src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 14 Jun 2011 11:01:10 -0700

author
johnc
date
Tue, 14 Jun 2011 11:01:10 -0700
changeset 2969
6747fd0512e0
parent 2963
c3f1170908be
child 2971
c9ca3f51cf41
permissions
-rw-r--r--

7004681: G1: Extend marking verification to Full GCs
Summary: Perform a heap verification after the first phase of G1's full GC using objects' mark words to determine liveness. The third parameter of the heap verification routines, which was used in G1 to determine which marking bitmap to use in liveness calculations, has been changed from a boolean to an enum with values defined for using the mark word, and the 'prev' and 'next' bitmaps.
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.hpp"
    33 #include "gc_implementation/g1/heapRegionSets.hpp"
    34 #include "gc_implementation/shared/hSpaceCounters.hpp"
    35 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/memRegion.hpp"
    38 #include "memory/sharedHeap.hpp"
    40 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    41 // It uses the "Garbage First" heap organization and algorithm, which
    42 // may combine concurrent marking with parallel, incremental compaction of
    43 // heap subsets that will yield large amounts of garbage.
    45 class HeapRegion;
    46 class HRRSCleanupTask;
    47 class PermanentGenerationSpec;
    48 class GenerationSpec;
    49 class OopsInHeapRegionClosure;
    50 class G1ScanHeapEvacClosure;
    51 class ObjectClosure;
    52 class SpaceClosure;
    53 class CompactibleSpaceClosure;
    54 class Space;
    55 class G1CollectorPolicy;
    56 class GenRemSet;
    57 class G1RemSet;
    58 class HeapRegionRemSetIterator;
    59 class ConcurrentMark;
    60 class ConcurrentMarkThread;
    61 class ConcurrentG1Refine;
    62 class GenerationCounters;
    64 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    65 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    67 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    68 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    70 enum GCAllocPurpose {
    71   GCAllocForTenured,
    72   GCAllocForSurvived,
    73   GCAllocPurposeCount
    74 };
    76 class YoungList : public CHeapObj {
    77 private:
    78   G1CollectedHeap* _g1h;
    80   HeapRegion* _head;
    82   HeapRegion* _survivor_head;
    83   HeapRegion* _survivor_tail;
    85   HeapRegion* _curr;
    87   size_t      _length;
    88   size_t      _survivor_length;
    90   size_t      _last_sampled_rs_lengths;
    91   size_t      _sampled_rs_lengths;
    93   void         empty_list(HeapRegion* list);
    95 public:
    96   YoungList(G1CollectedHeap* g1h);
    98   void         push_region(HeapRegion* hr);
    99   void         add_survivor_region(HeapRegion* hr);
   101   void         empty_list();
   102   bool         is_empty() { return _length == 0; }
   103   size_t       length() { return _length; }
   104   size_t       survivor_length() { return _survivor_length; }
   106   // Currently we do not keep track of the used byte sum for the
   107   // young list and the survivors and it'd be quite a lot of work to
   108   // do so. When we'll eventually replace the young list with
   109   // instances of HeapRegionLinkedList we'll get that for free. So,
   110   // we'll report the more accurate information then.
   111   size_t       eden_used_bytes() {
   112     assert(length() >= survivor_length(), "invariant");
   113     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   114   }
   115   size_t       survivor_used_bytes() {
   116     return survivor_length() * HeapRegion::GrainBytes;
   117   }
   119   void rs_length_sampling_init();
   120   bool rs_length_sampling_more();
   121   void rs_length_sampling_next();
   123   void reset_sampled_info() {
   124     _last_sampled_rs_lengths =   0;
   125   }
   126   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   128   // for development purposes
   129   void reset_auxilary_lists();
   130   void clear() { _head = NULL; _length = 0; }
   132   void clear_survivors() {
   133     _survivor_head    = NULL;
   134     _survivor_tail    = NULL;
   135     _survivor_length  = 0;
   136   }
   138   HeapRegion* first_region() { return _head; }
   139   HeapRegion* first_survivor_region() { return _survivor_head; }
   140   HeapRegion* last_survivor_region() { return _survivor_tail; }
   142   // debugging
   143   bool          check_list_well_formed();
   144   bool          check_list_empty(bool check_sample = true);
   145   void          print();
   146 };
   148 class MutatorAllocRegion : public G1AllocRegion {
   149 protected:
   150   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   151   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   152 public:
   153   MutatorAllocRegion()
   154     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   155 };
   157 class RefineCardTableEntryClosure;
   158 class G1CollectedHeap : public SharedHeap {
   159   friend class VM_G1CollectForAllocation;
   160   friend class VM_GenCollectForPermanentAllocation;
   161   friend class VM_G1CollectFull;
   162   friend class VM_G1IncCollectionPause;
   163   friend class VMStructs;
   164   friend class MutatorAllocRegion;
   166   // Closures used in implementation.
   167   friend class G1ParCopyHelper;
   168   friend class G1IsAliveClosure;
   169   friend class G1EvacuateFollowersClosure;
   170   friend class G1ParScanThreadState;
   171   friend class G1ParScanClosureSuper;
   172   friend class G1ParEvacuateFollowersClosure;
   173   friend class G1ParTask;
   174   friend class G1FreeGarbageRegionClosure;
   175   friend class RefineCardTableEntryClosure;
   176   friend class G1PrepareCompactClosure;
   177   friend class RegionSorter;
   178   friend class RegionResetter;
   179   friend class CountRCClosure;
   180   friend class EvacPopObjClosure;
   181   friend class G1ParCleanupCTTask;
   183   // Other related classes.
   184   friend class G1MarkSweep;
   186 private:
   187   // The one and only G1CollectedHeap, so static functions can find it.
   188   static G1CollectedHeap* _g1h;
   190   static size_t _humongous_object_threshold_in_words;
   192   // Storage for the G1 heap (excludes the permanent generation).
   193   VirtualSpace _g1_storage;
   194   MemRegion    _g1_reserved;
   196   // The part of _g1_storage that is currently committed.
   197   MemRegion _g1_committed;
   199   // The master free list. It will satisfy all new region allocations.
   200   MasterFreeRegionList      _free_list;
   202   // The secondary free list which contains regions that have been
   203   // freed up during the cleanup process. This will be appended to the
   204   // master free list when appropriate.
   205   SecondaryFreeRegionList   _secondary_free_list;
   207   // It keeps track of the humongous regions.
   208   MasterHumongousRegionSet  _humongous_set;
   210   // The number of regions we could create by expansion.
   211   size_t _expansion_regions;
   213   // The block offset table for the G1 heap.
   214   G1BlockOffsetSharedArray* _bot_shared;
   216   // Move all of the regions off the free lists, then rebuild those free
   217   // lists, before and after full GC.
   218   void tear_down_region_lists();
   219   void rebuild_region_lists();
   221   // The sequence of all heap regions in the heap.
   222   HeapRegionSeq _hrs;
   224   // Alloc region used to satisfy mutator allocation requests.
   225   MutatorAllocRegion _mutator_alloc_region;
   227   // It resets the mutator alloc region before new allocations can take place.
   228   void init_mutator_alloc_region();
   230   // It releases the mutator alloc region.
   231   void release_mutator_alloc_region();
   233   void abandon_gc_alloc_regions();
   235   // The to-space memory regions into which objects are being copied during
   236   // a GC.
   237   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   238   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   239   // These are the regions, one per GCAllocPurpose, that are half-full
   240   // at the end of a collection and that we want to reuse during the
   241   // next collection.
   242   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   243   // This specifies whether we will keep the last half-full region at
   244   // the end of a collection so that it can be reused during the next
   245   // collection (this is specified per GCAllocPurpose)
   246   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   248   // A list of the regions that have been set to be alloc regions in the
   249   // current collection.
   250   HeapRegion* _gc_alloc_region_list;
   252   // Helper for monitoring and management support.
   253   G1MonitoringSupport* _g1mm;
   255   // Determines PLAB size for a particular allocation purpose.
   256   static size_t desired_plab_sz(GCAllocPurpose purpose);
   258   // When called by par thread, requires the FreeList_lock to be held.
   259   void push_gc_alloc_region(HeapRegion* hr);
   261   // This should only be called single-threaded.  Undeclares all GC alloc
   262   // regions.
   263   void forget_alloc_region_list();
   265   // Should be used to set an alloc region, because there's other
   266   // associated bookkeeping.
   267   void set_gc_alloc_region(int purpose, HeapRegion* r);
   269   // Check well-formedness of alloc region list.
   270   bool check_gc_alloc_regions();
   272   // Outside of GC pauses, the number of bytes used in all regions other
   273   // than the current allocation region.
   274   size_t _summary_bytes_used;
   276   // This is used for a quick test on whether a reference points into
   277   // the collection set or not. Basically, we have an array, with one
   278   // byte per region, and that byte denotes whether the corresponding
   279   // region is in the collection set or not. The entry corresponding
   280   // the bottom of the heap, i.e., region 0, is pointed to by
   281   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   282   // biased so that it actually points to address 0 of the address
   283   // space, to make the test as fast as possible (we can simply shift
   284   // the address to address into it, instead of having to subtract the
   285   // bottom of the heap from the address before shifting it; basically
   286   // it works in the same way the card table works).
   287   bool* _in_cset_fast_test;
   289   // The allocated array used for the fast test on whether a reference
   290   // points into the collection set or not. This field is also used to
   291   // free the array.
   292   bool* _in_cset_fast_test_base;
   294   // The length of the _in_cset_fast_test_base array.
   295   size_t _in_cset_fast_test_length;
   297   volatile unsigned _gc_time_stamp;
   299   size_t* _surviving_young_words;
   301   void setup_surviving_young_words();
   302   void update_surviving_young_words(size_t* surv_young_words);
   303   void cleanup_surviving_young_words();
   305   // It decides whether an explicit GC should start a concurrent cycle
   306   // instead of doing a STW GC. Currently, a concurrent cycle is
   307   // explicitly started if:
   308   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   309   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   310   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   312   // Keeps track of how many "full collections" (i.e., Full GCs or
   313   // concurrent cycles) we have completed. The number of them we have
   314   // started is maintained in _total_full_collections in CollectedHeap.
   315   volatile unsigned int _full_collections_completed;
   317   // This is a non-product method that is helpful for testing. It is
   318   // called at the end of a GC and artificially expands the heap by
   319   // allocating a number of dead regions. This way we can induce very
   320   // frequent marking cycles and stress the cleanup / concurrent
   321   // cleanup code more (as all the regions that will be allocated by
   322   // this method will be found dead by the marking cycle).
   323   void allocate_dummy_regions() PRODUCT_RETURN;
   325   // These are macros so that, if the assert fires, we get the correct
   326   // line number, file, etc.
   328 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   329   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   330           (_extra_message_),                                                  \
   331           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   332           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   333           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   335 #define assert_heap_locked()                                                  \
   336   do {                                                                        \
   337     assert(Heap_lock->owned_by_self(),                                        \
   338            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   339   } while (0)
   341 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   342   do {                                                                        \
   343     assert(Heap_lock->owned_by_self() ||                                      \
   344            (SafepointSynchronize::is_at_safepoint() &&                        \
   345              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   346            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   347                                         "should be at a safepoint"));         \
   348   } while (0)
   350 #define assert_heap_locked_and_not_at_safepoint()                             \
   351   do {                                                                        \
   352     assert(Heap_lock->owned_by_self() &&                                      \
   353                                     !SafepointSynchronize::is_at_safepoint(), \
   354           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   355                                        "should not be at a safepoint"));      \
   356   } while (0)
   358 #define assert_heap_not_locked()                                              \
   359   do {                                                                        \
   360     assert(!Heap_lock->owned_by_self(),                                       \
   361         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   362   } while (0)
   364 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   365   do {                                                                        \
   366     assert(!Heap_lock->owned_by_self() &&                                     \
   367                                     !SafepointSynchronize::is_at_safepoint(), \
   368       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   369                                    "should not be at a safepoint"));          \
   370   } while (0)
   372 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   373   do {                                                                        \
   374     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   375               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   376            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   377   } while (0)
   379 #define assert_not_at_safepoint()                                             \
   380   do {                                                                        \
   381     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   382            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   383   } while (0)
   385 protected:
   387   // Returns "true" iff none of the gc alloc regions have any allocations
   388   // since the last call to "save_marks".
   389   bool all_alloc_regions_no_allocs_since_save_marks();
   390   // Perform finalization stuff on all allocation regions.
   391   void retire_all_alloc_regions();
   393   // The number of regions allocated to hold humongous objects.
   394   int         _num_humongous_regions;
   395   YoungList*  _young_list;
   397   // The current policy object for the collector.
   398   G1CollectorPolicy* _g1_policy;
   400   // This is the second level of trying to allocate a new region. If
   401   // new_region() didn't find a region on the free_list, this call will
   402   // check whether there's anything available on the
   403   // secondary_free_list and/or wait for more regions to appear on
   404   // that list, if _free_regions_coming is set.
   405   HeapRegion* new_region_try_secondary_free_list();
   407   // Try to allocate a single non-humongous HeapRegion sufficient for
   408   // an allocation of the given word_size. If do_expand is true,
   409   // attempt to expand the heap if necessary to satisfy the allocation
   410   // request.
   411   HeapRegion* new_region(size_t word_size, bool do_expand);
   413   // Try to allocate a new region to be used for allocation by
   414   // a GC thread. It will try to expand the heap if no region is
   415   // available.
   416   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   418   // Attempt to satisfy a humongous allocation request of the given
   419   // size by finding a contiguous set of free regions of num_regions
   420   // length and remove them from the master free list. Return the
   421   // index of the first region or G1_NULL_HRS_INDEX if the search
   422   // was unsuccessful.
   423   size_t humongous_obj_allocate_find_first(size_t num_regions,
   424                                            size_t word_size);
   426   // Initialize a contiguous set of free regions of length num_regions
   427   // and starting at index first so that they appear as a single
   428   // humongous region.
   429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   430                                                       size_t num_regions,
   431                                                       size_t word_size);
   433   // Attempt to allocate a humongous object of the given size. Return
   434   // NULL if unsuccessful.
   435   HeapWord* humongous_obj_allocate(size_t word_size);
   437   // The following two methods, allocate_new_tlab() and
   438   // mem_allocate(), are the two main entry points from the runtime
   439   // into the G1's allocation routines. They have the following
   440   // assumptions:
   441   //
   442   // * They should both be called outside safepoints.
   443   //
   444   // * They should both be called without holding the Heap_lock.
   445   //
   446   // * All allocation requests for new TLABs should go to
   447   //   allocate_new_tlab().
   448   //
   449   // * All non-TLAB allocation requests should go to mem_allocate()
   450   //   and mem_allocate() should never be called with is_tlab == true.
   451   //
   452   // * If either call cannot satisfy the allocation request using the
   453   //   current allocating region, they will try to get a new one. If
   454   //   this fails, they will attempt to do an evacuation pause and
   455   //   retry the allocation.
   456   //
   457   // * If all allocation attempts fail, even after trying to schedule
   458   //   an evacuation pause, allocate_new_tlab() will return NULL,
   459   //   whereas mem_allocate() will attempt a heap expansion and/or
   460   //   schedule a Full GC.
   461   //
   462   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   463   //   should never be called with word_size being humongous. All
   464   //   humongous allocation requests should go to mem_allocate() which
   465   //   will satisfy them with a special path.
   467   virtual HeapWord* allocate_new_tlab(size_t word_size);
   469   virtual HeapWord* mem_allocate(size_t word_size,
   470                                  bool   is_noref,
   471                                  bool   is_tlab, /* expected to be false */
   472                                  bool*  gc_overhead_limit_was_exceeded);
   474   // The following three methods take a gc_count_before_ret
   475   // parameter which is used to return the GC count if the method
   476   // returns NULL. Given that we are required to read the GC count
   477   // while holding the Heap_lock, and these paths will take the
   478   // Heap_lock at some point, it's easier to get them to read the GC
   479   // count while holding the Heap_lock before they return NULL instead
   480   // of the caller (namely: mem_allocate()) having to also take the
   481   // Heap_lock just to read the GC count.
   483   // First-level mutator allocation attempt: try to allocate out of
   484   // the mutator alloc region without taking the Heap_lock. This
   485   // should only be used for non-humongous allocations.
   486   inline HeapWord* attempt_allocation(size_t word_size,
   487                                       unsigned int* gc_count_before_ret);
   489   // Second-level mutator allocation attempt: take the Heap_lock and
   490   // retry the allocation attempt, potentially scheduling a GC
   491   // pause. This should only be used for non-humongous allocations.
   492   HeapWord* attempt_allocation_slow(size_t word_size,
   493                                     unsigned int* gc_count_before_ret);
   495   // Takes the Heap_lock and attempts a humongous allocation. It can
   496   // potentially schedule a GC pause.
   497   HeapWord* attempt_allocation_humongous(size_t word_size,
   498                                          unsigned int* gc_count_before_ret);
   500   // Allocation attempt that should be called during safepoints (e.g.,
   501   // at the end of a successful GC). expect_null_mutator_alloc_region
   502   // specifies whether the mutator alloc region is expected to be NULL
   503   // or not.
   504   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   505                                        bool expect_null_mutator_alloc_region);
   507   // It dirties the cards that cover the block so that so that the post
   508   // write barrier never queues anything when updating objects on this
   509   // block. It is assumed (and in fact we assert) that the block
   510   // belongs to a young region.
   511   inline void dirty_young_block(HeapWord* start, size_t word_size);
   513   // Allocate blocks during garbage collection. Will ensure an
   514   // allocation region, either by picking one or expanding the
   515   // heap, and then allocate a block of the given size. The block
   516   // may not be a humongous - it must fit into a single heap region.
   517   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   519   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   520                                     HeapRegion*    alloc_region,
   521                                     bool           par,
   522                                     size_t         word_size);
   524   // Ensure that no further allocations can happen in "r", bearing in mind
   525   // that parallel threads might be attempting allocations.
   526   void par_allocate_remaining_space(HeapRegion* r);
   528   // Retires an allocation region when it is full or at the end of a
   529   // GC pause.
   530   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   532   // These two methods are the "callbacks" from the G1AllocRegion class.
   534   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   535   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   536                                    size_t allocated_bytes);
   538   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   539   //   inspection request and should collect the entire heap
   540   // - if clear_all_soft_refs is true, all soft references should be
   541   //   cleared during the GC
   542   // - if explicit_gc is false, word_size describes the allocation that
   543   //   the GC should attempt (at least) to satisfy
   544   // - it returns false if it is unable to do the collection due to the
   545   //   GC locker being active, true otherwise
   546   bool do_collection(bool explicit_gc,
   547                      bool clear_all_soft_refs,
   548                      size_t word_size);
   550   // Callback from VM_G1CollectFull operation.
   551   // Perform a full collection.
   552   void do_full_collection(bool clear_all_soft_refs);
   554   // Resize the heap if necessary after a full collection.  If this is
   555   // after a collect-for allocation, "word_size" is the allocation size,
   556   // and will be considered part of the used portion of the heap.
   557   void resize_if_necessary_after_full_collection(size_t word_size);
   559   // Callback from VM_G1CollectForAllocation operation.
   560   // This function does everything necessary/possible to satisfy a
   561   // failed allocation request (including collection, expansion, etc.)
   562   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   564   // Attempting to expand the heap sufficiently
   565   // to support an allocation of the given "word_size".  If
   566   // successful, perform the allocation and return the address of the
   567   // allocated block, or else "NULL".
   568   HeapWord* expand_and_allocate(size_t word_size);
   570 public:
   572   G1MonitoringSupport* g1mm() { return _g1mm; }
   574   // Expand the garbage-first heap by at least the given size (in bytes!).
   575   // Returns true if the heap was expanded by the requested amount;
   576   // false otherwise.
   577   // (Rounds up to a HeapRegion boundary.)
   578   bool expand(size_t expand_bytes);
   580   // Do anything common to GC's.
   581   virtual void gc_prologue(bool full);
   582   virtual void gc_epilogue(bool full);
   584   // We register a region with the fast "in collection set" test. We
   585   // simply set to true the array slot corresponding to this region.
   586   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   587     assert(_in_cset_fast_test_base != NULL, "sanity");
   588     assert(r->in_collection_set(), "invariant");
   589     size_t index = r->hrs_index();
   590     assert(index < _in_cset_fast_test_length, "invariant");
   591     assert(!_in_cset_fast_test_base[index], "invariant");
   592     _in_cset_fast_test_base[index] = true;
   593   }
   595   // This is a fast test on whether a reference points into the
   596   // collection set or not. It does not assume that the reference
   597   // points into the heap; if it doesn't, it will return false.
   598   bool in_cset_fast_test(oop obj) {
   599     assert(_in_cset_fast_test != NULL, "sanity");
   600     if (_g1_committed.contains((HeapWord*) obj)) {
   601       // no need to subtract the bottom of the heap from obj,
   602       // _in_cset_fast_test is biased
   603       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   604       bool ret = _in_cset_fast_test[index];
   605       // let's make sure the result is consistent with what the slower
   606       // test returns
   607       assert( ret || !obj_in_cs(obj), "sanity");
   608       assert(!ret ||  obj_in_cs(obj), "sanity");
   609       return ret;
   610     } else {
   611       return false;
   612     }
   613   }
   615   void clear_cset_fast_test() {
   616     assert(_in_cset_fast_test_base != NULL, "sanity");
   617     memset(_in_cset_fast_test_base, false,
   618         _in_cset_fast_test_length * sizeof(bool));
   619   }
   621   // This is called at the end of either a concurrent cycle or a Full
   622   // GC to update the number of full collections completed. Those two
   623   // can happen in a nested fashion, i.e., we start a concurrent
   624   // cycle, a Full GC happens half-way through it which ends first,
   625   // and then the cycle notices that a Full GC happened and ends
   626   // too. The concurrent parameter is a boolean to help us do a bit
   627   // tighter consistency checking in the method. If concurrent is
   628   // false, the caller is the inner caller in the nesting (i.e., the
   629   // Full GC). If concurrent is true, the caller is the outer caller
   630   // in this nesting (i.e., the concurrent cycle). Further nesting is
   631   // not currently supported. The end of the this call also notifies
   632   // the FullGCCount_lock in case a Java thread is waiting for a full
   633   // GC to happen (e.g., it called System.gc() with
   634   // +ExplicitGCInvokesConcurrent).
   635   void increment_full_collections_completed(bool concurrent);
   637   unsigned int full_collections_completed() {
   638     return _full_collections_completed;
   639   }
   641 protected:
   643   // Shrink the garbage-first heap by at most the given size (in bytes!).
   644   // (Rounds down to a HeapRegion boundary.)
   645   virtual void shrink(size_t expand_bytes);
   646   void shrink_helper(size_t expand_bytes);
   648   #if TASKQUEUE_STATS
   649   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   650   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   651   void reset_taskqueue_stats();
   652   #endif // TASKQUEUE_STATS
   654   // Schedule the VM operation that will do an evacuation pause to
   655   // satisfy an allocation request of word_size. *succeeded will
   656   // return whether the VM operation was successful (it did do an
   657   // evacuation pause) or not (another thread beat us to it or the GC
   658   // locker was active). Given that we should not be holding the
   659   // Heap_lock when we enter this method, we will pass the
   660   // gc_count_before (i.e., total_collections()) as a parameter since
   661   // it has to be read while holding the Heap_lock. Currently, both
   662   // methods that call do_collection_pause() release the Heap_lock
   663   // before the call, so it's easy to read gc_count_before just before.
   664   HeapWord* do_collection_pause(size_t       word_size,
   665                                 unsigned int gc_count_before,
   666                                 bool*        succeeded);
   668   // The guts of the incremental collection pause, executed by the vm
   669   // thread. It returns false if it is unable to do the collection due
   670   // to the GC locker being active, true otherwise
   671   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   673   // Actually do the work of evacuating the collection set.
   674   void evacuate_collection_set();
   676   // The g1 remembered set of the heap.
   677   G1RemSet* _g1_rem_set;
   678   // And it's mod ref barrier set, used to track updates for the above.
   679   ModRefBarrierSet* _mr_bs;
   681   // A set of cards that cover the objects for which the Rsets should be updated
   682   // concurrently after the collection.
   683   DirtyCardQueueSet _dirty_card_queue_set;
   685   // The Heap Region Rem Set Iterator.
   686   HeapRegionRemSetIterator** _rem_set_iterator;
   688   // The closure used to refine a single card.
   689   RefineCardTableEntryClosure* _refine_cte_cl;
   691   // A function to check the consistency of dirty card logs.
   692   void check_ct_logs_at_safepoint();
   694   // A DirtyCardQueueSet that is used to hold cards that contain
   695   // references into the current collection set. This is used to
   696   // update the remembered sets of the regions in the collection
   697   // set in the event of an evacuation failure.
   698   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   700   // After a collection pause, make the regions in the CS into free
   701   // regions.
   702   void free_collection_set(HeapRegion* cs_head);
   704   // Abandon the current collection set without recording policy
   705   // statistics or updating free lists.
   706   void abandon_collection_set(HeapRegion* cs_head);
   708   // Applies "scan_non_heap_roots" to roots outside the heap,
   709   // "scan_rs" to roots inside the heap (having done "set_region" to
   710   // indicate the region in which the root resides), and does "scan_perm"
   711   // (setting the generation to the perm generation.)  If "scan_rs" is
   712   // NULL, then this step is skipped.  The "worker_i"
   713   // param is for use with parallel roots processing, and should be
   714   // the "i" of the calling parallel worker thread's work(i) function.
   715   // In the sequential case this param will be ignored.
   716   void g1_process_strong_roots(bool collecting_perm_gen,
   717                                SharedHeap::ScanningOption so,
   718                                OopClosure* scan_non_heap_roots,
   719                                OopsInHeapRegionClosure* scan_rs,
   720                                OopsInGenClosure* scan_perm,
   721                                int worker_i);
   723   // Apply "blk" to all the weak roots of the system.  These include
   724   // JNI weak roots, the code cache, system dictionary, symbol table,
   725   // string table, and referents of reachable weak refs.
   726   void g1_process_weak_roots(OopClosure* root_closure,
   727                              OopClosure* non_root_closure);
   729   // Invoke "save_marks" on all heap regions.
   730   void save_marks();
   732   // Frees a non-humongous region by initializing its contents and
   733   // adding it to the free list that's passed as a parameter (this is
   734   // usually a local list which will be appended to the master free
   735   // list later). The used bytes of freed regions are accumulated in
   736   // pre_used. If par is true, the region's RSet will not be freed
   737   // up. The assumption is that this will be done later.
   738   void free_region(HeapRegion* hr,
   739                    size_t* pre_used,
   740                    FreeRegionList* free_list,
   741                    bool par);
   743   // Frees a humongous region by collapsing it into individual regions
   744   // and calling free_region() for each of them. The freed regions
   745   // will be added to the free list that's passed as a parameter (this
   746   // is usually a local list which will be appended to the master free
   747   // list later). The used bytes of freed regions are accumulated in
   748   // pre_used. If par is true, the region's RSet will not be freed
   749   // up. The assumption is that this will be done later.
   750   void free_humongous_region(HeapRegion* hr,
   751                              size_t* pre_used,
   752                              FreeRegionList* free_list,
   753                              HumongousRegionSet* humongous_proxy_set,
   754                              bool par);
   756   // Notifies all the necessary spaces that the committed space has
   757   // been updated (either expanded or shrunk). It should be called
   758   // after _g1_storage is updated.
   759   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   761   // The concurrent marker (and the thread it runs in.)
   762   ConcurrentMark* _cm;
   763   ConcurrentMarkThread* _cmThread;
   764   bool _mark_in_progress;
   766   // The concurrent refiner.
   767   ConcurrentG1Refine* _cg1r;
   769   // The parallel task queues
   770   RefToScanQueueSet *_task_queues;
   772   // True iff a evacuation has failed in the current collection.
   773   bool _evacuation_failed;
   775   // Set the attribute indicating whether evacuation has failed in the
   776   // current collection.
   777   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   779   // Failed evacuations cause some logical from-space objects to have
   780   // forwarding pointers to themselves.  Reset them.
   781   void remove_self_forwarding_pointers();
   783   // When one is non-null, so is the other.  Together, they each pair is
   784   // an object with a preserved mark, and its mark value.
   785   GrowableArray<oop>*     _objs_with_preserved_marks;
   786   GrowableArray<markOop>* _preserved_marks_of_objs;
   788   // Preserve the mark of "obj", if necessary, in preparation for its mark
   789   // word being overwritten with a self-forwarding-pointer.
   790   void preserve_mark_if_necessary(oop obj, markOop m);
   792   // The stack of evac-failure objects left to be scanned.
   793   GrowableArray<oop>*    _evac_failure_scan_stack;
   794   // The closure to apply to evac-failure objects.
   796   OopsInHeapRegionClosure* _evac_failure_closure;
   797   // Set the field above.
   798   void
   799   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   800     _evac_failure_closure = evac_failure_closure;
   801   }
   803   // Push "obj" on the scan stack.
   804   void push_on_evac_failure_scan_stack(oop obj);
   805   // Process scan stack entries until the stack is empty.
   806   void drain_evac_failure_scan_stack();
   807   // True iff an invocation of "drain_scan_stack" is in progress; to
   808   // prevent unnecessary recursion.
   809   bool _drain_in_progress;
   811   // Do any necessary initialization for evacuation-failure handling.
   812   // "cl" is the closure that will be used to process evac-failure
   813   // objects.
   814   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   815   // Do any necessary cleanup for evacuation-failure handling data
   816   // structures.
   817   void finalize_for_evac_failure();
   819   // An attempt to evacuate "obj" has failed; take necessary steps.
   820   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   821   void handle_evacuation_failure_common(oop obj, markOop m);
   823   // Ensure that the relevant gc_alloc regions are set.
   824   void get_gc_alloc_regions();
   825   // We're done with GC alloc regions. We are going to tear down the
   826   // gc alloc list and remove the gc alloc tag from all the regions on
   827   // that list. However, we will also retain the last (i.e., the one
   828   // that is half-full) GC alloc region, per GCAllocPurpose, for
   829   // possible reuse during the next collection, provided
   830   // _retain_gc_alloc_region[] indicates that it should be the
   831   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   832   // array. If the parameter totally is set, we will not retain any
   833   // regions, irrespective of what _retain_gc_alloc_region[]
   834   // indicates.
   835   void release_gc_alloc_regions(bool totally);
   836 #ifndef PRODUCT
   837   // Useful for debugging.
   838   void print_gc_alloc_regions();
   839 #endif // !PRODUCT
   841   // Instance of the concurrent mark is_alive closure for embedding
   842   // into the reference processor as the is_alive_non_header. This
   843   // prevents unnecessary additions to the discovered lists during
   844   // concurrent discovery.
   845   G1CMIsAliveClosure _is_alive_closure;
   847   // ("Weak") Reference processing support
   848   ReferenceProcessor* _ref_processor;
   850   enum G1H_process_strong_roots_tasks {
   851     G1H_PS_mark_stack_oops_do,
   852     G1H_PS_refProcessor_oops_do,
   853     // Leave this one last.
   854     G1H_PS_NumElements
   855   };
   857   SubTasksDone* _process_strong_tasks;
   859   volatile bool _free_regions_coming;
   861 public:
   863   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   865   void set_refine_cte_cl_concurrency(bool concurrent);
   867   RefToScanQueue *task_queue(int i) const;
   869   // A set of cards where updates happened during the GC
   870   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   872   // A DirtyCardQueueSet that is used to hold cards that contain
   873   // references into the current collection set. This is used to
   874   // update the remembered sets of the regions in the collection
   875   // set in the event of an evacuation failure.
   876   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   877         { return _into_cset_dirty_card_queue_set; }
   879   // Create a G1CollectedHeap with the specified policy.
   880   // Must call the initialize method afterwards.
   881   // May not return if something goes wrong.
   882   G1CollectedHeap(G1CollectorPolicy* policy);
   884   // Initialize the G1CollectedHeap to have the initial and
   885   // maximum sizes, permanent generation, and remembered and barrier sets
   886   // specified by the policy object.
   887   jint initialize();
   889   virtual void ref_processing_init();
   891   void set_par_threads(int t) {
   892     SharedHeap::set_par_threads(t);
   893     _process_strong_tasks->set_n_threads(t);
   894   }
   896   virtual CollectedHeap::Name kind() const {
   897     return CollectedHeap::G1CollectedHeap;
   898   }
   900   // The current policy object for the collector.
   901   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   903   // Adaptive size policy.  No such thing for g1.
   904   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   906   // The rem set and barrier set.
   907   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   908   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   910   // The rem set iterator.
   911   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   912     return _rem_set_iterator[i];
   913   }
   915   HeapRegionRemSetIterator* rem_set_iterator() {
   916     return _rem_set_iterator[0];
   917   }
   919   unsigned get_gc_time_stamp() {
   920     return _gc_time_stamp;
   921   }
   923   void reset_gc_time_stamp() {
   924     _gc_time_stamp = 0;
   925     OrderAccess::fence();
   926   }
   928   void increment_gc_time_stamp() {
   929     ++_gc_time_stamp;
   930     OrderAccess::fence();
   931   }
   933   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   934                                   DirtyCardQueue* into_cset_dcq,
   935                                   bool concurrent, int worker_i);
   937   // The shared block offset table array.
   938   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   940   // Reference Processing accessor
   941   ReferenceProcessor* ref_processor() { return _ref_processor; }
   943   virtual size_t capacity() const;
   944   virtual size_t used() const;
   945   // This should be called when we're not holding the heap lock. The
   946   // result might be a bit inaccurate.
   947   size_t used_unlocked() const;
   948   size_t recalculate_used() const;
   949 #ifndef PRODUCT
   950   size_t recalculate_used_regions() const;
   951 #endif // PRODUCT
   953   // These virtual functions do the actual allocation.
   954   // Some heaps may offer a contiguous region for shared non-blocking
   955   // allocation, via inlined code (by exporting the address of the top and
   956   // end fields defining the extent of the contiguous allocation region.)
   957   // But G1CollectedHeap doesn't yet support this.
   959   // Return an estimate of the maximum allocation that could be performed
   960   // without triggering any collection or expansion activity.  In a
   961   // generational collector, for example, this is probably the largest
   962   // allocation that could be supported (without expansion) in the youngest
   963   // generation.  It is "unsafe" because no locks are taken; the result
   964   // should be treated as an approximation, not a guarantee, for use in
   965   // heuristic resizing decisions.
   966   virtual size_t unsafe_max_alloc();
   968   virtual bool is_maximal_no_gc() const {
   969     return _g1_storage.uncommitted_size() == 0;
   970   }
   972   // The total number of regions in the heap.
   973   size_t n_regions() { return _hrs.length(); }
   975   // The max number of regions in the heap.
   976   size_t max_regions() { return _hrs.max_length(); }
   978   // The number of regions that are completely free.
   979   size_t free_regions() { return _free_list.length(); }
   981   // The number of regions that are not completely free.
   982   size_t used_regions() { return n_regions() - free_regions(); }
   984   // The number of regions available for "regular" expansion.
   985   size_t expansion_regions() { return _expansion_regions; }
   987   // Factory method for HeapRegion instances. It will return NULL if
   988   // the allocation fails.
   989   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   991   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   992   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   993   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   994   void verify_dirty_young_regions() PRODUCT_RETURN;
   996   // verify_region_sets() performs verification over the region
   997   // lists. It will be compiled in the product code to be used when
   998   // necessary (i.e., during heap verification).
   999   void verify_region_sets();
  1001   // verify_region_sets_optional() is planted in the code for
  1002   // list verification in non-product builds (and it can be enabled in
  1003   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1004 #if HEAP_REGION_SET_FORCE_VERIFY
  1005   void verify_region_sets_optional() {
  1006     verify_region_sets();
  1008 #else // HEAP_REGION_SET_FORCE_VERIFY
  1009   void verify_region_sets_optional() { }
  1010 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1012 #ifdef ASSERT
  1013   bool is_on_master_free_list(HeapRegion* hr) {
  1014     return hr->containing_set() == &_free_list;
  1017   bool is_in_humongous_set(HeapRegion* hr) {
  1018     return hr->containing_set() == &_humongous_set;
  1020 #endif // ASSERT
  1022   // Wrapper for the region list operations that can be called from
  1023   // methods outside this class.
  1025   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1026     _secondary_free_list.add_as_tail(list);
  1029   void append_secondary_free_list() {
  1030     _free_list.add_as_head(&_secondary_free_list);
  1033   void append_secondary_free_list_if_not_empty_with_lock() {
  1034     // If the secondary free list looks empty there's no reason to
  1035     // take the lock and then try to append it.
  1036     if (!_secondary_free_list.is_empty()) {
  1037       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1038       append_secondary_free_list();
  1042   void set_free_regions_coming();
  1043   void reset_free_regions_coming();
  1044   bool free_regions_coming() { return _free_regions_coming; }
  1045   void wait_while_free_regions_coming();
  1047   // Perform a collection of the heap; intended for use in implementing
  1048   // "System.gc".  This probably implies as full a collection as the
  1049   // "CollectedHeap" supports.
  1050   virtual void collect(GCCause::Cause cause);
  1052   // The same as above but assume that the caller holds the Heap_lock.
  1053   void collect_locked(GCCause::Cause cause);
  1055   // This interface assumes that it's being called by the
  1056   // vm thread. It collects the heap assuming that the
  1057   // heap lock is already held and that we are executing in
  1058   // the context of the vm thread.
  1059   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1061   // True iff a evacuation has failed in the most-recent collection.
  1062   bool evacuation_failed() { return _evacuation_failed; }
  1064   // It will free a region if it has allocated objects in it that are
  1065   // all dead. It calls either free_region() or
  1066   // free_humongous_region() depending on the type of the region that
  1067   // is passed to it.
  1068   void free_region_if_empty(HeapRegion* hr,
  1069                             size_t* pre_used,
  1070                             FreeRegionList* free_list,
  1071                             HumongousRegionSet* humongous_proxy_set,
  1072                             HRRSCleanupTask* hrrs_cleanup_task,
  1073                             bool par);
  1075   // It appends the free list to the master free list and updates the
  1076   // master humongous list according to the contents of the proxy
  1077   // list. It also adjusts the total used bytes according to pre_used
  1078   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1079   void update_sets_after_freeing_regions(size_t pre_used,
  1080                                        FreeRegionList* free_list,
  1081                                        HumongousRegionSet* humongous_proxy_set,
  1082                                        bool par);
  1084   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1085   virtual bool is_in(const void* p) const;
  1087   // Return "TRUE" iff the given object address is within the collection
  1088   // set.
  1089   inline bool obj_in_cs(oop obj);
  1091   // Return "TRUE" iff the given object address is in the reserved
  1092   // region of g1 (excluding the permanent generation).
  1093   bool is_in_g1_reserved(const void* p) const {
  1094     return _g1_reserved.contains(p);
  1097   // Returns a MemRegion that corresponds to the space that has been
  1098   // reserved for the heap
  1099   MemRegion g1_reserved() {
  1100     return _g1_reserved;
  1103   // Returns a MemRegion that corresponds to the space that has been
  1104   // committed in the heap
  1105   MemRegion g1_committed() {
  1106     return _g1_committed;
  1109   virtual bool is_in_closed_subset(const void* p) const;
  1111   // Dirty card table entries covering a list of young regions.
  1112   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1114   // This resets the card table to all zeros.  It is used after
  1115   // a collection pause which used the card table to claim cards.
  1116   void cleanUpCardTable();
  1118   // Iteration functions.
  1120   // Iterate over all the ref-containing fields of all objects, calling
  1121   // "cl.do_oop" on each.
  1122   virtual void oop_iterate(OopClosure* cl) {
  1123     oop_iterate(cl, true);
  1125   void oop_iterate(OopClosure* cl, bool do_perm);
  1127   // Same as above, restricted to a memory region.
  1128   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1129     oop_iterate(mr, cl, true);
  1131   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1133   // Iterate over all objects, calling "cl.do_object" on each.
  1134   virtual void object_iterate(ObjectClosure* cl) {
  1135     object_iterate(cl, true);
  1137   virtual void safe_object_iterate(ObjectClosure* cl) {
  1138     object_iterate(cl, true);
  1140   void object_iterate(ObjectClosure* cl, bool do_perm);
  1142   // Iterate over all objects allocated since the last collection, calling
  1143   // "cl.do_object" on each.  The heap must have been initialized properly
  1144   // to support this function, or else this call will fail.
  1145   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1147   // Iterate over all spaces in use in the heap, in ascending address order.
  1148   virtual void space_iterate(SpaceClosure* cl);
  1150   // Iterate over heap regions, in address order, terminating the
  1151   // iteration early if the "doHeapRegion" method returns "true".
  1152   void heap_region_iterate(HeapRegionClosure* blk) const;
  1154   // Iterate over heap regions starting with r (or the first region if "r"
  1155   // is NULL), in address order, terminating early if the "doHeapRegion"
  1156   // method returns "true".
  1157   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1159   // Return the region with the given index. It assumes the index is valid.
  1160   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1162   // Divide the heap region sequence into "chunks" of some size (the number
  1163   // of regions divided by the number of parallel threads times some
  1164   // overpartition factor, currently 4).  Assumes that this will be called
  1165   // in parallel by ParallelGCThreads worker threads with discinct worker
  1166   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1167   // calls will use the same "claim_value", and that that claim value is
  1168   // different from the claim_value of any heap region before the start of
  1169   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1170   // attempting to claim the first region in each chunk, and, if
  1171   // successful, applying the closure to each region in the chunk (and
  1172   // setting the claim value of the second and subsequent regions of the
  1173   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1174   // i.e., that a closure never attempt to abort a traversal.
  1175   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1176                                        int worker,
  1177                                        jint claim_value);
  1179   // It resets all the region claim values to the default.
  1180   void reset_heap_region_claim_values();
  1182 #ifdef ASSERT
  1183   bool check_heap_region_claim_values(jint claim_value);
  1184 #endif // ASSERT
  1186   // Iterate over the regions (if any) in the current collection set.
  1187   void collection_set_iterate(HeapRegionClosure* blk);
  1189   // As above but starting from region r
  1190   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1192   // Returns the first (lowest address) compactible space in the heap.
  1193   virtual CompactibleSpace* first_compactible_space();
  1195   // A CollectedHeap will contain some number of spaces.  This finds the
  1196   // space containing a given address, or else returns NULL.
  1197   virtual Space* space_containing(const void* addr) const;
  1199   // A G1CollectedHeap will contain some number of heap regions.  This
  1200   // finds the region containing a given address, or else returns NULL.
  1201   template <class T>
  1202   inline HeapRegion* heap_region_containing(const T addr) const;
  1204   // Like the above, but requires "addr" to be in the heap (to avoid a
  1205   // null-check), and unlike the above, may return an continuing humongous
  1206   // region.
  1207   template <class T>
  1208   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1210   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1211   // each address in the (reserved) heap is a member of exactly
  1212   // one block.  The defining characteristic of a block is that it is
  1213   // possible to find its size, and thus to progress forward to the next
  1214   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1215   // represent Java objects, or they might be free blocks in a
  1216   // free-list-based heap (or subheap), as long as the two kinds are
  1217   // distinguishable and the size of each is determinable.
  1219   // Returns the address of the start of the "block" that contains the
  1220   // address "addr".  We say "blocks" instead of "object" since some heaps
  1221   // may not pack objects densely; a chunk may either be an object or a
  1222   // non-object.
  1223   virtual HeapWord* block_start(const void* addr) const;
  1225   // Requires "addr" to be the start of a chunk, and returns its size.
  1226   // "addr + size" is required to be the start of a new chunk, or the end
  1227   // of the active area of the heap.
  1228   virtual size_t block_size(const HeapWord* addr) const;
  1230   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1231   // the block is an object.
  1232   virtual bool block_is_obj(const HeapWord* addr) const;
  1234   // Does this heap support heap inspection? (+PrintClassHistogram)
  1235   virtual bool supports_heap_inspection() const { return true; }
  1237   // Section on thread-local allocation buffers (TLABs)
  1238   // See CollectedHeap for semantics.
  1240   virtual bool supports_tlab_allocation() const;
  1241   virtual size_t tlab_capacity(Thread* thr) const;
  1242   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1244   // Can a compiler initialize a new object without store barriers?
  1245   // This permission only extends from the creation of a new object
  1246   // via a TLAB up to the first subsequent safepoint. If such permission
  1247   // is granted for this heap type, the compiler promises to call
  1248   // defer_store_barrier() below on any slow path allocation of
  1249   // a new object for which such initializing store barriers will
  1250   // have been elided. G1, like CMS, allows this, but should be
  1251   // ready to provide a compensating write barrier as necessary
  1252   // if that storage came out of a non-young region. The efficiency
  1253   // of this implementation depends crucially on being able to
  1254   // answer very efficiently in constant time whether a piece of
  1255   // storage in the heap comes from a young region or not.
  1256   // See ReduceInitialCardMarks.
  1257   virtual bool can_elide_tlab_store_barriers() const {
  1258     // 6920090: Temporarily disabled, because of lingering
  1259     // instabilities related to RICM with G1. In the
  1260     // interim, the option ReduceInitialCardMarksForG1
  1261     // below is left solely as a debugging device at least
  1262     // until 6920109 fixes the instabilities.
  1263     return ReduceInitialCardMarksForG1;
  1266   virtual bool card_mark_must_follow_store() const {
  1267     return true;
  1270   bool is_in_young(const oop obj) {
  1271     HeapRegion* hr = heap_region_containing(obj);
  1272     return hr != NULL && hr->is_young();
  1275 #ifdef ASSERT
  1276   virtual bool is_in_partial_collection(const void* p);
  1277 #endif
  1279   virtual bool is_scavengable(const void* addr);
  1281   // We don't need barriers for initializing stores to objects
  1282   // in the young gen: for the SATB pre-barrier, there is no
  1283   // pre-value that needs to be remembered; for the remembered-set
  1284   // update logging post-barrier, we don't maintain remembered set
  1285   // information for young gen objects. Note that non-generational
  1286   // G1 does not have any "young" objects, should not elide
  1287   // the rs logging barrier and so should always answer false below.
  1288   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1289   // bit-rotted so was not tested below.
  1290   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1291     // Re 6920090, 6920109 above.
  1292     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1293     assert(G1Gen || !is_in_young(new_obj),
  1294            "Non-generational G1 should never return true below");
  1295     return is_in_young(new_obj);
  1298   // Can a compiler elide a store barrier when it writes
  1299   // a permanent oop into the heap?  Applies when the compiler
  1300   // is storing x to the heap, where x->is_perm() is true.
  1301   virtual bool can_elide_permanent_oop_store_barriers() const {
  1302     // At least until perm gen collection is also G1-ified, at
  1303     // which point this should return false.
  1304     return true;
  1307   // The boundary between a "large" and "small" array of primitives, in
  1308   // words.
  1309   virtual size_t large_typearray_limit();
  1311   // Returns "true" iff the given word_size is "very large".
  1312   static bool isHumongous(size_t word_size) {
  1313     // Note this has to be strictly greater-than as the TLABs
  1314     // are capped at the humongous thresold and we want to
  1315     // ensure that we don't try to allocate a TLAB as
  1316     // humongous and that we don't allocate a humongous
  1317     // object in a TLAB.
  1318     return word_size > _humongous_object_threshold_in_words;
  1321   // Update mod union table with the set of dirty cards.
  1322   void updateModUnion();
  1324   // Set the mod union bits corresponding to the given memRegion.  Note
  1325   // that this is always a safe operation, since it doesn't clear any
  1326   // bits.
  1327   void markModUnionRange(MemRegion mr);
  1329   // Records the fact that a marking phase is no longer in progress.
  1330   void set_marking_complete() {
  1331     _mark_in_progress = false;
  1333   void set_marking_started() {
  1334     _mark_in_progress = true;
  1336   bool mark_in_progress() {
  1337     return _mark_in_progress;
  1340   // Print the maximum heap capacity.
  1341   virtual size_t max_capacity() const;
  1343   virtual jlong millis_since_last_gc();
  1345   // Perform any cleanup actions necessary before allowing a verification.
  1346   virtual void prepare_for_verify();
  1348   // Perform verification.
  1350   // vo == UsePrevMarking  -> use "prev" marking information,
  1351   // vo == UseNextMarking -> use "next" marking information
  1352   // vo == UseMarkWord    -> use the mark word in the object header
  1353   //
  1354   // NOTE: Only the "prev" marking information is guaranteed to be
  1355   // consistent most of the time, so most calls to this should use
  1356   // vo == UsePrevMarking.
  1357   // Currently, there is only one case where this is called with
  1358   // vo == UseNextMarking, which is to verify the "next" marking
  1359   // information at the end of remark.
  1360   // Currently there is only one place where this is called with
  1361   // vo == UseMarkWord, which is to verify the marking during a
  1362   // full GC.
  1363   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1365   // Override; it uses the "prev" marking information
  1366   virtual void verify(bool allow_dirty, bool silent);
  1367   // Default behavior by calling print(tty);
  1368   virtual void print() const;
  1369   // This calls print_on(st, PrintHeapAtGCExtended).
  1370   virtual void print_on(outputStream* st) const;
  1371   // If extended is true, it will print out information for all
  1372   // regions in the heap by calling print_on_extended(st).
  1373   virtual void print_on(outputStream* st, bool extended) const;
  1374   virtual void print_on_extended(outputStream* st) const;
  1376   virtual void print_gc_threads_on(outputStream* st) const;
  1377   virtual void gc_threads_do(ThreadClosure* tc) const;
  1379   // Override
  1380   void print_tracing_info() const;
  1382   // Convenience function to be used in situations where the heap type can be
  1383   // asserted to be this type.
  1384   static G1CollectedHeap* heap();
  1386   void empty_young_list();
  1388   void set_region_short_lived_locked(HeapRegion* hr);
  1389   // add appropriate methods for any other surv rate groups
  1391   YoungList* young_list() { return _young_list; }
  1393   // debugging
  1394   bool check_young_list_well_formed() {
  1395     return _young_list->check_list_well_formed();
  1398   bool check_young_list_empty(bool check_heap,
  1399                               bool check_sample = true);
  1401   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1402   // many of these need to be public.
  1404   // The functions below are helper functions that a subclass of
  1405   // "CollectedHeap" can use in the implementation of its virtual
  1406   // functions.
  1407   // This performs a concurrent marking of the live objects in a
  1408   // bitmap off to the side.
  1409   void doConcurrentMark();
  1411   // Do a full concurrent marking, synchronously.
  1412   void do_sync_mark();
  1414   bool isMarkedPrev(oop obj) const;
  1415   bool isMarkedNext(oop obj) const;
  1417   // vo == UsePrevMarking -> use "prev" marking information,
  1418   // vo == UseNextMarking -> use "next" marking information,
  1419   // vo == UseMarkWord    -> use mark word from object header
  1420   bool is_obj_dead_cond(const oop obj,
  1421                         const HeapRegion* hr,
  1422                         const VerifyOption vo) const {
  1424     switch (vo) {
  1425       case VerifyOption_G1UsePrevMarking:
  1426         return is_obj_dead(obj, hr);
  1427       case VerifyOption_G1UseNextMarking:
  1428         return is_obj_ill(obj, hr);
  1429       default:
  1430         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1431         return !obj->is_gc_marked();
  1435   // Determine if an object is dead, given the object and also
  1436   // the region to which the object belongs. An object is dead
  1437   // iff a) it was not allocated since the last mark and b) it
  1438   // is not marked.
  1440   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1441     return
  1442       !hr->obj_allocated_since_prev_marking(obj) &&
  1443       !isMarkedPrev(obj);
  1446   // This is used when copying an object to survivor space.
  1447   // If the object is marked live, then we mark the copy live.
  1448   // If the object is allocated since the start of this mark
  1449   // cycle, then we mark the copy live.
  1450   // If the object has been around since the previous mark
  1451   // phase, and hasn't been marked yet during this phase,
  1452   // then we don't mark it, we just wait for the
  1453   // current marking cycle to get to it.
  1455   // This function returns true when an object has been
  1456   // around since the previous marking and hasn't yet
  1457   // been marked during this marking.
  1459   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1460     return
  1461       !hr->obj_allocated_since_next_marking(obj) &&
  1462       !isMarkedNext(obj);
  1465   // Determine if an object is dead, given only the object itself.
  1466   // This will find the region to which the object belongs and
  1467   // then call the region version of the same function.
  1469   // Added if it is in permanent gen it isn't dead.
  1470   // Added if it is NULL it isn't dead.
  1472   // vo == UsePrevMarking -> use "prev" marking information,
  1473   // vo == UseNextMarking -> use "next" marking information,
  1474   // vo == UseMarkWord    -> use mark word from object header
  1475   bool is_obj_dead_cond(const oop obj,
  1476                         const VerifyOption vo) const {
  1478     switch (vo) {
  1479       case VerifyOption_G1UsePrevMarking:
  1480         return is_obj_dead(obj);
  1481       case VerifyOption_G1UseNextMarking:
  1482         return is_obj_ill(obj);
  1483       default:
  1484         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1485         return !obj->is_gc_marked();
  1489   bool is_obj_dead(const oop obj) const {
  1490     const HeapRegion* hr = heap_region_containing(obj);
  1491     if (hr == NULL) {
  1492       if (Universe::heap()->is_in_permanent(obj))
  1493         return false;
  1494       else if (obj == NULL) return false;
  1495       else return true;
  1497     else return is_obj_dead(obj, hr);
  1500   bool is_obj_ill(const oop obj) const {
  1501     const HeapRegion* hr = heap_region_containing(obj);
  1502     if (hr == NULL) {
  1503       if (Universe::heap()->is_in_permanent(obj))
  1504         return false;
  1505       else if (obj == NULL) return false;
  1506       else return true;
  1508     else return is_obj_ill(obj, hr);
  1511   // The following is just to alert the verification code
  1512   // that a full collection has occurred and that the
  1513   // remembered sets are no longer up to date.
  1514   bool _full_collection;
  1515   void set_full_collection() { _full_collection = true;}
  1516   void clear_full_collection() {_full_collection = false;}
  1517   bool full_collection() {return _full_collection;}
  1519   ConcurrentMark* concurrent_mark() const { return _cm; }
  1520   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1522   // The dirty cards region list is used to record a subset of regions
  1523   // whose cards need clearing. The list if populated during the
  1524   // remembered set scanning and drained during the card table
  1525   // cleanup. Although the methods are reentrant, population/draining
  1526   // phases must not overlap. For synchronization purposes the last
  1527   // element on the list points to itself.
  1528   HeapRegion* _dirty_cards_region_list;
  1529   void push_dirty_cards_region(HeapRegion* hr);
  1530   HeapRegion* pop_dirty_cards_region();
  1532 public:
  1533   void stop_conc_gc_threads();
  1535   // <NEW PREDICTION>
  1537   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1538   void check_if_region_is_too_expensive(double predicted_time_ms);
  1539   size_t pending_card_num();
  1540   size_t max_pending_card_num();
  1541   size_t cards_scanned();
  1543   // </NEW PREDICTION>
  1545 protected:
  1546   size_t _max_heap_capacity;
  1547 };
  1549 #define use_local_bitmaps         1
  1550 #define verify_local_bitmaps      0
  1551 #define oop_buffer_length       256
  1553 #ifndef PRODUCT
  1554 class GCLabBitMap;
  1555 class GCLabBitMapClosure: public BitMapClosure {
  1556 private:
  1557   ConcurrentMark* _cm;
  1558   GCLabBitMap*    _bitmap;
  1560 public:
  1561   GCLabBitMapClosure(ConcurrentMark* cm,
  1562                      GCLabBitMap* bitmap) {
  1563     _cm     = cm;
  1564     _bitmap = bitmap;
  1567   virtual bool do_bit(size_t offset);
  1568 };
  1569 #endif // !PRODUCT
  1571 class GCLabBitMap: public BitMap {
  1572 private:
  1573   ConcurrentMark* _cm;
  1575   int       _shifter;
  1576   size_t    _bitmap_word_covers_words;
  1578   // beginning of the heap
  1579   HeapWord* _heap_start;
  1581   // this is the actual start of the GCLab
  1582   HeapWord* _real_start_word;
  1584   // this is the actual end of the GCLab
  1585   HeapWord* _real_end_word;
  1587   // this is the first word, possibly located before the actual start
  1588   // of the GCLab, that corresponds to the first bit of the bitmap
  1589   HeapWord* _start_word;
  1591   // size of a GCLab in words
  1592   size_t _gclab_word_size;
  1594   static int shifter() {
  1595     return MinObjAlignment - 1;
  1598   // how many heap words does a single bitmap word corresponds to?
  1599   static size_t bitmap_word_covers_words() {
  1600     return BitsPerWord << shifter();
  1603   size_t gclab_word_size() const {
  1604     return _gclab_word_size;
  1607   // Calculates actual GCLab size in words
  1608   size_t gclab_real_word_size() const {
  1609     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1610            / BitsPerWord;
  1613   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1614     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1615     // We are going to ensure that the beginning of a word in this
  1616     // bitmap also corresponds to the beginning of a word in the
  1617     // global marking bitmap. To handle the case where a GCLab
  1618     // starts from the middle of the bitmap, we need to add enough
  1619     // space (i.e. up to a bitmap word) to ensure that we have
  1620     // enough bits in the bitmap.
  1621     return bits_in_bitmap + BitsPerWord - 1;
  1623 public:
  1624   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1625     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1626       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1627       _shifter(shifter()),
  1628       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1629       _heap_start(heap_start),
  1630       _gclab_word_size(gclab_word_size),
  1631       _real_start_word(NULL),
  1632       _real_end_word(NULL),
  1633       _start_word(NULL)
  1635     guarantee( size_in_words() >= bitmap_size_in_words(),
  1636                "just making sure");
  1639   inline unsigned heapWordToOffset(HeapWord* addr) {
  1640     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1641     assert(offset < size(), "offset should be within bounds");
  1642     return offset;
  1645   inline HeapWord* offsetToHeapWord(size_t offset) {
  1646     HeapWord* addr =  _start_word + (offset << _shifter);
  1647     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1648     return addr;
  1651   bool fields_well_formed() {
  1652     bool ret1 = (_real_start_word == NULL) &&
  1653                 (_real_end_word == NULL) &&
  1654                 (_start_word == NULL);
  1655     if (ret1)
  1656       return true;
  1658     bool ret2 = _real_start_word >= _start_word &&
  1659       _start_word < _real_end_word &&
  1660       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1661       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1662                                                               > _real_end_word;
  1663     return ret2;
  1666   inline bool mark(HeapWord* addr) {
  1667     guarantee(use_local_bitmaps, "invariant");
  1668     assert(fields_well_formed(), "invariant");
  1670     if (addr >= _real_start_word && addr < _real_end_word) {
  1671       assert(!isMarked(addr), "should not have already been marked");
  1673       // first mark it on the bitmap
  1674       at_put(heapWordToOffset(addr), true);
  1676       return true;
  1677     } else {
  1678       return false;
  1682   inline bool isMarked(HeapWord* addr) {
  1683     guarantee(use_local_bitmaps, "invariant");
  1684     assert(fields_well_formed(), "invariant");
  1686     return at(heapWordToOffset(addr));
  1689   void set_buffer(HeapWord* start) {
  1690     guarantee(use_local_bitmaps, "invariant");
  1691     clear();
  1693     assert(start != NULL, "invariant");
  1694     _real_start_word = start;
  1695     _real_end_word   = start + _gclab_word_size;
  1697     size_t diff =
  1698       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1699     _start_word = start - diff;
  1701     assert(fields_well_formed(), "invariant");
  1704 #ifndef PRODUCT
  1705   void verify() {
  1706     // verify that the marks have been propagated
  1707     GCLabBitMapClosure cl(_cm, this);
  1708     iterate(&cl);
  1710 #endif // PRODUCT
  1712   void retire() {
  1713     guarantee(use_local_bitmaps, "invariant");
  1714     assert(fields_well_formed(), "invariant");
  1716     if (_start_word != NULL) {
  1717       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1719       // this means that the bitmap was set up for the GCLab
  1720       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1722       mark_bitmap->mostly_disjoint_range_union(this,
  1723                                 0, // always start from the start of the bitmap
  1724                                 _start_word,
  1725                                 gclab_real_word_size());
  1726       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1728 #ifndef PRODUCT
  1729       if (use_local_bitmaps && verify_local_bitmaps)
  1730         verify();
  1731 #endif // PRODUCT
  1732     } else {
  1733       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1737   size_t bitmap_size_in_words() const {
  1738     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1741 };
  1743 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1744 private:
  1745   bool        _retired;
  1746   bool        _during_marking;
  1747   GCLabBitMap _bitmap;
  1749 public:
  1750   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1751     ParGCAllocBuffer(gclab_word_size),
  1752     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1753     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1754     _retired(false)
  1755   { }
  1757   inline bool mark(HeapWord* addr) {
  1758     guarantee(use_local_bitmaps, "invariant");
  1759     assert(_during_marking, "invariant");
  1760     return _bitmap.mark(addr);
  1763   inline void set_buf(HeapWord* buf) {
  1764     if (use_local_bitmaps && _during_marking)
  1765       _bitmap.set_buffer(buf);
  1766     ParGCAllocBuffer::set_buf(buf);
  1767     _retired = false;
  1770   inline void retire(bool end_of_gc, bool retain) {
  1771     if (_retired)
  1772       return;
  1773     if (use_local_bitmaps && _during_marking) {
  1774       _bitmap.retire();
  1776     ParGCAllocBuffer::retire(end_of_gc, retain);
  1777     _retired = true;
  1779 };
  1781 class G1ParScanThreadState : public StackObj {
  1782 protected:
  1783   G1CollectedHeap* _g1h;
  1784   RefToScanQueue*  _refs;
  1785   DirtyCardQueue   _dcq;
  1786   CardTableModRefBS* _ct_bs;
  1787   G1RemSet* _g1_rem;
  1789   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1790   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1791   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1792   ageTable            _age_table;
  1794   size_t           _alloc_buffer_waste;
  1795   size_t           _undo_waste;
  1797   OopsInHeapRegionClosure*      _evac_failure_cl;
  1798   G1ParScanHeapEvacClosure*     _evac_cl;
  1799   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1801   int _hash_seed;
  1802   int _queue_num;
  1804   size_t _term_attempts;
  1806   double _start;
  1807   double _start_strong_roots;
  1808   double _strong_roots_time;
  1809   double _start_term;
  1810   double _term_time;
  1812   // Map from young-age-index (0 == not young, 1 is youngest) to
  1813   // surviving words. base is what we get back from the malloc call
  1814   size_t* _surviving_young_words_base;
  1815   // this points into the array, as we use the first few entries for padding
  1816   size_t* _surviving_young_words;
  1818 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1820   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1822   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1824   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1825   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1827   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1828     if (!from->is_survivor()) {
  1829       _g1_rem->par_write_ref(from, p, tid);
  1833   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1834     // If the new value of the field points to the same region or
  1835     // is the to-space, we don't need to include it in the Rset updates.
  1836     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1837       size_t card_index = ctbs()->index_for(p);
  1838       // If the card hasn't been added to the buffer, do it.
  1839       if (ctbs()->mark_card_deferred(card_index)) {
  1840         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1845 public:
  1846   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1848   ~G1ParScanThreadState() {
  1849     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1852   RefToScanQueue*   refs()            { return _refs;             }
  1853   ageTable*         age_table()       { return &_age_table;       }
  1855   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1856     return _alloc_buffers[purpose];
  1859   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1860   size_t undo_waste() const                      { return _undo_waste; }
  1862 #ifdef ASSERT
  1863   bool verify_ref(narrowOop* ref) const;
  1864   bool verify_ref(oop* ref) const;
  1865   bool verify_task(StarTask ref) const;
  1866 #endif // ASSERT
  1868   template <class T> void push_on_queue(T* ref) {
  1869     assert(verify_ref(ref), "sanity");
  1870     refs()->push(ref);
  1873   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1874     if (G1DeferredRSUpdate) {
  1875       deferred_rs_update(from, p, tid);
  1876     } else {
  1877       immediate_rs_update(from, p, tid);
  1881   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1883     HeapWord* obj = NULL;
  1884     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1885     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1886       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1887       assert(gclab_word_size == alloc_buf->word_sz(),
  1888              "dynamic resizing is not supported");
  1889       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1890       alloc_buf->retire(false, false);
  1892       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1893       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1894       // Otherwise.
  1895       alloc_buf->set_buf(buf);
  1897       obj = alloc_buf->allocate(word_sz);
  1898       assert(obj != NULL, "buffer was definitely big enough...");
  1899     } else {
  1900       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1902     return obj;
  1905   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1906     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1907     if (obj != NULL) return obj;
  1908     return allocate_slow(purpose, word_sz);
  1911   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1912     if (alloc_buffer(purpose)->contains(obj)) {
  1913       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1914              "should contain whole object");
  1915       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1916     } else {
  1917       CollectedHeap::fill_with_object(obj, word_sz);
  1918       add_to_undo_waste(word_sz);
  1922   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1923     _evac_failure_cl = evac_failure_cl;
  1925   OopsInHeapRegionClosure* evac_failure_closure() {
  1926     return _evac_failure_cl;
  1929   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1930     _evac_cl = evac_cl;
  1933   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1934     _partial_scan_cl = partial_scan_cl;
  1937   int* hash_seed() { return &_hash_seed; }
  1938   int  queue_num() { return _queue_num; }
  1940   size_t term_attempts() const  { return _term_attempts; }
  1941   void note_term_attempt() { _term_attempts++; }
  1943   void start_strong_roots() {
  1944     _start_strong_roots = os::elapsedTime();
  1946   void end_strong_roots() {
  1947     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1949   double strong_roots_time() const { return _strong_roots_time; }
  1951   void start_term_time() {
  1952     note_term_attempt();
  1953     _start_term = os::elapsedTime();
  1955   void end_term_time() {
  1956     _term_time += (os::elapsedTime() - _start_term);
  1958   double term_time() const { return _term_time; }
  1960   double elapsed_time() const {
  1961     return os::elapsedTime() - _start;
  1964   static void
  1965     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1966   void
  1967     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1969   size_t* surviving_young_words() {
  1970     // We add on to hide entry 0 which accumulates surviving words for
  1971     // age -1 regions (i.e. non-young ones)
  1972     return _surviving_young_words;
  1975   void retire_alloc_buffers() {
  1976     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1977       size_t waste = _alloc_buffers[ap]->words_remaining();
  1978       add_to_alloc_buffer_waste(waste);
  1979       _alloc_buffers[ap]->retire(true, false);
  1983   template <class T> void deal_with_reference(T* ref_to_scan) {
  1984     if (has_partial_array_mask(ref_to_scan)) {
  1985       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1986     } else {
  1987       // Note: we can use "raw" versions of "region_containing" because
  1988       // "obj_to_scan" is definitely in the heap, and is not in a
  1989       // humongous region.
  1990       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1991       _evac_cl->set_region(r);
  1992       _evac_cl->do_oop_nv(ref_to_scan);
  1996   void deal_with_reference(StarTask ref) {
  1997     assert(verify_task(ref), "sanity");
  1998     if (ref.is_narrow()) {
  1999       deal_with_reference((narrowOop*)ref);
  2000     } else {
  2001       deal_with_reference((oop*)ref);
  2005 public:
  2006   void trim_queue();
  2007 };
  2009 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial