src/cpu/x86/vm/stubGenerator_x86_64.cpp

Fri, 27 Aug 2010 17:33:49 -0700

author
never
date
Fri, 27 Aug 2010 17:33:49 -0700
changeset 2118
d6f45b55c972
parent 1938
02e771df338e
child 2314
f95d63e2154a
permissions
-rw-r--r--

4809552: Optimize Arrays.fill(...)
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_64.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    34 #define a__ ((Assembler*)_masm)->
    36 #ifdef PRODUCT
    37 #define BLOCK_COMMENT(str) /* nothing */
    38 #else
    39 #define BLOCK_COMMENT(str) __ block_comment(str)
    40 #endif
    42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    43 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    45 // Stub Code definitions
    47 static address handle_unsafe_access() {
    48   JavaThread* thread = JavaThread::current();
    49   address pc = thread->saved_exception_pc();
    50   // pc is the instruction which we must emulate
    51   // doing a no-op is fine:  return garbage from the load
    52   // therefore, compute npc
    53   address npc = Assembler::locate_next_instruction(pc);
    55   // request an async exception
    56   thread->set_pending_unsafe_access_error();
    58   // return address of next instruction to execute
    59   return npc;
    60 }
    62 class StubGenerator: public StubCodeGenerator {
    63  private:
    65 #ifdef PRODUCT
    66 #define inc_counter_np(counter) (0)
    67 #else
    68   void inc_counter_np_(int& counter) {
    69     __ incrementl(ExternalAddress((address)&counter));
    70   }
    71 #define inc_counter_np(counter) \
    72   BLOCK_COMMENT("inc_counter " #counter); \
    73   inc_counter_np_(counter);
    74 #endif
    76   // Call stubs are used to call Java from C
    77   //
    78   // Linux Arguments:
    79   //    c_rarg0:   call wrapper address                   address
    80   //    c_rarg1:   result                                 address
    81   //    c_rarg2:   result type                            BasicType
    82   //    c_rarg3:   method                                 methodOop
    83   //    c_rarg4:   (interpreter) entry point              address
    84   //    c_rarg5:   parameters                             intptr_t*
    85   //    16(rbp): parameter size (in words)              int
    86   //    24(rbp): thread                                 Thread*
    87   //
    88   //     [ return_from_Java     ] <--- rsp
    89   //     [ argument word n      ]
    90   //      ...
    91   // -12 [ argument word 1      ]
    92   // -11 [ saved r15            ] <--- rsp_after_call
    93   // -10 [ saved r14            ]
    94   //  -9 [ saved r13            ]
    95   //  -8 [ saved r12            ]
    96   //  -7 [ saved rbx            ]
    97   //  -6 [ call wrapper         ]
    98   //  -5 [ result               ]
    99   //  -4 [ result type          ]
   100   //  -3 [ method               ]
   101   //  -2 [ entry point          ]
   102   //  -1 [ parameters           ]
   103   //   0 [ saved rbp            ] <--- rbp
   104   //   1 [ return address       ]
   105   //   2 [ parameter size       ]
   106   //   3 [ thread               ]
   107   //
   108   // Windows Arguments:
   109   //    c_rarg0:   call wrapper address                   address
   110   //    c_rarg1:   result                                 address
   111   //    c_rarg2:   result type                            BasicType
   112   //    c_rarg3:   method                                 methodOop
   113   //    48(rbp): (interpreter) entry point              address
   114   //    56(rbp): parameters                             intptr_t*
   115   //    64(rbp): parameter size (in words)              int
   116   //    72(rbp): thread                                 Thread*
   117   //
   118   //     [ return_from_Java     ] <--- rsp
   119   //     [ argument word n      ]
   120   //      ...
   121   //  -8 [ argument word 1      ]
   122   //  -7 [ saved r15            ] <--- rsp_after_call
   123   //  -6 [ saved r14            ]
   124   //  -5 [ saved r13            ]
   125   //  -4 [ saved r12            ]
   126   //  -3 [ saved rdi            ]
   127   //  -2 [ saved rsi            ]
   128   //  -1 [ saved rbx            ]
   129   //   0 [ saved rbp            ] <--- rbp
   130   //   1 [ return address       ]
   131   //   2 [ call wrapper         ]
   132   //   3 [ result               ]
   133   //   4 [ result type          ]
   134   //   5 [ method               ]
   135   //   6 [ entry point          ]
   136   //   7 [ parameters           ]
   137   //   8 [ parameter size       ]
   138   //   9 [ thread               ]
   139   //
   140   //    Windows reserves the callers stack space for arguments 1-4.
   141   //    We spill c_rarg0-c_rarg3 to this space.
   143   // Call stub stack layout word offsets from rbp
   144   enum call_stub_layout {
   145 #ifdef _WIN64
   146     rsp_after_call_off = -7,
   147     r15_off            = rsp_after_call_off,
   148     r14_off            = -6,
   149     r13_off            = -5,
   150     r12_off            = -4,
   151     rdi_off            = -3,
   152     rsi_off            = -2,
   153     rbx_off            = -1,
   154     rbp_off            =  0,
   155     retaddr_off        =  1,
   156     call_wrapper_off   =  2,
   157     result_off         =  3,
   158     result_type_off    =  4,
   159     method_off         =  5,
   160     entry_point_off    =  6,
   161     parameters_off     =  7,
   162     parameter_size_off =  8,
   163     thread_off         =  9
   164 #else
   165     rsp_after_call_off = -12,
   166     mxcsr_off          = rsp_after_call_off,
   167     r15_off            = -11,
   168     r14_off            = -10,
   169     r13_off            = -9,
   170     r12_off            = -8,
   171     rbx_off            = -7,
   172     call_wrapper_off   = -6,
   173     result_off         = -5,
   174     result_type_off    = -4,
   175     method_off         = -3,
   176     entry_point_off    = -2,
   177     parameters_off     = -1,
   178     rbp_off            =  0,
   179     retaddr_off        =  1,
   180     parameter_size_off =  2,
   181     thread_off         =  3
   182 #endif
   183   };
   185   address generate_call_stub(address& return_address) {
   186     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   187            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   188            "adjust this code");
   189     StubCodeMark mark(this, "StubRoutines", "call_stub");
   190     address start = __ pc();
   192     // same as in generate_catch_exception()!
   193     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   195     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   196     const Address result        (rbp, result_off         * wordSize);
   197     const Address result_type   (rbp, result_type_off    * wordSize);
   198     const Address method        (rbp, method_off         * wordSize);
   199     const Address entry_point   (rbp, entry_point_off    * wordSize);
   200     const Address parameters    (rbp, parameters_off     * wordSize);
   201     const Address parameter_size(rbp, parameter_size_off * wordSize);
   203     // same as in generate_catch_exception()!
   204     const Address thread        (rbp, thread_off         * wordSize);
   206     const Address r15_save(rbp, r15_off * wordSize);
   207     const Address r14_save(rbp, r14_off * wordSize);
   208     const Address r13_save(rbp, r13_off * wordSize);
   209     const Address r12_save(rbp, r12_off * wordSize);
   210     const Address rbx_save(rbp, rbx_off * wordSize);
   212     // stub code
   213     __ enter();
   214     __ subptr(rsp, -rsp_after_call_off * wordSize);
   216     // save register parameters
   217 #ifndef _WIN64
   218     __ movptr(parameters,   c_rarg5); // parameters
   219     __ movptr(entry_point,  c_rarg4); // entry_point
   220 #endif
   222     __ movptr(method,       c_rarg3); // method
   223     __ movl(result_type,  c_rarg2);   // result type
   224     __ movptr(result,       c_rarg1); // result
   225     __ movptr(call_wrapper, c_rarg0); // call wrapper
   227     // save regs belonging to calling function
   228     __ movptr(rbx_save, rbx);
   229     __ movptr(r12_save, r12);
   230     __ movptr(r13_save, r13);
   231     __ movptr(r14_save, r14);
   232     __ movptr(r15_save, r15);
   234 #ifdef _WIN64
   235     const Address rdi_save(rbp, rdi_off * wordSize);
   236     const Address rsi_save(rbp, rsi_off * wordSize);
   238     __ movptr(rsi_save, rsi);
   239     __ movptr(rdi_save, rdi);
   240 #else
   241     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   242     {
   243       Label skip_ldmx;
   244       __ stmxcsr(mxcsr_save);
   245       __ movl(rax, mxcsr_save);
   246       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   247       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   248       __ cmp32(rax, mxcsr_std);
   249       __ jcc(Assembler::equal, skip_ldmx);
   250       __ ldmxcsr(mxcsr_std);
   251       __ bind(skip_ldmx);
   252     }
   253 #endif
   255     // Load up thread register
   256     __ movptr(r15_thread, thread);
   257     __ reinit_heapbase();
   259 #ifdef ASSERT
   260     // make sure we have no pending exceptions
   261     {
   262       Label L;
   263       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   264       __ jcc(Assembler::equal, L);
   265       __ stop("StubRoutines::call_stub: entered with pending exception");
   266       __ bind(L);
   267     }
   268 #endif
   270     // pass parameters if any
   271     BLOCK_COMMENT("pass parameters if any");
   272     Label parameters_done;
   273     __ movl(c_rarg3, parameter_size);
   274     __ testl(c_rarg3, c_rarg3);
   275     __ jcc(Assembler::zero, parameters_done);
   277     Label loop;
   278     __ movptr(c_rarg2, parameters);       // parameter pointer
   279     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   280     __ BIND(loop);
   281     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   282     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   283     __ decrementl(c_rarg1);             // decrement counter
   284     __ push(rax);                       // pass parameter
   285     __ jcc(Assembler::notZero, loop);
   287     // call Java function
   288     __ BIND(parameters_done);
   289     __ movptr(rbx, method);             // get methodOop
   290     __ movptr(c_rarg1, entry_point);    // get entry_point
   291     __ mov(r13, rsp);                   // set sender sp
   292     BLOCK_COMMENT("call Java function");
   293     __ call(c_rarg1);
   295     BLOCK_COMMENT("call_stub_return_address:");
   296     return_address = __ pc();
   298     // store result depending on type (everything that is not
   299     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   300     __ movptr(c_rarg0, result);
   301     Label is_long, is_float, is_double, exit;
   302     __ movl(c_rarg1, result_type);
   303     __ cmpl(c_rarg1, T_OBJECT);
   304     __ jcc(Assembler::equal, is_long);
   305     __ cmpl(c_rarg1, T_LONG);
   306     __ jcc(Assembler::equal, is_long);
   307     __ cmpl(c_rarg1, T_FLOAT);
   308     __ jcc(Assembler::equal, is_float);
   309     __ cmpl(c_rarg1, T_DOUBLE);
   310     __ jcc(Assembler::equal, is_double);
   312     // handle T_INT case
   313     __ movl(Address(c_rarg0, 0), rax);
   315     __ BIND(exit);
   317     // pop parameters
   318     __ lea(rsp, rsp_after_call);
   320 #ifdef ASSERT
   321     // verify that threads correspond
   322     {
   323       Label L, S;
   324       __ cmpptr(r15_thread, thread);
   325       __ jcc(Assembler::notEqual, S);
   326       __ get_thread(rbx);
   327       __ cmpptr(r15_thread, rbx);
   328       __ jcc(Assembler::equal, L);
   329       __ bind(S);
   330       __ jcc(Assembler::equal, L);
   331       __ stop("StubRoutines::call_stub: threads must correspond");
   332       __ bind(L);
   333     }
   334 #endif
   336     // restore regs belonging to calling function
   337     __ movptr(r15, r15_save);
   338     __ movptr(r14, r14_save);
   339     __ movptr(r13, r13_save);
   340     __ movptr(r12, r12_save);
   341     __ movptr(rbx, rbx_save);
   343 #ifdef _WIN64
   344     __ movptr(rdi, rdi_save);
   345     __ movptr(rsi, rsi_save);
   346 #else
   347     __ ldmxcsr(mxcsr_save);
   348 #endif
   350     // restore rsp
   351     __ addptr(rsp, -rsp_after_call_off * wordSize);
   353     // return
   354     __ pop(rbp);
   355     __ ret(0);
   357     // handle return types different from T_INT
   358     __ BIND(is_long);
   359     __ movq(Address(c_rarg0, 0), rax);
   360     __ jmp(exit);
   362     __ BIND(is_float);
   363     __ movflt(Address(c_rarg0, 0), xmm0);
   364     __ jmp(exit);
   366     __ BIND(is_double);
   367     __ movdbl(Address(c_rarg0, 0), xmm0);
   368     __ jmp(exit);
   370     return start;
   371   }
   373   // Return point for a Java call if there's an exception thrown in
   374   // Java code.  The exception is caught and transformed into a
   375   // pending exception stored in JavaThread that can be tested from
   376   // within the VM.
   377   //
   378   // Note: Usually the parameters are removed by the callee. In case
   379   // of an exception crossing an activation frame boundary, that is
   380   // not the case if the callee is compiled code => need to setup the
   381   // rsp.
   382   //
   383   // rax: exception oop
   385   address generate_catch_exception() {
   386     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   387     address start = __ pc();
   389     // same as in generate_call_stub():
   390     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   391     const Address thread        (rbp, thread_off         * wordSize);
   393 #ifdef ASSERT
   394     // verify that threads correspond
   395     {
   396       Label L, S;
   397       __ cmpptr(r15_thread, thread);
   398       __ jcc(Assembler::notEqual, S);
   399       __ get_thread(rbx);
   400       __ cmpptr(r15_thread, rbx);
   401       __ jcc(Assembler::equal, L);
   402       __ bind(S);
   403       __ stop("StubRoutines::catch_exception: threads must correspond");
   404       __ bind(L);
   405     }
   406 #endif
   408     // set pending exception
   409     __ verify_oop(rax);
   411     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   412     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   413     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   414     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   416     // complete return to VM
   417     assert(StubRoutines::_call_stub_return_address != NULL,
   418            "_call_stub_return_address must have been generated before");
   419     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   421     return start;
   422   }
   424   // Continuation point for runtime calls returning with a pending
   425   // exception.  The pending exception check happened in the runtime
   426   // or native call stub.  The pending exception in Thread is
   427   // converted into a Java-level exception.
   428   //
   429   // Contract with Java-level exception handlers:
   430   // rax: exception
   431   // rdx: throwing pc
   432   //
   433   // NOTE: At entry of this stub, exception-pc must be on stack !!
   435   address generate_forward_exception() {
   436     StubCodeMark mark(this, "StubRoutines", "forward exception");
   437     address start = __ pc();
   439     // Upon entry, the sp points to the return address returning into
   440     // Java (interpreted or compiled) code; i.e., the return address
   441     // becomes the throwing pc.
   442     //
   443     // Arguments pushed before the runtime call are still on the stack
   444     // but the exception handler will reset the stack pointer ->
   445     // ignore them.  A potential result in registers can be ignored as
   446     // well.
   448 #ifdef ASSERT
   449     // make sure this code is only executed if there is a pending exception
   450     {
   451       Label L;
   452       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   453       __ jcc(Assembler::notEqual, L);
   454       __ stop("StubRoutines::forward exception: no pending exception (1)");
   455       __ bind(L);
   456     }
   457 #endif
   459     // compute exception handler into rbx
   460     __ movptr(c_rarg0, Address(rsp, 0));
   461     BLOCK_COMMENT("call exception_handler_for_return_address");
   462     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   463                          SharedRuntime::exception_handler_for_return_address),
   464                     r15_thread, c_rarg0);
   465     __ mov(rbx, rax);
   467     // setup rax & rdx, remove return address & clear pending exception
   468     __ pop(rdx);
   469     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   470     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   472 #ifdef ASSERT
   473     // make sure exception is set
   474     {
   475       Label L;
   476       __ testptr(rax, rax);
   477       __ jcc(Assembler::notEqual, L);
   478       __ stop("StubRoutines::forward exception: no pending exception (2)");
   479       __ bind(L);
   480     }
   481 #endif
   483     // continue at exception handler (return address removed)
   484     // rax: exception
   485     // rbx: exception handler
   486     // rdx: throwing pc
   487     __ verify_oop(rax);
   488     __ jmp(rbx);
   490     return start;
   491   }
   493   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   494   //
   495   // Arguments :
   496   //    c_rarg0: exchange_value
   497   //    c_rarg0: dest
   498   //
   499   // Result:
   500   //    *dest <- ex, return (orig *dest)
   501   address generate_atomic_xchg() {
   502     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   503     address start = __ pc();
   505     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   506     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   507     __ ret(0);
   509     return start;
   510   }
   512   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   513   //
   514   // Arguments :
   515   //    c_rarg0: exchange_value
   516   //    c_rarg1: dest
   517   //
   518   // Result:
   519   //    *dest <- ex, return (orig *dest)
   520   address generate_atomic_xchg_ptr() {
   521     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   522     address start = __ pc();
   524     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   525     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   526     __ ret(0);
   528     return start;
   529   }
   531   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   532   //                                         jint compare_value)
   533   //
   534   // Arguments :
   535   //    c_rarg0: exchange_value
   536   //    c_rarg1: dest
   537   //    c_rarg2: compare_value
   538   //
   539   // Result:
   540   //    if ( compare_value == *dest ) {
   541   //       *dest = exchange_value
   542   //       return compare_value;
   543   //    else
   544   //       return *dest;
   545   address generate_atomic_cmpxchg() {
   546     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   547     address start = __ pc();
   549     __ movl(rax, c_rarg2);
   550    if ( os::is_MP() ) __ lock();
   551     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   552     __ ret(0);
   554     return start;
   555   }
   557   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   558   //                                             volatile jlong* dest,
   559   //                                             jlong compare_value)
   560   // Arguments :
   561   //    c_rarg0: exchange_value
   562   //    c_rarg1: dest
   563   //    c_rarg2: compare_value
   564   //
   565   // Result:
   566   //    if ( compare_value == *dest ) {
   567   //       *dest = exchange_value
   568   //       return compare_value;
   569   //    else
   570   //       return *dest;
   571   address generate_atomic_cmpxchg_long() {
   572     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   573     address start = __ pc();
   575     __ movq(rax, c_rarg2);
   576    if ( os::is_MP() ) __ lock();
   577     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   578     __ ret(0);
   580     return start;
   581   }
   583   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   584   //
   585   // Arguments :
   586   //    c_rarg0: add_value
   587   //    c_rarg1: dest
   588   //
   589   // Result:
   590   //    *dest += add_value
   591   //    return *dest;
   592   address generate_atomic_add() {
   593     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   594     address start = __ pc();
   596     __ movl(rax, c_rarg0);
   597    if ( os::is_MP() ) __ lock();
   598     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   599     __ addl(rax, c_rarg0);
   600     __ ret(0);
   602     return start;
   603   }
   605   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   606   //
   607   // Arguments :
   608   //    c_rarg0: add_value
   609   //    c_rarg1: dest
   610   //
   611   // Result:
   612   //    *dest += add_value
   613   //    return *dest;
   614   address generate_atomic_add_ptr() {
   615     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   616     address start = __ pc();
   618     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   619    if ( os::is_MP() ) __ lock();
   620     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   621     __ addptr(rax, c_rarg0);
   622     __ ret(0);
   624     return start;
   625   }
   627   // Support for intptr_t OrderAccess::fence()
   628   //
   629   // Arguments :
   630   //
   631   // Result:
   632   address generate_orderaccess_fence() {
   633     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   634     address start = __ pc();
   635     __ membar(Assembler::StoreLoad);
   636     __ ret(0);
   638     return start;
   639   }
   641   // Support for intptr_t get_previous_fp()
   642   //
   643   // This routine is used to find the previous frame pointer for the
   644   // caller (current_frame_guess). This is used as part of debugging
   645   // ps() is seemingly lost trying to find frames.
   646   // This code assumes that caller current_frame_guess) has a frame.
   647   address generate_get_previous_fp() {
   648     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   649     const Address old_fp(rbp, 0);
   650     const Address older_fp(rax, 0);
   651     address start = __ pc();
   653     __ enter();
   654     __ movptr(rax, old_fp); // callers fp
   655     __ movptr(rax, older_fp); // the frame for ps()
   656     __ pop(rbp);
   657     __ ret(0);
   659     return start;
   660   }
   662   //----------------------------------------------------------------------------------------------------
   663   // Support for void verify_mxcsr()
   664   //
   665   // This routine is used with -Xcheck:jni to verify that native
   666   // JNI code does not return to Java code without restoring the
   667   // MXCSR register to our expected state.
   669   address generate_verify_mxcsr() {
   670     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   671     address start = __ pc();
   673     const Address mxcsr_save(rsp, 0);
   675     if (CheckJNICalls) {
   676       Label ok_ret;
   677       __ push(rax);
   678       __ subptr(rsp, wordSize);      // allocate a temp location
   679       __ stmxcsr(mxcsr_save);
   680       __ movl(rax, mxcsr_save);
   681       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   682       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   683       __ jcc(Assembler::equal, ok_ret);
   685       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   687       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   689       __ bind(ok_ret);
   690       __ addptr(rsp, wordSize);
   691       __ pop(rax);
   692     }
   694     __ ret(0);
   696     return start;
   697   }
   699   address generate_f2i_fixup() {
   700     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   701     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   703     address start = __ pc();
   705     Label L;
   707     __ push(rax);
   708     __ push(c_rarg3);
   709     __ push(c_rarg2);
   710     __ push(c_rarg1);
   712     __ movl(rax, 0x7f800000);
   713     __ xorl(c_rarg3, c_rarg3);
   714     __ movl(c_rarg2, inout);
   715     __ movl(c_rarg1, c_rarg2);
   716     __ andl(c_rarg1, 0x7fffffff);
   717     __ cmpl(rax, c_rarg1); // NaN? -> 0
   718     __ jcc(Assembler::negative, L);
   719     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   720     __ movl(c_rarg3, 0x80000000);
   721     __ movl(rax, 0x7fffffff);
   722     __ cmovl(Assembler::positive, c_rarg3, rax);
   724     __ bind(L);
   725     __ movptr(inout, c_rarg3);
   727     __ pop(c_rarg1);
   728     __ pop(c_rarg2);
   729     __ pop(c_rarg3);
   730     __ pop(rax);
   732     __ ret(0);
   734     return start;
   735   }
   737   address generate_f2l_fixup() {
   738     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   739     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   740     address start = __ pc();
   742     Label L;
   744     __ push(rax);
   745     __ push(c_rarg3);
   746     __ push(c_rarg2);
   747     __ push(c_rarg1);
   749     __ movl(rax, 0x7f800000);
   750     __ xorl(c_rarg3, c_rarg3);
   751     __ movl(c_rarg2, inout);
   752     __ movl(c_rarg1, c_rarg2);
   753     __ andl(c_rarg1, 0x7fffffff);
   754     __ cmpl(rax, c_rarg1); // NaN? -> 0
   755     __ jcc(Assembler::negative, L);
   756     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   757     __ mov64(c_rarg3, 0x8000000000000000);
   758     __ mov64(rax, 0x7fffffffffffffff);
   759     __ cmov(Assembler::positive, c_rarg3, rax);
   761     __ bind(L);
   762     __ movptr(inout, c_rarg3);
   764     __ pop(c_rarg1);
   765     __ pop(c_rarg2);
   766     __ pop(c_rarg3);
   767     __ pop(rax);
   769     __ ret(0);
   771     return start;
   772   }
   774   address generate_d2i_fixup() {
   775     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   776     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   778     address start = __ pc();
   780     Label L;
   782     __ push(rax);
   783     __ push(c_rarg3);
   784     __ push(c_rarg2);
   785     __ push(c_rarg1);
   786     __ push(c_rarg0);
   788     __ movl(rax, 0x7ff00000);
   789     __ movq(c_rarg2, inout);
   790     __ movl(c_rarg3, c_rarg2);
   791     __ mov(c_rarg1, c_rarg2);
   792     __ mov(c_rarg0, c_rarg2);
   793     __ negl(c_rarg3);
   794     __ shrptr(c_rarg1, 0x20);
   795     __ orl(c_rarg3, c_rarg2);
   796     __ andl(c_rarg1, 0x7fffffff);
   797     __ xorl(c_rarg2, c_rarg2);
   798     __ shrl(c_rarg3, 0x1f);
   799     __ orl(c_rarg1, c_rarg3);
   800     __ cmpl(rax, c_rarg1);
   801     __ jcc(Assembler::negative, L); // NaN -> 0
   802     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   803     __ movl(c_rarg2, 0x80000000);
   804     __ movl(rax, 0x7fffffff);
   805     __ cmov(Assembler::positive, c_rarg2, rax);
   807     __ bind(L);
   808     __ movptr(inout, c_rarg2);
   810     __ pop(c_rarg0);
   811     __ pop(c_rarg1);
   812     __ pop(c_rarg2);
   813     __ pop(c_rarg3);
   814     __ pop(rax);
   816     __ ret(0);
   818     return start;
   819   }
   821   address generate_d2l_fixup() {
   822     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   823     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   825     address start = __ pc();
   827     Label L;
   829     __ push(rax);
   830     __ push(c_rarg3);
   831     __ push(c_rarg2);
   832     __ push(c_rarg1);
   833     __ push(c_rarg0);
   835     __ movl(rax, 0x7ff00000);
   836     __ movq(c_rarg2, inout);
   837     __ movl(c_rarg3, c_rarg2);
   838     __ mov(c_rarg1, c_rarg2);
   839     __ mov(c_rarg0, c_rarg2);
   840     __ negl(c_rarg3);
   841     __ shrptr(c_rarg1, 0x20);
   842     __ orl(c_rarg3, c_rarg2);
   843     __ andl(c_rarg1, 0x7fffffff);
   844     __ xorl(c_rarg2, c_rarg2);
   845     __ shrl(c_rarg3, 0x1f);
   846     __ orl(c_rarg1, c_rarg3);
   847     __ cmpl(rax, c_rarg1);
   848     __ jcc(Assembler::negative, L); // NaN -> 0
   849     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   850     __ mov64(c_rarg2, 0x8000000000000000);
   851     __ mov64(rax, 0x7fffffffffffffff);
   852     __ cmovq(Assembler::positive, c_rarg2, rax);
   854     __ bind(L);
   855     __ movq(inout, c_rarg2);
   857     __ pop(c_rarg0);
   858     __ pop(c_rarg1);
   859     __ pop(c_rarg2);
   860     __ pop(c_rarg3);
   861     __ pop(rax);
   863     __ ret(0);
   865     return start;
   866   }
   868   address generate_fp_mask(const char *stub_name, int64_t mask) {
   869     __ align(CodeEntryAlignment);
   870     StubCodeMark mark(this, "StubRoutines", stub_name);
   871     address start = __ pc();
   873     __ emit_data64( mask, relocInfo::none );
   874     __ emit_data64( mask, relocInfo::none );
   876     return start;
   877   }
   879   // The following routine generates a subroutine to throw an
   880   // asynchronous UnknownError when an unsafe access gets a fault that
   881   // could not be reasonably prevented by the programmer.  (Example:
   882   // SIGBUS/OBJERR.)
   883   address generate_handler_for_unsafe_access() {
   884     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   885     address start = __ pc();
   887     __ push(0);                       // hole for return address-to-be
   888     __ pusha();                       // push registers
   889     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   891     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   892     BLOCK_COMMENT("call handle_unsafe_access");
   893     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   894     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   896     __ movptr(next_pc, rax);          // stuff next address
   897     __ popa();
   898     __ ret(0);                        // jump to next address
   900     return start;
   901   }
   903   // Non-destructive plausibility checks for oops
   904   //
   905   // Arguments:
   906   //    all args on stack!
   907   //
   908   // Stack after saving c_rarg3:
   909   //    [tos + 0]: saved c_rarg3
   910   //    [tos + 1]: saved c_rarg2
   911   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   912   //    [tos + 3]: saved flags
   913   //    [tos + 4]: return address
   914   //  * [tos + 5]: error message (char*)
   915   //  * [tos + 6]: object to verify (oop)
   916   //  * [tos + 7]: saved rax - saved by caller and bashed
   917   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
   918   //  * = popped on exit
   919   address generate_verify_oop() {
   920     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   921     address start = __ pc();
   923     Label exit, error;
   925     __ pushf();
   926     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   928     __ push(r12);
   930     // save c_rarg2 and c_rarg3
   931     __ push(c_rarg2);
   932     __ push(c_rarg3);
   934     enum {
   935            // After previous pushes.
   936            oop_to_verify = 6 * wordSize,
   937            saved_rax     = 7 * wordSize,
   938            saved_r10     = 8 * wordSize,
   940            // Before the call to MacroAssembler::debug(), see below.
   941            return_addr   = 16 * wordSize,
   942            error_msg     = 17 * wordSize
   943     };
   945     // get object
   946     __ movptr(rax, Address(rsp, oop_to_verify));
   948     // make sure object is 'reasonable'
   949     __ testptr(rax, rax);
   950     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
   951     // Check if the oop is in the right area of memory
   952     __ movptr(c_rarg2, rax);
   953     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
   954     __ andptr(c_rarg2, c_rarg3);
   955     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
   956     __ cmpptr(c_rarg2, c_rarg3);
   957     __ jcc(Assembler::notZero, error);
   959     // set r12 to heapbase for load_klass()
   960     __ reinit_heapbase();
   962     // make sure klass is 'reasonable'
   963     __ load_klass(rax, rax);  // get klass
   964     __ testptr(rax, rax);
   965     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
   966     // Check if the klass is in the right area of memory
   967     __ mov(c_rarg2, rax);
   968     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   969     __ andptr(c_rarg2, c_rarg3);
   970     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   971     __ cmpptr(c_rarg2, c_rarg3);
   972     __ jcc(Assembler::notZero, error);
   974     // make sure klass' klass is 'reasonable'
   975     __ load_klass(rax, rax);
   976     __ testptr(rax, rax);
   977     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
   978     // Check if the klass' klass is in the right area of memory
   979     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   980     __ andptr(rax, c_rarg3);
   981     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   982     __ cmpptr(rax, c_rarg3);
   983     __ jcc(Assembler::notZero, error);
   985     // return if everything seems ok
   986     __ bind(exit);
   987     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
   988     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
   989     __ pop(c_rarg3);                             // restore c_rarg3
   990     __ pop(c_rarg2);                             // restore c_rarg2
   991     __ pop(r12);                                 // restore r12
   992     __ popf();                                   // restore flags
   993     __ ret(4 * wordSize);                        // pop caller saved stuff
   995     // handle errors
   996     __ bind(error);
   997     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
   998     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
   999     __ pop(c_rarg3);                             // get saved c_rarg3 back
  1000     __ pop(c_rarg2);                             // get saved c_rarg2 back
  1001     __ pop(r12);                                 // get saved r12 back
  1002     __ popf();                                   // get saved flags off stack --
  1003                                                  // will be ignored
  1005     __ pusha();                                  // push registers
  1006                                                  // (rip is already
  1007                                                  // already pushed)
  1008     // debug(char* msg, int64_t pc, int64_t regs[])
  1009     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1010     // pushed all the registers, so now the stack looks like:
  1011     //     [tos +  0] 16 saved registers
  1012     //     [tos + 16] return address
  1013     //   * [tos + 17] error message (char*)
  1014     //   * [tos + 18] object to verify (oop)
  1015     //   * [tos + 19] saved rax - saved by caller and bashed
  1016     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
  1017     //   * = popped on exit
  1019     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1020     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1021     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1022     __ mov(r12, rsp);                               // remember rsp
  1023     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1024     __ andptr(rsp, -16);                            // align stack as required by ABI
  1025     BLOCK_COMMENT("call MacroAssembler::debug");
  1026     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1027     __ mov(rsp, r12);                               // restore rsp
  1028     __ popa();                                      // pop registers (includes r12)
  1029     __ ret(4 * wordSize);                           // pop caller saved stuff
  1031     return start;
  1034   static address disjoint_byte_copy_entry;
  1035   static address disjoint_short_copy_entry;
  1036   static address disjoint_int_copy_entry;
  1037   static address disjoint_long_copy_entry;
  1038   static address disjoint_oop_copy_entry;
  1040   static address byte_copy_entry;
  1041   static address short_copy_entry;
  1042   static address int_copy_entry;
  1043   static address long_copy_entry;
  1044   static address oop_copy_entry;
  1046   static address checkcast_copy_entry;
  1048   //
  1049   // Verify that a register contains clean 32-bits positive value
  1050   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1051   //
  1052   //  Input:
  1053   //    Rint  -  32-bits value
  1054   //    Rtmp  -  scratch
  1055   //
  1056   void assert_clean_int(Register Rint, Register Rtmp) {
  1057 #ifdef ASSERT
  1058     Label L;
  1059     assert_different_registers(Rtmp, Rint);
  1060     __ movslq(Rtmp, Rint);
  1061     __ cmpq(Rtmp, Rint);
  1062     __ jcc(Assembler::equal, L);
  1063     __ stop("high 32-bits of int value are not 0");
  1064     __ bind(L);
  1065 #endif
  1068   //  Generate overlap test for array copy stubs
  1069   //
  1070   //  Input:
  1071   //     c_rarg0 - from
  1072   //     c_rarg1 - to
  1073   //     c_rarg2 - element count
  1074   //
  1075   //  Output:
  1076   //     rax   - &from[element count - 1]
  1077   //
  1078   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1079     assert(no_overlap_target != NULL, "must be generated");
  1080     array_overlap_test(no_overlap_target, NULL, sf);
  1082   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1083     array_overlap_test(NULL, &L_no_overlap, sf);
  1085   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1086     const Register from     = c_rarg0;
  1087     const Register to       = c_rarg1;
  1088     const Register count    = c_rarg2;
  1089     const Register end_from = rax;
  1091     __ cmpptr(to, from);
  1092     __ lea(end_from, Address(from, count, sf, 0));
  1093     if (NOLp == NULL) {
  1094       ExternalAddress no_overlap(no_overlap_target);
  1095       __ jump_cc(Assembler::belowEqual, no_overlap);
  1096       __ cmpptr(to, end_from);
  1097       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1098     } else {
  1099       __ jcc(Assembler::belowEqual, (*NOLp));
  1100       __ cmpptr(to, end_from);
  1101       __ jcc(Assembler::aboveEqual, (*NOLp));
  1105   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1106   //
  1107   // Outputs:
  1108   //    rdi - rcx
  1109   //    rsi - rdx
  1110   //    rdx - r8
  1111   //    rcx - r9
  1112   //
  1113   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1114   // are non-volatile.  r9 and r10 should not be used by the caller.
  1115   //
  1116   void setup_arg_regs(int nargs = 3) {
  1117     const Register saved_rdi = r9;
  1118     const Register saved_rsi = r10;
  1119     assert(nargs == 3 || nargs == 4, "else fix");
  1120 #ifdef _WIN64
  1121     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1122            "unexpected argument registers");
  1123     if (nargs >= 4)
  1124       __ mov(rax, r9);  // r9 is also saved_rdi
  1125     __ movptr(saved_rdi, rdi);
  1126     __ movptr(saved_rsi, rsi);
  1127     __ mov(rdi, rcx); // c_rarg0
  1128     __ mov(rsi, rdx); // c_rarg1
  1129     __ mov(rdx, r8);  // c_rarg2
  1130     if (nargs >= 4)
  1131       __ mov(rcx, rax); // c_rarg3 (via rax)
  1132 #else
  1133     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1134            "unexpected argument registers");
  1135 #endif
  1138   void restore_arg_regs() {
  1139     const Register saved_rdi = r9;
  1140     const Register saved_rsi = r10;
  1141 #ifdef _WIN64
  1142     __ movptr(rdi, saved_rdi);
  1143     __ movptr(rsi, saved_rsi);
  1144 #endif
  1147   // Generate code for an array write pre barrier
  1148   //
  1149   //     addr    -  starting address
  1150   //     count    -  element count
  1151   //
  1152   //     Destroy no registers!
  1153   //
  1154   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1155     BarrierSet* bs = Universe::heap()->barrier_set();
  1156     switch (bs->kind()) {
  1157       case BarrierSet::G1SATBCT:
  1158       case BarrierSet::G1SATBCTLogging:
  1160           __ pusha();                      // push registers
  1161           if (count == c_rarg0) {
  1162             if (addr == c_rarg1) {
  1163               // exactly backwards!!
  1164               __ xchgptr(c_rarg1, c_rarg0);
  1165             } else {
  1166               __ movptr(c_rarg1, count);
  1167               __ movptr(c_rarg0, addr);
  1170           } else {
  1171             __ movptr(c_rarg0, addr);
  1172             __ movptr(c_rarg1, count);
  1174           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
  1175           __ popa();
  1177         break;
  1178       case BarrierSet::CardTableModRef:
  1179       case BarrierSet::CardTableExtension:
  1180       case BarrierSet::ModRef:
  1181         break;
  1182       default:
  1183         ShouldNotReachHere();
  1188   //
  1189   // Generate code for an array write post barrier
  1190   //
  1191   //  Input:
  1192   //     start    - register containing starting address of destination array
  1193   //     end      - register containing ending address of destination array
  1194   //     scratch  - scratch register
  1195   //
  1196   //  The input registers are overwritten.
  1197   //  The ending address is inclusive.
  1198   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1199     assert_different_registers(start, end, scratch);
  1200     BarrierSet* bs = Universe::heap()->barrier_set();
  1201     switch (bs->kind()) {
  1202       case BarrierSet::G1SATBCT:
  1203       case BarrierSet::G1SATBCTLogging:
  1206           __ pusha();                      // push registers (overkill)
  1207           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1208           assert_different_registers(start, end, scratch);
  1209           __ lea(scratch, Address(end, BytesPerHeapOop));
  1210           __ subptr(scratch, start);               // subtract start to get #bytes
  1211           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
  1212           __ mov(c_rarg0, start);
  1213           __ mov(c_rarg1, scratch);
  1214           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
  1215           __ popa();
  1217         break;
  1218       case BarrierSet::CardTableModRef:
  1219       case BarrierSet::CardTableExtension:
  1221           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1222           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1224           Label L_loop;
  1226            __ shrptr(start, CardTableModRefBS::card_shift);
  1227            __ addptr(end, BytesPerHeapOop);
  1228            __ shrptr(end, CardTableModRefBS::card_shift);
  1229            __ subptr(end, start); // number of bytes to copy
  1231           intptr_t disp = (intptr_t) ct->byte_map_base;
  1232           if (__ is_simm32(disp)) {
  1233             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1234             __ lea(scratch, cardtable);
  1235           } else {
  1236             ExternalAddress cardtable((address)disp);
  1237             __ lea(scratch, cardtable);
  1240           const Register count = end; // 'end' register contains bytes count now
  1241           __ addptr(start, scratch);
  1242         __ BIND(L_loop);
  1243           __ movb(Address(start, count, Address::times_1), 0);
  1244           __ decrement(count);
  1245           __ jcc(Assembler::greaterEqual, L_loop);
  1247         break;
  1248       default:
  1249         ShouldNotReachHere();
  1255   // Copy big chunks forward
  1256   //
  1257   // Inputs:
  1258   //   end_from     - source arrays end address
  1259   //   end_to       - destination array end address
  1260   //   qword_count  - 64-bits element count, negative
  1261   //   to           - scratch
  1262   //   L_copy_32_bytes - entry label
  1263   //   L_copy_8_bytes  - exit  label
  1264   //
  1265   void copy_32_bytes_forward(Register end_from, Register end_to,
  1266                              Register qword_count, Register to,
  1267                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1268     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1269     Label L_loop;
  1270     __ align(OptoLoopAlignment);
  1271   __ BIND(L_loop);
  1272     if(UseUnalignedLoadStores) {
  1273       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1274       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1275       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1276       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1278     } else {
  1279       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1280       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1281       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1282       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1283       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1284       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1285       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1286       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1288   __ BIND(L_copy_32_bytes);
  1289     __ addptr(qword_count, 4);
  1290     __ jcc(Assembler::lessEqual, L_loop);
  1291     __ subptr(qword_count, 4);
  1292     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1296   // Copy big chunks backward
  1297   //
  1298   // Inputs:
  1299   //   from         - source arrays address
  1300   //   dest         - destination array address
  1301   //   qword_count  - 64-bits element count
  1302   //   to           - scratch
  1303   //   L_copy_32_bytes - entry label
  1304   //   L_copy_8_bytes  - exit  label
  1305   //
  1306   void copy_32_bytes_backward(Register from, Register dest,
  1307                               Register qword_count, Register to,
  1308                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1309     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1310     Label L_loop;
  1311     __ align(OptoLoopAlignment);
  1312   __ BIND(L_loop);
  1313     if(UseUnalignedLoadStores) {
  1314       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1315       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1316       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1317       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1319     } else {
  1320       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1321       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1322       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1323       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1324       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1325       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1326       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1327       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1329   __ BIND(L_copy_32_bytes);
  1330     __ subptr(qword_count, 4);
  1331     __ jcc(Assembler::greaterEqual, L_loop);
  1332     __ addptr(qword_count, 4);
  1333     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1337   // Arguments:
  1338   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1339   //             ignored
  1340   //   name    - stub name string
  1341   //
  1342   // Inputs:
  1343   //   c_rarg0   - source array address
  1344   //   c_rarg1   - destination array address
  1345   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1346   //
  1347   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1348   // we let the hardware handle it.  The one to eight bytes within words,
  1349   // dwords or qwords that span cache line boundaries will still be loaded
  1350   // and stored atomically.
  1351   //
  1352   // Side Effects:
  1353   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1354   //   used by generate_conjoint_byte_copy().
  1355   //
  1356   address generate_disjoint_byte_copy(bool aligned, const char *name) {
  1357     __ align(CodeEntryAlignment);
  1358     StubCodeMark mark(this, "StubRoutines", name);
  1359     address start = __ pc();
  1361     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1362     Label L_copy_byte, L_exit;
  1363     const Register from        = rdi;  // source array address
  1364     const Register to          = rsi;  // destination array address
  1365     const Register count       = rdx;  // elements count
  1366     const Register byte_count  = rcx;
  1367     const Register qword_count = count;
  1368     const Register end_from    = from; // source array end address
  1369     const Register end_to      = to;   // destination array end address
  1370     // End pointers are inclusive, and if count is not zero they point
  1371     // to the last unit copied:  end_to[0] := end_from[0]
  1373     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1374     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1376     disjoint_byte_copy_entry = __ pc();
  1377     BLOCK_COMMENT("Entry:");
  1378     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1380     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1381                       // r9 and r10 may be used to save non-volatile registers
  1383     // 'from', 'to' and 'count' are now valid
  1384     __ movptr(byte_count, count);
  1385     __ shrptr(count, 3); // count => qword_count
  1387     // Copy from low to high addresses.  Use 'to' as scratch.
  1388     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1389     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1390     __ negptr(qword_count); // make the count negative
  1391     __ jmp(L_copy_32_bytes);
  1393     // Copy trailing qwords
  1394   __ BIND(L_copy_8_bytes);
  1395     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1396     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1397     __ increment(qword_count);
  1398     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1400     // Check for and copy trailing dword
  1401   __ BIND(L_copy_4_bytes);
  1402     __ testl(byte_count, 4);
  1403     __ jccb(Assembler::zero, L_copy_2_bytes);
  1404     __ movl(rax, Address(end_from, 8));
  1405     __ movl(Address(end_to, 8), rax);
  1407     __ addptr(end_from, 4);
  1408     __ addptr(end_to, 4);
  1410     // Check for and copy trailing word
  1411   __ BIND(L_copy_2_bytes);
  1412     __ testl(byte_count, 2);
  1413     __ jccb(Assembler::zero, L_copy_byte);
  1414     __ movw(rax, Address(end_from, 8));
  1415     __ movw(Address(end_to, 8), rax);
  1417     __ addptr(end_from, 2);
  1418     __ addptr(end_to, 2);
  1420     // Check for and copy trailing byte
  1421   __ BIND(L_copy_byte);
  1422     __ testl(byte_count, 1);
  1423     __ jccb(Assembler::zero, L_exit);
  1424     __ movb(rax, Address(end_from, 8));
  1425     __ movb(Address(end_to, 8), rax);
  1427   __ BIND(L_exit);
  1428     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1429     restore_arg_regs();
  1430     __ xorptr(rax, rax); // return 0
  1431     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1432     __ ret(0);
  1434     // Copy in 32-bytes chunks
  1435     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1436     __ jmp(L_copy_4_bytes);
  1438     return start;
  1441   // Arguments:
  1442   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1443   //             ignored
  1444   //   name    - stub name string
  1445   //
  1446   // Inputs:
  1447   //   c_rarg0   - source array address
  1448   //   c_rarg1   - destination array address
  1449   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1450   //
  1451   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1452   // we let the hardware handle it.  The one to eight bytes within words,
  1453   // dwords or qwords that span cache line boundaries will still be loaded
  1454   // and stored atomically.
  1455   //
  1456   address generate_conjoint_byte_copy(bool aligned, const char *name) {
  1457     __ align(CodeEntryAlignment);
  1458     StubCodeMark mark(this, "StubRoutines", name);
  1459     address start = __ pc();
  1461     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1462     const Register from        = rdi;  // source array address
  1463     const Register to          = rsi;  // destination array address
  1464     const Register count       = rdx;  // elements count
  1465     const Register byte_count  = rcx;
  1466     const Register qword_count = count;
  1468     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1469     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1471     byte_copy_entry = __ pc();
  1472     BLOCK_COMMENT("Entry:");
  1473     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1475     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
  1476     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1477                       // r9 and r10 may be used to save non-volatile registers
  1479     // 'from', 'to' and 'count' are now valid
  1480     __ movptr(byte_count, count);
  1481     __ shrptr(count, 3);   // count => qword_count
  1483     // Copy from high to low addresses.
  1485     // Check for and copy trailing byte
  1486     __ testl(byte_count, 1);
  1487     __ jcc(Assembler::zero, L_copy_2_bytes);
  1488     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1489     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1490     __ decrement(byte_count); // Adjust for possible trailing word
  1492     // Check for and copy trailing word
  1493   __ BIND(L_copy_2_bytes);
  1494     __ testl(byte_count, 2);
  1495     __ jcc(Assembler::zero, L_copy_4_bytes);
  1496     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1497     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1499     // Check for and copy trailing dword
  1500   __ BIND(L_copy_4_bytes);
  1501     __ testl(byte_count, 4);
  1502     __ jcc(Assembler::zero, L_copy_32_bytes);
  1503     __ movl(rax, Address(from, qword_count, Address::times_8));
  1504     __ movl(Address(to, qword_count, Address::times_8), rax);
  1505     __ jmp(L_copy_32_bytes);
  1507     // Copy trailing qwords
  1508   __ BIND(L_copy_8_bytes);
  1509     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1510     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1511     __ decrement(qword_count);
  1512     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1514     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1515     restore_arg_regs();
  1516     __ xorptr(rax, rax); // return 0
  1517     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1518     __ ret(0);
  1520     // Copy in 32-bytes chunks
  1521     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1523     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1524     restore_arg_regs();
  1525     __ xorptr(rax, rax); // return 0
  1526     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1527     __ ret(0);
  1529     return start;
  1532   // Arguments:
  1533   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1534   //             ignored
  1535   //   name    - stub name string
  1536   //
  1537   // Inputs:
  1538   //   c_rarg0   - source array address
  1539   //   c_rarg1   - destination array address
  1540   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1541   //
  1542   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1543   // let the hardware handle it.  The two or four words within dwords
  1544   // or qwords that span cache line boundaries will still be loaded
  1545   // and stored atomically.
  1546   //
  1547   // Side Effects:
  1548   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1549   //   used by generate_conjoint_short_copy().
  1550   //
  1551   address generate_disjoint_short_copy(bool aligned, const char *name) {
  1552     __ align(CodeEntryAlignment);
  1553     StubCodeMark mark(this, "StubRoutines", name);
  1554     address start = __ pc();
  1556     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1557     const Register from        = rdi;  // source array address
  1558     const Register to          = rsi;  // destination array address
  1559     const Register count       = rdx;  // elements count
  1560     const Register word_count  = rcx;
  1561     const Register qword_count = count;
  1562     const Register end_from    = from; // source array end address
  1563     const Register end_to      = to;   // destination array end address
  1564     // End pointers are inclusive, and if count is not zero they point
  1565     // to the last unit copied:  end_to[0] := end_from[0]
  1567     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1568     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1570     disjoint_short_copy_entry = __ pc();
  1571     BLOCK_COMMENT("Entry:");
  1572     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1574     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1575                       // r9 and r10 may be used to save non-volatile registers
  1577     // 'from', 'to' and 'count' are now valid
  1578     __ movptr(word_count, count);
  1579     __ shrptr(count, 2); // count => qword_count
  1581     // Copy from low to high addresses.  Use 'to' as scratch.
  1582     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1583     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1584     __ negptr(qword_count);
  1585     __ jmp(L_copy_32_bytes);
  1587     // Copy trailing qwords
  1588   __ BIND(L_copy_8_bytes);
  1589     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1590     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1591     __ increment(qword_count);
  1592     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1594     // Original 'dest' is trashed, so we can't use it as a
  1595     // base register for a possible trailing word copy
  1597     // Check for and copy trailing dword
  1598   __ BIND(L_copy_4_bytes);
  1599     __ testl(word_count, 2);
  1600     __ jccb(Assembler::zero, L_copy_2_bytes);
  1601     __ movl(rax, Address(end_from, 8));
  1602     __ movl(Address(end_to, 8), rax);
  1604     __ addptr(end_from, 4);
  1605     __ addptr(end_to, 4);
  1607     // Check for and copy trailing word
  1608   __ BIND(L_copy_2_bytes);
  1609     __ testl(word_count, 1);
  1610     __ jccb(Assembler::zero, L_exit);
  1611     __ movw(rax, Address(end_from, 8));
  1612     __ movw(Address(end_to, 8), rax);
  1614   __ BIND(L_exit);
  1615     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1616     restore_arg_regs();
  1617     __ xorptr(rax, rax); // return 0
  1618     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1619     __ ret(0);
  1621     // Copy in 32-bytes chunks
  1622     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1623     __ jmp(L_copy_4_bytes);
  1625     return start;
  1628   address generate_fill(BasicType t, bool aligned, const char *name) {
  1629     __ align(CodeEntryAlignment);
  1630     StubCodeMark mark(this, "StubRoutines", name);
  1631     address start = __ pc();
  1633     BLOCK_COMMENT("Entry:");
  1635     const Register to       = c_rarg0;  // source array address
  1636     const Register value    = c_rarg1;  // value
  1637     const Register count    = c_rarg2;  // elements count
  1639     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1641     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1643     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1644     __ ret(0);
  1645     return start;
  1648   // Arguments:
  1649   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1650   //             ignored
  1651   //   name    - stub name string
  1652   //
  1653   // Inputs:
  1654   //   c_rarg0   - source array address
  1655   //   c_rarg1   - destination array address
  1656   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1657   //
  1658   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1659   // let the hardware handle it.  The two or four words within dwords
  1660   // or qwords that span cache line boundaries will still be loaded
  1661   // and stored atomically.
  1662   //
  1663   address generate_conjoint_short_copy(bool aligned, const char *name) {
  1664     __ align(CodeEntryAlignment);
  1665     StubCodeMark mark(this, "StubRoutines", name);
  1666     address start = __ pc();
  1668     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1669     const Register from        = rdi;  // source array address
  1670     const Register to          = rsi;  // destination array address
  1671     const Register count       = rdx;  // elements count
  1672     const Register word_count  = rcx;
  1673     const Register qword_count = count;
  1675     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1676     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1678     short_copy_entry = __ pc();
  1679     BLOCK_COMMENT("Entry:");
  1680     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1682     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
  1683     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1684                       // r9 and r10 may be used to save non-volatile registers
  1686     // 'from', 'to' and 'count' are now valid
  1687     __ movptr(word_count, count);
  1688     __ shrptr(count, 2); // count => qword_count
  1690     // Copy from high to low addresses.  Use 'to' as scratch.
  1692     // Check for and copy trailing word
  1693     __ testl(word_count, 1);
  1694     __ jccb(Assembler::zero, L_copy_4_bytes);
  1695     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1696     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1698     // Check for and copy trailing dword
  1699   __ BIND(L_copy_4_bytes);
  1700     __ testl(word_count, 2);
  1701     __ jcc(Assembler::zero, L_copy_32_bytes);
  1702     __ movl(rax, Address(from, qword_count, Address::times_8));
  1703     __ movl(Address(to, qword_count, Address::times_8), rax);
  1704     __ jmp(L_copy_32_bytes);
  1706     // Copy trailing qwords
  1707   __ BIND(L_copy_8_bytes);
  1708     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1709     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1710     __ decrement(qword_count);
  1711     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1713     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1714     restore_arg_regs();
  1715     __ xorptr(rax, rax); // return 0
  1716     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1717     __ ret(0);
  1719     // Copy in 32-bytes chunks
  1720     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1722     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1723     restore_arg_regs();
  1724     __ xorptr(rax, rax); // return 0
  1725     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1726     __ ret(0);
  1728     return start;
  1731   // Arguments:
  1732   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1733   //             ignored
  1734   //   is_oop  - true => oop array, so generate store check code
  1735   //   name    - stub name string
  1736   //
  1737   // Inputs:
  1738   //   c_rarg0   - source array address
  1739   //   c_rarg1   - destination array address
  1740   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1741   //
  1742   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1743   // the hardware handle it.  The two dwords within qwords that span
  1744   // cache line boundaries will still be loaded and stored atomicly.
  1745   //
  1746   // Side Effects:
  1747   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1748   //   used by generate_conjoint_int_oop_copy().
  1749   //
  1750   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1751     __ align(CodeEntryAlignment);
  1752     StubCodeMark mark(this, "StubRoutines", name);
  1753     address start = __ pc();
  1755     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1756     const Register from        = rdi;  // source array address
  1757     const Register to          = rsi;  // destination array address
  1758     const Register count       = rdx;  // elements count
  1759     const Register dword_count = rcx;
  1760     const Register qword_count = count;
  1761     const Register end_from    = from; // source array end address
  1762     const Register end_to      = to;   // destination array end address
  1763     const Register saved_to    = r11;  // saved destination array address
  1764     // End pointers are inclusive, and if count is not zero they point
  1765     // to the last unit copied:  end_to[0] := end_from[0]
  1767     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1768     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1770     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
  1772     if (is_oop) {
  1773       // no registers are destroyed by this call
  1774       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1777     BLOCK_COMMENT("Entry:");
  1778     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1780     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1781                       // r9 and r10 may be used to save non-volatile registers
  1783     if (is_oop) {
  1784       __ movq(saved_to, to);
  1787     // 'from', 'to' and 'count' are now valid
  1788     __ movptr(dword_count, count);
  1789     __ shrptr(count, 1); // count => qword_count
  1791     // Copy from low to high addresses.  Use 'to' as scratch.
  1792     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1793     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1794     __ negptr(qword_count);
  1795     __ jmp(L_copy_32_bytes);
  1797     // Copy trailing qwords
  1798   __ BIND(L_copy_8_bytes);
  1799     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1800     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1801     __ increment(qword_count);
  1802     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1804     // Check for and copy trailing dword
  1805   __ BIND(L_copy_4_bytes);
  1806     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1807     __ jccb(Assembler::zero, L_exit);
  1808     __ movl(rax, Address(end_from, 8));
  1809     __ movl(Address(end_to, 8), rax);
  1811   __ BIND(L_exit);
  1812     if (is_oop) {
  1813       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1814       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1816     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1817     restore_arg_regs();
  1818     __ xorptr(rax, rax); // return 0
  1819     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1820     __ ret(0);
  1822     // Copy 32-bytes chunks
  1823     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1824     __ jmp(L_copy_4_bytes);
  1826     return start;
  1829   // Arguments:
  1830   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1831   //             ignored
  1832   //   is_oop  - true => oop array, so generate store check code
  1833   //   name    - stub name string
  1834   //
  1835   // Inputs:
  1836   //   c_rarg0   - source array address
  1837   //   c_rarg1   - destination array address
  1838   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1839   //
  1840   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1841   // the hardware handle it.  The two dwords within qwords that span
  1842   // cache line boundaries will still be loaded and stored atomicly.
  1843   //
  1844   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1845     __ align(CodeEntryAlignment);
  1846     StubCodeMark mark(this, "StubRoutines", name);
  1847     address start = __ pc();
  1849     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1850     const Register from        = rdi;  // source array address
  1851     const Register to          = rsi;  // destination array address
  1852     const Register count       = rdx;  // elements count
  1853     const Register dword_count = rcx;
  1854     const Register qword_count = count;
  1856     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1857     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1859     if (is_oop) {
  1860       // no registers are destroyed by this call
  1861       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1864     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
  1865     BLOCK_COMMENT("Entry:");
  1866     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1868     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
  1869                        Address::times_4);
  1870     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1871                       // r9 and r10 may be used to save non-volatile registers
  1873     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1874     // 'from', 'to' and 'count' are now valid
  1875     __ movptr(dword_count, count);
  1876     __ shrptr(count, 1); // count => qword_count
  1878     // Copy from high to low addresses.  Use 'to' as scratch.
  1880     // Check for and copy trailing dword
  1881     __ testl(dword_count, 1);
  1882     __ jcc(Assembler::zero, L_copy_32_bytes);
  1883     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1884     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1885     __ jmp(L_copy_32_bytes);
  1887     // Copy trailing qwords
  1888   __ BIND(L_copy_8_bytes);
  1889     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1890     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1891     __ decrement(qword_count);
  1892     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1894     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1895     if (is_oop) {
  1896       __ jmp(L_exit);
  1898     restore_arg_regs();
  1899     __ xorptr(rax, rax); // return 0
  1900     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1901     __ ret(0);
  1903     // Copy in 32-bytes chunks
  1904     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1906    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1907    __ bind(L_exit);
  1908      if (is_oop) {
  1909        Register end_to = rdx;
  1910        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1911        gen_write_ref_array_post_barrier(to, end_to, rax);
  1913     restore_arg_regs();
  1914     __ xorptr(rax, rax); // return 0
  1915     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1916     __ ret(0);
  1918     return start;
  1921   // Arguments:
  1922   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1923   //             ignored
  1924   //   is_oop  - true => oop array, so generate store check code
  1925   //   name    - stub name string
  1926   //
  1927   // Inputs:
  1928   //   c_rarg0   - source array address
  1929   //   c_rarg1   - destination array address
  1930   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1931   //
  1932  // Side Effects:
  1933   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1934   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1935   //
  1936   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1937     __ align(CodeEntryAlignment);
  1938     StubCodeMark mark(this, "StubRoutines", name);
  1939     address start = __ pc();
  1941     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1942     const Register from        = rdi;  // source array address
  1943     const Register to          = rsi;  // destination array address
  1944     const Register qword_count = rdx;  // elements count
  1945     const Register end_from    = from; // source array end address
  1946     const Register end_to      = rcx;  // destination array end address
  1947     const Register saved_to    = to;
  1948     // End pointers are inclusive, and if count is not zero they point
  1949     // to the last unit copied:  end_to[0] := end_from[0]
  1951     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1952     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  1953     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1955     if (is_oop) {
  1956       disjoint_oop_copy_entry  = __ pc();
  1957       // no registers are destroyed by this call
  1958       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1959     } else {
  1960       disjoint_long_copy_entry = __ pc();
  1962     BLOCK_COMMENT("Entry:");
  1963     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1965     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1966                       // r9 and r10 may be used to save non-volatile registers
  1968     // 'from', 'to' and 'qword_count' are now valid
  1970     // Copy from low to high addresses.  Use 'to' as scratch.
  1971     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1972     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1973     __ negptr(qword_count);
  1974     __ jmp(L_copy_32_bytes);
  1976     // Copy trailing qwords
  1977   __ BIND(L_copy_8_bytes);
  1978     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1979     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1980     __ increment(qword_count);
  1981     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1983     if (is_oop) {
  1984       __ jmp(L_exit);
  1985     } else {
  1986       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1987       restore_arg_regs();
  1988       __ xorptr(rax, rax); // return 0
  1989       __ leave(); // required for proper stackwalking of RuntimeStub frame
  1990       __ ret(0);
  1993     // Copy 64-byte chunks
  1994     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1996     if (is_oop) {
  1997     __ BIND(L_exit);
  1998       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1999       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2000     } else {
  2001       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2003     restore_arg_regs();
  2004     __ xorptr(rax, rax); // return 0
  2005     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2006     __ ret(0);
  2008     return start;
  2011   // Arguments:
  2012   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  2013   //             ignored
  2014   //   is_oop  - true => oop array, so generate store check code
  2015   //   name    - stub name string
  2016   //
  2017   // Inputs:
  2018   //   c_rarg0   - source array address
  2019   //   c_rarg1   - destination array address
  2020   //   c_rarg2   - element count, treated as ssize_t, can be zero
  2021   //
  2022   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  2023     __ align(CodeEntryAlignment);
  2024     StubCodeMark mark(this, "StubRoutines", name);
  2025     address start = __ pc();
  2027     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2028     const Register from        = rdi;  // source array address
  2029     const Register to          = rsi;  // destination array address
  2030     const Register qword_count = rdx;  // elements count
  2031     const Register saved_count = rcx;
  2033     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2034     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2036     address disjoint_copy_entry = NULL;
  2037     if (is_oop) {
  2038       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
  2039       disjoint_copy_entry = disjoint_oop_copy_entry;
  2040       oop_copy_entry  = __ pc();
  2041       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
  2042     } else {
  2043       disjoint_copy_entry = disjoint_long_copy_entry;
  2044       long_copy_entry = __ pc();
  2045       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
  2047     BLOCK_COMMENT("Entry:");
  2048     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2050     array_overlap_test(disjoint_copy_entry, Address::times_8);
  2051     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2052                       // r9 and r10 may be used to save non-volatile registers
  2054     // 'from', 'to' and 'qword_count' are now valid
  2056     if (is_oop) {
  2057       // Save to and count for store barrier
  2058       __ movptr(saved_count, qword_count);
  2059       // No registers are destroyed by this call
  2060       gen_write_ref_array_pre_barrier(to, saved_count);
  2063     __ jmp(L_copy_32_bytes);
  2065     // Copy trailing qwords
  2066   __ BIND(L_copy_8_bytes);
  2067     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2068     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2069     __ decrement(qword_count);
  2070     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2072     if (is_oop) {
  2073       __ jmp(L_exit);
  2074     } else {
  2075       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2076       restore_arg_regs();
  2077       __ xorptr(rax, rax); // return 0
  2078       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2079       __ ret(0);
  2082     // Copy in 32-bytes chunks
  2083     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2085     if (is_oop) {
  2086     __ BIND(L_exit);
  2087       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2088       gen_write_ref_array_post_barrier(to, rcx, rax);
  2089       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2090     } else {
  2091       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2093     restore_arg_regs();
  2094     __ xorptr(rax, rax); // return 0
  2095     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2096     __ ret(0);
  2098     return start;
  2102   // Helper for generating a dynamic type check.
  2103   // Smashes no registers.
  2104   void generate_type_check(Register sub_klass,
  2105                            Register super_check_offset,
  2106                            Register super_klass,
  2107                            Label& L_success) {
  2108     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2110     BLOCK_COMMENT("type_check:");
  2112     Label L_miss;
  2114     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
  2115                                      super_check_offset);
  2116     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
  2118     // Fall through on failure!
  2119     __ BIND(L_miss);
  2122   //
  2123   //  Generate checkcasting array copy stub
  2124   //
  2125   //  Input:
  2126   //    c_rarg0   - source array address
  2127   //    c_rarg1   - destination array address
  2128   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2129   //    c_rarg3   - size_t ckoff (super_check_offset)
  2130   // not Win64
  2131   //    c_rarg4   - oop ckval (super_klass)
  2132   // Win64
  2133   //    rsp+40    - oop ckval (super_klass)
  2134   //
  2135   //  Output:
  2136   //    rax ==  0  -  success
  2137   //    rax == -1^K - failure, where K is partial transfer count
  2138   //
  2139   address generate_checkcast_copy(const char *name) {
  2141     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2143     // Input registers (after setup_arg_regs)
  2144     const Register from        = rdi;   // source array address
  2145     const Register to          = rsi;   // destination array address
  2146     const Register length      = rdx;   // elements count
  2147     const Register ckoff       = rcx;   // super_check_offset
  2148     const Register ckval       = r8;    // super_klass
  2150     // Registers used as temps (r13, r14 are save-on-entry)
  2151     const Register end_from    = from;  // source array end address
  2152     const Register end_to      = r13;   // destination array end address
  2153     const Register count       = rdx;   // -(count_remaining)
  2154     const Register r14_length  = r14;   // saved copy of length
  2155     // End pointers are inclusive, and if length is not zero they point
  2156     // to the last unit copied:  end_to[0] := end_from[0]
  2158     const Register rax_oop    = rax;    // actual oop copied
  2159     const Register r11_klass  = r11;    // oop._klass
  2161     //---------------------------------------------------------------
  2162     // Assembler stub will be used for this call to arraycopy
  2163     // if the two arrays are subtypes of Object[] but the
  2164     // destination array type is not equal to or a supertype
  2165     // of the source type.  Each element must be separately
  2166     // checked.
  2168     __ align(CodeEntryAlignment);
  2169     StubCodeMark mark(this, "StubRoutines", name);
  2170     address start = __ pc();
  2172     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2174     checkcast_copy_entry  = __ pc();
  2175     BLOCK_COMMENT("Entry:");
  2177 #ifdef ASSERT
  2178     // caller guarantees that the arrays really are different
  2179     // otherwise, we would have to make conjoint checks
  2180     { Label L;
  2181       array_overlap_test(L, TIMES_OOP);
  2182       __ stop("checkcast_copy within a single array");
  2183       __ bind(L);
  2185 #endif //ASSERT
  2187     // allocate spill slots for r13, r14
  2188     enum {
  2189       saved_r13_offset,
  2190       saved_r14_offset,
  2191       saved_rbp_offset,
  2192       saved_rip_offset,
  2193       saved_rarg0_offset
  2194     };
  2195     __ subptr(rsp, saved_rbp_offset * wordSize);
  2196     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2197     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2198     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2199                        // ckoff => rcx, ckval => r8
  2200                        // r9 and r10 may be used to save non-volatile registers
  2201 #ifdef _WIN64
  2202     // last argument (#4) is on stack on Win64
  2203     const int ckval_offset = saved_rarg0_offset + 4;
  2204     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
  2205 #endif
  2207     // check that int operands are properly extended to size_t
  2208     assert_clean_int(length, rax);
  2209     assert_clean_int(ckoff, rax);
  2211 #ifdef ASSERT
  2212     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2213     // The ckoff and ckval must be mutually consistent,
  2214     // even though caller generates both.
  2215     { Label L;
  2216       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2217                         Klass::super_check_offset_offset_in_bytes());
  2218       __ cmpl(ckoff, Address(ckval, sco_offset));
  2219       __ jcc(Assembler::equal, L);
  2220       __ stop("super_check_offset inconsistent");
  2221       __ bind(L);
  2223 #endif //ASSERT
  2225     // Loop-invariant addresses.  They are exclusive end pointers.
  2226     Address end_from_addr(from, length, TIMES_OOP, 0);
  2227     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2228     // Loop-variant addresses.  They assume post-incremented count < 0.
  2229     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2230     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2232     gen_write_ref_array_pre_barrier(to, count);
  2234     // Copy from low to high addresses, indexed from the end of each array.
  2235     __ lea(end_from, end_from_addr);
  2236     __ lea(end_to,   end_to_addr);
  2237     __ movptr(r14_length, length);        // save a copy of the length
  2238     assert(length == count, "");          // else fix next line:
  2239     __ negptr(count);                     // negate and test the length
  2240     __ jcc(Assembler::notZero, L_load_element);
  2242     // Empty array:  Nothing to do.
  2243     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2244     __ jmp(L_done);
  2246     // ======== begin loop ========
  2247     // (Loop is rotated; its entry is L_load_element.)
  2248     // Loop control:
  2249     //   for (count = -count; count != 0; count++)
  2250     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2251     __ align(OptoLoopAlignment);
  2253     __ BIND(L_store_element);
  2254     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2255     __ increment(count);               // increment the count toward zero
  2256     __ jcc(Assembler::zero, L_do_card_marks);
  2258     // ======== loop entry is here ========
  2259     __ BIND(L_load_element);
  2260     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2261     __ testptr(rax_oop, rax_oop);
  2262     __ jcc(Assembler::zero, L_store_element);
  2264     __ load_klass(r11_klass, rax_oop);// query the object klass
  2265     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2266     // ======== end loop ========
  2268     // It was a real error; we must depend on the caller to finish the job.
  2269     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2270     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2271     // and report their number to the caller.
  2272     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2273     __ lea(end_to, to_element_addr);
  2274     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
  2275     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2276     __ movptr(rax, r14_length);           // original oops
  2277     __ addptr(rax, count);                // K = (original - remaining) oops
  2278     __ notptr(rax);                       // report (-1^K) to caller
  2279     __ jmp(L_done);
  2281     // Come here on success only.
  2282     __ BIND(L_do_card_marks);
  2283     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
  2284     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2285     __ xorptr(rax, rax);                  // return 0 on success
  2287     // Common exit point (success or failure).
  2288     __ BIND(L_done);
  2289     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2290     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2291     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  2292     restore_arg_regs();
  2293     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2294     __ ret(0);
  2296     return start;
  2299   //
  2300   //  Generate 'unsafe' array copy stub
  2301   //  Though just as safe as the other stubs, it takes an unscaled
  2302   //  size_t argument instead of an element count.
  2303   //
  2304   //  Input:
  2305   //    c_rarg0   - source array address
  2306   //    c_rarg1   - destination array address
  2307   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2308   //
  2309   // Examines the alignment of the operands and dispatches
  2310   // to a long, int, short, or byte copy loop.
  2311   //
  2312   address generate_unsafe_copy(const char *name) {
  2314     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2316     // Input registers (before setup_arg_regs)
  2317     const Register from        = c_rarg0;  // source array address
  2318     const Register to          = c_rarg1;  // destination array address
  2319     const Register size        = c_rarg2;  // byte count (size_t)
  2321     // Register used as a temp
  2322     const Register bits        = rax;      // test copy of low bits
  2324     __ align(CodeEntryAlignment);
  2325     StubCodeMark mark(this, "StubRoutines", name);
  2326     address start = __ pc();
  2328     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2330     // bump this on entry, not on exit:
  2331     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2333     __ mov(bits, from);
  2334     __ orptr(bits, to);
  2335     __ orptr(bits, size);
  2337     __ testb(bits, BytesPerLong-1);
  2338     __ jccb(Assembler::zero, L_long_aligned);
  2340     __ testb(bits, BytesPerInt-1);
  2341     __ jccb(Assembler::zero, L_int_aligned);
  2343     __ testb(bits, BytesPerShort-1);
  2344     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2346     __ BIND(L_short_aligned);
  2347     __ shrptr(size, LogBytesPerShort); // size => short_count
  2348     __ jump(RuntimeAddress(short_copy_entry));
  2350     __ BIND(L_int_aligned);
  2351     __ shrptr(size, LogBytesPerInt); // size => int_count
  2352     __ jump(RuntimeAddress(int_copy_entry));
  2354     __ BIND(L_long_aligned);
  2355     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2356     __ jump(RuntimeAddress(long_copy_entry));
  2358     return start;
  2361   // Perform range checks on the proposed arraycopy.
  2362   // Kills temp, but nothing else.
  2363   // Also, clean the sign bits of src_pos and dst_pos.
  2364   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2365                               Register src_pos, // source position (c_rarg1)
  2366                               Register dst,     // destination array oo (c_rarg2)
  2367                               Register dst_pos, // destination position (c_rarg3)
  2368                               Register length,
  2369                               Register temp,
  2370                               Label& L_failed) {
  2371     BLOCK_COMMENT("arraycopy_range_checks:");
  2373     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2374     __ movl(temp, length);
  2375     __ addl(temp, src_pos);             // src_pos + length
  2376     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2377     __ jcc(Assembler::above, L_failed);
  2379     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2380     __ movl(temp, length);
  2381     __ addl(temp, dst_pos);             // dst_pos + length
  2382     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2383     __ jcc(Assembler::above, L_failed);
  2385     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2386     // Move with sign extension can be used since they are positive.
  2387     __ movslq(src_pos, src_pos);
  2388     __ movslq(dst_pos, dst_pos);
  2390     BLOCK_COMMENT("arraycopy_range_checks done");
  2393   //
  2394   //  Generate generic array copy stubs
  2395   //
  2396   //  Input:
  2397   //    c_rarg0    -  src oop
  2398   //    c_rarg1    -  src_pos (32-bits)
  2399   //    c_rarg2    -  dst oop
  2400   //    c_rarg3    -  dst_pos (32-bits)
  2401   // not Win64
  2402   //    c_rarg4    -  element count (32-bits)
  2403   // Win64
  2404   //    rsp+40     -  element count (32-bits)
  2405   //
  2406   //  Output:
  2407   //    rax ==  0  -  success
  2408   //    rax == -1^K - failure, where K is partial transfer count
  2409   //
  2410   address generate_generic_copy(const char *name) {
  2412     Label L_failed, L_failed_0, L_objArray;
  2413     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2415     // Input registers
  2416     const Register src        = c_rarg0;  // source array oop
  2417     const Register src_pos    = c_rarg1;  // source position
  2418     const Register dst        = c_rarg2;  // destination array oop
  2419     const Register dst_pos    = c_rarg3;  // destination position
  2420     // elements count is on stack on Win64
  2421 #ifdef _WIN64
  2422 #define C_RARG4 Address(rsp, 6 * wordSize)
  2423 #else
  2424 #define C_RARG4 c_rarg4
  2425 #endif
  2427     { int modulus = CodeEntryAlignment;
  2428       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2429       int advance = target - (__ offset() % modulus);
  2430       if (advance < 0)  advance += modulus;
  2431       if (advance > 0)  __ nop(advance);
  2433     StubCodeMark mark(this, "StubRoutines", name);
  2435     // Short-hop target to L_failed.  Makes for denser prologue code.
  2436     __ BIND(L_failed_0);
  2437     __ jmp(L_failed);
  2438     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2440     __ align(CodeEntryAlignment);
  2441     address start = __ pc();
  2443     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2445     // bump this on entry, not on exit:
  2446     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2448     //-----------------------------------------------------------------------
  2449     // Assembler stub will be used for this call to arraycopy
  2450     // if the following conditions are met:
  2451     //
  2452     // (1) src and dst must not be null.
  2453     // (2) src_pos must not be negative.
  2454     // (3) dst_pos must not be negative.
  2455     // (4) length  must not be negative.
  2456     // (5) src klass and dst klass should be the same and not NULL.
  2457     // (6) src and dst should be arrays.
  2458     // (7) src_pos + length must not exceed length of src.
  2459     // (8) dst_pos + length must not exceed length of dst.
  2460     //
  2462     //  if (src == NULL) return -1;
  2463     __ testptr(src, src);         // src oop
  2464     size_t j1off = __ offset();
  2465     __ jccb(Assembler::zero, L_failed_0);
  2467     //  if (src_pos < 0) return -1;
  2468     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2469     __ jccb(Assembler::negative, L_failed_0);
  2471     //  if (dst == NULL) return -1;
  2472     __ testptr(dst, dst);         // dst oop
  2473     __ jccb(Assembler::zero, L_failed_0);
  2475     //  if (dst_pos < 0) return -1;
  2476     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2477     size_t j4off = __ offset();
  2478     __ jccb(Assembler::negative, L_failed_0);
  2480     // The first four tests are very dense code,
  2481     // but not quite dense enough to put four
  2482     // jumps in a 16-byte instruction fetch buffer.
  2483     // That's good, because some branch predicters
  2484     // do not like jumps so close together.
  2485     // Make sure of this.
  2486     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2488     // registers used as temp
  2489     const Register r11_length    = r11; // elements count to copy
  2490     const Register r10_src_klass = r10; // array klass
  2491     const Register r9_dst_klass  = r9;  // dest array klass
  2493     //  if (length < 0) return -1;
  2494     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
  2495     __ testl(r11_length, r11_length);
  2496     __ jccb(Assembler::negative, L_failed_0);
  2498     __ load_klass(r10_src_klass, src);
  2499 #ifdef ASSERT
  2500     //  assert(src->klass() != NULL);
  2501     BLOCK_COMMENT("assert klasses not null");
  2502     { Label L1, L2;
  2503       __ testptr(r10_src_klass, r10_src_klass);
  2504       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2505       __ bind(L1);
  2506       __ stop("broken null klass");
  2507       __ bind(L2);
  2508       __ load_klass(r9_dst_klass, dst);
  2509       __ cmpq(r9_dst_klass, 0);
  2510       __ jcc(Assembler::equal, L1);     // this would be broken also
  2511       BLOCK_COMMENT("assert done");
  2513 #endif
  2515     // Load layout helper (32-bits)
  2516     //
  2517     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2518     // 32        30    24            16              8     2                 0
  2519     //
  2520     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2521     //
  2523     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2524                     Klass::layout_helper_offset_in_bytes();
  2526     const Register rax_lh = rax;  // layout helper
  2528     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2530     // Handle objArrays completely differently...
  2531     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2532     __ cmpl(rax_lh, objArray_lh);
  2533     __ jcc(Assembler::equal, L_objArray);
  2535     //  if (src->klass() != dst->klass()) return -1;
  2536     __ load_klass(r9_dst_klass, dst);
  2537     __ cmpq(r10_src_klass, r9_dst_klass);
  2538     __ jcc(Assembler::notEqual, L_failed);
  2540     //  if (!src->is_Array()) return -1;
  2541     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2542     __ jcc(Assembler::greaterEqual, L_failed);
  2544     // At this point, it is known to be a typeArray (array_tag 0x3).
  2545 #ifdef ASSERT
  2546     { Label L;
  2547       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2548       __ jcc(Assembler::greaterEqual, L);
  2549       __ stop("must be a primitive array");
  2550       __ bind(L);
  2552 #endif
  2554     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2555                            r10, L_failed);
  2557     // typeArrayKlass
  2558     //
  2559     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2560     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2561     //
  2563     const Register r10_offset = r10;    // array offset
  2564     const Register rax_elsize = rax_lh; // element size
  2566     __ movl(r10_offset, rax_lh);
  2567     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2568     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2569     __ addptr(src, r10_offset);           // src array offset
  2570     __ addptr(dst, r10_offset);           // dst array offset
  2571     BLOCK_COMMENT("choose copy loop based on element size");
  2572     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2574     // next registers should be set before the jump to corresponding stub
  2575     const Register from     = c_rarg0;  // source array address
  2576     const Register to       = c_rarg1;  // destination array address
  2577     const Register count    = c_rarg2;  // elements count
  2579     // 'from', 'to', 'count' registers should be set in such order
  2580     // since they are the same as 'src', 'src_pos', 'dst'.
  2582   __ BIND(L_copy_bytes);
  2583     __ cmpl(rax_elsize, 0);
  2584     __ jccb(Assembler::notEqual, L_copy_shorts);
  2585     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2586     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2587     __ movl2ptr(count, r11_length); // length
  2588     __ jump(RuntimeAddress(byte_copy_entry));
  2590   __ BIND(L_copy_shorts);
  2591     __ cmpl(rax_elsize, LogBytesPerShort);
  2592     __ jccb(Assembler::notEqual, L_copy_ints);
  2593     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2594     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2595     __ movl2ptr(count, r11_length); // length
  2596     __ jump(RuntimeAddress(short_copy_entry));
  2598   __ BIND(L_copy_ints);
  2599     __ cmpl(rax_elsize, LogBytesPerInt);
  2600     __ jccb(Assembler::notEqual, L_copy_longs);
  2601     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2602     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2603     __ movl2ptr(count, r11_length); // length
  2604     __ jump(RuntimeAddress(int_copy_entry));
  2606   __ BIND(L_copy_longs);
  2607 #ifdef ASSERT
  2608     { Label L;
  2609       __ cmpl(rax_elsize, LogBytesPerLong);
  2610       __ jcc(Assembler::equal, L);
  2611       __ stop("must be long copy, but elsize is wrong");
  2612       __ bind(L);
  2614 #endif
  2615     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2616     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2617     __ movl2ptr(count, r11_length); // length
  2618     __ jump(RuntimeAddress(long_copy_entry));
  2620     // objArrayKlass
  2621   __ BIND(L_objArray);
  2622     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
  2624     Label L_plain_copy, L_checkcast_copy;
  2625     //  test array classes for subtyping
  2626     __ load_klass(r9_dst_klass, dst);
  2627     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
  2628     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2630     // Identically typed arrays can be copied without element-wise checks.
  2631     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2632                            r10, L_failed);
  2634     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2635                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2636     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2637                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2638     __ movl2ptr(count, r11_length); // length
  2639   __ BIND(L_plain_copy);
  2640     __ jump(RuntimeAddress(oop_copy_entry));
  2642   __ BIND(L_checkcast_copy);
  2643     // live at this point:  r10_src_klass, !r11_length
  2645       // assert(r11_length == C_RARG4); // will reload from here
  2646       Register r11_dst_klass = r11;
  2647       __ load_klass(r11_dst_klass, dst);
  2649       // Before looking at dst.length, make sure dst is also an objArray.
  2650       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
  2651       __ jcc(Assembler::notEqual, L_failed);
  2653       // It is safe to examine both src.length and dst.length.
  2654 #ifndef _WIN64
  2655       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
  2656                              rax, L_failed);
  2657 #else
  2658       __ movl(r11_length, C_RARG4);     // reload
  2659       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2660                              rax, L_failed);
  2661       __ load_klass(r11_dst_klass, dst); // reload
  2662 #endif
  2664       // Marshal the base address arguments now, freeing registers.
  2665       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2666                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2667       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2668                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2669       __ movl(count, C_RARG4);          // length (reloaded)
  2670       Register sco_temp = c_rarg3;      // this register is free now
  2671       assert_different_registers(from, to, count, sco_temp,
  2672                                  r11_dst_klass, r10_src_klass);
  2673       assert_clean_int(count, sco_temp);
  2675       // Generate the type check.
  2676       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2677                         Klass::super_check_offset_offset_in_bytes());
  2678       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2679       assert_clean_int(sco_temp, rax);
  2680       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2682       // Fetch destination element klass from the objArrayKlass header.
  2683       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2684                        objArrayKlass::element_klass_offset_in_bytes());
  2685       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2686       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
  2687       assert_clean_int(sco_temp, rax);
  2689       // the checkcast_copy loop needs two extra arguments:
  2690       assert(c_rarg3 == sco_temp, "#3 already in place");
  2691       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
  2692       __ jump(RuntimeAddress(checkcast_copy_entry));
  2695   __ BIND(L_failed);
  2696     __ xorptr(rax, rax);
  2697     __ notptr(rax); // return -1
  2698     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2699     __ ret(0);
  2701     return start;
  2704 #undef length_arg
  2706   void generate_arraycopy_stubs() {
  2707     // Call the conjoint generation methods immediately after
  2708     // the disjoint ones so that short branches from the former
  2709     // to the latter can be generated.
  2710     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2711     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2713     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2714     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2716     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
  2717     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
  2719     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
  2720     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
  2723     if (UseCompressedOops) {
  2724       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
  2725       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
  2726     } else {
  2727       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
  2728       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
  2731     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2732     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2733     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2735     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2736     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2737     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2738     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2739     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2740     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2742     // We don't generate specialized code for HeapWord-aligned source
  2743     // arrays, so just use the code we've already generated
  2744     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2745     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2747     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2748     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2750     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2751     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2753     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2754     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2756     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2757     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2760   void generate_math_stubs() {
  2762       StubCodeMark mark(this, "StubRoutines", "log");
  2763       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2765       __ subq(rsp, 8);
  2766       __ movdbl(Address(rsp, 0), xmm0);
  2767       __ fld_d(Address(rsp, 0));
  2768       __ flog();
  2769       __ fstp_d(Address(rsp, 0));
  2770       __ movdbl(xmm0, Address(rsp, 0));
  2771       __ addq(rsp, 8);
  2772       __ ret(0);
  2775       StubCodeMark mark(this, "StubRoutines", "log10");
  2776       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2778       __ subq(rsp, 8);
  2779       __ movdbl(Address(rsp, 0), xmm0);
  2780       __ fld_d(Address(rsp, 0));
  2781       __ flog10();
  2782       __ fstp_d(Address(rsp, 0));
  2783       __ movdbl(xmm0, Address(rsp, 0));
  2784       __ addq(rsp, 8);
  2785       __ ret(0);
  2788       StubCodeMark mark(this, "StubRoutines", "sin");
  2789       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
  2791       __ subq(rsp, 8);
  2792       __ movdbl(Address(rsp, 0), xmm0);
  2793       __ fld_d(Address(rsp, 0));
  2794       __ trigfunc('s');
  2795       __ fstp_d(Address(rsp, 0));
  2796       __ movdbl(xmm0, Address(rsp, 0));
  2797       __ addq(rsp, 8);
  2798       __ ret(0);
  2801       StubCodeMark mark(this, "StubRoutines", "cos");
  2802       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2804       __ subq(rsp, 8);
  2805       __ movdbl(Address(rsp, 0), xmm0);
  2806       __ fld_d(Address(rsp, 0));
  2807       __ trigfunc('c');
  2808       __ fstp_d(Address(rsp, 0));
  2809       __ movdbl(xmm0, Address(rsp, 0));
  2810       __ addq(rsp, 8);
  2811       __ ret(0);
  2814       StubCodeMark mark(this, "StubRoutines", "tan");
  2815       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2817       __ subq(rsp, 8);
  2818       __ movdbl(Address(rsp, 0), xmm0);
  2819       __ fld_d(Address(rsp, 0));
  2820       __ trigfunc('t');
  2821       __ fstp_d(Address(rsp, 0));
  2822       __ movdbl(xmm0, Address(rsp, 0));
  2823       __ addq(rsp, 8);
  2824       __ ret(0);
  2827     // The intrinsic version of these seem to return the same value as
  2828     // the strict version.
  2829     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2830     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2833 #undef __
  2834 #define __ masm->
  2836   // Continuation point for throwing of implicit exceptions that are
  2837   // not handled in the current activation. Fabricates an exception
  2838   // oop and initiates normal exception dispatching in this
  2839   // frame. Since we need to preserve callee-saved values (currently
  2840   // only for C2, but done for C1 as well) we need a callee-saved oop
  2841   // map and therefore have to make these stubs into RuntimeStubs
  2842   // rather than BufferBlobs.  If the compiler needs all registers to
  2843   // be preserved between the fault point and the exception handler
  2844   // then it must assume responsibility for that in
  2845   // AbstractCompiler::continuation_for_implicit_null_exception or
  2846   // continuation_for_implicit_division_by_zero_exception. All other
  2847   // implicit exceptions (e.g., NullPointerException or
  2848   // AbstractMethodError on entry) are either at call sites or
  2849   // otherwise assume that stack unwinding will be initiated, so
  2850   // caller saved registers were assumed volatile in the compiler.
  2851   address generate_throw_exception(const char* name,
  2852                                    address runtime_entry,
  2853                                    bool restore_saved_exception_pc) {
  2854     // Information about frame layout at time of blocking runtime call.
  2855     // Note that we only have to preserve callee-saved registers since
  2856     // the compilers are responsible for supplying a continuation point
  2857     // if they expect all registers to be preserved.
  2858     enum layout {
  2859       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2860       rbp_off2,
  2861       return_off,
  2862       return_off2,
  2863       framesize // inclusive of return address
  2864     };
  2866     int insts_size = 512;
  2867     int locs_size  = 64;
  2869     CodeBuffer code(name, insts_size, locs_size);
  2870     OopMapSet* oop_maps  = new OopMapSet();
  2871     MacroAssembler* masm = new MacroAssembler(&code);
  2873     address start = __ pc();
  2875     // This is an inlined and slightly modified version of call_VM
  2876     // which has the ability to fetch the return PC out of
  2877     // thread-local storage and also sets up last_Java_sp slightly
  2878     // differently than the real call_VM
  2879     if (restore_saved_exception_pc) {
  2880       __ movptr(rax,
  2881                 Address(r15_thread,
  2882                         in_bytes(JavaThread::saved_exception_pc_offset())));
  2883       __ push(rax);
  2886     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2888     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2890     // return address and rbp are already in place
  2891     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2893     int frame_complete = __ pc() - start;
  2895     // Set up last_Java_sp and last_Java_fp
  2896     __ set_last_Java_frame(rsp, rbp, NULL);
  2898     // Call runtime
  2899     __ movptr(c_rarg0, r15_thread);
  2900     BLOCK_COMMENT("call runtime_entry");
  2901     __ call(RuntimeAddress(runtime_entry));
  2903     // Generate oop map
  2904     OopMap* map = new OopMap(framesize, 0);
  2906     oop_maps->add_gc_map(__ pc() - start, map);
  2908     __ reset_last_Java_frame(true, false);
  2910     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2912     // check for pending exceptions
  2913 #ifdef ASSERT
  2914     Label L;
  2915     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  2916             (int32_t) NULL_WORD);
  2917     __ jcc(Assembler::notEqual, L);
  2918     __ should_not_reach_here();
  2919     __ bind(L);
  2920 #endif // ASSERT
  2921     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2924     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  2925     RuntimeStub* stub =
  2926       RuntimeStub::new_runtime_stub(name,
  2927                                     &code,
  2928                                     frame_complete,
  2929                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  2930                                     oop_maps, false);
  2931     return stub->entry_point();
  2934   // Initialization
  2935   void generate_initial() {
  2936     // Generates all stubs and initializes the entry points
  2938     // This platform-specific stub is needed by generate_call_stub()
  2939     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  2941     // entry points that exist in all platforms Note: This is code
  2942     // that could be shared among different platforms - however the
  2943     // benefit seems to be smaller than the disadvantage of having a
  2944     // much more complicated generator structure. See also comment in
  2945     // stubRoutines.hpp.
  2947     StubRoutines::_forward_exception_entry = generate_forward_exception();
  2949     StubRoutines::_call_stub_entry =
  2950       generate_call_stub(StubRoutines::_call_stub_return_address);
  2952     // is referenced by megamorphic call
  2953     StubRoutines::_catch_exception_entry = generate_catch_exception();
  2955     // atomic calls
  2956     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2957     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  2958     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2959     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2960     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2961     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  2962     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  2964     StubRoutines::_handler_for_unsafe_access_entry =
  2965       generate_handler_for_unsafe_access();
  2967     // platform dependent
  2968     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  2970     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  2973   void generate_all() {
  2974     // Generates all stubs and initializes the entry points
  2976     // These entry points require SharedInfo::stack0 to be set up in
  2977     // non-core builds and need to be relocatable, so they each
  2978     // fabricate a RuntimeStub internally.
  2979     StubRoutines::_throw_AbstractMethodError_entry =
  2980       generate_throw_exception("AbstractMethodError throw_exception",
  2981                                CAST_FROM_FN_PTR(address,
  2982                                                 SharedRuntime::
  2983                                                 throw_AbstractMethodError),
  2984                                false);
  2986     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  2987       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  2988                                CAST_FROM_FN_PTR(address,
  2989                                                 SharedRuntime::
  2990                                                 throw_IncompatibleClassChangeError),
  2991                                false);
  2993     StubRoutines::_throw_ArithmeticException_entry =
  2994       generate_throw_exception("ArithmeticException throw_exception",
  2995                                CAST_FROM_FN_PTR(address,
  2996                                                 SharedRuntime::
  2997                                                 throw_ArithmeticException),
  2998                                true);
  3000     StubRoutines::_throw_NullPointerException_entry =
  3001       generate_throw_exception("NullPointerException throw_exception",
  3002                                CAST_FROM_FN_PTR(address,
  3003                                                 SharedRuntime::
  3004                                                 throw_NullPointerException),
  3005                                true);
  3007     StubRoutines::_throw_NullPointerException_at_call_entry =
  3008       generate_throw_exception("NullPointerException at call throw_exception",
  3009                                CAST_FROM_FN_PTR(address,
  3010                                                 SharedRuntime::
  3011                                                 throw_NullPointerException_at_call),
  3012                                false);
  3014     StubRoutines::_throw_StackOverflowError_entry =
  3015       generate_throw_exception("StackOverflowError throw_exception",
  3016                                CAST_FROM_FN_PTR(address,
  3017                                                 SharedRuntime::
  3018                                                 throw_StackOverflowError),
  3019                                false);
  3021     // entry points that are platform specific
  3022     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  3023     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  3024     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  3025     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  3027     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  3028     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  3029     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  3030     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  3032     // support for verify_oop (must happen after universe_init)
  3033     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  3035     // arraycopy stubs used by compilers
  3036     generate_arraycopy_stubs();
  3038     generate_math_stubs();
  3041  public:
  3042   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3043     if (all) {
  3044       generate_all();
  3045     } else {
  3046       generate_initial();
  3049 }; // end class declaration
  3051 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  3052 address StubGenerator::disjoint_short_copy_entry = NULL;
  3053 address StubGenerator::disjoint_int_copy_entry   = NULL;
  3054 address StubGenerator::disjoint_long_copy_entry  = NULL;
  3055 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  3057 address StubGenerator::byte_copy_entry  = NULL;
  3058 address StubGenerator::short_copy_entry = NULL;
  3059 address StubGenerator::int_copy_entry   = NULL;
  3060 address StubGenerator::long_copy_entry  = NULL;
  3061 address StubGenerator::oop_copy_entry   = NULL;
  3063 address StubGenerator::checkcast_copy_entry = NULL;
  3065 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3066   StubGenerator g(code, all);

mercurial