src/share/vm/opto/type.cpp

Mon, 02 Jul 2012 13:11:28 -0400

author
coleenp
date
Mon, 02 Jul 2012 13:11:28 -0400
changeset 3901
24b9c7f4cae6
parent 3885
765ee2d1674b
parent 3900
d2a62e0f25eb
child 4037
da91efe96a93
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciTypeFlow.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "libadt/dict.hpp"
    31 #include "memory/gcLocker.hpp"
    32 #include "memory/oopFactory.hpp"
    33 #include "memory/resourceArea.hpp"
    34 #include "oops/instanceKlass.hpp"
    35 #include "oops/instanceMirrorKlass.hpp"
    36 #include "oops/klassKlass.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "oops/typeArrayKlass.hpp"
    39 #include "opto/matcher.hpp"
    40 #include "opto/node.hpp"
    41 #include "opto/opcodes.hpp"
    42 #include "opto/type.hpp"
    44 // Portions of code courtesy of Clifford Click
    46 // Optimization - Graph Style
    48 // Dictionary of types shared among compilations.
    49 Dict* Type::_shared_type_dict = NULL;
    51 // Array which maps compiler types to Basic Types
    52 const BasicType Type::_basic_type[Type::lastype] = {
    53   T_ILLEGAL,    // Bad
    54   T_ILLEGAL,    // Control
    55   T_VOID,       // Top
    56   T_INT,        // Int
    57   T_LONG,       // Long
    58   T_VOID,       // Half
    59   T_NARROWOOP,  // NarrowOop
    61   T_ILLEGAL,    // Tuple
    62   T_ARRAY,      // Array
    63   T_ILLEGAL,    // VectorS
    64   T_ILLEGAL,    // VectorD
    65   T_ILLEGAL,    // VectorX
    66   T_ILLEGAL,    // VectorY
    68   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
    69   T_ADDRESS,    // RawPtr
    70   T_OBJECT,     // OopPtr
    71   T_OBJECT,     // InstPtr
    72   T_OBJECT,     // AryPtr
    73   T_OBJECT,     // KlassPtr
    75   T_OBJECT,     // Function
    76   T_ILLEGAL,    // Abio
    77   T_ADDRESS,    // Return_Address
    78   T_ILLEGAL,    // Memory
    79   T_FLOAT,      // FloatTop
    80   T_FLOAT,      // FloatCon
    81   T_FLOAT,      // FloatBot
    82   T_DOUBLE,     // DoubleTop
    83   T_DOUBLE,     // DoubleCon
    84   T_DOUBLE,     // DoubleBot
    85   T_ILLEGAL,    // Bottom
    86 };
    88 // Map ideal registers (machine types) to ideal types
    89 const Type *Type::mreg2type[_last_machine_leaf];
    91 // Map basic types to canonical Type* pointers.
    92 const Type* Type::     _const_basic_type[T_CONFLICT+1];
    94 // Map basic types to constant-zero Types.
    95 const Type* Type::            _zero_type[T_CONFLICT+1];
    97 // Map basic types to array-body alias types.
    98 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
   100 //=============================================================================
   101 // Convenience common pre-built types.
   102 const Type *Type::ABIO;         // State-of-machine only
   103 const Type *Type::BOTTOM;       // All values
   104 const Type *Type::CONTROL;      // Control only
   105 const Type *Type::DOUBLE;       // All doubles
   106 const Type *Type::FLOAT;        // All floats
   107 const Type *Type::HALF;         // Placeholder half of doublewide type
   108 const Type *Type::MEMORY;       // Abstract store only
   109 const Type *Type::RETURN_ADDRESS;
   110 const Type *Type::TOP;          // No values in set
   112 //------------------------------get_const_type---------------------------
   113 const Type* Type::get_const_type(ciType* type) {
   114   if (type == NULL) {
   115     return NULL;
   116   } else if (type->is_primitive_type()) {
   117     return get_const_basic_type(type->basic_type());
   118   } else {
   119     return TypeOopPtr::make_from_klass(type->as_klass());
   120   }
   121 }
   123 //---------------------------array_element_basic_type---------------------------------
   124 // Mapping to the array element's basic type.
   125 BasicType Type::array_element_basic_type() const {
   126   BasicType bt = basic_type();
   127   if (bt == T_INT) {
   128     if (this == TypeInt::INT)   return T_INT;
   129     if (this == TypeInt::CHAR)  return T_CHAR;
   130     if (this == TypeInt::BYTE)  return T_BYTE;
   131     if (this == TypeInt::BOOL)  return T_BOOLEAN;
   132     if (this == TypeInt::SHORT) return T_SHORT;
   133     return T_VOID;
   134   }
   135   return bt;
   136 }
   138 //---------------------------get_typeflow_type---------------------------------
   139 // Import a type produced by ciTypeFlow.
   140 const Type* Type::get_typeflow_type(ciType* type) {
   141   switch (type->basic_type()) {
   143   case ciTypeFlow::StateVector::T_BOTTOM:
   144     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
   145     return Type::BOTTOM;
   147   case ciTypeFlow::StateVector::T_TOP:
   148     assert(type == ciTypeFlow::StateVector::top_type(), "");
   149     return Type::TOP;
   151   case ciTypeFlow::StateVector::T_NULL:
   152     assert(type == ciTypeFlow::StateVector::null_type(), "");
   153     return TypePtr::NULL_PTR;
   155   case ciTypeFlow::StateVector::T_LONG2:
   156     // The ciTypeFlow pass pushes a long, then the half.
   157     // We do the same.
   158     assert(type == ciTypeFlow::StateVector::long2_type(), "");
   159     return TypeInt::TOP;
   161   case ciTypeFlow::StateVector::T_DOUBLE2:
   162     // The ciTypeFlow pass pushes double, then the half.
   163     // Our convention is the same.
   164     assert(type == ciTypeFlow::StateVector::double2_type(), "");
   165     return Type::TOP;
   167   case T_ADDRESS:
   168     assert(type->is_return_address(), "");
   169     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
   171   default:
   172     // make sure we did not mix up the cases:
   173     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
   174     assert(type != ciTypeFlow::StateVector::top_type(), "");
   175     assert(type != ciTypeFlow::StateVector::null_type(), "");
   176     assert(type != ciTypeFlow::StateVector::long2_type(), "");
   177     assert(type != ciTypeFlow::StateVector::double2_type(), "");
   178     assert(!type->is_return_address(), "");
   180     return Type::get_const_type(type);
   181   }
   182 }
   185 //------------------------------make-------------------------------------------
   186 // Create a simple Type, with default empty symbol sets.  Then hashcons it
   187 // and look for an existing copy in the type dictionary.
   188 const Type *Type::make( enum TYPES t ) {
   189   return (new Type(t))->hashcons();
   190 }
   192 //------------------------------cmp--------------------------------------------
   193 int Type::cmp( const Type *const t1, const Type *const t2 ) {
   194   if( t1->_base != t2->_base )
   195     return 1;                   // Missed badly
   196   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
   197   return !t1->eq(t2);           // Return ZERO if equal
   198 }
   200 //------------------------------hash-------------------------------------------
   201 int Type::uhash( const Type *const t ) {
   202   return t->hash();
   203 }
   205 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
   207 //--------------------------Initialize_shared----------------------------------
   208 void Type::Initialize_shared(Compile* current) {
   209   // This method does not need to be locked because the first system
   210   // compilations (stub compilations) occur serially.  If they are
   211   // changed to proceed in parallel, then this section will need
   212   // locking.
   214   Arena* save = current->type_arena();
   215   Arena* shared_type_arena = new (mtCompiler)Arena();
   217   current->set_type_arena(shared_type_arena);
   218   _shared_type_dict =
   219     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
   220                                   shared_type_arena, 128 );
   221   current->set_type_dict(_shared_type_dict);
   223   // Make shared pre-built types.
   224   CONTROL = make(Control);      // Control only
   225   TOP     = make(Top);          // No values in set
   226   MEMORY  = make(Memory);       // Abstract store only
   227   ABIO    = make(Abio);         // State-of-machine only
   228   RETURN_ADDRESS=make(Return_Address);
   229   FLOAT   = make(FloatBot);     // All floats
   230   DOUBLE  = make(DoubleBot);    // All doubles
   231   BOTTOM  = make(Bottom);       // Everything
   232   HALF    = make(Half);         // Placeholder half of doublewide type
   234   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
   235   TypeF::ONE  = TypeF::make(1.0); // Float 1
   237   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
   238   TypeD::ONE  = TypeD::make(1.0); // Double 1
   240   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
   241   TypeInt::ZERO    = TypeInt::make( 0);  //  0
   242   TypeInt::ONE     = TypeInt::make( 1);  //  1
   243   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
   244   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
   245   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
   246   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
   247   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
   248   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
   249   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
   250   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
   251   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
   252   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
   253   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
   254   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
   255   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
   256   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
   257   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
   258   // CmpL is overloaded both as the bytecode computation returning
   259   // a trinary (-1,0,+1) integer result AND as an efficient long
   260   // compare returning optimizer ideal-type flags.
   261   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
   262   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
   263   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
   264   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
   265   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
   267   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
   268   TypeLong::ZERO    = TypeLong::make( 0);        //  0
   269   TypeLong::ONE     = TypeLong::make( 1);        //  1
   270   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
   271   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
   272   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
   273   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
   275   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   276   fboth[0] = Type::CONTROL;
   277   fboth[1] = Type::CONTROL;
   278   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
   280   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   281   ffalse[0] = Type::CONTROL;
   282   ffalse[1] = Type::TOP;
   283   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
   285   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   286   fneither[0] = Type::TOP;
   287   fneither[1] = Type::TOP;
   288   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
   290   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   291   ftrue[0] = Type::TOP;
   292   ftrue[1] = Type::CONTROL;
   293   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
   295   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   296   floop[0] = Type::CONTROL;
   297   floop[1] = TypeInt::INT;
   298   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
   300   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
   301   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
   302   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
   304   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
   305   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
   307   const Type **fmembar = TypeTuple::fields(0);
   308   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
   310   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
   311   fsc[0] = TypeInt::CC;
   312   fsc[1] = Type::MEMORY;
   313   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
   315   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
   316   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
   317   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
   318   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   319                                            false, 0, oopDesc::mark_offset_in_bytes());
   320   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
   321                                            false, 0, oopDesc::klass_offset_in_bytes());
   322   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
   324   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
   325   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
   327   mreg2type[Op_Node] = Type::BOTTOM;
   328   mreg2type[Op_Set ] = 0;
   329   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
   330   mreg2type[Op_RegI] = TypeInt::INT;
   331   mreg2type[Op_RegP] = TypePtr::BOTTOM;
   332   mreg2type[Op_RegF] = Type::FLOAT;
   333   mreg2type[Op_RegD] = Type::DOUBLE;
   334   mreg2type[Op_RegL] = TypeLong::LONG;
   335   mreg2type[Op_RegFlags] = TypeInt::CC;
   337   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
   339   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   341 #ifdef _LP64
   342   if (UseCompressedOops) {
   343     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
   344   } else
   345 #endif
   346   {
   347     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
   348     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
   349   }
   350   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
   351   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
   352   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
   353   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
   354   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
   355   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
   356   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
   358   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
   359   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
   360   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
   361   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
   362   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
   363   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
   364   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
   365   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
   366   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
   367   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
   368   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
   369   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
   371   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
   372   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
   374   const Type **fi2c = TypeTuple::fields(2);
   375   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
   376   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
   377   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
   379   const Type **intpair = TypeTuple::fields(2);
   380   intpair[0] = TypeInt::INT;
   381   intpair[1] = TypeInt::INT;
   382   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
   384   const Type **longpair = TypeTuple::fields(2);
   385   longpair[0] = TypeLong::LONG;
   386   longpair[1] = TypeLong::LONG;
   387   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
   389   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
   390   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
   391   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
   392   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
   393   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
   394   _const_basic_type[T_INT]     = TypeInt::INT;
   395   _const_basic_type[T_LONG]    = TypeLong::LONG;
   396   _const_basic_type[T_FLOAT]   = Type::FLOAT;
   397   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
   398   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
   399   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
   400   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
   401   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
   402   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
   404   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
   405   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
   406   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
   407   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
   408   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
   409   _zero_type[T_INT]     = TypeInt::ZERO;
   410   _zero_type[T_LONG]    = TypeLong::ZERO;
   411   _zero_type[T_FLOAT]   = TypeF::ZERO;
   412   _zero_type[T_DOUBLE]  = TypeD::ZERO;
   413   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
   414   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
   415   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
   416   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
   418   // get_zero_type() should not happen for T_CONFLICT
   419   _zero_type[T_CONFLICT]= NULL;
   421   // Vector predefined types, it needs initialized _const_basic_type[].
   422   if (Matcher::vector_size_supported(T_BYTE,4)) {
   423     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
   424   }
   425   if (Matcher::vector_size_supported(T_FLOAT,2)) {
   426     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
   427   }
   428   if (Matcher::vector_size_supported(T_FLOAT,4)) {
   429     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
   430   }
   431   if (Matcher::vector_size_supported(T_FLOAT,8)) {
   432     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
   433   }
   434   mreg2type[Op_VecS] = TypeVect::VECTS;
   435   mreg2type[Op_VecD] = TypeVect::VECTD;
   436   mreg2type[Op_VecX] = TypeVect::VECTX;
   437   mreg2type[Op_VecY] = TypeVect::VECTY;
   439   // Restore working type arena.
   440   current->set_type_arena(save);
   441   current->set_type_dict(NULL);
   442 }
   444 //------------------------------Initialize-------------------------------------
   445 void Type::Initialize(Compile* current) {
   446   assert(current->type_arena() != NULL, "must have created type arena");
   448   if (_shared_type_dict == NULL) {
   449     Initialize_shared(current);
   450   }
   452   Arena* type_arena = current->type_arena();
   454   // Create the hash-cons'ing dictionary with top-level storage allocation
   455   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
   456   current->set_type_dict(tdic);
   458   // Transfer the shared types.
   459   DictI i(_shared_type_dict);
   460   for( ; i.test(); ++i ) {
   461     Type* t = (Type*)i._value;
   462     tdic->Insert(t,t);  // New Type, insert into Type table
   463   }
   465 #ifdef ASSERT
   466   verify_lastype();
   467 #endif
   468 }
   470 //------------------------------hashcons---------------------------------------
   471 // Do the hash-cons trick.  If the Type already exists in the type table,
   472 // delete the current Type and return the existing Type.  Otherwise stick the
   473 // current Type in the Type table.
   474 const Type *Type::hashcons(void) {
   475   debug_only(base());           // Check the assertion in Type::base().
   476   // Look up the Type in the Type dictionary
   477   Dict *tdic = type_dict();
   478   Type* old = (Type*)(tdic->Insert(this, this, false));
   479   if( old ) {                   // Pre-existing Type?
   480     if( old != this )           // Yes, this guy is not the pre-existing?
   481       delete this;              // Yes, Nuke this guy
   482     assert( old->_dual, "" );
   483     return old;                 // Return pre-existing
   484   }
   486   // Every type has a dual (to make my lattice symmetric).
   487   // Since we just discovered a new Type, compute its dual right now.
   488   assert( !_dual, "" );         // No dual yet
   489   _dual = xdual();              // Compute the dual
   490   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
   491     _dual = this;
   492     return this;
   493   }
   494   assert( !_dual->_dual, "" );  // No reverse dual yet
   495   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
   496   // New Type, insert into Type table
   497   tdic->Insert((void*)_dual,(void*)_dual);
   498   ((Type*)_dual)->_dual = this; // Finish up being symmetric
   499 #ifdef ASSERT
   500   Type *dual_dual = (Type*)_dual->xdual();
   501   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
   502   delete dual_dual;
   503 #endif
   504   return this;                  // Return new Type
   505 }
   507 //------------------------------eq---------------------------------------------
   508 // Structural equality check for Type representations
   509 bool Type::eq( const Type * ) const {
   510   return true;                  // Nothing else can go wrong
   511 }
   513 //------------------------------hash-------------------------------------------
   514 // Type-specific hashing function.
   515 int Type::hash(void) const {
   516   return _base;
   517 }
   519 //------------------------------is_finite--------------------------------------
   520 // Has a finite value
   521 bool Type::is_finite() const {
   522   return false;
   523 }
   525 //------------------------------is_nan-----------------------------------------
   526 // Is not a number (NaN)
   527 bool Type::is_nan()    const {
   528   return false;
   529 }
   531 //----------------------interface_vs_oop---------------------------------------
   532 #ifdef ASSERT
   533 bool Type::interface_vs_oop(const Type *t) const {
   534   bool result = false;
   536   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
   537   const TypePtr*    t_ptr =    t->make_ptr();
   538   if( this_ptr == NULL || t_ptr == NULL )
   539     return result;
   541   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
   542   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
   543   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
   544     bool this_interface = this_inst->klass()->is_interface();
   545     bool    t_interface =    t_inst->klass()->is_interface();
   546     result = this_interface ^ t_interface;
   547   }
   549   return result;
   550 }
   551 #endif
   553 //------------------------------meet-------------------------------------------
   554 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
   555 // commutative and the lattice is symmetric.
   556 const Type *Type::meet( const Type *t ) const {
   557   if (isa_narrowoop() && t->isa_narrowoop()) {
   558     const Type* result = make_ptr()->meet(t->make_ptr());
   559     return result->make_narrowoop();
   560   }
   562   const Type *mt = xmeet(t);
   563   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
   564 #ifdef ASSERT
   565   assert( mt == t->xmeet(this), "meet not commutative" );
   566   const Type* dual_join = mt->_dual;
   567   const Type *t2t    = dual_join->xmeet(t->_dual);
   568   const Type *t2this = dual_join->xmeet(   _dual);
   570   // Interface meet Oop is Not Symmetric:
   571   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
   572   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
   574   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
   575     tty->print_cr("=== Meet Not Symmetric ===");
   576     tty->print("t   =                   ");         t->dump(); tty->cr();
   577     tty->print("this=                   ");            dump(); tty->cr();
   578     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
   580     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
   581     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
   582     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
   584     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
   585     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
   587     fatal("meet not symmetric" );
   588   }
   589 #endif
   590   return mt;
   591 }
   593 //------------------------------xmeet------------------------------------------
   594 // Compute the MEET of two types.  It returns a new Type object.
   595 const Type *Type::xmeet( const Type *t ) const {
   596   // Perform a fast test for common case; meeting the same types together.
   597   if( this == t ) return this;  // Meeting same type-rep?
   599   // Meeting TOP with anything?
   600   if( _base == Top ) return t;
   602   // Meeting BOTTOM with anything?
   603   if( _base == Bottom ) return BOTTOM;
   605   // Current "this->_base" is one of: Bad, Multi, Control, Top,
   606   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
   607   switch (t->base()) {  // Switch on original type
   609   // Cut in half the number of cases I must handle.  Only need cases for when
   610   // the given enum "t->type" is less than or equal to the local enum "type".
   611   case FloatCon:
   612   case DoubleCon:
   613   case Int:
   614   case Long:
   615     return t->xmeet(this);
   617   case OopPtr:
   618     return t->xmeet(this);
   620   case InstPtr:
   621     return t->xmeet(this);
   623   case KlassPtr:
   624     return t->xmeet(this);
   626   case AryPtr:
   627     return t->xmeet(this);
   629   case NarrowOop:
   630     return t->xmeet(this);
   632   case Bad:                     // Type check
   633   default:                      // Bogus type not in lattice
   634     typerr(t);
   635     return Type::BOTTOM;
   637   case Bottom:                  // Ye Olde Default
   638     return t;
   640   case FloatTop:
   641     if( _base == FloatTop ) return this;
   642   case FloatBot:                // Float
   643     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
   644     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
   645     typerr(t);
   646     return Type::BOTTOM;
   648   case DoubleTop:
   649     if( _base == DoubleTop ) return this;
   650   case DoubleBot:               // Double
   651     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
   652     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
   653     typerr(t);
   654     return Type::BOTTOM;
   656   // These next few cases must match exactly or it is a compile-time error.
   657   case Control:                 // Control of code
   658   case Abio:                    // State of world outside of program
   659   case Memory:
   660     if( _base == t->_base )  return this;
   661     typerr(t);
   662     return Type::BOTTOM;
   664   case Top:                     // Top of the lattice
   665     return this;
   666   }
   668   // The type is unchanged
   669   return this;
   670 }
   672 //-----------------------------filter------------------------------------------
   673 const Type *Type::filter( const Type *kills ) const {
   674   const Type* ft = join(kills);
   675   if (ft->empty())
   676     return Type::TOP;           // Canonical empty value
   677   return ft;
   678 }
   680 //------------------------------xdual------------------------------------------
   681 // Compute dual right now.
   682 const Type::TYPES Type::dual_type[Type::lastype] = {
   683   Bad,          // Bad
   684   Control,      // Control
   685   Bottom,       // Top
   686   Bad,          // Int - handled in v-call
   687   Bad,          // Long - handled in v-call
   688   Half,         // Half
   689   Bad,          // NarrowOop - handled in v-call
   691   Bad,          // Tuple - handled in v-call
   692   Bad,          // Array - handled in v-call
   693   Bad,          // VectorS - handled in v-call
   694   Bad,          // VectorD - handled in v-call
   695   Bad,          // VectorX - handled in v-call
   696   Bad,          // VectorY - handled in v-call
   698   Bad,          // AnyPtr - handled in v-call
   699   Bad,          // RawPtr - handled in v-call
   700   Bad,          // OopPtr - handled in v-call
   701   Bad,          // InstPtr - handled in v-call
   702   Bad,          // AryPtr - handled in v-call
   703   Bad,          // KlassPtr - handled in v-call
   705   Bad,          // Function - handled in v-call
   706   Abio,         // Abio
   707   Return_Address,// Return_Address
   708   Memory,       // Memory
   709   FloatBot,     // FloatTop
   710   FloatCon,     // FloatCon
   711   FloatTop,     // FloatBot
   712   DoubleBot,    // DoubleTop
   713   DoubleCon,    // DoubleCon
   714   DoubleTop,    // DoubleBot
   715   Top           // Bottom
   716 };
   718 const Type *Type::xdual() const {
   719   // Note: the base() accessor asserts the sanity of _base.
   720   assert(dual_type[base()] != Bad, "implement with v-call");
   721   return new Type(dual_type[_base]);
   722 }
   724 //------------------------------has_memory-------------------------------------
   725 bool Type::has_memory() const {
   726   Type::TYPES tx = base();
   727   if (tx == Memory) return true;
   728   if (tx == Tuple) {
   729     const TypeTuple *t = is_tuple();
   730     for (uint i=0; i < t->cnt(); i++) {
   731       tx = t->field_at(i)->base();
   732       if (tx == Memory)  return true;
   733     }
   734   }
   735   return false;
   736 }
   738 #ifndef PRODUCT
   739 //------------------------------dump2------------------------------------------
   740 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
   741   st->print(msg[_base]);
   742 }
   744 //------------------------------dump-------------------------------------------
   745 void Type::dump_on(outputStream *st) const {
   746   ResourceMark rm;
   747   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
   748   dump2(d,1, st);
   749   if (is_ptr_to_narrowoop()) {
   750     st->print(" [narrow]");
   751   }
   752 }
   754 //------------------------------data-------------------------------------------
   755 const char * const Type::msg[Type::lastype] = {
   756   "bad","control","top","int:","long:","half", "narrowoop:",
   757   "tuple:", "array:", "vectors:", "vectord:", "vectorx:", "vectory:",
   758   "anyptr:", "rawptr:", "java:", "inst:", "aryptr:", "klass:",
   759   "func", "abIO", "return_address", "memory",
   760   "float_top", "ftcon:", "float",
   761   "double_top", "dblcon:", "double",
   762   "bottom"
   763 };
   764 #endif
   766 //------------------------------singleton--------------------------------------
   767 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   768 // constants (Ldi nodes).  Singletons are integer, float or double constants.
   769 bool Type::singleton(void) const {
   770   return _base == Top || _base == Half;
   771 }
   773 //------------------------------empty------------------------------------------
   774 // TRUE if Type is a type with no values, FALSE otherwise.
   775 bool Type::empty(void) const {
   776   switch (_base) {
   777   case DoubleTop:
   778   case FloatTop:
   779   case Top:
   780     return true;
   782   case Half:
   783   case Abio:
   784   case Return_Address:
   785   case Memory:
   786   case Bottom:
   787   case FloatBot:
   788   case DoubleBot:
   789     return false;  // never a singleton, therefore never empty
   790   }
   792   ShouldNotReachHere();
   793   return false;
   794 }
   796 //------------------------------dump_stats-------------------------------------
   797 // Dump collected statistics to stderr
   798 #ifndef PRODUCT
   799 void Type::dump_stats() {
   800   tty->print("Types made: %d\n", type_dict()->Size());
   801 }
   802 #endif
   804 //------------------------------typerr-----------------------------------------
   805 void Type::typerr( const Type *t ) const {
   806 #ifndef PRODUCT
   807   tty->print("\nError mixing types: ");
   808   dump();
   809   tty->print(" and ");
   810   t->dump();
   811   tty->print("\n");
   812 #endif
   813   ShouldNotReachHere();
   814 }
   816 //------------------------------isa_oop_ptr------------------------------------
   817 // Return true if type is an oop pointer type.  False for raw pointers.
   818 static char isa_oop_ptr_tbl[Type::lastype] = {
   819   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*array*/, 0, 0, 0, 0/*vector*/,
   820   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
   821   0/*func*/,0,0/*return_address*/,0,
   822   /*floats*/0,0,0, /*doubles*/0,0,0,
   823   0
   824 };
   825 bool Type::isa_oop_ptr() const {
   826   return isa_oop_ptr_tbl[_base] != 0;
   827 }
   829 //------------------------------dump_stats-------------------------------------
   830 // // Check that arrays match type enum
   831 #ifndef PRODUCT
   832 void Type::verify_lastype() {
   833   // Check that arrays match enumeration
   834   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
   835   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
   836   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
   837   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
   838   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
   839 }
   840 #endif
   842 //=============================================================================
   843 // Convenience common pre-built types.
   844 const TypeF *TypeF::ZERO;       // Floating point zero
   845 const TypeF *TypeF::ONE;        // Floating point one
   847 //------------------------------make-------------------------------------------
   848 // Create a float constant
   849 const TypeF *TypeF::make(float f) {
   850   return (TypeF*)(new TypeF(f))->hashcons();
   851 }
   853 //------------------------------meet-------------------------------------------
   854 // Compute the MEET of two types.  It returns a new Type object.
   855 const Type *TypeF::xmeet( const Type *t ) const {
   856   // Perform a fast test for common case; meeting the same types together.
   857   if( this == t ) return this;  // Meeting same type-rep?
   859   // Current "this->_base" is FloatCon
   860   switch (t->base()) {          // Switch on original type
   861   case AnyPtr:                  // Mixing with oops happens when javac
   862   case RawPtr:                  // reuses local variables
   863   case OopPtr:
   864   case InstPtr:
   865   case KlassPtr:
   866   case AryPtr:
   867   case NarrowOop:
   868   case Int:
   869   case Long:
   870   case DoubleTop:
   871   case DoubleCon:
   872   case DoubleBot:
   873   case Bottom:                  // Ye Olde Default
   874     return Type::BOTTOM;
   876   case FloatBot:
   877     return t;
   879   default:                      // All else is a mistake
   880     typerr(t);
   882   case FloatCon:                // Float-constant vs Float-constant?
   883     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
   884                                 // must compare bitwise as positive zero, negative zero and NaN have
   885                                 // all the same representation in C++
   886       return FLOAT;             // Return generic float
   887                                 // Equal constants
   888   case Top:
   889   case FloatTop:
   890     break;                      // Return the float constant
   891   }
   892   return this;                  // Return the float constant
   893 }
   895 //------------------------------xdual------------------------------------------
   896 // Dual: symmetric
   897 const Type *TypeF::xdual() const {
   898   return this;
   899 }
   901 //------------------------------eq---------------------------------------------
   902 // Structural equality check for Type representations
   903 bool TypeF::eq( const Type *t ) const {
   904   if( g_isnan(_f) ||
   905       g_isnan(t->getf()) ) {
   906     // One or both are NANs.  If both are NANs return true, else false.
   907     return (g_isnan(_f) && g_isnan(t->getf()));
   908   }
   909   if (_f == t->getf()) {
   910     // (NaN is impossible at this point, since it is not equal even to itself)
   911     if (_f == 0.0) {
   912       // difference between positive and negative zero
   913       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
   914     }
   915     return true;
   916   }
   917   return false;
   918 }
   920 //------------------------------hash-------------------------------------------
   921 // Type-specific hashing function.
   922 int TypeF::hash(void) const {
   923   return *(int*)(&_f);
   924 }
   926 //------------------------------is_finite--------------------------------------
   927 // Has a finite value
   928 bool TypeF::is_finite() const {
   929   return g_isfinite(getf()) != 0;
   930 }
   932 //------------------------------is_nan-----------------------------------------
   933 // Is not a number (NaN)
   934 bool TypeF::is_nan()    const {
   935   return g_isnan(getf()) != 0;
   936 }
   938 //------------------------------dump2------------------------------------------
   939 // Dump float constant Type
   940 #ifndef PRODUCT
   941 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
   942   Type::dump2(d,depth, st);
   943   st->print("%f", _f);
   944 }
   945 #endif
   947 //------------------------------singleton--------------------------------------
   948 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
   949 // constants (Ldi nodes).  Singletons are integer, float or double constants
   950 // or a single symbol.
   951 bool TypeF::singleton(void) const {
   952   return true;                  // Always a singleton
   953 }
   955 bool TypeF::empty(void) const {
   956   return false;                 // always exactly a singleton
   957 }
   959 //=============================================================================
   960 // Convenience common pre-built types.
   961 const TypeD *TypeD::ZERO;       // Floating point zero
   962 const TypeD *TypeD::ONE;        // Floating point one
   964 //------------------------------make-------------------------------------------
   965 const TypeD *TypeD::make(double d) {
   966   return (TypeD*)(new TypeD(d))->hashcons();
   967 }
   969 //------------------------------meet-------------------------------------------
   970 // Compute the MEET of two types.  It returns a new Type object.
   971 const Type *TypeD::xmeet( const Type *t ) const {
   972   // Perform a fast test for common case; meeting the same types together.
   973   if( this == t ) return this;  // Meeting same type-rep?
   975   // Current "this->_base" is DoubleCon
   976   switch (t->base()) {          // Switch on original type
   977   case AnyPtr:                  // Mixing with oops happens when javac
   978   case RawPtr:                  // reuses local variables
   979   case OopPtr:
   980   case InstPtr:
   981   case KlassPtr:
   982   case AryPtr:
   983   case NarrowOop:
   984   case Int:
   985   case Long:
   986   case FloatTop:
   987   case FloatCon:
   988   case FloatBot:
   989   case Bottom:                  // Ye Olde Default
   990     return Type::BOTTOM;
   992   case DoubleBot:
   993     return t;
   995   default:                      // All else is a mistake
   996     typerr(t);
   998   case DoubleCon:               // Double-constant vs Double-constant?
   999     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
  1000       return DOUBLE;            // Return generic double
  1001   case Top:
  1002   case DoubleTop:
  1003     break;
  1005   return this;                  // Return the double constant
  1008 //------------------------------xdual------------------------------------------
  1009 // Dual: symmetric
  1010 const Type *TypeD::xdual() const {
  1011   return this;
  1014 //------------------------------eq---------------------------------------------
  1015 // Structural equality check for Type representations
  1016 bool TypeD::eq( const Type *t ) const {
  1017   if( g_isnan(_d) ||
  1018       g_isnan(t->getd()) ) {
  1019     // One or both are NANs.  If both are NANs return true, else false.
  1020     return (g_isnan(_d) && g_isnan(t->getd()));
  1022   if (_d == t->getd()) {
  1023     // (NaN is impossible at this point, since it is not equal even to itself)
  1024     if (_d == 0.0) {
  1025       // difference between positive and negative zero
  1026       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
  1028     return true;
  1030   return false;
  1033 //------------------------------hash-------------------------------------------
  1034 // Type-specific hashing function.
  1035 int TypeD::hash(void) const {
  1036   return *(int*)(&_d);
  1039 //------------------------------is_finite--------------------------------------
  1040 // Has a finite value
  1041 bool TypeD::is_finite() const {
  1042   return g_isfinite(getd()) != 0;
  1045 //------------------------------is_nan-----------------------------------------
  1046 // Is not a number (NaN)
  1047 bool TypeD::is_nan()    const {
  1048   return g_isnan(getd()) != 0;
  1051 //------------------------------dump2------------------------------------------
  1052 // Dump double constant Type
  1053 #ifndef PRODUCT
  1054 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  1055   Type::dump2(d,depth,st);
  1056   st->print("%f", _d);
  1058 #endif
  1060 //------------------------------singleton--------------------------------------
  1061 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1062 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1063 // or a single symbol.
  1064 bool TypeD::singleton(void) const {
  1065   return true;                  // Always a singleton
  1068 bool TypeD::empty(void) const {
  1069   return false;                 // always exactly a singleton
  1072 //=============================================================================
  1073 // Convience common pre-built types.
  1074 const TypeInt *TypeInt::MINUS_1;// -1
  1075 const TypeInt *TypeInt::ZERO;   // 0
  1076 const TypeInt *TypeInt::ONE;    // 1
  1077 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
  1078 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
  1079 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
  1080 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
  1081 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
  1082 const TypeInt *TypeInt::CC_LE;  // [-1,0]
  1083 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
  1084 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
  1085 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
  1086 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
  1087 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
  1088 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
  1089 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
  1090 const TypeInt *TypeInt::INT;    // 32-bit integers
  1091 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
  1093 //------------------------------TypeInt----------------------------------------
  1094 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
  1097 //------------------------------make-------------------------------------------
  1098 const TypeInt *TypeInt::make( jint lo ) {
  1099   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
  1102 static int normalize_int_widen( jint lo, jint hi, int w ) {
  1103   // Certain normalizations keep us sane when comparing types.
  1104   // The 'SMALLINT' covers constants and also CC and its relatives.
  1105   if (lo <= hi) {
  1106     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
  1107     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  1108   } else {
  1109     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
  1110     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  1112   return w;
  1115 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  1116   w = normalize_int_widen(lo, hi, w);
  1117   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
  1120 //------------------------------meet-------------------------------------------
  1121 // Compute the MEET of two types.  It returns a new Type representation object
  1122 // with reference count equal to the number of Types pointing at it.
  1123 // Caller should wrap a Types around it.
  1124 const Type *TypeInt::xmeet( const Type *t ) const {
  1125   // Perform a fast test for common case; meeting the same types together.
  1126   if( this == t ) return this;  // Meeting same type?
  1128   // Currently "this->_base" is a TypeInt
  1129   switch (t->base()) {          // Switch on original type
  1130   case AnyPtr:                  // Mixing with oops happens when javac
  1131   case RawPtr:                  // reuses local variables
  1132   case OopPtr:
  1133   case InstPtr:
  1134   case KlassPtr:
  1135   case AryPtr:
  1136   case NarrowOop:
  1137   case Long:
  1138   case FloatTop:
  1139   case FloatCon:
  1140   case FloatBot:
  1141   case DoubleTop:
  1142   case DoubleCon:
  1143   case DoubleBot:
  1144   case Bottom:                  // Ye Olde Default
  1145     return Type::BOTTOM;
  1146   default:                      // All else is a mistake
  1147     typerr(t);
  1148   case Top:                     // No change
  1149     return this;
  1150   case Int:                     // Int vs Int?
  1151     break;
  1154   // Expand covered set
  1155   const TypeInt *r = t->is_int();
  1156   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1159 //------------------------------xdual------------------------------------------
  1160 // Dual: reverse hi & lo; flip widen
  1161 const Type *TypeInt::xdual() const {
  1162   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  1163   return new TypeInt(_hi,_lo,w);
  1166 //------------------------------widen------------------------------------------
  1167 // Only happens for optimistic top-down optimizations.
  1168 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  1169   // Coming from TOP or such; no widening
  1170   if( old->base() != Int ) return this;
  1171   const TypeInt *ot = old->is_int();
  1173   // If new guy is equal to old guy, no widening
  1174   if( _lo == ot->_lo && _hi == ot->_hi )
  1175     return old;
  1177   // If new guy contains old, then we widened
  1178   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1179     // New contains old
  1180     // If new guy is already wider than old, no widening
  1181     if( _widen > ot->_widen ) return this;
  1182     // If old guy was a constant, do not bother
  1183     if (ot->_lo == ot->_hi)  return this;
  1184     // Now widen new guy.
  1185     // Check for widening too far
  1186     if (_widen == WidenMax) {
  1187       int max = max_jint;
  1188       int min = min_jint;
  1189       if (limit->isa_int()) {
  1190         max = limit->is_int()->_hi;
  1191         min = limit->is_int()->_lo;
  1193       if (min < _lo && _hi < max) {
  1194         // If neither endpoint is extremal yet, push out the endpoint
  1195         // which is closer to its respective limit.
  1196         if (_lo >= 0 ||                 // easy common case
  1197             (juint)(_lo - min) >= (juint)(max - _hi)) {
  1198           // Try to widen to an unsigned range type of 31 bits:
  1199           return make(_lo, max, WidenMax);
  1200         } else {
  1201           return make(min, _hi, WidenMax);
  1204       return TypeInt::INT;
  1206     // Returned widened new guy
  1207     return make(_lo,_hi,_widen+1);
  1210   // If old guy contains new, then we probably widened too far & dropped to
  1211   // bottom.  Return the wider fellow.
  1212   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1213     return old;
  1215   //fatal("Integer value range is not subset");
  1216   //return this;
  1217   return TypeInt::INT;
  1220 //------------------------------narrow---------------------------------------
  1221 // Only happens for pessimistic optimizations.
  1222 const Type *TypeInt::narrow( const Type *old ) const {
  1223   if (_lo >= _hi)  return this;   // already narrow enough
  1224   if (old == NULL)  return this;
  1225   const TypeInt* ot = old->isa_int();
  1226   if (ot == NULL)  return this;
  1227   jint olo = ot->_lo;
  1228   jint ohi = ot->_hi;
  1230   // If new guy is equal to old guy, no narrowing
  1231   if (_lo == olo && _hi == ohi)  return old;
  1233   // If old guy was maximum range, allow the narrowing
  1234   if (olo == min_jint && ohi == max_jint)  return this;
  1236   if (_lo < olo || _hi > ohi)
  1237     return this;                // doesn't narrow; pretty wierd
  1239   // The new type narrows the old type, so look for a "death march".
  1240   // See comments on PhaseTransform::saturate.
  1241   juint nrange = _hi - _lo;
  1242   juint orange = ohi - olo;
  1243   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1244     // Use the new type only if the range shrinks a lot.
  1245     // We do not want the optimizer computing 2^31 point by point.
  1246     return old;
  1249   return this;
  1252 //-----------------------------filter------------------------------------------
  1253 const Type *TypeInt::filter( const Type *kills ) const {
  1254   const TypeInt* ft = join(kills)->isa_int();
  1255   if (ft == NULL || ft->empty())
  1256     return Type::TOP;           // Canonical empty value
  1257   if (ft->_widen < this->_widen) {
  1258     // Do not allow the value of kill->_widen to affect the outcome.
  1259     // The widen bits must be allowed to run freely through the graph.
  1260     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  1262   return ft;
  1265 //------------------------------eq---------------------------------------------
  1266 // Structural equality check for Type representations
  1267 bool TypeInt::eq( const Type *t ) const {
  1268   const TypeInt *r = t->is_int(); // Handy access
  1269   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
  1272 //------------------------------hash-------------------------------------------
  1273 // Type-specific hashing function.
  1274 int TypeInt::hash(void) const {
  1275   return _lo+_hi+_widen+(int)Type::Int;
  1278 //------------------------------is_finite--------------------------------------
  1279 // Has a finite value
  1280 bool TypeInt::is_finite() const {
  1281   return true;
  1284 //------------------------------dump2------------------------------------------
  1285 // Dump TypeInt
  1286 #ifndef PRODUCT
  1287 static const char* intname(char* buf, jint n) {
  1288   if (n == min_jint)
  1289     return "min";
  1290   else if (n < min_jint + 10000)
  1291     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  1292   else if (n == max_jint)
  1293     return "max";
  1294   else if (n > max_jint - 10000)
  1295     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  1296   else
  1297     sprintf(buf, INT32_FORMAT, n);
  1298   return buf;
  1301 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  1302   char buf[40], buf2[40];
  1303   if (_lo == min_jint && _hi == max_jint)
  1304     st->print("int");
  1305   else if (is_con())
  1306     st->print("int:%s", intname(buf, get_con()));
  1307   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
  1308     st->print("bool");
  1309   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
  1310     st->print("byte");
  1311   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
  1312     st->print("char");
  1313   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
  1314     st->print("short");
  1315   else if (_hi == max_jint)
  1316     st->print("int:>=%s", intname(buf, _lo));
  1317   else if (_lo == min_jint)
  1318     st->print("int:<=%s", intname(buf, _hi));
  1319   else
  1320     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
  1322   if (_widen != 0 && this != TypeInt::INT)
  1323     st->print(":%.*s", _widen, "wwww");
  1325 #endif
  1327 //------------------------------singleton--------------------------------------
  1328 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1329 // constants.
  1330 bool TypeInt::singleton(void) const {
  1331   return _lo >= _hi;
  1334 bool TypeInt::empty(void) const {
  1335   return _lo > _hi;
  1338 //=============================================================================
  1339 // Convenience common pre-built types.
  1340 const TypeLong *TypeLong::MINUS_1;// -1
  1341 const TypeLong *TypeLong::ZERO; // 0
  1342 const TypeLong *TypeLong::ONE;  // 1
  1343 const TypeLong *TypeLong::POS;  // >=0
  1344 const TypeLong *TypeLong::LONG; // 64-bit integers
  1345 const TypeLong *TypeLong::INT;  // 32-bit subrange
  1346 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
  1348 //------------------------------TypeLong---------------------------------------
  1349 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
  1352 //------------------------------make-------------------------------------------
  1353 const TypeLong *TypeLong::make( jlong lo ) {
  1354   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
  1357 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  1358   // Certain normalizations keep us sane when comparing types.
  1359   // The 'SMALLINT' covers constants.
  1360   if (lo <= hi) {
  1361     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
  1362     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  1363   } else {
  1364     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
  1365     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  1367   return w;
  1370 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  1371   w = normalize_long_widen(lo, hi, w);
  1372   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
  1376 //------------------------------meet-------------------------------------------
  1377 // Compute the MEET of two types.  It returns a new Type representation object
  1378 // with reference count equal to the number of Types pointing at it.
  1379 // Caller should wrap a Types around it.
  1380 const Type *TypeLong::xmeet( const Type *t ) const {
  1381   // Perform a fast test for common case; meeting the same types together.
  1382   if( this == t ) return this;  // Meeting same type?
  1384   // Currently "this->_base" is a TypeLong
  1385   switch (t->base()) {          // Switch on original type
  1386   case AnyPtr:                  // Mixing with oops happens when javac
  1387   case RawPtr:                  // reuses local variables
  1388   case OopPtr:
  1389   case InstPtr:
  1390   case KlassPtr:
  1391   case AryPtr:
  1392   case NarrowOop:
  1393   case Int:
  1394   case FloatTop:
  1395   case FloatCon:
  1396   case FloatBot:
  1397   case DoubleTop:
  1398   case DoubleCon:
  1399   case DoubleBot:
  1400   case Bottom:                  // Ye Olde Default
  1401     return Type::BOTTOM;
  1402   default:                      // All else is a mistake
  1403     typerr(t);
  1404   case Top:                     // No change
  1405     return this;
  1406   case Long:                    // Long vs Long?
  1407     break;
  1410   // Expand covered set
  1411   const TypeLong *r = t->is_long(); // Turn into a TypeLong
  1412   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
  1415 //------------------------------xdual------------------------------------------
  1416 // Dual: reverse hi & lo; flip widen
  1417 const Type *TypeLong::xdual() const {
  1418   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  1419   return new TypeLong(_hi,_lo,w);
  1422 //------------------------------widen------------------------------------------
  1423 // Only happens for optimistic top-down optimizations.
  1424 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  1425   // Coming from TOP or such; no widening
  1426   if( old->base() != Long ) return this;
  1427   const TypeLong *ot = old->is_long();
  1429   // If new guy is equal to old guy, no widening
  1430   if( _lo == ot->_lo && _hi == ot->_hi )
  1431     return old;
  1433   // If new guy contains old, then we widened
  1434   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
  1435     // New contains old
  1436     // If new guy is already wider than old, no widening
  1437     if( _widen > ot->_widen ) return this;
  1438     // If old guy was a constant, do not bother
  1439     if (ot->_lo == ot->_hi)  return this;
  1440     // Now widen new guy.
  1441     // Check for widening too far
  1442     if (_widen == WidenMax) {
  1443       jlong max = max_jlong;
  1444       jlong min = min_jlong;
  1445       if (limit->isa_long()) {
  1446         max = limit->is_long()->_hi;
  1447         min = limit->is_long()->_lo;
  1449       if (min < _lo && _hi < max) {
  1450         // If neither endpoint is extremal yet, push out the endpoint
  1451         // which is closer to its respective limit.
  1452         if (_lo >= 0 ||                 // easy common case
  1453             (julong)(_lo - min) >= (julong)(max - _hi)) {
  1454           // Try to widen to an unsigned range type of 32/63 bits:
  1455           if (max >= max_juint && _hi < max_juint)
  1456             return make(_lo, max_juint, WidenMax);
  1457           else
  1458             return make(_lo, max, WidenMax);
  1459         } else {
  1460           return make(min, _hi, WidenMax);
  1463       return TypeLong::LONG;
  1465     // Returned widened new guy
  1466     return make(_lo,_hi,_widen+1);
  1469   // If old guy contains new, then we probably widened too far & dropped to
  1470   // bottom.  Return the wider fellow.
  1471   if ( ot->_lo <= _lo && ot->_hi >= _hi )
  1472     return old;
  1474   //  fatal("Long value range is not subset");
  1475   // return this;
  1476   return TypeLong::LONG;
  1479 //------------------------------narrow----------------------------------------
  1480 // Only happens for pessimistic optimizations.
  1481 const Type *TypeLong::narrow( const Type *old ) const {
  1482   if (_lo >= _hi)  return this;   // already narrow enough
  1483   if (old == NULL)  return this;
  1484   const TypeLong* ot = old->isa_long();
  1485   if (ot == NULL)  return this;
  1486   jlong olo = ot->_lo;
  1487   jlong ohi = ot->_hi;
  1489   // If new guy is equal to old guy, no narrowing
  1490   if (_lo == olo && _hi == ohi)  return old;
  1492   // If old guy was maximum range, allow the narrowing
  1493   if (olo == min_jlong && ohi == max_jlong)  return this;
  1495   if (_lo < olo || _hi > ohi)
  1496     return this;                // doesn't narrow; pretty wierd
  1498   // The new type narrows the old type, so look for a "death march".
  1499   // See comments on PhaseTransform::saturate.
  1500   julong nrange = _hi - _lo;
  1501   julong orange = ohi - olo;
  1502   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
  1503     // Use the new type only if the range shrinks a lot.
  1504     // We do not want the optimizer computing 2^31 point by point.
  1505     return old;
  1508   return this;
  1511 //-----------------------------filter------------------------------------------
  1512 const Type *TypeLong::filter( const Type *kills ) const {
  1513   const TypeLong* ft = join(kills)->isa_long();
  1514   if (ft == NULL || ft->empty())
  1515     return Type::TOP;           // Canonical empty value
  1516   if (ft->_widen < this->_widen) {
  1517     // Do not allow the value of kill->_widen to affect the outcome.
  1518     // The widen bits must be allowed to run freely through the graph.
  1519     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  1521   return ft;
  1524 //------------------------------eq---------------------------------------------
  1525 // Structural equality check for Type representations
  1526 bool TypeLong::eq( const Type *t ) const {
  1527   const TypeLong *r = t->is_long(); // Handy access
  1528   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
  1531 //------------------------------hash-------------------------------------------
  1532 // Type-specific hashing function.
  1533 int TypeLong::hash(void) const {
  1534   return (int)(_lo+_hi+_widen+(int)Type::Long);
  1537 //------------------------------is_finite--------------------------------------
  1538 // Has a finite value
  1539 bool TypeLong::is_finite() const {
  1540   return true;
  1543 //------------------------------dump2------------------------------------------
  1544 // Dump TypeLong
  1545 #ifndef PRODUCT
  1546 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  1547   if (n > x) {
  1548     if (n >= x + 10000)  return NULL;
  1549     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
  1550   } else if (n < x) {
  1551     if (n <= x - 10000)  return NULL;
  1552     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
  1553   } else {
  1554     return xname;
  1556   return buf;
  1559 static const char* longname(char* buf, jlong n) {
  1560   const char* str;
  1561   if (n == min_jlong)
  1562     return "min";
  1563   else if (n < min_jlong + 10000)
  1564     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
  1565   else if (n == max_jlong)
  1566     return "max";
  1567   else if (n > max_jlong - 10000)
  1568     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
  1569   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
  1570     return str;
  1571   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
  1572     return str;
  1573   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
  1574     return str;
  1575   else
  1576     sprintf(buf, INT64_FORMAT, n);
  1577   return buf;
  1580 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  1581   char buf[80], buf2[80];
  1582   if (_lo == min_jlong && _hi == max_jlong)
  1583     st->print("long");
  1584   else if (is_con())
  1585     st->print("long:%s", longname(buf, get_con()));
  1586   else if (_hi == max_jlong)
  1587     st->print("long:>=%s", longname(buf, _lo));
  1588   else if (_lo == min_jlong)
  1589     st->print("long:<=%s", longname(buf, _hi));
  1590   else
  1591     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
  1593   if (_widen != 0 && this != TypeLong::LONG)
  1594     st->print(":%.*s", _widen, "wwww");
  1596 #endif
  1598 //------------------------------singleton--------------------------------------
  1599 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1600 // constants
  1601 bool TypeLong::singleton(void) const {
  1602   return _lo >= _hi;
  1605 bool TypeLong::empty(void) const {
  1606   return _lo > _hi;
  1609 //=============================================================================
  1610 // Convenience common pre-built types.
  1611 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
  1612 const TypeTuple *TypeTuple::IFFALSE;
  1613 const TypeTuple *TypeTuple::IFTRUE;
  1614 const TypeTuple *TypeTuple::IFNEITHER;
  1615 const TypeTuple *TypeTuple::LOOPBODY;
  1616 const TypeTuple *TypeTuple::MEMBAR;
  1617 const TypeTuple *TypeTuple::STORECONDITIONAL;
  1618 const TypeTuple *TypeTuple::START_I2C;
  1619 const TypeTuple *TypeTuple::INT_PAIR;
  1620 const TypeTuple *TypeTuple::LONG_PAIR;
  1623 //------------------------------make-------------------------------------------
  1624 // Make a TypeTuple from the range of a method signature
  1625 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  1626   ciType* return_type = sig->return_type();
  1627   uint total_fields = TypeFunc::Parms + return_type->size();
  1628   const Type **field_array = fields(total_fields);
  1629   switch (return_type->basic_type()) {
  1630   case T_LONG:
  1631     field_array[TypeFunc::Parms]   = TypeLong::LONG;
  1632     field_array[TypeFunc::Parms+1] = Type::HALF;
  1633     break;
  1634   case T_DOUBLE:
  1635     field_array[TypeFunc::Parms]   = Type::DOUBLE;
  1636     field_array[TypeFunc::Parms+1] = Type::HALF;
  1637     break;
  1638   case T_OBJECT:
  1639   case T_ARRAY:
  1640   case T_BOOLEAN:
  1641   case T_CHAR:
  1642   case T_FLOAT:
  1643   case T_BYTE:
  1644   case T_SHORT:
  1645   case T_INT:
  1646     field_array[TypeFunc::Parms] = get_const_type(return_type);
  1647     break;
  1648   case T_VOID:
  1649     break;
  1650   default:
  1651     ShouldNotReachHere();
  1653   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1656 // Make a TypeTuple from the domain of a method signature
  1657 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  1658   uint total_fields = TypeFunc::Parms + sig->size();
  1660   uint pos = TypeFunc::Parms;
  1661   const Type **field_array;
  1662   if (recv != NULL) {
  1663     total_fields++;
  1664     field_array = fields(total_fields);
  1665     // Use get_const_type here because it respects UseUniqueSubclasses:
  1666     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  1667   } else {
  1668     field_array = fields(total_fields);
  1671   int i = 0;
  1672   while (pos < total_fields) {
  1673     ciType* type = sig->type_at(i);
  1675     switch (type->basic_type()) {
  1676     case T_LONG:
  1677       field_array[pos++] = TypeLong::LONG;
  1678       field_array[pos++] = Type::HALF;
  1679       break;
  1680     case T_DOUBLE:
  1681       field_array[pos++] = Type::DOUBLE;
  1682       field_array[pos++] = Type::HALF;
  1683       break;
  1684     case T_OBJECT:
  1685     case T_ARRAY:
  1686     case T_BOOLEAN:
  1687     case T_CHAR:
  1688     case T_FLOAT:
  1689     case T_BYTE:
  1690     case T_SHORT:
  1691     case T_INT:
  1692       field_array[pos++] = get_const_type(type);
  1693       break;
  1694     default:
  1695       ShouldNotReachHere();
  1697     i++;
  1699   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
  1702 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  1703   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
  1706 //------------------------------fields-----------------------------------------
  1707 // Subroutine call type with space allocated for argument types
  1708 const Type **TypeTuple::fields( uint arg_cnt ) {
  1709   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  1710   flds[TypeFunc::Control  ] = Type::CONTROL;
  1711   flds[TypeFunc::I_O      ] = Type::ABIO;
  1712   flds[TypeFunc::Memory   ] = Type::MEMORY;
  1713   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  1714   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
  1716   return flds;
  1719 //------------------------------meet-------------------------------------------
  1720 // Compute the MEET of two types.  It returns a new Type object.
  1721 const Type *TypeTuple::xmeet( const Type *t ) const {
  1722   // Perform a fast test for common case; meeting the same types together.
  1723   if( this == t ) return this;  // Meeting same type-rep?
  1725   // Current "this->_base" is Tuple
  1726   switch (t->base()) {          // switch on original type
  1728   case Bottom:                  // Ye Olde Default
  1729     return t;
  1731   default:                      // All else is a mistake
  1732     typerr(t);
  1734   case Tuple: {                 // Meeting 2 signatures?
  1735     const TypeTuple *x = t->is_tuple();
  1736     assert( _cnt == x->_cnt, "" );
  1737     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1738     for( uint i=0; i<_cnt; i++ )
  1739       fields[i] = field_at(i)->xmeet( x->field_at(i) );
  1740     return TypeTuple::make(_cnt,fields);
  1742   case Top:
  1743     break;
  1745   return this;                  // Return the double constant
  1748 //------------------------------xdual------------------------------------------
  1749 // Dual: compute field-by-field dual
  1750 const Type *TypeTuple::xdual() const {
  1751   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  1752   for( uint i=0; i<_cnt; i++ )
  1753     fields[i] = _fields[i]->dual();
  1754   return new TypeTuple(_cnt,fields);
  1757 //------------------------------eq---------------------------------------------
  1758 // Structural equality check for Type representations
  1759 bool TypeTuple::eq( const Type *t ) const {
  1760   const TypeTuple *s = (const TypeTuple *)t;
  1761   if (_cnt != s->_cnt)  return false;  // Unequal field counts
  1762   for (uint i = 0; i < _cnt; i++)
  1763     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
  1764       return false;             // Missed
  1765   return true;
  1768 //------------------------------hash-------------------------------------------
  1769 // Type-specific hashing function.
  1770 int TypeTuple::hash(void) const {
  1771   intptr_t sum = _cnt;
  1772   for( uint i=0; i<_cnt; i++ )
  1773     sum += (intptr_t)_fields[i];     // Hash on pointers directly
  1774   return sum;
  1777 //------------------------------dump2------------------------------------------
  1778 // Dump signature Type
  1779 #ifndef PRODUCT
  1780 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  1781   st->print("{");
  1782   if( !depth || d[this] ) {     // Check for recursive print
  1783     st->print("...}");
  1784     return;
  1786   d.Insert((void*)this, (void*)this);   // Stop recursion
  1787   if( _cnt ) {
  1788     uint i;
  1789     for( i=0; i<_cnt-1; i++ ) {
  1790       st->print("%d:", i);
  1791       _fields[i]->dump2(d, depth-1, st);
  1792       st->print(", ");
  1794     st->print("%d:", i);
  1795     _fields[i]->dump2(d, depth-1, st);
  1797   st->print("}");
  1799 #endif
  1801 //------------------------------singleton--------------------------------------
  1802 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1803 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1804 // or a single symbol.
  1805 bool TypeTuple::singleton(void) const {
  1806   return false;                 // Never a singleton
  1809 bool TypeTuple::empty(void) const {
  1810   for( uint i=0; i<_cnt; i++ ) {
  1811     if (_fields[i]->empty())  return true;
  1813   return false;
  1816 //=============================================================================
  1817 // Convenience common pre-built types.
  1819 inline const TypeInt* normalize_array_size(const TypeInt* size) {
  1820   // Certain normalizations keep us sane when comparing types.
  1821   // We do not want arrayOop variables to differ only by the wideness
  1822   // of their index types.  Pick minimum wideness, since that is the
  1823   // forced wideness of small ranges anyway.
  1824   if (size->_widen != Type::WidenMin)
  1825     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  1826   else
  1827     return size;
  1830 //------------------------------make-------------------------------------------
  1831 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
  1832   if (UseCompressedOops && elem->isa_oopptr()) {
  1833     elem = elem->make_narrowoop();
  1835   size = normalize_array_size(size);
  1836   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
  1839 //------------------------------meet-------------------------------------------
  1840 // Compute the MEET of two types.  It returns a new Type object.
  1841 const Type *TypeAry::xmeet( const Type *t ) const {
  1842   // Perform a fast test for common case; meeting the same types together.
  1843   if( this == t ) return this;  // Meeting same type-rep?
  1845   // Current "this->_base" is Ary
  1846   switch (t->base()) {          // switch on original type
  1848   case Bottom:                  // Ye Olde Default
  1849     return t;
  1851   default:                      // All else is a mistake
  1852     typerr(t);
  1854   case Array: {                 // Meeting 2 arrays?
  1855     const TypeAry *a = t->is_ary();
  1856     return TypeAry::make(_elem->meet(a->_elem),
  1857                          _size->xmeet(a->_size)->is_int());
  1859   case Top:
  1860     break;
  1862   return this;                  // Return the double constant
  1865 //------------------------------xdual------------------------------------------
  1866 // Dual: compute field-by-field dual
  1867 const Type *TypeAry::xdual() const {
  1868   const TypeInt* size_dual = _size->dual()->is_int();
  1869   size_dual = normalize_array_size(size_dual);
  1870   return new TypeAry( _elem->dual(), size_dual);
  1873 //------------------------------eq---------------------------------------------
  1874 // Structural equality check for Type representations
  1875 bool TypeAry::eq( const Type *t ) const {
  1876   const TypeAry *a = (const TypeAry*)t;
  1877   return _elem == a->_elem &&
  1878     _size == a->_size;
  1881 //------------------------------hash-------------------------------------------
  1882 // Type-specific hashing function.
  1883 int TypeAry::hash(void) const {
  1884   return (intptr_t)_elem + (intptr_t)_size;
  1887 //----------------------interface_vs_oop---------------------------------------
  1888 #ifdef ASSERT
  1889 bool TypeAry::interface_vs_oop(const Type *t) const {
  1890   const TypeAry* t_ary = t->is_ary();
  1891   if (t_ary) {
  1892     return _elem->interface_vs_oop(t_ary->_elem);
  1894   return false;
  1896 #endif
  1898 //------------------------------dump2------------------------------------------
  1899 #ifndef PRODUCT
  1900 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  1901   _elem->dump2(d, depth, st);
  1902   st->print("[");
  1903   _size->dump2(d, depth, st);
  1904   st->print("]");
  1906 #endif
  1908 //------------------------------singleton--------------------------------------
  1909 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  1910 // constants (Ldi nodes).  Singletons are integer, float or double constants
  1911 // or a single symbol.
  1912 bool TypeAry::singleton(void) const {
  1913   return false;                 // Never a singleton
  1916 bool TypeAry::empty(void) const {
  1917   return _elem->empty() || _size->empty();
  1920 //--------------------------ary_must_be_exact----------------------------------
  1921 bool TypeAry::ary_must_be_exact() const {
  1922   if (!UseExactTypes)       return false;
  1923   // This logic looks at the element type of an array, and returns true
  1924   // if the element type is either a primitive or a final instance class.
  1925   // In such cases, an array built on this ary must have no subclasses.
  1926   if (_elem == BOTTOM)      return false;  // general array not exact
  1927   if (_elem == TOP   )      return false;  // inverted general array not exact
  1928   const TypeOopPtr*  toop = NULL;
  1929   if (UseCompressedOops && _elem->isa_narrowoop()) {
  1930     toop = _elem->make_ptr()->isa_oopptr();
  1931   } else {
  1932     toop = _elem->isa_oopptr();
  1934   if (!toop)                return true;   // a primitive type, like int
  1935   ciKlass* tklass = toop->klass();
  1936   if (tklass == NULL)       return false;  // unloaded class
  1937   if (!tklass->is_loaded()) return false;  // unloaded class
  1938   const TypeInstPtr* tinst;
  1939   if (_elem->isa_narrowoop())
  1940     tinst = _elem->make_ptr()->isa_instptr();
  1941   else
  1942     tinst = _elem->isa_instptr();
  1943   if (tinst)
  1944     return tklass->as_instance_klass()->is_final();
  1945   const TypeAryPtr*  tap;
  1946   if (_elem->isa_narrowoop())
  1947     tap = _elem->make_ptr()->isa_aryptr();
  1948   else
  1949     tap = _elem->isa_aryptr();
  1950   if (tap)
  1951     return tap->ary()->ary_must_be_exact();
  1952   return false;
  1955 //==============================TypeVect=======================================
  1956 // Convenience common pre-built types.
  1957 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
  1958 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
  1959 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
  1960 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
  1962 //------------------------------make-------------------------------------------
  1963 const TypeVect* TypeVect::make(const Type *elem, uint length) {
  1964   BasicType elem_bt = elem->array_element_basic_type();
  1965   assert(is_java_primitive(elem_bt), "only primitive types in vector");
  1966   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  1967   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  1968   int size = length * type2aelembytes(elem_bt);
  1969   switch (Matcher::vector_ideal_reg(size)) {
  1970   case Op_VecS:
  1971     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  1972   case Op_VecD:
  1973   case Op_RegD:
  1974     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  1975   case Op_VecX:
  1976     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  1977   case Op_VecY:
  1978     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  1980  ShouldNotReachHere();
  1981   return NULL;
  1984 //------------------------------meet-------------------------------------------
  1985 // Compute the MEET of two types.  It returns a new Type object.
  1986 const Type *TypeVect::xmeet( const Type *t ) const {
  1987   // Perform a fast test for common case; meeting the same types together.
  1988   if( this == t ) return this;  // Meeting same type-rep?
  1990   // Current "this->_base" is Vector
  1991   switch (t->base()) {          // switch on original type
  1993   case Bottom:                  // Ye Olde Default
  1994     return t;
  1996   default:                      // All else is a mistake
  1997     typerr(t);
  1999   case VectorS:
  2000   case VectorD:
  2001   case VectorX:
  2002   case VectorY: {                // Meeting 2 vectors?
  2003     const TypeVect* v = t->is_vect();
  2004     assert(  base() == v->base(), "");
  2005     assert(length() == v->length(), "");
  2006     assert(element_basic_type() == v->element_basic_type(), "");
  2007     return TypeVect::make(_elem->xmeet(v->_elem), _length);
  2009   case Top:
  2010     break;
  2012   return this;
  2015 //------------------------------xdual------------------------------------------
  2016 // Dual: compute field-by-field dual
  2017 const Type *TypeVect::xdual() const {
  2018   return new TypeVect(base(), _elem->dual(), _length);
  2021 //------------------------------eq---------------------------------------------
  2022 // Structural equality check for Type representations
  2023 bool TypeVect::eq(const Type *t) const {
  2024   const TypeVect *v = t->is_vect();
  2025   return (_elem == v->_elem) && (_length == v->_length);
  2028 //------------------------------hash-------------------------------------------
  2029 // Type-specific hashing function.
  2030 int TypeVect::hash(void) const {
  2031   return (intptr_t)_elem + (intptr_t)_length;
  2034 //------------------------------singleton--------------------------------------
  2035 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2036 // constants (Ldi nodes).  Vector is singleton if all elements are the same
  2037 // constant value (when vector is created with Replicate code).
  2038 bool TypeVect::singleton(void) const {
  2039 // There is no Con node for vectors yet.
  2040 //  return _elem->singleton();
  2041   return false;
  2044 bool TypeVect::empty(void) const {
  2045   return _elem->empty();
  2048 //------------------------------dump2------------------------------------------
  2049 #ifndef PRODUCT
  2050 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  2051   switch (base()) {
  2052   case VectorS:
  2053     st->print("vectors["); break;
  2054   case VectorD:
  2055     st->print("vectord["); break;
  2056   case VectorX:
  2057     st->print("vectorx["); break;
  2058   case VectorY:
  2059     st->print("vectory["); break;
  2060   default:
  2061     ShouldNotReachHere();
  2063   st->print("%d]:{", _length);
  2064   _elem->dump2(d, depth, st);
  2065   st->print("}");
  2067 #endif
  2070 //=============================================================================
  2071 // Convenience common pre-built types.
  2072 const TypePtr *TypePtr::NULL_PTR;
  2073 const TypePtr *TypePtr::NOTNULL;
  2074 const TypePtr *TypePtr::BOTTOM;
  2076 //------------------------------meet-------------------------------------------
  2077 // Meet over the PTR enum
  2078 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  2079   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  2080   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  2081   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  2082   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  2083   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  2084   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  2085   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
  2086 };
  2088 //------------------------------make-------------------------------------------
  2089 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  2090   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
  2093 //------------------------------cast_to_ptr_type-------------------------------
  2094 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  2095   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  2096   if( ptr == _ptr ) return this;
  2097   return make(_base, ptr, _offset);
  2100 //------------------------------get_con----------------------------------------
  2101 intptr_t TypePtr::get_con() const {
  2102   assert( _ptr == Null, "" );
  2103   return _offset;
  2106 //------------------------------meet-------------------------------------------
  2107 // Compute the MEET of two types.  It returns a new Type object.
  2108 const Type *TypePtr::xmeet( const Type *t ) const {
  2109   // Perform a fast test for common case; meeting the same types together.
  2110   if( this == t ) return this;  // Meeting same type-rep?
  2112   // Current "this->_base" is AnyPtr
  2113   switch (t->base()) {          // switch on original type
  2114   case Int:                     // Mixing ints & oops happens when javac
  2115   case Long:                    // reuses local variables
  2116   case FloatTop:
  2117   case FloatCon:
  2118   case FloatBot:
  2119   case DoubleTop:
  2120   case DoubleCon:
  2121   case DoubleBot:
  2122   case NarrowOop:
  2123   case Bottom:                  // Ye Olde Default
  2124     return Type::BOTTOM;
  2125   case Top:
  2126     return this;
  2128   case AnyPtr: {                // Meeting to AnyPtrs
  2129     const TypePtr *tp = t->is_ptr();
  2130     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  2132   case RawPtr:                  // For these, flip the call around to cut down
  2133   case OopPtr:
  2134   case InstPtr:                 // on the cases I have to handle.
  2135   case KlassPtr:
  2136   case AryPtr:
  2137     return t->xmeet(this);      // Call in reverse direction
  2138   default:                      // All else is a mistake
  2139     typerr(t);
  2142   return this;
  2145 //------------------------------meet_offset------------------------------------
  2146 int TypePtr::meet_offset( int offset ) const {
  2147   // Either is 'TOP' offset?  Return the other offset!
  2148   if( _offset == OffsetTop ) return offset;
  2149   if( offset == OffsetTop ) return _offset;
  2150   // If either is different, return 'BOTTOM' offset
  2151   if( _offset != offset ) return OffsetBot;
  2152   return _offset;
  2155 //------------------------------dual_offset------------------------------------
  2156 int TypePtr::dual_offset( ) const {
  2157   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  2158   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  2159   return _offset;               // Map everything else into self
  2162 //------------------------------xdual------------------------------------------
  2163 // Dual: compute field-by-field dual
  2164 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  2165   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
  2166 };
  2167 const Type *TypePtr::xdual() const {
  2168   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
  2171 //------------------------------xadd_offset------------------------------------
  2172 int TypePtr::xadd_offset( intptr_t offset ) const {
  2173   // Adding to 'TOP' offset?  Return 'TOP'!
  2174   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  2175   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  2176   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  2177   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  2178   offset += (intptr_t)_offset;
  2179   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
  2181   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  2182   // It is possible to construct a negative offset during PhaseCCP
  2184   return (int)offset;        // Sum valid offsets
  2187 //------------------------------add_offset-------------------------------------
  2188 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  2189   return make( AnyPtr, _ptr, xadd_offset(offset) );
  2192 //------------------------------eq---------------------------------------------
  2193 // Structural equality check for Type representations
  2194 bool TypePtr::eq( const Type *t ) const {
  2195   const TypePtr *a = (const TypePtr*)t;
  2196   return _ptr == a->ptr() && _offset == a->offset();
  2199 //------------------------------hash-------------------------------------------
  2200 // Type-specific hashing function.
  2201 int TypePtr::hash(void) const {
  2202   return _ptr + _offset;
  2205 //------------------------------dump2------------------------------------------
  2206 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  2207   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
  2208 };
  2210 #ifndef PRODUCT
  2211 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2212   if( _ptr == Null ) st->print("NULL");
  2213   else st->print("%s *", ptr_msg[_ptr]);
  2214   if( _offset == OffsetTop ) st->print("+top");
  2215   else if( _offset == OffsetBot ) st->print("+bot");
  2216   else if( _offset ) st->print("+%d", _offset);
  2218 #endif
  2220 //------------------------------singleton--------------------------------------
  2221 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2222 // constants
  2223 bool TypePtr::singleton(void) const {
  2224   // TopPTR, Null, AnyNull, Constant are all singletons
  2225   return (_offset != OffsetBot) && !below_centerline(_ptr);
  2228 bool TypePtr::empty(void) const {
  2229   return (_offset == OffsetTop) || above_centerline(_ptr);
  2232 //=============================================================================
  2233 // Convenience common pre-built types.
  2234 const TypeRawPtr *TypeRawPtr::BOTTOM;
  2235 const TypeRawPtr *TypeRawPtr::NOTNULL;
  2237 //------------------------------make-------------------------------------------
  2238 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  2239   assert( ptr != Constant, "what is the constant?" );
  2240   assert( ptr != Null, "Use TypePtr for NULL" );
  2241   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
  2244 const TypeRawPtr *TypeRawPtr::make( address bits ) {
  2245   assert( bits, "Use TypePtr for NULL" );
  2246   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
  2249 //------------------------------cast_to_ptr_type-------------------------------
  2250 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  2251   assert( ptr != Constant, "what is the constant?" );
  2252   assert( ptr != Null, "Use TypePtr for NULL" );
  2253   assert( _bits==0, "Why cast a constant address?");
  2254   if( ptr == _ptr ) return this;
  2255   return make(ptr);
  2258 //------------------------------get_con----------------------------------------
  2259 intptr_t TypeRawPtr::get_con() const {
  2260   assert( _ptr == Null || _ptr == Constant, "" );
  2261   return (intptr_t)_bits;
  2264 //------------------------------meet-------------------------------------------
  2265 // Compute the MEET of two types.  It returns a new Type object.
  2266 const Type *TypeRawPtr::xmeet( const Type *t ) const {
  2267   // Perform a fast test for common case; meeting the same types together.
  2268   if( this == t ) return this;  // Meeting same type-rep?
  2270   // Current "this->_base" is RawPtr
  2271   switch( t->base() ) {         // switch on original type
  2272   case Bottom:                  // Ye Olde Default
  2273     return t;
  2274   case Top:
  2275     return this;
  2276   case AnyPtr:                  // Meeting to AnyPtrs
  2277     break;
  2278   case RawPtr: {                // might be top, bot, any/not or constant
  2279     enum PTR tptr = t->is_ptr()->ptr();
  2280     enum PTR ptr = meet_ptr( tptr );
  2281     if( ptr == Constant ) {     // Cannot be equal constants, so...
  2282       if( tptr == Constant && _ptr != Constant)  return t;
  2283       if( _ptr == Constant && tptr != Constant)  return this;
  2284       ptr = NotNull;            // Fall down in lattice
  2286     return make( ptr );
  2289   case OopPtr:
  2290   case InstPtr:
  2291   case KlassPtr:
  2292   case AryPtr:
  2293     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2294   default:                      // All else is a mistake
  2295     typerr(t);
  2298   // Found an AnyPtr type vs self-RawPtr type
  2299   const TypePtr *tp = t->is_ptr();
  2300   switch (tp->ptr()) {
  2301   case TypePtr::TopPTR:  return this;
  2302   case TypePtr::BotPTR:  return t;
  2303   case TypePtr::Null:
  2304     if( _ptr == TypePtr::TopPTR ) return t;
  2305     return TypeRawPtr::BOTTOM;
  2306   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  2307   case TypePtr::AnyNull:
  2308     if( _ptr == TypePtr::Constant) return this;
  2309     return make( meet_ptr(TypePtr::AnyNull) );
  2310   default: ShouldNotReachHere();
  2312   return this;
  2315 //------------------------------xdual------------------------------------------
  2316 // Dual: compute field-by-field dual
  2317 const Type *TypeRawPtr::xdual() const {
  2318   return new TypeRawPtr( dual_ptr(), _bits );
  2321 //------------------------------add_offset-------------------------------------
  2322 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  2323   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  2324   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  2325   if( offset == 0 ) return this; // No change
  2326   switch (_ptr) {
  2327   case TypePtr::TopPTR:
  2328   case TypePtr::BotPTR:
  2329   case TypePtr::NotNull:
  2330     return this;
  2331   case TypePtr::Null:
  2332   case TypePtr::Constant: {
  2333     address bits = _bits+offset;
  2334     if ( bits == 0 ) return TypePtr::NULL_PTR;
  2335     return make( bits );
  2337   default:  ShouldNotReachHere();
  2339   return NULL;                  // Lint noise
  2342 //------------------------------eq---------------------------------------------
  2343 // Structural equality check for Type representations
  2344 bool TypeRawPtr::eq( const Type *t ) const {
  2345   const TypeRawPtr *a = (const TypeRawPtr*)t;
  2346   return _bits == a->_bits && TypePtr::eq(t);
  2349 //------------------------------hash-------------------------------------------
  2350 // Type-specific hashing function.
  2351 int TypeRawPtr::hash(void) const {
  2352   return (intptr_t)_bits + TypePtr::hash();
  2355 //------------------------------dump2------------------------------------------
  2356 #ifndef PRODUCT
  2357 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2358   if( _ptr == Constant )
  2359     st->print(INTPTR_FORMAT, _bits);
  2360   else
  2361     st->print("rawptr:%s", ptr_msg[_ptr]);
  2363 #endif
  2365 //=============================================================================
  2366 // Convenience common pre-built type.
  2367 const TypeOopPtr *TypeOopPtr::BOTTOM;
  2369 //------------------------------TypeOopPtr-------------------------------------
  2370 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
  2371   : TypePtr(t, ptr, offset),
  2372     _const_oop(o), _klass(k),
  2373     _klass_is_exact(xk),
  2374     _is_ptr_to_narrowoop(false),
  2375     _instance_id(instance_id) {
  2376 #ifdef _LP64
  2377   if (UseCompressedOops && _offset != 0) {
  2378     if (klass() == NULL) {
  2379       assert(this->isa_aryptr(), "only arrays without klass");
  2380       _is_ptr_to_narrowoop = true;
  2381     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
  2382       _is_ptr_to_narrowoop = true;
  2383     } else if (this->isa_aryptr()) {
  2384       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
  2385                              _offset != arrayOopDesc::length_offset_in_bytes());
  2386     } else if (klass()->is_instance_klass()) {
  2387       ciInstanceKlass* ik = klass()->as_instance_klass();
  2388       ciField* field = NULL;
  2389       if (this->isa_klassptr()) {
  2390         // Perm objects don't use compressed references
  2391       } else if (_offset == OffsetBot || _offset == OffsetTop) {
  2392         // unsafe access
  2393         _is_ptr_to_narrowoop = true;
  2394       } else { // exclude unsafe ops
  2395         assert(this->isa_instptr(), "must be an instance ptr.");
  2397         if (klass() == ciEnv::current()->Class_klass() &&
  2398             (_offset == java_lang_Class::klass_offset_in_bytes() ||
  2399              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2400           // Special hidden fields from the Class.
  2401           assert(this->isa_instptr(), "must be an instance ptr.");
  2402           _is_ptr_to_narrowoop = true;
  2403         } else if (klass() == ciEnv::current()->Class_klass() &&
  2404                    _offset >= instanceMirrorKlass::offset_of_static_fields()) {
  2405           // Static fields
  2406           assert(o != NULL, "must be constant");
  2407           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
  2408           ciField* field = k->get_field_by_offset(_offset, true);
  2409           assert(field != NULL, "missing field");
  2410           BasicType basic_elem_type = field->layout_type();
  2411           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2412                                   basic_elem_type == T_ARRAY);
  2413         } else {
  2414           // Instance fields which contains a compressed oop references.
  2415           field = ik->get_field_by_offset(_offset, false);
  2416           if (field != NULL) {
  2417             BasicType basic_elem_type = field->layout_type();
  2418             _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
  2419                                     basic_elem_type == T_ARRAY);
  2420           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
  2421             // Compile::find_alias_type() cast exactness on all types to verify
  2422             // that it does not affect alias type.
  2423             _is_ptr_to_narrowoop = true;
  2424           } else {
  2425             // Type for the copy start in LibraryCallKit::inline_native_clone().
  2426             assert(!klass_is_exact(), "only non-exact klass");
  2427             _is_ptr_to_narrowoop = true;
  2433 #endif
  2436 //------------------------------make-------------------------------------------
  2437 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
  2438                                    int offset, int instance_id) {
  2439   assert(ptr != Constant, "no constant generic pointers");
  2440   ciKlass*  k = ciKlassKlass::make();
  2441   bool      xk = false;
  2442   ciObject* o = NULL;
  2443   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
  2447 //------------------------------cast_to_ptr_type-------------------------------
  2448 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  2449   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  2450   if( ptr == _ptr ) return this;
  2451   return make(ptr, _offset, _instance_id);
  2454 //-----------------------------cast_to_instance_id----------------------------
  2455 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  2456   // There are no instances of a general oop.
  2457   // Return self unchanged.
  2458   return this;
  2461 //-----------------------------cast_to_exactness-------------------------------
  2462 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  2463   // There is no such thing as an exact general oop.
  2464   // Return self unchanged.
  2465   return this;
  2469 //------------------------------as_klass_type----------------------------------
  2470 // Return the klass type corresponding to this instance or array type.
  2471 // It is the type that is loaded from an object of this type.
  2472 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  2473   ciKlass* k = klass();
  2474   bool    xk = klass_is_exact();
  2475   if (k == NULL || !k->is_java_klass())
  2476     return TypeKlassPtr::OBJECT;
  2477   else
  2478     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
  2482 //------------------------------meet-------------------------------------------
  2483 // Compute the MEET of two types.  It returns a new Type object.
  2484 const Type *TypeOopPtr::xmeet( const Type *t ) const {
  2485   // Perform a fast test for common case; meeting the same types together.
  2486   if( this == t ) return this;  // Meeting same type-rep?
  2488   // Current "this->_base" is OopPtr
  2489   switch (t->base()) {          // switch on original type
  2491   case Int:                     // Mixing ints & oops happens when javac
  2492   case Long:                    // reuses local variables
  2493   case FloatTop:
  2494   case FloatCon:
  2495   case FloatBot:
  2496   case DoubleTop:
  2497   case DoubleCon:
  2498   case DoubleBot:
  2499   case NarrowOop:
  2500   case Bottom:                  // Ye Olde Default
  2501     return Type::BOTTOM;
  2502   case Top:
  2503     return this;
  2505   default:                      // All else is a mistake
  2506     typerr(t);
  2508   case RawPtr:
  2509     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  2511   case AnyPtr: {
  2512     // Found an AnyPtr type vs self-OopPtr type
  2513     const TypePtr *tp = t->is_ptr();
  2514     int offset = meet_offset(tp->offset());
  2515     PTR ptr = meet_ptr(tp->ptr());
  2516     switch (tp->ptr()) {
  2517     case Null:
  2518       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
  2519       // else fall through:
  2520     case TopPTR:
  2521     case AnyNull: {
  2522       int instance_id = meet_instance_id(InstanceTop);
  2523       return make(ptr, offset, instance_id);
  2525     case BotPTR:
  2526     case NotNull:
  2527       return TypePtr::make(AnyPtr, ptr, offset);
  2528     default: typerr(t);
  2532   case OopPtr: {                 // Meeting to other OopPtrs
  2533     const TypeOopPtr *tp = t->is_oopptr();
  2534     int instance_id = meet_instance_id(tp->instance_id());
  2535     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
  2538   case InstPtr:                  // For these, flip the call around to cut down
  2539   case KlassPtr:                 // on the cases I have to handle.
  2540   case AryPtr:
  2541     return t->xmeet(this);      // Call in reverse direction
  2543   } // End of switch
  2544   return this;                  // Return the double constant
  2548 //------------------------------xdual------------------------------------------
  2549 // Dual of a pure heap pointer.  No relevant klass or oop information.
  2550 const Type *TypeOopPtr::xdual() const {
  2551   assert(klass() == ciKlassKlass::make(), "no klasses here");
  2552   assert(const_oop() == NULL,             "no constants here");
  2553   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  2556 //--------------------------make_from_klass_common-----------------------------
  2557 // Computes the element-type given a klass.
  2558 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  2559   assert(klass->is_java_klass(), "must be java language klass");
  2560   if (klass->is_instance_klass()) {
  2561     Compile* C = Compile::current();
  2562     Dependencies* deps = C->dependencies();
  2563     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
  2564     // Element is an instance
  2565     bool klass_is_exact = false;
  2566     if (klass->is_loaded()) {
  2567       // Try to set klass_is_exact.
  2568       ciInstanceKlass* ik = klass->as_instance_klass();
  2569       klass_is_exact = ik->is_final();
  2570       if (!klass_is_exact && klass_change
  2571           && deps != NULL && UseUniqueSubclasses) {
  2572         ciInstanceKlass* sub = ik->unique_concrete_subklass();
  2573         if (sub != NULL) {
  2574           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
  2575           klass = ik = sub;
  2576           klass_is_exact = sub->is_final();
  2579       if (!klass_is_exact && try_for_exact
  2580           && deps != NULL && UseExactTypes) {
  2581         if (!ik->is_interface() && !ik->has_subklass()) {
  2582           // Add a dependence; if concrete subclass added we need to recompile
  2583           deps->assert_leaf_type(ik);
  2584           klass_is_exact = true;
  2588     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  2589   } else if (klass->is_obj_array_klass()) {
  2590     // Element is an object array. Recursively call ourself.
  2591     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
  2592     bool xk = etype->klass_is_exact();
  2593     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2594     // We used to pass NotNull in here, asserting that the sub-arrays
  2595     // are all not-null.  This is not true in generally, as code can
  2596     // slam NULLs down in the subarrays.
  2597     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
  2598     return arr;
  2599   } else if (klass->is_type_array_klass()) {
  2600     // Element is an typeArray
  2601     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2602     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2603     // We used to pass NotNull in here, asserting that the array pointer
  2604     // is not-null. That was not true in general.
  2605     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
  2606     return arr;
  2607   } else {
  2608     ShouldNotReachHere();
  2609     return NULL;
  2613 //------------------------------make_from_constant-----------------------------
  2614 // Make a java pointer from an oop constant
  2615 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
  2616   if (o->is_method_data() || o->is_method()) {
  2617     // Treat much like a typeArray of bytes, like below, but fake the type...
  2618     const BasicType bt = T_BYTE;
  2619     const Type* etype = get_const_basic_type(bt);
  2620     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2621     ciKlass* klass = ciArrayKlass::make(ciType::make(bt));
  2622     assert(o->can_be_constant(), "should be tenured");
  2623     return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2624   } else if (o->is_cpcache()) {
  2625     // Treat much like a objArray, like below, but fake the type...
  2626     const BasicType bt = T_OBJECT;
  2627     const Type* etype = get_const_basic_type(bt);
  2628     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
  2629     ciKlass* klass = ciArrayKlass::make(ciType::make(bt));
  2630     assert(o->can_be_constant(), "should be tenured");
  2631     return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2632   } else {
  2633     assert(o->is_java_object(), "must be java language object");
  2634     assert(!o->is_null_object(), "null object not yet handled here.");
  2635     ciKlass* klass = o->klass();
  2636     if (klass->is_instance_klass()) {
  2637       // Element is an instance
  2638       if (require_constant) {
  2639         if (!o->can_be_constant())  return NULL;
  2640       } else if (!o->should_be_constant()) {
  2641         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
  2643       return TypeInstPtr::make(o);
  2644     } else if (klass->is_obj_array_klass()) {
  2645       // Element is an object array. Recursively call ourself.
  2646       const Type *etype = make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
  2647       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2648       // We used to pass NotNull in here, asserting that the sub-arrays
  2649       // are all not-null.  This is not true in generally, as code can
  2650       // slam NULLs down in the subarrays.
  2651       if (require_constant) {
  2652         if (!o->can_be_constant())  return NULL;
  2653       } else if (!o->should_be_constant()) {
  2654         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2656       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2657     } else if (klass->is_type_array_klass()) {
  2658       // Element is an typeArray
  2659       const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
  2660       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
  2661       // We used to pass NotNull in here, asserting that the array pointer
  2662       // is not-null. That was not true in general.
  2663       if (require_constant) {
  2664         if (!o->can_be_constant())  return NULL;
  2665       } else if (!o->should_be_constant()) {
  2666         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
  2668       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
  2672   fatal("unhandled object type");
  2673   return NULL;
  2676 //------------------------------get_con----------------------------------------
  2677 intptr_t TypeOopPtr::get_con() const {
  2678   assert( _ptr == Null || _ptr == Constant, "" );
  2679   assert( _offset >= 0, "" );
  2681   if (_offset != 0) {
  2682     // After being ported to the compiler interface, the compiler no longer
  2683     // directly manipulates the addresses of oops.  Rather, it only has a pointer
  2684     // to a handle at compile time.  This handle is embedded in the generated
  2685     // code and dereferenced at the time the nmethod is made.  Until that time,
  2686     // it is not reasonable to do arithmetic with the addresses of oops (we don't
  2687     // have access to the addresses!).  This does not seem to currently happen,
  2688     // but this assertion here is to help prevent its occurence.
  2689     tty->print_cr("Found oop constant with non-zero offset");
  2690     ShouldNotReachHere();
  2693   return (intptr_t)const_oop()->constant_encoding();
  2697 //-----------------------------filter------------------------------------------
  2698 // Do not allow interface-vs.-noninterface joins to collapse to top.
  2699 const Type *TypeOopPtr::filter( const Type *kills ) const {
  2701   const Type* ft = join(kills);
  2702   const TypeInstPtr* ftip = ft->isa_instptr();
  2703   const TypeInstPtr* ktip = kills->isa_instptr();
  2704   const TypeKlassPtr* ftkp = ft->isa_klassptr();
  2705   const TypeKlassPtr* ktkp = kills->isa_klassptr();
  2707   if (ft->empty()) {
  2708     // Check for evil case of 'this' being a class and 'kills' expecting an
  2709     // interface.  This can happen because the bytecodes do not contain
  2710     // enough type info to distinguish a Java-level interface variable
  2711     // from a Java-level object variable.  If we meet 2 classes which
  2712     // both implement interface I, but their meet is at 'j/l/O' which
  2713     // doesn't implement I, we have no way to tell if the result should
  2714     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
  2715     // into a Phi which "knows" it's an Interface type we'll have to
  2716     // uplift the type.
  2717     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
  2718       return kills;             // Uplift to interface
  2719     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
  2720       return kills;             // Uplift to interface
  2722     return Type::TOP;           // Canonical empty value
  2725   // If we have an interface-typed Phi or cast and we narrow to a class type,
  2726   // the join should report back the class.  However, if we have a J/L/Object
  2727   // class-typed Phi and an interface flows in, it's possible that the meet &
  2728   // join report an interface back out.  This isn't possible but happens
  2729   // because the type system doesn't interact well with interfaces.
  2730   if (ftip != NULL && ktip != NULL &&
  2731       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
  2732       ktip->is_loaded() && !ktip->klass()->is_interface()) {
  2733     // Happens in a CTW of rt.jar, 320-341, no extra flags
  2734     assert(!ftip->klass_is_exact(), "interface could not be exact");
  2735     return ktip->cast_to_ptr_type(ftip->ptr());
  2737   // Interface klass type could be exact in opposite to interface type,
  2738   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  2739   if (ftkp != NULL && ktkp != NULL &&
  2740       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
  2741       !ftkp->klass_is_exact() && // Keep exact interface klass
  2742       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
  2743     return ktkp->cast_to_ptr_type(ftkp->ptr());
  2746   return ft;
  2749 //------------------------------eq---------------------------------------------
  2750 // Structural equality check for Type representations
  2751 bool TypeOopPtr::eq( const Type *t ) const {
  2752   const TypeOopPtr *a = (const TypeOopPtr*)t;
  2753   if (_klass_is_exact != a->_klass_is_exact ||
  2754       _instance_id != a->_instance_id)  return false;
  2755   ciObject* one = const_oop();
  2756   ciObject* two = a->const_oop();
  2757   if (one == NULL || two == NULL) {
  2758     return (one == two) && TypePtr::eq(t);
  2759   } else {
  2760     return one->equals(two) && TypePtr::eq(t);
  2764 //------------------------------hash-------------------------------------------
  2765 // Type-specific hashing function.
  2766 int TypeOopPtr::hash(void) const {
  2767   return
  2768     (const_oop() ? const_oop()->hash() : 0) +
  2769     _klass_is_exact +
  2770     _instance_id +
  2771     TypePtr::hash();
  2774 //------------------------------dump2------------------------------------------
  2775 #ifndef PRODUCT
  2776 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  2777   st->print("oopptr:%s", ptr_msg[_ptr]);
  2778   if( _klass_is_exact ) st->print(":exact");
  2779   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  2780   switch( _offset ) {
  2781   case OffsetTop: st->print("+top"); break;
  2782   case OffsetBot: st->print("+any"); break;
  2783   case         0: break;
  2784   default:        st->print("+%d",_offset); break;
  2786   if (_instance_id == InstanceTop)
  2787     st->print(",iid=top");
  2788   else if (_instance_id != InstanceBot)
  2789     st->print(",iid=%d",_instance_id);
  2791 #endif
  2793 //------------------------------singleton--------------------------------------
  2794 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  2795 // constants
  2796 bool TypeOopPtr::singleton(void) const {
  2797   // detune optimizer to not generate constant oop + constant offset as a constant!
  2798   // TopPTR, Null, AnyNull, Constant are all singletons
  2799   return (_offset == 0) && !below_centerline(_ptr);
  2802 //------------------------------add_offset-------------------------------------
  2803 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
  2804   return make( _ptr, xadd_offset(offset), _instance_id);
  2807 //------------------------------meet_instance_id--------------------------------
  2808 int TypeOopPtr::meet_instance_id( int instance_id ) const {
  2809   // Either is 'TOP' instance?  Return the other instance!
  2810   if( _instance_id == InstanceTop ) return  instance_id;
  2811   if(  instance_id == InstanceTop ) return _instance_id;
  2812   // If either is different, return 'BOTTOM' instance
  2813   if( _instance_id != instance_id ) return InstanceBot;
  2814   return _instance_id;
  2817 //------------------------------dual_instance_id--------------------------------
  2818 int TypeOopPtr::dual_instance_id( ) const {
  2819   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  2820   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  2821   return _instance_id;              // Map everything else into self
  2825 //=============================================================================
  2826 // Convenience common pre-built types.
  2827 const TypeInstPtr *TypeInstPtr::NOTNULL;
  2828 const TypeInstPtr *TypeInstPtr::BOTTOM;
  2829 const TypeInstPtr *TypeInstPtr::MIRROR;
  2830 const TypeInstPtr *TypeInstPtr::MARK;
  2831 const TypeInstPtr *TypeInstPtr::KLASS;
  2833 //------------------------------TypeInstPtr-------------------------------------
  2834 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
  2835  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
  2836    assert(k != NULL &&
  2837           (k->is_loaded() || o == NULL),
  2838           "cannot have constants with non-loaded klass");
  2839 };
  2841 //------------------------------make-------------------------------------------
  2842 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
  2843                                      ciKlass* k,
  2844                                      bool xk,
  2845                                      ciObject* o,
  2846                                      int offset,
  2847                                      int instance_id) {
  2848   assert( !k->is_loaded() || k->is_instance_klass() ||
  2849           k->is_method_klass(), "Must be for instance or method");
  2850   // Either const_oop() is NULL or else ptr is Constant
  2851   assert( (!o && ptr != Constant) || (o && ptr == Constant),
  2852           "constant pointers must have a value supplied" );
  2853   // Ptr is never Null
  2854   assert( ptr != Null, "NULL pointers are not typed" );
  2856   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  2857   if (!UseExactTypes)  xk = false;
  2858   if (ptr == Constant) {
  2859     // Note:  This case includes meta-object constants, such as methods.
  2860     xk = true;
  2861   } else if (k->is_loaded()) {
  2862     ciInstanceKlass* ik = k->as_instance_klass();
  2863     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
  2864     if (xk && ik->is_interface())  xk = false;  // no exact interface
  2867   // Now hash this baby
  2868   TypeInstPtr *result =
  2869     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
  2871   return result;
  2875 //------------------------------cast_to_ptr_type-------------------------------
  2876 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  2877   if( ptr == _ptr ) return this;
  2878   // Reconstruct _sig info here since not a problem with later lazy
  2879   // construction, _sig will show up on demand.
  2880   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
  2884 //-----------------------------cast_to_exactness-------------------------------
  2885 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  2886   if( klass_is_exact == _klass_is_exact ) return this;
  2887   if (!UseExactTypes)  return this;
  2888   if (!_klass->is_loaded())  return this;
  2889   ciInstanceKlass* ik = _klass->as_instance_klass();
  2890   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  2891   if( ik->is_interface() )              return this;  // cannot set xk
  2892   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
  2895 //-----------------------------cast_to_instance_id----------------------------
  2896 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  2897   if( instance_id == _instance_id ) return this;
  2898   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
  2901 //------------------------------xmeet_unloaded---------------------------------
  2902 // Compute the MEET of two InstPtrs when at least one is unloaded.
  2903 // Assume classes are different since called after check for same name/class-loader
  2904 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
  2905     int off = meet_offset(tinst->offset());
  2906     PTR ptr = meet_ptr(tinst->ptr());
  2907     int instance_id = meet_instance_id(tinst->instance_id());
  2909     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
  2910     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
  2911     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
  2912       //
  2913       // Meet unloaded class with java/lang/Object
  2914       //
  2915       // Meet
  2916       //          |                     Unloaded Class
  2917       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
  2918       //  ===================================================================
  2919       //   TOP    | ..........................Unloaded......................|
  2920       //  AnyNull |  U-AN    |................Unloaded......................|
  2921       // Constant | ... O-NN .................................. |   O-BOT   |
  2922       //  NotNull | ... O-NN .................................. |   O-BOT   |
  2923       //  BOTTOM  | ........................Object-BOTTOM ..................|
  2924       //
  2925       assert(loaded->ptr() != TypePtr::Null, "insanity check");
  2926       //
  2927       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
  2928       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
  2929       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
  2930       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
  2931         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
  2932         else                                      { return TypeInstPtr::NOTNULL; }
  2934       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
  2936       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
  2939     // Both are unloaded, not the same class, not Object
  2940     // Or meet unloaded with a different loaded class, not java/lang/Object
  2941     if( ptr != TypePtr::BotPTR ) {
  2942       return TypeInstPtr::NOTNULL;
  2944     return TypeInstPtr::BOTTOM;
  2948 //------------------------------meet-------------------------------------------
  2949 // Compute the MEET of two types.  It returns a new Type object.
  2950 const Type *TypeInstPtr::xmeet( const Type *t ) const {
  2951   // Perform a fast test for common case; meeting the same types together.
  2952   if( this == t ) return this;  // Meeting same type-rep?
  2954   // Current "this->_base" is Pointer
  2955   switch (t->base()) {          // switch on original type
  2957   case Int:                     // Mixing ints & oops happens when javac
  2958   case Long:                    // reuses local variables
  2959   case FloatTop:
  2960   case FloatCon:
  2961   case FloatBot:
  2962   case DoubleTop:
  2963   case DoubleCon:
  2964   case DoubleBot:
  2965   case NarrowOop:
  2966   case Bottom:                  // Ye Olde Default
  2967     return Type::BOTTOM;
  2968   case Top:
  2969     return this;
  2971   default:                      // All else is a mistake
  2972     typerr(t);
  2974   case RawPtr: return TypePtr::BOTTOM;
  2976   case AryPtr: {                // All arrays inherit from Object class
  2977     const TypeAryPtr *tp = t->is_aryptr();
  2978     int offset = meet_offset(tp->offset());
  2979     PTR ptr = meet_ptr(tp->ptr());
  2980     int instance_id = meet_instance_id(tp->instance_id());
  2981     switch (ptr) {
  2982     case TopPTR:
  2983     case AnyNull:                // Fall 'down' to dual of object klass
  2984       if (klass()->equals(ciEnv::current()->Object_klass())) {
  2985         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  2986       } else {
  2987         // cannot subclass, so the meet has to fall badly below the centerline
  2988         ptr = NotNull;
  2989         instance_id = InstanceBot;
  2990         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
  2992     case Constant:
  2993     case NotNull:
  2994     case BotPTR:                // Fall down to object klass
  2995       // LCA is object_klass, but if we subclass from the top we can do better
  2996       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
  2997         // If 'this' (InstPtr) is above the centerline and it is Object class
  2998         // then we can subclass in the Java class hierarchy.
  2999         if (klass()->equals(ciEnv::current()->Object_klass())) {
  3000           // that is, tp's array type is a subtype of my klass
  3001           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
  3002                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
  3005       // The other case cannot happen, since I cannot be a subtype of an array.
  3006       // The meet falls down to Object class below centerline.
  3007       if( ptr == Constant )
  3008          ptr = NotNull;
  3009       instance_id = InstanceBot;
  3010       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
  3011     default: typerr(t);
  3015   case OopPtr: {                // Meeting to OopPtrs
  3016     // Found a OopPtr type vs self-InstPtr type
  3017     const TypeOopPtr *tp = t->is_oopptr();
  3018     int offset = meet_offset(tp->offset());
  3019     PTR ptr = meet_ptr(tp->ptr());
  3020     switch (tp->ptr()) {
  3021     case TopPTR:
  3022     case AnyNull: {
  3023       int instance_id = meet_instance_id(InstanceTop);
  3024       return make(ptr, klass(), klass_is_exact(),
  3025                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3027     case NotNull:
  3028     case BotPTR: {
  3029       int instance_id = meet_instance_id(tp->instance_id());
  3030       return TypeOopPtr::make(ptr, offset, instance_id);
  3032     default: typerr(t);
  3036   case AnyPtr: {                // Meeting to AnyPtrs
  3037     // Found an AnyPtr type vs self-InstPtr type
  3038     const TypePtr *tp = t->is_ptr();
  3039     int offset = meet_offset(tp->offset());
  3040     PTR ptr = meet_ptr(tp->ptr());
  3041     switch (tp->ptr()) {
  3042     case Null:
  3043       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  3044       // else fall through to AnyNull
  3045     case TopPTR:
  3046     case AnyNull: {
  3047       int instance_id = meet_instance_id(InstanceTop);
  3048       return make( ptr, klass(), klass_is_exact(),
  3049                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
  3051     case NotNull:
  3052     case BotPTR:
  3053       return TypePtr::make( AnyPtr, ptr, offset );
  3054     default: typerr(t);
  3058   /*
  3059                  A-top         }
  3060                /   |   \       }  Tops
  3061            B-top A-any C-top   }
  3062               | /  |  \ |      }  Any-nulls
  3063            B-any   |   C-any   }
  3064               |    |    |
  3065            B-con A-con C-con   } constants; not comparable across classes
  3066               |    |    |
  3067            B-not   |   C-not   }
  3068               | \  |  / |      }  not-nulls
  3069            B-bot A-not C-bot   }
  3070                \   |   /       }  Bottoms
  3071                  A-bot         }
  3072   */
  3074   case InstPtr: {                // Meeting 2 Oops?
  3075     // Found an InstPtr sub-type vs self-InstPtr type
  3076     const TypeInstPtr *tinst = t->is_instptr();
  3077     int off = meet_offset( tinst->offset() );
  3078     PTR ptr = meet_ptr( tinst->ptr() );
  3079     int instance_id = meet_instance_id(tinst->instance_id());
  3081     // Check for easy case; klasses are equal (and perhaps not loaded!)
  3082     // If we have constants, then we created oops so classes are loaded
  3083     // and we can handle the constants further down.  This case handles
  3084     // both-not-loaded or both-loaded classes
  3085     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
  3086       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
  3089     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  3090     ciKlass* tinst_klass = tinst->klass();
  3091     ciKlass* this_klass  = this->klass();
  3092     bool tinst_xk = tinst->klass_is_exact();
  3093     bool this_xk  = this->klass_is_exact();
  3094     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
  3095       // One of these classes has not been loaded
  3096       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
  3097 #ifndef PRODUCT
  3098       if( PrintOpto && Verbose ) {
  3099         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
  3100         tty->print("  this == "); this->dump(); tty->cr();
  3101         tty->print(" tinst == "); tinst->dump(); tty->cr();
  3103 #endif
  3104       return unloaded_meet;
  3107     // Handle mixing oops and interfaces first.
  3108     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
  3109       ciKlass *tmp = tinst_klass; // Swap interface around
  3110       tinst_klass = this_klass;
  3111       this_klass = tmp;
  3112       bool tmp2 = tinst_xk;
  3113       tinst_xk = this_xk;
  3114       this_xk = tmp2;
  3116     if (tinst_klass->is_interface() &&
  3117         !(this_klass->is_interface() ||
  3118           // Treat java/lang/Object as an honorary interface,
  3119           // because we need a bottom for the interface hierarchy.
  3120           this_klass == ciEnv::current()->Object_klass())) {
  3121       // Oop meets interface!
  3123       // See if the oop subtypes (implements) interface.
  3124       ciKlass *k;
  3125       bool xk;
  3126       if( this_klass->is_subtype_of( tinst_klass ) ) {
  3127         // Oop indeed subtypes.  Now keep oop or interface depending
  3128         // on whether we are both above the centerline or either is
  3129         // below the centerline.  If we are on the centerline
  3130         // (e.g., Constant vs. AnyNull interface), use the constant.
  3131         k  = below_centerline(ptr) ? tinst_klass : this_klass;
  3132         // If we are keeping this_klass, keep its exactness too.
  3133         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
  3134       } else {                  // Does not implement, fall to Object
  3135         // Oop does not implement interface, so mixing falls to Object
  3136         // just like the verifier does (if both are above the
  3137         // centerline fall to interface)
  3138         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
  3139         xk = above_centerline(ptr) ? tinst_xk : false;
  3140         // Watch out for Constant vs. AnyNull interface.
  3141         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
  3142         instance_id = InstanceBot;
  3144       ciObject* o = NULL;  // the Constant value, if any
  3145       if (ptr == Constant) {
  3146         // Find out which constant.
  3147         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
  3149       return make( ptr, k, xk, o, off, instance_id );
  3152     // Either oop vs oop or interface vs interface or interface vs Object
  3154     // !!! Here's how the symmetry requirement breaks down into invariants:
  3155     // If we split one up & one down AND they subtype, take the down man.
  3156     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3157     // If both are up and they subtype, take the subtype class.
  3158     // If both are up and they do NOT subtype, "fall hard".
  3159     // If both are down and they subtype, take the supertype class.
  3160     // If both are down and they do NOT subtype, "fall hard".
  3161     // Constants treated as down.
  3163     // Now, reorder the above list; observe that both-down+subtype is also
  3164     // "fall hard"; "fall hard" becomes the default case:
  3165     // If we split one up & one down AND they subtype, take the down man.
  3166     // If both are up and they subtype, take the subtype class.
  3168     // If both are down and they subtype, "fall hard".
  3169     // If both are down and they do NOT subtype, "fall hard".
  3170     // If both are up and they do NOT subtype, "fall hard".
  3171     // If we split one up & one down AND they do NOT subtype, "fall hard".
  3173     // If a proper subtype is exact, and we return it, we return it exactly.
  3174     // If a proper supertype is exact, there can be no subtyping relationship!
  3175     // If both types are equal to the subtype, exactness is and-ed below the
  3176     // centerline and or-ed above it.  (N.B. Constants are always exact.)
  3178     // Check for subtyping:
  3179     ciKlass *subtype = NULL;
  3180     bool subtype_exact = false;
  3181     if( tinst_klass->equals(this_klass) ) {
  3182       subtype = this_klass;
  3183       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
  3184     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
  3185       subtype = this_klass;     // Pick subtyping class
  3186       subtype_exact = this_xk;
  3187     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
  3188       subtype = tinst_klass;    // Pick subtyping class
  3189       subtype_exact = tinst_xk;
  3192     if( subtype ) {
  3193       if( above_centerline(ptr) ) { // both are up?
  3194         this_klass = tinst_klass = subtype;
  3195         this_xk = tinst_xk = subtype_exact;
  3196       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
  3197         this_klass = tinst_klass; // tinst is down; keep down man
  3198         this_xk = tinst_xk;
  3199       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
  3200         tinst_klass = this_klass; // this is down; keep down man
  3201         tinst_xk = this_xk;
  3202       } else {
  3203         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
  3207     // Check for classes now being equal
  3208     if (tinst_klass->equals(this_klass)) {
  3209       // If the klasses are equal, the constants may still differ.  Fall to
  3210       // NotNull if they do (neither constant is NULL; that is a special case
  3211       // handled elsewhere).
  3212       ciObject* o = NULL;             // Assume not constant when done
  3213       ciObject* this_oop  = const_oop();
  3214       ciObject* tinst_oop = tinst->const_oop();
  3215       if( ptr == Constant ) {
  3216         if (this_oop != NULL && tinst_oop != NULL &&
  3217             this_oop->equals(tinst_oop) )
  3218           o = this_oop;
  3219         else if (above_centerline(this ->_ptr))
  3220           o = tinst_oop;
  3221         else if (above_centerline(tinst ->_ptr))
  3222           o = this_oop;
  3223         else
  3224           ptr = NotNull;
  3226       return make( ptr, this_klass, this_xk, o, off, instance_id );
  3227     } // Else classes are not equal
  3229     // Since klasses are different, we require a LCA in the Java
  3230     // class hierarchy - which means we have to fall to at least NotNull.
  3231     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  3232       ptr = NotNull;
  3233     instance_id = InstanceBot;
  3235     // Now we find the LCA of Java classes
  3236     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
  3237     return make( ptr, k, false, NULL, off, instance_id );
  3238   } // End of case InstPtr
  3240   case KlassPtr:
  3241     return TypeInstPtr::BOTTOM;
  3243   } // End of switch
  3244   return this;                  // Return the double constant
  3248 //------------------------java_mirror_type--------------------------------------
  3249 ciType* TypeInstPtr::java_mirror_type() const {
  3250   // must be a singleton type
  3251   if( const_oop() == NULL )  return NULL;
  3253   // must be of type java.lang.Class
  3254   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
  3256   return const_oop()->as_instance()->java_mirror_type();
  3260 //------------------------------xdual------------------------------------------
  3261 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
  3262 // inheritance mechanism.
  3263 const Type *TypeInstPtr::xdual() const {
  3264   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
  3267 //------------------------------eq---------------------------------------------
  3268 // Structural equality check for Type representations
  3269 bool TypeInstPtr::eq( const Type *t ) const {
  3270   const TypeInstPtr *p = t->is_instptr();
  3271   return
  3272     klass()->equals(p->klass()) &&
  3273     TypeOopPtr::eq(p);          // Check sub-type stuff
  3276 //------------------------------hash-------------------------------------------
  3277 // Type-specific hashing function.
  3278 int TypeInstPtr::hash(void) const {
  3279   int hash = klass()->hash() + TypeOopPtr::hash();
  3280   return hash;
  3283 //------------------------------dump2------------------------------------------
  3284 // Dump oop Type
  3285 #ifndef PRODUCT
  3286 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3287   // Print the name of the klass.
  3288   klass()->print_name_on(st);
  3290   switch( _ptr ) {
  3291   case Constant:
  3292     // TO DO: Make CI print the hex address of the underlying oop.
  3293     if (WizardMode || Verbose) {
  3294       const_oop()->print_oop(st);
  3296   case BotPTR:
  3297     if (!WizardMode && !Verbose) {
  3298       if( _klass_is_exact ) st->print(":exact");
  3299       break;
  3301   case TopPTR:
  3302   case AnyNull:
  3303   case NotNull:
  3304     st->print(":%s", ptr_msg[_ptr]);
  3305     if( _klass_is_exact ) st->print(":exact");
  3306     break;
  3309   if( _offset ) {               // Dump offset, if any
  3310     if( _offset == OffsetBot )      st->print("+any");
  3311     else if( _offset == OffsetTop ) st->print("+unknown");
  3312     else st->print("+%d", _offset);
  3315   st->print(" *");
  3316   if (_instance_id == InstanceTop)
  3317     st->print(",iid=top");
  3318   else if (_instance_id != InstanceBot)
  3319     st->print(",iid=%d",_instance_id);
  3321 #endif
  3323 //------------------------------add_offset-------------------------------------
  3324 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
  3325   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
  3328 //=============================================================================
  3329 // Convenience common pre-built types.
  3330 const TypeAryPtr *TypeAryPtr::RANGE;
  3331 const TypeAryPtr *TypeAryPtr::OOPS;
  3332 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
  3333 const TypeAryPtr *TypeAryPtr::BYTES;
  3334 const TypeAryPtr *TypeAryPtr::SHORTS;
  3335 const TypeAryPtr *TypeAryPtr::CHARS;
  3336 const TypeAryPtr *TypeAryPtr::INTS;
  3337 const TypeAryPtr *TypeAryPtr::LONGS;
  3338 const TypeAryPtr *TypeAryPtr::FLOATS;
  3339 const TypeAryPtr *TypeAryPtr::DOUBLES;
  3341 //------------------------------make-------------------------------------------
  3342 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3343   assert(!(k == NULL && ary->_elem->isa_int()),
  3344          "integral arrays must be pre-equipped with a class");
  3345   if (!xk)  xk = ary->ary_must_be_exact();
  3346   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3347   if (!UseExactTypes)  xk = (ptr == Constant);
  3348   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
  3351 //------------------------------make-------------------------------------------
  3352 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
  3353   assert(!(k == NULL && ary->_elem->isa_int()),
  3354          "integral arrays must be pre-equipped with a class");
  3355   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  3356   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  3357   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  3358   if (!UseExactTypes)  xk = (ptr == Constant);
  3359   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
  3362 //------------------------------cast_to_ptr_type-------------------------------
  3363 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  3364   if( ptr == _ptr ) return this;
  3365   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
  3369 //-----------------------------cast_to_exactness-------------------------------
  3370 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  3371   if( klass_is_exact == _klass_is_exact ) return this;
  3372   if (!UseExactTypes)  return this;
  3373   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  3374   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
  3377 //-----------------------------cast_to_instance_id----------------------------
  3378 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  3379   if( instance_id == _instance_id ) return this;
  3380   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
  3383 //-----------------------------narrow_size_type-------------------------------
  3384 // Local cache for arrayOopDesc::max_array_length(etype),
  3385 // which is kind of slow (and cached elsewhere by other users).
  3386 static jint max_array_length_cache[T_CONFLICT+1];
  3387 static jint max_array_length(BasicType etype) {
  3388   jint& cache = max_array_length_cache[etype];
  3389   jint res = cache;
  3390   if (res == 0) {
  3391     switch (etype) {
  3392     case T_NARROWOOP:
  3393       etype = T_OBJECT;
  3394       break;
  3395     case T_CONFLICT:
  3396     case T_ILLEGAL:
  3397     case T_VOID:
  3398       etype = T_BYTE;           // will produce conservatively high value
  3400     cache = res = arrayOopDesc::max_array_length(etype);
  3402   return res;
  3405 // Narrow the given size type to the index range for the given array base type.
  3406 // Return NULL if the resulting int type becomes empty.
  3407 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  3408   jint hi = size->_hi;
  3409   jint lo = size->_lo;
  3410   jint min_lo = 0;
  3411   jint max_hi = max_array_length(elem()->basic_type());
  3412   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  3413   bool chg = false;
  3414   if (lo < min_lo) { lo = min_lo; chg = true; }
  3415   if (hi > max_hi) { hi = max_hi; chg = true; }
  3416   // Negative length arrays will produce weird intermediate dead fast-path code
  3417   if (lo > hi)
  3418     return TypeInt::ZERO;
  3419   if (!chg)
  3420     return size;
  3421   return TypeInt::make(lo, hi, Type::WidenMin);
  3424 //-------------------------------cast_to_size----------------------------------
  3425 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  3426   assert(new_size != NULL, "");
  3427   new_size = narrow_size_type(new_size);
  3428   if (new_size == size())  return this;
  3429   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
  3430   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
  3434 //------------------------------eq---------------------------------------------
  3435 // Structural equality check for Type representations
  3436 bool TypeAryPtr::eq( const Type *t ) const {
  3437   const TypeAryPtr *p = t->is_aryptr();
  3438   return
  3439     _ary == p->_ary &&  // Check array
  3440     TypeOopPtr::eq(p);  // Check sub-parts
  3443 //------------------------------hash-------------------------------------------
  3444 // Type-specific hashing function.
  3445 int TypeAryPtr::hash(void) const {
  3446   return (intptr_t)_ary + TypeOopPtr::hash();
  3449 //------------------------------meet-------------------------------------------
  3450 // Compute the MEET of two types.  It returns a new Type object.
  3451 const Type *TypeAryPtr::xmeet( const Type *t ) const {
  3452   // Perform a fast test for common case; meeting the same types together.
  3453   if( this == t ) return this;  // Meeting same type-rep?
  3454   // Current "this->_base" is Pointer
  3455   switch (t->base()) {          // switch on original type
  3457   // Mixing ints & oops happens when javac reuses local variables
  3458   case Int:
  3459   case Long:
  3460   case FloatTop:
  3461   case FloatCon:
  3462   case FloatBot:
  3463   case DoubleTop:
  3464   case DoubleCon:
  3465   case DoubleBot:
  3466   case NarrowOop:
  3467   case Bottom:                  // Ye Olde Default
  3468     return Type::BOTTOM;
  3469   case Top:
  3470     return this;
  3472   default:                      // All else is a mistake
  3473     typerr(t);
  3475   case OopPtr: {                // Meeting to OopPtrs
  3476     // Found a OopPtr type vs self-AryPtr type
  3477     const TypeOopPtr *tp = t->is_oopptr();
  3478     int offset = meet_offset(tp->offset());
  3479     PTR ptr = meet_ptr(tp->ptr());
  3480     switch (tp->ptr()) {
  3481     case TopPTR:
  3482     case AnyNull: {
  3483       int instance_id = meet_instance_id(InstanceTop);
  3484       return make(ptr, (ptr == Constant ? const_oop() : NULL),
  3485                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3487     case BotPTR:
  3488     case NotNull: {
  3489       int instance_id = meet_instance_id(tp->instance_id());
  3490       return TypeOopPtr::make(ptr, offset, instance_id);
  3492     default: ShouldNotReachHere();
  3496   case AnyPtr: {                // Meeting two AnyPtrs
  3497     // Found an AnyPtr type vs self-AryPtr type
  3498     const TypePtr *tp = t->is_ptr();
  3499     int offset = meet_offset(tp->offset());
  3500     PTR ptr = meet_ptr(tp->ptr());
  3501     switch (tp->ptr()) {
  3502     case TopPTR:
  3503       return this;
  3504     case BotPTR:
  3505     case NotNull:
  3506       return TypePtr::make(AnyPtr, ptr, offset);
  3507     case Null:
  3508       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
  3509       // else fall through to AnyNull
  3510     case AnyNull: {
  3511       int instance_id = meet_instance_id(InstanceTop);
  3512       return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3513                   _ary, _klass, _klass_is_exact, offset, instance_id);
  3515     default: ShouldNotReachHere();
  3519   case RawPtr: return TypePtr::BOTTOM;
  3521   case AryPtr: {                // Meeting 2 references?
  3522     const TypeAryPtr *tap = t->is_aryptr();
  3523     int off = meet_offset(tap->offset());
  3524     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
  3525     PTR ptr = meet_ptr(tap->ptr());
  3526     int instance_id = meet_instance_id(tap->instance_id());
  3527     ciKlass* lazy_klass = NULL;
  3528     if (tary->_elem->isa_int()) {
  3529       // Integral array element types have irrelevant lattice relations.
  3530       // It is the klass that determines array layout, not the element type.
  3531       if (_klass == NULL)
  3532         lazy_klass = tap->_klass;
  3533       else if (tap->_klass == NULL || tap->_klass == _klass) {
  3534         lazy_klass = _klass;
  3535       } else {
  3536         // Something like byte[int+] meets char[int+].
  3537         // This must fall to bottom, not (int[-128..65535])[int+].
  3538         instance_id = InstanceBot;
  3539         tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3541     } else // Non integral arrays.
  3542     // Must fall to bottom if exact klasses in upper lattice
  3543     // are not equal or super klass is exact.
  3544     if ( above_centerline(ptr) && klass() != tap->klass() &&
  3545          // meet with top[] and bottom[] are processed further down:
  3546          tap ->_klass != NULL  && this->_klass != NULL   &&
  3547          // both are exact and not equal:
  3548         ((tap ->_klass_is_exact && this->_klass_is_exact) ||
  3549          // 'tap'  is exact and super or unrelated:
  3550          (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
  3551          // 'this' is exact and super or unrelated:
  3552          (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
  3553       tary = TypeAry::make(Type::BOTTOM, tary->_size);
  3554       return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
  3557     bool xk = false;
  3558     switch (tap->ptr()) {
  3559     case AnyNull:
  3560     case TopPTR:
  3561       // Compute new klass on demand, do not use tap->_klass
  3562       xk = (tap->_klass_is_exact | this->_klass_is_exact);
  3563       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
  3564     case Constant: {
  3565       ciObject* o = const_oop();
  3566       if( _ptr == Constant ) {
  3567         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
  3568           xk = (klass() == tap->klass());
  3569           ptr = NotNull;
  3570           o = NULL;
  3571           instance_id = InstanceBot;
  3572         } else {
  3573           xk = true;
  3575       } else if( above_centerline(_ptr) ) {
  3576         o = tap->const_oop();
  3577         xk = true;
  3578       } else {
  3579         // Only precise for identical arrays
  3580         xk = this->_klass_is_exact && (klass() == tap->klass());
  3582       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
  3584     case NotNull:
  3585     case BotPTR:
  3586       // Compute new klass on demand, do not use tap->_klass
  3587       if (above_centerline(this->_ptr))
  3588             xk = tap->_klass_is_exact;
  3589       else if (above_centerline(tap->_ptr))
  3590             xk = this->_klass_is_exact;
  3591       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
  3592               (klass() == tap->klass()); // Only precise for identical arrays
  3593       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
  3594     default: ShouldNotReachHere();
  3598   // All arrays inherit from Object class
  3599   case InstPtr: {
  3600     const TypeInstPtr *tp = t->is_instptr();
  3601     int offset = meet_offset(tp->offset());
  3602     PTR ptr = meet_ptr(tp->ptr());
  3603     int instance_id = meet_instance_id(tp->instance_id());
  3604     switch (ptr) {
  3605     case TopPTR:
  3606     case AnyNull:                // Fall 'down' to dual of object klass
  3607       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3608         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
  3609       } else {
  3610         // cannot subclass, so the meet has to fall badly below the centerline
  3611         ptr = NotNull;
  3612         instance_id = InstanceBot;
  3613         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3615     case Constant:
  3616     case NotNull:
  3617     case BotPTR:                // Fall down to object klass
  3618       // LCA is object_klass, but if we subclass from the top we can do better
  3619       if (above_centerline(tp->ptr())) {
  3620         // If 'tp'  is above the centerline and it is Object class
  3621         // then we can subclass in the Java class hierarchy.
  3622         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
  3623           // that is, my array type is a subtype of 'tp' klass
  3624           return make( ptr, (ptr == Constant ? const_oop() : NULL),
  3625                        _ary, _klass, _klass_is_exact, offset, instance_id );
  3628       // The other case cannot happen, since t cannot be a subtype of an array.
  3629       // The meet falls down to Object class below centerline.
  3630       if( ptr == Constant )
  3631          ptr = NotNull;
  3632       instance_id = InstanceBot;
  3633       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
  3634     default: typerr(t);
  3638   case KlassPtr:
  3639     return TypeInstPtr::BOTTOM;
  3642   return this;                  // Lint noise
  3645 //------------------------------xdual------------------------------------------
  3646 // Dual: compute field-by-field dual
  3647 const Type *TypeAryPtr::xdual() const {
  3648   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
  3651 //----------------------interface_vs_oop---------------------------------------
  3652 #ifdef ASSERT
  3653 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  3654   const TypeAryPtr* t_aryptr = t->isa_aryptr();
  3655   if (t_aryptr) {
  3656     return _ary->interface_vs_oop(t_aryptr->_ary);
  3658   return false;
  3660 #endif
  3662 //------------------------------dump2------------------------------------------
  3663 #ifndef PRODUCT
  3664 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  3665   _ary->dump2(d,depth,st);
  3666   switch( _ptr ) {
  3667   case Constant:
  3668     const_oop()->print(st);
  3669     break;
  3670   case BotPTR:
  3671     if (!WizardMode && !Verbose) {
  3672       if( _klass_is_exact ) st->print(":exact");
  3673       break;
  3675   case TopPTR:
  3676   case AnyNull:
  3677   case NotNull:
  3678     st->print(":%s", ptr_msg[_ptr]);
  3679     if( _klass_is_exact ) st->print(":exact");
  3680     break;
  3683   if( _offset != 0 ) {
  3684     int header_size = objArrayOopDesc::header_size() * wordSize;
  3685     if( _offset == OffsetTop )       st->print("+undefined");
  3686     else if( _offset == OffsetBot )  st->print("+any");
  3687     else if( _offset < header_size ) st->print("+%d", _offset);
  3688     else {
  3689       BasicType basic_elem_type = elem()->basic_type();
  3690       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  3691       int elem_size = type2aelembytes(basic_elem_type);
  3692       st->print("[%d]", (_offset - array_base)/elem_size);
  3695   st->print(" *");
  3696   if (_instance_id == InstanceTop)
  3697     st->print(",iid=top");
  3698   else if (_instance_id != InstanceBot)
  3699     st->print(",iid=%d",_instance_id);
  3701 #endif
  3703 bool TypeAryPtr::empty(void) const {
  3704   if (_ary->empty())       return true;
  3705   return TypeOopPtr::empty();
  3708 //------------------------------add_offset-------------------------------------
  3709 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
  3710   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
  3714 //=============================================================================
  3715 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
  3716 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
  3719 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  3720   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
  3723 //------------------------------hash-------------------------------------------
  3724 // Type-specific hashing function.
  3725 int TypeNarrowOop::hash(void) const {
  3726   return _ptrtype->hash() + 7;
  3730 bool TypeNarrowOop::eq( const Type *t ) const {
  3731   const TypeNarrowOop* tc = t->isa_narrowoop();
  3732   if (tc != NULL) {
  3733     if (_ptrtype->base() != tc->_ptrtype->base()) {
  3734       return false;
  3736     return tc->_ptrtype->eq(_ptrtype);
  3738   return false;
  3741 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
  3742   return _ptrtype->singleton();
  3745 bool TypeNarrowOop::empty(void) const {
  3746   return _ptrtype->empty();
  3749 //------------------------------xmeet------------------------------------------
  3750 // Compute the MEET of two types.  It returns a new Type object.
  3751 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
  3752   // Perform a fast test for common case; meeting the same types together.
  3753   if( this == t ) return this;  // Meeting same type-rep?
  3756   // Current "this->_base" is OopPtr
  3757   switch (t->base()) {          // switch on original type
  3759   case Int:                     // Mixing ints & oops happens when javac
  3760   case Long:                    // reuses local variables
  3761   case FloatTop:
  3762   case FloatCon:
  3763   case FloatBot:
  3764   case DoubleTop:
  3765   case DoubleCon:
  3766   case DoubleBot:
  3767   case AnyPtr:
  3768   case RawPtr:
  3769   case OopPtr:
  3770   case InstPtr:
  3771   case KlassPtr:
  3772   case AryPtr:
  3774   case Bottom:                  // Ye Olde Default
  3775     return Type::BOTTOM;
  3776   case Top:
  3777     return this;
  3779   case NarrowOop: {
  3780     const Type* result = _ptrtype->xmeet(t->make_ptr());
  3781     if (result->isa_ptr()) {
  3782       return TypeNarrowOop::make(result->is_ptr());
  3784     return result;
  3787   default:                      // All else is a mistake
  3788     typerr(t);
  3790   } // End of switch
  3792   return this;
  3795 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
  3796   const TypePtr* odual = _ptrtype->dual()->is_ptr();
  3797   return new TypeNarrowOop(odual);
  3800 const Type *TypeNarrowOop::filter( const Type *kills ) const {
  3801   if (kills->isa_narrowoop()) {
  3802     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
  3803     if (ft->empty())
  3804       return Type::TOP;           // Canonical empty value
  3805     if (ft->isa_ptr()) {
  3806       return make(ft->isa_ptr());
  3808     return ft;
  3809   } else if (kills->isa_ptr()) {
  3810     const Type* ft = _ptrtype->join(kills);
  3811     if (ft->empty())
  3812       return Type::TOP;           // Canonical empty value
  3813     return ft;
  3814   } else {
  3815     return Type::TOP;
  3820 intptr_t TypeNarrowOop::get_con() const {
  3821   return _ptrtype->get_con();
  3824 #ifndef PRODUCT
  3825 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  3826   st->print("narrowoop: ");
  3827   _ptrtype->dump2(d, depth, st);
  3829 #endif
  3832 //=============================================================================
  3833 // Convenience common pre-built types.
  3835 // Not-null object klass or below
  3836 const TypeKlassPtr *TypeKlassPtr::OBJECT;
  3837 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
  3839 //------------------------------TypeKlasPtr------------------------------------
  3840 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  3841   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
  3844 //------------------------------make-------------------------------------------
  3845 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
  3846 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  3847   assert( k != NULL, "Expect a non-NULL klass");
  3848   assert(k->is_instance_klass() || k->is_array_klass() ||
  3849          k->is_method_klass(), "Incorrect type of klass oop");
  3850   TypeKlassPtr *r =
  3851     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
  3853   return r;
  3856 //------------------------------eq---------------------------------------------
  3857 // Structural equality check for Type representations
  3858 bool TypeKlassPtr::eq( const Type *t ) const {
  3859   const TypeKlassPtr *p = t->is_klassptr();
  3860   return
  3861     klass()->equals(p->klass()) &&
  3862     TypeOopPtr::eq(p);
  3865 //------------------------------hash-------------------------------------------
  3866 // Type-specific hashing function.
  3867 int TypeKlassPtr::hash(void) const {
  3868   return klass()->hash() + TypeOopPtr::hash();
  3872 //----------------------compute_klass------------------------------------------
  3873 // Compute the defining klass for this class
  3874 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  3875   // Compute _klass based on element type.
  3876   ciKlass* k_ary = NULL;
  3877   const TypeInstPtr *tinst;
  3878   const TypeAryPtr *tary;
  3879   const Type* el = elem();
  3880   if (el->isa_narrowoop()) {
  3881     el = el->make_ptr();
  3884   // Get element klass
  3885   if ((tinst = el->isa_instptr()) != NULL) {
  3886     // Compute array klass from element klass
  3887     k_ary = ciObjArrayKlass::make(tinst->klass());
  3888   } else if ((tary = el->isa_aryptr()) != NULL) {
  3889     // Compute array klass from element klass
  3890     ciKlass* k_elem = tary->klass();
  3891     // If element type is something like bottom[], k_elem will be null.
  3892     if (k_elem != NULL)
  3893       k_ary = ciObjArrayKlass::make(k_elem);
  3894   } else if ((el->base() == Type::Top) ||
  3895              (el->base() == Type::Bottom)) {
  3896     // element type of Bottom occurs from meet of basic type
  3897     // and object; Top occurs when doing join on Bottom.
  3898     // Leave k_ary at NULL.
  3899   } else {
  3900     // Cannot compute array klass directly from basic type,
  3901     // since subtypes of TypeInt all have basic type T_INT.
  3902 #ifdef ASSERT
  3903     if (verify && el->isa_int()) {
  3904       // Check simple cases when verifying klass.
  3905       BasicType bt = T_ILLEGAL;
  3906       if (el == TypeInt::BYTE) {
  3907         bt = T_BYTE;
  3908       } else if (el == TypeInt::SHORT) {
  3909         bt = T_SHORT;
  3910       } else if (el == TypeInt::CHAR) {
  3911         bt = T_CHAR;
  3912       } else if (el == TypeInt::INT) {
  3913         bt = T_INT;
  3914       } else {
  3915         return _klass; // just return specified klass
  3917       return ciTypeArrayKlass::make(bt);
  3919 #endif
  3920     assert(!el->isa_int(),
  3921            "integral arrays must be pre-equipped with a class");
  3922     // Compute array klass directly from basic type
  3923     k_ary = ciTypeArrayKlass::make(el->basic_type());
  3925   return k_ary;
  3928 //------------------------------klass------------------------------------------
  3929 // Return the defining klass for this class
  3930 ciKlass* TypeAryPtr::klass() const {
  3931   if( _klass ) return _klass;   // Return cached value, if possible
  3933   // Oops, need to compute _klass and cache it
  3934   ciKlass* k_ary = compute_klass();
  3936   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
  3937     // The _klass field acts as a cache of the underlying
  3938     // ciKlass for this array type.  In order to set the field,
  3939     // we need to cast away const-ness.
  3940     //
  3941     // IMPORTANT NOTE: we *never* set the _klass field for the
  3942     // type TypeAryPtr::OOPS.  This Type is shared between all
  3943     // active compilations.  However, the ciKlass which represents
  3944     // this Type is *not* shared between compilations, so caching
  3945     // this value would result in fetching a dangling pointer.
  3946     //
  3947     // Recomputing the underlying ciKlass for each request is
  3948     // a bit less efficient than caching, but calls to
  3949     // TypeAryPtr::OOPS->klass() are not common enough to matter.
  3950     ((TypeAryPtr*)this)->_klass = k_ary;
  3951     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
  3952         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
  3953       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
  3956   return k_ary;
  3960 //------------------------------add_offset-------------------------------------
  3961 // Access internals of klass object
  3962 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  3963   return make( _ptr, klass(), xadd_offset(offset) );
  3966 //------------------------------cast_to_ptr_type-------------------------------
  3967 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  3968   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  3969   if( ptr == _ptr ) return this;
  3970   return make(ptr, _klass, _offset);
  3974 //-----------------------------cast_to_exactness-------------------------------
  3975 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  3976   if( klass_is_exact == _klass_is_exact ) return this;
  3977   if (!UseExactTypes)  return this;
  3978   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
  3982 //-----------------------------as_instance_type--------------------------------
  3983 // Corresponding type for an instance of the given class.
  3984 // It will be NotNull, and exact if and only if the klass type is exact.
  3985 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  3986   ciKlass* k = klass();
  3987   bool    xk = klass_is_exact();
  3988   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  3989   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  3990   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  3991   return toop->cast_to_exactness(xk)->is_oopptr();
  3995 //------------------------------xmeet------------------------------------------
  3996 // Compute the MEET of two types, return a new Type object.
  3997 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  3998   // Perform a fast test for common case; meeting the same types together.
  3999   if( this == t ) return this;  // Meeting same type-rep?
  4001   // Current "this->_base" is Pointer
  4002   switch (t->base()) {          // switch on original type
  4004   case Int:                     // Mixing ints & oops happens when javac
  4005   case Long:                    // reuses local variables
  4006   case FloatTop:
  4007   case FloatCon:
  4008   case FloatBot:
  4009   case DoubleTop:
  4010   case DoubleCon:
  4011   case DoubleBot:
  4012   case NarrowOop:
  4013   case Bottom:                  // Ye Olde Default
  4014     return Type::BOTTOM;
  4015   case Top:
  4016     return this;
  4018   default:                      // All else is a mistake
  4019     typerr(t);
  4021   case RawPtr: return TypePtr::BOTTOM;
  4023   case OopPtr: {                // Meeting to OopPtrs
  4024     // Found a OopPtr type vs self-KlassPtr type
  4025     const TypePtr *tp = t->is_oopptr();
  4026     int offset = meet_offset(tp->offset());
  4027     PTR ptr = meet_ptr(tp->ptr());
  4028     switch (tp->ptr()) {
  4029     case TopPTR:
  4030     case AnyNull:
  4031       return make(ptr, klass(), offset);
  4032     case BotPTR:
  4033     case NotNull:
  4034       return TypePtr::make(AnyPtr, ptr, offset);
  4035     default: typerr(t);
  4039   case AnyPtr: {                // Meeting to AnyPtrs
  4040     // Found an AnyPtr type vs self-KlassPtr type
  4041     const TypePtr *tp = t->is_ptr();
  4042     int offset = meet_offset(tp->offset());
  4043     PTR ptr = meet_ptr(tp->ptr());
  4044     switch (tp->ptr()) {
  4045     case TopPTR:
  4046       return this;
  4047     case Null:
  4048       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
  4049     case AnyNull:
  4050       return make( ptr, klass(), offset );
  4051     case BotPTR:
  4052     case NotNull:
  4053       return TypePtr::make(AnyPtr, ptr, offset);
  4054     default: typerr(t);
  4058   case AryPtr:                  // Meet with AryPtr
  4059   case InstPtr:                 // Meet with InstPtr
  4060     return TypeInstPtr::BOTTOM;
  4062   //
  4063   //             A-top         }
  4064   //           /   |   \       }  Tops
  4065   //       B-top A-any C-top   }
  4066   //          | /  |  \ |      }  Any-nulls
  4067   //       B-any   |   C-any   }
  4068   //          |    |    |
  4069   //       B-con A-con C-con   } constants; not comparable across classes
  4070   //          |    |    |
  4071   //       B-not   |   C-not   }
  4072   //          | \  |  / |      }  not-nulls
  4073   //       B-bot A-not C-bot   }
  4074   //           \   |   /       }  Bottoms
  4075   //             A-bot         }
  4076   //
  4078   case KlassPtr: {  // Meet two KlassPtr types
  4079     const TypeKlassPtr *tkls = t->is_klassptr();
  4080     int  off     = meet_offset(tkls->offset());
  4081     PTR  ptr     = meet_ptr(tkls->ptr());
  4083     // Check for easy case; klasses are equal (and perhaps not loaded!)
  4084     // If we have constants, then we created oops so classes are loaded
  4085     // and we can handle the constants further down.  This case handles
  4086     // not-loaded classes
  4087     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
  4088       return make( ptr, klass(), off );
  4091     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
  4092     ciKlass* tkls_klass = tkls->klass();
  4093     ciKlass* this_klass = this->klass();
  4094     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
  4095     assert( this_klass->is_loaded(), "This class should have been loaded.");
  4097     // If 'this' type is above the centerline and is a superclass of the
  4098     // other, we can treat 'this' as having the same type as the other.
  4099     if ((above_centerline(this->ptr())) &&
  4100         tkls_klass->is_subtype_of(this_klass)) {
  4101       this_klass = tkls_klass;
  4103     // If 'tinst' type is above the centerline and is a superclass of the
  4104     // other, we can treat 'tinst' as having the same type as the other.
  4105     if ((above_centerline(tkls->ptr())) &&
  4106         this_klass->is_subtype_of(tkls_klass)) {
  4107       tkls_klass = this_klass;
  4110     // Check for classes now being equal
  4111     if (tkls_klass->equals(this_klass)) {
  4112       // If the klasses are equal, the constants may still differ.  Fall to
  4113       // NotNull if they do (neither constant is NULL; that is a special case
  4114       // handled elsewhere).
  4115       ciObject* o = NULL;             // Assume not constant when done
  4116       ciObject* this_oop = const_oop();
  4117       ciObject* tkls_oop = tkls->const_oop();
  4118       if( ptr == Constant ) {
  4119         if (this_oop != NULL && tkls_oop != NULL &&
  4120             this_oop->equals(tkls_oop) )
  4121           o = this_oop;
  4122         else if (above_centerline(this->ptr()))
  4123           o = tkls_oop;
  4124         else if (above_centerline(tkls->ptr()))
  4125           o = this_oop;
  4126         else
  4127           ptr = NotNull;
  4129       return make( ptr, this_klass, off );
  4130     } // Else classes are not equal
  4132     // Since klasses are different, we require the LCA in the Java
  4133     // class hierarchy - which means we have to fall to at least NotNull.
  4134     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
  4135       ptr = NotNull;
  4136     // Now we find the LCA of Java classes
  4137     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
  4138     return   make( ptr, k, off );
  4139   } // End of case KlassPtr
  4141   } // End of switch
  4142   return this;                  // Return the double constant
  4145 //------------------------------xdual------------------------------------------
  4146 // Dual: compute field-by-field dual
  4147 const Type    *TypeKlassPtr::xdual() const {
  4148   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
  4151 //------------------------------dump2------------------------------------------
  4152 // Dump Klass Type
  4153 #ifndef PRODUCT
  4154 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  4155   switch( _ptr ) {
  4156   case Constant:
  4157     st->print("precise ");
  4158   case NotNull:
  4160       const char *name = klass()->name()->as_utf8();
  4161       if( name ) {
  4162         st->print("klass %s: " INTPTR_FORMAT, name, klass());
  4163       } else {
  4164         ShouldNotReachHere();
  4167   case BotPTR:
  4168     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  4169   case TopPTR:
  4170   case AnyNull:
  4171     st->print(":%s", ptr_msg[_ptr]);
  4172     if( _klass_is_exact ) st->print(":exact");
  4173     break;
  4176   if( _offset ) {               // Dump offset, if any
  4177     if( _offset == OffsetBot )      { st->print("+any"); }
  4178     else if( _offset == OffsetTop ) { st->print("+unknown"); }
  4179     else                            { st->print("+%d", _offset); }
  4182   st->print(" *");
  4184 #endif
  4188 //=============================================================================
  4189 // Convenience common pre-built types.
  4191 //------------------------------make-------------------------------------------
  4192 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  4193   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
  4196 //------------------------------make-------------------------------------------
  4197 const TypeFunc *TypeFunc::make(ciMethod* method) {
  4198   Compile* C = Compile::current();
  4199   const TypeFunc* tf = C->last_tf(method); // check cache
  4200   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  4201   const TypeTuple *domain;
  4202   if (method->is_static()) {
  4203     domain = TypeTuple::make_domain(NULL, method->signature());
  4204   } else {
  4205     domain = TypeTuple::make_domain(method->holder(), method->signature());
  4207   const TypeTuple *range  = TypeTuple::make_range(method->signature());
  4208   tf = TypeFunc::make(domain, range);
  4209   C->set_last_tf(method, tf);  // fill cache
  4210   return tf;
  4213 //------------------------------meet-------------------------------------------
  4214 // Compute the MEET of two types.  It returns a new Type object.
  4215 const Type *TypeFunc::xmeet( const Type *t ) const {
  4216   // Perform a fast test for common case; meeting the same types together.
  4217   if( this == t ) return this;  // Meeting same type-rep?
  4219   // Current "this->_base" is Func
  4220   switch (t->base()) {          // switch on original type
  4222   case Bottom:                  // Ye Olde Default
  4223     return t;
  4225   default:                      // All else is a mistake
  4226     typerr(t);
  4228   case Top:
  4229     break;
  4231   return this;                  // Return the double constant
  4234 //------------------------------xdual------------------------------------------
  4235 // Dual: compute field-by-field dual
  4236 const Type *TypeFunc::xdual() const {
  4237   return this;
  4240 //------------------------------eq---------------------------------------------
  4241 // Structural equality check for Type representations
  4242 bool TypeFunc::eq( const Type *t ) const {
  4243   const TypeFunc *a = (const TypeFunc*)t;
  4244   return _domain == a->_domain &&
  4245     _range == a->_range;
  4248 //------------------------------hash-------------------------------------------
  4249 // Type-specific hashing function.
  4250 int TypeFunc::hash(void) const {
  4251   return (intptr_t)_domain + (intptr_t)_range;
  4254 //------------------------------dump2------------------------------------------
  4255 // Dump Function Type
  4256 #ifndef PRODUCT
  4257 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  4258   if( _range->_cnt <= Parms )
  4259     st->print("void");
  4260   else {
  4261     uint i;
  4262     for (i = Parms; i < _range->_cnt-1; i++) {
  4263       _range->field_at(i)->dump2(d,depth,st);
  4264       st->print("/");
  4266     _range->field_at(i)->dump2(d,depth,st);
  4268   st->print(" ");
  4269   st->print("( ");
  4270   if( !depth || d[this] ) {     // Check for recursive dump
  4271     st->print("...)");
  4272     return;
  4274   d.Insert((void*)this,(void*)this);    // Stop recursion
  4275   if (Parms < _domain->_cnt)
  4276     _domain->field_at(Parms)->dump2(d,depth-1,st);
  4277   for (uint i = Parms+1; i < _domain->_cnt; i++) {
  4278     st->print(", ");
  4279     _domain->field_at(i)->dump2(d,depth-1,st);
  4281   st->print(" )");
  4284 //------------------------------print_flattened--------------------------------
  4285 // Print a 'flattened' signature
  4286 static const char * const flat_type_msg[Type::lastype] = {
  4287   "bad","control","top","int","long","_", "narrowoop",
  4288   "tuple:", "array:", "vectors:", "vectord:", "vectorx:", "vectory:",
  4289   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
  4290   "func", "abIO", "return_address", "mem",
  4291   "float_top", "ftcon:", "flt",
  4292   "double_top", "dblcon:", "dbl",
  4293   "bottom"
  4294 };
  4296 void TypeFunc::print_flattened() const {
  4297   if( _range->_cnt <= Parms )
  4298     tty->print("void");
  4299   else {
  4300     uint i;
  4301     for (i = Parms; i < _range->_cnt-1; i++)
  4302       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
  4303     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
  4305   tty->print(" ( ");
  4306   if (Parms < _domain->_cnt)
  4307     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
  4308   for (uint i = Parms+1; i < _domain->_cnt; i++)
  4309     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
  4310   tty->print(" )");
  4312 #endif
  4314 //------------------------------singleton--------------------------------------
  4315 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
  4316 // constants (Ldi nodes).  Singletons are integer, float or double constants
  4317 // or a single symbol.
  4318 bool TypeFunc::singleton(void) const {
  4319   return false;                 // Never a singleton
  4322 bool TypeFunc::empty(void) const {
  4323   return false;                 // Never empty
  4327 BasicType TypeFunc::return_type() const{
  4328   if (range()->cnt() == TypeFunc::Parms) {
  4329     return T_VOID;
  4331   return range()->field_at(TypeFunc::Parms)->basic_type();

mercurial