src/share/vm/oops/methodData.hpp

Sat, 12 Oct 2013 12:12:59 +0200

author
roland
date
Sat, 12 Oct 2013 12:12:59 +0200
changeset 5921
ce0cc25bc5e2
parent 5914
d13d7aba8c12
child 5987
5ccbab1c69f3
permissions
-rw-r--r--

8026054: New type profiling points: type of return values at calls
Summary: x86 interpreter and c1 type profiling for return values at calls
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag
   123   };
   125   enum {
   126     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   127     // The trap state breaks down further as [recompile:1 | reason:3].
   128     // This further breakdown is defined in deoptimization.cpp.
   129     // See Deoptimization::trap_state_reason for an assert that
   130     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   131     //
   132     // The trap_state is collected only if ProfileTraps is true.
   133     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   134     trap_shift = BitsPerByte - trap_bits,
   135     trap_mask = right_n_bits(trap_bits),
   136     trap_mask_in_place = (trap_mask << trap_shift),
   137     flag_limit = trap_shift,
   138     flag_mask = right_n_bits(flag_limit),
   139     first_flag = 0
   140   };
   142   // Size computation
   143   static int header_size_in_bytes() {
   144     return cell_size;
   145   }
   146   static int header_size_in_cells() {
   147     return 1;
   148   }
   150   static int compute_size_in_bytes(int cell_count) {
   151     return header_size_in_bytes() + cell_count * cell_size;
   152   }
   154   // Initialization
   155   void initialize(u1 tag, u2 bci, int cell_count);
   157   // Accessors
   158   u1 tag() {
   159     return _header._struct._tag;
   160   }
   162   // Return a few bits of trap state.  Range is [0..trap_mask].
   163   // The state tells if traps with zero, one, or many reasons have occurred.
   164   // It also tells whether zero or many recompilations have occurred.
   165   // The associated trap histogram in the MDO itself tells whether
   166   // traps are common or not.  If a BCI shows that a trap X has
   167   // occurred, and the MDO shows N occurrences of X, we make the
   168   // simplifying assumption that all N occurrences can be blamed
   169   // on that BCI.
   170   int trap_state() const {
   171     return ((_header._struct._flags >> trap_shift) & trap_mask);
   172   }
   174   void set_trap_state(int new_state) {
   175     assert(ProfileTraps, "used only under +ProfileTraps");
   176     uint old_flags = (_header._struct._flags & flag_mask);
   177     _header._struct._flags = (new_state << trap_shift) | old_flags;
   178   }
   180   u1 flags() const {
   181     return _header._struct._flags;
   182   }
   184   u2 bci() const {
   185     return _header._struct._bci;
   186   }
   188   void set_header(intptr_t value) {
   189     _header._bits = value;
   190   }
   191   void release_set_header(intptr_t value) {
   192     OrderAccess::release_store_ptr(&_header._bits, value);
   193   }
   194   intptr_t header() {
   195     return _header._bits;
   196   }
   197   void set_cell_at(int index, intptr_t value) {
   198     _cells[index] = value;
   199   }
   200   void release_set_cell_at(int index, intptr_t value) {
   201     OrderAccess::release_store_ptr(&_cells[index], value);
   202   }
   203   intptr_t cell_at(int index) const {
   204     return _cells[index];
   205   }
   207   void set_flag_at(int flag_number) {
   208     assert(flag_number < flag_limit, "oob");
   209     _header._struct._flags |= (0x1 << flag_number);
   210   }
   211   bool flag_at(int flag_number) const {
   212     assert(flag_number < flag_limit, "oob");
   213     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   214   }
   216   // Low-level support for code generation.
   217   static ByteSize header_offset() {
   218     return byte_offset_of(DataLayout, _header);
   219   }
   220   static ByteSize tag_offset() {
   221     return byte_offset_of(DataLayout, _header._struct._tag);
   222   }
   223   static ByteSize flags_offset() {
   224     return byte_offset_of(DataLayout, _header._struct._flags);
   225   }
   226   static ByteSize bci_offset() {
   227     return byte_offset_of(DataLayout, _header._struct._bci);
   228   }
   229   static ByteSize cell_offset(int index) {
   230     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   231   }
   232   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   233   static int flag_number_to_byte_constant(int flag_number) {
   234     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   235     DataLayout temp; temp.set_header(0);
   236     temp.set_flag_at(flag_number);
   237     return temp._header._struct._flags;
   238   }
   239   // Return a value which, when or-ed as a word into _header, sets the flag.
   240   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   241     DataLayout temp; temp.set_header(0);
   242     temp._header._struct._flags = byte_constant;
   243     return temp._header._bits;
   244   }
   246   ProfileData* data_in();
   248   // GC support
   249   void clean_weak_klass_links(BoolObjectClosure* cl);
   250 };
   253 // ProfileData class hierarchy
   254 class ProfileData;
   255 class   BitData;
   256 class     CounterData;
   257 class       ReceiverTypeData;
   258 class         VirtualCallData;
   259 class           VirtualCallTypeData;
   260 class       RetData;
   261 class       CallTypeData;
   262 class   JumpData;
   263 class     BranchData;
   264 class   ArrayData;
   265 class     MultiBranchData;
   266 class     ArgInfoData;
   268 // ProfileData
   269 //
   270 // A ProfileData object is created to refer to a section of profiling
   271 // data in a structured way.
   272 class ProfileData : public ResourceObj {
   273   friend class TypeEntries;
   274   friend class ReturnTypeEntry;
   275   friend class TypeStackSlotEntries;
   276 private:
   277 #ifndef PRODUCT
   278   enum {
   279     tab_width_one = 16,
   280     tab_width_two = 36
   281   };
   282 #endif // !PRODUCT
   284   // This is a pointer to a section of profiling data.
   285   DataLayout* _data;
   287 protected:
   288   DataLayout* data() { return _data; }
   289   const DataLayout* data() const { return _data; }
   291   enum {
   292     cell_size = DataLayout::cell_size
   293   };
   295 public:
   296   // How many cells are in this?
   297   virtual int cell_count() const {
   298     ShouldNotReachHere();
   299     return -1;
   300   }
   302   // Return the size of this data.
   303   int size_in_bytes() {
   304     return DataLayout::compute_size_in_bytes(cell_count());
   305   }
   307 protected:
   308   // Low-level accessors for underlying data
   309   void set_intptr_at(int index, intptr_t value) {
   310     assert(0 <= index && index < cell_count(), "oob");
   311     data()->set_cell_at(index, value);
   312   }
   313   void release_set_intptr_at(int index, intptr_t value) {
   314     assert(0 <= index && index < cell_count(), "oob");
   315     data()->release_set_cell_at(index, value);
   316   }
   317   intptr_t intptr_at(int index) const {
   318     assert(0 <= index && index < cell_count(), "oob");
   319     return data()->cell_at(index);
   320   }
   321   void set_uint_at(int index, uint value) {
   322     set_intptr_at(index, (intptr_t) value);
   323   }
   324   void release_set_uint_at(int index, uint value) {
   325     release_set_intptr_at(index, (intptr_t) value);
   326   }
   327   uint uint_at(int index) const {
   328     return (uint)intptr_at(index);
   329   }
   330   void set_int_at(int index, int value) {
   331     set_intptr_at(index, (intptr_t) value);
   332   }
   333   void release_set_int_at(int index, int value) {
   334     release_set_intptr_at(index, (intptr_t) value);
   335   }
   336   int int_at(int index) const {
   337     return (int)intptr_at(index);
   338   }
   339   int int_at_unchecked(int index) const {
   340     return (int)data()->cell_at(index);
   341   }
   342   void set_oop_at(int index, oop value) {
   343     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   344   }
   345   oop oop_at(int index) const {
   346     return cast_to_oop(intptr_at(index));
   347   }
   349   void set_flag_at(int flag_number) {
   350     data()->set_flag_at(flag_number);
   351   }
   352   bool flag_at(int flag_number) const {
   353     return data()->flag_at(flag_number);
   354   }
   356   // two convenient imports for use by subclasses:
   357   static ByteSize cell_offset(int index) {
   358     return DataLayout::cell_offset(index);
   359   }
   360   static int flag_number_to_byte_constant(int flag_number) {
   361     return DataLayout::flag_number_to_byte_constant(flag_number);
   362   }
   364   ProfileData(DataLayout* data) {
   365     _data = data;
   366   }
   368 public:
   369   // Constructor for invalid ProfileData.
   370   ProfileData();
   372   u2 bci() const {
   373     return data()->bci();
   374   }
   376   address dp() {
   377     return (address)_data;
   378   }
   380   int trap_state() const {
   381     return data()->trap_state();
   382   }
   383   void set_trap_state(int new_state) {
   384     data()->set_trap_state(new_state);
   385   }
   387   // Type checking
   388   virtual bool is_BitData()         const { return false; }
   389   virtual bool is_CounterData()     const { return false; }
   390   virtual bool is_JumpData()        const { return false; }
   391   virtual bool is_ReceiverTypeData()const { return false; }
   392   virtual bool is_VirtualCallData() const { return false; }
   393   virtual bool is_RetData()         const { return false; }
   394   virtual bool is_BranchData()      const { return false; }
   395   virtual bool is_ArrayData()       const { return false; }
   396   virtual bool is_MultiBranchData() const { return false; }
   397   virtual bool is_ArgInfoData()     const { return false; }
   398   virtual bool is_CallTypeData()    const { return false; }
   399   virtual bool is_VirtualCallTypeData()const { return false; }
   402   BitData* as_BitData() const {
   403     assert(is_BitData(), "wrong type");
   404     return is_BitData()         ? (BitData*)        this : NULL;
   405   }
   406   CounterData* as_CounterData() const {
   407     assert(is_CounterData(), "wrong type");
   408     return is_CounterData()     ? (CounterData*)    this : NULL;
   409   }
   410   JumpData* as_JumpData() const {
   411     assert(is_JumpData(), "wrong type");
   412     return is_JumpData()        ? (JumpData*)       this : NULL;
   413   }
   414   ReceiverTypeData* as_ReceiverTypeData() const {
   415     assert(is_ReceiverTypeData(), "wrong type");
   416     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   417   }
   418   VirtualCallData* as_VirtualCallData() const {
   419     assert(is_VirtualCallData(), "wrong type");
   420     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   421   }
   422   RetData* as_RetData() const {
   423     assert(is_RetData(), "wrong type");
   424     return is_RetData()         ? (RetData*)        this : NULL;
   425   }
   426   BranchData* as_BranchData() const {
   427     assert(is_BranchData(), "wrong type");
   428     return is_BranchData()      ? (BranchData*)     this : NULL;
   429   }
   430   ArrayData* as_ArrayData() const {
   431     assert(is_ArrayData(), "wrong type");
   432     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   433   }
   434   MultiBranchData* as_MultiBranchData() const {
   435     assert(is_MultiBranchData(), "wrong type");
   436     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   437   }
   438   ArgInfoData* as_ArgInfoData() const {
   439     assert(is_ArgInfoData(), "wrong type");
   440     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   441   }
   442   CallTypeData* as_CallTypeData() const {
   443     assert(is_CallTypeData(), "wrong type");
   444     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   445   }
   446   VirtualCallTypeData* as_VirtualCallTypeData() const {
   447     assert(is_VirtualCallTypeData(), "wrong type");
   448     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   449   }
   452   // Subclass specific initialization
   453   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   455   // GC support
   456   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   458   // CI translation: ProfileData can represent both MethodDataOop data
   459   // as well as CIMethodData data. This function is provided for translating
   460   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   461   // most ProfileData don't require any translation, so we provide the null
   462   // translation here, and the required translators are in the ci subclasses.
   463   virtual void translate_from(const ProfileData* data) {}
   465   virtual void print_data_on(outputStream* st) const {
   466     ShouldNotReachHere();
   467   }
   469 #ifndef PRODUCT
   470   void print_shared(outputStream* st, const char* name) const;
   471   void tab(outputStream* st, bool first = false) const;
   472 #endif
   473 };
   475 // BitData
   476 //
   477 // A BitData holds a flag or two in its header.
   478 class BitData : public ProfileData {
   479 protected:
   480   enum {
   481     // null_seen:
   482     //  saw a null operand (cast/aastore/instanceof)
   483     null_seen_flag              = DataLayout::first_flag + 0
   484   };
   485   enum { bit_cell_count = 0 };  // no additional data fields needed.
   486 public:
   487   BitData(DataLayout* layout) : ProfileData(layout) {
   488   }
   490   virtual bool is_BitData() const { return true; }
   492   static int static_cell_count() {
   493     return bit_cell_count;
   494   }
   496   virtual int cell_count() const {
   497     return static_cell_count();
   498   }
   500   // Accessor
   502   // The null_seen flag bit is specially known to the interpreter.
   503   // Consulting it allows the compiler to avoid setting up null_check traps.
   504   bool null_seen()     { return flag_at(null_seen_flag); }
   505   void set_null_seen()    { set_flag_at(null_seen_flag); }
   508   // Code generation support
   509   static int null_seen_byte_constant() {
   510     return flag_number_to_byte_constant(null_seen_flag);
   511   }
   513   static ByteSize bit_data_size() {
   514     return cell_offset(bit_cell_count);
   515   }
   517 #ifndef PRODUCT
   518   void print_data_on(outputStream* st) const;
   519 #endif
   520 };
   522 // CounterData
   523 //
   524 // A CounterData corresponds to a simple counter.
   525 class CounterData : public BitData {
   526 protected:
   527   enum {
   528     count_off,
   529     counter_cell_count
   530   };
   531 public:
   532   CounterData(DataLayout* layout) : BitData(layout) {}
   534   virtual bool is_CounterData() const { return true; }
   536   static int static_cell_count() {
   537     return counter_cell_count;
   538   }
   540   virtual int cell_count() const {
   541     return static_cell_count();
   542   }
   544   // Direct accessor
   545   uint count() const {
   546     return uint_at(count_off);
   547   }
   549   // Code generation support
   550   static ByteSize count_offset() {
   551     return cell_offset(count_off);
   552   }
   553   static ByteSize counter_data_size() {
   554     return cell_offset(counter_cell_count);
   555   }
   557   void set_count(uint count) {
   558     set_uint_at(count_off, count);
   559   }
   561 #ifndef PRODUCT
   562   void print_data_on(outputStream* st) const;
   563 #endif
   564 };
   566 // JumpData
   567 //
   568 // A JumpData is used to access profiling information for a direct
   569 // branch.  It is a counter, used for counting the number of branches,
   570 // plus a data displacement, used for realigning the data pointer to
   571 // the corresponding target bci.
   572 class JumpData : public ProfileData {
   573 protected:
   574   enum {
   575     taken_off_set,
   576     displacement_off_set,
   577     jump_cell_count
   578   };
   580   void set_displacement(int displacement) {
   581     set_int_at(displacement_off_set, displacement);
   582   }
   584 public:
   585   JumpData(DataLayout* layout) : ProfileData(layout) {
   586     assert(layout->tag() == DataLayout::jump_data_tag ||
   587       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   588   }
   590   virtual bool is_JumpData() const { return true; }
   592   static int static_cell_count() {
   593     return jump_cell_count;
   594   }
   596   virtual int cell_count() const {
   597     return static_cell_count();
   598   }
   600   // Direct accessor
   601   uint taken() const {
   602     return uint_at(taken_off_set);
   603   }
   605   void set_taken(uint cnt) {
   606     set_uint_at(taken_off_set, cnt);
   607   }
   609   // Saturating counter
   610   uint inc_taken() {
   611     uint cnt = taken() + 1;
   612     // Did we wrap? Will compiler screw us??
   613     if (cnt == 0) cnt--;
   614     set_uint_at(taken_off_set, cnt);
   615     return cnt;
   616   }
   618   int displacement() const {
   619     return int_at(displacement_off_set);
   620   }
   622   // Code generation support
   623   static ByteSize taken_offset() {
   624     return cell_offset(taken_off_set);
   625   }
   627   static ByteSize displacement_offset() {
   628     return cell_offset(displacement_off_set);
   629   }
   631   // Specific initialization.
   632   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   634 #ifndef PRODUCT
   635   void print_data_on(outputStream* st) const;
   636 #endif
   637 };
   639 // Entries in a ProfileData object to record types: it can either be
   640 // none (no profile), unknown (conflicting profile data) or a klass if
   641 // a single one is seen. Whether a null reference was seen is also
   642 // recorded. No counter is associated with the type and a single type
   643 // is tracked (unlike VirtualCallData).
   644 class TypeEntries {
   646 public:
   648   // A single cell is used to record information for a type:
   649   // - the cell is initialized to 0
   650   // - when a type is discovered it is stored in the cell
   651   // - bit zero of the cell is used to record whether a null reference
   652   // was encountered or not
   653   // - bit 1 is set to record a conflict in the type information
   655   enum {
   656     null_seen = 1,
   657     type_mask = ~null_seen,
   658     type_unknown = 2,
   659     status_bits = null_seen | type_unknown,
   660     type_klass_mask = ~status_bits
   661   };
   663   // what to initialize a cell to
   664   static intptr_t type_none() {
   665     return 0;
   666   }
   668   // null seen = bit 0 set?
   669   static bool was_null_seen(intptr_t v) {
   670     return (v & null_seen) != 0;
   671   }
   673   // conflicting type information = bit 1 set?
   674   static bool is_type_unknown(intptr_t v) {
   675     return (v & type_unknown) != 0;
   676   }
   678   // not type information yet = all bits cleared, ignoring bit 0?
   679   static bool is_type_none(intptr_t v) {
   680     return (v & type_mask) == 0;
   681   }
   683   // recorded type: cell without bit 0 and 1
   684   static intptr_t klass_part(intptr_t v) {
   685     intptr_t r = v & type_klass_mask;
   686     assert (r != 0, "invalid");
   687     return r;
   688   }
   690   // type recorded
   691   static Klass* valid_klass(intptr_t k) {
   692     if (!is_type_none(k) &&
   693         !is_type_unknown(k)) {
   694       return (Klass*)klass_part(k);
   695     } else {
   696       return NULL;
   697     }
   698   }
   700   static intptr_t with_status(intptr_t k, intptr_t in) {
   701     return k | (in & status_bits);
   702   }
   704   static intptr_t with_status(Klass* k, intptr_t in) {
   705     return with_status((intptr_t)k, in);
   706   }
   708 #ifndef PRODUCT
   709   static void print_klass(outputStream* st, intptr_t k);
   710 #endif
   712   // GC support
   713   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   715 protected:
   716   // ProfileData object these entries are part of
   717   ProfileData* _pd;
   718   // offset within the ProfileData object where the entries start
   719   const int _base_off;
   721   TypeEntries(int base_off)
   722     : _base_off(base_off), _pd(NULL) {}
   724   void set_intptr_at(int index, intptr_t value) {
   725     _pd->set_intptr_at(index, value);
   726   }
   728   intptr_t intptr_at(int index) const {
   729     return _pd->intptr_at(index);
   730   }
   732 public:
   733   void set_profile_data(ProfileData* pd) {
   734     _pd = pd;
   735   }
   736 };
   738 // Type entries used for arguments passed at a call and parameters on
   739 // method entry. 2 cells per entry: one for the type encoded as in
   740 // TypeEntries and one initialized with the stack slot where the
   741 // profiled object is to be found so that the interpreter can locate
   742 // it quickly.
   743 class TypeStackSlotEntries : public TypeEntries {
   745 private:
   746   enum {
   747     stack_slot_entry,
   748     type_entry,
   749     per_arg_cell_count
   750   };
   752   // offset of cell for stack slot for entry i within ProfileData object
   753   int stack_slot_offset(int i) const {
   754     return _base_off + stack_slot_local_offset(i);
   755   }
   757 protected:
   758   const int _number_of_entries;
   760   // offset of cell for type for entry i within ProfileData object
   761   int type_offset(int i) const {
   762     return _base_off + type_local_offset(i);
   763   }
   765 public:
   767   TypeStackSlotEntries(int base_off, int nb_entries)
   768     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
   770   static int compute_cell_count(Symbol* signature, int max);
   772   void post_initialize(Symbol* signature, bool has_receiver);
   774   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   775   static int stack_slot_local_offset(int i) {
   776     return i * per_arg_cell_count + stack_slot_entry;
   777   }
   779   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   780   static int type_local_offset(int i) {
   781     return i * per_arg_cell_count + type_entry;
   782   }
   784   // stack slot for entry i
   785   uint stack_slot(int i) const {
   786     assert(i >= 0 && i < _number_of_entries, "oob");
   787     return _pd->uint_at(stack_slot_offset(i));
   788   }
   790   // set stack slot for entry i
   791   void set_stack_slot(int i, uint num) {
   792     assert(i >= 0 && i < _number_of_entries, "oob");
   793     _pd->set_uint_at(stack_slot_offset(i), num);
   794   }
   796   // type for entry i
   797   intptr_t type(int i) const {
   798     assert(i >= 0 && i < _number_of_entries, "oob");
   799     return _pd->intptr_at(type_offset(i));
   800   }
   802   // set type for entry i
   803   void set_type(int i, intptr_t k) {
   804     assert(i >= 0 && i < _number_of_entries, "oob");
   805     _pd->set_intptr_at(type_offset(i), k);
   806   }
   808   static ByteSize per_arg_size() {
   809     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   810   }
   812   static int per_arg_count() {
   813     return per_arg_cell_count ;
   814   }
   816   // GC support
   817   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   819 #ifndef PRODUCT
   820   void print_data_on(outputStream* st) const;
   821 #endif
   822 };
   824 // Type entry used for return from a call. A single cell to record the
   825 // type.
   826 class ReturnTypeEntry : public TypeEntries {
   828 private:
   829   enum {
   830     cell_count = 1
   831   };
   833 public:
   834   ReturnTypeEntry(int base_off)
   835     : TypeEntries(base_off) {}
   837   void post_initialize() {
   838     set_type(type_none());
   839   }
   841   intptr_t type() const {
   842     return _pd->intptr_at(_base_off);
   843   }
   845   void set_type(intptr_t k) {
   846     _pd->set_intptr_at(_base_off, k);
   847   }
   849   static int static_cell_count() {
   850     return cell_count;
   851   }
   853   static ByteSize size() {
   854     return in_ByteSize(cell_count * DataLayout::cell_size);
   855   }
   857   ByteSize type_offset() {
   858     return DataLayout::cell_offset(_base_off);
   859   }
   861   // GC support
   862   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   864 #ifndef PRODUCT
   865   void print_data_on(outputStream* st) const;
   866 #endif
   867 };
   869 // Entries to collect type information at a call: contains arguments
   870 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
   871 // number of cells. Because the number of cells for the return type is
   872 // smaller than the number of cells for the type of an arguments, the
   873 // number of cells is used to tell how many arguments are profiled and
   874 // whether a return value is profiled. See has_arguments() and
   875 // has_return().
   876 class TypeEntriesAtCall {
   877 private:
   878   static int stack_slot_local_offset(int i) {
   879     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
   880   }
   882   static int argument_type_local_offset(int i) {
   883     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
   884   }
   886 public:
   888   static int header_cell_count() {
   889     return 1;
   890   }
   892   static int cell_count_local_offset() {
   893     return 0;
   894   }
   896   static int compute_cell_count(BytecodeStream* stream);
   898   static void initialize(DataLayout* dl, int base, int cell_count) {
   899     int off = base + cell_count_local_offset();
   900     dl->set_cell_at(off, cell_count - base - header_cell_count());
   901   }
   903   static bool arguments_profiling_enabled();
   904   static bool return_profiling_enabled();
   906   // Code generation support
   907   static ByteSize cell_count_offset() {
   908     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
   909   }
   911   static ByteSize args_data_offset() {
   912     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
   913   }
   915   static ByteSize stack_slot_offset(int i) {
   916     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
   917   }
   919   static ByteSize argument_type_offset(int i) {
   920     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
   921   }
   922 };
   924 // CallTypeData
   925 //
   926 // A CallTypeData is used to access profiling information about a non
   927 // virtual call for which we collect type information about arguments
   928 // and return value.
   929 class CallTypeData : public CounterData {
   930 private:
   931   // entries for arguments if any
   932   TypeStackSlotEntries _args;
   933   // entry for return type if any
   934   ReturnTypeEntry _ret;
   936   int cell_count_global_offset() const {
   937     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
   938   }
   940   // number of cells not counting the header
   941   int cell_count_no_header() const {
   942     return uint_at(cell_count_global_offset());
   943   }
   945   void check_number_of_arguments(int total) {
   946     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
   947   }
   949 protected:
   950   // An entry for a return value takes less space than an entry for an
   951   // argument so if the number of cells exceeds the number of cells
   952   // needed for an argument, this object contains type information for
   953   // at least one argument.
   954   bool has_arguments() const {
   955     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
   956     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
   957     return res;
   958   }
   960 public:
   961   CallTypeData(DataLayout* layout) :
   962     CounterData(layout),
   963     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
   964     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
   965   {
   966     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
   967     // Some compilers (VC++) don't want this passed in member initialization list
   968     _args.set_profile_data(this);
   969     _ret.set_profile_data(this);
   970   }
   972   const TypeStackSlotEntries* args() const {
   973     assert(has_arguments(), "no profiling of arguments");
   974     return &_args;
   975   }
   977   const ReturnTypeEntry* ret() const {
   978     assert(has_return(), "no profiling of return value");
   979     return &_ret;
   980   }
   982   virtual bool is_CallTypeData() const { return true; }
   984   static int static_cell_count() {
   985     return -1;
   986   }
   988   static int compute_cell_count(BytecodeStream* stream) {
   989     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
   990   }
   992   static void initialize(DataLayout* dl, int cell_count) {
   993     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
   994   }
   996   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
   998   virtual int cell_count() const {
   999     return CounterData::static_cell_count() +
  1000       TypeEntriesAtCall::header_cell_count() +
  1001       int_at_unchecked(cell_count_global_offset());
  1004   int number_of_arguments() const {
  1005     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1008   void set_argument_type(int i, Klass* k) {
  1009     assert(has_arguments(), "no arguments!");
  1010     intptr_t current = _args.type(i);
  1011     _args.set_type(i, TypeEntries::with_status(k, current));
  1014   void set_return_type(Klass* k) {
  1015     assert(has_return(), "no return!");
  1016     intptr_t current = _ret.type();
  1017     _ret.set_type(TypeEntries::with_status(k, current));
  1020   // An entry for a return value takes less space than an entry for an
  1021   // argument, so if the remainder of the number of cells divided by
  1022   // the number of cells for an argument is not null, a return value
  1023   // is profiled in this object.
  1024   bool has_return() const {
  1025     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1026     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1027     return res;
  1030   // Code generation support
  1031   static ByteSize args_data_offset() {
  1032     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1035   // GC support
  1036   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1037     if (has_arguments()) {
  1038       _args.clean_weak_klass_links(is_alive_closure);
  1040     if (has_return()) {
  1041       _ret.clean_weak_klass_links(is_alive_closure);
  1045 #ifndef PRODUCT
  1046   virtual void print_data_on(outputStream* st) const;
  1047 #endif
  1048 };
  1050 // ReceiverTypeData
  1051 //
  1052 // A ReceiverTypeData is used to access profiling information about a
  1053 // dynamic type check.  It consists of a counter which counts the total times
  1054 // that the check is reached, and a series of (Klass*, count) pairs
  1055 // which are used to store a type profile for the receiver of the check.
  1056 class ReceiverTypeData : public CounterData {
  1057 protected:
  1058   enum {
  1059     receiver0_offset = counter_cell_count,
  1060     count0_offset,
  1061     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
  1062   };
  1064 public:
  1065   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
  1066     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
  1067            layout->tag() == DataLayout::virtual_call_data_tag ||
  1068            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1071   virtual bool is_ReceiverTypeData() const { return true; }
  1073   static int static_cell_count() {
  1074     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
  1077   virtual int cell_count() const {
  1078     return static_cell_count();
  1081   // Direct accessors
  1082   static uint row_limit() {
  1083     return TypeProfileWidth;
  1085   static int receiver_cell_index(uint row) {
  1086     return receiver0_offset + row * receiver_type_row_cell_count;
  1088   static int receiver_count_cell_index(uint row) {
  1089     return count0_offset + row * receiver_type_row_cell_count;
  1092   Klass* receiver(uint row) const {
  1093     assert(row < row_limit(), "oob");
  1095     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1096     assert(recv == NULL || recv->is_klass(), "wrong type");
  1097     return recv;
  1100   void set_receiver(uint row, Klass* k) {
  1101     assert((uint)row < row_limit(), "oob");
  1102     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1105   uint receiver_count(uint row) const {
  1106     assert(row < row_limit(), "oob");
  1107     return uint_at(receiver_count_cell_index(row));
  1110   void set_receiver_count(uint row, uint count) {
  1111     assert(row < row_limit(), "oob");
  1112     set_uint_at(receiver_count_cell_index(row), count);
  1115   void clear_row(uint row) {
  1116     assert(row < row_limit(), "oob");
  1117     // Clear total count - indicator of polymorphic call site.
  1118     // The site may look like as monomorphic after that but
  1119     // it allow to have more accurate profiling information because
  1120     // there was execution phase change since klasses were unloaded.
  1121     // If the site is still polymorphic then MDO will be updated
  1122     // to reflect it. But it could be the case that the site becomes
  1123     // only bimorphic. Then keeping total count not 0 will be wrong.
  1124     // Even if we use monomorphic (when it is not) for compilation
  1125     // we will only have trap, deoptimization and recompile again
  1126     // with updated MDO after executing method in Interpreter.
  1127     // An additional receiver will be recorded in the cleaned row
  1128     // during next call execution.
  1129     //
  1130     // Note: our profiling logic works with empty rows in any slot.
  1131     // We do sorting a profiling info (ciCallProfile) for compilation.
  1132     //
  1133     set_count(0);
  1134     set_receiver(row, NULL);
  1135     set_receiver_count(row, 0);
  1138   // Code generation support
  1139   static ByteSize receiver_offset(uint row) {
  1140     return cell_offset(receiver_cell_index(row));
  1142   static ByteSize receiver_count_offset(uint row) {
  1143     return cell_offset(receiver_count_cell_index(row));
  1145   static ByteSize receiver_type_data_size() {
  1146     return cell_offset(static_cell_count());
  1149   // GC support
  1150   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1152 #ifndef PRODUCT
  1153   void print_receiver_data_on(outputStream* st) const;
  1154   void print_data_on(outputStream* st) const;
  1155 #endif
  1156 };
  1158 // VirtualCallData
  1159 //
  1160 // A VirtualCallData is used to access profiling information about a
  1161 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1162 class VirtualCallData : public ReceiverTypeData {
  1163 public:
  1164   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1165     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1166            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1169   virtual bool is_VirtualCallData() const { return true; }
  1171   static int static_cell_count() {
  1172     // At this point we could add more profile state, e.g., for arguments.
  1173     // But for now it's the same size as the base record type.
  1174     return ReceiverTypeData::static_cell_count();
  1177   virtual int cell_count() const {
  1178     return static_cell_count();
  1181   // Direct accessors
  1182   static ByteSize virtual_call_data_size() {
  1183     return cell_offset(static_cell_count());
  1186 #ifndef PRODUCT
  1187   void print_data_on(outputStream* st) const;
  1188 #endif
  1189 };
  1191 // VirtualCallTypeData
  1192 //
  1193 // A VirtualCallTypeData is used to access profiling information about
  1194 // a virtual call for which we collect type information about
  1195 // arguments and return value.
  1196 class VirtualCallTypeData : public VirtualCallData {
  1197 private:
  1198   // entries for arguments if any
  1199   TypeStackSlotEntries _args;
  1200   // entry for return type if any
  1201   ReturnTypeEntry _ret;
  1203   int cell_count_global_offset() const {
  1204     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1207   // number of cells not counting the header
  1208   int cell_count_no_header() const {
  1209     return uint_at(cell_count_global_offset());
  1212   void check_number_of_arguments(int total) {
  1213     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1216 protected:
  1217   // An entry for a return value takes less space than an entry for an
  1218   // argument so if the number of cells exceeds the number of cells
  1219   // needed for an argument, this object contains type information for
  1220   // at least one argument.
  1221   bool has_arguments() const {
  1222     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1223     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1224     return res;
  1227 public:
  1228   VirtualCallTypeData(DataLayout* layout) :
  1229     VirtualCallData(layout),
  1230     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1231     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1233     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1234     // Some compilers (VC++) don't want this passed in member initialization list
  1235     _args.set_profile_data(this);
  1236     _ret.set_profile_data(this);
  1239   const TypeStackSlotEntries* args() const {
  1240     assert(has_arguments(), "no profiling of arguments");
  1241     return &_args;
  1244   const ReturnTypeEntry* ret() const {
  1245     assert(has_return(), "no profiling of return value");
  1246     return &_ret;
  1249   virtual bool is_VirtualCallTypeData() const { return true; }
  1251   static int static_cell_count() {
  1252     return -1;
  1255   static int compute_cell_count(BytecodeStream* stream) {
  1256     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1259   static void initialize(DataLayout* dl, int cell_count) {
  1260     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1263   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1265   virtual int cell_count() const {
  1266     return VirtualCallData::static_cell_count() +
  1267       TypeEntriesAtCall::header_cell_count() +
  1268       int_at_unchecked(cell_count_global_offset());
  1271   int number_of_arguments() const {
  1272     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1275   void set_argument_type(int i, Klass* k) {
  1276     assert(has_arguments(), "no arguments!");
  1277     intptr_t current = _args.type(i);
  1278     _args.set_type(i, TypeEntries::with_status(k, current));
  1281   void set_return_type(Klass* k) {
  1282     assert(has_return(), "no return!");
  1283     intptr_t current = _ret.type();
  1284     _ret.set_type(TypeEntries::with_status(k, current));
  1287   // An entry for a return value takes less space than an entry for an
  1288   // argument, so if the remainder of the number of cells divided by
  1289   // the number of cells for an argument is not null, a return value
  1290   // is profiled in this object.
  1291   bool has_return() const {
  1292     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1293     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1294     return res;
  1297   // Code generation support
  1298   static ByteSize args_data_offset() {
  1299     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1302   // GC support
  1303   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1304     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1305     if (has_arguments()) {
  1306       _args.clean_weak_klass_links(is_alive_closure);
  1308     if (has_return()) {
  1309       _ret.clean_weak_klass_links(is_alive_closure);
  1313 #ifndef PRODUCT
  1314   virtual void print_data_on(outputStream* st) const;
  1315 #endif
  1316 };
  1318 // RetData
  1319 //
  1320 // A RetData is used to access profiling information for a ret bytecode.
  1321 // It is composed of a count of the number of times that the ret has
  1322 // been executed, followed by a series of triples of the form
  1323 // (bci, count, di) which count the number of times that some bci was the
  1324 // target of the ret and cache a corresponding data displacement.
  1325 class RetData : public CounterData {
  1326 protected:
  1327   enum {
  1328     bci0_offset = counter_cell_count,
  1329     count0_offset,
  1330     displacement0_offset,
  1331     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1332   };
  1334   void set_bci(uint row, int bci) {
  1335     assert((uint)row < row_limit(), "oob");
  1336     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1338   void release_set_bci(uint row, int bci) {
  1339     assert((uint)row < row_limit(), "oob");
  1340     // 'release' when setting the bci acts as a valid flag for other
  1341     // threads wrt bci_count and bci_displacement.
  1342     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1344   void set_bci_count(uint row, uint count) {
  1345     assert((uint)row < row_limit(), "oob");
  1346     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1348   void set_bci_displacement(uint row, int disp) {
  1349     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1352 public:
  1353   RetData(DataLayout* layout) : CounterData(layout) {
  1354     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1357   virtual bool is_RetData() const { return true; }
  1359   enum {
  1360     no_bci = -1 // value of bci when bci1/2 are not in use.
  1361   };
  1363   static int static_cell_count() {
  1364     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1367   virtual int cell_count() const {
  1368     return static_cell_count();
  1371   static uint row_limit() {
  1372     return BciProfileWidth;
  1374   static int bci_cell_index(uint row) {
  1375     return bci0_offset + row * ret_row_cell_count;
  1377   static int bci_count_cell_index(uint row) {
  1378     return count0_offset + row * ret_row_cell_count;
  1380   static int bci_displacement_cell_index(uint row) {
  1381     return displacement0_offset + row * ret_row_cell_count;
  1384   // Direct accessors
  1385   int bci(uint row) const {
  1386     return int_at(bci_cell_index(row));
  1388   uint bci_count(uint row) const {
  1389     return uint_at(bci_count_cell_index(row));
  1391   int bci_displacement(uint row) const {
  1392     return int_at(bci_displacement_cell_index(row));
  1395   // Interpreter Runtime support
  1396   address fixup_ret(int return_bci, MethodData* mdo);
  1398   // Code generation support
  1399   static ByteSize bci_offset(uint row) {
  1400     return cell_offset(bci_cell_index(row));
  1402   static ByteSize bci_count_offset(uint row) {
  1403     return cell_offset(bci_count_cell_index(row));
  1405   static ByteSize bci_displacement_offset(uint row) {
  1406     return cell_offset(bci_displacement_cell_index(row));
  1409   // Specific initialization.
  1410   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1412 #ifndef PRODUCT
  1413   void print_data_on(outputStream* st) const;
  1414 #endif
  1415 };
  1417 // BranchData
  1418 //
  1419 // A BranchData is used to access profiling data for a two-way branch.
  1420 // It consists of taken and not_taken counts as well as a data displacement
  1421 // for the taken case.
  1422 class BranchData : public JumpData {
  1423 protected:
  1424   enum {
  1425     not_taken_off_set = jump_cell_count,
  1426     branch_cell_count
  1427   };
  1429   void set_displacement(int displacement) {
  1430     set_int_at(displacement_off_set, displacement);
  1433 public:
  1434   BranchData(DataLayout* layout) : JumpData(layout) {
  1435     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1438   virtual bool is_BranchData() const { return true; }
  1440   static int static_cell_count() {
  1441     return branch_cell_count;
  1444   virtual int cell_count() const {
  1445     return static_cell_count();
  1448   // Direct accessor
  1449   uint not_taken() const {
  1450     return uint_at(not_taken_off_set);
  1453   void set_not_taken(uint cnt) {
  1454     set_uint_at(not_taken_off_set, cnt);
  1457   uint inc_not_taken() {
  1458     uint cnt = not_taken() + 1;
  1459     // Did we wrap? Will compiler screw us??
  1460     if (cnt == 0) cnt--;
  1461     set_uint_at(not_taken_off_set, cnt);
  1462     return cnt;
  1465   // Code generation support
  1466   static ByteSize not_taken_offset() {
  1467     return cell_offset(not_taken_off_set);
  1469   static ByteSize branch_data_size() {
  1470     return cell_offset(branch_cell_count);
  1473   // Specific initialization.
  1474   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1476 #ifndef PRODUCT
  1477   void print_data_on(outputStream* st) const;
  1478 #endif
  1479 };
  1481 // ArrayData
  1482 //
  1483 // A ArrayData is a base class for accessing profiling data which does
  1484 // not have a statically known size.  It consists of an array length
  1485 // and an array start.
  1486 class ArrayData : public ProfileData {
  1487 protected:
  1488   friend class DataLayout;
  1490   enum {
  1491     array_len_off_set,
  1492     array_start_off_set
  1493   };
  1495   uint array_uint_at(int index) const {
  1496     int aindex = index + array_start_off_set;
  1497     return uint_at(aindex);
  1499   int array_int_at(int index) const {
  1500     int aindex = index + array_start_off_set;
  1501     return int_at(aindex);
  1503   oop array_oop_at(int index) const {
  1504     int aindex = index + array_start_off_set;
  1505     return oop_at(aindex);
  1507   void array_set_int_at(int index, int value) {
  1508     int aindex = index + array_start_off_set;
  1509     set_int_at(aindex, value);
  1512   // Code generation support for subclasses.
  1513   static ByteSize array_element_offset(int index) {
  1514     return cell_offset(array_start_off_set + index);
  1517 public:
  1518   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1520   virtual bool is_ArrayData() const { return true; }
  1522   static int static_cell_count() {
  1523     return -1;
  1526   int array_len() const {
  1527     return int_at_unchecked(array_len_off_set);
  1530   virtual int cell_count() const {
  1531     return array_len() + 1;
  1534   // Code generation support
  1535   static ByteSize array_len_offset() {
  1536     return cell_offset(array_len_off_set);
  1538   static ByteSize array_start_offset() {
  1539     return cell_offset(array_start_off_set);
  1541 };
  1543 // MultiBranchData
  1544 //
  1545 // A MultiBranchData is used to access profiling information for
  1546 // a multi-way branch (*switch bytecodes).  It consists of a series
  1547 // of (count, displacement) pairs, which count the number of times each
  1548 // case was taken and specify the data displacment for each branch target.
  1549 class MultiBranchData : public ArrayData {
  1550 protected:
  1551   enum {
  1552     default_count_off_set,
  1553     default_disaplacement_off_set,
  1554     case_array_start
  1555   };
  1556   enum {
  1557     relative_count_off_set,
  1558     relative_displacement_off_set,
  1559     per_case_cell_count
  1560   };
  1562   void set_default_displacement(int displacement) {
  1563     array_set_int_at(default_disaplacement_off_set, displacement);
  1565   void set_displacement_at(int index, int displacement) {
  1566     array_set_int_at(case_array_start +
  1567                      index * per_case_cell_count +
  1568                      relative_displacement_off_set,
  1569                      displacement);
  1572 public:
  1573   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1574     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1577   virtual bool is_MultiBranchData() const { return true; }
  1579   static int compute_cell_count(BytecodeStream* stream);
  1581   int number_of_cases() const {
  1582     int alen = array_len() - 2; // get rid of default case here.
  1583     assert(alen % per_case_cell_count == 0, "must be even");
  1584     return (alen / per_case_cell_count);
  1587   uint default_count() const {
  1588     return array_uint_at(default_count_off_set);
  1590   int default_displacement() const {
  1591     return array_int_at(default_disaplacement_off_set);
  1594   uint count_at(int index) const {
  1595     return array_uint_at(case_array_start +
  1596                          index * per_case_cell_count +
  1597                          relative_count_off_set);
  1599   int displacement_at(int index) const {
  1600     return array_int_at(case_array_start +
  1601                         index * per_case_cell_count +
  1602                         relative_displacement_off_set);
  1605   // Code generation support
  1606   static ByteSize default_count_offset() {
  1607     return array_element_offset(default_count_off_set);
  1609   static ByteSize default_displacement_offset() {
  1610     return array_element_offset(default_disaplacement_off_set);
  1612   static ByteSize case_count_offset(int index) {
  1613     return case_array_offset() +
  1614            (per_case_size() * index) +
  1615            relative_count_offset();
  1617   static ByteSize case_array_offset() {
  1618     return array_element_offset(case_array_start);
  1620   static ByteSize per_case_size() {
  1621     return in_ByteSize(per_case_cell_count) * cell_size;
  1623   static ByteSize relative_count_offset() {
  1624     return in_ByteSize(relative_count_off_set) * cell_size;
  1626   static ByteSize relative_displacement_offset() {
  1627     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1630   // Specific initialization.
  1631   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1633 #ifndef PRODUCT
  1634   void print_data_on(outputStream* st) const;
  1635 #endif
  1636 };
  1638 class ArgInfoData : public ArrayData {
  1640 public:
  1641   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1642     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1645   virtual bool is_ArgInfoData() const { return true; }
  1648   int number_of_args() const {
  1649     return array_len();
  1652   uint arg_modified(int arg) const {
  1653     return array_uint_at(arg);
  1656   void set_arg_modified(int arg, uint val) {
  1657     array_set_int_at(arg, val);
  1660 #ifndef PRODUCT
  1661   void print_data_on(outputStream* st) const;
  1662 #endif
  1663 };
  1665 // MethodData*
  1666 //
  1667 // A MethodData* holds information which has been collected about
  1668 // a method.  Its layout looks like this:
  1669 //
  1670 // -----------------------------
  1671 // | header                    |
  1672 // | klass                     |
  1673 // -----------------------------
  1674 // | method                    |
  1675 // | size of the MethodData* |
  1676 // -----------------------------
  1677 // | Data entries...           |
  1678 // |   (variable size)         |
  1679 // |                           |
  1680 // .                           .
  1681 // .                           .
  1682 // .                           .
  1683 // |                           |
  1684 // -----------------------------
  1685 //
  1686 // The data entry area is a heterogeneous array of DataLayouts. Each
  1687 // DataLayout in the array corresponds to a specific bytecode in the
  1688 // method.  The entries in the array are sorted by the corresponding
  1689 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1690 // which point to the underlying blocks of DataLayout structures.
  1691 //
  1692 // During interpretation, if profiling in enabled, the interpreter
  1693 // maintains a method data pointer (mdp), which points at the entry
  1694 // in the array corresponding to the current bci.  In the course of
  1695 // intepretation, when a bytecode is encountered that has profile data
  1696 // associated with it, the entry pointed to by mdp is updated, then the
  1697 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1698 // is NULL to begin with, the interpreter assumes that the current method
  1699 // is not (yet) being profiled.
  1700 //
  1701 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1702 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1703 // from the base of the data entry array.  A "displacement" is the byte offset
  1704 // in certain ProfileData objects that indicate the amount the mdp must be
  1705 // adjusted in the event of a change in control flow.
  1706 //
  1708 class MethodData : public Metadata {
  1709   friend class VMStructs;
  1710 private:
  1711   friend class ProfileData;
  1713   // Back pointer to the Method*
  1714   Method* _method;
  1716   // Size of this oop in bytes
  1717   int _size;
  1719   // Cached hint for bci_to_dp and bci_to_data
  1720   int _hint_di;
  1722   MethodData(methodHandle method, int size, TRAPS);
  1723 public:
  1724   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1725   MethodData() {}; // For ciMethodData
  1727   bool is_methodData() const volatile { return true; }
  1729   // Whole-method sticky bits and flags
  1730   enum {
  1731     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1732     _trap_hist_mask     = max_jubyte,
  1733     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1734   }; // Public flag values
  1735 private:
  1736   uint _nof_decompiles;             // count of all nmethod removals
  1737   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1738   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1739   union {
  1740     intptr_t _align;
  1741     u1 _array[_trap_hist_limit];
  1742   } _trap_hist;
  1744   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1745   intx              _eflags;          // flags on escape information
  1746   intx              _arg_local;       // bit set of non-escaping arguments
  1747   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1748   intx              _arg_returned;    // bit set of returned arguments
  1750   int _creation_mileage;              // method mileage at MDO creation
  1752   // How many invocations has this MDO seen?
  1753   // These counters are used to determine the exact age of MDO.
  1754   // We need those because in tiered a method can be concurrently
  1755   // executed at different levels.
  1756   InvocationCounter _invocation_counter;
  1757   // Same for backedges.
  1758   InvocationCounter _backedge_counter;
  1759   // Counter values at the time profiling started.
  1760   int               _invocation_counter_start;
  1761   int               _backedge_counter_start;
  1762   // Number of loops and blocks is computed when compiling the first
  1763   // time with C1. It is used to determine if method is trivial.
  1764   short             _num_loops;
  1765   short             _num_blocks;
  1766   // Highest compile level this method has ever seen.
  1767   u1                _highest_comp_level;
  1768   // Same for OSR level
  1769   u1                _highest_osr_comp_level;
  1770   // Does this method contain anything worth profiling?
  1771   bool              _would_profile;
  1773   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1774   int _data_size;
  1776   // Beginning of the data entries
  1777   intptr_t _data[1];
  1779   // Helper for size computation
  1780   static int compute_data_size(BytecodeStream* stream);
  1781   static int bytecode_cell_count(Bytecodes::Code code);
  1782   enum { no_profile_data = -1, variable_cell_count = -2 };
  1784   // Helper for initialization
  1785   DataLayout* data_layout_at(int data_index) const {
  1786     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1787     return (DataLayout*) (((address)_data) + data_index);
  1790   // Initialize an individual data segment.  Returns the size of
  1791   // the segment in bytes.
  1792   int initialize_data(BytecodeStream* stream, int data_index);
  1794   // Helper for data_at
  1795   DataLayout* limit_data_position() const {
  1796     return (DataLayout*)((address)data_base() + _data_size);
  1798   bool out_of_bounds(int data_index) const {
  1799     return data_index >= data_size();
  1802   // Give each of the data entries a chance to perform specific
  1803   // data initialization.
  1804   void post_initialize(BytecodeStream* stream);
  1806   // hint accessors
  1807   int      hint_di() const  { return _hint_di; }
  1808   void set_hint_di(int di)  {
  1809     assert(!out_of_bounds(di), "hint_di out of bounds");
  1810     _hint_di = di;
  1812   ProfileData* data_before(int bci) {
  1813     // avoid SEGV on this edge case
  1814     if (data_size() == 0)
  1815       return NULL;
  1816     int hint = hint_di();
  1817     if (data_layout_at(hint)->bci() <= bci)
  1818       return data_at(hint);
  1819     return first_data();
  1822   // What is the index of the first data entry?
  1823   int first_di() const { return 0; }
  1825   // Find or create an extra ProfileData:
  1826   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1828   // return the argument info cell
  1829   ArgInfoData *arg_info();
  1831   enum {
  1832     no_type_profile = 0,
  1833     type_profile_jsr292 = 1,
  1834     type_profile_all = 2
  1835   };
  1837   static bool profile_jsr292(methodHandle m, int bci);
  1838   static int profile_arguments_flag();
  1839   static bool profile_arguments_jsr292_only();
  1840   static bool profile_all_arguments();
  1841   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  1842   static int profile_return_flag();
  1843   static bool profile_all_return();
  1844   static bool profile_return_for_invoke(methodHandle m, int bci);
  1846 public:
  1847   static int header_size() {
  1848     return sizeof(MethodData)/wordSize;
  1851   // Compute the size of a MethodData* before it is created.
  1852   static int compute_allocation_size_in_bytes(methodHandle method);
  1853   static int compute_allocation_size_in_words(methodHandle method);
  1854   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1856   // Determine if a given bytecode can have profile information.
  1857   static bool bytecode_has_profile(Bytecodes::Code code) {
  1858     return bytecode_cell_count(code) != no_profile_data;
  1861   // reset into original state
  1862   void init();
  1864   // My size
  1865   int size_in_bytes() const { return _size; }
  1866   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1867 #if INCLUDE_SERVICES
  1868   void collect_statistics(KlassSizeStats *sz) const;
  1869 #endif
  1871   int      creation_mileage() const  { return _creation_mileage; }
  1872   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1874   int invocation_count() {
  1875     if (invocation_counter()->carry()) {
  1876       return InvocationCounter::count_limit;
  1878     return invocation_counter()->count();
  1880   int backedge_count() {
  1881     if (backedge_counter()->carry()) {
  1882       return InvocationCounter::count_limit;
  1884     return backedge_counter()->count();
  1887   int invocation_count_start() {
  1888     if (invocation_counter()->carry()) {
  1889       return 0;
  1891     return _invocation_counter_start;
  1894   int backedge_count_start() {
  1895     if (backedge_counter()->carry()) {
  1896       return 0;
  1898     return _backedge_counter_start;
  1901   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1902   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1904   void reset_start_counters() {
  1905     _invocation_counter_start = invocation_count();
  1906     _backedge_counter_start = backedge_count();
  1909   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1910   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1912   void set_would_profile(bool p)              { _would_profile = p;    }
  1913   bool would_profile() const                  { return _would_profile; }
  1915   int highest_comp_level() const              { return _highest_comp_level;      }
  1916   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1917   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  1918   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1920   int num_loops() const                       { return _num_loops;  }
  1921   void set_num_loops(int n)                   { _num_loops = n;     }
  1922   int num_blocks() const                      { return _num_blocks; }
  1923   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1925   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1926   static int mileage_of(Method* m);
  1928   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1929   enum EscapeFlag {
  1930     estimated    = 1 << 0,
  1931     return_local = 1 << 1,
  1932     return_allocated = 1 << 2,
  1933     allocated_escapes = 1 << 3,
  1934     unknown_modified = 1 << 4
  1935   };
  1937   intx eflags()                                  { return _eflags; }
  1938   intx arg_local()                               { return _arg_local; }
  1939   intx arg_stack()                               { return _arg_stack; }
  1940   intx arg_returned()                            { return _arg_returned; }
  1941   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1942                                                    assert(aid != NULL, "arg_info must be not null");
  1943                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1944                                                    return aid->arg_modified(a); }
  1946   void set_eflags(intx v)                        { _eflags = v; }
  1947   void set_arg_local(intx v)                     { _arg_local = v; }
  1948   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1949   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1950   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1951                                                    assert(aid != NULL, "arg_info must be not null");
  1952                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1953                                                    aid->set_arg_modified(a, v); }
  1955   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1957   // Location and size of data area
  1958   address data_base() const {
  1959     return (address) _data;
  1961   int data_size() const {
  1962     return _data_size;
  1965   // Accessors
  1966   Method* method() const { return _method; }
  1968   // Get the data at an arbitrary (sort of) data index.
  1969   ProfileData* data_at(int data_index) const;
  1971   // Walk through the data in order.
  1972   ProfileData* first_data() const { return data_at(first_di()); }
  1973   ProfileData* next_data(ProfileData* current) const;
  1974   bool is_valid(ProfileData* current) const { return current != NULL; }
  1976   // Convert a dp (data pointer) to a di (data index).
  1977   int dp_to_di(address dp) const {
  1978     return dp - ((address)_data);
  1981   address di_to_dp(int di) {
  1982     return (address)data_layout_at(di);
  1985   // bci to di/dp conversion.
  1986   address bci_to_dp(int bci);
  1987   int bci_to_di(int bci) {
  1988     return dp_to_di(bci_to_dp(bci));
  1991   // Get the data at an arbitrary bci, or NULL if there is none.
  1992   ProfileData* bci_to_data(int bci);
  1994   // Same, but try to create an extra_data record if one is needed:
  1995   ProfileData* allocate_bci_to_data(int bci) {
  1996     ProfileData* data = bci_to_data(bci);
  1997     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  2000   // Add a handful of extra data records, for trap tracking.
  2001   DataLayout* extra_data_base() const { return limit_data_position(); }
  2002   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  2003   int extra_data_size() const { return (address)extra_data_limit()
  2004                                - (address)extra_data_base(); }
  2005   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  2007   // Return (uint)-1 for overflow.
  2008   uint trap_count(int reason) const {
  2009     assert((uint)reason < _trap_hist_limit, "oob");
  2010     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  2012   // For loops:
  2013   static uint trap_reason_limit() { return _trap_hist_limit; }
  2014   static uint trap_count_limit()  { return _trap_hist_mask; }
  2015   uint inc_trap_count(int reason) {
  2016     // Count another trap, anywhere in this method.
  2017     assert(reason >= 0, "must be single trap");
  2018     if ((uint)reason < _trap_hist_limit) {
  2019       uint cnt1 = 1 + _trap_hist._array[reason];
  2020       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  2021         _trap_hist._array[reason] = cnt1;
  2022         return cnt1;
  2023       } else {
  2024         return _trap_hist_mask + (++_nof_overflow_traps);
  2026     } else {
  2027       // Could not represent the count in the histogram.
  2028       return (++_nof_overflow_traps);
  2032   uint overflow_trap_count() const {
  2033     return _nof_overflow_traps;
  2035   uint overflow_recompile_count() const {
  2036     return _nof_overflow_recompiles;
  2038   void inc_overflow_recompile_count() {
  2039     _nof_overflow_recompiles += 1;
  2041   uint decompile_count() const {
  2042     return _nof_decompiles;
  2044   void inc_decompile_count() {
  2045     _nof_decompiles += 1;
  2046     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  2047       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  2051   // Support for code generation
  2052   static ByteSize data_offset() {
  2053     return byte_offset_of(MethodData, _data[0]);
  2056   static ByteSize invocation_counter_offset() {
  2057     return byte_offset_of(MethodData, _invocation_counter);
  2059   static ByteSize backedge_counter_offset() {
  2060     return byte_offset_of(MethodData, _backedge_counter);
  2063   // Deallocation support - no pointer fields to deallocate
  2064   void deallocate_contents(ClassLoaderData* loader_data) {}
  2066   // GC support
  2067   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  2069   // Printing
  2070 #ifndef PRODUCT
  2071   void print_on      (outputStream* st) const;
  2072 #endif
  2073   void print_value_on(outputStream* st) const;
  2075 #ifndef PRODUCT
  2076   // printing support for method data
  2077   void print_data_on(outputStream* st) const;
  2078 #endif
  2080   const char* internal_name() const { return "{method data}"; }
  2082   // verification
  2083   void verify_on(outputStream* st);
  2084   void verify_data_on(outputStream* st);
  2086   static bool profile_arguments();
  2087   static bool profile_return();
  2088   static bool profile_return_jsr292_only();
  2089 };
  2091 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial