src/share/vm/oops/methodData.hpp

Thu, 26 Sep 2013 10:25:02 -0400

author
hseigel
date
Thu, 26 Sep 2013 10:25:02 -0400
changeset 5784
190899198332
parent 5726
69f26e8e09f9
child 5914
d13d7aba8c12
permissions
-rw-r--r--

7195622: CheckUnhandledOops has limited usefulness now
Summary: Enable CHECK_UNHANDLED_OOPS in fastdebug builds across all supported platforms.
Reviewed-by: coleenp, hseigel, dholmes, stefank, twisti, ihse, rdurbin
Contributed-by: lois.foltan@oracle.com

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag
   121   };
   123   enum {
   124     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   125     // The trap state breaks down further as [recompile:1 | reason:3].
   126     // This further breakdown is defined in deoptimization.cpp.
   127     // See Deoptimization::trap_state_reason for an assert that
   128     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   129     //
   130     // The trap_state is collected only if ProfileTraps is true.
   131     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   132     trap_shift = BitsPerByte - trap_bits,
   133     trap_mask = right_n_bits(trap_bits),
   134     trap_mask_in_place = (trap_mask << trap_shift),
   135     flag_limit = trap_shift,
   136     flag_mask = right_n_bits(flag_limit),
   137     first_flag = 0
   138   };
   140   // Size computation
   141   static int header_size_in_bytes() {
   142     return cell_size;
   143   }
   144   static int header_size_in_cells() {
   145     return 1;
   146   }
   148   static int compute_size_in_bytes(int cell_count) {
   149     return header_size_in_bytes() + cell_count * cell_size;
   150   }
   152   // Initialization
   153   void initialize(u1 tag, u2 bci, int cell_count);
   155   // Accessors
   156   u1 tag() {
   157     return _header._struct._tag;
   158   }
   160   // Return a few bits of trap state.  Range is [0..trap_mask].
   161   // The state tells if traps with zero, one, or many reasons have occurred.
   162   // It also tells whether zero or many recompilations have occurred.
   163   // The associated trap histogram in the MDO itself tells whether
   164   // traps are common or not.  If a BCI shows that a trap X has
   165   // occurred, and the MDO shows N occurrences of X, we make the
   166   // simplifying assumption that all N occurrences can be blamed
   167   // on that BCI.
   168   int trap_state() {
   169     return ((_header._struct._flags >> trap_shift) & trap_mask);
   170   }
   172   void set_trap_state(int new_state) {
   173     assert(ProfileTraps, "used only under +ProfileTraps");
   174     uint old_flags = (_header._struct._flags & flag_mask);
   175     _header._struct._flags = (new_state << trap_shift) | old_flags;
   176   }
   178   u1 flags() {
   179     return _header._struct._flags;
   180   }
   182   u2 bci() {
   183     return _header._struct._bci;
   184   }
   186   void set_header(intptr_t value) {
   187     _header._bits = value;
   188   }
   189   void release_set_header(intptr_t value) {
   190     OrderAccess::release_store_ptr(&_header._bits, value);
   191   }
   192   intptr_t header() {
   193     return _header._bits;
   194   }
   195   void set_cell_at(int index, intptr_t value) {
   196     _cells[index] = value;
   197   }
   198   void release_set_cell_at(int index, intptr_t value) {
   199     OrderAccess::release_store_ptr(&_cells[index], value);
   200   }
   201   intptr_t cell_at(int index) {
   202     return _cells[index];
   203   }
   205   void set_flag_at(int flag_number) {
   206     assert(flag_number < flag_limit, "oob");
   207     _header._struct._flags |= (0x1 << flag_number);
   208   }
   209   bool flag_at(int flag_number) {
   210     assert(flag_number < flag_limit, "oob");
   211     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   212   }
   214   // Low-level support for code generation.
   215   static ByteSize header_offset() {
   216     return byte_offset_of(DataLayout, _header);
   217   }
   218   static ByteSize tag_offset() {
   219     return byte_offset_of(DataLayout, _header._struct._tag);
   220   }
   221   static ByteSize flags_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._flags);
   223   }
   224   static ByteSize bci_offset() {
   225     return byte_offset_of(DataLayout, _header._struct._bci);
   226   }
   227   static ByteSize cell_offset(int index) {
   228     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   229   }
   230   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   231   static int flag_number_to_byte_constant(int flag_number) {
   232     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   233     DataLayout temp; temp.set_header(0);
   234     temp.set_flag_at(flag_number);
   235     return temp._header._struct._flags;
   236   }
   237   // Return a value which, when or-ed as a word into _header, sets the flag.
   238   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   239     DataLayout temp; temp.set_header(0);
   240     temp._header._struct._flags = byte_constant;
   241     return temp._header._bits;
   242   }
   244   ProfileData* data_in();
   246   // GC support
   247   void clean_weak_klass_links(BoolObjectClosure* cl);
   248 };
   251 // ProfileData class hierarchy
   252 class ProfileData;
   253 class   BitData;
   254 class     CounterData;
   255 class       ReceiverTypeData;
   256 class         VirtualCallData;
   257 class       RetData;
   258 class   JumpData;
   259 class     BranchData;
   260 class   ArrayData;
   261 class     MultiBranchData;
   262 class     ArgInfoData;
   265 // ProfileData
   266 //
   267 // A ProfileData object is created to refer to a section of profiling
   268 // data in a structured way.
   269 class ProfileData : public ResourceObj {
   270 private:
   271 #ifndef PRODUCT
   272   enum {
   273     tab_width_one = 16,
   274     tab_width_two = 36
   275   };
   276 #endif // !PRODUCT
   278   // This is a pointer to a section of profiling data.
   279   DataLayout* _data;
   281 protected:
   282   DataLayout* data() { return _data; }
   284   enum {
   285     cell_size = DataLayout::cell_size
   286   };
   288 public:
   289   // How many cells are in this?
   290   virtual int cell_count() {
   291     ShouldNotReachHere();
   292     return -1;
   293   }
   295   // Return the size of this data.
   296   int size_in_bytes() {
   297     return DataLayout::compute_size_in_bytes(cell_count());
   298   }
   300 protected:
   301   // Low-level accessors for underlying data
   302   void set_intptr_at(int index, intptr_t value) {
   303     assert(0 <= index && index < cell_count(), "oob");
   304     data()->set_cell_at(index, value);
   305   }
   306   void release_set_intptr_at(int index, intptr_t value) {
   307     assert(0 <= index && index < cell_count(), "oob");
   308     data()->release_set_cell_at(index, value);
   309   }
   310   intptr_t intptr_at(int index) {
   311     assert(0 <= index && index < cell_count(), "oob");
   312     return data()->cell_at(index);
   313   }
   314   void set_uint_at(int index, uint value) {
   315     set_intptr_at(index, (intptr_t) value);
   316   }
   317   void release_set_uint_at(int index, uint value) {
   318     release_set_intptr_at(index, (intptr_t) value);
   319   }
   320   uint uint_at(int index) {
   321     return (uint)intptr_at(index);
   322   }
   323   void set_int_at(int index, int value) {
   324     set_intptr_at(index, (intptr_t) value);
   325   }
   326   void release_set_int_at(int index, int value) {
   327     release_set_intptr_at(index, (intptr_t) value);
   328   }
   329   int int_at(int index) {
   330     return (int)intptr_at(index);
   331   }
   332   int int_at_unchecked(int index) {
   333     return (int)data()->cell_at(index);
   334   }
   335   void set_oop_at(int index, oop value) {
   336     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   337   }
   338   oop oop_at(int index) {
   339     return cast_to_oop(intptr_at(index));
   340   }
   342   void set_flag_at(int flag_number) {
   343     data()->set_flag_at(flag_number);
   344   }
   345   bool flag_at(int flag_number) {
   346     return data()->flag_at(flag_number);
   347   }
   349   // two convenient imports for use by subclasses:
   350   static ByteSize cell_offset(int index) {
   351     return DataLayout::cell_offset(index);
   352   }
   353   static int flag_number_to_byte_constant(int flag_number) {
   354     return DataLayout::flag_number_to_byte_constant(flag_number);
   355   }
   357   ProfileData(DataLayout* data) {
   358     _data = data;
   359   }
   361 public:
   362   // Constructor for invalid ProfileData.
   363   ProfileData();
   365   u2 bci() {
   366     return data()->bci();
   367   }
   369   address dp() {
   370     return (address)_data;
   371   }
   373   int trap_state() {
   374     return data()->trap_state();
   375   }
   376   void set_trap_state(int new_state) {
   377     data()->set_trap_state(new_state);
   378   }
   380   // Type checking
   381   virtual bool is_BitData()         { return false; }
   382   virtual bool is_CounterData()     { return false; }
   383   virtual bool is_JumpData()        { return false; }
   384   virtual bool is_ReceiverTypeData(){ return false; }
   385   virtual bool is_VirtualCallData() { return false; }
   386   virtual bool is_RetData()         { return false; }
   387   virtual bool is_BranchData()      { return false; }
   388   virtual bool is_ArrayData()       { return false; }
   389   virtual bool is_MultiBranchData() { return false; }
   390   virtual bool is_ArgInfoData()     { return false; }
   393   BitData* as_BitData() {
   394     assert(is_BitData(), "wrong type");
   395     return is_BitData()         ? (BitData*)        this : NULL;
   396   }
   397   CounterData* as_CounterData() {
   398     assert(is_CounterData(), "wrong type");
   399     return is_CounterData()     ? (CounterData*)    this : NULL;
   400   }
   401   JumpData* as_JumpData() {
   402     assert(is_JumpData(), "wrong type");
   403     return is_JumpData()        ? (JumpData*)       this : NULL;
   404   }
   405   ReceiverTypeData* as_ReceiverTypeData() {
   406     assert(is_ReceiverTypeData(), "wrong type");
   407     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   408   }
   409   VirtualCallData* as_VirtualCallData() {
   410     assert(is_VirtualCallData(), "wrong type");
   411     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   412   }
   413   RetData* as_RetData() {
   414     assert(is_RetData(), "wrong type");
   415     return is_RetData()         ? (RetData*)        this : NULL;
   416   }
   417   BranchData* as_BranchData() {
   418     assert(is_BranchData(), "wrong type");
   419     return is_BranchData()      ? (BranchData*)     this : NULL;
   420   }
   421   ArrayData* as_ArrayData() {
   422     assert(is_ArrayData(), "wrong type");
   423     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   424   }
   425   MultiBranchData* as_MultiBranchData() {
   426     assert(is_MultiBranchData(), "wrong type");
   427     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   428   }
   429   ArgInfoData* as_ArgInfoData() {
   430     assert(is_ArgInfoData(), "wrong type");
   431     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   432   }
   435   // Subclass specific initialization
   436   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   438   // GC support
   439   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   441   // CI translation: ProfileData can represent both MethodDataOop data
   442   // as well as CIMethodData data. This function is provided for translating
   443   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   444   // most ProfileData don't require any translation, so we provide the null
   445   // translation here, and the required translators are in the ci subclasses.
   446   virtual void translate_from(ProfileData* data) {}
   448   virtual void print_data_on(outputStream* st) {
   449     ShouldNotReachHere();
   450   }
   452 #ifndef PRODUCT
   453   void print_shared(outputStream* st, const char* name);
   454   void tab(outputStream* st);
   455 #endif
   456 };
   458 // BitData
   459 //
   460 // A BitData holds a flag or two in its header.
   461 class BitData : public ProfileData {
   462 protected:
   463   enum {
   464     // null_seen:
   465     //  saw a null operand (cast/aastore/instanceof)
   466     null_seen_flag              = DataLayout::first_flag + 0
   467   };
   468   enum { bit_cell_count = 0 };  // no additional data fields needed.
   469 public:
   470   BitData(DataLayout* layout) : ProfileData(layout) {
   471   }
   473   virtual bool is_BitData() { return true; }
   475   static int static_cell_count() {
   476     return bit_cell_count;
   477   }
   479   virtual int cell_count() {
   480     return static_cell_count();
   481   }
   483   // Accessor
   485   // The null_seen flag bit is specially known to the interpreter.
   486   // Consulting it allows the compiler to avoid setting up null_check traps.
   487   bool null_seen()     { return flag_at(null_seen_flag); }
   488   void set_null_seen()    { set_flag_at(null_seen_flag); }
   491   // Code generation support
   492   static int null_seen_byte_constant() {
   493     return flag_number_to_byte_constant(null_seen_flag);
   494   }
   496   static ByteSize bit_data_size() {
   497     return cell_offset(bit_cell_count);
   498   }
   500 #ifndef PRODUCT
   501   void print_data_on(outputStream* st);
   502 #endif
   503 };
   505 // CounterData
   506 //
   507 // A CounterData corresponds to a simple counter.
   508 class CounterData : public BitData {
   509 protected:
   510   enum {
   511     count_off,
   512     counter_cell_count
   513   };
   514 public:
   515   CounterData(DataLayout* layout) : BitData(layout) {}
   517   virtual bool is_CounterData() { return true; }
   519   static int static_cell_count() {
   520     return counter_cell_count;
   521   }
   523   virtual int cell_count() {
   524     return static_cell_count();
   525   }
   527   // Direct accessor
   528   uint count() {
   529     return uint_at(count_off);
   530   }
   532   // Code generation support
   533   static ByteSize count_offset() {
   534     return cell_offset(count_off);
   535   }
   536   static ByteSize counter_data_size() {
   537     return cell_offset(counter_cell_count);
   538   }
   540   void set_count(uint count) {
   541     set_uint_at(count_off, count);
   542   }
   544 #ifndef PRODUCT
   545   void print_data_on(outputStream* st);
   546 #endif
   547 };
   549 // JumpData
   550 //
   551 // A JumpData is used to access profiling information for a direct
   552 // branch.  It is a counter, used for counting the number of branches,
   553 // plus a data displacement, used for realigning the data pointer to
   554 // the corresponding target bci.
   555 class JumpData : public ProfileData {
   556 protected:
   557   enum {
   558     taken_off_set,
   559     displacement_off_set,
   560     jump_cell_count
   561   };
   563   void set_displacement(int displacement) {
   564     set_int_at(displacement_off_set, displacement);
   565   }
   567 public:
   568   JumpData(DataLayout* layout) : ProfileData(layout) {
   569     assert(layout->tag() == DataLayout::jump_data_tag ||
   570       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   571   }
   573   virtual bool is_JumpData() { return true; }
   575   static int static_cell_count() {
   576     return jump_cell_count;
   577   }
   579   virtual int cell_count() {
   580     return static_cell_count();
   581   }
   583   // Direct accessor
   584   uint taken() {
   585     return uint_at(taken_off_set);
   586   }
   588   void set_taken(uint cnt) {
   589     set_uint_at(taken_off_set, cnt);
   590   }
   592   // Saturating counter
   593   uint inc_taken() {
   594     uint cnt = taken() + 1;
   595     // Did we wrap? Will compiler screw us??
   596     if (cnt == 0) cnt--;
   597     set_uint_at(taken_off_set, cnt);
   598     return cnt;
   599   }
   601   int displacement() {
   602     return int_at(displacement_off_set);
   603   }
   605   // Code generation support
   606   static ByteSize taken_offset() {
   607     return cell_offset(taken_off_set);
   608   }
   610   static ByteSize displacement_offset() {
   611     return cell_offset(displacement_off_set);
   612   }
   614   // Specific initialization.
   615   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   617 #ifndef PRODUCT
   618   void print_data_on(outputStream* st);
   619 #endif
   620 };
   622 // ReceiverTypeData
   623 //
   624 // A ReceiverTypeData is used to access profiling information about a
   625 // dynamic type check.  It consists of a counter which counts the total times
   626 // that the check is reached, and a series of (Klass*, count) pairs
   627 // which are used to store a type profile for the receiver of the check.
   628 class ReceiverTypeData : public CounterData {
   629 protected:
   630   enum {
   631     receiver0_offset = counter_cell_count,
   632     count0_offset,
   633     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   634   };
   636 public:
   637   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   638     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   639            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   640   }
   642   virtual bool is_ReceiverTypeData() { return true; }
   644   static int static_cell_count() {
   645     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   646   }
   648   virtual int cell_count() {
   649     return static_cell_count();
   650   }
   652   // Direct accessors
   653   static uint row_limit() {
   654     return TypeProfileWidth;
   655   }
   656   static int receiver_cell_index(uint row) {
   657     return receiver0_offset + row * receiver_type_row_cell_count;
   658   }
   659   static int receiver_count_cell_index(uint row) {
   660     return count0_offset + row * receiver_type_row_cell_count;
   661   }
   663   Klass* receiver(uint row) {
   664     assert(row < row_limit(), "oob");
   666     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
   667     assert(recv == NULL || recv->is_klass(), "wrong type");
   668     return recv;
   669   }
   671   void set_receiver(uint row, Klass* k) {
   672     assert((uint)row < row_limit(), "oob");
   673     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
   674   }
   676   uint receiver_count(uint row) {
   677     assert(row < row_limit(), "oob");
   678     return uint_at(receiver_count_cell_index(row));
   679   }
   681   void set_receiver_count(uint row, uint count) {
   682     assert(row < row_limit(), "oob");
   683     set_uint_at(receiver_count_cell_index(row), count);
   684   }
   686   void clear_row(uint row) {
   687     assert(row < row_limit(), "oob");
   688     // Clear total count - indicator of polymorphic call site.
   689     // The site may look like as monomorphic after that but
   690     // it allow to have more accurate profiling information because
   691     // there was execution phase change since klasses were unloaded.
   692     // If the site is still polymorphic then MDO will be updated
   693     // to reflect it. But it could be the case that the site becomes
   694     // only bimorphic. Then keeping total count not 0 will be wrong.
   695     // Even if we use monomorphic (when it is not) for compilation
   696     // we will only have trap, deoptimization and recompile again
   697     // with updated MDO after executing method in Interpreter.
   698     // An additional receiver will be recorded in the cleaned row
   699     // during next call execution.
   700     //
   701     // Note: our profiling logic works with empty rows in any slot.
   702     // We do sorting a profiling info (ciCallProfile) for compilation.
   703     //
   704     set_count(0);
   705     set_receiver(row, NULL);
   706     set_receiver_count(row, 0);
   707   }
   709   // Code generation support
   710   static ByteSize receiver_offset(uint row) {
   711     return cell_offset(receiver_cell_index(row));
   712   }
   713   static ByteSize receiver_count_offset(uint row) {
   714     return cell_offset(receiver_count_cell_index(row));
   715   }
   716   static ByteSize receiver_type_data_size() {
   717     return cell_offset(static_cell_count());
   718   }
   720   // GC support
   721   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   723 #ifndef PRODUCT
   724   void print_receiver_data_on(outputStream* st);
   725   void print_data_on(outputStream* st);
   726 #endif
   727 };
   729 // VirtualCallData
   730 //
   731 // A VirtualCallData is used to access profiling information about a
   732 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   733 class VirtualCallData : public ReceiverTypeData {
   734 public:
   735   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   736     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   737   }
   739   virtual bool is_VirtualCallData() { return true; }
   741   static int static_cell_count() {
   742     // At this point we could add more profile state, e.g., for arguments.
   743     // But for now it's the same size as the base record type.
   744     return ReceiverTypeData::static_cell_count();
   745   }
   747   virtual int cell_count() {
   748     return static_cell_count();
   749   }
   751   // Direct accessors
   752   static ByteSize virtual_call_data_size() {
   753     return cell_offset(static_cell_count());
   754   }
   756 #ifndef PRODUCT
   757   void print_data_on(outputStream* st);
   758 #endif
   759 };
   761 // RetData
   762 //
   763 // A RetData is used to access profiling information for a ret bytecode.
   764 // It is composed of a count of the number of times that the ret has
   765 // been executed, followed by a series of triples of the form
   766 // (bci, count, di) which count the number of times that some bci was the
   767 // target of the ret and cache a corresponding data displacement.
   768 class RetData : public CounterData {
   769 protected:
   770   enum {
   771     bci0_offset = counter_cell_count,
   772     count0_offset,
   773     displacement0_offset,
   774     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   775   };
   777   void set_bci(uint row, int bci) {
   778     assert((uint)row < row_limit(), "oob");
   779     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   780   }
   781   void release_set_bci(uint row, int bci) {
   782     assert((uint)row < row_limit(), "oob");
   783     // 'release' when setting the bci acts as a valid flag for other
   784     // threads wrt bci_count and bci_displacement.
   785     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   786   }
   787   void set_bci_count(uint row, uint count) {
   788     assert((uint)row < row_limit(), "oob");
   789     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   790   }
   791   void set_bci_displacement(uint row, int disp) {
   792     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   793   }
   795 public:
   796   RetData(DataLayout* layout) : CounterData(layout) {
   797     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   798   }
   800   virtual bool is_RetData() { return true; }
   802   enum {
   803     no_bci = -1 // value of bci when bci1/2 are not in use.
   804   };
   806   static int static_cell_count() {
   807     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   808   }
   810   virtual int cell_count() {
   811     return static_cell_count();
   812   }
   814   static uint row_limit() {
   815     return BciProfileWidth;
   816   }
   817   static int bci_cell_index(uint row) {
   818     return bci0_offset + row * ret_row_cell_count;
   819   }
   820   static int bci_count_cell_index(uint row) {
   821     return count0_offset + row * ret_row_cell_count;
   822   }
   823   static int bci_displacement_cell_index(uint row) {
   824     return displacement0_offset + row * ret_row_cell_count;
   825   }
   827   // Direct accessors
   828   int bci(uint row) {
   829     return int_at(bci_cell_index(row));
   830   }
   831   uint bci_count(uint row) {
   832     return uint_at(bci_count_cell_index(row));
   833   }
   834   int bci_displacement(uint row) {
   835     return int_at(bci_displacement_cell_index(row));
   836   }
   838   // Interpreter Runtime support
   839   address fixup_ret(int return_bci, MethodData* mdo);
   841   // Code generation support
   842   static ByteSize bci_offset(uint row) {
   843     return cell_offset(bci_cell_index(row));
   844   }
   845   static ByteSize bci_count_offset(uint row) {
   846     return cell_offset(bci_count_cell_index(row));
   847   }
   848   static ByteSize bci_displacement_offset(uint row) {
   849     return cell_offset(bci_displacement_cell_index(row));
   850   }
   852   // Specific initialization.
   853   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   855 #ifndef PRODUCT
   856   void print_data_on(outputStream* st);
   857 #endif
   858 };
   860 // BranchData
   861 //
   862 // A BranchData is used to access profiling data for a two-way branch.
   863 // It consists of taken and not_taken counts as well as a data displacement
   864 // for the taken case.
   865 class BranchData : public JumpData {
   866 protected:
   867   enum {
   868     not_taken_off_set = jump_cell_count,
   869     branch_cell_count
   870   };
   872   void set_displacement(int displacement) {
   873     set_int_at(displacement_off_set, displacement);
   874   }
   876 public:
   877   BranchData(DataLayout* layout) : JumpData(layout) {
   878     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   879   }
   881   virtual bool is_BranchData() { return true; }
   883   static int static_cell_count() {
   884     return branch_cell_count;
   885   }
   887   virtual int cell_count() {
   888     return static_cell_count();
   889   }
   891   // Direct accessor
   892   uint not_taken() {
   893     return uint_at(not_taken_off_set);
   894   }
   896   void set_not_taken(uint cnt) {
   897     set_uint_at(not_taken_off_set, cnt);
   898   }
   900   uint inc_not_taken() {
   901     uint cnt = not_taken() + 1;
   902     // Did we wrap? Will compiler screw us??
   903     if (cnt == 0) cnt--;
   904     set_uint_at(not_taken_off_set, cnt);
   905     return cnt;
   906   }
   908   // Code generation support
   909   static ByteSize not_taken_offset() {
   910     return cell_offset(not_taken_off_set);
   911   }
   912   static ByteSize branch_data_size() {
   913     return cell_offset(branch_cell_count);
   914   }
   916   // Specific initialization.
   917   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   919 #ifndef PRODUCT
   920   void print_data_on(outputStream* st);
   921 #endif
   922 };
   924 // ArrayData
   925 //
   926 // A ArrayData is a base class for accessing profiling data which does
   927 // not have a statically known size.  It consists of an array length
   928 // and an array start.
   929 class ArrayData : public ProfileData {
   930 protected:
   931   friend class DataLayout;
   933   enum {
   934     array_len_off_set,
   935     array_start_off_set
   936   };
   938   uint array_uint_at(int index) {
   939     int aindex = index + array_start_off_set;
   940     return uint_at(aindex);
   941   }
   942   int array_int_at(int index) {
   943     int aindex = index + array_start_off_set;
   944     return int_at(aindex);
   945   }
   946   oop array_oop_at(int index) {
   947     int aindex = index + array_start_off_set;
   948     return oop_at(aindex);
   949   }
   950   void array_set_int_at(int index, int value) {
   951     int aindex = index + array_start_off_set;
   952     set_int_at(aindex, value);
   953   }
   955   // Code generation support for subclasses.
   956   static ByteSize array_element_offset(int index) {
   957     return cell_offset(array_start_off_set + index);
   958   }
   960 public:
   961   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   963   virtual bool is_ArrayData() { return true; }
   965   static int static_cell_count() {
   966     return -1;
   967   }
   969   int array_len() {
   970     return int_at_unchecked(array_len_off_set);
   971   }
   973   virtual int cell_count() {
   974     return array_len() + 1;
   975   }
   977   // Code generation support
   978   static ByteSize array_len_offset() {
   979     return cell_offset(array_len_off_set);
   980   }
   981   static ByteSize array_start_offset() {
   982     return cell_offset(array_start_off_set);
   983   }
   984 };
   986 // MultiBranchData
   987 //
   988 // A MultiBranchData is used to access profiling information for
   989 // a multi-way branch (*switch bytecodes).  It consists of a series
   990 // of (count, displacement) pairs, which count the number of times each
   991 // case was taken and specify the data displacment for each branch target.
   992 class MultiBranchData : public ArrayData {
   993 protected:
   994   enum {
   995     default_count_off_set,
   996     default_disaplacement_off_set,
   997     case_array_start
   998   };
   999   enum {
  1000     relative_count_off_set,
  1001     relative_displacement_off_set,
  1002     per_case_cell_count
  1003   };
  1005   void set_default_displacement(int displacement) {
  1006     array_set_int_at(default_disaplacement_off_set, displacement);
  1008   void set_displacement_at(int index, int displacement) {
  1009     array_set_int_at(case_array_start +
  1010                      index * per_case_cell_count +
  1011                      relative_displacement_off_set,
  1012                      displacement);
  1015 public:
  1016   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1017     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1020   virtual bool is_MultiBranchData() { return true; }
  1022   static int compute_cell_count(BytecodeStream* stream);
  1024   int number_of_cases() {
  1025     int alen = array_len() - 2; // get rid of default case here.
  1026     assert(alen % per_case_cell_count == 0, "must be even");
  1027     return (alen / per_case_cell_count);
  1030   uint default_count() {
  1031     return array_uint_at(default_count_off_set);
  1033   int default_displacement() {
  1034     return array_int_at(default_disaplacement_off_set);
  1037   uint count_at(int index) {
  1038     return array_uint_at(case_array_start +
  1039                          index * per_case_cell_count +
  1040                          relative_count_off_set);
  1042   int displacement_at(int index) {
  1043     return array_int_at(case_array_start +
  1044                         index * per_case_cell_count +
  1045                         relative_displacement_off_set);
  1048   // Code generation support
  1049   static ByteSize default_count_offset() {
  1050     return array_element_offset(default_count_off_set);
  1052   static ByteSize default_displacement_offset() {
  1053     return array_element_offset(default_disaplacement_off_set);
  1055   static ByteSize case_count_offset(int index) {
  1056     return case_array_offset() +
  1057            (per_case_size() * index) +
  1058            relative_count_offset();
  1060   static ByteSize case_array_offset() {
  1061     return array_element_offset(case_array_start);
  1063   static ByteSize per_case_size() {
  1064     return in_ByteSize(per_case_cell_count) * cell_size;
  1066   static ByteSize relative_count_offset() {
  1067     return in_ByteSize(relative_count_off_set) * cell_size;
  1069   static ByteSize relative_displacement_offset() {
  1070     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1073   // Specific initialization.
  1074   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1076 #ifndef PRODUCT
  1077   void print_data_on(outputStream* st);
  1078 #endif
  1079 };
  1081 class ArgInfoData : public ArrayData {
  1083 public:
  1084   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1085     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1088   virtual bool is_ArgInfoData() { return true; }
  1091   int number_of_args() {
  1092     return array_len();
  1095   uint arg_modified(int arg) {
  1096     return array_uint_at(arg);
  1099   void set_arg_modified(int arg, uint val) {
  1100     array_set_int_at(arg, val);
  1103 #ifndef PRODUCT
  1104   void print_data_on(outputStream* st);
  1105 #endif
  1106 };
  1108 // MethodData*
  1109 //
  1110 // A MethodData* holds information which has been collected about
  1111 // a method.  Its layout looks like this:
  1112 //
  1113 // -----------------------------
  1114 // | header                    |
  1115 // | klass                     |
  1116 // -----------------------------
  1117 // | method                    |
  1118 // | size of the MethodData* |
  1119 // -----------------------------
  1120 // | Data entries...           |
  1121 // |   (variable size)         |
  1122 // |                           |
  1123 // .                           .
  1124 // .                           .
  1125 // .                           .
  1126 // |                           |
  1127 // -----------------------------
  1128 //
  1129 // The data entry area is a heterogeneous array of DataLayouts. Each
  1130 // DataLayout in the array corresponds to a specific bytecode in the
  1131 // method.  The entries in the array are sorted by the corresponding
  1132 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1133 // which point to the underlying blocks of DataLayout structures.
  1134 //
  1135 // During interpretation, if profiling in enabled, the interpreter
  1136 // maintains a method data pointer (mdp), which points at the entry
  1137 // in the array corresponding to the current bci.  In the course of
  1138 // intepretation, when a bytecode is encountered that has profile data
  1139 // associated with it, the entry pointed to by mdp is updated, then the
  1140 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1141 // is NULL to begin with, the interpreter assumes that the current method
  1142 // is not (yet) being profiled.
  1143 //
  1144 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1145 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1146 // from the base of the data entry array.  A "displacement" is the byte offset
  1147 // in certain ProfileData objects that indicate the amount the mdp must be
  1148 // adjusted in the event of a change in control flow.
  1149 //
  1151 class MethodData : public Metadata {
  1152   friend class VMStructs;
  1153 private:
  1154   friend class ProfileData;
  1156   // Back pointer to the Method*
  1157   Method* _method;
  1159   // Size of this oop in bytes
  1160   int _size;
  1162   // Cached hint for bci_to_dp and bci_to_data
  1163   int _hint_di;
  1165   MethodData(methodHandle method, int size, TRAPS);
  1166 public:
  1167   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1168   MethodData() {}; // For ciMethodData
  1170   bool is_methodData() const volatile { return true; }
  1172   // Whole-method sticky bits and flags
  1173   enum {
  1174     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1175     _trap_hist_mask     = max_jubyte,
  1176     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1177   }; // Public flag values
  1178 private:
  1179   uint _nof_decompiles;             // count of all nmethod removals
  1180   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1181   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1182   union {
  1183     intptr_t _align;
  1184     u1 _array[_trap_hist_limit];
  1185   } _trap_hist;
  1187   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1188   intx              _eflags;          // flags on escape information
  1189   intx              _arg_local;       // bit set of non-escaping arguments
  1190   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1191   intx              _arg_returned;    // bit set of returned arguments
  1193   int _creation_mileage;              // method mileage at MDO creation
  1195   // How many invocations has this MDO seen?
  1196   // These counters are used to determine the exact age of MDO.
  1197   // We need those because in tiered a method can be concurrently
  1198   // executed at different levels.
  1199   InvocationCounter _invocation_counter;
  1200   // Same for backedges.
  1201   InvocationCounter _backedge_counter;
  1202   // Counter values at the time profiling started.
  1203   int               _invocation_counter_start;
  1204   int               _backedge_counter_start;
  1205   // Number of loops and blocks is computed when compiling the first
  1206   // time with C1. It is used to determine if method is trivial.
  1207   short             _num_loops;
  1208   short             _num_blocks;
  1209   // Highest compile level this method has ever seen.
  1210   u1                _highest_comp_level;
  1211   // Same for OSR level
  1212   u1                _highest_osr_comp_level;
  1213   // Does this method contain anything worth profiling?
  1214   bool              _would_profile;
  1216   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1217   int _data_size;
  1219   // Beginning of the data entries
  1220   intptr_t _data[1];
  1222   // Helper for size computation
  1223   static int compute_data_size(BytecodeStream* stream);
  1224   static int bytecode_cell_count(Bytecodes::Code code);
  1225   enum { no_profile_data = -1, variable_cell_count = -2 };
  1227   // Helper for initialization
  1228   DataLayout* data_layout_at(int data_index) const {
  1229     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1230     return (DataLayout*) (((address)_data) + data_index);
  1233   // Initialize an individual data segment.  Returns the size of
  1234   // the segment in bytes.
  1235   int initialize_data(BytecodeStream* stream, int data_index);
  1237   // Helper for data_at
  1238   DataLayout* limit_data_position() const {
  1239     return (DataLayout*)((address)data_base() + _data_size);
  1241   bool out_of_bounds(int data_index) const {
  1242     return data_index >= data_size();
  1245   // Give each of the data entries a chance to perform specific
  1246   // data initialization.
  1247   void post_initialize(BytecodeStream* stream);
  1249   // hint accessors
  1250   int      hint_di() const  { return _hint_di; }
  1251   void set_hint_di(int di)  {
  1252     assert(!out_of_bounds(di), "hint_di out of bounds");
  1253     _hint_di = di;
  1255   ProfileData* data_before(int bci) {
  1256     // avoid SEGV on this edge case
  1257     if (data_size() == 0)
  1258       return NULL;
  1259     int hint = hint_di();
  1260     if (data_layout_at(hint)->bci() <= bci)
  1261       return data_at(hint);
  1262     return first_data();
  1265   // What is the index of the first data entry?
  1266   int first_di() const { return 0; }
  1268   // Find or create an extra ProfileData:
  1269   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1271   // return the argument info cell
  1272   ArgInfoData *arg_info();
  1274 public:
  1275   static int header_size() {
  1276     return sizeof(MethodData)/wordSize;
  1279   // Compute the size of a MethodData* before it is created.
  1280   static int compute_allocation_size_in_bytes(methodHandle method);
  1281   static int compute_allocation_size_in_words(methodHandle method);
  1282   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1284   // Determine if a given bytecode can have profile information.
  1285   static bool bytecode_has_profile(Bytecodes::Code code) {
  1286     return bytecode_cell_count(code) != no_profile_data;
  1289   // reset into original state
  1290   void init();
  1292   // My size
  1293   int size_in_bytes() const { return _size; }
  1294   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1295 #if INCLUDE_SERVICES
  1296   void collect_statistics(KlassSizeStats *sz) const;
  1297 #endif
  1299   int      creation_mileage() const  { return _creation_mileage; }
  1300   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1302   int invocation_count() {
  1303     if (invocation_counter()->carry()) {
  1304       return InvocationCounter::count_limit;
  1306     return invocation_counter()->count();
  1308   int backedge_count() {
  1309     if (backedge_counter()->carry()) {
  1310       return InvocationCounter::count_limit;
  1312     return backedge_counter()->count();
  1315   int invocation_count_start() {
  1316     if (invocation_counter()->carry()) {
  1317       return 0;
  1319     return _invocation_counter_start;
  1322   int backedge_count_start() {
  1323     if (backedge_counter()->carry()) {
  1324       return 0;
  1326     return _backedge_counter_start;
  1329   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1330   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1332   void reset_start_counters() {
  1333     _invocation_counter_start = invocation_count();
  1334     _backedge_counter_start = backedge_count();
  1337   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1338   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1340   void set_would_profile(bool p)              { _would_profile = p;    }
  1341   bool would_profile() const                  { return _would_profile; }
  1343   int highest_comp_level() const              { return _highest_comp_level;      }
  1344   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1345   int highest_osr_comp_level() const          { return _highest_osr_comp_level;  }
  1346   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1348   int num_loops() const                       { return _num_loops;  }
  1349   void set_num_loops(int n)                   { _num_loops = n;     }
  1350   int num_blocks() const                      { return _num_blocks; }
  1351   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1353   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1354   static int mileage_of(Method* m);
  1356   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1357   enum EscapeFlag {
  1358     estimated    = 1 << 0,
  1359     return_local = 1 << 1,
  1360     return_allocated = 1 << 2,
  1361     allocated_escapes = 1 << 3,
  1362     unknown_modified = 1 << 4
  1363   };
  1365   intx eflags()                                  { return _eflags; }
  1366   intx arg_local()                               { return _arg_local; }
  1367   intx arg_stack()                               { return _arg_stack; }
  1368   intx arg_returned()                            { return _arg_returned; }
  1369   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1370                                                    assert(aid != NULL, "arg_info must be not null");
  1371                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1372                                                    return aid->arg_modified(a); }
  1374   void set_eflags(intx v)                        { _eflags = v; }
  1375   void set_arg_local(intx v)                     { _arg_local = v; }
  1376   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1377   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1378   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1379                                                    assert(aid != NULL, "arg_info must be not null");
  1380                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1381                                                    aid->set_arg_modified(a, v); }
  1383   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1385   // Location and size of data area
  1386   address data_base() const {
  1387     return (address) _data;
  1389   int data_size() const {
  1390     return _data_size;
  1393   // Accessors
  1394   Method* method() const { return _method; }
  1396   // Get the data at an arbitrary (sort of) data index.
  1397   ProfileData* data_at(int data_index) const;
  1399   // Walk through the data in order.
  1400   ProfileData* first_data() const { return data_at(first_di()); }
  1401   ProfileData* next_data(ProfileData* current) const;
  1402   bool is_valid(ProfileData* current) const { return current != NULL; }
  1404   // Convert a dp (data pointer) to a di (data index).
  1405   int dp_to_di(address dp) const {
  1406     return dp - ((address)_data);
  1409   address di_to_dp(int di) {
  1410     return (address)data_layout_at(di);
  1413   // bci to di/dp conversion.
  1414   address bci_to_dp(int bci);
  1415   int bci_to_di(int bci) {
  1416     return dp_to_di(bci_to_dp(bci));
  1419   // Get the data at an arbitrary bci, or NULL if there is none.
  1420   ProfileData* bci_to_data(int bci);
  1422   // Same, but try to create an extra_data record if one is needed:
  1423   ProfileData* allocate_bci_to_data(int bci) {
  1424     ProfileData* data = bci_to_data(bci);
  1425     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1428   // Add a handful of extra data records, for trap tracking.
  1429   DataLayout* extra_data_base() const { return limit_data_position(); }
  1430   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  1431   int extra_data_size() const { return (address)extra_data_limit()
  1432                                - (address)extra_data_base(); }
  1433   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1435   // Return (uint)-1 for overflow.
  1436   uint trap_count(int reason) const {
  1437     assert((uint)reason < _trap_hist_limit, "oob");
  1438     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1440   // For loops:
  1441   static uint trap_reason_limit() { return _trap_hist_limit; }
  1442   static uint trap_count_limit()  { return _trap_hist_mask; }
  1443   uint inc_trap_count(int reason) {
  1444     // Count another trap, anywhere in this method.
  1445     assert(reason >= 0, "must be single trap");
  1446     if ((uint)reason < _trap_hist_limit) {
  1447       uint cnt1 = 1 + _trap_hist._array[reason];
  1448       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1449         _trap_hist._array[reason] = cnt1;
  1450         return cnt1;
  1451       } else {
  1452         return _trap_hist_mask + (++_nof_overflow_traps);
  1454     } else {
  1455       // Could not represent the count in the histogram.
  1456       return (++_nof_overflow_traps);
  1460   uint overflow_trap_count() const {
  1461     return _nof_overflow_traps;
  1463   uint overflow_recompile_count() const {
  1464     return _nof_overflow_recompiles;
  1466   void inc_overflow_recompile_count() {
  1467     _nof_overflow_recompiles += 1;
  1469   uint decompile_count() const {
  1470     return _nof_decompiles;
  1472   void inc_decompile_count() {
  1473     _nof_decompiles += 1;
  1474     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1475       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  1479   // Support for code generation
  1480   static ByteSize data_offset() {
  1481     return byte_offset_of(MethodData, _data[0]);
  1484   static ByteSize invocation_counter_offset() {
  1485     return byte_offset_of(MethodData, _invocation_counter);
  1487   static ByteSize backedge_counter_offset() {
  1488     return byte_offset_of(MethodData, _backedge_counter);
  1491   // Deallocation support - no pointer fields to deallocate
  1492   void deallocate_contents(ClassLoaderData* loader_data) {}
  1494   // GC support
  1495   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1497   // Printing
  1498 #ifndef PRODUCT
  1499   void print_on      (outputStream* st) const;
  1500 #endif
  1501   void print_value_on(outputStream* st) const;
  1503 #ifndef PRODUCT
  1504   // printing support for method data
  1505   void print_data_on(outputStream* st) const;
  1506 #endif
  1508   const char* internal_name() const { return "{method data}"; }
  1510   // verification
  1511   void verify_on(outputStream* st);
  1512   void verify_data_on(outputStream* st);
  1513 };
  1515 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial