src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 16 Jun 2011 15:51:57 -0400

author
tonyp
date
Thu, 16 Jun 2011 15:51:57 -0400
changeset 2971
c9ca3f51cf41
parent 2969
6747fd0512e0
child 2974
e8b0b0392037
permissions
-rw-r--r--

6994322: Remove the is_tlab and is_noref / is_large_noref parameters from the CollectedHeap
Summary: Remove two unused parameters from the mem_allocate() method and update its uses accordingly.
Reviewed-by: stefank, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.hpp"
    33 #include "gc_implementation/g1/heapRegionSets.hpp"
    34 #include "gc_implementation/shared/hSpaceCounters.hpp"
    35 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/memRegion.hpp"
    38 #include "memory/sharedHeap.hpp"
    40 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    41 // It uses the "Garbage First" heap organization and algorithm, which
    42 // may combine concurrent marking with parallel, incremental compaction of
    43 // heap subsets that will yield large amounts of garbage.
    45 class HeapRegion;
    46 class HRRSCleanupTask;
    47 class PermanentGenerationSpec;
    48 class GenerationSpec;
    49 class OopsInHeapRegionClosure;
    50 class G1ScanHeapEvacClosure;
    51 class ObjectClosure;
    52 class SpaceClosure;
    53 class CompactibleSpaceClosure;
    54 class Space;
    55 class G1CollectorPolicy;
    56 class GenRemSet;
    57 class G1RemSet;
    58 class HeapRegionRemSetIterator;
    59 class ConcurrentMark;
    60 class ConcurrentMarkThread;
    61 class ConcurrentG1Refine;
    62 class GenerationCounters;
    64 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    65 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    67 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    68 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    70 enum GCAllocPurpose {
    71   GCAllocForTenured,
    72   GCAllocForSurvived,
    73   GCAllocPurposeCount
    74 };
    76 class YoungList : public CHeapObj {
    77 private:
    78   G1CollectedHeap* _g1h;
    80   HeapRegion* _head;
    82   HeapRegion* _survivor_head;
    83   HeapRegion* _survivor_tail;
    85   HeapRegion* _curr;
    87   size_t      _length;
    88   size_t      _survivor_length;
    90   size_t      _last_sampled_rs_lengths;
    91   size_t      _sampled_rs_lengths;
    93   void         empty_list(HeapRegion* list);
    95 public:
    96   YoungList(G1CollectedHeap* g1h);
    98   void         push_region(HeapRegion* hr);
    99   void         add_survivor_region(HeapRegion* hr);
   101   void         empty_list();
   102   bool         is_empty() { return _length == 0; }
   103   size_t       length() { return _length; }
   104   size_t       survivor_length() { return _survivor_length; }
   106   // Currently we do not keep track of the used byte sum for the
   107   // young list and the survivors and it'd be quite a lot of work to
   108   // do so. When we'll eventually replace the young list with
   109   // instances of HeapRegionLinkedList we'll get that for free. So,
   110   // we'll report the more accurate information then.
   111   size_t       eden_used_bytes() {
   112     assert(length() >= survivor_length(), "invariant");
   113     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   114   }
   115   size_t       survivor_used_bytes() {
   116     return survivor_length() * HeapRegion::GrainBytes;
   117   }
   119   void rs_length_sampling_init();
   120   bool rs_length_sampling_more();
   121   void rs_length_sampling_next();
   123   void reset_sampled_info() {
   124     _last_sampled_rs_lengths =   0;
   125   }
   126   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   128   // for development purposes
   129   void reset_auxilary_lists();
   130   void clear() { _head = NULL; _length = 0; }
   132   void clear_survivors() {
   133     _survivor_head    = NULL;
   134     _survivor_tail    = NULL;
   135     _survivor_length  = 0;
   136   }
   138   HeapRegion* first_region() { return _head; }
   139   HeapRegion* first_survivor_region() { return _survivor_head; }
   140   HeapRegion* last_survivor_region() { return _survivor_tail; }
   142   // debugging
   143   bool          check_list_well_formed();
   144   bool          check_list_empty(bool check_sample = true);
   145   void          print();
   146 };
   148 class MutatorAllocRegion : public G1AllocRegion {
   149 protected:
   150   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   151   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   152 public:
   153   MutatorAllocRegion()
   154     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   155 };
   157 class RefineCardTableEntryClosure;
   158 class G1CollectedHeap : public SharedHeap {
   159   friend class VM_G1CollectForAllocation;
   160   friend class VM_GenCollectForPermanentAllocation;
   161   friend class VM_G1CollectFull;
   162   friend class VM_G1IncCollectionPause;
   163   friend class VMStructs;
   164   friend class MutatorAllocRegion;
   166   // Closures used in implementation.
   167   friend class G1ParCopyHelper;
   168   friend class G1IsAliveClosure;
   169   friend class G1EvacuateFollowersClosure;
   170   friend class G1ParScanThreadState;
   171   friend class G1ParScanClosureSuper;
   172   friend class G1ParEvacuateFollowersClosure;
   173   friend class G1ParTask;
   174   friend class G1FreeGarbageRegionClosure;
   175   friend class RefineCardTableEntryClosure;
   176   friend class G1PrepareCompactClosure;
   177   friend class RegionSorter;
   178   friend class RegionResetter;
   179   friend class CountRCClosure;
   180   friend class EvacPopObjClosure;
   181   friend class G1ParCleanupCTTask;
   183   // Other related classes.
   184   friend class G1MarkSweep;
   186 private:
   187   // The one and only G1CollectedHeap, so static functions can find it.
   188   static G1CollectedHeap* _g1h;
   190   static size_t _humongous_object_threshold_in_words;
   192   // Storage for the G1 heap (excludes the permanent generation).
   193   VirtualSpace _g1_storage;
   194   MemRegion    _g1_reserved;
   196   // The part of _g1_storage that is currently committed.
   197   MemRegion _g1_committed;
   199   // The master free list. It will satisfy all new region allocations.
   200   MasterFreeRegionList      _free_list;
   202   // The secondary free list which contains regions that have been
   203   // freed up during the cleanup process. This will be appended to the
   204   // master free list when appropriate.
   205   SecondaryFreeRegionList   _secondary_free_list;
   207   // It keeps track of the humongous regions.
   208   MasterHumongousRegionSet  _humongous_set;
   210   // The number of regions we could create by expansion.
   211   size_t _expansion_regions;
   213   // The block offset table for the G1 heap.
   214   G1BlockOffsetSharedArray* _bot_shared;
   216   // Move all of the regions off the free lists, then rebuild those free
   217   // lists, before and after full GC.
   218   void tear_down_region_lists();
   219   void rebuild_region_lists();
   221   // The sequence of all heap regions in the heap.
   222   HeapRegionSeq _hrs;
   224   // Alloc region used to satisfy mutator allocation requests.
   225   MutatorAllocRegion _mutator_alloc_region;
   227   // It resets the mutator alloc region before new allocations can take place.
   228   void init_mutator_alloc_region();
   230   // It releases the mutator alloc region.
   231   void release_mutator_alloc_region();
   233   void abandon_gc_alloc_regions();
   235   // The to-space memory regions into which objects are being copied during
   236   // a GC.
   237   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   238   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   239   // These are the regions, one per GCAllocPurpose, that are half-full
   240   // at the end of a collection and that we want to reuse during the
   241   // next collection.
   242   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   243   // This specifies whether we will keep the last half-full region at
   244   // the end of a collection so that it can be reused during the next
   245   // collection (this is specified per GCAllocPurpose)
   246   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   248   // A list of the regions that have been set to be alloc regions in the
   249   // current collection.
   250   HeapRegion* _gc_alloc_region_list;
   252   // Helper for monitoring and management support.
   253   G1MonitoringSupport* _g1mm;
   255   // Determines PLAB size for a particular allocation purpose.
   256   static size_t desired_plab_sz(GCAllocPurpose purpose);
   258   // When called by par thread, requires the FreeList_lock to be held.
   259   void push_gc_alloc_region(HeapRegion* hr);
   261   // This should only be called single-threaded.  Undeclares all GC alloc
   262   // regions.
   263   void forget_alloc_region_list();
   265   // Should be used to set an alloc region, because there's other
   266   // associated bookkeeping.
   267   void set_gc_alloc_region(int purpose, HeapRegion* r);
   269   // Check well-formedness of alloc region list.
   270   bool check_gc_alloc_regions();
   272   // Outside of GC pauses, the number of bytes used in all regions other
   273   // than the current allocation region.
   274   size_t _summary_bytes_used;
   276   // This is used for a quick test on whether a reference points into
   277   // the collection set or not. Basically, we have an array, with one
   278   // byte per region, and that byte denotes whether the corresponding
   279   // region is in the collection set or not. The entry corresponding
   280   // the bottom of the heap, i.e., region 0, is pointed to by
   281   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   282   // biased so that it actually points to address 0 of the address
   283   // space, to make the test as fast as possible (we can simply shift
   284   // the address to address into it, instead of having to subtract the
   285   // bottom of the heap from the address before shifting it; basically
   286   // it works in the same way the card table works).
   287   bool* _in_cset_fast_test;
   289   // The allocated array used for the fast test on whether a reference
   290   // points into the collection set or not. This field is also used to
   291   // free the array.
   292   bool* _in_cset_fast_test_base;
   294   // The length of the _in_cset_fast_test_base array.
   295   size_t _in_cset_fast_test_length;
   297   volatile unsigned _gc_time_stamp;
   299   size_t* _surviving_young_words;
   301   void setup_surviving_young_words();
   302   void update_surviving_young_words(size_t* surv_young_words);
   303   void cleanup_surviving_young_words();
   305   // It decides whether an explicit GC should start a concurrent cycle
   306   // instead of doing a STW GC. Currently, a concurrent cycle is
   307   // explicitly started if:
   308   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   309   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   310   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   312   // Keeps track of how many "full collections" (i.e., Full GCs or
   313   // concurrent cycles) we have completed. The number of them we have
   314   // started is maintained in _total_full_collections in CollectedHeap.
   315   volatile unsigned int _full_collections_completed;
   317   // This is a non-product method that is helpful for testing. It is
   318   // called at the end of a GC and artificially expands the heap by
   319   // allocating a number of dead regions. This way we can induce very
   320   // frequent marking cycles and stress the cleanup / concurrent
   321   // cleanup code more (as all the regions that will be allocated by
   322   // this method will be found dead by the marking cycle).
   323   void allocate_dummy_regions() PRODUCT_RETURN;
   325   // These are macros so that, if the assert fires, we get the correct
   326   // line number, file, etc.
   328 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   329   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   330           (_extra_message_),                                                  \
   331           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   332           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   333           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   335 #define assert_heap_locked()                                                  \
   336   do {                                                                        \
   337     assert(Heap_lock->owned_by_self(),                                        \
   338            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   339   } while (0)
   341 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   342   do {                                                                        \
   343     assert(Heap_lock->owned_by_self() ||                                      \
   344            (SafepointSynchronize::is_at_safepoint() &&                        \
   345              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   346            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   347                                         "should be at a safepoint"));         \
   348   } while (0)
   350 #define assert_heap_locked_and_not_at_safepoint()                             \
   351   do {                                                                        \
   352     assert(Heap_lock->owned_by_self() &&                                      \
   353                                     !SafepointSynchronize::is_at_safepoint(), \
   354           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   355                                        "should not be at a safepoint"));      \
   356   } while (0)
   358 #define assert_heap_not_locked()                                              \
   359   do {                                                                        \
   360     assert(!Heap_lock->owned_by_self(),                                       \
   361         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   362   } while (0)
   364 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   365   do {                                                                        \
   366     assert(!Heap_lock->owned_by_self() &&                                     \
   367                                     !SafepointSynchronize::is_at_safepoint(), \
   368       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   369                                    "should not be at a safepoint"));          \
   370   } while (0)
   372 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   373   do {                                                                        \
   374     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   375               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   376            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   377   } while (0)
   379 #define assert_not_at_safepoint()                                             \
   380   do {                                                                        \
   381     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   382            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   383   } while (0)
   385 protected:
   387   // Returns "true" iff none of the gc alloc regions have any allocations
   388   // since the last call to "save_marks".
   389   bool all_alloc_regions_no_allocs_since_save_marks();
   390   // Perform finalization stuff on all allocation regions.
   391   void retire_all_alloc_regions();
   393   // The number of regions allocated to hold humongous objects.
   394   int         _num_humongous_regions;
   395   YoungList*  _young_list;
   397   // The current policy object for the collector.
   398   G1CollectorPolicy* _g1_policy;
   400   // This is the second level of trying to allocate a new region. If
   401   // new_region() didn't find a region on the free_list, this call will
   402   // check whether there's anything available on the
   403   // secondary_free_list and/or wait for more regions to appear on
   404   // that list, if _free_regions_coming is set.
   405   HeapRegion* new_region_try_secondary_free_list();
   407   // Try to allocate a single non-humongous HeapRegion sufficient for
   408   // an allocation of the given word_size. If do_expand is true,
   409   // attempt to expand the heap if necessary to satisfy the allocation
   410   // request.
   411   HeapRegion* new_region(size_t word_size, bool do_expand);
   413   // Try to allocate a new region to be used for allocation by
   414   // a GC thread. It will try to expand the heap if no region is
   415   // available.
   416   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   418   // Attempt to satisfy a humongous allocation request of the given
   419   // size by finding a contiguous set of free regions of num_regions
   420   // length and remove them from the master free list. Return the
   421   // index of the first region or G1_NULL_HRS_INDEX if the search
   422   // was unsuccessful.
   423   size_t humongous_obj_allocate_find_first(size_t num_regions,
   424                                            size_t word_size);
   426   // Initialize a contiguous set of free regions of length num_regions
   427   // and starting at index first so that they appear as a single
   428   // humongous region.
   429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   430                                                       size_t num_regions,
   431                                                       size_t word_size);
   433   // Attempt to allocate a humongous object of the given size. Return
   434   // NULL if unsuccessful.
   435   HeapWord* humongous_obj_allocate(size_t word_size);
   437   // The following two methods, allocate_new_tlab() and
   438   // mem_allocate(), are the two main entry points from the runtime
   439   // into the G1's allocation routines. They have the following
   440   // assumptions:
   441   //
   442   // * They should both be called outside safepoints.
   443   //
   444   // * They should both be called without holding the Heap_lock.
   445   //
   446   // * All allocation requests for new TLABs should go to
   447   //   allocate_new_tlab().
   448   //
   449   // * All non-TLAB allocation requests should go to mem_allocate().
   450   //
   451   // * If either call cannot satisfy the allocation request using the
   452   //   current allocating region, they will try to get a new one. If
   453   //   this fails, they will attempt to do an evacuation pause and
   454   //   retry the allocation.
   455   //
   456   // * If all allocation attempts fail, even after trying to schedule
   457   //   an evacuation pause, allocate_new_tlab() will return NULL,
   458   //   whereas mem_allocate() will attempt a heap expansion and/or
   459   //   schedule a Full GC.
   460   //
   461   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   462   //   should never be called with word_size being humongous. All
   463   //   humongous allocation requests should go to mem_allocate() which
   464   //   will satisfy them with a special path.
   466   virtual HeapWord* allocate_new_tlab(size_t word_size);
   468   virtual HeapWord* mem_allocate(size_t word_size,
   469                                  bool*  gc_overhead_limit_was_exceeded);
   471   // The following three methods take a gc_count_before_ret
   472   // parameter which is used to return the GC count if the method
   473   // returns NULL. Given that we are required to read the GC count
   474   // while holding the Heap_lock, and these paths will take the
   475   // Heap_lock at some point, it's easier to get them to read the GC
   476   // count while holding the Heap_lock before they return NULL instead
   477   // of the caller (namely: mem_allocate()) having to also take the
   478   // Heap_lock just to read the GC count.
   480   // First-level mutator allocation attempt: try to allocate out of
   481   // the mutator alloc region without taking the Heap_lock. This
   482   // should only be used for non-humongous allocations.
   483   inline HeapWord* attempt_allocation(size_t word_size,
   484                                       unsigned int* gc_count_before_ret);
   486   // Second-level mutator allocation attempt: take the Heap_lock and
   487   // retry the allocation attempt, potentially scheduling a GC
   488   // pause. This should only be used for non-humongous allocations.
   489   HeapWord* attempt_allocation_slow(size_t word_size,
   490                                     unsigned int* gc_count_before_ret);
   492   // Takes the Heap_lock and attempts a humongous allocation. It can
   493   // potentially schedule a GC pause.
   494   HeapWord* attempt_allocation_humongous(size_t word_size,
   495                                          unsigned int* gc_count_before_ret);
   497   // Allocation attempt that should be called during safepoints (e.g.,
   498   // at the end of a successful GC). expect_null_mutator_alloc_region
   499   // specifies whether the mutator alloc region is expected to be NULL
   500   // or not.
   501   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   502                                        bool expect_null_mutator_alloc_region);
   504   // It dirties the cards that cover the block so that so that the post
   505   // write barrier never queues anything when updating objects on this
   506   // block. It is assumed (and in fact we assert) that the block
   507   // belongs to a young region.
   508   inline void dirty_young_block(HeapWord* start, size_t word_size);
   510   // Allocate blocks during garbage collection. Will ensure an
   511   // allocation region, either by picking one or expanding the
   512   // heap, and then allocate a block of the given size. The block
   513   // may not be a humongous - it must fit into a single heap region.
   514   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   516   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   517                                     HeapRegion*    alloc_region,
   518                                     bool           par,
   519                                     size_t         word_size);
   521   // Ensure that no further allocations can happen in "r", bearing in mind
   522   // that parallel threads might be attempting allocations.
   523   void par_allocate_remaining_space(HeapRegion* r);
   525   // Retires an allocation region when it is full or at the end of a
   526   // GC pause.
   527   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   529   // These two methods are the "callbacks" from the G1AllocRegion class.
   531   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   532   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   533                                    size_t allocated_bytes);
   535   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   536   //   inspection request and should collect the entire heap
   537   // - if clear_all_soft_refs is true, all soft references should be
   538   //   cleared during the GC
   539   // - if explicit_gc is false, word_size describes the allocation that
   540   //   the GC should attempt (at least) to satisfy
   541   // - it returns false if it is unable to do the collection due to the
   542   //   GC locker being active, true otherwise
   543   bool do_collection(bool explicit_gc,
   544                      bool clear_all_soft_refs,
   545                      size_t word_size);
   547   // Callback from VM_G1CollectFull operation.
   548   // Perform a full collection.
   549   void do_full_collection(bool clear_all_soft_refs);
   551   // Resize the heap if necessary after a full collection.  If this is
   552   // after a collect-for allocation, "word_size" is the allocation size,
   553   // and will be considered part of the used portion of the heap.
   554   void resize_if_necessary_after_full_collection(size_t word_size);
   556   // Callback from VM_G1CollectForAllocation operation.
   557   // This function does everything necessary/possible to satisfy a
   558   // failed allocation request (including collection, expansion, etc.)
   559   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   561   // Attempting to expand the heap sufficiently
   562   // to support an allocation of the given "word_size".  If
   563   // successful, perform the allocation and return the address of the
   564   // allocated block, or else "NULL".
   565   HeapWord* expand_and_allocate(size_t word_size);
   567 public:
   569   G1MonitoringSupport* g1mm() { return _g1mm; }
   571   // Expand the garbage-first heap by at least the given size (in bytes!).
   572   // Returns true if the heap was expanded by the requested amount;
   573   // false otherwise.
   574   // (Rounds up to a HeapRegion boundary.)
   575   bool expand(size_t expand_bytes);
   577   // Do anything common to GC's.
   578   virtual void gc_prologue(bool full);
   579   virtual void gc_epilogue(bool full);
   581   // We register a region with the fast "in collection set" test. We
   582   // simply set to true the array slot corresponding to this region.
   583   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   584     assert(_in_cset_fast_test_base != NULL, "sanity");
   585     assert(r->in_collection_set(), "invariant");
   586     size_t index = r->hrs_index();
   587     assert(index < _in_cset_fast_test_length, "invariant");
   588     assert(!_in_cset_fast_test_base[index], "invariant");
   589     _in_cset_fast_test_base[index] = true;
   590   }
   592   // This is a fast test on whether a reference points into the
   593   // collection set or not. It does not assume that the reference
   594   // points into the heap; if it doesn't, it will return false.
   595   bool in_cset_fast_test(oop obj) {
   596     assert(_in_cset_fast_test != NULL, "sanity");
   597     if (_g1_committed.contains((HeapWord*) obj)) {
   598       // no need to subtract the bottom of the heap from obj,
   599       // _in_cset_fast_test is biased
   600       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   601       bool ret = _in_cset_fast_test[index];
   602       // let's make sure the result is consistent with what the slower
   603       // test returns
   604       assert( ret || !obj_in_cs(obj), "sanity");
   605       assert(!ret ||  obj_in_cs(obj), "sanity");
   606       return ret;
   607     } else {
   608       return false;
   609     }
   610   }
   612   void clear_cset_fast_test() {
   613     assert(_in_cset_fast_test_base != NULL, "sanity");
   614     memset(_in_cset_fast_test_base, false,
   615         _in_cset_fast_test_length * sizeof(bool));
   616   }
   618   // This is called at the end of either a concurrent cycle or a Full
   619   // GC to update the number of full collections completed. Those two
   620   // can happen in a nested fashion, i.e., we start a concurrent
   621   // cycle, a Full GC happens half-way through it which ends first,
   622   // and then the cycle notices that a Full GC happened and ends
   623   // too. The concurrent parameter is a boolean to help us do a bit
   624   // tighter consistency checking in the method. If concurrent is
   625   // false, the caller is the inner caller in the nesting (i.e., the
   626   // Full GC). If concurrent is true, the caller is the outer caller
   627   // in this nesting (i.e., the concurrent cycle). Further nesting is
   628   // not currently supported. The end of the this call also notifies
   629   // the FullGCCount_lock in case a Java thread is waiting for a full
   630   // GC to happen (e.g., it called System.gc() with
   631   // +ExplicitGCInvokesConcurrent).
   632   void increment_full_collections_completed(bool concurrent);
   634   unsigned int full_collections_completed() {
   635     return _full_collections_completed;
   636   }
   638 protected:
   640   // Shrink the garbage-first heap by at most the given size (in bytes!).
   641   // (Rounds down to a HeapRegion boundary.)
   642   virtual void shrink(size_t expand_bytes);
   643   void shrink_helper(size_t expand_bytes);
   645   #if TASKQUEUE_STATS
   646   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   647   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   648   void reset_taskqueue_stats();
   649   #endif // TASKQUEUE_STATS
   651   // Schedule the VM operation that will do an evacuation pause to
   652   // satisfy an allocation request of word_size. *succeeded will
   653   // return whether the VM operation was successful (it did do an
   654   // evacuation pause) or not (another thread beat us to it or the GC
   655   // locker was active). Given that we should not be holding the
   656   // Heap_lock when we enter this method, we will pass the
   657   // gc_count_before (i.e., total_collections()) as a parameter since
   658   // it has to be read while holding the Heap_lock. Currently, both
   659   // methods that call do_collection_pause() release the Heap_lock
   660   // before the call, so it's easy to read gc_count_before just before.
   661   HeapWord* do_collection_pause(size_t       word_size,
   662                                 unsigned int gc_count_before,
   663                                 bool*        succeeded);
   665   // The guts of the incremental collection pause, executed by the vm
   666   // thread. It returns false if it is unable to do the collection due
   667   // to the GC locker being active, true otherwise
   668   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   670   // Actually do the work of evacuating the collection set.
   671   void evacuate_collection_set();
   673   // The g1 remembered set of the heap.
   674   G1RemSet* _g1_rem_set;
   675   // And it's mod ref barrier set, used to track updates for the above.
   676   ModRefBarrierSet* _mr_bs;
   678   // A set of cards that cover the objects for which the Rsets should be updated
   679   // concurrently after the collection.
   680   DirtyCardQueueSet _dirty_card_queue_set;
   682   // The Heap Region Rem Set Iterator.
   683   HeapRegionRemSetIterator** _rem_set_iterator;
   685   // The closure used to refine a single card.
   686   RefineCardTableEntryClosure* _refine_cte_cl;
   688   // A function to check the consistency of dirty card logs.
   689   void check_ct_logs_at_safepoint();
   691   // A DirtyCardQueueSet that is used to hold cards that contain
   692   // references into the current collection set. This is used to
   693   // update the remembered sets of the regions in the collection
   694   // set in the event of an evacuation failure.
   695   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   697   // After a collection pause, make the regions in the CS into free
   698   // regions.
   699   void free_collection_set(HeapRegion* cs_head);
   701   // Abandon the current collection set without recording policy
   702   // statistics or updating free lists.
   703   void abandon_collection_set(HeapRegion* cs_head);
   705   // Applies "scan_non_heap_roots" to roots outside the heap,
   706   // "scan_rs" to roots inside the heap (having done "set_region" to
   707   // indicate the region in which the root resides), and does "scan_perm"
   708   // (setting the generation to the perm generation.)  If "scan_rs" is
   709   // NULL, then this step is skipped.  The "worker_i"
   710   // param is for use with parallel roots processing, and should be
   711   // the "i" of the calling parallel worker thread's work(i) function.
   712   // In the sequential case this param will be ignored.
   713   void g1_process_strong_roots(bool collecting_perm_gen,
   714                                SharedHeap::ScanningOption so,
   715                                OopClosure* scan_non_heap_roots,
   716                                OopsInHeapRegionClosure* scan_rs,
   717                                OopsInGenClosure* scan_perm,
   718                                int worker_i);
   720   // Apply "blk" to all the weak roots of the system.  These include
   721   // JNI weak roots, the code cache, system dictionary, symbol table,
   722   // string table, and referents of reachable weak refs.
   723   void g1_process_weak_roots(OopClosure* root_closure,
   724                              OopClosure* non_root_closure);
   726   // Invoke "save_marks" on all heap regions.
   727   void save_marks();
   729   // Frees a non-humongous region by initializing its contents and
   730   // adding it to the free list that's passed as a parameter (this is
   731   // usually a local list which will be appended to the master free
   732   // list later). The used bytes of freed regions are accumulated in
   733   // pre_used. If par is true, the region's RSet will not be freed
   734   // up. The assumption is that this will be done later.
   735   void free_region(HeapRegion* hr,
   736                    size_t* pre_used,
   737                    FreeRegionList* free_list,
   738                    bool par);
   740   // Frees a humongous region by collapsing it into individual regions
   741   // and calling free_region() for each of them. The freed regions
   742   // will be added to the free list that's passed as a parameter (this
   743   // is usually a local list which will be appended to the master free
   744   // list later). The used bytes of freed regions are accumulated in
   745   // pre_used. If par is true, the region's RSet will not be freed
   746   // up. The assumption is that this will be done later.
   747   void free_humongous_region(HeapRegion* hr,
   748                              size_t* pre_used,
   749                              FreeRegionList* free_list,
   750                              HumongousRegionSet* humongous_proxy_set,
   751                              bool par);
   753   // Notifies all the necessary spaces that the committed space has
   754   // been updated (either expanded or shrunk). It should be called
   755   // after _g1_storage is updated.
   756   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   758   // The concurrent marker (and the thread it runs in.)
   759   ConcurrentMark* _cm;
   760   ConcurrentMarkThread* _cmThread;
   761   bool _mark_in_progress;
   763   // The concurrent refiner.
   764   ConcurrentG1Refine* _cg1r;
   766   // The parallel task queues
   767   RefToScanQueueSet *_task_queues;
   769   // True iff a evacuation has failed in the current collection.
   770   bool _evacuation_failed;
   772   // Set the attribute indicating whether evacuation has failed in the
   773   // current collection.
   774   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   776   // Failed evacuations cause some logical from-space objects to have
   777   // forwarding pointers to themselves.  Reset them.
   778   void remove_self_forwarding_pointers();
   780   // When one is non-null, so is the other.  Together, they each pair is
   781   // an object with a preserved mark, and its mark value.
   782   GrowableArray<oop>*     _objs_with_preserved_marks;
   783   GrowableArray<markOop>* _preserved_marks_of_objs;
   785   // Preserve the mark of "obj", if necessary, in preparation for its mark
   786   // word being overwritten with a self-forwarding-pointer.
   787   void preserve_mark_if_necessary(oop obj, markOop m);
   789   // The stack of evac-failure objects left to be scanned.
   790   GrowableArray<oop>*    _evac_failure_scan_stack;
   791   // The closure to apply to evac-failure objects.
   793   OopsInHeapRegionClosure* _evac_failure_closure;
   794   // Set the field above.
   795   void
   796   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   797     _evac_failure_closure = evac_failure_closure;
   798   }
   800   // Push "obj" on the scan stack.
   801   void push_on_evac_failure_scan_stack(oop obj);
   802   // Process scan stack entries until the stack is empty.
   803   void drain_evac_failure_scan_stack();
   804   // True iff an invocation of "drain_scan_stack" is in progress; to
   805   // prevent unnecessary recursion.
   806   bool _drain_in_progress;
   808   // Do any necessary initialization for evacuation-failure handling.
   809   // "cl" is the closure that will be used to process evac-failure
   810   // objects.
   811   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   812   // Do any necessary cleanup for evacuation-failure handling data
   813   // structures.
   814   void finalize_for_evac_failure();
   816   // An attempt to evacuate "obj" has failed; take necessary steps.
   817   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   818   void handle_evacuation_failure_common(oop obj, markOop m);
   820   // Ensure that the relevant gc_alloc regions are set.
   821   void get_gc_alloc_regions();
   822   // We're done with GC alloc regions. We are going to tear down the
   823   // gc alloc list and remove the gc alloc tag from all the regions on
   824   // that list. However, we will also retain the last (i.e., the one
   825   // that is half-full) GC alloc region, per GCAllocPurpose, for
   826   // possible reuse during the next collection, provided
   827   // _retain_gc_alloc_region[] indicates that it should be the
   828   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   829   // array. If the parameter totally is set, we will not retain any
   830   // regions, irrespective of what _retain_gc_alloc_region[]
   831   // indicates.
   832   void release_gc_alloc_regions(bool totally);
   833 #ifndef PRODUCT
   834   // Useful for debugging.
   835   void print_gc_alloc_regions();
   836 #endif // !PRODUCT
   838   // Instance of the concurrent mark is_alive closure for embedding
   839   // into the reference processor as the is_alive_non_header. This
   840   // prevents unnecessary additions to the discovered lists during
   841   // concurrent discovery.
   842   G1CMIsAliveClosure _is_alive_closure;
   844   // ("Weak") Reference processing support
   845   ReferenceProcessor* _ref_processor;
   847   enum G1H_process_strong_roots_tasks {
   848     G1H_PS_mark_stack_oops_do,
   849     G1H_PS_refProcessor_oops_do,
   850     // Leave this one last.
   851     G1H_PS_NumElements
   852   };
   854   SubTasksDone* _process_strong_tasks;
   856   volatile bool _free_regions_coming;
   858 public:
   860   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   862   void set_refine_cte_cl_concurrency(bool concurrent);
   864   RefToScanQueue *task_queue(int i) const;
   866   // A set of cards where updates happened during the GC
   867   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   869   // A DirtyCardQueueSet that is used to hold cards that contain
   870   // references into the current collection set. This is used to
   871   // update the remembered sets of the regions in the collection
   872   // set in the event of an evacuation failure.
   873   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   874         { return _into_cset_dirty_card_queue_set; }
   876   // Create a G1CollectedHeap with the specified policy.
   877   // Must call the initialize method afterwards.
   878   // May not return if something goes wrong.
   879   G1CollectedHeap(G1CollectorPolicy* policy);
   881   // Initialize the G1CollectedHeap to have the initial and
   882   // maximum sizes, permanent generation, and remembered and barrier sets
   883   // specified by the policy object.
   884   jint initialize();
   886   virtual void ref_processing_init();
   888   void set_par_threads(int t) {
   889     SharedHeap::set_par_threads(t);
   890     _process_strong_tasks->set_n_threads(t);
   891   }
   893   virtual CollectedHeap::Name kind() const {
   894     return CollectedHeap::G1CollectedHeap;
   895   }
   897   // The current policy object for the collector.
   898   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   900   // Adaptive size policy.  No such thing for g1.
   901   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   903   // The rem set and barrier set.
   904   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   905   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   907   // The rem set iterator.
   908   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   909     return _rem_set_iterator[i];
   910   }
   912   HeapRegionRemSetIterator* rem_set_iterator() {
   913     return _rem_set_iterator[0];
   914   }
   916   unsigned get_gc_time_stamp() {
   917     return _gc_time_stamp;
   918   }
   920   void reset_gc_time_stamp() {
   921     _gc_time_stamp = 0;
   922     OrderAccess::fence();
   923   }
   925   void increment_gc_time_stamp() {
   926     ++_gc_time_stamp;
   927     OrderAccess::fence();
   928   }
   930   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   931                                   DirtyCardQueue* into_cset_dcq,
   932                                   bool concurrent, int worker_i);
   934   // The shared block offset table array.
   935   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   937   // Reference Processing accessor
   938   ReferenceProcessor* ref_processor() { return _ref_processor; }
   940   virtual size_t capacity() const;
   941   virtual size_t used() const;
   942   // This should be called when we're not holding the heap lock. The
   943   // result might be a bit inaccurate.
   944   size_t used_unlocked() const;
   945   size_t recalculate_used() const;
   946 #ifndef PRODUCT
   947   size_t recalculate_used_regions() const;
   948 #endif // PRODUCT
   950   // These virtual functions do the actual allocation.
   951   // Some heaps may offer a contiguous region for shared non-blocking
   952   // allocation, via inlined code (by exporting the address of the top and
   953   // end fields defining the extent of the contiguous allocation region.)
   954   // But G1CollectedHeap doesn't yet support this.
   956   // Return an estimate of the maximum allocation that could be performed
   957   // without triggering any collection or expansion activity.  In a
   958   // generational collector, for example, this is probably the largest
   959   // allocation that could be supported (without expansion) in the youngest
   960   // generation.  It is "unsafe" because no locks are taken; the result
   961   // should be treated as an approximation, not a guarantee, for use in
   962   // heuristic resizing decisions.
   963   virtual size_t unsafe_max_alloc();
   965   virtual bool is_maximal_no_gc() const {
   966     return _g1_storage.uncommitted_size() == 0;
   967   }
   969   // The total number of regions in the heap.
   970   size_t n_regions() { return _hrs.length(); }
   972   // The max number of regions in the heap.
   973   size_t max_regions() { return _hrs.max_length(); }
   975   // The number of regions that are completely free.
   976   size_t free_regions() { return _free_list.length(); }
   978   // The number of regions that are not completely free.
   979   size_t used_regions() { return n_regions() - free_regions(); }
   981   // The number of regions available for "regular" expansion.
   982   size_t expansion_regions() { return _expansion_regions; }
   984   // Factory method for HeapRegion instances. It will return NULL if
   985   // the allocation fails.
   986   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   988   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   989   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   990   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   991   void verify_dirty_young_regions() PRODUCT_RETURN;
   993   // verify_region_sets() performs verification over the region
   994   // lists. It will be compiled in the product code to be used when
   995   // necessary (i.e., during heap verification).
   996   void verify_region_sets();
   998   // verify_region_sets_optional() is planted in the code for
   999   // list verification in non-product builds (and it can be enabled in
  1000   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1001 #if HEAP_REGION_SET_FORCE_VERIFY
  1002   void verify_region_sets_optional() {
  1003     verify_region_sets();
  1005 #else // HEAP_REGION_SET_FORCE_VERIFY
  1006   void verify_region_sets_optional() { }
  1007 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1009 #ifdef ASSERT
  1010   bool is_on_master_free_list(HeapRegion* hr) {
  1011     return hr->containing_set() == &_free_list;
  1014   bool is_in_humongous_set(HeapRegion* hr) {
  1015     return hr->containing_set() == &_humongous_set;
  1017 #endif // ASSERT
  1019   // Wrapper for the region list operations that can be called from
  1020   // methods outside this class.
  1022   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1023     _secondary_free_list.add_as_tail(list);
  1026   void append_secondary_free_list() {
  1027     _free_list.add_as_head(&_secondary_free_list);
  1030   void append_secondary_free_list_if_not_empty_with_lock() {
  1031     // If the secondary free list looks empty there's no reason to
  1032     // take the lock and then try to append it.
  1033     if (!_secondary_free_list.is_empty()) {
  1034       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1035       append_secondary_free_list();
  1039   void set_free_regions_coming();
  1040   void reset_free_regions_coming();
  1041   bool free_regions_coming() { return _free_regions_coming; }
  1042   void wait_while_free_regions_coming();
  1044   // Perform a collection of the heap; intended for use in implementing
  1045   // "System.gc".  This probably implies as full a collection as the
  1046   // "CollectedHeap" supports.
  1047   virtual void collect(GCCause::Cause cause);
  1049   // The same as above but assume that the caller holds the Heap_lock.
  1050   void collect_locked(GCCause::Cause cause);
  1052   // This interface assumes that it's being called by the
  1053   // vm thread. It collects the heap assuming that the
  1054   // heap lock is already held and that we are executing in
  1055   // the context of the vm thread.
  1056   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1058   // True iff a evacuation has failed in the most-recent collection.
  1059   bool evacuation_failed() { return _evacuation_failed; }
  1061   // It will free a region if it has allocated objects in it that are
  1062   // all dead. It calls either free_region() or
  1063   // free_humongous_region() depending on the type of the region that
  1064   // is passed to it.
  1065   void free_region_if_empty(HeapRegion* hr,
  1066                             size_t* pre_used,
  1067                             FreeRegionList* free_list,
  1068                             HumongousRegionSet* humongous_proxy_set,
  1069                             HRRSCleanupTask* hrrs_cleanup_task,
  1070                             bool par);
  1072   // It appends the free list to the master free list and updates the
  1073   // master humongous list according to the contents of the proxy
  1074   // list. It also adjusts the total used bytes according to pre_used
  1075   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1076   void update_sets_after_freeing_regions(size_t pre_used,
  1077                                        FreeRegionList* free_list,
  1078                                        HumongousRegionSet* humongous_proxy_set,
  1079                                        bool par);
  1081   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1082   virtual bool is_in(const void* p) const;
  1084   // Return "TRUE" iff the given object address is within the collection
  1085   // set.
  1086   inline bool obj_in_cs(oop obj);
  1088   // Return "TRUE" iff the given object address is in the reserved
  1089   // region of g1 (excluding the permanent generation).
  1090   bool is_in_g1_reserved(const void* p) const {
  1091     return _g1_reserved.contains(p);
  1094   // Returns a MemRegion that corresponds to the space that has been
  1095   // reserved for the heap
  1096   MemRegion g1_reserved() {
  1097     return _g1_reserved;
  1100   // Returns a MemRegion that corresponds to the space that has been
  1101   // committed in the heap
  1102   MemRegion g1_committed() {
  1103     return _g1_committed;
  1106   virtual bool is_in_closed_subset(const void* p) const;
  1108   // Dirty card table entries covering a list of young regions.
  1109   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1111   // This resets the card table to all zeros.  It is used after
  1112   // a collection pause which used the card table to claim cards.
  1113   void cleanUpCardTable();
  1115   // Iteration functions.
  1117   // Iterate over all the ref-containing fields of all objects, calling
  1118   // "cl.do_oop" on each.
  1119   virtual void oop_iterate(OopClosure* cl) {
  1120     oop_iterate(cl, true);
  1122   void oop_iterate(OopClosure* cl, bool do_perm);
  1124   // Same as above, restricted to a memory region.
  1125   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1126     oop_iterate(mr, cl, true);
  1128   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1130   // Iterate over all objects, calling "cl.do_object" on each.
  1131   virtual void object_iterate(ObjectClosure* cl) {
  1132     object_iterate(cl, true);
  1134   virtual void safe_object_iterate(ObjectClosure* cl) {
  1135     object_iterate(cl, true);
  1137   void object_iterate(ObjectClosure* cl, bool do_perm);
  1139   // Iterate over all objects allocated since the last collection, calling
  1140   // "cl.do_object" on each.  The heap must have been initialized properly
  1141   // to support this function, or else this call will fail.
  1142   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1144   // Iterate over all spaces in use in the heap, in ascending address order.
  1145   virtual void space_iterate(SpaceClosure* cl);
  1147   // Iterate over heap regions, in address order, terminating the
  1148   // iteration early if the "doHeapRegion" method returns "true".
  1149   void heap_region_iterate(HeapRegionClosure* blk) const;
  1151   // Iterate over heap regions starting with r (or the first region if "r"
  1152   // is NULL), in address order, terminating early if the "doHeapRegion"
  1153   // method returns "true".
  1154   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1156   // Return the region with the given index. It assumes the index is valid.
  1157   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1159   // Divide the heap region sequence into "chunks" of some size (the number
  1160   // of regions divided by the number of parallel threads times some
  1161   // overpartition factor, currently 4).  Assumes that this will be called
  1162   // in parallel by ParallelGCThreads worker threads with discinct worker
  1163   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1164   // calls will use the same "claim_value", and that that claim value is
  1165   // different from the claim_value of any heap region before the start of
  1166   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1167   // attempting to claim the first region in each chunk, and, if
  1168   // successful, applying the closure to each region in the chunk (and
  1169   // setting the claim value of the second and subsequent regions of the
  1170   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1171   // i.e., that a closure never attempt to abort a traversal.
  1172   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1173                                        int worker,
  1174                                        jint claim_value);
  1176   // It resets all the region claim values to the default.
  1177   void reset_heap_region_claim_values();
  1179 #ifdef ASSERT
  1180   bool check_heap_region_claim_values(jint claim_value);
  1181 #endif // ASSERT
  1183   // Iterate over the regions (if any) in the current collection set.
  1184   void collection_set_iterate(HeapRegionClosure* blk);
  1186   // As above but starting from region r
  1187   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1189   // Returns the first (lowest address) compactible space in the heap.
  1190   virtual CompactibleSpace* first_compactible_space();
  1192   // A CollectedHeap will contain some number of spaces.  This finds the
  1193   // space containing a given address, or else returns NULL.
  1194   virtual Space* space_containing(const void* addr) const;
  1196   // A G1CollectedHeap will contain some number of heap regions.  This
  1197   // finds the region containing a given address, or else returns NULL.
  1198   template <class T>
  1199   inline HeapRegion* heap_region_containing(const T addr) const;
  1201   // Like the above, but requires "addr" to be in the heap (to avoid a
  1202   // null-check), and unlike the above, may return an continuing humongous
  1203   // region.
  1204   template <class T>
  1205   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1207   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1208   // each address in the (reserved) heap is a member of exactly
  1209   // one block.  The defining characteristic of a block is that it is
  1210   // possible to find its size, and thus to progress forward to the next
  1211   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1212   // represent Java objects, or they might be free blocks in a
  1213   // free-list-based heap (or subheap), as long as the two kinds are
  1214   // distinguishable and the size of each is determinable.
  1216   // Returns the address of the start of the "block" that contains the
  1217   // address "addr".  We say "blocks" instead of "object" since some heaps
  1218   // may not pack objects densely; a chunk may either be an object or a
  1219   // non-object.
  1220   virtual HeapWord* block_start(const void* addr) const;
  1222   // Requires "addr" to be the start of a chunk, and returns its size.
  1223   // "addr + size" is required to be the start of a new chunk, or the end
  1224   // of the active area of the heap.
  1225   virtual size_t block_size(const HeapWord* addr) const;
  1227   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1228   // the block is an object.
  1229   virtual bool block_is_obj(const HeapWord* addr) const;
  1231   // Does this heap support heap inspection? (+PrintClassHistogram)
  1232   virtual bool supports_heap_inspection() const { return true; }
  1234   // Section on thread-local allocation buffers (TLABs)
  1235   // See CollectedHeap for semantics.
  1237   virtual bool supports_tlab_allocation() const;
  1238   virtual size_t tlab_capacity(Thread* thr) const;
  1239   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1241   // Can a compiler initialize a new object without store barriers?
  1242   // This permission only extends from the creation of a new object
  1243   // via a TLAB up to the first subsequent safepoint. If such permission
  1244   // is granted for this heap type, the compiler promises to call
  1245   // defer_store_barrier() below on any slow path allocation of
  1246   // a new object for which such initializing store barriers will
  1247   // have been elided. G1, like CMS, allows this, but should be
  1248   // ready to provide a compensating write barrier as necessary
  1249   // if that storage came out of a non-young region. The efficiency
  1250   // of this implementation depends crucially on being able to
  1251   // answer very efficiently in constant time whether a piece of
  1252   // storage in the heap comes from a young region or not.
  1253   // See ReduceInitialCardMarks.
  1254   virtual bool can_elide_tlab_store_barriers() const {
  1255     // 6920090: Temporarily disabled, because of lingering
  1256     // instabilities related to RICM with G1. In the
  1257     // interim, the option ReduceInitialCardMarksForG1
  1258     // below is left solely as a debugging device at least
  1259     // until 6920109 fixes the instabilities.
  1260     return ReduceInitialCardMarksForG1;
  1263   virtual bool card_mark_must_follow_store() const {
  1264     return true;
  1267   bool is_in_young(const oop obj) {
  1268     HeapRegion* hr = heap_region_containing(obj);
  1269     return hr != NULL && hr->is_young();
  1272 #ifdef ASSERT
  1273   virtual bool is_in_partial_collection(const void* p);
  1274 #endif
  1276   virtual bool is_scavengable(const void* addr);
  1278   // We don't need barriers for initializing stores to objects
  1279   // in the young gen: for the SATB pre-barrier, there is no
  1280   // pre-value that needs to be remembered; for the remembered-set
  1281   // update logging post-barrier, we don't maintain remembered set
  1282   // information for young gen objects. Note that non-generational
  1283   // G1 does not have any "young" objects, should not elide
  1284   // the rs logging barrier and so should always answer false below.
  1285   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1286   // bit-rotted so was not tested below.
  1287   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1288     // Re 6920090, 6920109 above.
  1289     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1290     assert(G1Gen || !is_in_young(new_obj),
  1291            "Non-generational G1 should never return true below");
  1292     return is_in_young(new_obj);
  1295   // Can a compiler elide a store barrier when it writes
  1296   // a permanent oop into the heap?  Applies when the compiler
  1297   // is storing x to the heap, where x->is_perm() is true.
  1298   virtual bool can_elide_permanent_oop_store_barriers() const {
  1299     // At least until perm gen collection is also G1-ified, at
  1300     // which point this should return false.
  1301     return true;
  1304   // Returns "true" iff the given word_size is "very large".
  1305   static bool isHumongous(size_t word_size) {
  1306     // Note this has to be strictly greater-than as the TLABs
  1307     // are capped at the humongous thresold and we want to
  1308     // ensure that we don't try to allocate a TLAB as
  1309     // humongous and that we don't allocate a humongous
  1310     // object in a TLAB.
  1311     return word_size > _humongous_object_threshold_in_words;
  1314   // Update mod union table with the set of dirty cards.
  1315   void updateModUnion();
  1317   // Set the mod union bits corresponding to the given memRegion.  Note
  1318   // that this is always a safe operation, since it doesn't clear any
  1319   // bits.
  1320   void markModUnionRange(MemRegion mr);
  1322   // Records the fact that a marking phase is no longer in progress.
  1323   void set_marking_complete() {
  1324     _mark_in_progress = false;
  1326   void set_marking_started() {
  1327     _mark_in_progress = true;
  1329   bool mark_in_progress() {
  1330     return _mark_in_progress;
  1333   // Print the maximum heap capacity.
  1334   virtual size_t max_capacity() const;
  1336   virtual jlong millis_since_last_gc();
  1338   // Perform any cleanup actions necessary before allowing a verification.
  1339   virtual void prepare_for_verify();
  1341   // Perform verification.
  1343   // vo == UsePrevMarking  -> use "prev" marking information,
  1344   // vo == UseNextMarking -> use "next" marking information
  1345   // vo == UseMarkWord    -> use the mark word in the object header
  1346   //
  1347   // NOTE: Only the "prev" marking information is guaranteed to be
  1348   // consistent most of the time, so most calls to this should use
  1349   // vo == UsePrevMarking.
  1350   // Currently, there is only one case where this is called with
  1351   // vo == UseNextMarking, which is to verify the "next" marking
  1352   // information at the end of remark.
  1353   // Currently there is only one place where this is called with
  1354   // vo == UseMarkWord, which is to verify the marking during a
  1355   // full GC.
  1356   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1358   // Override; it uses the "prev" marking information
  1359   virtual void verify(bool allow_dirty, bool silent);
  1360   // Default behavior by calling print(tty);
  1361   virtual void print() const;
  1362   // This calls print_on(st, PrintHeapAtGCExtended).
  1363   virtual void print_on(outputStream* st) const;
  1364   // If extended is true, it will print out information for all
  1365   // regions in the heap by calling print_on_extended(st).
  1366   virtual void print_on(outputStream* st, bool extended) const;
  1367   virtual void print_on_extended(outputStream* st) const;
  1369   virtual void print_gc_threads_on(outputStream* st) const;
  1370   virtual void gc_threads_do(ThreadClosure* tc) const;
  1372   // Override
  1373   void print_tracing_info() const;
  1375   // Convenience function to be used in situations where the heap type can be
  1376   // asserted to be this type.
  1377   static G1CollectedHeap* heap();
  1379   void empty_young_list();
  1381   void set_region_short_lived_locked(HeapRegion* hr);
  1382   // add appropriate methods for any other surv rate groups
  1384   YoungList* young_list() { return _young_list; }
  1386   // debugging
  1387   bool check_young_list_well_formed() {
  1388     return _young_list->check_list_well_formed();
  1391   bool check_young_list_empty(bool check_heap,
  1392                               bool check_sample = true);
  1394   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1395   // many of these need to be public.
  1397   // The functions below are helper functions that a subclass of
  1398   // "CollectedHeap" can use in the implementation of its virtual
  1399   // functions.
  1400   // This performs a concurrent marking of the live objects in a
  1401   // bitmap off to the side.
  1402   void doConcurrentMark();
  1404   // Do a full concurrent marking, synchronously.
  1405   void do_sync_mark();
  1407   bool isMarkedPrev(oop obj) const;
  1408   bool isMarkedNext(oop obj) const;
  1410   // vo == UsePrevMarking -> use "prev" marking information,
  1411   // vo == UseNextMarking -> use "next" marking information,
  1412   // vo == UseMarkWord    -> use mark word from object header
  1413   bool is_obj_dead_cond(const oop obj,
  1414                         const HeapRegion* hr,
  1415                         const VerifyOption vo) const {
  1417     switch (vo) {
  1418       case VerifyOption_G1UsePrevMarking:
  1419         return is_obj_dead(obj, hr);
  1420       case VerifyOption_G1UseNextMarking:
  1421         return is_obj_ill(obj, hr);
  1422       default:
  1423         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1424         return !obj->is_gc_marked();
  1428   // Determine if an object is dead, given the object and also
  1429   // the region to which the object belongs. An object is dead
  1430   // iff a) it was not allocated since the last mark and b) it
  1431   // is not marked.
  1433   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1434     return
  1435       !hr->obj_allocated_since_prev_marking(obj) &&
  1436       !isMarkedPrev(obj);
  1439   // This is used when copying an object to survivor space.
  1440   // If the object is marked live, then we mark the copy live.
  1441   // If the object is allocated since the start of this mark
  1442   // cycle, then we mark the copy live.
  1443   // If the object has been around since the previous mark
  1444   // phase, and hasn't been marked yet during this phase,
  1445   // then we don't mark it, we just wait for the
  1446   // current marking cycle to get to it.
  1448   // This function returns true when an object has been
  1449   // around since the previous marking and hasn't yet
  1450   // been marked during this marking.
  1452   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1453     return
  1454       !hr->obj_allocated_since_next_marking(obj) &&
  1455       !isMarkedNext(obj);
  1458   // Determine if an object is dead, given only the object itself.
  1459   // This will find the region to which the object belongs and
  1460   // then call the region version of the same function.
  1462   // Added if it is in permanent gen it isn't dead.
  1463   // Added if it is NULL it isn't dead.
  1465   // vo == UsePrevMarking -> use "prev" marking information,
  1466   // vo == UseNextMarking -> use "next" marking information,
  1467   // vo == UseMarkWord    -> use mark word from object header
  1468   bool is_obj_dead_cond(const oop obj,
  1469                         const VerifyOption vo) const {
  1471     switch (vo) {
  1472       case VerifyOption_G1UsePrevMarking:
  1473         return is_obj_dead(obj);
  1474       case VerifyOption_G1UseNextMarking:
  1475         return is_obj_ill(obj);
  1476       default:
  1477         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1478         return !obj->is_gc_marked();
  1482   bool is_obj_dead(const oop obj) const {
  1483     const HeapRegion* hr = heap_region_containing(obj);
  1484     if (hr == NULL) {
  1485       if (Universe::heap()->is_in_permanent(obj))
  1486         return false;
  1487       else if (obj == NULL) return false;
  1488       else return true;
  1490     else return is_obj_dead(obj, hr);
  1493   bool is_obj_ill(const oop obj) const {
  1494     const HeapRegion* hr = heap_region_containing(obj);
  1495     if (hr == NULL) {
  1496       if (Universe::heap()->is_in_permanent(obj))
  1497         return false;
  1498       else if (obj == NULL) return false;
  1499       else return true;
  1501     else return is_obj_ill(obj, hr);
  1504   // The following is just to alert the verification code
  1505   // that a full collection has occurred and that the
  1506   // remembered sets are no longer up to date.
  1507   bool _full_collection;
  1508   void set_full_collection() { _full_collection = true;}
  1509   void clear_full_collection() {_full_collection = false;}
  1510   bool full_collection() {return _full_collection;}
  1512   ConcurrentMark* concurrent_mark() const { return _cm; }
  1513   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1515   // The dirty cards region list is used to record a subset of regions
  1516   // whose cards need clearing. The list if populated during the
  1517   // remembered set scanning and drained during the card table
  1518   // cleanup. Although the methods are reentrant, population/draining
  1519   // phases must not overlap. For synchronization purposes the last
  1520   // element on the list points to itself.
  1521   HeapRegion* _dirty_cards_region_list;
  1522   void push_dirty_cards_region(HeapRegion* hr);
  1523   HeapRegion* pop_dirty_cards_region();
  1525 public:
  1526   void stop_conc_gc_threads();
  1528   // <NEW PREDICTION>
  1530   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1531   void check_if_region_is_too_expensive(double predicted_time_ms);
  1532   size_t pending_card_num();
  1533   size_t max_pending_card_num();
  1534   size_t cards_scanned();
  1536   // </NEW PREDICTION>
  1538 protected:
  1539   size_t _max_heap_capacity;
  1540 };
  1542 #define use_local_bitmaps         1
  1543 #define verify_local_bitmaps      0
  1544 #define oop_buffer_length       256
  1546 #ifndef PRODUCT
  1547 class GCLabBitMap;
  1548 class GCLabBitMapClosure: public BitMapClosure {
  1549 private:
  1550   ConcurrentMark* _cm;
  1551   GCLabBitMap*    _bitmap;
  1553 public:
  1554   GCLabBitMapClosure(ConcurrentMark* cm,
  1555                      GCLabBitMap* bitmap) {
  1556     _cm     = cm;
  1557     _bitmap = bitmap;
  1560   virtual bool do_bit(size_t offset);
  1561 };
  1562 #endif // !PRODUCT
  1564 class GCLabBitMap: public BitMap {
  1565 private:
  1566   ConcurrentMark* _cm;
  1568   int       _shifter;
  1569   size_t    _bitmap_word_covers_words;
  1571   // beginning of the heap
  1572   HeapWord* _heap_start;
  1574   // this is the actual start of the GCLab
  1575   HeapWord* _real_start_word;
  1577   // this is the actual end of the GCLab
  1578   HeapWord* _real_end_word;
  1580   // this is the first word, possibly located before the actual start
  1581   // of the GCLab, that corresponds to the first bit of the bitmap
  1582   HeapWord* _start_word;
  1584   // size of a GCLab in words
  1585   size_t _gclab_word_size;
  1587   static int shifter() {
  1588     return MinObjAlignment - 1;
  1591   // how many heap words does a single bitmap word corresponds to?
  1592   static size_t bitmap_word_covers_words() {
  1593     return BitsPerWord << shifter();
  1596   size_t gclab_word_size() const {
  1597     return _gclab_word_size;
  1600   // Calculates actual GCLab size in words
  1601   size_t gclab_real_word_size() const {
  1602     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1603            / BitsPerWord;
  1606   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1607     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1608     // We are going to ensure that the beginning of a word in this
  1609     // bitmap also corresponds to the beginning of a word in the
  1610     // global marking bitmap. To handle the case where a GCLab
  1611     // starts from the middle of the bitmap, we need to add enough
  1612     // space (i.e. up to a bitmap word) to ensure that we have
  1613     // enough bits in the bitmap.
  1614     return bits_in_bitmap + BitsPerWord - 1;
  1616 public:
  1617   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1618     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1619       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1620       _shifter(shifter()),
  1621       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1622       _heap_start(heap_start),
  1623       _gclab_word_size(gclab_word_size),
  1624       _real_start_word(NULL),
  1625       _real_end_word(NULL),
  1626       _start_word(NULL)
  1628     guarantee( size_in_words() >= bitmap_size_in_words(),
  1629                "just making sure");
  1632   inline unsigned heapWordToOffset(HeapWord* addr) {
  1633     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1634     assert(offset < size(), "offset should be within bounds");
  1635     return offset;
  1638   inline HeapWord* offsetToHeapWord(size_t offset) {
  1639     HeapWord* addr =  _start_word + (offset << _shifter);
  1640     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1641     return addr;
  1644   bool fields_well_formed() {
  1645     bool ret1 = (_real_start_word == NULL) &&
  1646                 (_real_end_word == NULL) &&
  1647                 (_start_word == NULL);
  1648     if (ret1)
  1649       return true;
  1651     bool ret2 = _real_start_word >= _start_word &&
  1652       _start_word < _real_end_word &&
  1653       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1654       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1655                                                               > _real_end_word;
  1656     return ret2;
  1659   inline bool mark(HeapWord* addr) {
  1660     guarantee(use_local_bitmaps, "invariant");
  1661     assert(fields_well_formed(), "invariant");
  1663     if (addr >= _real_start_word && addr < _real_end_word) {
  1664       assert(!isMarked(addr), "should not have already been marked");
  1666       // first mark it on the bitmap
  1667       at_put(heapWordToOffset(addr), true);
  1669       return true;
  1670     } else {
  1671       return false;
  1675   inline bool isMarked(HeapWord* addr) {
  1676     guarantee(use_local_bitmaps, "invariant");
  1677     assert(fields_well_formed(), "invariant");
  1679     return at(heapWordToOffset(addr));
  1682   void set_buffer(HeapWord* start) {
  1683     guarantee(use_local_bitmaps, "invariant");
  1684     clear();
  1686     assert(start != NULL, "invariant");
  1687     _real_start_word = start;
  1688     _real_end_word   = start + _gclab_word_size;
  1690     size_t diff =
  1691       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1692     _start_word = start - diff;
  1694     assert(fields_well_formed(), "invariant");
  1697 #ifndef PRODUCT
  1698   void verify() {
  1699     // verify that the marks have been propagated
  1700     GCLabBitMapClosure cl(_cm, this);
  1701     iterate(&cl);
  1703 #endif // PRODUCT
  1705   void retire() {
  1706     guarantee(use_local_bitmaps, "invariant");
  1707     assert(fields_well_formed(), "invariant");
  1709     if (_start_word != NULL) {
  1710       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1712       // this means that the bitmap was set up for the GCLab
  1713       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1715       mark_bitmap->mostly_disjoint_range_union(this,
  1716                                 0, // always start from the start of the bitmap
  1717                                 _start_word,
  1718                                 gclab_real_word_size());
  1719       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1721 #ifndef PRODUCT
  1722       if (use_local_bitmaps && verify_local_bitmaps)
  1723         verify();
  1724 #endif // PRODUCT
  1725     } else {
  1726       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1730   size_t bitmap_size_in_words() const {
  1731     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1734 };
  1736 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1737 private:
  1738   bool        _retired;
  1739   bool        _during_marking;
  1740   GCLabBitMap _bitmap;
  1742 public:
  1743   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1744     ParGCAllocBuffer(gclab_word_size),
  1745     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1746     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1747     _retired(false)
  1748   { }
  1750   inline bool mark(HeapWord* addr) {
  1751     guarantee(use_local_bitmaps, "invariant");
  1752     assert(_during_marking, "invariant");
  1753     return _bitmap.mark(addr);
  1756   inline void set_buf(HeapWord* buf) {
  1757     if (use_local_bitmaps && _during_marking)
  1758       _bitmap.set_buffer(buf);
  1759     ParGCAllocBuffer::set_buf(buf);
  1760     _retired = false;
  1763   inline void retire(bool end_of_gc, bool retain) {
  1764     if (_retired)
  1765       return;
  1766     if (use_local_bitmaps && _during_marking) {
  1767       _bitmap.retire();
  1769     ParGCAllocBuffer::retire(end_of_gc, retain);
  1770     _retired = true;
  1772 };
  1774 class G1ParScanThreadState : public StackObj {
  1775 protected:
  1776   G1CollectedHeap* _g1h;
  1777   RefToScanQueue*  _refs;
  1778   DirtyCardQueue   _dcq;
  1779   CardTableModRefBS* _ct_bs;
  1780   G1RemSet* _g1_rem;
  1782   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1783   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1784   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1785   ageTable            _age_table;
  1787   size_t           _alloc_buffer_waste;
  1788   size_t           _undo_waste;
  1790   OopsInHeapRegionClosure*      _evac_failure_cl;
  1791   G1ParScanHeapEvacClosure*     _evac_cl;
  1792   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1794   int _hash_seed;
  1795   int _queue_num;
  1797   size_t _term_attempts;
  1799   double _start;
  1800   double _start_strong_roots;
  1801   double _strong_roots_time;
  1802   double _start_term;
  1803   double _term_time;
  1805   // Map from young-age-index (0 == not young, 1 is youngest) to
  1806   // surviving words. base is what we get back from the malloc call
  1807   size_t* _surviving_young_words_base;
  1808   // this points into the array, as we use the first few entries for padding
  1809   size_t* _surviving_young_words;
  1811 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1813   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1815   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1817   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1818   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1820   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1821     if (!from->is_survivor()) {
  1822       _g1_rem->par_write_ref(from, p, tid);
  1826   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1827     // If the new value of the field points to the same region or
  1828     // is the to-space, we don't need to include it in the Rset updates.
  1829     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1830       size_t card_index = ctbs()->index_for(p);
  1831       // If the card hasn't been added to the buffer, do it.
  1832       if (ctbs()->mark_card_deferred(card_index)) {
  1833         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1838 public:
  1839   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1841   ~G1ParScanThreadState() {
  1842     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1845   RefToScanQueue*   refs()            { return _refs;             }
  1846   ageTable*         age_table()       { return &_age_table;       }
  1848   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1849     return _alloc_buffers[purpose];
  1852   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1853   size_t undo_waste() const                      { return _undo_waste; }
  1855 #ifdef ASSERT
  1856   bool verify_ref(narrowOop* ref) const;
  1857   bool verify_ref(oop* ref) const;
  1858   bool verify_task(StarTask ref) const;
  1859 #endif // ASSERT
  1861   template <class T> void push_on_queue(T* ref) {
  1862     assert(verify_ref(ref), "sanity");
  1863     refs()->push(ref);
  1866   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1867     if (G1DeferredRSUpdate) {
  1868       deferred_rs_update(from, p, tid);
  1869     } else {
  1870       immediate_rs_update(from, p, tid);
  1874   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1876     HeapWord* obj = NULL;
  1877     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1878     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1879       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1880       assert(gclab_word_size == alloc_buf->word_sz(),
  1881              "dynamic resizing is not supported");
  1882       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1883       alloc_buf->retire(false, false);
  1885       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1886       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1887       // Otherwise.
  1888       alloc_buf->set_buf(buf);
  1890       obj = alloc_buf->allocate(word_sz);
  1891       assert(obj != NULL, "buffer was definitely big enough...");
  1892     } else {
  1893       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1895     return obj;
  1898   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1899     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1900     if (obj != NULL) return obj;
  1901     return allocate_slow(purpose, word_sz);
  1904   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1905     if (alloc_buffer(purpose)->contains(obj)) {
  1906       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1907              "should contain whole object");
  1908       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1909     } else {
  1910       CollectedHeap::fill_with_object(obj, word_sz);
  1911       add_to_undo_waste(word_sz);
  1915   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1916     _evac_failure_cl = evac_failure_cl;
  1918   OopsInHeapRegionClosure* evac_failure_closure() {
  1919     return _evac_failure_cl;
  1922   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1923     _evac_cl = evac_cl;
  1926   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1927     _partial_scan_cl = partial_scan_cl;
  1930   int* hash_seed() { return &_hash_seed; }
  1931   int  queue_num() { return _queue_num; }
  1933   size_t term_attempts() const  { return _term_attempts; }
  1934   void note_term_attempt() { _term_attempts++; }
  1936   void start_strong_roots() {
  1937     _start_strong_roots = os::elapsedTime();
  1939   void end_strong_roots() {
  1940     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1942   double strong_roots_time() const { return _strong_roots_time; }
  1944   void start_term_time() {
  1945     note_term_attempt();
  1946     _start_term = os::elapsedTime();
  1948   void end_term_time() {
  1949     _term_time += (os::elapsedTime() - _start_term);
  1951   double term_time() const { return _term_time; }
  1953   double elapsed_time() const {
  1954     return os::elapsedTime() - _start;
  1957   static void
  1958     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1959   void
  1960     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1962   size_t* surviving_young_words() {
  1963     // We add on to hide entry 0 which accumulates surviving words for
  1964     // age -1 regions (i.e. non-young ones)
  1965     return _surviving_young_words;
  1968   void retire_alloc_buffers() {
  1969     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1970       size_t waste = _alloc_buffers[ap]->words_remaining();
  1971       add_to_alloc_buffer_waste(waste);
  1972       _alloc_buffers[ap]->retire(true, false);
  1976   template <class T> void deal_with_reference(T* ref_to_scan) {
  1977     if (has_partial_array_mask(ref_to_scan)) {
  1978       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1979     } else {
  1980       // Note: we can use "raw" versions of "region_containing" because
  1981       // "obj_to_scan" is definitely in the heap, and is not in a
  1982       // humongous region.
  1983       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1984       _evac_cl->set_region(r);
  1985       _evac_cl->do_oop_nv(ref_to_scan);
  1989   void deal_with_reference(StarTask ref) {
  1990     assert(verify_task(ref), "sanity");
  1991     if (ref.is_narrow()) {
  1992       deal_with_reference((narrowOop*)ref);
  1993     } else {
  1994       deal_with_reference((oop*)ref);
  1998 public:
  1999   void trim_queue();
  2000 };
  2002 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial