : /* nothing to do */        break;
  2034   case T_DOUBLE :
  2035   case T_FLOAT  :
  2036     // Result is in st0 we'll save as needed
  2037     break;
  2038   case T_ARRAY:                 // Really a handle
  2039   case T_OBJECT:                // Really a handle
  2040       break; // can't de-handlize until after safepoint check
  2041   case T_VOID: break;
  2042   case T_LONG: break;
  2043   default       : ShouldNotReachHere();
  2046   // Switch thread to "native transition" state before reading the synchronization state.
  2047   // This additional state is necessary because reading and testing the synchronization
  2048   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2049   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2050   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2051   //     Thread A is resumed to finish this native method, but doesn't block here since it
  2052   //     didn't see any synchronization is progress, and escapes.
  2053   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  2055   if(os::is_MP()) {
  2056     if (UseMembar) {
  2057       // Force this write out before the read below
  2058       __ membar(Assembler::Membar_mask_bits(
  2059            Assembler::LoadLoad | Assembler::LoadStore |
  2060            Assembler::StoreLoad | Assembler::StoreStore));
  2061     } else {
  2062       // Write serialization page so VM thread can do a pseudo remote membar.
  2063       // We use the current thread pointer to calculate a thread specific
  2064       // offset to write to within the page. This minimizes bus traffic
  2065       // due to cache line collision.
  2066       __ serialize_memory(thread, rcx);
  2070   if (AlwaysRestoreFPU) {
  2071     // Make sure the control word is correct.
  2072     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2075   Label after_transition;
  2077   // check for safepoint operation in progress and/or pending suspend requests
  2078   { Label Continue;
  2080     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  2081              SafepointSynchronize::_not_synchronized);
  2083     Label L;
  2084     __ jcc(Assembler::notEqual, L);
  2085     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  2086     __ jcc(Assembler::equal, Continue);
  2087     __ bind(L);
  2089     // Don't use call_VM as it will see a possible pending exception and forward it
  2090     // and never return here preventing us from clearing _last_native_pc down below.
  2091     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  2092     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  2093     // by hand.
  2094     //
  2095     save_native_result(masm, ret_type, stack_slots);
  2096     __ push(thread);
  2097     if (!is_critical_native) {
  2098       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2099                                               JavaThread::check_special_condition_for_native_trans)));
  2100     } else {
  2101       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  2102                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
  2104     __ increment(rsp, wordSize);
  2105     // Restore any method result value
  2106     restore_native_result(masm, ret_type, stack_slots);
  2108     if (is_critical_native) {
  2109       // The call above performed the transition to thread_in_Java so
  2110       // skip the transition logic below.
  2111       __ jmpb(after_transition);
  2114     __ bind(Continue);
  2117   // change thread state
  2118   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  2119   __ bind(after_transition);
  2121   Label reguard;
  2122   Label reguard_done;
  2123   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  2124   __ jcc(Assembler::equal, reguard);
  2126   // slow path reguard  re-enters here
  2127   __ bind(reguard_done);
  2129   // Handle possible exception (will unlock if necessary)
  2131   // native result if any is live
  2133   // Unlock
  2134   Label slow_path_unlock;
  2135   Label unlock_done;
  2136   if (method->is_synchronized()) {
  2138     Label done;
  2140     // Get locked oop from the handle we passed to jni
  2141     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  2143     if (UseBiasedLocking) {
  2144       __ biased_locking_exit(obj_reg, rbx, done);
  2147     // Simple recursive lock?
  2149     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  2150     __ jcc(Assembler::equal, done);
  2152     // Must save rax, if if it is live now because cmpxchg must use it
  2153     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2154       save_native_result(masm, ret_type, stack_slots);
  2157     //  get old displaced header
  2158     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  2160     // get address of the stack lock
  2161     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2163     // Atomic swap old header if oop still contains the stack lock
  2164     if (os::is_MP()) {
  2165     __ lock();
  2168     // src -> dest iff dest == rax, else rax, <- dest
  2169     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  2170     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  2171     __ jcc(Assembler::notEqual, slow_path_unlock);
  2173     // slow path re-enters here
  2174     __ bind(unlock_done);
  2175     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2176       restore_native_result(masm, ret_type, stack_slots);
  2179     __ bind(done);
  2184     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  2185     // Tell dtrace about this method exit
  2186     save_native_result(masm, ret_type, stack_slots);
  2187     __ movoop(rax, JNIHandles::make_local(method()));
  2188     __ call_VM_leaf(
  2189          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2190          thread, rax);
  2191     restore_native_result(masm, ret_type, stack_slots);
  2194   // We can finally stop using that last_Java_frame we setup ages ago
  2196   __ reset_last_Java_frame(thread, false, true);
  2198   // Unpack oop result
  2199   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2200       Label L;
  2201       __ cmpptr(rax, (int32_t)NULL_WORD);
  2202       __ jcc(Assembler::equal, L);
  2203       __ movptr(rax, Address(rax, 0));
  2204       __ bind(L);
  2205       __ verify_oop(rax);
  2208   if (!is_critical_native) {
  2209     // reset handle block
  2210     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  2211     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  2213     // Any exception pending?
  2214     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2215     __ jcc(Assembler::notEqual, exception_pending);
  2218   // no exception, we're almost done
  2220   // check that only result value is on FPU stack
  2221   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  2223   // Fixup floating pointer results so that result looks like a return from a compiled method
  2224   if (ret_type == T_FLOAT) {
  2225     if (UseSSE >= 1) {
  2226       // Pop st0 and store as float and reload into xmm register
  2227       __ fstp_s(Address(rbp, -4));
  2228       __ movflt(xmm0, Address(rbp, -4));
  2230   } else if (ret_type == T_DOUBLE) {
  2231     if (UseSSE >= 2) {
  2232       // Pop st0 and store as double and reload into xmm register
  2233       __ fstp_d(Address(rbp, -8));
  2234       __ movdbl(xmm0, Address(rbp, -8));
  2238   // Return
  2240   __ leave();
  2241   __ ret(0);
  2243   // Unexpected paths are out of line and go here
  2245   // Slow path locking & unlocking
  2246   if (method->is_synchronized()) {
  2248     // BEGIN Slow path lock
  2250     __ bind(slow_path_lock);
  2252     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2253     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2254     __ push(thread);
  2255     __ push(lock_reg);
  2256     __ push(obj_reg);
  2257     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  2258     __ addptr(rsp, 3*wordSize);
  2260 #ifdef ASSERT
  2261     { Label L;
  2262     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2263     __ jcc(Assembler::equal, L);
  2264     __ stop("no pending exception allowed on exit from monitorenter");
  2265     __ bind(L);
  2267 #endif
  2268     __ jmp(lock_done);
  2270     // END Slow path lock
  2272     // BEGIN Slow path unlock
  2273     __ bind(slow_path_unlock);
  2275     // Slow path unlock
  2277     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2278       save_native_result(masm, ret_type, stack_slots);
  2280     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2282     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2283     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  2286     // should be a peal
  2287     // +wordSize because of the push above
  2288     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2289     __ push(rax);
  2291     __ push(obj_reg);
  2292     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2293     __ addptr(rsp, 2*wordSize);
  2294 #ifdef ASSERT
  2296       Label L;
  2297       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2298       __ jcc(Assembler::equal, L);
  2299       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2300       __ bind(L);
  2302 #endif /* ASSERT */
  2304     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2306     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2307       restore_native_result(masm, ret_type, stack_slots);
  2309     __ jmp(unlock_done);
  2310     // END Slow path unlock
  2314   // SLOW PATH Reguard the stack if needed
  2316   __ bind(reguard);
  2317   save_native_result(masm, ret_type, stack_slots);
  2319     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2321   restore_native_result(masm, ret_type, stack_slots);
  2322   __ jmp(reguard_done);
  2325   // BEGIN EXCEPTION PROCESSING
  2327   if (!is_critical_native) {
  2328     // Forward  the exception
  2329     __ bind(exception_pending);
  2331     // remove possible return value from FPU register stack
  2332     __ empty_FPU_stack();
  2334     // pop our frame
  2335     __ leave();
  2336     // and forward the exception
  2337     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2340   __ flush();
  2342   nmethod *nm = nmethod::new_native_nmethod(method,
  2343                                             compile_id,
  2344                                             masm->code(),
  2345                                             vep_offset,
  2346                                             frame_complete,
  2347                                             stack_slots / VMRegImpl::slots_per_word,
  2348                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2349                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2350                                             oop_maps);
  2352   if (is_critical_native) {
  2353     nm->set_lazy_critical_native(true);
  2356   return nm;
  2360 #ifdef HAVE_DTRACE_H
  2361 // ---------------------------------------------------------------------------
  2362 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2363 // in the Java compiled code convention, marshals them to the native
  2364 // abi and then leaves nops at the position you would expect to call a native
  2365 // function. When the probe is enabled the nops are replaced with a trap
  2366 // instruction that dtrace inserts and the trace will cause a notification
  2367 // to dtrace.
  2368 //
  2369 // The probes are only able to take primitive types and java/lang/String as
  2370 // arguments.  No other java types are allowed. Strings are converted to utf8
  2371 // strings so that from dtrace point of view java strings are converted to C
  2372 // strings. There is an arbitrary fixed limit on the total space that a method
  2373 // can use for converting the strings. (256 chars per string in the signature).
  2374 // So any java string larger then this is truncated.
  2376 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2377     MacroAssembler *masm, methodHandle method) {
  2379   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2380   // be single threaded in this method.
  2381   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2383   // Fill in the signature array, for the calling-convention call.
  2384   int total_args_passed = method->size_of_parameters();
  2386   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2387   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2389   // The signature we are going to use for the trap that dtrace will see
  2390   // java/lang/String is converted. We drop "this" and any other object
  2391   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2392   // is converted to a two-slot long, which is why we double the allocation).
  2393   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2394   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2396   int i=0;
  2397   int total_strings = 0;
  2398   int first_arg_to_pass = 0;
  2399   int total_c_args = 0;
  2401   if( !method->is_static() ) {  // Pass in receiver first
  2402     in_sig_bt[i++] = T_OBJECT;
  2403     first_arg_to_pass = 1;
  2406   // We need to convert the java args to where a native (non-jni) function
  2407   // would expect them. To figure out where they go we convert the java
  2408   // signature to a C signature.
  2410   SignatureStream ss(method->signature());
  2411   for ( ; !ss.at_return_type(); ss.next()) {
  2412     BasicType bt = ss.type();
  2413     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2414     out_sig_bt[total_c_args++] = bt;
  2415     if( bt == T_OBJECT) {
  2416       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2417       if (s == vmSymbols::java_lang_String()) {
  2418         total_strings++;
  2419         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2420       } else if (s == vmSymbols::java_lang_Boolean() ||
  2421                  s == vmSymbols::java_lang_Character() ||
  2422                  s == vmSymbols::java_lang_Byte() ||
  2423                  s == vmSymbols::java_lang_Short() ||
  2424                  s == vmSymbols::java_lang_Integer() ||
  2425                  s == vmSymbols::java_lang_Float()) {
  2426         out_sig_bt[total_c_args-1] = T_INT;
  2427       } else if (s == vmSymbols::java_lang_Long() ||
  2428                  s == vmSymbols::java_lang_Double()) {
  2429         out_sig_bt[total_c_args-1] = T_LONG;
  2430         out_sig_bt[total_c_args++] = T_VOID;
  2432     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2433       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2434       out_sig_bt[total_c_args++] = T_VOID;
  2438   assert(i==total_args_passed, "validly parsed signature");
  2440   // Now get the compiled-Java layout as input arguments
  2441   int comp_args_on_stack;
  2442   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2443       in_sig_bt, in_regs, total_args_passed, false);
  2445   // Now figure out where the args must be stored and how much stack space
  2446   // they require (neglecting out_preserve_stack_slots).
  2448   int out_arg_slots;
  2449   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2451   // Calculate the total number of stack slots we will need.
  2453   // First count the abi requirement plus all of the outgoing args
  2454   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2456   // Now space for the string(s) we must convert
  2458   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2459   for (i = 0; i < total_strings ; i++) {
  2460     string_locs[i] = stack_slots;
  2461     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2464   // + 2 for return address (which we own) and saved rbp,
  2466   stack_slots += 2;
  2468   // Ok The space we have allocated will look like:
  2469   //
  2470   //
  2471   // FP-> |                     |
  2472   //      |---------------------|
  2473   //      | string[n]           |
  2474   //      |---------------------| <- string_locs[n]
  2475   //      | string[n-1]         |
  2476   //      |---------------------| <- string_locs[n-1]
  2477   //      | ...                 |
  2478   //      | ...                 |
  2479   //      |---------------------| <- string_locs[1]
  2480   //      | string[0]           |
  2481   //      |---------------------| <- string_locs[0]
  2482   //      | outbound memory     |
  2483   //      | based arguments     |
  2484   //      |                     |
  2485   //      |---------------------|
  2486   //      |                     |
  2487   // SP-> | out_preserved_slots |
  2488   //
  2489   //
  2491   // Now compute actual number of stack words we need rounding to make
  2492   // stack properly aligned.
  2493   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2495   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2497   intptr_t start = (intptr_t)__ pc();
  2499   // First thing make an ic check to see if we should even be here
  2501   // We are free to use all registers as temps without saving them and
  2502   // restoring them except rbp. rbp, is the only callee save register
  2503   // as far as the interpreter and the compiler(s) are concerned.
  2505   const Register ic_reg = rax;
  2506   const Register receiver = rcx;
  2507   Label hit;
  2508   Label exception_pending;
  2511   __ verify_oop(receiver);
  2512   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2513   __ jcc(Assembler::equal, hit);
  2515   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2517   // verified entry must be aligned for code patching.
  2518   // and the first 5 bytes must be in the same cache line
  2519   // if we align at 8 then we will be sure 5 bytes are in the same line
  2520   __ align(8);
  2522   __ bind(hit);
  2524   int vep_offset = ((intptr_t)__ pc()) - start;
  2527   // The instruction at the verified entry point must be 5 bytes or longer
  2528   // because it can be patched on the fly by make_non_entrant. The stack bang
  2529   // instruction fits that requirement.
  2531   // Generate stack overflow check
  2534   if (UseStackBanging) {
  2535     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2536       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2537     } else {
  2538       __ movl(rax, stack_size);
  2539       __ bang_stack_size(rax, rbx);
  2541   } else {
  2542     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2543     __ fat_nop();
  2546   assert(((int)__ pc() - start - vep_offset) >= 5,
  2547          "valid size for make_non_entrant");
  2549   // Generate a new frame for the wrapper.
  2550   __ enter();
  2552   // -2 because return address is already present and so is saved rbp,
  2553   if (stack_size - 2*wordSize != 0) {
  2554     __ subl(rsp, stack_size - 2*wordSize);
  2557   // Frame is now completed as far a size and linkage.
  2559   int frame_complete = ((intptr_t)__ pc()) - start;
  2561   // First thing we do store all the args as if we are doing the call.
  2562   // Since the C calling convention is stack based that ensures that
  2563   // all the Java register args are stored before we need to convert any
  2564   // string we might have.
  2566   int sid = 0;
  2567   int c_arg, j_arg;
  2568   int string_reg = 0;
  2570   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2571        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2573     VMRegPair src = in_regs[j_arg];
  2574     VMRegPair dst = out_regs[c_arg];
  2575     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2576            "stack based abi assumed");
  2578     switch (in_sig_bt[j_arg]) {
  2580       case T_ARRAY:
  2581       case T_OBJECT:
  2582         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2583           // Any register based arg for a java string after the first
  2584           // will be destroyed by the call to get_utf so we store
  2585           // the original value in the location the utf string address
  2586           // will eventually be stored.
  2587           if (src.first()->is_reg()) {
  2588             if (string_reg++ != 0) {
  2589               simple_move32(masm, src, dst);
  2592         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2593           // need to unbox a one-word value
  2594           Register in_reg = rax;
  2595           if ( src.first()->is_reg() ) {
  2596             in_reg = src.first()->as_Register();
  2597           } else {
  2598             simple_move32(masm, src, in_reg->as_VMReg());
  2600           Label skipUnbox;
  2601           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2602           if ( out_sig_bt[c_arg] == T_LONG ) {
  2603             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2605           __ testl(in_reg, in_reg);
  2606           __ jcc(Assembler::zero, skipUnbox);
  2607           assert(dst.first()->is_stack() &&
  2608                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2609                  "value(s) must go into stack slots");
  2611           BasicType bt = out_sig_bt[c_arg];
  2612           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2613           if ( bt == T_LONG ) {
  2614             __ movl(rbx, Address(in_reg,
  2615                                  box_offset + VMRegImpl::stack_slot_size));
  2616             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2618           __ movl(in_reg,  Address(in_reg, box_offset));
  2619           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2620           __ bind(skipUnbox);
  2621         } else {
  2622           // Convert the arg to NULL
  2623           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2625         if (out_sig_bt[c_arg] == T_LONG) {
  2626           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2627           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2629         break;
  2631       case T_VOID:
  2632         break;
  2634       case T_FLOAT:
  2635         float_move(masm, src, dst);
  2636         break;
  2638       case T_DOUBLE:
  2639         assert( j_arg + 1 < total_args_passed &&
  2640                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2641         double_move(masm, src, dst);
  2642         break;
  2644       case T_LONG :
  2645         long_move(masm, src, dst);
  2646         break;
  2648       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2650       default:
  2651         simple_move32(masm, src, dst);
  2655   // Now we must convert any string we have to utf8
  2656   //
  2658   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2659        sid < total_strings ; j_arg++, c_arg++ ) {
  2661     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2663       Address utf8_addr = Address(
  2664           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2665       __ leal(rax, utf8_addr);
  2667       // The first string we find might still be in the original java arg
  2668       // register
  2669       VMReg orig_loc = in_regs[j_arg].first();
  2670       Register string_oop;
  2672       // This is where the argument will eventually reside
  2673       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2675       if (sid == 1 && orig_loc->is_reg()) {
  2676         string_oop = orig_loc->as_Register();
  2677         assert(string_oop != rax, "smashed arg");
  2678       } else {
  2680         if (orig_loc->is_reg()) {
  2681           // Get the copy of the jls object
  2682           __ movl(rcx, dest);
  2683         } else {
  2684           // arg is still in the original location
  2685           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2687         string_oop = rcx;
  2690       Label nullString;
  2691       __ movl(dest, NULL_WORD);
  2692       __ testl(string_oop, string_oop);
  2693       __ jcc(Assembler::zero, nullString);
  2695       // Now we can store the address of the utf string as the argument
  2696       __ movl(dest, rax);
  2698       // And do the conversion
  2699       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2700              address, SharedRuntime::get_utf), string_oop, rax);
  2701       __ bind(nullString);
  2704     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2705       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2706       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2711   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2712   // patch in the trap
  2714   int patch_offset = ((intptr_t)__ pc()) - start;
  2716   __ nop();
  2719   // Return
  2721   __ leave();
  2722   __ ret(0);
  2724   __ flush();
  2726   nmethod *nm = nmethod::new_dtrace_nmethod(
  2727       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2728       stack_slots / VMRegImpl::slots_per_word);
  2729   return nm;
  2733 #endif // HAVE_DTRACE_H
  2735 // this function returns the adjust size (in number of words) to a c2i adapter
  2736 // activation for use during deoptimization
  2737 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2738   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2742 uint SharedRuntime::out_preserve_stack_slots() {
  2743   return 0;
  2747 //------------------------------generate_deopt_blob----------------------------
  2748 void SharedRuntime::generate_deopt_blob() {
  2749   // allocate space for the code
  2750   ResourceMark rm;
  2751   // setup code generation tools
  2752   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2753   MacroAssembler* masm = new MacroAssembler(&buffer);
  2754   int frame_size_in_words;
  2755   OopMap* map = NULL;
  2756   // Account for the extra args we place on the stack
  2757   // by the time we call fetch_unroll_info
  2758   const int additional_words = 2; // deopt kind, thread
  2760   OopMapSet *oop_maps = new OopMapSet();
  2762   // -------------
  2763   // This code enters when returning to a de-optimized nmethod.  A return
  2764   // address has been pushed on the the stack, and return values are in
  2765   // registers.
  2766   // If we are doing a normal deopt then we were called from the patched
  2767   // nmethod from the point we returned to the nmethod. So the return
  2768   // address on the stack is wrong by NativeCall::instruction_size
  2769   // We will adjust the value to it looks like we have the original return
  2770   // address on the stack (like when we eagerly deoptimized).
  2771   // In the case of an exception pending with deoptimized then we enter
  2772   // with a return address on the stack that points after the call we patched
  2773   // into the exception handler. We have the following register state:
  2774   //    rax,: exception
  2775   //    rbx,: exception handler
  2776   //    rdx: throwing pc
  2777   // So in this case we simply jam rdx into the useless return address and
  2778   // the stack looks just like we want.
  2779   //
  2780   // At this point we need to de-opt.  We save the argument return
  2781   // registers.  We call the first C routine, fetch_unroll_info().  This
  2782   // routine captures the return values and returns a structure which
  2783   // describes the current frame size and the sizes of all replacement frames.
  2784   // The current frame is compiled code and may contain many inlined
  2785   // functions, each with their own JVM state.  We pop the current frame, then
  2786   // push all the new frames.  Then we call the C routine unpack_frames() to
  2787   // populate these frames.  Finally unpack_frames() returns us the new target
  2788   // address.  Notice that callee-save registers are BLOWN here; they have
  2789   // already been captured in the vframeArray at the time the return PC was
  2790   // patched.
  2791   address start = __ pc();
  2792   Label cont;
  2794   // Prolog for non exception case!
  2796   // Save everything in sight.
  2798   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2799   // Normal deoptimization
  2800   __ push(Deoptimization::Unpack_deopt);
  2801   __ jmp(cont);
  2803   int reexecute_offset = __ pc() - start;
  2805   // Reexecute case
  2806   // return address is the pc describes what bci to do re-execute at
  2808   // No need to update map as each call to save_live_registers will produce identical oopmap
  2809   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2811   __ push(Deoptimization::Unpack_reexecute);
  2812   __ jmp(cont);
  2814   int exception_offset = __ pc() - start;
  2816   // Prolog for exception case
  2818   // all registers are dead at this entry point, except for rax, and
  2819   // rdx which contain the exception oop and exception pc
  2820   // respectively.  Set them in TLS and fall thru to the
  2821   // unpack_with_exception_in_tls entry point.
  2823   __ get_thread(rdi);
  2824   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2825   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2827   int exception_in_tls_offset = __ pc() - start;
  2829   // new implementation because exception oop is now passed in JavaThread
  2831   // Prolog for exception case
  2832   // All registers must be preserved because they might be used by LinearScan
  2833   // Exceptiop oop and throwing PC are passed in JavaThread
  2834   // tos: stack at point of call to method that threw the exception (i.e. only
  2835   // args are on the stack, no return address)
  2837   // make room on stack for the return address
  2838   // It will be patched later with the throwing pc. The correct value is not
  2839   // available now because loading it from memory would destroy registers.
  2840   __ push(0);
  2842   // Save everything in sight.
  2844   // No need to update map as each call to save_live_registers will produce identical oopmap
  2845   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2847   // Now it is safe to overwrite any register
  2849   // store the correct deoptimization type
  2850   __ push(Deoptimization::Unpack_exception);
  2852   // load throwing pc from JavaThread and patch it as the return address
  2853   // of the current frame. Then clear the field in JavaThread
  2854   __ get_thread(rdi);
  2855   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2856   __ movptr(Address(rbp, wordSize), rdx);
  2857   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2859 #ifdef ASSERT
  2860   // verify that there is really an exception oop in JavaThread
  2861   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2862   __ verify_oop(rax);
  2864   // verify that there is no pending exception
  2865   Label no_pending_exception;
  2866   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2867   __ testptr(rax, rax);
  2868   __ jcc(Assembler::zero, no_pending_exception);
  2869   __ stop("must not have pending exception here");
  2870   __ bind(no_pending_exception);
  2871 #endif
  2873   __ bind(cont);
  2875   // Compiled code leaves the floating point stack dirty, empty it.
  2876   __ empty_FPU_stack();
  2879   // Call C code.  Need thread and this frame, but NOT official VM entry
  2880   // crud.  We cannot block on this call, no GC can happen.
  2881   __ get_thread(rcx);
  2882   __ push(rcx);
  2883   // fetch_unroll_info needs to call last_java_frame()
  2884   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2886   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2888   // Need to have an oopmap that tells fetch_unroll_info where to
  2889   // find any register it might need.
  2891   oop_maps->add_gc_map( __ pc()-start, map);
  2893   // Discard arg to fetch_unroll_info
  2894   __ pop(rcx);
  2896   __ get_thread(rcx);
  2897   __ reset_last_Java_frame(rcx, false, false);
  2899   // Load UnrollBlock into EDI
  2900   __ mov(rdi, rax);
  2902   // Move the unpack kind to a safe place in the UnrollBlock because
  2903   // we are very short of registers
  2905   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2906   // retrieve the deopt kind from where we left it.
  2907   __ pop(rax);
  2908   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2910    Label noException;
  2911   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2912   __ jcc(Assembler::notEqual, noException);
  2913   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2914   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2915   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2916   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2918   __ verify_oop(rax);
  2920   // Overwrite the result registers with the exception results.
  2921   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2922   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2924   __ bind(noException);
  2926   // Stack is back to only having register save data on the stack.
  2927   // Now restore the result registers. Everything else is either dead or captured
  2928   // in the vframeArray.
  2930   RegisterSaver::restore_result_registers(masm);
  2932   // Non standard control word may be leaked out through a safepoint blob, and we can
  2933   // deopt at a poll point with the non standard control word. However, we should make
  2934   // sure the control word is correct after restore_result_registers.
  2935   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2937   // All of the register save area has been popped of the stack. Only the
  2938   // return address remains.
  2940   // Pop all the frames we must move/replace.
  2941   //
  2942   // Frame picture (youngest to oldest)
  2943   // 1: self-frame (no frame link)
  2944   // 2: deopting frame  (no frame link)
  2945   // 3: caller of deopting frame (could be compiled/interpreted).
  2946   //
  2947   // Note: by leaving the return address of self-frame on the stack
  2948   // and using the size of frame 2 to adjust the stack
  2949   // when we are done the return to frame 3 will still be on the stack.
  2951   // Pop deoptimized frame
  2952   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2954   // sp should be pointing at the return address to the caller (3)
  2956   // Stack bang to make sure there's enough room for these interpreter frames.
  2957   if (UseStackBanging) {
  2958     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2959     __ bang_stack_size(rbx, rcx);
  2962   // Load array of frame pcs into ECX
  2963   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2965   __ pop(rsi); // trash the old pc
  2967   // Load array of frame sizes into ESI
  2968   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2970   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2972   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2973   __ movl(counter, rbx);
  2975   // Pick up the initial fp we should save
  2976   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  2978   // Now adjust the caller's stack to make up for the extra locals
  2979   // but record the original sp so that we can save it in the skeletal interpreter
  2980   // frame and the stack walking of interpreter_sender will get the unextended sp
  2981   // value and not the "real" sp value.
  2983   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2984   __ movptr(sp_temp, rsp);
  2985   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2986   __ subptr(rsp, rbx);
  2988   // Push interpreter frames in a loop
  2989   Label loop;
  2990   __ bind(loop);
  2991   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2992 #ifdef CC_INTERP
  2993   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2994 #ifdef ASSERT
  2995   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2996   __ push(0xDEADDEAD);
  2997 #else /* ASSERT */
  2998   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2999 #endif /* ASSERT */
  3000 #else /* CC_INTERP */
  3001   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3002 #endif /* CC_INTERP */
  3003   __ pushptr(Address(rcx, 0));          // save return address
  3004   __ enter();                           // save old & set new rbp,
  3005   __ subptr(rsp, rbx);                  // Prolog!
  3006   __ movptr(rbx, sp_temp);              // sender's sp
  3007 #ifdef CC_INTERP
  3008   __ movptr(Address(rbp,
  3009                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3010           rbx); // Make it walkable
  3011 #else /* CC_INTERP */
  3012   // This value is corrected by layout_activation_impl
  3013   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  3014   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3015 #endif /* CC_INTERP */
  3016   __ movptr(sp_temp, rsp);              // pass to next frame
  3017   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3018   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3019   __ decrementl(counter);             // decrement counter
  3020   __ jcc(Assembler::notZero, loop);
  3021   __ pushptr(Address(rcx, 0));          // save final return address
  3023   // Re-push self-frame
  3024   __ enter();                           // save old & set new rbp,
  3026   //  Return address and rbp, are in place
  3027   // We'll push additional args later. Just allocate a full sized
  3028   // register save area
  3029   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  3031   // Restore frame locals after moving the frame
  3032   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  3033   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  3034   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  3035   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3036   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  3038   // Set up the args to unpack_frame
  3040   __ pushl(unpack_kind);                     // get the unpack_kind value
  3041   __ get_thread(rcx);
  3042   __ push(rcx);
  3044   // set last_Java_sp, last_Java_fp
  3045   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  3047   // Call C code.  Need thread but NOT official VM entry
  3048   // crud.  We cannot block on this call, no GC can happen.  Call should
  3049   // restore return values to their stack-slots with the new SP.
  3050   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3051   // Set an oopmap for the call site
  3052   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  3054   // rax, contains the return result type
  3055   __ push(rax);
  3057   __ get_thread(rcx);
  3058   __ reset_last_Java_frame(rcx, false, false);
  3060   // Collect return values
  3061   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  3062   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  3064   // Clear floating point stack before returning to interpreter
  3065   __ empty_FPU_stack();
  3067   // Check if we should push the float or double return value.
  3068   Label results_done, yes_double_value;
  3069   __ cmpl(Address(rsp, 0), T_DOUBLE);
  3070   __ jcc (Assembler::zero, yes_double_value);
  3071   __ cmpl(Address(rsp, 0), T_FLOAT);
  3072   __ jcc (Assembler::notZero, results_done);
  3074   // return float value as expected by interpreter
  3075   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3076   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3077   __ jmp(results_done);
  3079   // return double value as expected by interpreter
  3080   __ bind(yes_double_value);
  3081   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  3082   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  3084   __ bind(results_done);
  3086   // Pop self-frame.
  3087   __ leave();                              // Epilog!
  3089   // Jump to interpreter
  3090   __ ret(0);
  3092   // -------------
  3093   // make sure all code is generated
  3094   masm->flush();
  3096   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  3097   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3101 #ifdef COMPILER2
  3102 //------------------------------generate_uncommon_trap_blob--------------------
  3103 void SharedRuntime::generate_uncommon_trap_blob() {
  3104   // allocate space for the code
  3105   ResourceMark rm;
  3106   // setup code generation tools
  3107   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  3108   MacroAssembler* masm = new MacroAssembler(&buffer);
  3110   enum frame_layout {
  3111     arg0_off,      // thread                     sp + 0 // Arg location for
  3112     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  3113     // The frame sender code expects that rbp will be in the "natural" place and
  3114     // will override any oopMap setting for it. We must therefore force the layout
  3115     // so that it agrees with the frame sender code.
  3116     rbp_off,       // callee saved register      sp + 2
  3117     return_off,    // slot for return address    sp + 3
  3118     framesize
  3119   };
  3121   address start = __ pc();
  3122   // Push self-frame.
  3123   __ subptr(rsp, return_off*wordSize);     // Epilog!
  3125   // rbp, is an implicitly saved callee saved register (i.e. the calling
  3126   // convention will save restore it in prolog/epilog) Other than that
  3127   // there are no callee save registers no that adapter frames are gone.
  3128   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  3130   // Clear the floating point exception stack
  3131   __ empty_FPU_stack();
  3133   // set last_Java_sp
  3134   __ get_thread(rdx);
  3135   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  3137   // Call C code.  Need thread but NOT official VM entry
  3138   // crud.  We cannot block on this call, no GC can happen.  Call should
  3139   // capture callee-saved registers as well as return values.
  3140   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  3141   // argument already in ECX
  3142   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  3143   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  3145   // Set an oopmap for the call site
  3146   OopMapSet *oop_maps = new OopMapSet();
  3147   OopMap* map =  new OopMap( framesize, 0 );
  3148   // No oopMap for rbp, it is known implicitly
  3150   oop_maps->add_gc_map( __ pc()-start, map);
  3152   __ get_thread(rcx);
  3154   __ reset_last_Java_frame(rcx, false, false);
  3156   // Load UnrollBlock into EDI
  3157   __ movptr(rdi, rax);
  3159   // Pop all the frames we must move/replace.
  3160   //
  3161   // Frame picture (youngest to oldest)
  3162   // 1: self-frame (no frame link)
  3163   // 2: deopting frame  (no frame link)
  3164   // 3: caller of deopting frame (could be compiled/interpreted).
  3166   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  3167   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  3169   // Pop deoptimized frame
  3170   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3171   __ addptr(rsp, rcx);
  3173   // sp should be pointing at the return address to the caller (3)
  3175   // Stack bang to make sure there's enough room for these interpreter frames.
  3176   if (UseStackBanging) {
  3177     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3178     __ bang_stack_size(rbx, rcx);
  3182   // Load array of frame pcs into ECX
  3183   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3185   __ pop(rsi); // trash the pc
  3187   // Load array of frame sizes into ESI
  3188   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3190   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3192   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3193   __ movl(counter, rbx);
  3195   // Pick up the initial fp we should save
  3196   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3198   // Now adjust the caller's stack to make up for the extra locals
  3199   // but record the original sp so that we can save it in the skeletal interpreter
  3200   // frame and the stack walking of interpreter_sender will get the unextended sp
  3201   // value and not the "real" sp value.
  3203   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3204   __ movptr(sp_temp, rsp);
  3205   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3206   __ subptr(rsp, rbx);
  3208   // Push interpreter frames in a loop
  3209   Label loop;
  3210   __ bind(loop);
  3211   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3212 #ifdef CC_INTERP
  3213   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3214 #ifdef ASSERT
  3215   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3216   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  3217 #else /* ASSERT */
  3218   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3219 #endif /* ASSERT */
  3220 #else /* CC_INTERP */
  3221   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3222 #endif /* CC_INTERP */
  3223   __ pushptr(Address(rcx, 0));          // save return address
  3224   __ enter();                           // save old & set new rbp,
  3225   __ subptr(rsp, rbx);                  // Prolog!
  3226   __ movptr(rbx, sp_temp);              // sender's sp
  3227 #ifdef CC_INTERP
  3228   __ movptr(Address(rbp,
  3229                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3230           rbx); // Make it walkable
  3231 #else /* CC_INTERP */
  3232   // This value is corrected by layout_activation_impl
  3233   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  3234   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3235 #endif /* CC_INTERP */
  3236   __ movptr(sp_temp, rsp);              // pass to next frame
  3237   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3238   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3239   __ decrementl(counter);             // decrement counter
  3240   __ jcc(Assembler::notZero, loop);
  3241   __ pushptr(Address(rcx, 0));            // save final return address
  3243   // Re-push self-frame
  3244   __ enter();                           // save old & set new rbp,
  3245   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  3248   // set last_Java_sp, last_Java_fp
  3249   __ get_thread(rdi);
  3250   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  3252   // Call C code.  Need thread but NOT official VM entry
  3253   // crud.  We cannot block on this call, no GC can happen.  Call should
  3254   // restore return values to their stack-slots with the new SP.
  3255   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  3256   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  3257   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3258   // Set an oopmap for the call site
  3259   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  3261   __ get_thread(rdi);
  3262   __ reset_last_Java_frame(rdi, true, false);
  3264   // Pop self-frame.
  3265   __ leave();     // Epilog!
  3267   // Jump to interpreter
  3268   __ ret(0);
  3270   // -------------
  3271   // make sure all code is generated
  3272   masm->flush();
  3274    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  3276 #endif // COMPILER2
  3278 //------------------------------generate_handler_blob------
  3279 //
  3280 // Generate a special Compile2Runtime blob that saves all registers,
  3281 // setup oopmap, and calls safepoint code to stop the compiled code for
  3282 // a safepoint.
  3283 //
  3284 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3286   // Account for thread arg in our frame
  3287   const int additional_words = 1;
  3288   int frame_size_in_words;
  3290   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3292   ResourceMark rm;
  3293   OopMapSet *oop_maps = new OopMapSet();
  3294   OopMap* map;
  3296   // allocate space for the code
  3297   // setup code generation tools
  3298   CodeBuffer   buffer("handler_blob", 1024, 512);
  3299   MacroAssembler* masm = new MacroAssembler(&buffer);
  3301   const Register java_thread = rdi; // callee-saved for VC++
  3302   address start   = __ pc();
  3303   address call_pc = NULL;
  3305   // If cause_return is true we are at a poll_return and there is
  3306   // the return address on the stack to the caller on the nmethod
  3307   // that is safepoint. We can leave this return on the stack and
  3308   // effectively complete the return and safepoint in the caller.
  3309   // Otherwise we push space for a return address that the safepoint
  3310   // handler will install later to make the stack walking sensible.
  3311   if( !cause_return )
  3312     __ push(rbx);                // Make room for return address (or push it again)
  3314   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  3316   // The following is basically a call_VM. However, we need the precise
  3317   // address of the call in order to generate an oopmap. Hence, we do all the
  3318   // work ourselves.
  3320   // Push thread argument and setup last_Java_sp
  3321   __ get_thread(java_thread);
  3322   __ push(java_thread);
  3323   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  3325   // if this was not a poll_return then we need to correct the return address now.
  3326   if( !cause_return ) {
  3327     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  3328     __ movptr(Address(rbp, wordSize), rax);
  3331   // do the call
  3332   __ call(RuntimeAddress(call_ptr));
  3334   // Set an oopmap for the call site.  This oopmap will map all
  3335   // oop-registers and debug-info registers as callee-saved.  This
  3336   // will allow deoptimization at this safepoint to find all possible
  3337   // debug-info recordings, as well as let GC find all oops.
  3339   oop_maps->add_gc_map( __ pc() - start, map);
  3341   // Discard arg
  3342   __ pop(rcx);
  3344   Label noException;
  3346   // Clear last_Java_sp again
  3347   __ get_thread(java_thread);
  3348   __ reset_last_Java_frame(java_thread, false, false);
  3350   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3351   __ jcc(Assembler::equal, noException);
  3353   // Exception pending
  3355   RegisterSaver::restore_live_registers(masm);
  3357   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3359   __ bind(noException);
  3361   // Normal exit, register restoring and exit
  3362   RegisterSaver::restore_live_registers(masm);
  3364   __ ret(0);
  3366   // make sure all code is generated
  3367   masm->flush();
  3369   // Fill-out other meta info
  3370   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3373 //
  3374 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3375 //
  3376 // Generate a stub that calls into vm to find out the proper destination
  3377 // of a java call. All the argument registers are live at this point
  3378 // but since this is generic code we don't know what they are and the caller
  3379 // must do any gc of the args.
  3380 //
  3381 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3382   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3384   // allocate space for the code
  3385   ResourceMark rm;
  3387   CodeBuffer buffer(name, 1000, 512);
  3388   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3390   int frame_size_words;
  3391   enum frame_layout {
  3392                 thread_off,
  3393                 extra_words };
  3395   OopMapSet *oop_maps = new OopMapSet();
  3396   OopMap* map = NULL;
  3398   int start = __ offset();
  3400   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  3402   int frame_complete = __ offset();
  3404   const Register thread = rdi;
  3405   __ get_thread(rdi);
  3407   __ push(thread);
  3408   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  3410   __ call(RuntimeAddress(destination));
  3413   // Set an oopmap for the call site.
  3414   // We need this not only for callee-saved registers, but also for volatile
  3415   // registers that the compiler might be keeping live across a safepoint.
  3417   oop_maps->add_gc_map( __ offset() - start, map);
  3419   // rax, contains the address we are going to jump to assuming no exception got installed
  3421   __ addptr(rsp, wordSize);
  3423   // clear last_Java_sp
  3424   __ reset_last_Java_frame(thread, true, false);
  3425   // check for pending exceptions
  3426   Label pending;
  3427   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3428   __ jcc(Assembler::notEqual, pending);
  3430   // get the returned methodOop
  3431   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
  3432   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3434   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3436   RegisterSaver::restore_live_registers(masm);
  3438   // We are back the the original state on entry and ready to go.
  3440   __ jmp(rax);
  3442   // Pending exception after the safepoint
  3444   __ bind(pending);
  3446   RegisterSaver::restore_live_registers(masm);
  3448   // exception pending => remove activation and forward to exception handler
  3450   __ get_thread(thread);
  3451   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  3452   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3453   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3455   // -------------
  3456   // make sure all code is generated
  3457   masm->flush();
  3459   // return the  blob
  3460   // frame_size_words or bytes??
  3461   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial