src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 21 Jun 2011 15:23:07 -0400

author
tonyp
date
Tue, 21 Jun 2011 15:23:07 -0400
changeset 2974
e8b0b0392037
parent 2971
c9ca3f51cf41
child 2975
5f6f2615433a
permissions
-rw-r--r--

7046182: G1: remove unnecessary iterations over the collection set
Summary: Remove two unnecessary iterations over the collection set which are supposed to prepare the RSet's of the CSet regions for parallel iterations (we'll make sure this is done incrementally). I'll piggyback on this CR the removal of the G1_REM_SET_LOGGING code.
Reviewed-by: brutisso, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.hpp"
    33 #include "gc_implementation/g1/heapRegionSets.hpp"
    34 #include "gc_implementation/shared/hSpaceCounters.hpp"
    35 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/memRegion.hpp"
    38 #include "memory/sharedHeap.hpp"
    40 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    41 // It uses the "Garbage First" heap organization and algorithm, which
    42 // may combine concurrent marking with parallel, incremental compaction of
    43 // heap subsets that will yield large amounts of garbage.
    45 class HeapRegion;
    46 class HRRSCleanupTask;
    47 class PermanentGenerationSpec;
    48 class GenerationSpec;
    49 class OopsInHeapRegionClosure;
    50 class G1ScanHeapEvacClosure;
    51 class ObjectClosure;
    52 class SpaceClosure;
    53 class CompactibleSpaceClosure;
    54 class Space;
    55 class G1CollectorPolicy;
    56 class GenRemSet;
    57 class G1RemSet;
    58 class HeapRegionRemSetIterator;
    59 class ConcurrentMark;
    60 class ConcurrentMarkThread;
    61 class ConcurrentG1Refine;
    62 class GenerationCounters;
    64 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    65 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    67 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    68 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    70 enum GCAllocPurpose {
    71   GCAllocForTenured,
    72   GCAllocForSurvived,
    73   GCAllocPurposeCount
    74 };
    76 class YoungList : public CHeapObj {
    77 private:
    78   G1CollectedHeap* _g1h;
    80   HeapRegion* _head;
    82   HeapRegion* _survivor_head;
    83   HeapRegion* _survivor_tail;
    85   HeapRegion* _curr;
    87   size_t      _length;
    88   size_t      _survivor_length;
    90   size_t      _last_sampled_rs_lengths;
    91   size_t      _sampled_rs_lengths;
    93   void         empty_list(HeapRegion* list);
    95 public:
    96   YoungList(G1CollectedHeap* g1h);
    98   void         push_region(HeapRegion* hr);
    99   void         add_survivor_region(HeapRegion* hr);
   101   void         empty_list();
   102   bool         is_empty() { return _length == 0; }
   103   size_t       length() { return _length; }
   104   size_t       survivor_length() { return _survivor_length; }
   106   // Currently we do not keep track of the used byte sum for the
   107   // young list and the survivors and it'd be quite a lot of work to
   108   // do so. When we'll eventually replace the young list with
   109   // instances of HeapRegionLinkedList we'll get that for free. So,
   110   // we'll report the more accurate information then.
   111   size_t       eden_used_bytes() {
   112     assert(length() >= survivor_length(), "invariant");
   113     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   114   }
   115   size_t       survivor_used_bytes() {
   116     return survivor_length() * HeapRegion::GrainBytes;
   117   }
   119   void rs_length_sampling_init();
   120   bool rs_length_sampling_more();
   121   void rs_length_sampling_next();
   123   void reset_sampled_info() {
   124     _last_sampled_rs_lengths =   0;
   125   }
   126   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   128   // for development purposes
   129   void reset_auxilary_lists();
   130   void clear() { _head = NULL; _length = 0; }
   132   void clear_survivors() {
   133     _survivor_head    = NULL;
   134     _survivor_tail    = NULL;
   135     _survivor_length  = 0;
   136   }
   138   HeapRegion* first_region() { return _head; }
   139   HeapRegion* first_survivor_region() { return _survivor_head; }
   140   HeapRegion* last_survivor_region() { return _survivor_tail; }
   142   // debugging
   143   bool          check_list_well_formed();
   144   bool          check_list_empty(bool check_sample = true);
   145   void          print();
   146 };
   148 class MutatorAllocRegion : public G1AllocRegion {
   149 protected:
   150   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   151   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   152 public:
   153   MutatorAllocRegion()
   154     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   155 };
   157 class RefineCardTableEntryClosure;
   158 class G1CollectedHeap : public SharedHeap {
   159   friend class VM_G1CollectForAllocation;
   160   friend class VM_GenCollectForPermanentAllocation;
   161   friend class VM_G1CollectFull;
   162   friend class VM_G1IncCollectionPause;
   163   friend class VMStructs;
   164   friend class MutatorAllocRegion;
   166   // Closures used in implementation.
   167   friend class G1ParCopyHelper;
   168   friend class G1IsAliveClosure;
   169   friend class G1EvacuateFollowersClosure;
   170   friend class G1ParScanThreadState;
   171   friend class G1ParScanClosureSuper;
   172   friend class G1ParEvacuateFollowersClosure;
   173   friend class G1ParTask;
   174   friend class G1FreeGarbageRegionClosure;
   175   friend class RefineCardTableEntryClosure;
   176   friend class G1PrepareCompactClosure;
   177   friend class RegionSorter;
   178   friend class RegionResetter;
   179   friend class CountRCClosure;
   180   friend class EvacPopObjClosure;
   181   friend class G1ParCleanupCTTask;
   183   // Other related classes.
   184   friend class G1MarkSweep;
   186 private:
   187   // The one and only G1CollectedHeap, so static functions can find it.
   188   static G1CollectedHeap* _g1h;
   190   static size_t _humongous_object_threshold_in_words;
   192   // Storage for the G1 heap (excludes the permanent generation).
   193   VirtualSpace _g1_storage;
   194   MemRegion    _g1_reserved;
   196   // The part of _g1_storage that is currently committed.
   197   MemRegion _g1_committed;
   199   // The master free list. It will satisfy all new region allocations.
   200   MasterFreeRegionList      _free_list;
   202   // The secondary free list which contains regions that have been
   203   // freed up during the cleanup process. This will be appended to the
   204   // master free list when appropriate.
   205   SecondaryFreeRegionList   _secondary_free_list;
   207   // It keeps track of the humongous regions.
   208   MasterHumongousRegionSet  _humongous_set;
   210   // The number of regions we could create by expansion.
   211   size_t _expansion_regions;
   213   // The block offset table for the G1 heap.
   214   G1BlockOffsetSharedArray* _bot_shared;
   216   // Move all of the regions off the free lists, then rebuild those free
   217   // lists, before and after full GC.
   218   void tear_down_region_lists();
   219   void rebuild_region_lists();
   221   // The sequence of all heap regions in the heap.
   222   HeapRegionSeq _hrs;
   224   // Alloc region used to satisfy mutator allocation requests.
   225   MutatorAllocRegion _mutator_alloc_region;
   227   // It resets the mutator alloc region before new allocations can take place.
   228   void init_mutator_alloc_region();
   230   // It releases the mutator alloc region.
   231   void release_mutator_alloc_region();
   233   void abandon_gc_alloc_regions();
   235   // The to-space memory regions into which objects are being copied during
   236   // a GC.
   237   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   238   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   239   // These are the regions, one per GCAllocPurpose, that are half-full
   240   // at the end of a collection and that we want to reuse during the
   241   // next collection.
   242   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   243   // This specifies whether we will keep the last half-full region at
   244   // the end of a collection so that it can be reused during the next
   245   // collection (this is specified per GCAllocPurpose)
   246   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   248   // A list of the regions that have been set to be alloc regions in the
   249   // current collection.
   250   HeapRegion* _gc_alloc_region_list;
   252   // Helper for monitoring and management support.
   253   G1MonitoringSupport* _g1mm;
   255   // Determines PLAB size for a particular allocation purpose.
   256   static size_t desired_plab_sz(GCAllocPurpose purpose);
   258   // When called by par thread, requires the FreeList_lock to be held.
   259   void push_gc_alloc_region(HeapRegion* hr);
   261   // This should only be called single-threaded.  Undeclares all GC alloc
   262   // regions.
   263   void forget_alloc_region_list();
   265   // Should be used to set an alloc region, because there's other
   266   // associated bookkeeping.
   267   void set_gc_alloc_region(int purpose, HeapRegion* r);
   269   // Check well-formedness of alloc region list.
   270   bool check_gc_alloc_regions();
   272   // Outside of GC pauses, the number of bytes used in all regions other
   273   // than the current allocation region.
   274   size_t _summary_bytes_used;
   276   // This is used for a quick test on whether a reference points into
   277   // the collection set or not. Basically, we have an array, with one
   278   // byte per region, and that byte denotes whether the corresponding
   279   // region is in the collection set or not. The entry corresponding
   280   // the bottom of the heap, i.e., region 0, is pointed to by
   281   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   282   // biased so that it actually points to address 0 of the address
   283   // space, to make the test as fast as possible (we can simply shift
   284   // the address to address into it, instead of having to subtract the
   285   // bottom of the heap from the address before shifting it; basically
   286   // it works in the same way the card table works).
   287   bool* _in_cset_fast_test;
   289   // The allocated array used for the fast test on whether a reference
   290   // points into the collection set or not. This field is also used to
   291   // free the array.
   292   bool* _in_cset_fast_test_base;
   294   // The length of the _in_cset_fast_test_base array.
   295   size_t _in_cset_fast_test_length;
   297   volatile unsigned _gc_time_stamp;
   299   size_t* _surviving_young_words;
   301   void setup_surviving_young_words();
   302   void update_surviving_young_words(size_t* surv_young_words);
   303   void cleanup_surviving_young_words();
   305   // It decides whether an explicit GC should start a concurrent cycle
   306   // instead of doing a STW GC. Currently, a concurrent cycle is
   307   // explicitly started if:
   308   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   309   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   310   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   312   // Keeps track of how many "full collections" (i.e., Full GCs or
   313   // concurrent cycles) we have completed. The number of them we have
   314   // started is maintained in _total_full_collections in CollectedHeap.
   315   volatile unsigned int _full_collections_completed;
   317   // This is a non-product method that is helpful for testing. It is
   318   // called at the end of a GC and artificially expands the heap by
   319   // allocating a number of dead regions. This way we can induce very
   320   // frequent marking cycles and stress the cleanup / concurrent
   321   // cleanup code more (as all the regions that will be allocated by
   322   // this method will be found dead by the marking cycle).
   323   void allocate_dummy_regions() PRODUCT_RETURN;
   325   // These are macros so that, if the assert fires, we get the correct
   326   // line number, file, etc.
   328 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   329   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   330           (_extra_message_),                                                  \
   331           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   332           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   333           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   335 #define assert_heap_locked()                                                  \
   336   do {                                                                        \
   337     assert(Heap_lock->owned_by_self(),                                        \
   338            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   339   } while (0)
   341 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   342   do {                                                                        \
   343     assert(Heap_lock->owned_by_self() ||                                      \
   344            (SafepointSynchronize::is_at_safepoint() &&                        \
   345              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   346            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   347                                         "should be at a safepoint"));         \
   348   } while (0)
   350 #define assert_heap_locked_and_not_at_safepoint()                             \
   351   do {                                                                        \
   352     assert(Heap_lock->owned_by_self() &&                                      \
   353                                     !SafepointSynchronize::is_at_safepoint(), \
   354           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   355                                        "should not be at a safepoint"));      \
   356   } while (0)
   358 #define assert_heap_not_locked()                                              \
   359   do {                                                                        \
   360     assert(!Heap_lock->owned_by_self(),                                       \
   361         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   362   } while (0)
   364 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   365   do {                                                                        \
   366     assert(!Heap_lock->owned_by_self() &&                                     \
   367                                     !SafepointSynchronize::is_at_safepoint(), \
   368       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   369                                    "should not be at a safepoint"));          \
   370   } while (0)
   372 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   373   do {                                                                        \
   374     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   375               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   376            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   377   } while (0)
   379 #define assert_not_at_safepoint()                                             \
   380   do {                                                                        \
   381     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   382            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   383   } while (0)
   385 protected:
   387   // Returns "true" iff none of the gc alloc regions have any allocations
   388   // since the last call to "save_marks".
   389   bool all_alloc_regions_no_allocs_since_save_marks();
   390   // Perform finalization stuff on all allocation regions.
   391   void retire_all_alloc_regions();
   393   // The number of regions allocated to hold humongous objects.
   394   int         _num_humongous_regions;
   395   YoungList*  _young_list;
   397   // The current policy object for the collector.
   398   G1CollectorPolicy* _g1_policy;
   400   // This is the second level of trying to allocate a new region. If
   401   // new_region() didn't find a region on the free_list, this call will
   402   // check whether there's anything available on the
   403   // secondary_free_list and/or wait for more regions to appear on
   404   // that list, if _free_regions_coming is set.
   405   HeapRegion* new_region_try_secondary_free_list();
   407   // Try to allocate a single non-humongous HeapRegion sufficient for
   408   // an allocation of the given word_size. If do_expand is true,
   409   // attempt to expand the heap if necessary to satisfy the allocation
   410   // request.
   411   HeapRegion* new_region(size_t word_size, bool do_expand);
   413   // Try to allocate a new region to be used for allocation by
   414   // a GC thread. It will try to expand the heap if no region is
   415   // available.
   416   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   418   // Attempt to satisfy a humongous allocation request of the given
   419   // size by finding a contiguous set of free regions of num_regions
   420   // length and remove them from the master free list. Return the
   421   // index of the first region or G1_NULL_HRS_INDEX if the search
   422   // was unsuccessful.
   423   size_t humongous_obj_allocate_find_first(size_t num_regions,
   424                                            size_t word_size);
   426   // Initialize a contiguous set of free regions of length num_regions
   427   // and starting at index first so that they appear as a single
   428   // humongous region.
   429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   430                                                       size_t num_regions,
   431                                                       size_t word_size);
   433   // Attempt to allocate a humongous object of the given size. Return
   434   // NULL if unsuccessful.
   435   HeapWord* humongous_obj_allocate(size_t word_size);
   437   // The following two methods, allocate_new_tlab() and
   438   // mem_allocate(), are the two main entry points from the runtime
   439   // into the G1's allocation routines. They have the following
   440   // assumptions:
   441   //
   442   // * They should both be called outside safepoints.
   443   //
   444   // * They should both be called without holding the Heap_lock.
   445   //
   446   // * All allocation requests for new TLABs should go to
   447   //   allocate_new_tlab().
   448   //
   449   // * All non-TLAB allocation requests should go to mem_allocate().
   450   //
   451   // * If either call cannot satisfy the allocation request using the
   452   //   current allocating region, they will try to get a new one. If
   453   //   this fails, they will attempt to do an evacuation pause and
   454   //   retry the allocation.
   455   //
   456   // * If all allocation attempts fail, even after trying to schedule
   457   //   an evacuation pause, allocate_new_tlab() will return NULL,
   458   //   whereas mem_allocate() will attempt a heap expansion and/or
   459   //   schedule a Full GC.
   460   //
   461   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   462   //   should never be called with word_size being humongous. All
   463   //   humongous allocation requests should go to mem_allocate() which
   464   //   will satisfy them with a special path.
   466   virtual HeapWord* allocate_new_tlab(size_t word_size);
   468   virtual HeapWord* mem_allocate(size_t word_size,
   469                                  bool*  gc_overhead_limit_was_exceeded);
   471   // The following three methods take a gc_count_before_ret
   472   // parameter which is used to return the GC count if the method
   473   // returns NULL. Given that we are required to read the GC count
   474   // while holding the Heap_lock, and these paths will take the
   475   // Heap_lock at some point, it's easier to get them to read the GC
   476   // count while holding the Heap_lock before they return NULL instead
   477   // of the caller (namely: mem_allocate()) having to also take the
   478   // Heap_lock just to read the GC count.
   480   // First-level mutator allocation attempt: try to allocate out of
   481   // the mutator alloc region without taking the Heap_lock. This
   482   // should only be used for non-humongous allocations.
   483   inline HeapWord* attempt_allocation(size_t word_size,
   484                                       unsigned int* gc_count_before_ret);
   486   // Second-level mutator allocation attempt: take the Heap_lock and
   487   // retry the allocation attempt, potentially scheduling a GC
   488   // pause. This should only be used for non-humongous allocations.
   489   HeapWord* attempt_allocation_slow(size_t word_size,
   490                                     unsigned int* gc_count_before_ret);
   492   // Takes the Heap_lock and attempts a humongous allocation. It can
   493   // potentially schedule a GC pause.
   494   HeapWord* attempt_allocation_humongous(size_t word_size,
   495                                          unsigned int* gc_count_before_ret);
   497   // Allocation attempt that should be called during safepoints (e.g.,
   498   // at the end of a successful GC). expect_null_mutator_alloc_region
   499   // specifies whether the mutator alloc region is expected to be NULL
   500   // or not.
   501   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   502                                        bool expect_null_mutator_alloc_region);
   504   // It dirties the cards that cover the block so that so that the post
   505   // write barrier never queues anything when updating objects on this
   506   // block. It is assumed (and in fact we assert) that the block
   507   // belongs to a young region.
   508   inline void dirty_young_block(HeapWord* start, size_t word_size);
   510   // Allocate blocks during garbage collection. Will ensure an
   511   // allocation region, either by picking one or expanding the
   512   // heap, and then allocate a block of the given size. The block
   513   // may not be a humongous - it must fit into a single heap region.
   514   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   516   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   517                                     HeapRegion*    alloc_region,
   518                                     bool           par,
   519                                     size_t         word_size);
   521   // Ensure that no further allocations can happen in "r", bearing in mind
   522   // that parallel threads might be attempting allocations.
   523   void par_allocate_remaining_space(HeapRegion* r);
   525   // Retires an allocation region when it is full or at the end of a
   526   // GC pause.
   527   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   529   // These two methods are the "callbacks" from the G1AllocRegion class.
   531   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   532   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   533                                    size_t allocated_bytes);
   535   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   536   //   inspection request and should collect the entire heap
   537   // - if clear_all_soft_refs is true, all soft references should be
   538   //   cleared during the GC
   539   // - if explicit_gc is false, word_size describes the allocation that
   540   //   the GC should attempt (at least) to satisfy
   541   // - it returns false if it is unable to do the collection due to the
   542   //   GC locker being active, true otherwise
   543   bool do_collection(bool explicit_gc,
   544                      bool clear_all_soft_refs,
   545                      size_t word_size);
   547   // Callback from VM_G1CollectFull operation.
   548   // Perform a full collection.
   549   void do_full_collection(bool clear_all_soft_refs);
   551   // Resize the heap if necessary after a full collection.  If this is
   552   // after a collect-for allocation, "word_size" is the allocation size,
   553   // and will be considered part of the used portion of the heap.
   554   void resize_if_necessary_after_full_collection(size_t word_size);
   556   // Callback from VM_G1CollectForAllocation operation.
   557   // This function does everything necessary/possible to satisfy a
   558   // failed allocation request (including collection, expansion, etc.)
   559   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   561   // Attempting to expand the heap sufficiently
   562   // to support an allocation of the given "word_size".  If
   563   // successful, perform the allocation and return the address of the
   564   // allocated block, or else "NULL".
   565   HeapWord* expand_and_allocate(size_t word_size);
   567 public:
   569   G1MonitoringSupport* g1mm() { return _g1mm; }
   571   // Expand the garbage-first heap by at least the given size (in bytes!).
   572   // Returns true if the heap was expanded by the requested amount;
   573   // false otherwise.
   574   // (Rounds up to a HeapRegion boundary.)
   575   bool expand(size_t expand_bytes);
   577   // Do anything common to GC's.
   578   virtual void gc_prologue(bool full);
   579   virtual void gc_epilogue(bool full);
   581   // We register a region with the fast "in collection set" test. We
   582   // simply set to true the array slot corresponding to this region.
   583   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   584     assert(_in_cset_fast_test_base != NULL, "sanity");
   585     assert(r->in_collection_set(), "invariant");
   586     size_t index = r->hrs_index();
   587     assert(index < _in_cset_fast_test_length, "invariant");
   588     assert(!_in_cset_fast_test_base[index], "invariant");
   589     _in_cset_fast_test_base[index] = true;
   590   }
   592   // This is a fast test on whether a reference points into the
   593   // collection set or not. It does not assume that the reference
   594   // points into the heap; if it doesn't, it will return false.
   595   bool in_cset_fast_test(oop obj) {
   596     assert(_in_cset_fast_test != NULL, "sanity");
   597     if (_g1_committed.contains((HeapWord*) obj)) {
   598       // no need to subtract the bottom of the heap from obj,
   599       // _in_cset_fast_test is biased
   600       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   601       bool ret = _in_cset_fast_test[index];
   602       // let's make sure the result is consistent with what the slower
   603       // test returns
   604       assert( ret || !obj_in_cs(obj), "sanity");
   605       assert(!ret ||  obj_in_cs(obj), "sanity");
   606       return ret;
   607     } else {
   608       return false;
   609     }
   610   }
   612   void clear_cset_fast_test() {
   613     assert(_in_cset_fast_test_base != NULL, "sanity");
   614     memset(_in_cset_fast_test_base, false,
   615         _in_cset_fast_test_length * sizeof(bool));
   616   }
   618   // This is called at the end of either a concurrent cycle or a Full
   619   // GC to update the number of full collections completed. Those two
   620   // can happen in a nested fashion, i.e., we start a concurrent
   621   // cycle, a Full GC happens half-way through it which ends first,
   622   // and then the cycle notices that a Full GC happened and ends
   623   // too. The concurrent parameter is a boolean to help us do a bit
   624   // tighter consistency checking in the method. If concurrent is
   625   // false, the caller is the inner caller in the nesting (i.e., the
   626   // Full GC). If concurrent is true, the caller is the outer caller
   627   // in this nesting (i.e., the concurrent cycle). Further nesting is
   628   // not currently supported. The end of the this call also notifies
   629   // the FullGCCount_lock in case a Java thread is waiting for a full
   630   // GC to happen (e.g., it called System.gc() with
   631   // +ExplicitGCInvokesConcurrent).
   632   void increment_full_collections_completed(bool concurrent);
   634   unsigned int full_collections_completed() {
   635     return _full_collections_completed;
   636   }
   638 protected:
   640   // Shrink the garbage-first heap by at most the given size (in bytes!).
   641   // (Rounds down to a HeapRegion boundary.)
   642   virtual void shrink(size_t expand_bytes);
   643   void shrink_helper(size_t expand_bytes);
   645   #if TASKQUEUE_STATS
   646   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   647   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   648   void reset_taskqueue_stats();
   649   #endif // TASKQUEUE_STATS
   651   // Schedule the VM operation that will do an evacuation pause to
   652   // satisfy an allocation request of word_size. *succeeded will
   653   // return whether the VM operation was successful (it did do an
   654   // evacuation pause) or not (another thread beat us to it or the GC
   655   // locker was active). Given that we should not be holding the
   656   // Heap_lock when we enter this method, we will pass the
   657   // gc_count_before (i.e., total_collections()) as a parameter since
   658   // it has to be read while holding the Heap_lock. Currently, both
   659   // methods that call do_collection_pause() release the Heap_lock
   660   // before the call, so it's easy to read gc_count_before just before.
   661   HeapWord* do_collection_pause(size_t       word_size,
   662                                 unsigned int gc_count_before,
   663                                 bool*        succeeded);
   665   // The guts of the incremental collection pause, executed by the vm
   666   // thread. It returns false if it is unable to do the collection due
   667   // to the GC locker being active, true otherwise
   668   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   670   // Actually do the work of evacuating the collection set.
   671   void evacuate_collection_set();
   673   // The g1 remembered set of the heap.
   674   G1RemSet* _g1_rem_set;
   675   // And it's mod ref barrier set, used to track updates for the above.
   676   ModRefBarrierSet* _mr_bs;
   678   // A set of cards that cover the objects for which the Rsets should be updated
   679   // concurrently after the collection.
   680   DirtyCardQueueSet _dirty_card_queue_set;
   682   // The Heap Region Rem Set Iterator.
   683   HeapRegionRemSetIterator** _rem_set_iterator;
   685   // The closure used to refine a single card.
   686   RefineCardTableEntryClosure* _refine_cte_cl;
   688   // A function to check the consistency of dirty card logs.
   689   void check_ct_logs_at_safepoint();
   691   // A DirtyCardQueueSet that is used to hold cards that contain
   692   // references into the current collection set. This is used to
   693   // update the remembered sets of the regions in the collection
   694   // set in the event of an evacuation failure.
   695   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   697   // After a collection pause, make the regions in the CS into free
   698   // regions.
   699   void free_collection_set(HeapRegion* cs_head);
   701   // Abandon the current collection set without recording policy
   702   // statistics or updating free lists.
   703   void abandon_collection_set(HeapRegion* cs_head);
   705   // Applies "scan_non_heap_roots" to roots outside the heap,
   706   // "scan_rs" to roots inside the heap (having done "set_region" to
   707   // indicate the region in which the root resides), and does "scan_perm"
   708   // (setting the generation to the perm generation.)  If "scan_rs" is
   709   // NULL, then this step is skipped.  The "worker_i"
   710   // param is for use with parallel roots processing, and should be
   711   // the "i" of the calling parallel worker thread's work(i) function.
   712   // In the sequential case this param will be ignored.
   713   void g1_process_strong_roots(bool collecting_perm_gen,
   714                                SharedHeap::ScanningOption so,
   715                                OopClosure* scan_non_heap_roots,
   716                                OopsInHeapRegionClosure* scan_rs,
   717                                OopsInGenClosure* scan_perm,
   718                                int worker_i);
   720   // Apply "blk" to all the weak roots of the system.  These include
   721   // JNI weak roots, the code cache, system dictionary, symbol table,
   722   // string table, and referents of reachable weak refs.
   723   void g1_process_weak_roots(OopClosure* root_closure,
   724                              OopClosure* non_root_closure);
   726   // Invoke "save_marks" on all heap regions.
   727   void save_marks();
   729   // Frees a non-humongous region by initializing its contents and
   730   // adding it to the free list that's passed as a parameter (this is
   731   // usually a local list which will be appended to the master free
   732   // list later). The used bytes of freed regions are accumulated in
   733   // pre_used. If par is true, the region's RSet will not be freed
   734   // up. The assumption is that this will be done later.
   735   void free_region(HeapRegion* hr,
   736                    size_t* pre_used,
   737                    FreeRegionList* free_list,
   738                    bool par);
   740   // Frees a humongous region by collapsing it into individual regions
   741   // and calling free_region() for each of them. The freed regions
   742   // will be added to the free list that's passed as a parameter (this
   743   // is usually a local list which will be appended to the master free
   744   // list later). The used bytes of freed regions are accumulated in
   745   // pre_used. If par is true, the region's RSet will not be freed
   746   // up. The assumption is that this will be done later.
   747   void free_humongous_region(HeapRegion* hr,
   748                              size_t* pre_used,
   749                              FreeRegionList* free_list,
   750                              HumongousRegionSet* humongous_proxy_set,
   751                              bool par);
   753   // Notifies all the necessary spaces that the committed space has
   754   // been updated (either expanded or shrunk). It should be called
   755   // after _g1_storage is updated.
   756   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   758   // The concurrent marker (and the thread it runs in.)
   759   ConcurrentMark* _cm;
   760   ConcurrentMarkThread* _cmThread;
   761   bool _mark_in_progress;
   763   // The concurrent refiner.
   764   ConcurrentG1Refine* _cg1r;
   766   // The parallel task queues
   767   RefToScanQueueSet *_task_queues;
   769   // True iff a evacuation has failed in the current collection.
   770   bool _evacuation_failed;
   772   // Set the attribute indicating whether evacuation has failed in the
   773   // current collection.
   774   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   776   // Failed evacuations cause some logical from-space objects to have
   777   // forwarding pointers to themselves.  Reset them.
   778   void remove_self_forwarding_pointers();
   780   // When one is non-null, so is the other.  Together, they each pair is
   781   // an object with a preserved mark, and its mark value.
   782   GrowableArray<oop>*     _objs_with_preserved_marks;
   783   GrowableArray<markOop>* _preserved_marks_of_objs;
   785   // Preserve the mark of "obj", if necessary, in preparation for its mark
   786   // word being overwritten with a self-forwarding-pointer.
   787   void preserve_mark_if_necessary(oop obj, markOop m);
   789   // The stack of evac-failure objects left to be scanned.
   790   GrowableArray<oop>*    _evac_failure_scan_stack;
   791   // The closure to apply to evac-failure objects.
   793   OopsInHeapRegionClosure* _evac_failure_closure;
   794   // Set the field above.
   795   void
   796   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   797     _evac_failure_closure = evac_failure_closure;
   798   }
   800   // Push "obj" on the scan stack.
   801   void push_on_evac_failure_scan_stack(oop obj);
   802   // Process scan stack entries until the stack is empty.
   803   void drain_evac_failure_scan_stack();
   804   // True iff an invocation of "drain_scan_stack" is in progress; to
   805   // prevent unnecessary recursion.
   806   bool _drain_in_progress;
   808   // Do any necessary initialization for evacuation-failure handling.
   809   // "cl" is the closure that will be used to process evac-failure
   810   // objects.
   811   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   812   // Do any necessary cleanup for evacuation-failure handling data
   813   // structures.
   814   void finalize_for_evac_failure();
   816   // An attempt to evacuate "obj" has failed; take necessary steps.
   817   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   818   void handle_evacuation_failure_common(oop obj, markOop m);
   820   // Ensure that the relevant gc_alloc regions are set.
   821   void get_gc_alloc_regions();
   822   // We're done with GC alloc regions. We are going to tear down the
   823   // gc alloc list and remove the gc alloc tag from all the regions on
   824   // that list. However, we will also retain the last (i.e., the one
   825   // that is half-full) GC alloc region, per GCAllocPurpose, for
   826   // possible reuse during the next collection, provided
   827   // _retain_gc_alloc_region[] indicates that it should be the
   828   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   829   // array. If the parameter totally is set, we will not retain any
   830   // regions, irrespective of what _retain_gc_alloc_region[]
   831   // indicates.
   832   void release_gc_alloc_regions(bool totally);
   833 #ifndef PRODUCT
   834   // Useful for debugging.
   835   void print_gc_alloc_regions();
   836 #endif // !PRODUCT
   838   // Instance of the concurrent mark is_alive closure for embedding
   839   // into the reference processor as the is_alive_non_header. This
   840   // prevents unnecessary additions to the discovered lists during
   841   // concurrent discovery.
   842   G1CMIsAliveClosure _is_alive_closure;
   844   // ("Weak") Reference processing support
   845   ReferenceProcessor* _ref_processor;
   847   enum G1H_process_strong_roots_tasks {
   848     G1H_PS_mark_stack_oops_do,
   849     G1H_PS_refProcessor_oops_do,
   850     // Leave this one last.
   851     G1H_PS_NumElements
   852   };
   854   SubTasksDone* _process_strong_tasks;
   856   volatile bool _free_regions_coming;
   858 public:
   860   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   862   void set_refine_cte_cl_concurrency(bool concurrent);
   864   RefToScanQueue *task_queue(int i) const;
   866   // A set of cards where updates happened during the GC
   867   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   869   // A DirtyCardQueueSet that is used to hold cards that contain
   870   // references into the current collection set. This is used to
   871   // update the remembered sets of the regions in the collection
   872   // set in the event of an evacuation failure.
   873   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   874         { return _into_cset_dirty_card_queue_set; }
   876   // Create a G1CollectedHeap with the specified policy.
   877   // Must call the initialize method afterwards.
   878   // May not return if something goes wrong.
   879   G1CollectedHeap(G1CollectorPolicy* policy);
   881   // Initialize the G1CollectedHeap to have the initial and
   882   // maximum sizes, permanent generation, and remembered and barrier sets
   883   // specified by the policy object.
   884   jint initialize();
   886   virtual void ref_processing_init();
   888   void set_par_threads(int t) {
   889     SharedHeap::set_par_threads(t);
   890     _process_strong_tasks->set_n_threads(t);
   891   }
   893   virtual CollectedHeap::Name kind() const {
   894     return CollectedHeap::G1CollectedHeap;
   895   }
   897   // The current policy object for the collector.
   898   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   900   // Adaptive size policy.  No such thing for g1.
   901   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   903   // The rem set and barrier set.
   904   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   905   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   907   // The rem set iterator.
   908   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   909     return _rem_set_iterator[i];
   910   }
   912   HeapRegionRemSetIterator* rem_set_iterator() {
   913     return _rem_set_iterator[0];
   914   }
   916   unsigned get_gc_time_stamp() {
   917     return _gc_time_stamp;
   918   }
   920   void reset_gc_time_stamp() {
   921     _gc_time_stamp = 0;
   922     OrderAccess::fence();
   923   }
   925   void increment_gc_time_stamp() {
   926     ++_gc_time_stamp;
   927     OrderAccess::fence();
   928   }
   930   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   931                                   DirtyCardQueue* into_cset_dcq,
   932                                   bool concurrent, int worker_i);
   934   // The shared block offset table array.
   935   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   937   // Reference Processing accessor
   938   ReferenceProcessor* ref_processor() { return _ref_processor; }
   940   virtual size_t capacity() const;
   941   virtual size_t used() const;
   942   // This should be called when we're not holding the heap lock. The
   943   // result might be a bit inaccurate.
   944   size_t used_unlocked() const;
   945   size_t recalculate_used() const;
   946 #ifndef PRODUCT
   947   size_t recalculate_used_regions() const;
   948 #endif // PRODUCT
   950   // These virtual functions do the actual allocation.
   951   // Some heaps may offer a contiguous region for shared non-blocking
   952   // allocation, via inlined code (by exporting the address of the top and
   953   // end fields defining the extent of the contiguous allocation region.)
   954   // But G1CollectedHeap doesn't yet support this.
   956   // Return an estimate of the maximum allocation that could be performed
   957   // without triggering any collection or expansion activity.  In a
   958   // generational collector, for example, this is probably the largest
   959   // allocation that could be supported (without expansion) in the youngest
   960   // generation.  It is "unsafe" because no locks are taken; the result
   961   // should be treated as an approximation, not a guarantee, for use in
   962   // heuristic resizing decisions.
   963   virtual size_t unsafe_max_alloc();
   965   virtual bool is_maximal_no_gc() const {
   966     return _g1_storage.uncommitted_size() == 0;
   967   }
   969   // The total number of regions in the heap.
   970   size_t n_regions() { return _hrs.length(); }
   972   // The max number of regions in the heap.
   973   size_t max_regions() { return _hrs.max_length(); }
   975   // The number of regions that are completely free.
   976   size_t free_regions() { return _free_list.length(); }
   978   // The number of regions that are not completely free.
   979   size_t used_regions() { return n_regions() - free_regions(); }
   981   // The number of regions available for "regular" expansion.
   982   size_t expansion_regions() { return _expansion_regions; }
   984   // Factory method for HeapRegion instances. It will return NULL if
   985   // the allocation fails.
   986   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   988   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   989   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   990   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   991   void verify_dirty_young_regions() PRODUCT_RETURN;
   993   // verify_region_sets() performs verification over the region
   994   // lists. It will be compiled in the product code to be used when
   995   // necessary (i.e., during heap verification).
   996   void verify_region_sets();
   998   // verify_region_sets_optional() is planted in the code for
   999   // list verification in non-product builds (and it can be enabled in
  1000   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1001 #if HEAP_REGION_SET_FORCE_VERIFY
  1002   void verify_region_sets_optional() {
  1003     verify_region_sets();
  1005 #else // HEAP_REGION_SET_FORCE_VERIFY
  1006   void verify_region_sets_optional() { }
  1007 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1009 #ifdef ASSERT
  1010   bool is_on_master_free_list(HeapRegion* hr) {
  1011     return hr->containing_set() == &_free_list;
  1014   bool is_in_humongous_set(HeapRegion* hr) {
  1015     return hr->containing_set() == &_humongous_set;
  1017 #endif // ASSERT
  1019   // Wrapper for the region list operations that can be called from
  1020   // methods outside this class.
  1022   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1023     _secondary_free_list.add_as_tail(list);
  1026   void append_secondary_free_list() {
  1027     _free_list.add_as_head(&_secondary_free_list);
  1030   void append_secondary_free_list_if_not_empty_with_lock() {
  1031     // If the secondary free list looks empty there's no reason to
  1032     // take the lock and then try to append it.
  1033     if (!_secondary_free_list.is_empty()) {
  1034       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1035       append_secondary_free_list();
  1039   void set_free_regions_coming();
  1040   void reset_free_regions_coming();
  1041   bool free_regions_coming() { return _free_regions_coming; }
  1042   void wait_while_free_regions_coming();
  1044   // Perform a collection of the heap; intended for use in implementing
  1045   // "System.gc".  This probably implies as full a collection as the
  1046   // "CollectedHeap" supports.
  1047   virtual void collect(GCCause::Cause cause);
  1049   // The same as above but assume that the caller holds the Heap_lock.
  1050   void collect_locked(GCCause::Cause cause);
  1052   // This interface assumes that it's being called by the
  1053   // vm thread. It collects the heap assuming that the
  1054   // heap lock is already held and that we are executing in
  1055   // the context of the vm thread.
  1056   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1058   // True iff a evacuation has failed in the most-recent collection.
  1059   bool evacuation_failed() { return _evacuation_failed; }
  1061   // It will free a region if it has allocated objects in it that are
  1062   // all dead. It calls either free_region() or
  1063   // free_humongous_region() depending on the type of the region that
  1064   // is passed to it.
  1065   void free_region_if_empty(HeapRegion* hr,
  1066                             size_t* pre_used,
  1067                             FreeRegionList* free_list,
  1068                             HumongousRegionSet* humongous_proxy_set,
  1069                             HRRSCleanupTask* hrrs_cleanup_task,
  1070                             bool par);
  1072   // It appends the free list to the master free list and updates the
  1073   // master humongous list according to the contents of the proxy
  1074   // list. It also adjusts the total used bytes according to pre_used
  1075   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1076   void update_sets_after_freeing_regions(size_t pre_used,
  1077                                        FreeRegionList* free_list,
  1078                                        HumongousRegionSet* humongous_proxy_set,
  1079                                        bool par);
  1081   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1082   virtual bool is_in(const void* p) const;
  1084   // Return "TRUE" iff the given object address is within the collection
  1085   // set.
  1086   inline bool obj_in_cs(oop obj);
  1088   // Return "TRUE" iff the given object address is in the reserved
  1089   // region of g1 (excluding the permanent generation).
  1090   bool is_in_g1_reserved(const void* p) const {
  1091     return _g1_reserved.contains(p);
  1094   // Returns a MemRegion that corresponds to the space that has been
  1095   // reserved for the heap
  1096   MemRegion g1_reserved() {
  1097     return _g1_reserved;
  1100   // Returns a MemRegion that corresponds to the space that has been
  1101   // committed in the heap
  1102   MemRegion g1_committed() {
  1103     return _g1_committed;
  1106   virtual bool is_in_closed_subset(const void* p) const;
  1108   // Dirty card table entries covering a list of young regions.
  1109   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1111   // This resets the card table to all zeros.  It is used after
  1112   // a collection pause which used the card table to claim cards.
  1113   void cleanUpCardTable();
  1115   // Iteration functions.
  1117   // Iterate over all the ref-containing fields of all objects, calling
  1118   // "cl.do_oop" on each.
  1119   virtual void oop_iterate(OopClosure* cl) {
  1120     oop_iterate(cl, true);
  1122   void oop_iterate(OopClosure* cl, bool do_perm);
  1124   // Same as above, restricted to a memory region.
  1125   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1126     oop_iterate(mr, cl, true);
  1128   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1130   // Iterate over all objects, calling "cl.do_object" on each.
  1131   virtual void object_iterate(ObjectClosure* cl) {
  1132     object_iterate(cl, true);
  1134   virtual void safe_object_iterate(ObjectClosure* cl) {
  1135     object_iterate(cl, true);
  1137   void object_iterate(ObjectClosure* cl, bool do_perm);
  1139   // Iterate over all objects allocated since the last collection, calling
  1140   // "cl.do_object" on each.  The heap must have been initialized properly
  1141   // to support this function, or else this call will fail.
  1142   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1144   // Iterate over all spaces in use in the heap, in ascending address order.
  1145   virtual void space_iterate(SpaceClosure* cl);
  1147   // Iterate over heap regions, in address order, terminating the
  1148   // iteration early if the "doHeapRegion" method returns "true".
  1149   void heap_region_iterate(HeapRegionClosure* blk) const;
  1151   // Iterate over heap regions starting with r (or the first region if "r"
  1152   // is NULL), in address order, terminating early if the "doHeapRegion"
  1153   // method returns "true".
  1154   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1156   // Return the region with the given index. It assumes the index is valid.
  1157   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1159   // Divide the heap region sequence into "chunks" of some size (the number
  1160   // of regions divided by the number of parallel threads times some
  1161   // overpartition factor, currently 4).  Assumes that this will be called
  1162   // in parallel by ParallelGCThreads worker threads with discinct worker
  1163   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1164   // calls will use the same "claim_value", and that that claim value is
  1165   // different from the claim_value of any heap region before the start of
  1166   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1167   // attempting to claim the first region in each chunk, and, if
  1168   // successful, applying the closure to each region in the chunk (and
  1169   // setting the claim value of the second and subsequent regions of the
  1170   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1171   // i.e., that a closure never attempt to abort a traversal.
  1172   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1173                                        int worker,
  1174                                        jint claim_value);
  1176   // It resets all the region claim values to the default.
  1177   void reset_heap_region_claim_values();
  1179 #ifdef ASSERT
  1180   bool check_heap_region_claim_values(jint claim_value);
  1181 #endif // ASSERT
  1183   // Iterate over the regions (if any) in the current collection set.
  1184   void collection_set_iterate(HeapRegionClosure* blk);
  1186   // As above but starting from region r
  1187   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1189   // Returns the first (lowest address) compactible space in the heap.
  1190   virtual CompactibleSpace* first_compactible_space();
  1192   // A CollectedHeap will contain some number of spaces.  This finds the
  1193   // space containing a given address, or else returns NULL.
  1194   virtual Space* space_containing(const void* addr) const;
  1196   // A G1CollectedHeap will contain some number of heap regions.  This
  1197   // finds the region containing a given address, or else returns NULL.
  1198   template <class T>
  1199   inline HeapRegion* heap_region_containing(const T addr) const;
  1201   // Like the above, but requires "addr" to be in the heap (to avoid a
  1202   // null-check), and unlike the above, may return an continuing humongous
  1203   // region.
  1204   template <class T>
  1205   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1207   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1208   // each address in the (reserved) heap is a member of exactly
  1209   // one block.  The defining characteristic of a block is that it is
  1210   // possible to find its size, and thus to progress forward to the next
  1211   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1212   // represent Java objects, or they might be free blocks in a
  1213   // free-list-based heap (or subheap), as long as the two kinds are
  1214   // distinguishable and the size of each is determinable.
  1216   // Returns the address of the start of the "block" that contains the
  1217   // address "addr".  We say "blocks" instead of "object" since some heaps
  1218   // may not pack objects densely; a chunk may either be an object or a
  1219   // non-object.
  1220   virtual HeapWord* block_start(const void* addr) const;
  1222   // Requires "addr" to be the start of a chunk, and returns its size.
  1223   // "addr + size" is required to be the start of a new chunk, or the end
  1224   // of the active area of the heap.
  1225   virtual size_t block_size(const HeapWord* addr) const;
  1227   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1228   // the block is an object.
  1229   virtual bool block_is_obj(const HeapWord* addr) const;
  1231   // Does this heap support heap inspection? (+PrintClassHistogram)
  1232   virtual bool supports_heap_inspection() const { return true; }
  1234   // Section on thread-local allocation buffers (TLABs)
  1235   // See CollectedHeap for semantics.
  1237   virtual bool supports_tlab_allocation() const;
  1238   virtual size_t tlab_capacity(Thread* thr) const;
  1239   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1241   // Can a compiler initialize a new object without store barriers?
  1242   // This permission only extends from the creation of a new object
  1243   // via a TLAB up to the first subsequent safepoint. If such permission
  1244   // is granted for this heap type, the compiler promises to call
  1245   // defer_store_barrier() below on any slow path allocation of
  1246   // a new object for which such initializing store barriers will
  1247   // have been elided. G1, like CMS, allows this, but should be
  1248   // ready to provide a compensating write barrier as necessary
  1249   // if that storage came out of a non-young region. The efficiency
  1250   // of this implementation depends crucially on being able to
  1251   // answer very efficiently in constant time whether a piece of
  1252   // storage in the heap comes from a young region or not.
  1253   // See ReduceInitialCardMarks.
  1254   virtual bool can_elide_tlab_store_barriers() const {
  1255     // 6920090: Temporarily disabled, because of lingering
  1256     // instabilities related to RICM with G1. In the
  1257     // interim, the option ReduceInitialCardMarksForG1
  1258     // below is left solely as a debugging device at least
  1259     // until 6920109 fixes the instabilities.
  1260     return ReduceInitialCardMarksForG1;
  1263   virtual bool card_mark_must_follow_store() const {
  1264     return true;
  1267   bool is_in_young(const oop obj) {
  1268     HeapRegion* hr = heap_region_containing(obj);
  1269     return hr != NULL && hr->is_young();
  1272 #ifdef ASSERT
  1273   virtual bool is_in_partial_collection(const void* p);
  1274 #endif
  1276   virtual bool is_scavengable(const void* addr);
  1278   // We don't need barriers for initializing stores to objects
  1279   // in the young gen: for the SATB pre-barrier, there is no
  1280   // pre-value that needs to be remembered; for the remembered-set
  1281   // update logging post-barrier, we don't maintain remembered set
  1282   // information for young gen objects. Note that non-generational
  1283   // G1 does not have any "young" objects, should not elide
  1284   // the rs logging barrier and so should always answer false below.
  1285   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1286   // bit-rotted so was not tested below.
  1287   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1288     // Re 6920090, 6920109 above.
  1289     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1290     assert(G1Gen || !is_in_young(new_obj),
  1291            "Non-generational G1 should never return true below");
  1292     return is_in_young(new_obj);
  1295   // Can a compiler elide a store barrier when it writes
  1296   // a permanent oop into the heap?  Applies when the compiler
  1297   // is storing x to the heap, where x->is_perm() is true.
  1298   virtual bool can_elide_permanent_oop_store_barriers() const {
  1299     // At least until perm gen collection is also G1-ified, at
  1300     // which point this should return false.
  1301     return true;
  1304   // Returns "true" iff the given word_size is "very large".
  1305   static bool isHumongous(size_t word_size) {
  1306     // Note this has to be strictly greater-than as the TLABs
  1307     // are capped at the humongous thresold and we want to
  1308     // ensure that we don't try to allocate a TLAB as
  1309     // humongous and that we don't allocate a humongous
  1310     // object in a TLAB.
  1311     return word_size > _humongous_object_threshold_in_words;
  1314   // Update mod union table with the set of dirty cards.
  1315   void updateModUnion();
  1317   // Set the mod union bits corresponding to the given memRegion.  Note
  1318   // that this is always a safe operation, since it doesn't clear any
  1319   // bits.
  1320   void markModUnionRange(MemRegion mr);
  1322   // Records the fact that a marking phase is no longer in progress.
  1323   void set_marking_complete() {
  1324     _mark_in_progress = false;
  1326   void set_marking_started() {
  1327     _mark_in_progress = true;
  1329   bool mark_in_progress() {
  1330     return _mark_in_progress;
  1333   // Print the maximum heap capacity.
  1334   virtual size_t max_capacity() const;
  1336   virtual jlong millis_since_last_gc();
  1338   // Perform any cleanup actions necessary before allowing a verification.
  1339   virtual void prepare_for_verify();
  1341   // Perform verification.
  1343   // vo == UsePrevMarking  -> use "prev" marking information,
  1344   // vo == UseNextMarking -> use "next" marking information
  1345   // vo == UseMarkWord    -> use the mark word in the object header
  1346   //
  1347   // NOTE: Only the "prev" marking information is guaranteed to be
  1348   // consistent most of the time, so most calls to this should use
  1349   // vo == UsePrevMarking.
  1350   // Currently, there is only one case where this is called with
  1351   // vo == UseNextMarking, which is to verify the "next" marking
  1352   // information at the end of remark.
  1353   // Currently there is only one place where this is called with
  1354   // vo == UseMarkWord, which is to verify the marking during a
  1355   // full GC.
  1356   void verify(bool allow_dirty, bool silent, VerifyOption vo);
  1358   // Override; it uses the "prev" marking information
  1359   virtual void verify(bool allow_dirty, bool silent);
  1360   // Default behavior by calling print(tty);
  1361   virtual void print() const;
  1362   // This calls print_on(st, PrintHeapAtGCExtended).
  1363   virtual void print_on(outputStream* st) const;
  1364   // If extended is true, it will print out information for all
  1365   // regions in the heap by calling print_on_extended(st).
  1366   virtual void print_on(outputStream* st, bool extended) const;
  1367   virtual void print_on_extended(outputStream* st) const;
  1369   virtual void print_gc_threads_on(outputStream* st) const;
  1370   virtual void gc_threads_do(ThreadClosure* tc) const;
  1372   // Override
  1373   void print_tracing_info() const;
  1375   // The following two methods are helpful for debugging RSet issues.
  1376   void print_cset_rsets() PRODUCT_RETURN;
  1377   void print_all_rsets() PRODUCT_RETURN;
  1379   // Convenience function to be used in situations where the heap type can be
  1380   // asserted to be this type.
  1381   static G1CollectedHeap* heap();
  1383   void empty_young_list();
  1385   void set_region_short_lived_locked(HeapRegion* hr);
  1386   // add appropriate methods for any other surv rate groups
  1388   YoungList* young_list() { return _young_list; }
  1390   // debugging
  1391   bool check_young_list_well_formed() {
  1392     return _young_list->check_list_well_formed();
  1395   bool check_young_list_empty(bool check_heap,
  1396                               bool check_sample = true);
  1398   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1399   // many of these need to be public.
  1401   // The functions below are helper functions that a subclass of
  1402   // "CollectedHeap" can use in the implementation of its virtual
  1403   // functions.
  1404   // This performs a concurrent marking of the live objects in a
  1405   // bitmap off to the side.
  1406   void doConcurrentMark();
  1408   // Do a full concurrent marking, synchronously.
  1409   void do_sync_mark();
  1411   bool isMarkedPrev(oop obj) const;
  1412   bool isMarkedNext(oop obj) const;
  1414   // vo == UsePrevMarking -> use "prev" marking information,
  1415   // vo == UseNextMarking -> use "next" marking information,
  1416   // vo == UseMarkWord    -> use mark word from object header
  1417   bool is_obj_dead_cond(const oop obj,
  1418                         const HeapRegion* hr,
  1419                         const VerifyOption vo) const {
  1421     switch (vo) {
  1422       case VerifyOption_G1UsePrevMarking:
  1423         return is_obj_dead(obj, hr);
  1424       case VerifyOption_G1UseNextMarking:
  1425         return is_obj_ill(obj, hr);
  1426       default:
  1427         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1428         return !obj->is_gc_marked();
  1432   // Determine if an object is dead, given the object and also
  1433   // the region to which the object belongs. An object is dead
  1434   // iff a) it was not allocated since the last mark and b) it
  1435   // is not marked.
  1437   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1438     return
  1439       !hr->obj_allocated_since_prev_marking(obj) &&
  1440       !isMarkedPrev(obj);
  1443   // This is used when copying an object to survivor space.
  1444   // If the object is marked live, then we mark the copy live.
  1445   // If the object is allocated since the start of this mark
  1446   // cycle, then we mark the copy live.
  1447   // If the object has been around since the previous mark
  1448   // phase, and hasn't been marked yet during this phase,
  1449   // then we don't mark it, we just wait for the
  1450   // current marking cycle to get to it.
  1452   // This function returns true when an object has been
  1453   // around since the previous marking and hasn't yet
  1454   // been marked during this marking.
  1456   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1457     return
  1458       !hr->obj_allocated_since_next_marking(obj) &&
  1459       !isMarkedNext(obj);
  1462   // Determine if an object is dead, given only the object itself.
  1463   // This will find the region to which the object belongs and
  1464   // then call the region version of the same function.
  1466   // Added if it is in permanent gen it isn't dead.
  1467   // Added if it is NULL it isn't dead.
  1469   // vo == UsePrevMarking -> use "prev" marking information,
  1470   // vo == UseNextMarking -> use "next" marking information,
  1471   // vo == UseMarkWord    -> use mark word from object header
  1472   bool is_obj_dead_cond(const oop obj,
  1473                         const VerifyOption vo) const {
  1475     switch (vo) {
  1476       case VerifyOption_G1UsePrevMarking:
  1477         return is_obj_dead(obj);
  1478       case VerifyOption_G1UseNextMarking:
  1479         return is_obj_ill(obj);
  1480       default:
  1481         assert(vo == VerifyOption_G1UseMarkWord, "must be");
  1482         return !obj->is_gc_marked();
  1486   bool is_obj_dead(const oop obj) const {
  1487     const HeapRegion* hr = heap_region_containing(obj);
  1488     if (hr == NULL) {
  1489       if (Universe::heap()->is_in_permanent(obj))
  1490         return false;
  1491       else if (obj == NULL) return false;
  1492       else return true;
  1494     else return is_obj_dead(obj, hr);
  1497   bool is_obj_ill(const oop obj) const {
  1498     const HeapRegion* hr = heap_region_containing(obj);
  1499     if (hr == NULL) {
  1500       if (Universe::heap()->is_in_permanent(obj))
  1501         return false;
  1502       else if (obj == NULL) return false;
  1503       else return true;
  1505     else return is_obj_ill(obj, hr);
  1508   // The following is just to alert the verification code
  1509   // that a full collection has occurred and that the
  1510   // remembered sets are no longer up to date.
  1511   bool _full_collection;
  1512   void set_full_collection() { _full_collection = true;}
  1513   void clear_full_collection() {_full_collection = false;}
  1514   bool full_collection() {return _full_collection;}
  1516   ConcurrentMark* concurrent_mark() const { return _cm; }
  1517   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1519   // The dirty cards region list is used to record a subset of regions
  1520   // whose cards need clearing. The list if populated during the
  1521   // remembered set scanning and drained during the card table
  1522   // cleanup. Although the methods are reentrant, population/draining
  1523   // phases must not overlap. For synchronization purposes the last
  1524   // element on the list points to itself.
  1525   HeapRegion* _dirty_cards_region_list;
  1526   void push_dirty_cards_region(HeapRegion* hr);
  1527   HeapRegion* pop_dirty_cards_region();
  1529 public:
  1530   void stop_conc_gc_threads();
  1532   // <NEW PREDICTION>
  1534   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1535   void check_if_region_is_too_expensive(double predicted_time_ms);
  1536   size_t pending_card_num();
  1537   size_t max_pending_card_num();
  1538   size_t cards_scanned();
  1540   // </NEW PREDICTION>
  1542 protected:
  1543   size_t _max_heap_capacity;
  1544 };
  1546 #define use_local_bitmaps         1
  1547 #define verify_local_bitmaps      0
  1548 #define oop_buffer_length       256
  1550 #ifndef PRODUCT
  1551 class GCLabBitMap;
  1552 class GCLabBitMapClosure: public BitMapClosure {
  1553 private:
  1554   ConcurrentMark* _cm;
  1555   GCLabBitMap*    _bitmap;
  1557 public:
  1558   GCLabBitMapClosure(ConcurrentMark* cm,
  1559                      GCLabBitMap* bitmap) {
  1560     _cm     = cm;
  1561     _bitmap = bitmap;
  1564   virtual bool do_bit(size_t offset);
  1565 };
  1566 #endif // !PRODUCT
  1568 class GCLabBitMap: public BitMap {
  1569 private:
  1570   ConcurrentMark* _cm;
  1572   int       _shifter;
  1573   size_t    _bitmap_word_covers_words;
  1575   // beginning of the heap
  1576   HeapWord* _heap_start;
  1578   // this is the actual start of the GCLab
  1579   HeapWord* _real_start_word;
  1581   // this is the actual end of the GCLab
  1582   HeapWord* _real_end_word;
  1584   // this is the first word, possibly located before the actual start
  1585   // of the GCLab, that corresponds to the first bit of the bitmap
  1586   HeapWord* _start_word;
  1588   // size of a GCLab in words
  1589   size_t _gclab_word_size;
  1591   static int shifter() {
  1592     return MinObjAlignment - 1;
  1595   // how many heap words does a single bitmap word corresponds to?
  1596   static size_t bitmap_word_covers_words() {
  1597     return BitsPerWord << shifter();
  1600   size_t gclab_word_size() const {
  1601     return _gclab_word_size;
  1604   // Calculates actual GCLab size in words
  1605   size_t gclab_real_word_size() const {
  1606     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1607            / BitsPerWord;
  1610   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1611     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1612     // We are going to ensure that the beginning of a word in this
  1613     // bitmap also corresponds to the beginning of a word in the
  1614     // global marking bitmap. To handle the case where a GCLab
  1615     // starts from the middle of the bitmap, we need to add enough
  1616     // space (i.e. up to a bitmap word) to ensure that we have
  1617     // enough bits in the bitmap.
  1618     return bits_in_bitmap + BitsPerWord - 1;
  1620 public:
  1621   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1622     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1623       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1624       _shifter(shifter()),
  1625       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1626       _heap_start(heap_start),
  1627       _gclab_word_size(gclab_word_size),
  1628       _real_start_word(NULL),
  1629       _real_end_word(NULL),
  1630       _start_word(NULL)
  1632     guarantee( size_in_words() >= bitmap_size_in_words(),
  1633                "just making sure");
  1636   inline unsigned heapWordToOffset(HeapWord* addr) {
  1637     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1638     assert(offset < size(), "offset should be within bounds");
  1639     return offset;
  1642   inline HeapWord* offsetToHeapWord(size_t offset) {
  1643     HeapWord* addr =  _start_word + (offset << _shifter);
  1644     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1645     return addr;
  1648   bool fields_well_formed() {
  1649     bool ret1 = (_real_start_word == NULL) &&
  1650                 (_real_end_word == NULL) &&
  1651                 (_start_word == NULL);
  1652     if (ret1)
  1653       return true;
  1655     bool ret2 = _real_start_word >= _start_word &&
  1656       _start_word < _real_end_word &&
  1657       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1658       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1659                                                               > _real_end_word;
  1660     return ret2;
  1663   inline bool mark(HeapWord* addr) {
  1664     guarantee(use_local_bitmaps, "invariant");
  1665     assert(fields_well_formed(), "invariant");
  1667     if (addr >= _real_start_word && addr < _real_end_word) {
  1668       assert(!isMarked(addr), "should not have already been marked");
  1670       // first mark it on the bitmap
  1671       at_put(heapWordToOffset(addr), true);
  1673       return true;
  1674     } else {
  1675       return false;
  1679   inline bool isMarked(HeapWord* addr) {
  1680     guarantee(use_local_bitmaps, "invariant");
  1681     assert(fields_well_formed(), "invariant");
  1683     return at(heapWordToOffset(addr));
  1686   void set_buffer(HeapWord* start) {
  1687     guarantee(use_local_bitmaps, "invariant");
  1688     clear();
  1690     assert(start != NULL, "invariant");
  1691     _real_start_word = start;
  1692     _real_end_word   = start + _gclab_word_size;
  1694     size_t diff =
  1695       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1696     _start_word = start - diff;
  1698     assert(fields_well_formed(), "invariant");
  1701 #ifndef PRODUCT
  1702   void verify() {
  1703     // verify that the marks have been propagated
  1704     GCLabBitMapClosure cl(_cm, this);
  1705     iterate(&cl);
  1707 #endif // PRODUCT
  1709   void retire() {
  1710     guarantee(use_local_bitmaps, "invariant");
  1711     assert(fields_well_formed(), "invariant");
  1713     if (_start_word != NULL) {
  1714       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1716       // this means that the bitmap was set up for the GCLab
  1717       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1719       mark_bitmap->mostly_disjoint_range_union(this,
  1720                                 0, // always start from the start of the bitmap
  1721                                 _start_word,
  1722                                 gclab_real_word_size());
  1723       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1725 #ifndef PRODUCT
  1726       if (use_local_bitmaps && verify_local_bitmaps)
  1727         verify();
  1728 #endif // PRODUCT
  1729     } else {
  1730       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1734   size_t bitmap_size_in_words() const {
  1735     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1738 };
  1740 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1741 private:
  1742   bool        _retired;
  1743   bool        _during_marking;
  1744   GCLabBitMap _bitmap;
  1746 public:
  1747   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1748     ParGCAllocBuffer(gclab_word_size),
  1749     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1750     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1751     _retired(false)
  1752   { }
  1754   inline bool mark(HeapWord* addr) {
  1755     guarantee(use_local_bitmaps, "invariant");
  1756     assert(_during_marking, "invariant");
  1757     return _bitmap.mark(addr);
  1760   inline void set_buf(HeapWord* buf) {
  1761     if (use_local_bitmaps && _during_marking)
  1762       _bitmap.set_buffer(buf);
  1763     ParGCAllocBuffer::set_buf(buf);
  1764     _retired = false;
  1767   inline void retire(bool end_of_gc, bool retain) {
  1768     if (_retired)
  1769       return;
  1770     if (use_local_bitmaps && _during_marking) {
  1771       _bitmap.retire();
  1773     ParGCAllocBuffer::retire(end_of_gc, retain);
  1774     _retired = true;
  1776 };
  1778 class G1ParScanThreadState : public StackObj {
  1779 protected:
  1780   G1CollectedHeap* _g1h;
  1781   RefToScanQueue*  _refs;
  1782   DirtyCardQueue   _dcq;
  1783   CardTableModRefBS* _ct_bs;
  1784   G1RemSet* _g1_rem;
  1786   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1787   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1788   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1789   ageTable            _age_table;
  1791   size_t           _alloc_buffer_waste;
  1792   size_t           _undo_waste;
  1794   OopsInHeapRegionClosure*      _evac_failure_cl;
  1795   G1ParScanHeapEvacClosure*     _evac_cl;
  1796   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1798   int _hash_seed;
  1799   int _queue_num;
  1801   size_t _term_attempts;
  1803   double _start;
  1804   double _start_strong_roots;
  1805   double _strong_roots_time;
  1806   double _start_term;
  1807   double _term_time;
  1809   // Map from young-age-index (0 == not young, 1 is youngest) to
  1810   // surviving words. base is what we get back from the malloc call
  1811   size_t* _surviving_young_words_base;
  1812   // this points into the array, as we use the first few entries for padding
  1813   size_t* _surviving_young_words;
  1815 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1817   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1819   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1821   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1822   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1824   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1825     if (!from->is_survivor()) {
  1826       _g1_rem->par_write_ref(from, p, tid);
  1830   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1831     // If the new value of the field points to the same region or
  1832     // is the to-space, we don't need to include it in the Rset updates.
  1833     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1834       size_t card_index = ctbs()->index_for(p);
  1835       // If the card hasn't been added to the buffer, do it.
  1836       if (ctbs()->mark_card_deferred(card_index)) {
  1837         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1842 public:
  1843   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1845   ~G1ParScanThreadState() {
  1846     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1849   RefToScanQueue*   refs()            { return _refs;             }
  1850   ageTable*         age_table()       { return &_age_table;       }
  1852   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1853     return _alloc_buffers[purpose];
  1856   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1857   size_t undo_waste() const                      { return _undo_waste; }
  1859 #ifdef ASSERT
  1860   bool verify_ref(narrowOop* ref) const;
  1861   bool verify_ref(oop* ref) const;
  1862   bool verify_task(StarTask ref) const;
  1863 #endif // ASSERT
  1865   template <class T> void push_on_queue(T* ref) {
  1866     assert(verify_ref(ref), "sanity");
  1867     refs()->push(ref);
  1870   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1871     if (G1DeferredRSUpdate) {
  1872       deferred_rs_update(from, p, tid);
  1873     } else {
  1874       immediate_rs_update(from, p, tid);
  1878   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1880     HeapWord* obj = NULL;
  1881     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1882     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1883       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1884       assert(gclab_word_size == alloc_buf->word_sz(),
  1885              "dynamic resizing is not supported");
  1886       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1887       alloc_buf->retire(false, false);
  1889       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1890       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1891       // Otherwise.
  1892       alloc_buf->set_buf(buf);
  1894       obj = alloc_buf->allocate(word_sz);
  1895       assert(obj != NULL, "buffer was definitely big enough...");
  1896     } else {
  1897       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1899     return obj;
  1902   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1903     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1904     if (obj != NULL) return obj;
  1905     return allocate_slow(purpose, word_sz);
  1908   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1909     if (alloc_buffer(purpose)->contains(obj)) {
  1910       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1911              "should contain whole object");
  1912       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1913     } else {
  1914       CollectedHeap::fill_with_object(obj, word_sz);
  1915       add_to_undo_waste(word_sz);
  1919   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1920     _evac_failure_cl = evac_failure_cl;
  1922   OopsInHeapRegionClosure* evac_failure_closure() {
  1923     return _evac_failure_cl;
  1926   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1927     _evac_cl = evac_cl;
  1930   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1931     _partial_scan_cl = partial_scan_cl;
  1934   int* hash_seed() { return &_hash_seed; }
  1935   int  queue_num() { return _queue_num; }
  1937   size_t term_attempts() const  { return _term_attempts; }
  1938   void note_term_attempt() { _term_attempts++; }
  1940   void start_strong_roots() {
  1941     _start_strong_roots = os::elapsedTime();
  1943   void end_strong_roots() {
  1944     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1946   double strong_roots_time() const { return _strong_roots_time; }
  1948   void start_term_time() {
  1949     note_term_attempt();
  1950     _start_term = os::elapsedTime();
  1952   void end_term_time() {
  1953     _term_time += (os::elapsedTime() - _start_term);
  1955   double term_time() const { return _term_time; }
  1957   double elapsed_time() const {
  1958     return os::elapsedTime() - _start;
  1961   static void
  1962     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1963   void
  1964     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1966   size_t* surviving_young_words() {
  1967     // We add on to hide entry 0 which accumulates surviving words for
  1968     // age -1 regions (i.e. non-young ones)
  1969     return _surviving_young_words;
  1972   void retire_alloc_buffers() {
  1973     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1974       size_t waste = _alloc_buffers[ap]->words_remaining();
  1975       add_to_alloc_buffer_waste(waste);
  1976       _alloc_buffers[ap]->retire(true, false);
  1980   template <class T> void deal_with_reference(T* ref_to_scan) {
  1981     if (has_partial_array_mask(ref_to_scan)) {
  1982       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1983     } else {
  1984       // Note: we can use "raw" versions of "region_containing" because
  1985       // "obj_to_scan" is definitely in the heap, and is not in a
  1986       // humongous region.
  1987       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1988       _evac_cl->set_region(r);
  1989       _evac_cl->do_oop_nv(ref_to_scan);
  1993   void deal_with_reference(StarTask ref) {
  1994     assert(verify_task(ref), "sanity");
  1995     if (ref.is_narrow()) {
  1996       deal_with_reference((narrowOop*)ref);
  1997     } else {
  1998       deal_with_reference((oop*)ref);
  2002 public:
  2003   void trim_queue();
  2004 };
  2006 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial