src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

duke@435 1 /*
stefank@2314 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
stefank@2314 27
stefank@2325 28 #include "memory/memRegion.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psVirtualspace.hpp"
stefank@2314 30 #include "utilities/bitMap.inline.hpp"
stefank@2314 31
duke@435 32 class oopDesc;
duke@435 33 class ParMarkBitMapClosure;
duke@435 34
duke@435 35 class ParMarkBitMap: public CHeapObj
duke@435 36 {
duke@435 37 public:
duke@435 38 typedef BitMap::idx_t idx_t;
duke@435 39
duke@435 40 // Values returned by the iterate() methods.
duke@435 41 enum IterationStatus { incomplete, complete, full, would_overflow };
duke@435 42
duke@435 43 inline ParMarkBitMap();
duke@435 44 inline ParMarkBitMap(MemRegion covered_region);
duke@435 45 bool initialize(MemRegion covered_region);
duke@435 46
duke@435 47 // Atomically mark an object as live.
duke@435 48 bool mark_obj(HeapWord* addr, size_t size);
duke@435 49 inline bool mark_obj(oop obj, int size);
duke@435 50 inline bool mark_obj(oop obj);
duke@435 51
duke@435 52 // Return whether the specified begin or end bit is set.
duke@435 53 inline bool is_obj_beg(idx_t bit) const;
duke@435 54 inline bool is_obj_end(idx_t bit) const;
duke@435 55
duke@435 56 // Traditional interface for testing whether an object is marked or not (these
duke@435 57 // test only the begin bits).
duke@435 58 inline bool is_marked(idx_t bit) const;
duke@435 59 inline bool is_marked(HeapWord* addr) const;
duke@435 60 inline bool is_marked(oop obj) const;
duke@435 61
duke@435 62 inline bool is_unmarked(idx_t bit) const;
duke@435 63 inline bool is_unmarked(HeapWord* addr) const;
duke@435 64 inline bool is_unmarked(oop obj) const;
duke@435 65
duke@435 66 // Convert sizes from bits to HeapWords and back. An object that is n bits
duke@435 67 // long will be bits_to_words(n) words long. An object that is m words long
duke@435 68 // will take up words_to_bits(m) bits in the bitmap.
duke@435 69 inline static size_t bits_to_words(idx_t bits);
duke@435 70 inline static idx_t words_to_bits(size_t words);
duke@435 71
duke@435 72 // Return the size in words of an object given a begin bit and an end bit, or
duke@435 73 // the equivalent beg_addr and end_addr.
duke@435 74 inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
duke@435 75 inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
duke@435 76
duke@435 77 // Return the size in words of the object (a search is done for the end bit).
duke@435 78 inline size_t obj_size(idx_t beg_bit) const;
duke@435 79 inline size_t obj_size(HeapWord* addr) const;
duke@435 80 inline size_t obj_size(oop obj) const;
duke@435 81
duke@435 82 // Synonyms for the above.
duke@435 83 size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
duke@435 84 size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
duke@435 85
duke@435 86 // Apply live_closure to each live object that lies completely within the
duke@435 87 // range [live_range_beg, live_range_end). This is used to iterate over the
duke@435 88 // compacted region of the heap. Return values:
duke@435 89 //
duke@435 90 // incomplete The iteration is not complete. The last object that
duke@435 91 // begins in the range does not end in the range;
duke@435 92 // closure->source() is set to the start of that object.
duke@435 93 //
duke@435 94 // complete The iteration is complete. All objects in the range
duke@435 95 // were processed and the closure is not full;
duke@435 96 // closure->source() is set one past the end of the range.
duke@435 97 //
duke@435 98 // full The closure is full; closure->source() is set to one
duke@435 99 // past the end of the last object processed.
duke@435 100 //
duke@435 101 // would_overflow The next object in the range would overflow the closure;
duke@435 102 // closure->source() is set to the start of that object.
duke@435 103 IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 104 idx_t range_beg, idx_t range_end) const;
duke@435 105 inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 106 HeapWord* range_beg,
duke@435 107 HeapWord* range_end) const;
duke@435 108
duke@435 109 // Apply live closure as above and additionally apply dead_closure to all dead
duke@435 110 // space in the range [range_beg, dead_range_end). Note that dead_range_end
duke@435 111 // must be >= range_end. This is used to iterate over the dense prefix.
duke@435 112 //
duke@435 113 // This method assumes that if the first bit in the range (range_beg) is not
duke@435 114 // marked, then dead space begins at that point and the dead_closure is
duke@435 115 // applied. Thus callers must ensure that range_beg is not in the middle of a
duke@435 116 // live object.
duke@435 117 IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 118 ParMarkBitMapClosure* dead_closure,
duke@435 119 idx_t range_beg, idx_t range_end,
duke@435 120 idx_t dead_range_end) const;
duke@435 121 inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 122 ParMarkBitMapClosure* dead_closure,
duke@435 123 HeapWord* range_beg,
duke@435 124 HeapWord* range_end,
duke@435 125 HeapWord* dead_range_end) const;
duke@435 126
duke@435 127 // Return the number of live words in the range [beg_addr, end_addr) due to
duke@435 128 // objects that start in the range. If a live object extends onto the range,
duke@435 129 // the caller must detect and account for any live words due to that object.
duke@435 130 // If a live object extends beyond the end of the range, only the words within
duke@435 131 // the range are included in the result.
duke@435 132 size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
duke@435 133
duke@435 134 // Same as the above, except the end of the range must be a live object, which
duke@435 135 // is the case when updating pointers. This allows a branch to be removed
duke@435 136 // from inside the loop.
duke@435 137 size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
duke@435 138
duke@435 139 inline HeapWord* region_start() const;
duke@435 140 inline HeapWord* region_end() const;
duke@435 141 inline size_t region_size() const;
duke@435 142 inline size_t size() const;
duke@435 143
duke@435 144 // Convert a heap address to/from a bit index.
duke@435 145 inline idx_t addr_to_bit(HeapWord* addr) const;
duke@435 146 inline HeapWord* bit_to_addr(idx_t bit) const;
duke@435 147
duke@435 148 // Return the bit index of the first marked object that begins (or ends,
duke@435 149 // respectively) in the range [beg, end). If no object is found, return end.
duke@435 150 inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
duke@435 151 inline idx_t find_obj_end(idx_t beg, idx_t end) const;
duke@435 152
duke@435 153 inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
duke@435 154 inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
duke@435 155
duke@435 156 // Clear a range of bits or the entire bitmap (both begin and end bits are
duke@435 157 // cleared).
duke@435 158 inline void clear_range(idx_t beg, idx_t end);
duke@435 159 inline void clear() { clear_range(0, size()); }
duke@435 160
duke@435 161 // Return the number of bits required to represent the specified number of
duke@435 162 // HeapWords, or the specified region.
duke@435 163 static inline idx_t bits_required(size_t words);
duke@435 164 static inline idx_t bits_required(MemRegion covered_region);
duke@435 165 static inline idx_t words_required(MemRegion covered_region);
duke@435 166
duke@435 167 #ifndef PRODUCT
duke@435 168 // CAS statistics.
duke@435 169 size_t cas_tries() { return _cas_tries; }
duke@435 170 size_t cas_retries() { return _cas_retries; }
duke@435 171 size_t cas_by_another() { return _cas_by_another; }
duke@435 172
duke@435 173 void reset_counters();
duke@435 174 #endif // #ifndef PRODUCT
duke@435 175
duke@435 176 #ifdef ASSERT
duke@435 177 void verify_clear() const;
duke@435 178 inline void verify_bit(idx_t bit) const;
duke@435 179 inline void verify_addr(HeapWord* addr) const;
duke@435 180 #endif // #ifdef ASSERT
duke@435 181
duke@435 182 private:
duke@435 183 // Each bit in the bitmap represents one unit of 'object granularity.' Objects
duke@435 184 // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
duke@435 185 // granularity is 2, 64-bit is 1.
duke@435 186 static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
jcoomes@1243 187 static inline int obj_granularity_shift() { return LogMinObjAlignment; }
duke@435 188
duke@435 189 HeapWord* _region_start;
duke@435 190 size_t _region_size;
duke@435 191 BitMap _beg_bits;
duke@435 192 BitMap _end_bits;
duke@435 193 PSVirtualSpace* _virtual_space;
duke@435 194
duke@435 195 #ifndef PRODUCT
duke@435 196 size_t _cas_tries;
duke@435 197 size_t _cas_retries;
duke@435 198 size_t _cas_by_another;
duke@435 199 #endif // #ifndef PRODUCT
duke@435 200 };
duke@435 201
duke@435 202 inline ParMarkBitMap::ParMarkBitMap():
ysr@777 203 _beg_bits(),
ysr@777 204 _end_bits()
duke@435 205 {
duke@435 206 _region_start = 0;
duke@435 207 _virtual_space = 0;
duke@435 208 }
duke@435 209
duke@435 210 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
ysr@777 211 _beg_bits(),
ysr@777 212 _end_bits()
duke@435 213 {
duke@435 214 initialize(covered_region);
duke@435 215 }
duke@435 216
duke@435 217 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
duke@435 218 {
duke@435 219 _beg_bits.clear_range(beg, end);
duke@435 220 _end_bits.clear_range(beg, end);
duke@435 221 }
duke@435 222
duke@435 223 inline ParMarkBitMap::idx_t
duke@435 224 ParMarkBitMap::bits_required(size_t words)
duke@435 225 {
duke@435 226 // Need two bits (one begin bit, one end bit) for each unit of 'object
duke@435 227 // granularity' in the heap.
duke@435 228 return words_to_bits(words * 2);
duke@435 229 }
duke@435 230
duke@435 231 inline ParMarkBitMap::idx_t
duke@435 232 ParMarkBitMap::bits_required(MemRegion covered_region)
duke@435 233 {
duke@435 234 return bits_required(covered_region.word_size());
duke@435 235 }
duke@435 236
duke@435 237 inline ParMarkBitMap::idx_t
duke@435 238 ParMarkBitMap::words_required(MemRegion covered_region)
duke@435 239 {
duke@435 240 return bits_required(covered_region) / BitsPerWord;
duke@435 241 }
duke@435 242
duke@435 243 inline HeapWord*
duke@435 244 ParMarkBitMap::region_start() const
duke@435 245 {
duke@435 246 return _region_start;
duke@435 247 }
duke@435 248
duke@435 249 inline HeapWord*
duke@435 250 ParMarkBitMap::region_end() const
duke@435 251 {
duke@435 252 return region_start() + region_size();
duke@435 253 }
duke@435 254
duke@435 255 inline size_t
duke@435 256 ParMarkBitMap::region_size() const
duke@435 257 {
duke@435 258 return _region_size;
duke@435 259 }
duke@435 260
duke@435 261 inline size_t
duke@435 262 ParMarkBitMap::size() const
duke@435 263 {
duke@435 264 return _beg_bits.size();
duke@435 265 }
duke@435 266
duke@435 267 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
duke@435 268 {
duke@435 269 return _beg_bits.at(bit);
duke@435 270 }
duke@435 271
duke@435 272 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
duke@435 273 {
duke@435 274 return _end_bits.at(bit);
duke@435 275 }
duke@435 276
duke@435 277 inline bool ParMarkBitMap::is_marked(idx_t bit) const
duke@435 278 {
duke@435 279 return is_obj_beg(bit);
duke@435 280 }
duke@435 281
duke@435 282 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
duke@435 283 {
duke@435 284 return is_marked(addr_to_bit(addr));
duke@435 285 }
duke@435 286
duke@435 287 inline bool ParMarkBitMap::is_marked(oop obj) const
duke@435 288 {
duke@435 289 return is_marked((HeapWord*)obj);
duke@435 290 }
duke@435 291
duke@435 292 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
duke@435 293 {
duke@435 294 return !is_marked(bit);
duke@435 295 }
duke@435 296
duke@435 297 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
duke@435 298 {
duke@435 299 return !is_marked(addr);
duke@435 300 }
duke@435 301
duke@435 302 inline bool ParMarkBitMap::is_unmarked(oop obj) const
duke@435 303 {
duke@435 304 return !is_marked(obj);
duke@435 305 }
duke@435 306
duke@435 307 inline size_t
duke@435 308 ParMarkBitMap::bits_to_words(idx_t bits)
duke@435 309 {
jcoomes@1243 310 return bits << obj_granularity_shift();
duke@435 311 }
duke@435 312
duke@435 313 inline ParMarkBitMap::idx_t
duke@435 314 ParMarkBitMap::words_to_bits(size_t words)
duke@435 315 {
jcoomes@1243 316 return words >> obj_granularity_shift();
duke@435 317 }
duke@435 318
duke@435 319 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
duke@435 320 {
duke@435 321 DEBUG_ONLY(verify_bit(beg_bit);)
duke@435 322 DEBUG_ONLY(verify_bit(end_bit);)
duke@435 323 return bits_to_words(end_bit - beg_bit + 1);
duke@435 324 }
duke@435 325
duke@435 326 inline size_t
duke@435 327 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
duke@435 328 {
duke@435 329 DEBUG_ONLY(verify_addr(beg_addr);)
duke@435 330 DEBUG_ONLY(verify_addr(end_addr);)
duke@435 331 return pointer_delta(end_addr, beg_addr) + obj_granularity();
duke@435 332 }
duke@435 333
duke@435 334 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
duke@435 335 {
ysr@777 336 const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
duke@435 337 assert(is_marked(beg_bit), "obj not marked");
duke@435 338 assert(end_bit < size(), "end bit missing");
duke@435 339 return obj_size(beg_bit, end_bit);
duke@435 340 }
duke@435 341
duke@435 342 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
duke@435 343 {
duke@435 344 return obj_size(addr_to_bit(addr));
duke@435 345 }
duke@435 346
duke@435 347 inline size_t ParMarkBitMap::obj_size(oop obj) const
duke@435 348 {
duke@435 349 return obj_size((HeapWord*)obj);
duke@435 350 }
duke@435 351
duke@435 352 inline ParMarkBitMap::IterationStatus
duke@435 353 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
duke@435 354 HeapWord* range_beg,
duke@435 355 HeapWord* range_end) const
duke@435 356 {
duke@435 357 return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
duke@435 358 }
duke@435 359
duke@435 360 inline ParMarkBitMap::IterationStatus
duke@435 361 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
duke@435 362 ParMarkBitMapClosure* dead_closure,
duke@435 363 HeapWord* range_beg,
duke@435 364 HeapWord* range_end,
duke@435 365 HeapWord* dead_range_end) const
duke@435 366 {
duke@435 367 return iterate(live_closure, dead_closure,
duke@435 368 addr_to_bit(range_beg), addr_to_bit(range_end),
duke@435 369 addr_to_bit(dead_range_end));
duke@435 370 }
duke@435 371
duke@435 372 inline bool
duke@435 373 ParMarkBitMap::mark_obj(oop obj, int size)
duke@435 374 {
duke@435 375 return mark_obj((HeapWord*)obj, (size_t)size);
duke@435 376 }
duke@435 377
duke@435 378 inline BitMap::idx_t
duke@435 379 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
duke@435 380 {
duke@435 381 DEBUG_ONLY(verify_addr(addr);)
duke@435 382 return words_to_bits(pointer_delta(addr, region_start()));
duke@435 383 }
duke@435 384
duke@435 385 inline HeapWord*
duke@435 386 ParMarkBitMap::bit_to_addr(idx_t bit) const
duke@435 387 {
duke@435 388 DEBUG_ONLY(verify_bit(bit);)
duke@435 389 return region_start() + bits_to_words(bit);
duke@435 390 }
duke@435 391
duke@435 392 inline ParMarkBitMap::idx_t
duke@435 393 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
duke@435 394 {
ysr@777 395 return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
duke@435 396 }
duke@435 397
duke@435 398 inline ParMarkBitMap::idx_t
duke@435 399 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
duke@435 400 {
ysr@777 401 return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
duke@435 402 }
duke@435 403
duke@435 404 inline HeapWord*
duke@435 405 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
duke@435 406 {
duke@435 407 const idx_t beg_bit = addr_to_bit(beg);
duke@435 408 const idx_t end_bit = addr_to_bit(end);
duke@435 409 const idx_t search_end = BitMap::word_align_up(end_bit);
duke@435 410 const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
duke@435 411 return bit_to_addr(res_bit);
duke@435 412 }
duke@435 413
duke@435 414 inline HeapWord*
duke@435 415 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
duke@435 416 {
duke@435 417 const idx_t beg_bit = addr_to_bit(beg);
duke@435 418 const idx_t end_bit = addr_to_bit(end);
duke@435 419 const idx_t search_end = BitMap::word_align_up(end_bit);
duke@435 420 const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
duke@435 421 return bit_to_addr(res_bit);
duke@435 422 }
duke@435 423
duke@435 424 #ifdef ASSERT
duke@435 425 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
duke@435 426 // Allow one past the last valid bit; useful for loop bounds.
duke@435 427 assert(bit <= _beg_bits.size(), "bit out of range");
duke@435 428 }
duke@435 429
duke@435 430 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
duke@435 431 // Allow one past the last valid address; useful for loop bounds.
duke@435 432 assert(addr >= region_start(), "addr too small");
duke@435 433 assert(addr <= region_start() + region_size(), "addr too big");
duke@435 434 }
duke@435 435 #endif // #ifdef ASSERT
stefank@2314 436
stefank@2314 437 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP

mercurial