src/share/vm/oops/methodData.hpp

Wed, 09 Oct 2013 16:32:21 +0200

author
roland
date
Wed, 09 Oct 2013 16:32:21 +0200
changeset 5914
d13d7aba8c12
parent 5784
190899198332
child 5921
ce0cc25bc5e2
permissions
-rw-r--r--

8023657: New type profiling points: arguments to call
Summary: x86 interpreter and c1 type profiling for arguments at calls
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag
   123   };
   125   enum {
   126     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   127     // The trap state breaks down further as [recompile:1 | reason:3].
   128     // This further breakdown is defined in deoptimization.cpp.
   129     // See Deoptimization::trap_state_reason for an assert that
   130     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   131     //
   132     // The trap_state is collected only if ProfileTraps is true.
   133     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   134     trap_shift = BitsPerByte - trap_bits,
   135     trap_mask = right_n_bits(trap_bits),
   136     trap_mask_in_place = (trap_mask << trap_shift),
   137     flag_limit = trap_shift,
   138     flag_mask = right_n_bits(flag_limit),
   139     first_flag = 0
   140   };
   142   // Size computation
   143   static int header_size_in_bytes() {
   144     return cell_size;
   145   }
   146   static int header_size_in_cells() {
   147     return 1;
   148   }
   150   static int compute_size_in_bytes(int cell_count) {
   151     return header_size_in_bytes() + cell_count * cell_size;
   152   }
   154   // Initialization
   155   void initialize(u1 tag, u2 bci, int cell_count);
   157   // Accessors
   158   u1 tag() {
   159     return _header._struct._tag;
   160   }
   162   // Return a few bits of trap state.  Range is [0..trap_mask].
   163   // The state tells if traps with zero, one, or many reasons have occurred.
   164   // It also tells whether zero or many recompilations have occurred.
   165   // The associated trap histogram in the MDO itself tells whether
   166   // traps are common or not.  If a BCI shows that a trap X has
   167   // occurred, and the MDO shows N occurrences of X, we make the
   168   // simplifying assumption that all N occurrences can be blamed
   169   // on that BCI.
   170   int trap_state() const {
   171     return ((_header._struct._flags >> trap_shift) & trap_mask);
   172   }
   174   void set_trap_state(int new_state) {
   175     assert(ProfileTraps, "used only under +ProfileTraps");
   176     uint old_flags = (_header._struct._flags & flag_mask);
   177     _header._struct._flags = (new_state << trap_shift) | old_flags;
   178   }
   180   u1 flags() const {
   181     return _header._struct._flags;
   182   }
   184   u2 bci() const {
   185     return _header._struct._bci;
   186   }
   188   void set_header(intptr_t value) {
   189     _header._bits = value;
   190   }
   191   void release_set_header(intptr_t value) {
   192     OrderAccess::release_store_ptr(&_header._bits, value);
   193   }
   194   intptr_t header() {
   195     return _header._bits;
   196   }
   197   void set_cell_at(int index, intptr_t value) {
   198     _cells[index] = value;
   199   }
   200   void release_set_cell_at(int index, intptr_t value) {
   201     OrderAccess::release_store_ptr(&_cells[index], value);
   202   }
   203   intptr_t cell_at(int index) const {
   204     return _cells[index];
   205   }
   207   void set_flag_at(int flag_number) {
   208     assert(flag_number < flag_limit, "oob");
   209     _header._struct._flags |= (0x1 << flag_number);
   210   }
   211   bool flag_at(int flag_number) const {
   212     assert(flag_number < flag_limit, "oob");
   213     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   214   }
   216   // Low-level support for code generation.
   217   static ByteSize header_offset() {
   218     return byte_offset_of(DataLayout, _header);
   219   }
   220   static ByteSize tag_offset() {
   221     return byte_offset_of(DataLayout, _header._struct._tag);
   222   }
   223   static ByteSize flags_offset() {
   224     return byte_offset_of(DataLayout, _header._struct._flags);
   225   }
   226   static ByteSize bci_offset() {
   227     return byte_offset_of(DataLayout, _header._struct._bci);
   228   }
   229   static ByteSize cell_offset(int index) {
   230     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   231   }
   232   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   233   static int flag_number_to_byte_constant(int flag_number) {
   234     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   235     DataLayout temp; temp.set_header(0);
   236     temp.set_flag_at(flag_number);
   237     return temp._header._struct._flags;
   238   }
   239   // Return a value which, when or-ed as a word into _header, sets the flag.
   240   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   241     DataLayout temp; temp.set_header(0);
   242     temp._header._struct._flags = byte_constant;
   243     return temp._header._bits;
   244   }
   246   ProfileData* data_in();
   248   // GC support
   249   void clean_weak_klass_links(BoolObjectClosure* cl);
   250 };
   253 // ProfileData class hierarchy
   254 class ProfileData;
   255 class   BitData;
   256 class     CounterData;
   257 class       ReceiverTypeData;
   258 class         VirtualCallData;
   259 class           VirtualCallTypeData;
   260 class       RetData;
   261 class       CallTypeData;
   262 class   JumpData;
   263 class     BranchData;
   264 class   ArrayData;
   265 class     MultiBranchData;
   266 class     ArgInfoData;
   268 // ProfileData
   269 //
   270 // A ProfileData object is created to refer to a section of profiling
   271 // data in a structured way.
   272 class ProfileData : public ResourceObj {
   273   friend class TypeEntries;
   274   friend class TypeStackSlotEntries;
   275 private:
   276 #ifndef PRODUCT
   277   enum {
   278     tab_width_one = 16,
   279     tab_width_two = 36
   280   };
   281 #endif // !PRODUCT
   283   // This is a pointer to a section of profiling data.
   284   DataLayout* _data;
   286 protected:
   287   DataLayout* data() { return _data; }
   288   const DataLayout* data() const { return _data; }
   290   enum {
   291     cell_size = DataLayout::cell_size
   292   };
   294 public:
   295   // How many cells are in this?
   296   virtual int cell_count() const {
   297     ShouldNotReachHere();
   298     return -1;
   299   }
   301   // Return the size of this data.
   302   int size_in_bytes() {
   303     return DataLayout::compute_size_in_bytes(cell_count());
   304   }
   306 protected:
   307   // Low-level accessors for underlying data
   308   void set_intptr_at(int index, intptr_t value) {
   309     assert(0 <= index && index < cell_count(), "oob");
   310     data()->set_cell_at(index, value);
   311   }
   312   void release_set_intptr_at(int index, intptr_t value) {
   313     assert(0 <= index && index < cell_count(), "oob");
   314     data()->release_set_cell_at(index, value);
   315   }
   316   intptr_t intptr_at(int index) const {
   317     assert(0 <= index && index < cell_count(), "oob");
   318     return data()->cell_at(index);
   319   }
   320   void set_uint_at(int index, uint value) {
   321     set_intptr_at(index, (intptr_t) value);
   322   }
   323   void release_set_uint_at(int index, uint value) {
   324     release_set_intptr_at(index, (intptr_t) value);
   325   }
   326   uint uint_at(int index) const {
   327     return (uint)intptr_at(index);
   328   }
   329   void set_int_at(int index, int value) {
   330     set_intptr_at(index, (intptr_t) value);
   331   }
   332   void release_set_int_at(int index, int value) {
   333     release_set_intptr_at(index, (intptr_t) value);
   334   }
   335   int int_at(int index) const {
   336     return (int)intptr_at(index);
   337   }
   338   int int_at_unchecked(int index) const {
   339     return (int)data()->cell_at(index);
   340   }
   341   void set_oop_at(int index, oop value) {
   342     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   343   }
   344   oop oop_at(int index) const {
   345     return cast_to_oop(intptr_at(index));
   346   }
   348   void set_flag_at(int flag_number) {
   349     data()->set_flag_at(flag_number);
   350   }
   351   bool flag_at(int flag_number) const {
   352     return data()->flag_at(flag_number);
   353   }
   355   // two convenient imports for use by subclasses:
   356   static ByteSize cell_offset(int index) {
   357     return DataLayout::cell_offset(index);
   358   }
   359   static int flag_number_to_byte_constant(int flag_number) {
   360     return DataLayout::flag_number_to_byte_constant(flag_number);
   361   }
   363   ProfileData(DataLayout* data) {
   364     _data = data;
   365   }
   367 public:
   368   // Constructor for invalid ProfileData.
   369   ProfileData();
   371   u2 bci() const {
   372     return data()->bci();
   373   }
   375   address dp() {
   376     return (address)_data;
   377   }
   379   int trap_state() const {
   380     return data()->trap_state();
   381   }
   382   void set_trap_state(int new_state) {
   383     data()->set_trap_state(new_state);
   384   }
   386   // Type checking
   387   virtual bool is_BitData()         const { return false; }
   388   virtual bool is_CounterData()     const { return false; }
   389   virtual bool is_JumpData()        const { return false; }
   390   virtual bool is_ReceiverTypeData()const { return false; }
   391   virtual bool is_VirtualCallData() const { return false; }
   392   virtual bool is_RetData()         const { return false; }
   393   virtual bool is_BranchData()      const { return false; }
   394   virtual bool is_ArrayData()       const { return false; }
   395   virtual bool is_MultiBranchData() const { return false; }
   396   virtual bool is_ArgInfoData()     const { return false; }
   397   virtual bool is_CallTypeData()    const { return false; }
   398   virtual bool is_VirtualCallTypeData()const { return false; }
   401   BitData* as_BitData() const {
   402     assert(is_BitData(), "wrong type");
   403     return is_BitData()         ? (BitData*)        this : NULL;
   404   }
   405   CounterData* as_CounterData() const {
   406     assert(is_CounterData(), "wrong type");
   407     return is_CounterData()     ? (CounterData*)    this : NULL;
   408   }
   409   JumpData* as_JumpData() const {
   410     assert(is_JumpData(), "wrong type");
   411     return is_JumpData()        ? (JumpData*)       this : NULL;
   412   }
   413   ReceiverTypeData* as_ReceiverTypeData() const {
   414     assert(is_ReceiverTypeData(), "wrong type");
   415     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   416   }
   417   VirtualCallData* as_VirtualCallData() const {
   418     assert(is_VirtualCallData(), "wrong type");
   419     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   420   }
   421   RetData* as_RetData() const {
   422     assert(is_RetData(), "wrong type");
   423     return is_RetData()         ? (RetData*)        this : NULL;
   424   }
   425   BranchData* as_BranchData() const {
   426     assert(is_BranchData(), "wrong type");
   427     return is_BranchData()      ? (BranchData*)     this : NULL;
   428   }
   429   ArrayData* as_ArrayData() const {
   430     assert(is_ArrayData(), "wrong type");
   431     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   432   }
   433   MultiBranchData* as_MultiBranchData() const {
   434     assert(is_MultiBranchData(), "wrong type");
   435     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   436   }
   437   ArgInfoData* as_ArgInfoData() const {
   438     assert(is_ArgInfoData(), "wrong type");
   439     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   440   }
   441   CallTypeData* as_CallTypeData() const {
   442     assert(is_CallTypeData(), "wrong type");
   443     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   444   }
   445   VirtualCallTypeData* as_VirtualCallTypeData() const {
   446     assert(is_VirtualCallTypeData(), "wrong type");
   447     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   448   }
   451   // Subclass specific initialization
   452   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   454   // GC support
   455   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   457   // CI translation: ProfileData can represent both MethodDataOop data
   458   // as well as CIMethodData data. This function is provided for translating
   459   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   460   // most ProfileData don't require any translation, so we provide the null
   461   // translation here, and the required translators are in the ci subclasses.
   462   virtual void translate_from(const ProfileData* data) {}
   464   virtual void print_data_on(outputStream* st) const {
   465     ShouldNotReachHere();
   466   }
   468 #ifndef PRODUCT
   469   void print_shared(outputStream* st, const char* name) const;
   470   void tab(outputStream* st, bool first = false) const;
   471 #endif
   472 };
   474 // BitData
   475 //
   476 // A BitData holds a flag or two in its header.
   477 class BitData : public ProfileData {
   478 protected:
   479   enum {
   480     // null_seen:
   481     //  saw a null operand (cast/aastore/instanceof)
   482     null_seen_flag              = DataLayout::first_flag + 0
   483   };
   484   enum { bit_cell_count = 0 };  // no additional data fields needed.
   485 public:
   486   BitData(DataLayout* layout) : ProfileData(layout) {
   487   }
   489   virtual bool is_BitData() const { return true; }
   491   static int static_cell_count() {
   492     return bit_cell_count;
   493   }
   495   virtual int cell_count() const {
   496     return static_cell_count();
   497   }
   499   // Accessor
   501   // The null_seen flag bit is specially known to the interpreter.
   502   // Consulting it allows the compiler to avoid setting up null_check traps.
   503   bool null_seen()     { return flag_at(null_seen_flag); }
   504   void set_null_seen()    { set_flag_at(null_seen_flag); }
   507   // Code generation support
   508   static int null_seen_byte_constant() {
   509     return flag_number_to_byte_constant(null_seen_flag);
   510   }
   512   static ByteSize bit_data_size() {
   513     return cell_offset(bit_cell_count);
   514   }
   516 #ifndef PRODUCT
   517   void print_data_on(outputStream* st) const;
   518 #endif
   519 };
   521 // CounterData
   522 //
   523 // A CounterData corresponds to a simple counter.
   524 class CounterData : public BitData {
   525 protected:
   526   enum {
   527     count_off,
   528     counter_cell_count
   529   };
   530 public:
   531   CounterData(DataLayout* layout) : BitData(layout) {}
   533   virtual bool is_CounterData() const { return true; }
   535   static int static_cell_count() {
   536     return counter_cell_count;
   537   }
   539   virtual int cell_count() const {
   540     return static_cell_count();
   541   }
   543   // Direct accessor
   544   uint count() const {
   545     return uint_at(count_off);
   546   }
   548   // Code generation support
   549   static ByteSize count_offset() {
   550     return cell_offset(count_off);
   551   }
   552   static ByteSize counter_data_size() {
   553     return cell_offset(counter_cell_count);
   554   }
   556   void set_count(uint count) {
   557     set_uint_at(count_off, count);
   558   }
   560 #ifndef PRODUCT
   561   void print_data_on(outputStream* st) const;
   562 #endif
   563 };
   565 // JumpData
   566 //
   567 // A JumpData is used to access profiling information for a direct
   568 // branch.  It is a counter, used for counting the number of branches,
   569 // plus a data displacement, used for realigning the data pointer to
   570 // the corresponding target bci.
   571 class JumpData : public ProfileData {
   572 protected:
   573   enum {
   574     taken_off_set,
   575     displacement_off_set,
   576     jump_cell_count
   577   };
   579   void set_displacement(int displacement) {
   580     set_int_at(displacement_off_set, displacement);
   581   }
   583 public:
   584   JumpData(DataLayout* layout) : ProfileData(layout) {
   585     assert(layout->tag() == DataLayout::jump_data_tag ||
   586       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   587   }
   589   virtual bool is_JumpData() const { return true; }
   591   static int static_cell_count() {
   592     return jump_cell_count;
   593   }
   595   virtual int cell_count() const {
   596     return static_cell_count();
   597   }
   599   // Direct accessor
   600   uint taken() const {
   601     return uint_at(taken_off_set);
   602   }
   604   void set_taken(uint cnt) {
   605     set_uint_at(taken_off_set, cnt);
   606   }
   608   // Saturating counter
   609   uint inc_taken() {
   610     uint cnt = taken() + 1;
   611     // Did we wrap? Will compiler screw us??
   612     if (cnt == 0) cnt--;
   613     set_uint_at(taken_off_set, cnt);
   614     return cnt;
   615   }
   617   int displacement() const {
   618     return int_at(displacement_off_set);
   619   }
   621   // Code generation support
   622   static ByteSize taken_offset() {
   623     return cell_offset(taken_off_set);
   624   }
   626   static ByteSize displacement_offset() {
   627     return cell_offset(displacement_off_set);
   628   }
   630   // Specific initialization.
   631   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   633 #ifndef PRODUCT
   634   void print_data_on(outputStream* st) const;
   635 #endif
   636 };
   638 // Entries in a ProfileData object to record types: it can either be
   639 // none (no profile), unknown (conflicting profile data) or a klass if
   640 // a single one is seen. Whether a null reference was seen is also
   641 // recorded. No counter is associated with the type and a single type
   642 // is tracked (unlike VirtualCallData).
   643 class TypeEntries {
   645 public:
   647   // A single cell is used to record information for a type:
   648   // - the cell is initialized to 0
   649   // - when a type is discovered it is stored in the cell
   650   // - bit zero of the cell is used to record whether a null reference
   651   // was encountered or not
   652   // - bit 1 is set to record a conflict in the type information
   654   enum {
   655     null_seen = 1,
   656     type_mask = ~null_seen,
   657     type_unknown = 2,
   658     status_bits = null_seen | type_unknown,
   659     type_klass_mask = ~status_bits
   660   };
   662   // what to initialize a cell to
   663   static intptr_t type_none() {
   664     return 0;
   665   }
   667   // null seen = bit 0 set?
   668   static bool was_null_seen(intptr_t v) {
   669     return (v & null_seen) != 0;
   670   }
   672   // conflicting type information = bit 1 set?
   673   static bool is_type_unknown(intptr_t v) {
   674     return (v & type_unknown) != 0;
   675   }
   677   // not type information yet = all bits cleared, ignoring bit 0?
   678   static bool is_type_none(intptr_t v) {
   679     return (v & type_mask) == 0;
   680   }
   682   // recorded type: cell without bit 0 and 1
   683   static intptr_t klass_part(intptr_t v) {
   684     intptr_t r = v & type_klass_mask;
   685     assert (r != 0, "invalid");
   686     return r;
   687   }
   689   // type recorded
   690   static Klass* valid_klass(intptr_t k) {
   691     if (!is_type_none(k) &&
   692         !is_type_unknown(k)) {
   693       return (Klass*)klass_part(k);
   694     } else {
   695       return NULL;
   696     }
   697   }
   699   static intptr_t with_status(intptr_t k, intptr_t in) {
   700     return k | (in & status_bits);
   701   }
   703   static intptr_t with_status(Klass* k, intptr_t in) {
   704     return with_status((intptr_t)k, in);
   705   }
   707 #ifndef PRODUCT
   708   static void print_klass(outputStream* st, intptr_t k);
   709 #endif
   711   // GC support
   712   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   714 protected:
   715   // ProfileData object these entries are part of
   716   ProfileData* _pd;
   717   // offset within the ProfileData object where the entries start
   718   const int _base_off;
   720   TypeEntries(int base_off)
   721     : _base_off(base_off), _pd(NULL) {}
   723   void set_intptr_at(int index, intptr_t value) {
   724     _pd->set_intptr_at(index, value);
   725   }
   727   intptr_t intptr_at(int index) const {
   728     return _pd->intptr_at(index);
   729   }
   731 public:
   732   void set_profile_data(ProfileData* pd) {
   733     _pd = pd;
   734   }
   735 };
   737 // Type entries used for arguments passed at a call and parameters on
   738 // method entry. 2 cells per entry: one for the type encoded as in
   739 // TypeEntries and one initialized with the stack slot where the
   740 // profiled object is to be found so that the interpreter can locate
   741 // it quickly.
   742 class TypeStackSlotEntries : public TypeEntries {
   744 private:
   745   enum {
   746     stack_slot_entry,
   747     type_entry,
   748     per_arg_cell_count
   749   };
   751   // Start with a header if needed. It stores the number of cells used
   752   // for this call type information. Unless we collect only profiling
   753   // for a single argument the number of cells is unknown statically.
   754   static int header_cell_count() {
   755     return (TypeProfileArgsLimit > 1) ? 1 : 0;
   756   }
   758   static int cell_count_local_offset() {
   759      assert(arguments_profiling_enabled() && TypeProfileArgsLimit > 1, "no cell count");
   760      return 0;
   761    }
   763   int cell_count_global_offset() const {
   764     return _base_off + cell_count_local_offset();
   765   }
   767   // offset of cell for stack slot for entry i within ProfileData object
   768   int stack_slot_global_offset(int i) const {
   769     return _base_off + stack_slot_local_offset(i);
   770   }
   772   void check_number_of_arguments(int total) {
   773     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
   774   }
   776   // number of cells not counting the header
   777   int cell_count_no_header() const {
   778     return _pd->uint_at(cell_count_global_offset());
   779   }
   781   static bool arguments_profiling_enabled();
   782   static void assert_arguments_profiling_enabled() {
   783     assert(arguments_profiling_enabled(), "args profiling should be on");
   784   }
   786 protected:
   788   // offset of cell for type for entry i within ProfileData object
   789   int type_global_offset(int i) const {
   790     return _base_off + type_local_offset(i);
   791   }
   793 public:
   795   TypeStackSlotEntries(int base_off)
   796     : TypeEntries(base_off) {}
   798   static int compute_cell_count(BytecodeStream* stream);
   800   static void initialize(DataLayout* dl, int base, int cell_count) {
   801     if (TypeProfileArgsLimit > 1) {
   802       int off = base + cell_count_local_offset();
   803       dl->set_cell_at(off, cell_count - base - header_cell_count());
   804     }
   805   }
   807   void post_initialize(BytecodeStream* stream);
   809   int number_of_arguments() const {
   810     assert_arguments_profiling_enabled();
   811     if (TypeProfileArgsLimit > 1) {
   812       int cell_count = cell_count_no_header();
   813       int nb = cell_count / TypeStackSlotEntries::per_arg_count();
   814       assert(nb > 0 && nb <= TypeProfileArgsLimit , "only when we profile args");
   815       return nb;
   816     } else {
   817       assert(TypeProfileArgsLimit == 1, "at least one arg");
   818       return 1;
   819     }
   820   }
   822   int cell_count() const {
   823     assert_arguments_profiling_enabled();
   824     if (TypeProfileArgsLimit > 1) {
   825       return _base_off + header_cell_count() + _pd->int_at_unchecked(cell_count_global_offset());
   826     } else {
   827       return _base_off + TypeStackSlotEntries::per_arg_count();
   828     }
   829   }
   831   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   832   static int stack_slot_local_offset(int i) {
   833     assert_arguments_profiling_enabled();
   834     return header_cell_count() + i * per_arg_cell_count + stack_slot_entry;
   835   }
   837   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   838   static int type_local_offset(int i) {
   839     return header_cell_count() + i * per_arg_cell_count + type_entry;
   840   }
   842   // stack slot for entry i
   843   uint stack_slot(int i) const {
   844     assert(i >= 0 && i < number_of_arguments(), "oob");
   845     return _pd->uint_at(stack_slot_global_offset(i));
   846   }
   848   // set stack slot for entry i
   849   void set_stack_slot(int i, uint num) {
   850     assert(i >= 0 && i < number_of_arguments(), "oob");
   851     _pd->set_uint_at(stack_slot_global_offset(i), num);
   852   }
   854   // type for entry i
   855   intptr_t type(int i) const {
   856     assert(i >= 0 && i < number_of_arguments(), "oob");
   857     return _pd->intptr_at(type_global_offset(i));
   858   }
   860   // set type for entry i
   861   void set_type(int i, intptr_t k) {
   862     assert(i >= 0 && i < number_of_arguments(), "oob");
   863     _pd->set_intptr_at(type_global_offset(i), k);
   864   }
   866   static ByteSize per_arg_size() {
   867     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   868   }
   870   static int per_arg_count() {
   871     return per_arg_cell_count ;
   872   }
   874   // Code generation support
   875    static ByteSize cell_count_offset() {
   876      return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
   877    }
   879    static ByteSize args_data_offset() {
   880      return in_ByteSize(header_cell_count() * DataLayout::cell_size);
   881    }
   883    static ByteSize stack_slot_offset(int i) {
   884      return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
   885    }
   887    static ByteSize type_offset(int i) {
   888      return in_ByteSize(type_local_offset(i) * DataLayout::cell_size);
   889    }
   891   // GC support
   892   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   894 #ifndef PRODUCT
   895   void print_data_on(outputStream* st) const;
   896 #endif
   897 };
   899 // CallTypeData
   900 //
   901 // A CallTypeData is used to access profiling information about a non
   902 // virtual call for which we collect type information about arguments.
   903 class CallTypeData : public CounterData {
   904 private:
   905   TypeStackSlotEntries _args;
   907 public:
   908   CallTypeData(DataLayout* layout) :
   909     CounterData(layout), _args(CounterData::static_cell_count())  {
   910     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
   911     // Some compilers (VC++) don't want this passed in member initialization list
   912     _args.set_profile_data(this);
   913   }
   915   const TypeStackSlotEntries* args() const { return &_args; }
   917   virtual bool is_CallTypeData() const { return true; }
   919   static int static_cell_count() {
   920     return -1;
   921   }
   923   static int compute_cell_count(BytecodeStream* stream) {
   924     return CounterData::static_cell_count() + TypeStackSlotEntries::compute_cell_count(stream);
   925   }
   927   static void initialize(DataLayout* dl, int cell_count) {
   928     TypeStackSlotEntries::initialize(dl, CounterData::static_cell_count(), cell_count);
   929   }
   931   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {
   932     _args.post_initialize(stream);
   933   }
   935   virtual int cell_count() const {
   936     return _args.cell_count();
   937   }
   939   uint number_of_arguments() const {
   940     return args()->number_of_arguments();
   941   }
   943   void set_argument_type(int i, Klass* k) {
   944     intptr_t current = _args.type(i);
   945     _args.set_type(i, TypeEntries::with_status(k, current));
   946   }
   948   // Code generation support
   949   static ByteSize args_data_offset() {
   950     return cell_offset(CounterData::static_cell_count()) + TypeStackSlotEntries::args_data_offset();
   951   }
   953   // GC support
   954   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
   955     _args.clean_weak_klass_links(is_alive_closure);
   956   }
   958 #ifndef PRODUCT
   959   virtual void print_data_on(outputStream* st) const;
   960 #endif
   961 };
   963 // ReceiverTypeData
   964 //
   965 // A ReceiverTypeData is used to access profiling information about a
   966 // dynamic type check.  It consists of a counter which counts the total times
   967 // that the check is reached, and a series of (Klass*, count) pairs
   968 // which are used to store a type profile for the receiver of the check.
   969 class ReceiverTypeData : public CounterData {
   970 protected:
   971   enum {
   972     receiver0_offset = counter_cell_count,
   973     count0_offset,
   974     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   975   };
   977 public:
   978   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   979     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   980            layout->tag() == DataLayout::virtual_call_data_tag ||
   981            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
   982   }
   984   virtual bool is_ReceiverTypeData() const { return true; }
   986   static int static_cell_count() {
   987     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   988   }
   990   virtual int cell_count() const {
   991     return static_cell_count();
   992   }
   994   // Direct accessors
   995   static uint row_limit() {
   996     return TypeProfileWidth;
   997   }
   998   static int receiver_cell_index(uint row) {
   999     return receiver0_offset + row * receiver_type_row_cell_count;
  1001   static int receiver_count_cell_index(uint row) {
  1002     return count0_offset + row * receiver_type_row_cell_count;
  1005   Klass* receiver(uint row) const {
  1006     assert(row < row_limit(), "oob");
  1008     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1009     assert(recv == NULL || recv->is_klass(), "wrong type");
  1010     return recv;
  1013   void set_receiver(uint row, Klass* k) {
  1014     assert((uint)row < row_limit(), "oob");
  1015     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1018   uint receiver_count(uint row) const {
  1019     assert(row < row_limit(), "oob");
  1020     return uint_at(receiver_count_cell_index(row));
  1023   void set_receiver_count(uint row, uint count) {
  1024     assert(row < row_limit(), "oob");
  1025     set_uint_at(receiver_count_cell_index(row), count);
  1028   void clear_row(uint row) {
  1029     assert(row < row_limit(), "oob");
  1030     // Clear total count - indicator of polymorphic call site.
  1031     // The site may look like as monomorphic after that but
  1032     // it allow to have more accurate profiling information because
  1033     // there was execution phase change since klasses were unloaded.
  1034     // If the site is still polymorphic then MDO will be updated
  1035     // to reflect it. But it could be the case that the site becomes
  1036     // only bimorphic. Then keeping total count not 0 will be wrong.
  1037     // Even if we use monomorphic (when it is not) for compilation
  1038     // we will only have trap, deoptimization and recompile again
  1039     // with updated MDO after executing method in Interpreter.
  1040     // An additional receiver will be recorded in the cleaned row
  1041     // during next call execution.
  1042     //
  1043     // Note: our profiling logic works with empty rows in any slot.
  1044     // We do sorting a profiling info (ciCallProfile) for compilation.
  1045     //
  1046     set_count(0);
  1047     set_receiver(row, NULL);
  1048     set_receiver_count(row, 0);
  1051   // Code generation support
  1052   static ByteSize receiver_offset(uint row) {
  1053     return cell_offset(receiver_cell_index(row));
  1055   static ByteSize receiver_count_offset(uint row) {
  1056     return cell_offset(receiver_count_cell_index(row));
  1058   static ByteSize receiver_type_data_size() {
  1059     return cell_offset(static_cell_count());
  1062   // GC support
  1063   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1065 #ifndef PRODUCT
  1066   void print_receiver_data_on(outputStream* st) const;
  1067   void print_data_on(outputStream* st) const;
  1068 #endif
  1069 };
  1071 // VirtualCallData
  1072 //
  1073 // A VirtualCallData is used to access profiling information about a
  1074 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1075 class VirtualCallData : public ReceiverTypeData {
  1076 public:
  1077   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1078     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1079            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1082   virtual bool is_VirtualCallData() const { return true; }
  1084   static int static_cell_count() {
  1085     // At this point we could add more profile state, e.g., for arguments.
  1086     // But for now it's the same size as the base record type.
  1087     return ReceiverTypeData::static_cell_count();
  1090   virtual int cell_count() const {
  1091     return static_cell_count();
  1094   // Direct accessors
  1095   static ByteSize virtual_call_data_size() {
  1096     return cell_offset(static_cell_count());
  1099 #ifndef PRODUCT
  1100   void print_data_on(outputStream* st) const;
  1101 #endif
  1102 };
  1104 // VirtualCallTypeData
  1105 //
  1106 // A VirtualCallTypeData is used to access profiling information about
  1107 // a virtual call for which we collect type information about
  1108 // arguments.
  1109 class VirtualCallTypeData : public VirtualCallData {
  1110 private:
  1111   TypeStackSlotEntries _args;
  1113 public:
  1114   VirtualCallTypeData(DataLayout* layout) :
  1115     VirtualCallData(layout), _args(VirtualCallData::static_cell_count())  {
  1116     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1117     // Some compilers (VC++) don't want this passed in member initialization list
  1118     _args.set_profile_data(this);
  1121   const TypeStackSlotEntries* args() const { return &_args; }
  1123   virtual bool is_VirtualCallTypeData() const { return true; }
  1125   static int static_cell_count() {
  1126     return -1;
  1129   static int compute_cell_count(BytecodeStream* stream) {
  1130     return VirtualCallData::static_cell_count() + TypeStackSlotEntries::compute_cell_count(stream);
  1133   static void initialize(DataLayout* dl, int cell_count) {
  1134     TypeStackSlotEntries::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1137   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {
  1138     _args.post_initialize(stream);
  1141   virtual int cell_count() const {
  1142     return _args.cell_count();
  1145   uint number_of_arguments() const {
  1146     return args()->number_of_arguments();
  1149   void set_argument_type(int i, Klass* k) {
  1150     intptr_t current = _args.type(i);
  1151     _args.set_type(i, TypeEntries::with_status(k, current));
  1154   // Code generation support
  1155   static ByteSize args_data_offset() {
  1156     return cell_offset(VirtualCallData::static_cell_count()) + TypeStackSlotEntries::args_data_offset();
  1159   // GC support
  1160   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1161     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1162     _args.clean_weak_klass_links(is_alive_closure);
  1165 #ifndef PRODUCT
  1166   virtual void print_data_on(outputStream* st) const;
  1167 #endif
  1168 };
  1170 // RetData
  1171 //
  1172 // A RetData is used to access profiling information for a ret bytecode.
  1173 // It is composed of a count of the number of times that the ret has
  1174 // been executed, followed by a series of triples of the form
  1175 // (bci, count, di) which count the number of times that some bci was the
  1176 // target of the ret and cache a corresponding data displacement.
  1177 class RetData : public CounterData {
  1178 protected:
  1179   enum {
  1180     bci0_offset = counter_cell_count,
  1181     count0_offset,
  1182     displacement0_offset,
  1183     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1184   };
  1186   void set_bci(uint row, int bci) {
  1187     assert((uint)row < row_limit(), "oob");
  1188     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1190   void release_set_bci(uint row, int bci) {
  1191     assert((uint)row < row_limit(), "oob");
  1192     // 'release' when setting the bci acts as a valid flag for other
  1193     // threads wrt bci_count and bci_displacement.
  1194     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1196   void set_bci_count(uint row, uint count) {
  1197     assert((uint)row < row_limit(), "oob");
  1198     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1200   void set_bci_displacement(uint row, int disp) {
  1201     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1204 public:
  1205   RetData(DataLayout* layout) : CounterData(layout) {
  1206     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1209   virtual bool is_RetData() const { return true; }
  1211   enum {
  1212     no_bci = -1 // value of bci when bci1/2 are not in use.
  1213   };
  1215   static int static_cell_count() {
  1216     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1219   virtual int cell_count() const {
  1220     return static_cell_count();
  1223   static uint row_limit() {
  1224     return BciProfileWidth;
  1226   static int bci_cell_index(uint row) {
  1227     return bci0_offset + row * ret_row_cell_count;
  1229   static int bci_count_cell_index(uint row) {
  1230     return count0_offset + row * ret_row_cell_count;
  1232   static int bci_displacement_cell_index(uint row) {
  1233     return displacement0_offset + row * ret_row_cell_count;
  1236   // Direct accessors
  1237   int bci(uint row) const {
  1238     return int_at(bci_cell_index(row));
  1240   uint bci_count(uint row) const {
  1241     return uint_at(bci_count_cell_index(row));
  1243   int bci_displacement(uint row) const {
  1244     return int_at(bci_displacement_cell_index(row));
  1247   // Interpreter Runtime support
  1248   address fixup_ret(int return_bci, MethodData* mdo);
  1250   // Code generation support
  1251   static ByteSize bci_offset(uint row) {
  1252     return cell_offset(bci_cell_index(row));
  1254   static ByteSize bci_count_offset(uint row) {
  1255     return cell_offset(bci_count_cell_index(row));
  1257   static ByteSize bci_displacement_offset(uint row) {
  1258     return cell_offset(bci_displacement_cell_index(row));
  1261   // Specific initialization.
  1262   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1264 #ifndef PRODUCT
  1265   void print_data_on(outputStream* st) const;
  1266 #endif
  1267 };
  1269 // BranchData
  1270 //
  1271 // A BranchData is used to access profiling data for a two-way branch.
  1272 // It consists of taken and not_taken counts as well as a data displacement
  1273 // for the taken case.
  1274 class BranchData : public JumpData {
  1275 protected:
  1276   enum {
  1277     not_taken_off_set = jump_cell_count,
  1278     branch_cell_count
  1279   };
  1281   void set_displacement(int displacement) {
  1282     set_int_at(displacement_off_set, displacement);
  1285 public:
  1286   BranchData(DataLayout* layout) : JumpData(layout) {
  1287     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1290   virtual bool is_BranchData() const { return true; }
  1292   static int static_cell_count() {
  1293     return branch_cell_count;
  1296   virtual int cell_count() const {
  1297     return static_cell_count();
  1300   // Direct accessor
  1301   uint not_taken() const {
  1302     return uint_at(not_taken_off_set);
  1305   void set_not_taken(uint cnt) {
  1306     set_uint_at(not_taken_off_set, cnt);
  1309   uint inc_not_taken() {
  1310     uint cnt = not_taken() + 1;
  1311     // Did we wrap? Will compiler screw us??
  1312     if (cnt == 0) cnt--;
  1313     set_uint_at(not_taken_off_set, cnt);
  1314     return cnt;
  1317   // Code generation support
  1318   static ByteSize not_taken_offset() {
  1319     return cell_offset(not_taken_off_set);
  1321   static ByteSize branch_data_size() {
  1322     return cell_offset(branch_cell_count);
  1325   // Specific initialization.
  1326   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1328 #ifndef PRODUCT
  1329   void print_data_on(outputStream* st) const;
  1330 #endif
  1331 };
  1333 // ArrayData
  1334 //
  1335 // A ArrayData is a base class for accessing profiling data which does
  1336 // not have a statically known size.  It consists of an array length
  1337 // and an array start.
  1338 class ArrayData : public ProfileData {
  1339 protected:
  1340   friend class DataLayout;
  1342   enum {
  1343     array_len_off_set,
  1344     array_start_off_set
  1345   };
  1347   uint array_uint_at(int index) const {
  1348     int aindex = index + array_start_off_set;
  1349     return uint_at(aindex);
  1351   int array_int_at(int index) const {
  1352     int aindex = index + array_start_off_set;
  1353     return int_at(aindex);
  1355   oop array_oop_at(int index) const {
  1356     int aindex = index + array_start_off_set;
  1357     return oop_at(aindex);
  1359   void array_set_int_at(int index, int value) {
  1360     int aindex = index + array_start_off_set;
  1361     set_int_at(aindex, value);
  1364   // Code generation support for subclasses.
  1365   static ByteSize array_element_offset(int index) {
  1366     return cell_offset(array_start_off_set + index);
  1369 public:
  1370   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1372   virtual bool is_ArrayData() const { return true; }
  1374   static int static_cell_count() {
  1375     return -1;
  1378   int array_len() const {
  1379     return int_at_unchecked(array_len_off_set);
  1382   virtual int cell_count() const {
  1383     return array_len() + 1;
  1386   // Code generation support
  1387   static ByteSize array_len_offset() {
  1388     return cell_offset(array_len_off_set);
  1390   static ByteSize array_start_offset() {
  1391     return cell_offset(array_start_off_set);
  1393 };
  1395 // MultiBranchData
  1396 //
  1397 // A MultiBranchData is used to access profiling information for
  1398 // a multi-way branch (*switch bytecodes).  It consists of a series
  1399 // of (count, displacement) pairs, which count the number of times each
  1400 // case was taken and specify the data displacment for each branch target.
  1401 class MultiBranchData : public ArrayData {
  1402 protected:
  1403   enum {
  1404     default_count_off_set,
  1405     default_disaplacement_off_set,
  1406     case_array_start
  1407   };
  1408   enum {
  1409     relative_count_off_set,
  1410     relative_displacement_off_set,
  1411     per_case_cell_count
  1412   };
  1414   void set_default_displacement(int displacement) {
  1415     array_set_int_at(default_disaplacement_off_set, displacement);
  1417   void set_displacement_at(int index, int displacement) {
  1418     array_set_int_at(case_array_start +
  1419                      index * per_case_cell_count +
  1420                      relative_displacement_off_set,
  1421                      displacement);
  1424 public:
  1425   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1426     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1429   virtual bool is_MultiBranchData() const { return true; }
  1431   static int compute_cell_count(BytecodeStream* stream);
  1433   int number_of_cases() const {
  1434     int alen = array_len() - 2; // get rid of default case here.
  1435     assert(alen % per_case_cell_count == 0, "must be even");
  1436     return (alen / per_case_cell_count);
  1439   uint default_count() const {
  1440     return array_uint_at(default_count_off_set);
  1442   int default_displacement() const {
  1443     return array_int_at(default_disaplacement_off_set);
  1446   uint count_at(int index) const {
  1447     return array_uint_at(case_array_start +
  1448                          index * per_case_cell_count +
  1449                          relative_count_off_set);
  1451   int displacement_at(int index) const {
  1452     return array_int_at(case_array_start +
  1453                         index * per_case_cell_count +
  1454                         relative_displacement_off_set);
  1457   // Code generation support
  1458   static ByteSize default_count_offset() {
  1459     return array_element_offset(default_count_off_set);
  1461   static ByteSize default_displacement_offset() {
  1462     return array_element_offset(default_disaplacement_off_set);
  1464   static ByteSize case_count_offset(int index) {
  1465     return case_array_offset() +
  1466            (per_case_size() * index) +
  1467            relative_count_offset();
  1469   static ByteSize case_array_offset() {
  1470     return array_element_offset(case_array_start);
  1472   static ByteSize per_case_size() {
  1473     return in_ByteSize(per_case_cell_count) * cell_size;
  1475   static ByteSize relative_count_offset() {
  1476     return in_ByteSize(relative_count_off_set) * cell_size;
  1478   static ByteSize relative_displacement_offset() {
  1479     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1482   // Specific initialization.
  1483   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1485 #ifndef PRODUCT
  1486   void print_data_on(outputStream* st) const;
  1487 #endif
  1488 };
  1490 class ArgInfoData : public ArrayData {
  1492 public:
  1493   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1494     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1497   virtual bool is_ArgInfoData() const { return true; }
  1500   int number_of_args() const {
  1501     return array_len();
  1504   uint arg_modified(int arg) const {
  1505     return array_uint_at(arg);
  1508   void set_arg_modified(int arg, uint val) {
  1509     array_set_int_at(arg, val);
  1512 #ifndef PRODUCT
  1513   void print_data_on(outputStream* st) const;
  1514 #endif
  1515 };
  1517 // MethodData*
  1518 //
  1519 // A MethodData* holds information which has been collected about
  1520 // a method.  Its layout looks like this:
  1521 //
  1522 // -----------------------------
  1523 // | header                    |
  1524 // | klass                     |
  1525 // -----------------------------
  1526 // | method                    |
  1527 // | size of the MethodData* |
  1528 // -----------------------------
  1529 // | Data entries...           |
  1530 // |   (variable size)         |
  1531 // |                           |
  1532 // .                           .
  1533 // .                           .
  1534 // .                           .
  1535 // |                           |
  1536 // -----------------------------
  1537 //
  1538 // The data entry area is a heterogeneous array of DataLayouts. Each
  1539 // DataLayout in the array corresponds to a specific bytecode in the
  1540 // method.  The entries in the array are sorted by the corresponding
  1541 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1542 // which point to the underlying blocks of DataLayout structures.
  1543 //
  1544 // During interpretation, if profiling in enabled, the interpreter
  1545 // maintains a method data pointer (mdp), which points at the entry
  1546 // in the array corresponding to the current bci.  In the course of
  1547 // intepretation, when a bytecode is encountered that has profile data
  1548 // associated with it, the entry pointed to by mdp is updated, then the
  1549 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1550 // is NULL to begin with, the interpreter assumes that the current method
  1551 // is not (yet) being profiled.
  1552 //
  1553 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1554 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1555 // from the base of the data entry array.  A "displacement" is the byte offset
  1556 // in certain ProfileData objects that indicate the amount the mdp must be
  1557 // adjusted in the event of a change in control flow.
  1558 //
  1560 class MethodData : public Metadata {
  1561   friend class VMStructs;
  1562 private:
  1563   friend class ProfileData;
  1565   // Back pointer to the Method*
  1566   Method* _method;
  1568   // Size of this oop in bytes
  1569   int _size;
  1571   // Cached hint for bci_to_dp and bci_to_data
  1572   int _hint_di;
  1574   MethodData(methodHandle method, int size, TRAPS);
  1575 public:
  1576   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1577   MethodData() {}; // For ciMethodData
  1579   bool is_methodData() const volatile { return true; }
  1581   // Whole-method sticky bits and flags
  1582   enum {
  1583     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1584     _trap_hist_mask     = max_jubyte,
  1585     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1586   }; // Public flag values
  1587 private:
  1588   uint _nof_decompiles;             // count of all nmethod removals
  1589   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1590   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1591   union {
  1592     intptr_t _align;
  1593     u1 _array[_trap_hist_limit];
  1594   } _trap_hist;
  1596   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1597   intx              _eflags;          // flags on escape information
  1598   intx              _arg_local;       // bit set of non-escaping arguments
  1599   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1600   intx              _arg_returned;    // bit set of returned arguments
  1602   int _creation_mileage;              // method mileage at MDO creation
  1604   // How many invocations has this MDO seen?
  1605   // These counters are used to determine the exact age of MDO.
  1606   // We need those because in tiered a method can be concurrently
  1607   // executed at different levels.
  1608   InvocationCounter _invocation_counter;
  1609   // Same for backedges.
  1610   InvocationCounter _backedge_counter;
  1611   // Counter values at the time profiling started.
  1612   int               _invocation_counter_start;
  1613   int               _backedge_counter_start;
  1614   // Number of loops and blocks is computed when compiling the first
  1615   // time with C1. It is used to determine if method is trivial.
  1616   short             _num_loops;
  1617   short             _num_blocks;
  1618   // Highest compile level this method has ever seen.
  1619   u1                _highest_comp_level;
  1620   // Same for OSR level
  1621   u1                _highest_osr_comp_level;
  1622   // Does this method contain anything worth profiling?
  1623   bool              _would_profile;
  1625   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1626   int _data_size;
  1628   // Beginning of the data entries
  1629   intptr_t _data[1];
  1631   // Helper for size computation
  1632   static int compute_data_size(BytecodeStream* stream);
  1633   static int bytecode_cell_count(Bytecodes::Code code);
  1634   enum { no_profile_data = -1, variable_cell_count = -2 };
  1636   // Helper for initialization
  1637   DataLayout* data_layout_at(int data_index) const {
  1638     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1639     return (DataLayout*) (((address)_data) + data_index);
  1642   // Initialize an individual data segment.  Returns the size of
  1643   // the segment in bytes.
  1644   int initialize_data(BytecodeStream* stream, int data_index);
  1646   // Helper for data_at
  1647   DataLayout* limit_data_position() const {
  1648     return (DataLayout*)((address)data_base() + _data_size);
  1650   bool out_of_bounds(int data_index) const {
  1651     return data_index >= data_size();
  1654   // Give each of the data entries a chance to perform specific
  1655   // data initialization.
  1656   void post_initialize(BytecodeStream* stream);
  1658   // hint accessors
  1659   int      hint_di() const  { return _hint_di; }
  1660   void set_hint_di(int di)  {
  1661     assert(!out_of_bounds(di), "hint_di out of bounds");
  1662     _hint_di = di;
  1664   ProfileData* data_before(int bci) {
  1665     // avoid SEGV on this edge case
  1666     if (data_size() == 0)
  1667       return NULL;
  1668     int hint = hint_di();
  1669     if (data_layout_at(hint)->bci() <= bci)
  1670       return data_at(hint);
  1671     return first_data();
  1674   // What is the index of the first data entry?
  1675   int first_di() const { return 0; }
  1677   // Find or create an extra ProfileData:
  1678   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1680   // return the argument info cell
  1681   ArgInfoData *arg_info();
  1683   enum {
  1684     no_type_profile = 0,
  1685     type_profile_jsr292 = 1,
  1686     type_profile_all = 2
  1687   };
  1689   static bool profile_jsr292(methodHandle m, int bci);
  1690   static int profile_arguments_flag();
  1691   static bool profile_arguments_jsr292_only();
  1692   static bool profile_all_arguments();
  1693   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  1695 public:
  1696   static int header_size() {
  1697     return sizeof(MethodData)/wordSize;
  1700   // Compute the size of a MethodData* before it is created.
  1701   static int compute_allocation_size_in_bytes(methodHandle method);
  1702   static int compute_allocation_size_in_words(methodHandle method);
  1703   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1705   // Determine if a given bytecode can have profile information.
  1706   static bool bytecode_has_profile(Bytecodes::Code code) {
  1707     return bytecode_cell_count(code) != no_profile_data;
  1710   // reset into original state
  1711   void init();
  1713   // My size
  1714   int size_in_bytes() const { return _size; }
  1715   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1716 #if INCLUDE_SERVICES
  1717   void collect_statistics(KlassSizeStats *sz) const;
  1718 #endif
  1720   int      creation_mileage() const  { return _creation_mileage; }
  1721   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1723   int invocation_count() {
  1724     if (invocation_counter()->carry()) {
  1725       return InvocationCounter::count_limit;
  1727     return invocation_counter()->count();
  1729   int backedge_count() {
  1730     if (backedge_counter()->carry()) {
  1731       return InvocationCounter::count_limit;
  1733     return backedge_counter()->count();
  1736   int invocation_count_start() {
  1737     if (invocation_counter()->carry()) {
  1738       return 0;
  1740     return _invocation_counter_start;
  1743   int backedge_count_start() {
  1744     if (backedge_counter()->carry()) {
  1745       return 0;
  1747     return _backedge_counter_start;
  1750   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1751   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1753   void reset_start_counters() {
  1754     _invocation_counter_start = invocation_count();
  1755     _backedge_counter_start = backedge_count();
  1758   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1759   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1761   void set_would_profile(bool p)              { _would_profile = p;    }
  1762   bool would_profile() const                  { return _would_profile; }
  1764   int highest_comp_level() const              { return _highest_comp_level;      }
  1765   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1766   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  1767   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1769   int num_loops() const                       { return _num_loops;  }
  1770   void set_num_loops(int n)                   { _num_loops = n;     }
  1771   int num_blocks() const                      { return _num_blocks; }
  1772   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1774   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1775   static int mileage_of(Method* m);
  1777   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1778   enum EscapeFlag {
  1779     estimated    = 1 << 0,
  1780     return_local = 1 << 1,
  1781     return_allocated = 1 << 2,
  1782     allocated_escapes = 1 << 3,
  1783     unknown_modified = 1 << 4
  1784   };
  1786   intx eflags()                                  { return _eflags; }
  1787   intx arg_local()                               { return _arg_local; }
  1788   intx arg_stack()                               { return _arg_stack; }
  1789   intx arg_returned()                            { return _arg_returned; }
  1790   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1791                                                    assert(aid != NULL, "arg_info must be not null");
  1792                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1793                                                    return aid->arg_modified(a); }
  1795   void set_eflags(intx v)                        { _eflags = v; }
  1796   void set_arg_local(intx v)                     { _arg_local = v; }
  1797   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1798   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1799   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1800                                                    assert(aid != NULL, "arg_info must be not null");
  1801                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1802                                                    aid->set_arg_modified(a, v); }
  1804   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1806   // Location and size of data area
  1807   address data_base() const {
  1808     return (address) _data;
  1810   int data_size() const {
  1811     return _data_size;
  1814   // Accessors
  1815   Method* method() const { return _method; }
  1817   // Get the data at an arbitrary (sort of) data index.
  1818   ProfileData* data_at(int data_index) const;
  1820   // Walk through the data in order.
  1821   ProfileData* first_data() const { return data_at(first_di()); }
  1822   ProfileData* next_data(ProfileData* current) const;
  1823   bool is_valid(ProfileData* current) const { return current != NULL; }
  1825   // Convert a dp (data pointer) to a di (data index).
  1826   int dp_to_di(address dp) const {
  1827     return dp - ((address)_data);
  1830   address di_to_dp(int di) {
  1831     return (address)data_layout_at(di);
  1834   // bci to di/dp conversion.
  1835   address bci_to_dp(int bci);
  1836   int bci_to_di(int bci) {
  1837     return dp_to_di(bci_to_dp(bci));
  1840   // Get the data at an arbitrary bci, or NULL if there is none.
  1841   ProfileData* bci_to_data(int bci);
  1843   // Same, but try to create an extra_data record if one is needed:
  1844   ProfileData* allocate_bci_to_data(int bci) {
  1845     ProfileData* data = bci_to_data(bci);
  1846     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1849   // Add a handful of extra data records, for trap tracking.
  1850   DataLayout* extra_data_base() const { return limit_data_position(); }
  1851   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  1852   int extra_data_size() const { return (address)extra_data_limit()
  1853                                - (address)extra_data_base(); }
  1854   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1856   // Return (uint)-1 for overflow.
  1857   uint trap_count(int reason) const {
  1858     assert((uint)reason < _trap_hist_limit, "oob");
  1859     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1861   // For loops:
  1862   static uint trap_reason_limit() { return _trap_hist_limit; }
  1863   static uint trap_count_limit()  { return _trap_hist_mask; }
  1864   uint inc_trap_count(int reason) {
  1865     // Count another trap, anywhere in this method.
  1866     assert(reason >= 0, "must be single trap");
  1867     if ((uint)reason < _trap_hist_limit) {
  1868       uint cnt1 = 1 + _trap_hist._array[reason];
  1869       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1870         _trap_hist._array[reason] = cnt1;
  1871         return cnt1;
  1872       } else {
  1873         return _trap_hist_mask + (++_nof_overflow_traps);
  1875     } else {
  1876       // Could not represent the count in the histogram.
  1877       return (++_nof_overflow_traps);
  1881   uint overflow_trap_count() const {
  1882     return _nof_overflow_traps;
  1884   uint overflow_recompile_count() const {
  1885     return _nof_overflow_recompiles;
  1887   void inc_overflow_recompile_count() {
  1888     _nof_overflow_recompiles += 1;
  1890   uint decompile_count() const {
  1891     return _nof_decompiles;
  1893   void inc_decompile_count() {
  1894     _nof_decompiles += 1;
  1895     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1896       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  1900   // Support for code generation
  1901   static ByteSize data_offset() {
  1902     return byte_offset_of(MethodData, _data[0]);
  1905   static ByteSize invocation_counter_offset() {
  1906     return byte_offset_of(MethodData, _invocation_counter);
  1908   static ByteSize backedge_counter_offset() {
  1909     return byte_offset_of(MethodData, _backedge_counter);
  1912   // Deallocation support - no pointer fields to deallocate
  1913   void deallocate_contents(ClassLoaderData* loader_data) {}
  1915   // GC support
  1916   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1918   // Printing
  1919 #ifndef PRODUCT
  1920   void print_on      (outputStream* st) const;
  1921 #endif
  1922   void print_value_on(outputStream* st) const;
  1924 #ifndef PRODUCT
  1925   // printing support for method data
  1926   void print_data_on(outputStream* st) const;
  1927 #endif
  1929   const char* internal_name() const { return "{method data}"; }
  1931   // verification
  1932   void verify_on(outputStream* st);
  1933   void verify_data_on(outputStream* st);
  1935   static bool profile_arguments();
  1936 };
  1938 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial