src/cpu/x86/vm/stubGenerator_x86_64.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2118
d6f45b55c972
child 2348
bbefa3ca1543
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef COMPILER2
    51 #include "opto/runtime.hpp"
    52 #endif
    54 // Declaration and definition of StubGenerator (no .hpp file).
    55 // For a more detailed description of the stub routine structure
    56 // see the comment in stubRoutines.hpp
    58 #define __ _masm->
    59 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    60 #define a__ ((Assembler*)_masm)->
    62 #ifdef PRODUCT
    63 #define BLOCK_COMMENT(str) /* nothing */
    64 #else
    65 #define BLOCK_COMMENT(str) __ block_comment(str)
    66 #endif
    68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    69 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    71 // Stub Code definitions
    73 static address handle_unsafe_access() {
    74   JavaThread* thread = JavaThread::current();
    75   address pc = thread->saved_exception_pc();
    76   // pc is the instruction which we must emulate
    77   // doing a no-op is fine:  return garbage from the load
    78   // therefore, compute npc
    79   address npc = Assembler::locate_next_instruction(pc);
    81   // request an async exception
    82   thread->set_pending_unsafe_access_error();
    84   // return address of next instruction to execute
    85   return npc;
    86 }
    88 class StubGenerator: public StubCodeGenerator {
    89  private:
    91 #ifdef PRODUCT
    92 #define inc_counter_np(counter) (0)
    93 #else
    94   void inc_counter_np_(int& counter) {
    95     __ incrementl(ExternalAddress((address)&counter));
    96   }
    97 #define inc_counter_np(counter) \
    98   BLOCK_COMMENT("inc_counter " #counter); \
    99   inc_counter_np_(counter);
   100 #endif
   102   // Call stubs are used to call Java from C
   103   //
   104   // Linux Arguments:
   105   //    c_rarg0:   call wrapper address                   address
   106   //    c_rarg1:   result                                 address
   107   //    c_rarg2:   result type                            BasicType
   108   //    c_rarg3:   method                                 methodOop
   109   //    c_rarg4:   (interpreter) entry point              address
   110   //    c_rarg5:   parameters                             intptr_t*
   111   //    16(rbp): parameter size (in words)              int
   112   //    24(rbp): thread                                 Thread*
   113   //
   114   //     [ return_from_Java     ] <--- rsp
   115   //     [ argument word n      ]
   116   //      ...
   117   // -12 [ argument word 1      ]
   118   // -11 [ saved r15            ] <--- rsp_after_call
   119   // -10 [ saved r14            ]
   120   //  -9 [ saved r13            ]
   121   //  -8 [ saved r12            ]
   122   //  -7 [ saved rbx            ]
   123   //  -6 [ call wrapper         ]
   124   //  -5 [ result               ]
   125   //  -4 [ result type          ]
   126   //  -3 [ method               ]
   127   //  -2 [ entry point          ]
   128   //  -1 [ parameters           ]
   129   //   0 [ saved rbp            ] <--- rbp
   130   //   1 [ return address       ]
   131   //   2 [ parameter size       ]
   132   //   3 [ thread               ]
   133   //
   134   // Windows Arguments:
   135   //    c_rarg0:   call wrapper address                   address
   136   //    c_rarg1:   result                                 address
   137   //    c_rarg2:   result type                            BasicType
   138   //    c_rarg3:   method                                 methodOop
   139   //    48(rbp): (interpreter) entry point              address
   140   //    56(rbp): parameters                             intptr_t*
   141   //    64(rbp): parameter size (in words)              int
   142   //    72(rbp): thread                                 Thread*
   143   //
   144   //     [ return_from_Java     ] <--- rsp
   145   //     [ argument word n      ]
   146   //      ...
   147   //  -8 [ argument word 1      ]
   148   //  -7 [ saved r15            ] <--- rsp_after_call
   149   //  -6 [ saved r14            ]
   150   //  -5 [ saved r13            ]
   151   //  -4 [ saved r12            ]
   152   //  -3 [ saved rdi            ]
   153   //  -2 [ saved rsi            ]
   154   //  -1 [ saved rbx            ]
   155   //   0 [ saved rbp            ] <--- rbp
   156   //   1 [ return address       ]
   157   //   2 [ call wrapper         ]
   158   //   3 [ result               ]
   159   //   4 [ result type          ]
   160   //   5 [ method               ]
   161   //   6 [ entry point          ]
   162   //   7 [ parameters           ]
   163   //   8 [ parameter size       ]
   164   //   9 [ thread               ]
   165   //
   166   //    Windows reserves the callers stack space for arguments 1-4.
   167   //    We spill c_rarg0-c_rarg3 to this space.
   169   // Call stub stack layout word offsets from rbp
   170   enum call_stub_layout {
   171 #ifdef _WIN64
   172     rsp_after_call_off = -7,
   173     r15_off            = rsp_after_call_off,
   174     r14_off            = -6,
   175     r13_off            = -5,
   176     r12_off            = -4,
   177     rdi_off            = -3,
   178     rsi_off            = -2,
   179     rbx_off            = -1,
   180     rbp_off            =  0,
   181     retaddr_off        =  1,
   182     call_wrapper_off   =  2,
   183     result_off         =  3,
   184     result_type_off    =  4,
   185     method_off         =  5,
   186     entry_point_off    =  6,
   187     parameters_off     =  7,
   188     parameter_size_off =  8,
   189     thread_off         =  9
   190 #else
   191     rsp_after_call_off = -12,
   192     mxcsr_off          = rsp_after_call_off,
   193     r15_off            = -11,
   194     r14_off            = -10,
   195     r13_off            = -9,
   196     r12_off            = -8,
   197     rbx_off            = -7,
   198     call_wrapper_off   = -6,
   199     result_off         = -5,
   200     result_type_off    = -4,
   201     method_off         = -3,
   202     entry_point_off    = -2,
   203     parameters_off     = -1,
   204     rbp_off            =  0,
   205     retaddr_off        =  1,
   206     parameter_size_off =  2,
   207     thread_off         =  3
   208 #endif
   209   };
   211   address generate_call_stub(address& return_address) {
   212     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   213            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   214            "adjust this code");
   215     StubCodeMark mark(this, "StubRoutines", "call_stub");
   216     address start = __ pc();
   218     // same as in generate_catch_exception()!
   219     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   221     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   222     const Address result        (rbp, result_off         * wordSize);
   223     const Address result_type   (rbp, result_type_off    * wordSize);
   224     const Address method        (rbp, method_off         * wordSize);
   225     const Address entry_point   (rbp, entry_point_off    * wordSize);
   226     const Address parameters    (rbp, parameters_off     * wordSize);
   227     const Address parameter_size(rbp, parameter_size_off * wordSize);
   229     // same as in generate_catch_exception()!
   230     const Address thread        (rbp, thread_off         * wordSize);
   232     const Address r15_save(rbp, r15_off * wordSize);
   233     const Address r14_save(rbp, r14_off * wordSize);
   234     const Address r13_save(rbp, r13_off * wordSize);
   235     const Address r12_save(rbp, r12_off * wordSize);
   236     const Address rbx_save(rbp, rbx_off * wordSize);
   238     // stub code
   239     __ enter();
   240     __ subptr(rsp, -rsp_after_call_off * wordSize);
   242     // save register parameters
   243 #ifndef _WIN64
   244     __ movptr(parameters,   c_rarg5); // parameters
   245     __ movptr(entry_point,  c_rarg4); // entry_point
   246 #endif
   248     __ movptr(method,       c_rarg3); // method
   249     __ movl(result_type,  c_rarg2);   // result type
   250     __ movptr(result,       c_rarg1); // result
   251     __ movptr(call_wrapper, c_rarg0); // call wrapper
   253     // save regs belonging to calling function
   254     __ movptr(rbx_save, rbx);
   255     __ movptr(r12_save, r12);
   256     __ movptr(r13_save, r13);
   257     __ movptr(r14_save, r14);
   258     __ movptr(r15_save, r15);
   260 #ifdef _WIN64
   261     const Address rdi_save(rbp, rdi_off * wordSize);
   262     const Address rsi_save(rbp, rsi_off * wordSize);
   264     __ movptr(rsi_save, rsi);
   265     __ movptr(rdi_save, rdi);
   266 #else
   267     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   268     {
   269       Label skip_ldmx;
   270       __ stmxcsr(mxcsr_save);
   271       __ movl(rax, mxcsr_save);
   272       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   273       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   274       __ cmp32(rax, mxcsr_std);
   275       __ jcc(Assembler::equal, skip_ldmx);
   276       __ ldmxcsr(mxcsr_std);
   277       __ bind(skip_ldmx);
   278     }
   279 #endif
   281     // Load up thread register
   282     __ movptr(r15_thread, thread);
   283     __ reinit_heapbase();
   285 #ifdef ASSERT
   286     // make sure we have no pending exceptions
   287     {
   288       Label L;
   289       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   290       __ jcc(Assembler::equal, L);
   291       __ stop("StubRoutines::call_stub: entered with pending exception");
   292       __ bind(L);
   293     }
   294 #endif
   296     // pass parameters if any
   297     BLOCK_COMMENT("pass parameters if any");
   298     Label parameters_done;
   299     __ movl(c_rarg3, parameter_size);
   300     __ testl(c_rarg3, c_rarg3);
   301     __ jcc(Assembler::zero, parameters_done);
   303     Label loop;
   304     __ movptr(c_rarg2, parameters);       // parameter pointer
   305     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   306     __ BIND(loop);
   307     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   308     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   309     __ decrementl(c_rarg1);             // decrement counter
   310     __ push(rax);                       // pass parameter
   311     __ jcc(Assembler::notZero, loop);
   313     // call Java function
   314     __ BIND(parameters_done);
   315     __ movptr(rbx, method);             // get methodOop
   316     __ movptr(c_rarg1, entry_point);    // get entry_point
   317     __ mov(r13, rsp);                   // set sender sp
   318     BLOCK_COMMENT("call Java function");
   319     __ call(c_rarg1);
   321     BLOCK_COMMENT("call_stub_return_address:");
   322     return_address = __ pc();
   324     // store result depending on type (everything that is not
   325     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   326     __ movptr(c_rarg0, result);
   327     Label is_long, is_float, is_double, exit;
   328     __ movl(c_rarg1, result_type);
   329     __ cmpl(c_rarg1, T_OBJECT);
   330     __ jcc(Assembler::equal, is_long);
   331     __ cmpl(c_rarg1, T_LONG);
   332     __ jcc(Assembler::equal, is_long);
   333     __ cmpl(c_rarg1, T_FLOAT);
   334     __ jcc(Assembler::equal, is_float);
   335     __ cmpl(c_rarg1, T_DOUBLE);
   336     __ jcc(Assembler::equal, is_double);
   338     // handle T_INT case
   339     __ movl(Address(c_rarg0, 0), rax);
   341     __ BIND(exit);
   343     // pop parameters
   344     __ lea(rsp, rsp_after_call);
   346 #ifdef ASSERT
   347     // verify that threads correspond
   348     {
   349       Label L, S;
   350       __ cmpptr(r15_thread, thread);
   351       __ jcc(Assembler::notEqual, S);
   352       __ get_thread(rbx);
   353       __ cmpptr(r15_thread, rbx);
   354       __ jcc(Assembler::equal, L);
   355       __ bind(S);
   356       __ jcc(Assembler::equal, L);
   357       __ stop("StubRoutines::call_stub: threads must correspond");
   358       __ bind(L);
   359     }
   360 #endif
   362     // restore regs belonging to calling function
   363     __ movptr(r15, r15_save);
   364     __ movptr(r14, r14_save);
   365     __ movptr(r13, r13_save);
   366     __ movptr(r12, r12_save);
   367     __ movptr(rbx, rbx_save);
   369 #ifdef _WIN64
   370     __ movptr(rdi, rdi_save);
   371     __ movptr(rsi, rsi_save);
   372 #else
   373     __ ldmxcsr(mxcsr_save);
   374 #endif
   376     // restore rsp
   377     __ addptr(rsp, -rsp_after_call_off * wordSize);
   379     // return
   380     __ pop(rbp);
   381     __ ret(0);
   383     // handle return types different from T_INT
   384     __ BIND(is_long);
   385     __ movq(Address(c_rarg0, 0), rax);
   386     __ jmp(exit);
   388     __ BIND(is_float);
   389     __ movflt(Address(c_rarg0, 0), xmm0);
   390     __ jmp(exit);
   392     __ BIND(is_double);
   393     __ movdbl(Address(c_rarg0, 0), xmm0);
   394     __ jmp(exit);
   396     return start;
   397   }
   399   // Return point for a Java call if there's an exception thrown in
   400   // Java code.  The exception is caught and transformed into a
   401   // pending exception stored in JavaThread that can be tested from
   402   // within the VM.
   403   //
   404   // Note: Usually the parameters are removed by the callee. In case
   405   // of an exception crossing an activation frame boundary, that is
   406   // not the case if the callee is compiled code => need to setup the
   407   // rsp.
   408   //
   409   // rax: exception oop
   411   address generate_catch_exception() {
   412     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   413     address start = __ pc();
   415     // same as in generate_call_stub():
   416     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   417     const Address thread        (rbp, thread_off         * wordSize);
   419 #ifdef ASSERT
   420     // verify that threads correspond
   421     {
   422       Label L, S;
   423       __ cmpptr(r15_thread, thread);
   424       __ jcc(Assembler::notEqual, S);
   425       __ get_thread(rbx);
   426       __ cmpptr(r15_thread, rbx);
   427       __ jcc(Assembler::equal, L);
   428       __ bind(S);
   429       __ stop("StubRoutines::catch_exception: threads must correspond");
   430       __ bind(L);
   431     }
   432 #endif
   434     // set pending exception
   435     __ verify_oop(rax);
   437     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   438     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   439     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   440     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   442     // complete return to VM
   443     assert(StubRoutines::_call_stub_return_address != NULL,
   444            "_call_stub_return_address must have been generated before");
   445     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   447     return start;
   448   }
   450   // Continuation point for runtime calls returning with a pending
   451   // exception.  The pending exception check happened in the runtime
   452   // or native call stub.  The pending exception in Thread is
   453   // converted into a Java-level exception.
   454   //
   455   // Contract with Java-level exception handlers:
   456   // rax: exception
   457   // rdx: throwing pc
   458   //
   459   // NOTE: At entry of this stub, exception-pc must be on stack !!
   461   address generate_forward_exception() {
   462     StubCodeMark mark(this, "StubRoutines", "forward exception");
   463     address start = __ pc();
   465     // Upon entry, the sp points to the return address returning into
   466     // Java (interpreted or compiled) code; i.e., the return address
   467     // becomes the throwing pc.
   468     //
   469     // Arguments pushed before the runtime call are still on the stack
   470     // but the exception handler will reset the stack pointer ->
   471     // ignore them.  A potential result in registers can be ignored as
   472     // well.
   474 #ifdef ASSERT
   475     // make sure this code is only executed if there is a pending exception
   476     {
   477       Label L;
   478       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   479       __ jcc(Assembler::notEqual, L);
   480       __ stop("StubRoutines::forward exception: no pending exception (1)");
   481       __ bind(L);
   482     }
   483 #endif
   485     // compute exception handler into rbx
   486     __ movptr(c_rarg0, Address(rsp, 0));
   487     BLOCK_COMMENT("call exception_handler_for_return_address");
   488     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   489                          SharedRuntime::exception_handler_for_return_address),
   490                     r15_thread, c_rarg0);
   491     __ mov(rbx, rax);
   493     // setup rax & rdx, remove return address & clear pending exception
   494     __ pop(rdx);
   495     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   496     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   498 #ifdef ASSERT
   499     // make sure exception is set
   500     {
   501       Label L;
   502       __ testptr(rax, rax);
   503       __ jcc(Assembler::notEqual, L);
   504       __ stop("StubRoutines::forward exception: no pending exception (2)");
   505       __ bind(L);
   506     }
   507 #endif
   509     // continue at exception handler (return address removed)
   510     // rax: exception
   511     // rbx: exception handler
   512     // rdx: throwing pc
   513     __ verify_oop(rax);
   514     __ jmp(rbx);
   516     return start;
   517   }
   519   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   520   //
   521   // Arguments :
   522   //    c_rarg0: exchange_value
   523   //    c_rarg0: dest
   524   //
   525   // Result:
   526   //    *dest <- ex, return (orig *dest)
   527   address generate_atomic_xchg() {
   528     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   529     address start = __ pc();
   531     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   532     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   533     __ ret(0);
   535     return start;
   536   }
   538   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   539   //
   540   // Arguments :
   541   //    c_rarg0: exchange_value
   542   //    c_rarg1: dest
   543   //
   544   // Result:
   545   //    *dest <- ex, return (orig *dest)
   546   address generate_atomic_xchg_ptr() {
   547     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   548     address start = __ pc();
   550     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   551     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   552     __ ret(0);
   554     return start;
   555   }
   557   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   558   //                                         jint compare_value)
   559   //
   560   // Arguments :
   561   //    c_rarg0: exchange_value
   562   //    c_rarg1: dest
   563   //    c_rarg2: compare_value
   564   //
   565   // Result:
   566   //    if ( compare_value == *dest ) {
   567   //       *dest = exchange_value
   568   //       return compare_value;
   569   //    else
   570   //       return *dest;
   571   address generate_atomic_cmpxchg() {
   572     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   573     address start = __ pc();
   575     __ movl(rax, c_rarg2);
   576    if ( os::is_MP() ) __ lock();
   577     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   578     __ ret(0);
   580     return start;
   581   }
   583   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   584   //                                             volatile jlong* dest,
   585   //                                             jlong compare_value)
   586   // Arguments :
   587   //    c_rarg0: exchange_value
   588   //    c_rarg1: dest
   589   //    c_rarg2: compare_value
   590   //
   591   // Result:
   592   //    if ( compare_value == *dest ) {
   593   //       *dest = exchange_value
   594   //       return compare_value;
   595   //    else
   596   //       return *dest;
   597   address generate_atomic_cmpxchg_long() {
   598     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   599     address start = __ pc();
   601     __ movq(rax, c_rarg2);
   602    if ( os::is_MP() ) __ lock();
   603     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   604     __ ret(0);
   606     return start;
   607   }
   609   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   610   //
   611   // Arguments :
   612   //    c_rarg0: add_value
   613   //    c_rarg1: dest
   614   //
   615   // Result:
   616   //    *dest += add_value
   617   //    return *dest;
   618   address generate_atomic_add() {
   619     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   620     address start = __ pc();
   622     __ movl(rax, c_rarg0);
   623    if ( os::is_MP() ) __ lock();
   624     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   625     __ addl(rax, c_rarg0);
   626     __ ret(0);
   628     return start;
   629   }
   631   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   632   //
   633   // Arguments :
   634   //    c_rarg0: add_value
   635   //    c_rarg1: dest
   636   //
   637   // Result:
   638   //    *dest += add_value
   639   //    return *dest;
   640   address generate_atomic_add_ptr() {
   641     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   642     address start = __ pc();
   644     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   645    if ( os::is_MP() ) __ lock();
   646     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   647     __ addptr(rax, c_rarg0);
   648     __ ret(0);
   650     return start;
   651   }
   653   // Support for intptr_t OrderAccess::fence()
   654   //
   655   // Arguments :
   656   //
   657   // Result:
   658   address generate_orderaccess_fence() {
   659     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   660     address start = __ pc();
   661     __ membar(Assembler::StoreLoad);
   662     __ ret(0);
   664     return start;
   665   }
   667   // Support for intptr_t get_previous_fp()
   668   //
   669   // This routine is used to find the previous frame pointer for the
   670   // caller (current_frame_guess). This is used as part of debugging
   671   // ps() is seemingly lost trying to find frames.
   672   // This code assumes that caller current_frame_guess) has a frame.
   673   address generate_get_previous_fp() {
   674     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   675     const Address old_fp(rbp, 0);
   676     const Address older_fp(rax, 0);
   677     address start = __ pc();
   679     __ enter();
   680     __ movptr(rax, old_fp); // callers fp
   681     __ movptr(rax, older_fp); // the frame for ps()
   682     __ pop(rbp);
   683     __ ret(0);
   685     return start;
   686   }
   688   //----------------------------------------------------------------------------------------------------
   689   // Support for void verify_mxcsr()
   690   //
   691   // This routine is used with -Xcheck:jni to verify that native
   692   // JNI code does not return to Java code without restoring the
   693   // MXCSR register to our expected state.
   695   address generate_verify_mxcsr() {
   696     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   697     address start = __ pc();
   699     const Address mxcsr_save(rsp, 0);
   701     if (CheckJNICalls) {
   702       Label ok_ret;
   703       __ push(rax);
   704       __ subptr(rsp, wordSize);      // allocate a temp location
   705       __ stmxcsr(mxcsr_save);
   706       __ movl(rax, mxcsr_save);
   707       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   708       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   709       __ jcc(Assembler::equal, ok_ret);
   711       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   713       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   715       __ bind(ok_ret);
   716       __ addptr(rsp, wordSize);
   717       __ pop(rax);
   718     }
   720     __ ret(0);
   722     return start;
   723   }
   725   address generate_f2i_fixup() {
   726     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   727     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   729     address start = __ pc();
   731     Label L;
   733     __ push(rax);
   734     __ push(c_rarg3);
   735     __ push(c_rarg2);
   736     __ push(c_rarg1);
   738     __ movl(rax, 0x7f800000);
   739     __ xorl(c_rarg3, c_rarg3);
   740     __ movl(c_rarg2, inout);
   741     __ movl(c_rarg1, c_rarg2);
   742     __ andl(c_rarg1, 0x7fffffff);
   743     __ cmpl(rax, c_rarg1); // NaN? -> 0
   744     __ jcc(Assembler::negative, L);
   745     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   746     __ movl(c_rarg3, 0x80000000);
   747     __ movl(rax, 0x7fffffff);
   748     __ cmovl(Assembler::positive, c_rarg3, rax);
   750     __ bind(L);
   751     __ movptr(inout, c_rarg3);
   753     __ pop(c_rarg1);
   754     __ pop(c_rarg2);
   755     __ pop(c_rarg3);
   756     __ pop(rax);
   758     __ ret(0);
   760     return start;
   761   }
   763   address generate_f2l_fixup() {
   764     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   765     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   766     address start = __ pc();
   768     Label L;
   770     __ push(rax);
   771     __ push(c_rarg3);
   772     __ push(c_rarg2);
   773     __ push(c_rarg1);
   775     __ movl(rax, 0x7f800000);
   776     __ xorl(c_rarg3, c_rarg3);
   777     __ movl(c_rarg2, inout);
   778     __ movl(c_rarg1, c_rarg2);
   779     __ andl(c_rarg1, 0x7fffffff);
   780     __ cmpl(rax, c_rarg1); // NaN? -> 0
   781     __ jcc(Assembler::negative, L);
   782     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   783     __ mov64(c_rarg3, 0x8000000000000000);
   784     __ mov64(rax, 0x7fffffffffffffff);
   785     __ cmov(Assembler::positive, c_rarg3, rax);
   787     __ bind(L);
   788     __ movptr(inout, c_rarg3);
   790     __ pop(c_rarg1);
   791     __ pop(c_rarg2);
   792     __ pop(c_rarg3);
   793     __ pop(rax);
   795     __ ret(0);
   797     return start;
   798   }
   800   address generate_d2i_fixup() {
   801     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   802     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   804     address start = __ pc();
   806     Label L;
   808     __ push(rax);
   809     __ push(c_rarg3);
   810     __ push(c_rarg2);
   811     __ push(c_rarg1);
   812     __ push(c_rarg0);
   814     __ movl(rax, 0x7ff00000);
   815     __ movq(c_rarg2, inout);
   816     __ movl(c_rarg3, c_rarg2);
   817     __ mov(c_rarg1, c_rarg2);
   818     __ mov(c_rarg0, c_rarg2);
   819     __ negl(c_rarg3);
   820     __ shrptr(c_rarg1, 0x20);
   821     __ orl(c_rarg3, c_rarg2);
   822     __ andl(c_rarg1, 0x7fffffff);
   823     __ xorl(c_rarg2, c_rarg2);
   824     __ shrl(c_rarg3, 0x1f);
   825     __ orl(c_rarg1, c_rarg3);
   826     __ cmpl(rax, c_rarg1);
   827     __ jcc(Assembler::negative, L); // NaN -> 0
   828     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   829     __ movl(c_rarg2, 0x80000000);
   830     __ movl(rax, 0x7fffffff);
   831     __ cmov(Assembler::positive, c_rarg2, rax);
   833     __ bind(L);
   834     __ movptr(inout, c_rarg2);
   836     __ pop(c_rarg0);
   837     __ pop(c_rarg1);
   838     __ pop(c_rarg2);
   839     __ pop(c_rarg3);
   840     __ pop(rax);
   842     __ ret(0);
   844     return start;
   845   }
   847   address generate_d2l_fixup() {
   848     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   849     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   851     address start = __ pc();
   853     Label L;
   855     __ push(rax);
   856     __ push(c_rarg3);
   857     __ push(c_rarg2);
   858     __ push(c_rarg1);
   859     __ push(c_rarg0);
   861     __ movl(rax, 0x7ff00000);
   862     __ movq(c_rarg2, inout);
   863     __ movl(c_rarg3, c_rarg2);
   864     __ mov(c_rarg1, c_rarg2);
   865     __ mov(c_rarg0, c_rarg2);
   866     __ negl(c_rarg3);
   867     __ shrptr(c_rarg1, 0x20);
   868     __ orl(c_rarg3, c_rarg2);
   869     __ andl(c_rarg1, 0x7fffffff);
   870     __ xorl(c_rarg2, c_rarg2);
   871     __ shrl(c_rarg3, 0x1f);
   872     __ orl(c_rarg1, c_rarg3);
   873     __ cmpl(rax, c_rarg1);
   874     __ jcc(Assembler::negative, L); // NaN -> 0
   875     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   876     __ mov64(c_rarg2, 0x8000000000000000);
   877     __ mov64(rax, 0x7fffffffffffffff);
   878     __ cmovq(Assembler::positive, c_rarg2, rax);
   880     __ bind(L);
   881     __ movq(inout, c_rarg2);
   883     __ pop(c_rarg0);
   884     __ pop(c_rarg1);
   885     __ pop(c_rarg2);
   886     __ pop(c_rarg3);
   887     __ pop(rax);
   889     __ ret(0);
   891     return start;
   892   }
   894   address generate_fp_mask(const char *stub_name, int64_t mask) {
   895     __ align(CodeEntryAlignment);
   896     StubCodeMark mark(this, "StubRoutines", stub_name);
   897     address start = __ pc();
   899     __ emit_data64( mask, relocInfo::none );
   900     __ emit_data64( mask, relocInfo::none );
   902     return start;
   903   }
   905   // The following routine generates a subroutine to throw an
   906   // asynchronous UnknownError when an unsafe access gets a fault that
   907   // could not be reasonably prevented by the programmer.  (Example:
   908   // SIGBUS/OBJERR.)
   909   address generate_handler_for_unsafe_access() {
   910     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   911     address start = __ pc();
   913     __ push(0);                       // hole for return address-to-be
   914     __ pusha();                       // push registers
   915     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   917     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   918     BLOCK_COMMENT("call handle_unsafe_access");
   919     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   920     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   922     __ movptr(next_pc, rax);          // stuff next address
   923     __ popa();
   924     __ ret(0);                        // jump to next address
   926     return start;
   927   }
   929   // Non-destructive plausibility checks for oops
   930   //
   931   // Arguments:
   932   //    all args on stack!
   933   //
   934   // Stack after saving c_rarg3:
   935   //    [tos + 0]: saved c_rarg3
   936   //    [tos + 1]: saved c_rarg2
   937   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   938   //    [tos + 3]: saved flags
   939   //    [tos + 4]: return address
   940   //  * [tos + 5]: error message (char*)
   941   //  * [tos + 6]: object to verify (oop)
   942   //  * [tos + 7]: saved rax - saved by caller and bashed
   943   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
   944   //  * = popped on exit
   945   address generate_verify_oop() {
   946     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   947     address start = __ pc();
   949     Label exit, error;
   951     __ pushf();
   952     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   954     __ push(r12);
   956     // save c_rarg2 and c_rarg3
   957     __ push(c_rarg2);
   958     __ push(c_rarg3);
   960     enum {
   961            // After previous pushes.
   962            oop_to_verify = 6 * wordSize,
   963            saved_rax     = 7 * wordSize,
   964            saved_r10     = 8 * wordSize,
   966            // Before the call to MacroAssembler::debug(), see below.
   967            return_addr   = 16 * wordSize,
   968            error_msg     = 17 * wordSize
   969     };
   971     // get object
   972     __ movptr(rax, Address(rsp, oop_to_verify));
   974     // make sure object is 'reasonable'
   975     __ testptr(rax, rax);
   976     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
   977     // Check if the oop is in the right area of memory
   978     __ movptr(c_rarg2, rax);
   979     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
   980     __ andptr(c_rarg2, c_rarg3);
   981     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
   982     __ cmpptr(c_rarg2, c_rarg3);
   983     __ jcc(Assembler::notZero, error);
   985     // set r12 to heapbase for load_klass()
   986     __ reinit_heapbase();
   988     // make sure klass is 'reasonable'
   989     __ load_klass(rax, rax);  // get klass
   990     __ testptr(rax, rax);
   991     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
   992     // Check if the klass is in the right area of memory
   993     __ mov(c_rarg2, rax);
   994     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   995     __ andptr(c_rarg2, c_rarg3);
   996     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   997     __ cmpptr(c_rarg2, c_rarg3);
   998     __ jcc(Assembler::notZero, error);
  1000     // make sure klass' klass is 'reasonable'
  1001     __ load_klass(rax, rax);
  1002     __ testptr(rax, rax);
  1003     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
  1004     // Check if the klass' klass is in the right area of memory
  1005     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
  1006     __ andptr(rax, c_rarg3);
  1007     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
  1008     __ cmpptr(rax, c_rarg3);
  1009     __ jcc(Assembler::notZero, error);
  1011     // return if everything seems ok
  1012     __ bind(exit);
  1013     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1014     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1015     __ pop(c_rarg3);                             // restore c_rarg3
  1016     __ pop(c_rarg2);                             // restore c_rarg2
  1017     __ pop(r12);                                 // restore r12
  1018     __ popf();                                   // restore flags
  1019     __ ret(4 * wordSize);                        // pop caller saved stuff
  1021     // handle errors
  1022     __ bind(error);
  1023     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1024     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
  1025     __ pop(c_rarg3);                             // get saved c_rarg3 back
  1026     __ pop(c_rarg2);                             // get saved c_rarg2 back
  1027     __ pop(r12);                                 // get saved r12 back
  1028     __ popf();                                   // get saved flags off stack --
  1029                                                  // will be ignored
  1031     __ pusha();                                  // push registers
  1032                                                  // (rip is already
  1033                                                  // already pushed)
  1034     // debug(char* msg, int64_t pc, int64_t regs[])
  1035     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1036     // pushed all the registers, so now the stack looks like:
  1037     //     [tos +  0] 16 saved registers
  1038     //     [tos + 16] return address
  1039     //   * [tos + 17] error message (char*)
  1040     //   * [tos + 18] object to verify (oop)
  1041     //   * [tos + 19] saved rax - saved by caller and bashed
  1042     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
  1043     //   * = popped on exit
  1045     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1046     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1047     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1048     __ mov(r12, rsp);                               // remember rsp
  1049     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1050     __ andptr(rsp, -16);                            // align stack as required by ABI
  1051     BLOCK_COMMENT("call MacroAssembler::debug");
  1052     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1053     __ mov(rsp, r12);                               // restore rsp
  1054     __ popa();                                      // pop registers (includes r12)
  1055     __ ret(4 * wordSize);                           // pop caller saved stuff
  1057     return start;
  1060   static address disjoint_byte_copy_entry;
  1061   static address disjoint_short_copy_entry;
  1062   static address disjoint_int_copy_entry;
  1063   static address disjoint_long_copy_entry;
  1064   static address disjoint_oop_copy_entry;
  1066   static address byte_copy_entry;
  1067   static address short_copy_entry;
  1068   static address int_copy_entry;
  1069   static address long_copy_entry;
  1070   static address oop_copy_entry;
  1072   static address checkcast_copy_entry;
  1074   //
  1075   // Verify that a register contains clean 32-bits positive value
  1076   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1077   //
  1078   //  Input:
  1079   //    Rint  -  32-bits value
  1080   //    Rtmp  -  scratch
  1081   //
  1082   void assert_clean_int(Register Rint, Register Rtmp) {
  1083 #ifdef ASSERT
  1084     Label L;
  1085     assert_different_registers(Rtmp, Rint);
  1086     __ movslq(Rtmp, Rint);
  1087     __ cmpq(Rtmp, Rint);
  1088     __ jcc(Assembler::equal, L);
  1089     __ stop("high 32-bits of int value are not 0");
  1090     __ bind(L);
  1091 #endif
  1094   //  Generate overlap test for array copy stubs
  1095   //
  1096   //  Input:
  1097   //     c_rarg0 - from
  1098   //     c_rarg1 - to
  1099   //     c_rarg2 - element count
  1100   //
  1101   //  Output:
  1102   //     rax   - &from[element count - 1]
  1103   //
  1104   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1105     assert(no_overlap_target != NULL, "must be generated");
  1106     array_overlap_test(no_overlap_target, NULL, sf);
  1108   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1109     array_overlap_test(NULL, &L_no_overlap, sf);
  1111   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1112     const Register from     = c_rarg0;
  1113     const Register to       = c_rarg1;
  1114     const Register count    = c_rarg2;
  1115     const Register end_from = rax;
  1117     __ cmpptr(to, from);
  1118     __ lea(end_from, Address(from, count, sf, 0));
  1119     if (NOLp == NULL) {
  1120       ExternalAddress no_overlap(no_overlap_target);
  1121       __ jump_cc(Assembler::belowEqual, no_overlap);
  1122       __ cmpptr(to, end_from);
  1123       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1124     } else {
  1125       __ jcc(Assembler::belowEqual, (*NOLp));
  1126       __ cmpptr(to, end_from);
  1127       __ jcc(Assembler::aboveEqual, (*NOLp));
  1131   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1132   //
  1133   // Outputs:
  1134   //    rdi - rcx
  1135   //    rsi - rdx
  1136   //    rdx - r8
  1137   //    rcx - r9
  1138   //
  1139   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1140   // are non-volatile.  r9 and r10 should not be used by the caller.
  1141   //
  1142   void setup_arg_regs(int nargs = 3) {
  1143     const Register saved_rdi = r9;
  1144     const Register saved_rsi = r10;
  1145     assert(nargs == 3 || nargs == 4, "else fix");
  1146 #ifdef _WIN64
  1147     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1148            "unexpected argument registers");
  1149     if (nargs >= 4)
  1150       __ mov(rax, r9);  // r9 is also saved_rdi
  1151     __ movptr(saved_rdi, rdi);
  1152     __ movptr(saved_rsi, rsi);
  1153     __ mov(rdi, rcx); // c_rarg0
  1154     __ mov(rsi, rdx); // c_rarg1
  1155     __ mov(rdx, r8);  // c_rarg2
  1156     if (nargs >= 4)
  1157       __ mov(rcx, rax); // c_rarg3 (via rax)
  1158 #else
  1159     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1160            "unexpected argument registers");
  1161 #endif
  1164   void restore_arg_regs() {
  1165     const Register saved_rdi = r9;
  1166     const Register saved_rsi = r10;
  1167 #ifdef _WIN64
  1168     __ movptr(rdi, saved_rdi);
  1169     __ movptr(rsi, saved_rsi);
  1170 #endif
  1173   // Generate code for an array write pre barrier
  1174   //
  1175   //     addr    -  starting address
  1176   //     count    -  element count
  1177   //
  1178   //     Destroy no registers!
  1179   //
  1180   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1181     BarrierSet* bs = Universe::heap()->barrier_set();
  1182     switch (bs->kind()) {
  1183       case BarrierSet::G1SATBCT:
  1184       case BarrierSet::G1SATBCTLogging:
  1186           __ pusha();                      // push registers
  1187           if (count == c_rarg0) {
  1188             if (addr == c_rarg1) {
  1189               // exactly backwards!!
  1190               __ xchgptr(c_rarg1, c_rarg0);
  1191             } else {
  1192               __ movptr(c_rarg1, count);
  1193               __ movptr(c_rarg0, addr);
  1196           } else {
  1197             __ movptr(c_rarg0, addr);
  1198             __ movptr(c_rarg1, count);
  1200           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
  1201           __ popa();
  1203         break;
  1204       case BarrierSet::CardTableModRef:
  1205       case BarrierSet::CardTableExtension:
  1206       case BarrierSet::ModRef:
  1207         break;
  1208       default:
  1209         ShouldNotReachHere();
  1214   //
  1215   // Generate code for an array write post barrier
  1216   //
  1217   //  Input:
  1218   //     start    - register containing starting address of destination array
  1219   //     end      - register containing ending address of destination array
  1220   //     scratch  - scratch register
  1221   //
  1222   //  The input registers are overwritten.
  1223   //  The ending address is inclusive.
  1224   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1225     assert_different_registers(start, end, scratch);
  1226     BarrierSet* bs = Universe::heap()->barrier_set();
  1227     switch (bs->kind()) {
  1228       case BarrierSet::G1SATBCT:
  1229       case BarrierSet::G1SATBCTLogging:
  1232           __ pusha();                      // push registers (overkill)
  1233           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1234           assert_different_registers(start, end, scratch);
  1235           __ lea(scratch, Address(end, BytesPerHeapOop));
  1236           __ subptr(scratch, start);               // subtract start to get #bytes
  1237           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
  1238           __ mov(c_rarg0, start);
  1239           __ mov(c_rarg1, scratch);
  1240           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
  1241           __ popa();
  1243         break;
  1244       case BarrierSet::CardTableModRef:
  1245       case BarrierSet::CardTableExtension:
  1247           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1248           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1250           Label L_loop;
  1252            __ shrptr(start, CardTableModRefBS::card_shift);
  1253            __ addptr(end, BytesPerHeapOop);
  1254            __ shrptr(end, CardTableModRefBS::card_shift);
  1255            __ subptr(end, start); // number of bytes to copy
  1257           intptr_t disp = (intptr_t) ct->byte_map_base;
  1258           if (__ is_simm32(disp)) {
  1259             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1260             __ lea(scratch, cardtable);
  1261           } else {
  1262             ExternalAddress cardtable((address)disp);
  1263             __ lea(scratch, cardtable);
  1266           const Register count = end; // 'end' register contains bytes count now
  1267           __ addptr(start, scratch);
  1268         __ BIND(L_loop);
  1269           __ movb(Address(start, count, Address::times_1), 0);
  1270           __ decrement(count);
  1271           __ jcc(Assembler::greaterEqual, L_loop);
  1273         break;
  1274       default:
  1275         ShouldNotReachHere();
  1281   // Copy big chunks forward
  1282   //
  1283   // Inputs:
  1284   //   end_from     - source arrays end address
  1285   //   end_to       - destination array end address
  1286   //   qword_count  - 64-bits element count, negative
  1287   //   to           - scratch
  1288   //   L_copy_32_bytes - entry label
  1289   //   L_copy_8_bytes  - exit  label
  1290   //
  1291   void copy_32_bytes_forward(Register end_from, Register end_to,
  1292                              Register qword_count, Register to,
  1293                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1294     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1295     Label L_loop;
  1296     __ align(OptoLoopAlignment);
  1297   __ BIND(L_loop);
  1298     if(UseUnalignedLoadStores) {
  1299       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1300       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1301       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1302       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1304     } else {
  1305       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1306       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1307       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1308       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1309       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1310       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1311       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1312       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1314   __ BIND(L_copy_32_bytes);
  1315     __ addptr(qword_count, 4);
  1316     __ jcc(Assembler::lessEqual, L_loop);
  1317     __ subptr(qword_count, 4);
  1318     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1322   // Copy big chunks backward
  1323   //
  1324   // Inputs:
  1325   //   from         - source arrays address
  1326   //   dest         - destination array address
  1327   //   qword_count  - 64-bits element count
  1328   //   to           - scratch
  1329   //   L_copy_32_bytes - entry label
  1330   //   L_copy_8_bytes  - exit  label
  1331   //
  1332   void copy_32_bytes_backward(Register from, Register dest,
  1333                               Register qword_count, Register to,
  1334                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1335     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1336     Label L_loop;
  1337     __ align(OptoLoopAlignment);
  1338   __ BIND(L_loop);
  1339     if(UseUnalignedLoadStores) {
  1340       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1341       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1342       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1343       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1345     } else {
  1346       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1347       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1348       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1349       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1350       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1351       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1352       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1353       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1355   __ BIND(L_copy_32_bytes);
  1356     __ subptr(qword_count, 4);
  1357     __ jcc(Assembler::greaterEqual, L_loop);
  1358     __ addptr(qword_count, 4);
  1359     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1363   // Arguments:
  1364   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1365   //             ignored
  1366   //   name    - stub name string
  1367   //
  1368   // Inputs:
  1369   //   c_rarg0   - source array address
  1370   //   c_rarg1   - destination array address
  1371   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1372   //
  1373   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1374   // we let the hardware handle it.  The one to eight bytes within words,
  1375   // dwords or qwords that span cache line boundaries will still be loaded
  1376   // and stored atomically.
  1377   //
  1378   // Side Effects:
  1379   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1380   //   used by generate_conjoint_byte_copy().
  1381   //
  1382   address generate_disjoint_byte_copy(bool aligned, const char *name) {
  1383     __ align(CodeEntryAlignment);
  1384     StubCodeMark mark(this, "StubRoutines", name);
  1385     address start = __ pc();
  1387     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1388     Label L_copy_byte, L_exit;
  1389     const Register from        = rdi;  // source array address
  1390     const Register to          = rsi;  // destination array address
  1391     const Register count       = rdx;  // elements count
  1392     const Register byte_count  = rcx;
  1393     const Register qword_count = count;
  1394     const Register end_from    = from; // source array end address
  1395     const Register end_to      = to;   // destination array end address
  1396     // End pointers are inclusive, and if count is not zero they point
  1397     // to the last unit copied:  end_to[0] := end_from[0]
  1399     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1400     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1402     disjoint_byte_copy_entry = __ pc();
  1403     BLOCK_COMMENT("Entry:");
  1404     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1406     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1407                       // r9 and r10 may be used to save non-volatile registers
  1409     // 'from', 'to' and 'count' are now valid
  1410     __ movptr(byte_count, count);
  1411     __ shrptr(count, 3); // count => qword_count
  1413     // Copy from low to high addresses.  Use 'to' as scratch.
  1414     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1415     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1416     __ negptr(qword_count); // make the count negative
  1417     __ jmp(L_copy_32_bytes);
  1419     // Copy trailing qwords
  1420   __ BIND(L_copy_8_bytes);
  1421     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1422     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1423     __ increment(qword_count);
  1424     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1426     // Check for and copy trailing dword
  1427   __ BIND(L_copy_4_bytes);
  1428     __ testl(byte_count, 4);
  1429     __ jccb(Assembler::zero, L_copy_2_bytes);
  1430     __ movl(rax, Address(end_from, 8));
  1431     __ movl(Address(end_to, 8), rax);
  1433     __ addptr(end_from, 4);
  1434     __ addptr(end_to, 4);
  1436     // Check for and copy trailing word
  1437   __ BIND(L_copy_2_bytes);
  1438     __ testl(byte_count, 2);
  1439     __ jccb(Assembler::zero, L_copy_byte);
  1440     __ movw(rax, Address(end_from, 8));
  1441     __ movw(Address(end_to, 8), rax);
  1443     __ addptr(end_from, 2);
  1444     __ addptr(end_to, 2);
  1446     // Check for and copy trailing byte
  1447   __ BIND(L_copy_byte);
  1448     __ testl(byte_count, 1);
  1449     __ jccb(Assembler::zero, L_exit);
  1450     __ movb(rax, Address(end_from, 8));
  1451     __ movb(Address(end_to, 8), rax);
  1453   __ BIND(L_exit);
  1454     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1455     restore_arg_regs();
  1456     __ xorptr(rax, rax); // return 0
  1457     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1458     __ ret(0);
  1460     // Copy in 32-bytes chunks
  1461     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1462     __ jmp(L_copy_4_bytes);
  1464     return start;
  1467   // Arguments:
  1468   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1469   //             ignored
  1470   //   name    - stub name string
  1471   //
  1472   // Inputs:
  1473   //   c_rarg0   - source array address
  1474   //   c_rarg1   - destination array address
  1475   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1476   //
  1477   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1478   // we let the hardware handle it.  The one to eight bytes within words,
  1479   // dwords or qwords that span cache line boundaries will still be loaded
  1480   // and stored atomically.
  1481   //
  1482   address generate_conjoint_byte_copy(bool aligned, const char *name) {
  1483     __ align(CodeEntryAlignment);
  1484     StubCodeMark mark(this, "StubRoutines", name);
  1485     address start = __ pc();
  1487     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1488     const Register from        = rdi;  // source array address
  1489     const Register to          = rsi;  // destination array address
  1490     const Register count       = rdx;  // elements count
  1491     const Register byte_count  = rcx;
  1492     const Register qword_count = count;
  1494     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1495     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1497     byte_copy_entry = __ pc();
  1498     BLOCK_COMMENT("Entry:");
  1499     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1501     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
  1502     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1503                       // r9 and r10 may be used to save non-volatile registers
  1505     // 'from', 'to' and 'count' are now valid
  1506     __ movptr(byte_count, count);
  1507     __ shrptr(count, 3);   // count => qword_count
  1509     // Copy from high to low addresses.
  1511     // Check for and copy trailing byte
  1512     __ testl(byte_count, 1);
  1513     __ jcc(Assembler::zero, L_copy_2_bytes);
  1514     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1515     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1516     __ decrement(byte_count); // Adjust for possible trailing word
  1518     // Check for and copy trailing word
  1519   __ BIND(L_copy_2_bytes);
  1520     __ testl(byte_count, 2);
  1521     __ jcc(Assembler::zero, L_copy_4_bytes);
  1522     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1523     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1525     // Check for and copy trailing dword
  1526   __ BIND(L_copy_4_bytes);
  1527     __ testl(byte_count, 4);
  1528     __ jcc(Assembler::zero, L_copy_32_bytes);
  1529     __ movl(rax, Address(from, qword_count, Address::times_8));
  1530     __ movl(Address(to, qword_count, Address::times_8), rax);
  1531     __ jmp(L_copy_32_bytes);
  1533     // Copy trailing qwords
  1534   __ BIND(L_copy_8_bytes);
  1535     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1536     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1537     __ decrement(qword_count);
  1538     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1540     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1541     restore_arg_regs();
  1542     __ xorptr(rax, rax); // return 0
  1543     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1544     __ ret(0);
  1546     // Copy in 32-bytes chunks
  1547     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1549     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1550     restore_arg_regs();
  1551     __ xorptr(rax, rax); // return 0
  1552     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1553     __ ret(0);
  1555     return start;
  1558   // Arguments:
  1559   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1560   //             ignored
  1561   //   name    - stub name string
  1562   //
  1563   // Inputs:
  1564   //   c_rarg0   - source array address
  1565   //   c_rarg1   - destination array address
  1566   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1567   //
  1568   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1569   // let the hardware handle it.  The two or four words within dwords
  1570   // or qwords that span cache line boundaries will still be loaded
  1571   // and stored atomically.
  1572   //
  1573   // Side Effects:
  1574   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1575   //   used by generate_conjoint_short_copy().
  1576   //
  1577   address generate_disjoint_short_copy(bool aligned, const char *name) {
  1578     __ align(CodeEntryAlignment);
  1579     StubCodeMark mark(this, "StubRoutines", name);
  1580     address start = __ pc();
  1582     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1583     const Register from        = rdi;  // source array address
  1584     const Register to          = rsi;  // destination array address
  1585     const Register count       = rdx;  // elements count
  1586     const Register word_count  = rcx;
  1587     const Register qword_count = count;
  1588     const Register end_from    = from; // source array end address
  1589     const Register end_to      = to;   // destination array end address
  1590     // End pointers are inclusive, and if count is not zero they point
  1591     // to the last unit copied:  end_to[0] := end_from[0]
  1593     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1594     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1596     disjoint_short_copy_entry = __ pc();
  1597     BLOCK_COMMENT("Entry:");
  1598     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1600     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1601                       // r9 and r10 may be used to save non-volatile registers
  1603     // 'from', 'to' and 'count' are now valid
  1604     __ movptr(word_count, count);
  1605     __ shrptr(count, 2); // count => qword_count
  1607     // Copy from low to high addresses.  Use 'to' as scratch.
  1608     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1609     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1610     __ negptr(qword_count);
  1611     __ jmp(L_copy_32_bytes);
  1613     // Copy trailing qwords
  1614   __ BIND(L_copy_8_bytes);
  1615     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1616     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1617     __ increment(qword_count);
  1618     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1620     // Original 'dest' is trashed, so we can't use it as a
  1621     // base register for a possible trailing word copy
  1623     // Check for and copy trailing dword
  1624   __ BIND(L_copy_4_bytes);
  1625     __ testl(word_count, 2);
  1626     __ jccb(Assembler::zero, L_copy_2_bytes);
  1627     __ movl(rax, Address(end_from, 8));
  1628     __ movl(Address(end_to, 8), rax);
  1630     __ addptr(end_from, 4);
  1631     __ addptr(end_to, 4);
  1633     // Check for and copy trailing word
  1634   __ BIND(L_copy_2_bytes);
  1635     __ testl(word_count, 1);
  1636     __ jccb(Assembler::zero, L_exit);
  1637     __ movw(rax, Address(end_from, 8));
  1638     __ movw(Address(end_to, 8), rax);
  1640   __ BIND(L_exit);
  1641     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1642     restore_arg_regs();
  1643     __ xorptr(rax, rax); // return 0
  1644     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1645     __ ret(0);
  1647     // Copy in 32-bytes chunks
  1648     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1649     __ jmp(L_copy_4_bytes);
  1651     return start;
  1654   address generate_fill(BasicType t, bool aligned, const char *name) {
  1655     __ align(CodeEntryAlignment);
  1656     StubCodeMark mark(this, "StubRoutines", name);
  1657     address start = __ pc();
  1659     BLOCK_COMMENT("Entry:");
  1661     const Register to       = c_rarg0;  // source array address
  1662     const Register value    = c_rarg1;  // value
  1663     const Register count    = c_rarg2;  // elements count
  1665     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1667     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1669     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1670     __ ret(0);
  1671     return start;
  1674   // Arguments:
  1675   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1676   //             ignored
  1677   //   name    - stub name string
  1678   //
  1679   // Inputs:
  1680   //   c_rarg0   - source array address
  1681   //   c_rarg1   - destination array address
  1682   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1683   //
  1684   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1685   // let the hardware handle it.  The two or four words within dwords
  1686   // or qwords that span cache line boundaries will still be loaded
  1687   // and stored atomically.
  1688   //
  1689   address generate_conjoint_short_copy(bool aligned, const char *name) {
  1690     __ align(CodeEntryAlignment);
  1691     StubCodeMark mark(this, "StubRoutines", name);
  1692     address start = __ pc();
  1694     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1695     const Register from        = rdi;  // source array address
  1696     const Register to          = rsi;  // destination array address
  1697     const Register count       = rdx;  // elements count
  1698     const Register word_count  = rcx;
  1699     const Register qword_count = count;
  1701     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1702     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1704     short_copy_entry = __ pc();
  1705     BLOCK_COMMENT("Entry:");
  1706     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1708     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
  1709     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1710                       // r9 and r10 may be used to save non-volatile registers
  1712     // 'from', 'to' and 'count' are now valid
  1713     __ movptr(word_count, count);
  1714     __ shrptr(count, 2); // count => qword_count
  1716     // Copy from high to low addresses.  Use 'to' as scratch.
  1718     // Check for and copy trailing word
  1719     __ testl(word_count, 1);
  1720     __ jccb(Assembler::zero, L_copy_4_bytes);
  1721     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1722     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1724     // Check for and copy trailing dword
  1725   __ BIND(L_copy_4_bytes);
  1726     __ testl(word_count, 2);
  1727     __ jcc(Assembler::zero, L_copy_32_bytes);
  1728     __ movl(rax, Address(from, qword_count, Address::times_8));
  1729     __ movl(Address(to, qword_count, Address::times_8), rax);
  1730     __ jmp(L_copy_32_bytes);
  1732     // Copy trailing qwords
  1733   __ BIND(L_copy_8_bytes);
  1734     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1735     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1736     __ decrement(qword_count);
  1737     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1739     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1740     restore_arg_regs();
  1741     __ xorptr(rax, rax); // return 0
  1742     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1743     __ ret(0);
  1745     // Copy in 32-bytes chunks
  1746     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1748     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1749     restore_arg_regs();
  1750     __ xorptr(rax, rax); // return 0
  1751     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1752     __ ret(0);
  1754     return start;
  1757   // Arguments:
  1758   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1759   //             ignored
  1760   //   is_oop  - true => oop array, so generate store check code
  1761   //   name    - stub name string
  1762   //
  1763   // Inputs:
  1764   //   c_rarg0   - source array address
  1765   //   c_rarg1   - destination array address
  1766   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1767   //
  1768   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1769   // the hardware handle it.  The two dwords within qwords that span
  1770   // cache line boundaries will still be loaded and stored atomicly.
  1771   //
  1772   // Side Effects:
  1773   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1774   //   used by generate_conjoint_int_oop_copy().
  1775   //
  1776   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1777     __ align(CodeEntryAlignment);
  1778     StubCodeMark mark(this, "StubRoutines", name);
  1779     address start = __ pc();
  1781     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1782     const Register from        = rdi;  // source array address
  1783     const Register to          = rsi;  // destination array address
  1784     const Register count       = rdx;  // elements count
  1785     const Register dword_count = rcx;
  1786     const Register qword_count = count;
  1787     const Register end_from    = from; // source array end address
  1788     const Register end_to      = to;   // destination array end address
  1789     const Register saved_to    = r11;  // saved destination array address
  1790     // End pointers are inclusive, and if count is not zero they point
  1791     // to the last unit copied:  end_to[0] := end_from[0]
  1793     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1794     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1796     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
  1798     if (is_oop) {
  1799       // no registers are destroyed by this call
  1800       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1803     BLOCK_COMMENT("Entry:");
  1804     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1806     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1807                       // r9 and r10 may be used to save non-volatile registers
  1809     if (is_oop) {
  1810       __ movq(saved_to, to);
  1813     // 'from', 'to' and 'count' are now valid
  1814     __ movptr(dword_count, count);
  1815     __ shrptr(count, 1); // count => qword_count
  1817     // Copy from low to high addresses.  Use 'to' as scratch.
  1818     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1819     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1820     __ negptr(qword_count);
  1821     __ jmp(L_copy_32_bytes);
  1823     // Copy trailing qwords
  1824   __ BIND(L_copy_8_bytes);
  1825     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1826     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1827     __ increment(qword_count);
  1828     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1830     // Check for and copy trailing dword
  1831   __ BIND(L_copy_4_bytes);
  1832     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1833     __ jccb(Assembler::zero, L_exit);
  1834     __ movl(rax, Address(end_from, 8));
  1835     __ movl(Address(end_to, 8), rax);
  1837   __ BIND(L_exit);
  1838     if (is_oop) {
  1839       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1840       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1842     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1843     restore_arg_regs();
  1844     __ xorptr(rax, rax); // return 0
  1845     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1846     __ ret(0);
  1848     // Copy 32-bytes chunks
  1849     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1850     __ jmp(L_copy_4_bytes);
  1852     return start;
  1855   // Arguments:
  1856   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1857   //             ignored
  1858   //   is_oop  - true => oop array, so generate store check code
  1859   //   name    - stub name string
  1860   //
  1861   // Inputs:
  1862   //   c_rarg0   - source array address
  1863   //   c_rarg1   - destination array address
  1864   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1865   //
  1866   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1867   // the hardware handle it.  The two dwords within qwords that span
  1868   // cache line boundaries will still be loaded and stored atomicly.
  1869   //
  1870   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1871     __ align(CodeEntryAlignment);
  1872     StubCodeMark mark(this, "StubRoutines", name);
  1873     address start = __ pc();
  1875     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1876     const Register from        = rdi;  // source array address
  1877     const Register to          = rsi;  // destination array address
  1878     const Register count       = rdx;  // elements count
  1879     const Register dword_count = rcx;
  1880     const Register qword_count = count;
  1882     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1883     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1885     if (is_oop) {
  1886       // no registers are destroyed by this call
  1887       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1890     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
  1891     BLOCK_COMMENT("Entry:");
  1892     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1894     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
  1895                        Address::times_4);
  1896     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1897                       // r9 and r10 may be used to save non-volatile registers
  1899     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1900     // 'from', 'to' and 'count' are now valid
  1901     __ movptr(dword_count, count);
  1902     __ shrptr(count, 1); // count => qword_count
  1904     // Copy from high to low addresses.  Use 'to' as scratch.
  1906     // Check for and copy trailing dword
  1907     __ testl(dword_count, 1);
  1908     __ jcc(Assembler::zero, L_copy_32_bytes);
  1909     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1910     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1911     __ jmp(L_copy_32_bytes);
  1913     // Copy trailing qwords
  1914   __ BIND(L_copy_8_bytes);
  1915     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1916     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1917     __ decrement(qword_count);
  1918     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1920     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1921     if (is_oop) {
  1922       __ jmp(L_exit);
  1924     restore_arg_regs();
  1925     __ xorptr(rax, rax); // return 0
  1926     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1927     __ ret(0);
  1929     // Copy in 32-bytes chunks
  1930     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1932    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1933    __ bind(L_exit);
  1934      if (is_oop) {
  1935        Register end_to = rdx;
  1936        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1937        gen_write_ref_array_post_barrier(to, end_to, rax);
  1939     restore_arg_regs();
  1940     __ xorptr(rax, rax); // return 0
  1941     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1942     __ ret(0);
  1944     return start;
  1947   // Arguments:
  1948   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1949   //             ignored
  1950   //   is_oop  - true => oop array, so generate store check code
  1951   //   name    - stub name string
  1952   //
  1953   // Inputs:
  1954   //   c_rarg0   - source array address
  1955   //   c_rarg1   - destination array address
  1956   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1957   //
  1958  // Side Effects:
  1959   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1960   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1961   //
  1962   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1963     __ align(CodeEntryAlignment);
  1964     StubCodeMark mark(this, "StubRoutines", name);
  1965     address start = __ pc();
  1967     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1968     const Register from        = rdi;  // source array address
  1969     const Register to          = rsi;  // destination array address
  1970     const Register qword_count = rdx;  // elements count
  1971     const Register end_from    = from; // source array end address
  1972     const Register end_to      = rcx;  // destination array end address
  1973     const Register saved_to    = to;
  1974     // End pointers are inclusive, and if count is not zero they point
  1975     // to the last unit copied:  end_to[0] := end_from[0]
  1977     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1978     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  1979     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1981     if (is_oop) {
  1982       disjoint_oop_copy_entry  = __ pc();
  1983       // no registers are destroyed by this call
  1984       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1985     } else {
  1986       disjoint_long_copy_entry = __ pc();
  1988     BLOCK_COMMENT("Entry:");
  1989     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1991     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1992                       // r9 and r10 may be used to save non-volatile registers
  1994     // 'from', 'to' and 'qword_count' are now valid
  1996     // Copy from low to high addresses.  Use 'to' as scratch.
  1997     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1998     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1999     __ negptr(qword_count);
  2000     __ jmp(L_copy_32_bytes);
  2002     // Copy trailing qwords
  2003   __ BIND(L_copy_8_bytes);
  2004     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  2005     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  2006     __ increment(qword_count);
  2007     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2009     if (is_oop) {
  2010       __ jmp(L_exit);
  2011     } else {
  2012       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2013       restore_arg_regs();
  2014       __ xorptr(rax, rax); // return 0
  2015       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2016       __ ret(0);
  2019     // Copy 64-byte chunks
  2020     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2022     if (is_oop) {
  2023     __ BIND(L_exit);
  2024       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  2025       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2026     } else {
  2027       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2029     restore_arg_regs();
  2030     __ xorptr(rax, rax); // return 0
  2031     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2032     __ ret(0);
  2034     return start;
  2037   // Arguments:
  2038   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  2039   //             ignored
  2040   //   is_oop  - true => oop array, so generate store check code
  2041   //   name    - stub name string
  2042   //
  2043   // Inputs:
  2044   //   c_rarg0   - source array address
  2045   //   c_rarg1   - destination array address
  2046   //   c_rarg2   - element count, treated as ssize_t, can be zero
  2047   //
  2048   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  2049     __ align(CodeEntryAlignment);
  2050     StubCodeMark mark(this, "StubRoutines", name);
  2051     address start = __ pc();
  2053     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2054     const Register from        = rdi;  // source array address
  2055     const Register to          = rsi;  // destination array address
  2056     const Register qword_count = rdx;  // elements count
  2057     const Register saved_count = rcx;
  2059     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2060     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2062     address disjoint_copy_entry = NULL;
  2063     if (is_oop) {
  2064       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
  2065       disjoint_copy_entry = disjoint_oop_copy_entry;
  2066       oop_copy_entry  = __ pc();
  2067       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
  2068     } else {
  2069       disjoint_copy_entry = disjoint_long_copy_entry;
  2070       long_copy_entry = __ pc();
  2071       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
  2073     BLOCK_COMMENT("Entry:");
  2074     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2076     array_overlap_test(disjoint_copy_entry, Address::times_8);
  2077     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2078                       // r9 and r10 may be used to save non-volatile registers
  2080     // 'from', 'to' and 'qword_count' are now valid
  2082     if (is_oop) {
  2083       // Save to and count for store barrier
  2084       __ movptr(saved_count, qword_count);
  2085       // No registers are destroyed by this call
  2086       gen_write_ref_array_pre_barrier(to, saved_count);
  2089     __ jmp(L_copy_32_bytes);
  2091     // Copy trailing qwords
  2092   __ BIND(L_copy_8_bytes);
  2093     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2094     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2095     __ decrement(qword_count);
  2096     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2098     if (is_oop) {
  2099       __ jmp(L_exit);
  2100     } else {
  2101       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2102       restore_arg_regs();
  2103       __ xorptr(rax, rax); // return 0
  2104       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2105       __ ret(0);
  2108     // Copy in 32-bytes chunks
  2109     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2111     if (is_oop) {
  2112     __ BIND(L_exit);
  2113       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2114       gen_write_ref_array_post_barrier(to, rcx, rax);
  2115       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2116     } else {
  2117       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2119     restore_arg_regs();
  2120     __ xorptr(rax, rax); // return 0
  2121     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2122     __ ret(0);
  2124     return start;
  2128   // Helper for generating a dynamic type check.
  2129   // Smashes no registers.
  2130   void generate_type_check(Register sub_klass,
  2131                            Register super_check_offset,
  2132                            Register super_klass,
  2133                            Label& L_success) {
  2134     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2136     BLOCK_COMMENT("type_check:");
  2138     Label L_miss;
  2140     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
  2141                                      super_check_offset);
  2142     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
  2144     // Fall through on failure!
  2145     __ BIND(L_miss);
  2148   //
  2149   //  Generate checkcasting array copy stub
  2150   //
  2151   //  Input:
  2152   //    c_rarg0   - source array address
  2153   //    c_rarg1   - destination array address
  2154   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2155   //    c_rarg3   - size_t ckoff (super_check_offset)
  2156   // not Win64
  2157   //    c_rarg4   - oop ckval (super_klass)
  2158   // Win64
  2159   //    rsp+40    - oop ckval (super_klass)
  2160   //
  2161   //  Output:
  2162   //    rax ==  0  -  success
  2163   //    rax == -1^K - failure, where K is partial transfer count
  2164   //
  2165   address generate_checkcast_copy(const char *name) {
  2167     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2169     // Input registers (after setup_arg_regs)
  2170     const Register from        = rdi;   // source array address
  2171     const Register to          = rsi;   // destination array address
  2172     const Register length      = rdx;   // elements count
  2173     const Register ckoff       = rcx;   // super_check_offset
  2174     const Register ckval       = r8;    // super_klass
  2176     // Registers used as temps (r13, r14 are save-on-entry)
  2177     const Register end_from    = from;  // source array end address
  2178     const Register end_to      = r13;   // destination array end address
  2179     const Register count       = rdx;   // -(count_remaining)
  2180     const Register r14_length  = r14;   // saved copy of length
  2181     // End pointers are inclusive, and if length is not zero they point
  2182     // to the last unit copied:  end_to[0] := end_from[0]
  2184     const Register rax_oop    = rax;    // actual oop copied
  2185     const Register r11_klass  = r11;    // oop._klass
  2187     //---------------------------------------------------------------
  2188     // Assembler stub will be used for this call to arraycopy
  2189     // if the two arrays are subtypes of Object[] but the
  2190     // destination array type is not equal to or a supertype
  2191     // of the source type.  Each element must be separately
  2192     // checked.
  2194     __ align(CodeEntryAlignment);
  2195     StubCodeMark mark(this, "StubRoutines", name);
  2196     address start = __ pc();
  2198     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2200     checkcast_copy_entry  = __ pc();
  2201     BLOCK_COMMENT("Entry:");
  2203 #ifdef ASSERT
  2204     // caller guarantees that the arrays really are different
  2205     // otherwise, we would have to make conjoint checks
  2206     { Label L;
  2207       array_overlap_test(L, TIMES_OOP);
  2208       __ stop("checkcast_copy within a single array");
  2209       __ bind(L);
  2211 #endif //ASSERT
  2213     // allocate spill slots for r13, r14
  2214     enum {
  2215       saved_r13_offset,
  2216       saved_r14_offset,
  2217       saved_rbp_offset,
  2218       saved_rip_offset,
  2219       saved_rarg0_offset
  2220     };
  2221     __ subptr(rsp, saved_rbp_offset * wordSize);
  2222     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2223     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2224     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2225                        // ckoff => rcx, ckval => r8
  2226                        // r9 and r10 may be used to save non-volatile registers
  2227 #ifdef _WIN64
  2228     // last argument (#4) is on stack on Win64
  2229     const int ckval_offset = saved_rarg0_offset + 4;
  2230     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
  2231 #endif
  2233     // check that int operands are properly extended to size_t
  2234     assert_clean_int(length, rax);
  2235     assert_clean_int(ckoff, rax);
  2237 #ifdef ASSERT
  2238     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2239     // The ckoff and ckval must be mutually consistent,
  2240     // even though caller generates both.
  2241     { Label L;
  2242       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2243                         Klass::super_check_offset_offset_in_bytes());
  2244       __ cmpl(ckoff, Address(ckval, sco_offset));
  2245       __ jcc(Assembler::equal, L);
  2246       __ stop("super_check_offset inconsistent");
  2247       __ bind(L);
  2249 #endif //ASSERT
  2251     // Loop-invariant addresses.  They are exclusive end pointers.
  2252     Address end_from_addr(from, length, TIMES_OOP, 0);
  2253     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2254     // Loop-variant addresses.  They assume post-incremented count < 0.
  2255     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2256     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2258     gen_write_ref_array_pre_barrier(to, count);
  2260     // Copy from low to high addresses, indexed from the end of each array.
  2261     __ lea(end_from, end_from_addr);
  2262     __ lea(end_to,   end_to_addr);
  2263     __ movptr(r14_length, length);        // save a copy of the length
  2264     assert(length == count, "");          // else fix next line:
  2265     __ negptr(count);                     // negate and test the length
  2266     __ jcc(Assembler::notZero, L_load_element);
  2268     // Empty array:  Nothing to do.
  2269     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2270     __ jmp(L_done);
  2272     // ======== begin loop ========
  2273     // (Loop is rotated; its entry is L_load_element.)
  2274     // Loop control:
  2275     //   for (count = -count; count != 0; count++)
  2276     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2277     __ align(OptoLoopAlignment);
  2279     __ BIND(L_store_element);
  2280     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2281     __ increment(count);               // increment the count toward zero
  2282     __ jcc(Assembler::zero, L_do_card_marks);
  2284     // ======== loop entry is here ========
  2285     __ BIND(L_load_element);
  2286     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2287     __ testptr(rax_oop, rax_oop);
  2288     __ jcc(Assembler::zero, L_store_element);
  2290     __ load_klass(r11_klass, rax_oop);// query the object klass
  2291     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2292     // ======== end loop ========
  2294     // It was a real error; we must depend on the caller to finish the job.
  2295     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2296     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2297     // and report their number to the caller.
  2298     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2299     __ lea(end_to, to_element_addr);
  2300     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
  2301     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2302     __ movptr(rax, r14_length);           // original oops
  2303     __ addptr(rax, count);                // K = (original - remaining) oops
  2304     __ notptr(rax);                       // report (-1^K) to caller
  2305     __ jmp(L_done);
  2307     // Come here on success only.
  2308     __ BIND(L_do_card_marks);
  2309     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
  2310     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2311     __ xorptr(rax, rax);                  // return 0 on success
  2313     // Common exit point (success or failure).
  2314     __ BIND(L_done);
  2315     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2316     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2317     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  2318     restore_arg_regs();
  2319     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2320     __ ret(0);
  2322     return start;
  2325   //
  2326   //  Generate 'unsafe' array copy stub
  2327   //  Though just as safe as the other stubs, it takes an unscaled
  2328   //  size_t argument instead of an element count.
  2329   //
  2330   //  Input:
  2331   //    c_rarg0   - source array address
  2332   //    c_rarg1   - destination array address
  2333   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2334   //
  2335   // Examines the alignment of the operands and dispatches
  2336   // to a long, int, short, or byte copy loop.
  2337   //
  2338   address generate_unsafe_copy(const char *name) {
  2340     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2342     // Input registers (before setup_arg_regs)
  2343     const Register from        = c_rarg0;  // source array address
  2344     const Register to          = c_rarg1;  // destination array address
  2345     const Register size        = c_rarg2;  // byte count (size_t)
  2347     // Register used as a temp
  2348     const Register bits        = rax;      // test copy of low bits
  2350     __ align(CodeEntryAlignment);
  2351     StubCodeMark mark(this, "StubRoutines", name);
  2352     address start = __ pc();
  2354     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2356     // bump this on entry, not on exit:
  2357     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2359     __ mov(bits, from);
  2360     __ orptr(bits, to);
  2361     __ orptr(bits, size);
  2363     __ testb(bits, BytesPerLong-1);
  2364     __ jccb(Assembler::zero, L_long_aligned);
  2366     __ testb(bits, BytesPerInt-1);
  2367     __ jccb(Assembler::zero, L_int_aligned);
  2369     __ testb(bits, BytesPerShort-1);
  2370     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2372     __ BIND(L_short_aligned);
  2373     __ shrptr(size, LogBytesPerShort); // size => short_count
  2374     __ jump(RuntimeAddress(short_copy_entry));
  2376     __ BIND(L_int_aligned);
  2377     __ shrptr(size, LogBytesPerInt); // size => int_count
  2378     __ jump(RuntimeAddress(int_copy_entry));
  2380     __ BIND(L_long_aligned);
  2381     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2382     __ jump(RuntimeAddress(long_copy_entry));
  2384     return start;
  2387   // Perform range checks on the proposed arraycopy.
  2388   // Kills temp, but nothing else.
  2389   // Also, clean the sign bits of src_pos and dst_pos.
  2390   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2391                               Register src_pos, // source position (c_rarg1)
  2392                               Register dst,     // destination array oo (c_rarg2)
  2393                               Register dst_pos, // destination position (c_rarg3)
  2394                               Register length,
  2395                               Register temp,
  2396                               Label& L_failed) {
  2397     BLOCK_COMMENT("arraycopy_range_checks:");
  2399     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2400     __ movl(temp, length);
  2401     __ addl(temp, src_pos);             // src_pos + length
  2402     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2403     __ jcc(Assembler::above, L_failed);
  2405     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2406     __ movl(temp, length);
  2407     __ addl(temp, dst_pos);             // dst_pos + length
  2408     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2409     __ jcc(Assembler::above, L_failed);
  2411     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2412     // Move with sign extension can be used since they are positive.
  2413     __ movslq(src_pos, src_pos);
  2414     __ movslq(dst_pos, dst_pos);
  2416     BLOCK_COMMENT("arraycopy_range_checks done");
  2419   //
  2420   //  Generate generic array copy stubs
  2421   //
  2422   //  Input:
  2423   //    c_rarg0    -  src oop
  2424   //    c_rarg1    -  src_pos (32-bits)
  2425   //    c_rarg2    -  dst oop
  2426   //    c_rarg3    -  dst_pos (32-bits)
  2427   // not Win64
  2428   //    c_rarg4    -  element count (32-bits)
  2429   // Win64
  2430   //    rsp+40     -  element count (32-bits)
  2431   //
  2432   //  Output:
  2433   //    rax ==  0  -  success
  2434   //    rax == -1^K - failure, where K is partial transfer count
  2435   //
  2436   address generate_generic_copy(const char *name) {
  2438     Label L_failed, L_failed_0, L_objArray;
  2439     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2441     // Input registers
  2442     const Register src        = c_rarg0;  // source array oop
  2443     const Register src_pos    = c_rarg1;  // source position
  2444     const Register dst        = c_rarg2;  // destination array oop
  2445     const Register dst_pos    = c_rarg3;  // destination position
  2446     // elements count is on stack on Win64
  2447 #ifdef _WIN64
  2448 #define C_RARG4 Address(rsp, 6 * wordSize)
  2449 #else
  2450 #define C_RARG4 c_rarg4
  2451 #endif
  2453     { int modulus = CodeEntryAlignment;
  2454       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2455       int advance = target - (__ offset() % modulus);
  2456       if (advance < 0)  advance += modulus;
  2457       if (advance > 0)  __ nop(advance);
  2459     StubCodeMark mark(this, "StubRoutines", name);
  2461     // Short-hop target to L_failed.  Makes for denser prologue code.
  2462     __ BIND(L_failed_0);
  2463     __ jmp(L_failed);
  2464     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2466     __ align(CodeEntryAlignment);
  2467     address start = __ pc();
  2469     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2471     // bump this on entry, not on exit:
  2472     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2474     //-----------------------------------------------------------------------
  2475     // Assembler stub will be used for this call to arraycopy
  2476     // if the following conditions are met:
  2477     //
  2478     // (1) src and dst must not be null.
  2479     // (2) src_pos must not be negative.
  2480     // (3) dst_pos must not be negative.
  2481     // (4) length  must not be negative.
  2482     // (5) src klass and dst klass should be the same and not NULL.
  2483     // (6) src and dst should be arrays.
  2484     // (7) src_pos + length must not exceed length of src.
  2485     // (8) dst_pos + length must not exceed length of dst.
  2486     //
  2488     //  if (src == NULL) return -1;
  2489     __ testptr(src, src);         // src oop
  2490     size_t j1off = __ offset();
  2491     __ jccb(Assembler::zero, L_failed_0);
  2493     //  if (src_pos < 0) return -1;
  2494     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2495     __ jccb(Assembler::negative, L_failed_0);
  2497     //  if (dst == NULL) return -1;
  2498     __ testptr(dst, dst);         // dst oop
  2499     __ jccb(Assembler::zero, L_failed_0);
  2501     //  if (dst_pos < 0) return -1;
  2502     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2503     size_t j4off = __ offset();
  2504     __ jccb(Assembler::negative, L_failed_0);
  2506     // The first four tests are very dense code,
  2507     // but not quite dense enough to put four
  2508     // jumps in a 16-byte instruction fetch buffer.
  2509     // That's good, because some branch predicters
  2510     // do not like jumps so close together.
  2511     // Make sure of this.
  2512     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2514     // registers used as temp
  2515     const Register r11_length    = r11; // elements count to copy
  2516     const Register r10_src_klass = r10; // array klass
  2517     const Register r9_dst_klass  = r9;  // dest array klass
  2519     //  if (length < 0) return -1;
  2520     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
  2521     __ testl(r11_length, r11_length);
  2522     __ jccb(Assembler::negative, L_failed_0);
  2524     __ load_klass(r10_src_klass, src);
  2525 #ifdef ASSERT
  2526     //  assert(src->klass() != NULL);
  2527     BLOCK_COMMENT("assert klasses not null");
  2528     { Label L1, L2;
  2529       __ testptr(r10_src_klass, r10_src_klass);
  2530       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2531       __ bind(L1);
  2532       __ stop("broken null klass");
  2533       __ bind(L2);
  2534       __ load_klass(r9_dst_klass, dst);
  2535       __ cmpq(r9_dst_klass, 0);
  2536       __ jcc(Assembler::equal, L1);     // this would be broken also
  2537       BLOCK_COMMENT("assert done");
  2539 #endif
  2541     // Load layout helper (32-bits)
  2542     //
  2543     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2544     // 32        30    24            16              8     2                 0
  2545     //
  2546     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2547     //
  2549     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2550                     Klass::layout_helper_offset_in_bytes();
  2552     const Register rax_lh = rax;  // layout helper
  2554     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2556     // Handle objArrays completely differently...
  2557     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2558     __ cmpl(rax_lh, objArray_lh);
  2559     __ jcc(Assembler::equal, L_objArray);
  2561     //  if (src->klass() != dst->klass()) return -1;
  2562     __ load_klass(r9_dst_klass, dst);
  2563     __ cmpq(r10_src_klass, r9_dst_klass);
  2564     __ jcc(Assembler::notEqual, L_failed);
  2566     //  if (!src->is_Array()) return -1;
  2567     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2568     __ jcc(Assembler::greaterEqual, L_failed);
  2570     // At this point, it is known to be a typeArray (array_tag 0x3).
  2571 #ifdef ASSERT
  2572     { Label L;
  2573       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2574       __ jcc(Assembler::greaterEqual, L);
  2575       __ stop("must be a primitive array");
  2576       __ bind(L);
  2578 #endif
  2580     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2581                            r10, L_failed);
  2583     // typeArrayKlass
  2584     //
  2585     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2586     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2587     //
  2589     const Register r10_offset = r10;    // array offset
  2590     const Register rax_elsize = rax_lh; // element size
  2592     __ movl(r10_offset, rax_lh);
  2593     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2594     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2595     __ addptr(src, r10_offset);           // src array offset
  2596     __ addptr(dst, r10_offset);           // dst array offset
  2597     BLOCK_COMMENT("choose copy loop based on element size");
  2598     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2600     // next registers should be set before the jump to corresponding stub
  2601     const Register from     = c_rarg0;  // source array address
  2602     const Register to       = c_rarg1;  // destination array address
  2603     const Register count    = c_rarg2;  // elements count
  2605     // 'from', 'to', 'count' registers should be set in such order
  2606     // since they are the same as 'src', 'src_pos', 'dst'.
  2608   __ BIND(L_copy_bytes);
  2609     __ cmpl(rax_elsize, 0);
  2610     __ jccb(Assembler::notEqual, L_copy_shorts);
  2611     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2612     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2613     __ movl2ptr(count, r11_length); // length
  2614     __ jump(RuntimeAddress(byte_copy_entry));
  2616   __ BIND(L_copy_shorts);
  2617     __ cmpl(rax_elsize, LogBytesPerShort);
  2618     __ jccb(Assembler::notEqual, L_copy_ints);
  2619     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2620     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2621     __ movl2ptr(count, r11_length); // length
  2622     __ jump(RuntimeAddress(short_copy_entry));
  2624   __ BIND(L_copy_ints);
  2625     __ cmpl(rax_elsize, LogBytesPerInt);
  2626     __ jccb(Assembler::notEqual, L_copy_longs);
  2627     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2628     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2629     __ movl2ptr(count, r11_length); // length
  2630     __ jump(RuntimeAddress(int_copy_entry));
  2632   __ BIND(L_copy_longs);
  2633 #ifdef ASSERT
  2634     { Label L;
  2635       __ cmpl(rax_elsize, LogBytesPerLong);
  2636       __ jcc(Assembler::equal, L);
  2637       __ stop("must be long copy, but elsize is wrong");
  2638       __ bind(L);
  2640 #endif
  2641     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2642     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2643     __ movl2ptr(count, r11_length); // length
  2644     __ jump(RuntimeAddress(long_copy_entry));
  2646     // objArrayKlass
  2647   __ BIND(L_objArray);
  2648     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
  2650     Label L_plain_copy, L_checkcast_copy;
  2651     //  test array classes for subtyping
  2652     __ load_klass(r9_dst_klass, dst);
  2653     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
  2654     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2656     // Identically typed arrays can be copied without element-wise checks.
  2657     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2658                            r10, L_failed);
  2660     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2661                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2662     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2663                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2664     __ movl2ptr(count, r11_length); // length
  2665   __ BIND(L_plain_copy);
  2666     __ jump(RuntimeAddress(oop_copy_entry));
  2668   __ BIND(L_checkcast_copy);
  2669     // live at this point:  r10_src_klass, !r11_length
  2671       // assert(r11_length == C_RARG4); // will reload from here
  2672       Register r11_dst_klass = r11;
  2673       __ load_klass(r11_dst_klass, dst);
  2675       // Before looking at dst.length, make sure dst is also an objArray.
  2676       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
  2677       __ jcc(Assembler::notEqual, L_failed);
  2679       // It is safe to examine both src.length and dst.length.
  2680 #ifndef _WIN64
  2681       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
  2682                              rax, L_failed);
  2683 #else
  2684       __ movl(r11_length, C_RARG4);     // reload
  2685       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2686                              rax, L_failed);
  2687       __ load_klass(r11_dst_klass, dst); // reload
  2688 #endif
  2690       // Marshal the base address arguments now, freeing registers.
  2691       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2692                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2693       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2694                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2695       __ movl(count, C_RARG4);          // length (reloaded)
  2696       Register sco_temp = c_rarg3;      // this register is free now
  2697       assert_different_registers(from, to, count, sco_temp,
  2698                                  r11_dst_klass, r10_src_klass);
  2699       assert_clean_int(count, sco_temp);
  2701       // Generate the type check.
  2702       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2703                         Klass::super_check_offset_offset_in_bytes());
  2704       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2705       assert_clean_int(sco_temp, rax);
  2706       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2708       // Fetch destination element klass from the objArrayKlass header.
  2709       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2710                        objArrayKlass::element_klass_offset_in_bytes());
  2711       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2712       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
  2713       assert_clean_int(sco_temp, rax);
  2715       // the checkcast_copy loop needs two extra arguments:
  2716       assert(c_rarg3 == sco_temp, "#3 already in place");
  2717       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
  2718       __ jump(RuntimeAddress(checkcast_copy_entry));
  2721   __ BIND(L_failed);
  2722     __ xorptr(rax, rax);
  2723     __ notptr(rax); // return -1
  2724     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2725     __ ret(0);
  2727     return start;
  2730 #undef length_arg
  2732   void generate_arraycopy_stubs() {
  2733     // Call the conjoint generation methods immediately after
  2734     // the disjoint ones so that short branches from the former
  2735     // to the latter can be generated.
  2736     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2737     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2739     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2740     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2742     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
  2743     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
  2745     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
  2746     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
  2749     if (UseCompressedOops) {
  2750       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
  2751       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
  2752     } else {
  2753       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
  2754       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
  2757     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2758     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2759     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2761     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2762     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2763     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2764     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2765     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2766     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2768     // We don't generate specialized code for HeapWord-aligned source
  2769     // arrays, so just use the code we've already generated
  2770     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2771     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2773     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2774     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2776     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2777     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2779     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2780     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2782     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2783     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2786   void generate_math_stubs() {
  2788       StubCodeMark mark(this, "StubRoutines", "log");
  2789       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2791       __ subq(rsp, 8);
  2792       __ movdbl(Address(rsp, 0), xmm0);
  2793       __ fld_d(Address(rsp, 0));
  2794       __ flog();
  2795       __ fstp_d(Address(rsp, 0));
  2796       __ movdbl(xmm0, Address(rsp, 0));
  2797       __ addq(rsp, 8);
  2798       __ ret(0);
  2801       StubCodeMark mark(this, "StubRoutines", "log10");
  2802       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2804       __ subq(rsp, 8);
  2805       __ movdbl(Address(rsp, 0), xmm0);
  2806       __ fld_d(Address(rsp, 0));
  2807       __ flog10();
  2808       __ fstp_d(Address(rsp, 0));
  2809       __ movdbl(xmm0, Address(rsp, 0));
  2810       __ addq(rsp, 8);
  2811       __ ret(0);
  2814       StubCodeMark mark(this, "StubRoutines", "sin");
  2815       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
  2817       __ subq(rsp, 8);
  2818       __ movdbl(Address(rsp, 0), xmm0);
  2819       __ fld_d(Address(rsp, 0));
  2820       __ trigfunc('s');
  2821       __ fstp_d(Address(rsp, 0));
  2822       __ movdbl(xmm0, Address(rsp, 0));
  2823       __ addq(rsp, 8);
  2824       __ ret(0);
  2827       StubCodeMark mark(this, "StubRoutines", "cos");
  2828       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2830       __ subq(rsp, 8);
  2831       __ movdbl(Address(rsp, 0), xmm0);
  2832       __ fld_d(Address(rsp, 0));
  2833       __ trigfunc('c');
  2834       __ fstp_d(Address(rsp, 0));
  2835       __ movdbl(xmm0, Address(rsp, 0));
  2836       __ addq(rsp, 8);
  2837       __ ret(0);
  2840       StubCodeMark mark(this, "StubRoutines", "tan");
  2841       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2843       __ subq(rsp, 8);
  2844       __ movdbl(Address(rsp, 0), xmm0);
  2845       __ fld_d(Address(rsp, 0));
  2846       __ trigfunc('t');
  2847       __ fstp_d(Address(rsp, 0));
  2848       __ movdbl(xmm0, Address(rsp, 0));
  2849       __ addq(rsp, 8);
  2850       __ ret(0);
  2853     // The intrinsic version of these seem to return the same value as
  2854     // the strict version.
  2855     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2856     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2859 #undef __
  2860 #define __ masm->
  2862   // Continuation point for throwing of implicit exceptions that are
  2863   // not handled in the current activation. Fabricates an exception
  2864   // oop and initiates normal exception dispatching in this
  2865   // frame. Since we need to preserve callee-saved values (currently
  2866   // only for C2, but done for C1 as well) we need a callee-saved oop
  2867   // map and therefore have to make these stubs into RuntimeStubs
  2868   // rather than BufferBlobs.  If the compiler needs all registers to
  2869   // be preserved between the fault point and the exception handler
  2870   // then it must assume responsibility for that in
  2871   // AbstractCompiler::continuation_for_implicit_null_exception or
  2872   // continuation_for_implicit_division_by_zero_exception. All other
  2873   // implicit exceptions (e.g., NullPointerException or
  2874   // AbstractMethodError on entry) are either at call sites or
  2875   // otherwise assume that stack unwinding will be initiated, so
  2876   // caller saved registers were assumed volatile in the compiler.
  2877   address generate_throw_exception(const char* name,
  2878                                    address runtime_entry,
  2879                                    bool restore_saved_exception_pc) {
  2880     // Information about frame layout at time of blocking runtime call.
  2881     // Note that we only have to preserve callee-saved registers since
  2882     // the compilers are responsible for supplying a continuation point
  2883     // if they expect all registers to be preserved.
  2884     enum layout {
  2885       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2886       rbp_off2,
  2887       return_off,
  2888       return_off2,
  2889       framesize // inclusive of return address
  2890     };
  2892     int insts_size = 512;
  2893     int locs_size  = 64;
  2895     CodeBuffer code(name, insts_size, locs_size);
  2896     OopMapSet* oop_maps  = new OopMapSet();
  2897     MacroAssembler* masm = new MacroAssembler(&code);
  2899     address start = __ pc();
  2901     // This is an inlined and slightly modified version of call_VM
  2902     // which has the ability to fetch the return PC out of
  2903     // thread-local storage and also sets up last_Java_sp slightly
  2904     // differently than the real call_VM
  2905     if (restore_saved_exception_pc) {
  2906       __ movptr(rax,
  2907                 Address(r15_thread,
  2908                         in_bytes(JavaThread::saved_exception_pc_offset())));
  2909       __ push(rax);
  2912     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2914     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2916     // return address and rbp are already in place
  2917     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2919     int frame_complete = __ pc() - start;
  2921     // Set up last_Java_sp and last_Java_fp
  2922     __ set_last_Java_frame(rsp, rbp, NULL);
  2924     // Call runtime
  2925     __ movptr(c_rarg0, r15_thread);
  2926     BLOCK_COMMENT("call runtime_entry");
  2927     __ call(RuntimeAddress(runtime_entry));
  2929     // Generate oop map
  2930     OopMap* map = new OopMap(framesize, 0);
  2932     oop_maps->add_gc_map(__ pc() - start, map);
  2934     __ reset_last_Java_frame(true, false);
  2936     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2938     // check for pending exceptions
  2939 #ifdef ASSERT
  2940     Label L;
  2941     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  2942             (int32_t) NULL_WORD);
  2943     __ jcc(Assembler::notEqual, L);
  2944     __ should_not_reach_here();
  2945     __ bind(L);
  2946 #endif // ASSERT
  2947     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2950     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  2951     RuntimeStub* stub =
  2952       RuntimeStub::new_runtime_stub(name,
  2953                                     &code,
  2954                                     frame_complete,
  2955                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  2956                                     oop_maps, false);
  2957     return stub->entry_point();
  2960   // Initialization
  2961   void generate_initial() {
  2962     // Generates all stubs and initializes the entry points
  2964     // This platform-specific stub is needed by generate_call_stub()
  2965     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  2967     // entry points that exist in all platforms Note: This is code
  2968     // that could be shared among different platforms - however the
  2969     // benefit seems to be smaller than the disadvantage of having a
  2970     // much more complicated generator structure. See also comment in
  2971     // stubRoutines.hpp.
  2973     StubRoutines::_forward_exception_entry = generate_forward_exception();
  2975     StubRoutines::_call_stub_entry =
  2976       generate_call_stub(StubRoutines::_call_stub_return_address);
  2978     // is referenced by megamorphic call
  2979     StubRoutines::_catch_exception_entry = generate_catch_exception();
  2981     // atomic calls
  2982     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2983     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  2984     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2985     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2986     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2987     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  2988     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  2990     StubRoutines::_handler_for_unsafe_access_entry =
  2991       generate_handler_for_unsafe_access();
  2993     // platform dependent
  2994     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  2996     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  2999   void generate_all() {
  3000     // Generates all stubs and initializes the entry points
  3002     // These entry points require SharedInfo::stack0 to be set up in
  3003     // non-core builds and need to be relocatable, so they each
  3004     // fabricate a RuntimeStub internally.
  3005     StubRoutines::_throw_AbstractMethodError_entry =
  3006       generate_throw_exception("AbstractMethodError throw_exception",
  3007                                CAST_FROM_FN_PTR(address,
  3008                                                 SharedRuntime::
  3009                                                 throw_AbstractMethodError),
  3010                                false);
  3012     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  3013       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  3014                                CAST_FROM_FN_PTR(address,
  3015                                                 SharedRuntime::
  3016                                                 throw_IncompatibleClassChangeError),
  3017                                false);
  3019     StubRoutines::_throw_ArithmeticException_entry =
  3020       generate_throw_exception("ArithmeticException throw_exception",
  3021                                CAST_FROM_FN_PTR(address,
  3022                                                 SharedRuntime::
  3023                                                 throw_ArithmeticException),
  3024                                true);
  3026     StubRoutines::_throw_NullPointerException_entry =
  3027       generate_throw_exception("NullPointerException throw_exception",
  3028                                CAST_FROM_FN_PTR(address,
  3029                                                 SharedRuntime::
  3030                                                 throw_NullPointerException),
  3031                                true);
  3033     StubRoutines::_throw_NullPointerException_at_call_entry =
  3034       generate_throw_exception("NullPointerException at call throw_exception",
  3035                                CAST_FROM_FN_PTR(address,
  3036                                                 SharedRuntime::
  3037                                                 throw_NullPointerException_at_call),
  3038                                false);
  3040     StubRoutines::_throw_StackOverflowError_entry =
  3041       generate_throw_exception("StackOverflowError throw_exception",
  3042                                CAST_FROM_FN_PTR(address,
  3043                                                 SharedRuntime::
  3044                                                 throw_StackOverflowError),
  3045                                false);
  3047     // entry points that are platform specific
  3048     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  3049     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  3050     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  3051     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  3053     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  3054     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  3055     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  3056     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  3058     // support for verify_oop (must happen after universe_init)
  3059     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  3061     // arraycopy stubs used by compilers
  3062     generate_arraycopy_stubs();
  3064     generate_math_stubs();
  3067  public:
  3068   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  3069     if (all) {
  3070       generate_all();
  3071     } else {
  3072       generate_initial();
  3075 }; // end class declaration
  3077 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  3078 address StubGenerator::disjoint_short_copy_entry = NULL;
  3079 address StubGenerator::disjoint_int_copy_entry   = NULL;
  3080 address StubGenerator::disjoint_long_copy_entry  = NULL;
  3081 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  3083 address StubGenerator::byte_copy_entry  = NULL;
  3084 address StubGenerator::short_copy_entry = NULL;
  3085 address StubGenerator::int_copy_entry   = NULL;
  3086 address StubGenerator::long_copy_entry  = NULL;
  3087 address StubGenerator::oop_copy_entry   = NULL;
  3089 address StubGenerator::checkcast_copy_entry = NULL;
  3091 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3092   StubGenerator g(code, all);

mercurial