src/share/vm/opto/loopnode.cpp

Mon, 20 Jun 2011 16:45:35 -0700

author
kvn
date
Mon, 20 Jun 2011 16:45:35 -0700
changeset 2979
aacaff365100
parent 2877
bad7ecd0b6ed
child 3043
c96c3eb1efae
permissions
-rw-r--r--

7052494: Eclipse test fails on JDK 7 b142
Summary: Keep 'ne' test in Counted loop when we can't guarantee during compilation that init < limit.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if( n->in(0) ) {
    92     early = n->in(0);
    93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for( ; i < n->req(); i++ ) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if( c_d > e_d ) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if( c_d == e_d &&    // Same depth?
   111                early != cin ) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while( 1 ) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if( n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d )
   121           break;                // early is deeper; keep him
   122         if( n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d ) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   return early;
   136 }
   138 //------------------------------set_early_ctrl---------------------------------
   139 // Set earliest legal control
   140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   141   Node *early = get_early_ctrl(n);
   143   // Record earliest legal location
   144   set_ctrl(n, early);
   145 }
   147 //------------------------------set_subtree_ctrl-------------------------------
   148 // set missing _ctrl entries on new nodes
   149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   150   // Already set?  Get out.
   151   if( _nodes[n->_idx] ) return;
   152   // Recursively set _nodes array to indicate where the Node goes
   153   uint i;
   154   for( i = 0; i < n->req(); ++i ) {
   155     Node *m = n->in(i);
   156     if( m && m != C->root() )
   157       set_subtree_ctrl( m );
   158   }
   160   // Fixup self
   161   set_early_ctrl( n );
   162 }
   164 //------------------------------is_counted_loop--------------------------------
   165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   166   PhaseGVN *gvn = &_igvn;
   168   // Counted loop head must be a good RegionNode with only 3 not NULL
   169   // control input edges: Self, Entry, LoopBack.
   170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   171     return false;
   173   Node *init_control = x->in(LoopNode::EntryControl);
   174   Node *back_control = x->in(LoopNode::LoopBackControl);
   175   if (init_control == NULL || back_control == NULL)    // Partially dead
   176     return false;
   177   // Must also check for TOP when looking for a dead loop
   178   if (init_control->is_top() || back_control->is_top())
   179     return false;
   181   // Allow funny placement of Safepoint
   182   if (back_control->Opcode() == Op_SafePoint)
   183     back_control = back_control->in(TypeFunc::Control);
   185   // Controlling test for loop
   186   Node *iftrue = back_control;
   187   uint iftrue_op = iftrue->Opcode();
   188   if (iftrue_op != Op_IfTrue &&
   189       iftrue_op != Op_IfFalse)
   190     // I have a weird back-control.  Probably the loop-exit test is in
   191     // the middle of the loop and I am looking at some trailing control-flow
   192     // merge point.  To fix this I would have to partially peel the loop.
   193     return false; // Obscure back-control
   195   // Get boolean guarding loop-back test
   196   Node *iff = iftrue->in(0);
   197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   198     return false;
   199   BoolNode *test = iff->in(1)->as_Bool();
   200   BoolTest::mask bt = test->_test._test;
   201   float cl_prob = iff->as_If()->_prob;
   202   if (iftrue_op == Op_IfFalse) {
   203     bt = BoolTest(bt).negate();
   204     cl_prob = 1.0 - cl_prob;
   205   }
   206   // Get backedge compare
   207   Node *cmp = test->in(1);
   208   int cmp_op = cmp->Opcode();
   209   if (cmp_op != Op_CmpI)
   210     return false;                // Avoid pointer & float compares
   212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   213   Node *incr  = cmp->in(1);
   214   Node *limit = cmp->in(2);
   216   // ---------
   217   // need 'loop()' test to tell if limit is loop invariant
   218   // ---------
   220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   221     Node *tmp = incr;            // Then reverse order into the CmpI
   222     incr = limit;
   223     limit = tmp;
   224     bt = BoolTest(bt).commute(); // And commute the exit test
   225   }
   226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   227     return false;
   228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   229     return false;
   231   Node* phi_incr = NULL;
   232   // Trip-counter increment must be commutative & associative.
   233   if (incr->is_Phi()) {
   234     if (incr->as_Phi()->region() != x || incr->req() != 3)
   235       return false; // Not simple trip counter expression
   236     phi_incr = incr;
   237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   239       return false;
   240   }
   242   Node* trunc1 = NULL;
   243   Node* trunc2 = NULL;
   244   const TypeInt* iv_trunc_t = NULL;
   245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   246     return false; // Funny increment opcode
   247   }
   248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   250   // Get merge point
   251   Node *xphi = incr->in(1);
   252   Node *stride = incr->in(2);
   253   if (!stride->is_Con()) {     // Oops, swap these
   254     if (!xphi->is_Con())       // Is the other guy a constant?
   255       return false;             // Nope, unknown stride, bail out
   256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   257     xphi = stride;
   258     stride = tmp;
   259   }
   260   // Stride must be constant
   261   int stride_con = stride->get_int();
   262   if (stride_con == 0)
   263     return false; // missed some peephole opt
   265   if (!xphi->is_Phi())
   266     return false; // Too much math on the trip counter
   267   if (phi_incr != NULL && phi_incr != xphi)
   268     return false;
   269   PhiNode *phi = xphi->as_Phi();
   271   // Phi must be of loop header; backedge must wrap to increment
   272   if (phi->region() != x)
   273     return false;
   274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   276     return false;
   277   }
   278   Node *init_trip = phi->in(LoopNode::EntryControl);
   280   // If iv trunc type is smaller than int, check for possible wrap.
   281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   282     assert(trunc1 != NULL, "must have found some truncation");
   284     // Get a better type for the phi (filtered thru if's)
   285     const TypeInt* phi_ft = filtered_type(phi);
   287     // Can iv take on a value that will wrap?
   288     //
   289     // Ensure iv's limit is not within "stride" of the wrap value.
   290     //
   291     // Example for "short" type
   292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   293     //    If the stride is +10, then the last value of the induction
   294     //    variable before the increment (phi_ft->_hi) must be
   295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   296     //    ensure no truncation occurs after the increment.
   298     if (stride_con > 0) {
   299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   300           iv_trunc_t->_lo > phi_ft->_lo) {
   301         return false;  // truncation may occur
   302       }
   303     } else if (stride_con < 0) {
   304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   305           iv_trunc_t->_hi < phi_ft->_hi) {
   306         return false;  // truncation may occur
   307       }
   308     }
   309     // No possibility of wrap so truncation can be discarded
   310     // Promote iv type to Int
   311   } else {
   312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   313   }
   315   // If the condition is inverted and we will be rolling
   316   // through MININT to MAXINT, then bail out.
   317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   318       // Odd stride
   319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   320       // Count down loop rolls through MAXINT
   321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   322       // Count up loop rolls through MININT
   323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   324     return false; // Bail out
   325   }
   327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   328   const TypeInt* limit_t = gvn->type(limit)->is_int();
   330   if (stride_con > 0) {
   331     long init_p = (long)init_t->_lo + stride_con;
   332     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
   333       return false; // cyclic loop or this loop trips only once
   334   } else {
   335     long init_p = (long)init_t->_hi + stride_con;
   336     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
   337       return false; // cyclic loop or this loop trips only once
   338   }
   340   // =================================================
   341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   342   //
   343   assert(x->Opcode() == Op_Loop, "regular loops only");
   344   C->print_method("Before CountedLoop", 3);
   346   Node *hook = new (C, 6) Node(6);
   348   if (LoopLimitCheck) {
   350   // ===================================================
   351   // Generate loop limit check to avoid integer overflow
   352   // in cases like next (cyclic loops):
   353   //
   354   // for (i=0; i <= max_jint; i++) {}
   355   // for (i=0; i <  max_jint; i+=2) {}
   356   //
   357   //
   358   // Limit check predicate depends on the loop test:
   359   //
   360   // for(;i != limit; i++)       --> limit <= (max_jint)
   361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   363   //
   365   // Check if limit is excluded to do more precise int overflow check.
   366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   369   // If compare points directly to the phi we need to adjust
   370   // the compare so that it points to the incr. Limit have
   371   // to be adjusted to keep trip count the same and the
   372   // adjusted limit should be checked for int overflow.
   373   if (phi_incr != NULL) {
   374     stride_m  += stride_con;
   375   }
   377   if (limit->is_Con()) {
   378     int limit_con = limit->get_int();
   379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   381       // Bailout: it could be integer overflow.
   382       return false;
   383     }
   384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   386       // Limit's type may satisfy the condition, for example,
   387       // when it is an array length.
   388   } else {
   389     // Generate loop's limit check.
   390     // Loop limit check predicate should be near the loop.
   391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   392     if (!limit_check_proj) {
   393       // The limit check predicate is not generated if this method trapped here before.
   394 #ifdef ASSERT
   395       if (TraceLoopLimitCheck) {
   396         tty->print("missing loop limit check:");
   397         loop->dump_head();
   398         x->dump(1);
   399       }
   400 #endif
   401       return false;
   402     }
   404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   405     Node* cmp_limit;
   406     Node* bol;
   408     if (stride_con > 0) {
   409       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   410       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
   411     } else {
   412       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   413       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
   414     }
   415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   416     bol = _igvn.register_new_node_with_optimizer(bol);
   417     set_subtree_ctrl(bol);
   419     // Replace condition in original predicate but preserve Opaque node
   420     // so that previous predicates could be found.
   421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   423     Node* opq = check_iff->in(1)->in(1);
   424     _igvn.hash_delete(opq);
   425     opq->set_req(1, bol);
   426     // Update ctrl.
   427     set_ctrl(opq, check_iff->in(0));
   428     set_ctrl(check_iff->in(1), check_iff->in(0));
   430 #ifndef PRODUCT
   431     // report that the loop predication has been actually performed
   432     // for this loop
   433     if (TraceLoopLimitCheck) {
   434       tty->print_cr("Counted Loop Limit Check generated:");
   435       debug_only( bol->dump(2); )
   436     }
   437 #endif
   438   }
   440   if (phi_incr != NULL) {
   441     // If compare points directly to the phi we need to adjust
   442     // the compare so that it points to the incr. Limit have
   443     // to be adjusted to keep trip count the same and we
   444     // should avoid int overflow.
   445     //
   446     //   i = init; do {} while(i++ < limit);
   447     // is converted to
   448     //   i = init; do {} while(++i < limit+1);
   449     //
   450     limit = gvn->transform(new (C, 3) AddINode(limit, stride));
   451   }
   453   // Now we need to canonicalize loop condition.
   454   if (bt == BoolTest::ne) {
   455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   456     // 'ne' can be replaced with 'lt' only when init < limit.
   457     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   458       bt = BoolTest::lt;
   459     // 'ne' can be replaced with 'gt' only when init > limit.
   460     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   461       bt = BoolTest::gt;
   462   }
   464   if (incl_limit) {
   465     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   466     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   467     //
   468     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   469     limit = gvn->transform(new (C, 3) AddINode(limit, one));
   470     if (bt == BoolTest::le)
   471       bt = BoolTest::lt;
   472     else if (bt == BoolTest::ge)
   473       bt = BoolTest::gt;
   474     else
   475       ShouldNotReachHere();
   476   }
   477   set_subtree_ctrl( limit );
   479   } else { // LoopLimitCheck
   481   // If compare points to incr, we are ok.  Otherwise the compare
   482   // can directly point to the phi; in this case adjust the compare so that
   483   // it points to the incr by adjusting the limit.
   484   if (cmp->in(1) == phi || cmp->in(2) == phi)
   485     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   487   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   488   // Final value for iterator should be: trip_count * stride + init_trip.
   489   Node *one_p = gvn->intcon( 1);
   490   Node *one_m = gvn->intcon(-1);
   492   Node *trip_count = NULL;
   493   switch( bt ) {
   494   case BoolTest::eq:
   495     ShouldNotReachHere();
   496   case BoolTest::ne:            // Ahh, the case we desire
   497     if (stride_con == 1)
   498       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   499     else if (stride_con == -1)
   500       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   501     else
   502       ShouldNotReachHere();
   503     set_subtree_ctrl(trip_count);
   504     //_loop.map(trip_count->_idx,loop(limit));
   505     break;
   506   case BoolTest::le:            // Maybe convert to '<' case
   507     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   508     set_subtree_ctrl( limit );
   509     hook->init_req(4, limit);
   511     bt = BoolTest::lt;
   512     // Make the new limit be in the same loop nest as the old limit
   513     //_loop.map(limit->_idx,limit_loop);
   514     // Fall into next case
   515   case BoolTest::lt: {          // Maybe convert to '!=' case
   516     if (stride_con < 0) // Count down loop rolls through MAXINT
   517       ShouldNotReachHere();
   518     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   519     set_subtree_ctrl( range );
   520     hook->init_req(0, range);
   522     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   523     set_subtree_ctrl( bias );
   524     hook->init_req(1, bias);
   526     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   527     set_subtree_ctrl( bias1 );
   528     hook->init_req(2, bias1);
   530     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   531     set_subtree_ctrl( trip_count );
   532     hook->init_req(3, trip_count);
   533     break;
   534   }
   536   case BoolTest::ge:            // Maybe convert to '>' case
   537     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   538     set_subtree_ctrl( limit );
   539     hook->init_req(4 ,limit);
   541     bt = BoolTest::gt;
   542     // Make the new limit be in the same loop nest as the old limit
   543     //_loop.map(limit->_idx,limit_loop);
   544     // Fall into next case
   545   case BoolTest::gt: {          // Maybe convert to '!=' case
   546     if (stride_con > 0) // count up loop rolls through MININT
   547       ShouldNotReachHere();
   548     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   549     set_subtree_ctrl( range );
   550     hook->init_req(0, range);
   552     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   553     set_subtree_ctrl( bias );
   554     hook->init_req(1, bias);
   556     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   557     set_subtree_ctrl( bias1 );
   558     hook->init_req(2, bias1);
   560     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   561     set_subtree_ctrl( trip_count );
   562     hook->init_req(3, trip_count);
   563     break;
   564   }
   565   } // switch( bt )
   567   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   568   set_subtree_ctrl( span );
   569   hook->init_req(5, span);
   571   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   572   set_subtree_ctrl( limit );
   574   } // LoopLimitCheck
   576   // Check for SafePoint on backedge and remove
   577   Node *sfpt = x->in(LoopNode::LoopBackControl);
   578   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   579     lazy_replace( sfpt, iftrue );
   580     loop->_tail = iftrue;
   581   }
   583   // Build a canonical trip test.
   584   // Clone code, as old values may be in use.
   585   Node* nphi = PhiNode::make(x, init_trip, TypeInt::INT);
   586   nphi = _igvn.register_new_node_with_optimizer(nphi);
   587   set_ctrl(nphi, get_ctrl(phi));
   589   incr = incr->clone();
   590   incr->set_req(1,nphi);
   591   incr->set_req(2,stride);
   592   incr = _igvn.register_new_node_with_optimizer(incr);
   593   set_early_ctrl( incr );
   595   nphi->set_req(LoopNode::LoopBackControl, incr);
   596   _igvn.replace_node(phi, nphi);
   597   phi = nphi->as_Phi();
   599   cmp = cmp->clone();
   600   cmp->set_req(1,incr);
   601   cmp->set_req(2,limit);
   602   cmp = _igvn.register_new_node_with_optimizer(cmp);
   603   set_ctrl(cmp, iff->in(0));
   605   test = test->clone()->as_Bool();
   606   (*(BoolTest*)&test->_test)._test = bt;
   607   test->set_req(1,cmp);
   608   _igvn.register_new_node_with_optimizer(test);
   609   set_ctrl(test, iff->in(0));
   611   // Replace the old IfNode with a new LoopEndNode
   612   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   613   IfNode *le = lex->as_If();
   614   uint dd = dom_depth(iff);
   615   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   616   set_loop(le, loop);
   618   // Get the loop-exit control
   619   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   621   // Need to swap loop-exit and loop-back control?
   622   if (iftrue_op == Op_IfFalse) {
   623     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   624     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   626     loop->_tail = back_control = ift2;
   627     set_loop(ift2, loop);
   628     set_loop(iff2, get_loop(iffalse));
   630     // Lazy update of 'get_ctrl' mechanism.
   631     lazy_replace_proj( iffalse, iff2 );
   632     lazy_replace_proj( iftrue,  ift2 );
   634     // Swap names
   635     iffalse = iff2;
   636     iftrue  = ift2;
   637   } else {
   638     _igvn.hash_delete(iffalse);
   639     _igvn.hash_delete(iftrue);
   640     iffalse->set_req_X( 0, le, &_igvn );
   641     iftrue ->set_req_X( 0, le, &_igvn );
   642   }
   644   set_idom(iftrue,  le, dd+1);
   645   set_idom(iffalse, le, dd+1);
   646   assert(iff->outcnt() == 0, "should be dead now");
   647   lazy_replace( iff, le ); // fix 'get_ctrl'
   649   // Now setup a new CountedLoopNode to replace the existing LoopNode
   650   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   651   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   652   // The following assert is approximately true, and defines the intention
   653   // of can_be_counted_loop.  It fails, however, because phase->type
   654   // is not yet initialized for this loop and its parts.
   655   //assert(l->can_be_counted_loop(this), "sanity");
   656   _igvn.register_new_node_with_optimizer(l);
   657   set_loop(l, loop);
   658   loop->_head = l;
   659   // Fix all data nodes placed at the old loop head.
   660   // Uses the lazy-update mechanism of 'get_ctrl'.
   661   lazy_replace( x, l );
   662   set_idom(l, init_control, dom_depth(x));
   664   // Check for immediately preceding SafePoint and remove
   665   Node *sfpt2 = le->in(0);
   666   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   667     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   669   // Free up intermediate goo
   670   _igvn.remove_dead_node(hook);
   672 #ifdef ASSERT
   673   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   674   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   675 #endif
   676 #ifndef PRODUCT
   677   if (TraceLoopOpts) {
   678     tty->print("Counted      ");
   679     loop->dump_head();
   680   }
   681 #endif
   683   C->print_method("After CountedLoop", 3);
   685   return true;
   686 }
   688 //----------------------exact_limit-------------------------------------------
   689 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   690   assert(loop->_head->is_CountedLoop(), "");
   691   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   693   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   694       cl->limit()->Opcode() == Op_LoopLimit) {
   695     // Old code has exact limit (it could be incorrect in case of int overflow).
   696     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   697     return cl->limit();
   698   }
   699   Node *limit = NULL;
   700 #ifdef ASSERT
   701   BoolTest::mask bt = cl->loopexit()->test_trip();
   702   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   703 #endif
   704   if (cl->has_exact_trip_count()) {
   705     // Simple case: loop has constant boundaries.
   706     // Use longs to avoid integer overflow.
   707     int stride_con = cl->stride_con();
   708     long  init_con = cl->init_trip()->get_int();
   709     long limit_con = cl->limit()->get_int();
   710     julong trip_cnt = cl->trip_count();
   711     long final_con = init_con + trip_cnt*stride_con;
   712     final_con -= stride_con;
   713     int final_int = (int)final_con;
   714     // The final value should be in integer range since the loop
   715     // is counted and the limit was checked for overflow.
   716     assert(final_con == (long)final_int, "final value should be integer");
   717     limit = _igvn.intcon(final_int);
   718   } else {
   719     // Create new LoopLimit node to get exact limit (final iv value).
   720     limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   721     register_new_node(limit, cl->in(LoopNode::EntryControl));
   722   }
   723   assert(limit != NULL, "sanity");
   724   return limit;
   725 }
   727 //------------------------------Ideal------------------------------------------
   728 // Return a node which is more "ideal" than the current node.
   729 // Attempt to convert into a counted-loop.
   730 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   731   if (!can_be_counted_loop(phase)) {
   732     phase->C->set_major_progress();
   733   }
   734   return RegionNode::Ideal(phase, can_reshape);
   735 }
   738 //=============================================================================
   739 //------------------------------Ideal------------------------------------------
   740 // Return a node which is more "ideal" than the current node.
   741 // Attempt to convert into a counted-loop.
   742 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   743   return RegionNode::Ideal(phase, can_reshape);
   744 }
   746 //------------------------------dump_spec--------------------------------------
   747 // Dump special per-node info
   748 #ifndef PRODUCT
   749 void CountedLoopNode::dump_spec(outputStream *st) const {
   750   LoopNode::dump_spec(st);
   751   if (stride_is_con()) {
   752     st->print("stride: %d ",stride_con());
   753   }
   754   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   755   if (is_main_loop()) st->print("main of N%d", _idx);
   756   if (is_post_loop()) st->print("post of N%d", _main_idx);
   757 }
   758 #endif
   760 //=============================================================================
   761 int CountedLoopEndNode::stride_con() const {
   762   return stride()->bottom_type()->is_int()->get_con();
   763 }
   765 //=============================================================================
   766 //------------------------------Value-----------------------------------------
   767 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   768   const Type* init_t   = phase->type(in(Init));
   769   const Type* limit_t  = phase->type(in(Limit));
   770   const Type* stride_t = phase->type(in(Stride));
   771   // Either input is TOP ==> the result is TOP
   772   if (init_t   == Type::TOP) return Type::TOP;
   773   if (limit_t  == Type::TOP) return Type::TOP;
   774   if (stride_t == Type::TOP) return Type::TOP;
   776   int stride_con = stride_t->is_int()->get_con();
   777   if (stride_con == 1)
   778     return NULL;  // Identity
   780   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   781     // Use longs to avoid integer overflow.
   782     long init_con   =  init_t->is_int()->get_con();
   783     long limit_con  = limit_t->is_int()->get_con();
   784     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   785     long trip_count = (limit_con - init_con + stride_m)/stride_con;
   786     long final_con  = init_con + stride_con*trip_count;
   787     int final_int = (int)final_con;
   788     // The final value should be in integer range since the loop
   789     // is counted and the limit was checked for overflow.
   790     assert(final_con == (long)final_int, "final value should be integer");
   791     return TypeInt::make(final_int);
   792   }
   794   return bottom_type(); // TypeInt::INT
   795 }
   797 //------------------------------Ideal------------------------------------------
   798 // Return a node which is more "ideal" than the current node.
   799 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   800   if (phase->type(in(Init))   == Type::TOP ||
   801       phase->type(in(Limit))  == Type::TOP ||
   802       phase->type(in(Stride)) == Type::TOP)
   803     return NULL;  // Dead
   805   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   806   if (stride_con == 1)
   807     return NULL;  // Identity
   809   if (in(Init)->is_Con() && in(Limit)->is_Con())
   810     return NULL;  // Value
   812   // Delay following optimizations until all loop optimizations
   813   // done to keep Ideal graph simple.
   814   if (!can_reshape || phase->C->major_progress())
   815     return NULL;
   817   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   818   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   819   int stride_p;
   820   long lim, ini;
   821   julong max;
   822   if (stride_con > 0) {
   823     stride_p = stride_con;
   824     lim = limit_t->_hi;
   825     ini = init_t->_lo;
   826     max = (julong)max_jint;
   827   } else {
   828     stride_p = -stride_con;
   829     lim = init_t->_hi;
   830     ini = limit_t->_lo;
   831     max = (julong)min_jint;
   832   }
   833   julong range = lim - ini + stride_p;
   834   if (range <= max) {
   835     // Convert to integer expression if it is not overflow.
   836     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   837     Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
   838     Node *bias  = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
   839     Node *trip  = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
   840     Node *span  = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
   841     return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
   842   }
   844   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   845       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   846     // Convert to long expression to avoid integer overflow
   847     // and let igvn optimizer convert this division.
   848     //
   849     Node*   init   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
   850     Node*  limit   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
   851     Node* stride   = phase->longcon(stride_con);
   852     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   854     Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
   855     Node *bias  = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
   856     Node *span;
   857     if (stride_con > 0 && is_power_of_2(stride_p)) {
   858       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   859       // and avoid generating rounding for division. Zero trip guard should
   860       // guarantee that init < limit but sometimes the guard is missing and
   861       // we can get situation when init > limit. Note, for the empty loop
   862       // optimization zero trip guard is generated explicitly which leaves
   863       // only RCE predicate where exact limit is used and the predicate
   864       // will simply fail forcing recompilation.
   865       Node* neg_stride   = phase->longcon(-stride_con);
   866       span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
   867     } else {
   868       Node *trip  = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
   869       span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
   870     }
   871     // Convert back to int
   872     Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
   873     return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
   874   }
   876   return NULL;    // No progress
   877 }
   879 //------------------------------Identity---------------------------------------
   880 // If stride == 1 return limit node.
   881 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
   882   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   883   if (stride_con == 1 || stride_con == -1)
   884     return in(Limit);
   885   return this;
   886 }
   888 //=============================================================================
   889 //----------------------match_incr_with_optional_truncation--------------------
   890 // Match increment with optional truncation:
   891 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   892 // Return NULL for failure. Success returns the increment node.
   893 Node* CountedLoopNode::match_incr_with_optional_truncation(
   894                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   895   // Quick cutouts:
   896   if (expr == NULL || expr->req() != 3)  return false;
   898   Node *t1 = NULL;
   899   Node *t2 = NULL;
   900   const TypeInt* trunc_t = TypeInt::INT;
   901   Node* n1 = expr;
   902   int   n1op = n1->Opcode();
   904   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   905   if (n1op == Op_AndI &&
   906       n1->in(2)->is_Con() &&
   907       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   908     // %%% This check should match any mask of 2**K-1.
   909     t1 = n1;
   910     n1 = t1->in(1);
   911     n1op = n1->Opcode();
   912     trunc_t = TypeInt::CHAR;
   913   } else if (n1op == Op_RShiftI &&
   914              n1->in(1) != NULL &&
   915              n1->in(1)->Opcode() == Op_LShiftI &&
   916              n1->in(2) == n1->in(1)->in(2) &&
   917              n1->in(2)->is_Con()) {
   918     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   919     // %%% This check should match any shift in [1..31].
   920     if (shift == 16 || shift == 8) {
   921       t1 = n1;
   922       t2 = t1->in(1);
   923       n1 = t2->in(1);
   924       n1op = n1->Opcode();
   925       if (shift == 16) {
   926         trunc_t = TypeInt::SHORT;
   927       } else if (shift == 8) {
   928         trunc_t = TypeInt::BYTE;
   929       }
   930     }
   931   }
   933   // If (maybe after stripping) it is an AddI, we won:
   934   if (n1op == Op_AddI) {
   935     *trunc1 = t1;
   936     *trunc2 = t2;
   937     *trunc_type = trunc_t;
   938     return n1;
   939   }
   941   // failed
   942   return NULL;
   943 }
   946 //------------------------------filtered_type--------------------------------
   947 // Return a type based on condition control flow
   948 // A successful return will be a type that is restricted due
   949 // to a series of dominating if-tests, such as:
   950 //    if (i < 10) {
   951 //       if (i > 0) {
   952 //          here: "i" type is [1..10)
   953 //       }
   954 //    }
   955 // or a control flow merge
   956 //    if (i < 10) {
   957 //       do {
   958 //          phi( , ) -- at top of loop type is [min_int..10)
   959 //         i = ?
   960 //       } while ( i < 10)
   961 //
   962 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   963   assert(n && n->bottom_type()->is_int(), "must be int");
   964   const TypeInt* filtered_t = NULL;
   965   if (!n->is_Phi()) {
   966     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   967     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   969   } else {
   970     Node* phi    = n->as_Phi();
   971     Node* region = phi->in(0);
   972     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   973     if (region && region != C->top()) {
   974       for (uint i = 1; i < phi->req(); i++) {
   975         Node* val   = phi->in(i);
   976         Node* use_c = region->in(i);
   977         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   978         if (val_t != NULL) {
   979           if (filtered_t == NULL) {
   980             filtered_t = val_t;
   981           } else {
   982             filtered_t = filtered_t->meet(val_t)->is_int();
   983           }
   984         }
   985       }
   986     }
   987   }
   988   const TypeInt* n_t = _igvn.type(n)->is_int();
   989   if (filtered_t != NULL) {
   990     n_t = n_t->join(filtered_t)->is_int();
   991   }
   992   return n_t;
   993 }
   996 //------------------------------filtered_type_from_dominators--------------------------------
   997 // Return a possibly more restrictive type for val based on condition control flow of dominators
   998 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   999   if (val->is_Con()) {
  1000      return val->bottom_type()->is_int();
  1002   uint if_limit = 10; // Max number of dominating if's visited
  1003   const TypeInt* rtn_t = NULL;
  1005   if (use_ctrl && use_ctrl != C->top()) {
  1006     Node* val_ctrl = get_ctrl(val);
  1007     uint val_dom_depth = dom_depth(val_ctrl);
  1008     Node* pred = use_ctrl;
  1009     uint if_cnt = 0;
  1010     while (if_cnt < if_limit) {
  1011       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1012         if_cnt++;
  1013         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1014         if (if_t != NULL) {
  1015           if (rtn_t == NULL) {
  1016             rtn_t = if_t;
  1017           } else {
  1018             rtn_t = rtn_t->join(if_t)->is_int();
  1022       pred = idom(pred);
  1023       if (pred == NULL || pred == C->top()) {
  1024         break;
  1026       // Stop if going beyond definition block of val
  1027       if (dom_depth(pred) < val_dom_depth) {
  1028         break;
  1032   return rtn_t;
  1036 //------------------------------dump_spec--------------------------------------
  1037 // Dump special per-node info
  1038 #ifndef PRODUCT
  1039 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1040   if( in(TestValue)->is_Bool() ) {
  1041     BoolTest bt( test_trip()); // Added this for g++.
  1043     st->print("[");
  1044     bt.dump_on(st);
  1045     st->print("]");
  1047   st->print(" ");
  1048   IfNode::dump_spec(st);
  1050 #endif
  1052 //=============================================================================
  1053 //------------------------------is_member--------------------------------------
  1054 // Is 'l' a member of 'this'?
  1055 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1056   while( l->_nest > _nest ) l = l->_parent;
  1057   return l == this;
  1060 //------------------------------set_nest---------------------------------------
  1061 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1062 int IdealLoopTree::set_nest( uint depth ) {
  1063   _nest = depth;
  1064   int bits = _has_call;
  1065   if( _child ) bits |= _child->set_nest(depth+1);
  1066   if( bits ) _has_call = 1;
  1067   if( _next  ) bits |= _next ->set_nest(depth  );
  1068   return bits;
  1071 //------------------------------split_fall_in----------------------------------
  1072 // Split out multiple fall-in edges from the loop header.  Move them to a
  1073 // private RegionNode before the loop.  This becomes the loop landing pad.
  1074 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1075   PhaseIterGVN &igvn = phase->_igvn;
  1076   uint i;
  1078   // Make a new RegionNode to be the landing pad.
  1079   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
  1080   phase->set_loop(landing_pad,_parent);
  1081   // Gather all the fall-in control paths into the landing pad
  1082   uint icnt = fall_in_cnt;
  1083   uint oreq = _head->req();
  1084   for( i = oreq-1; i>0; i-- )
  1085     if( !phase->is_member( this, _head->in(i) ) )
  1086       landing_pad->set_req(icnt--,_head->in(i));
  1088   // Peel off PhiNode edges as well
  1089   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1090     Node *oj = _head->fast_out(j);
  1091     if( oj->is_Phi() ) {
  1092       PhiNode* old_phi = oj->as_Phi();
  1093       assert( old_phi->region() == _head, "" );
  1094       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1095       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1096       uint icnt = fall_in_cnt;
  1097       for( i = oreq-1; i>0; i-- ) {
  1098         if( !phase->is_member( this, _head->in(i) ) ) {
  1099           p->init_req(icnt--, old_phi->in(i));
  1100           // Go ahead and clean out old edges from old phi
  1101           old_phi->del_req(i);
  1104       // Search for CSE's here, because ZKM.jar does a lot of
  1105       // loop hackery and we need to be a little incremental
  1106       // with the CSE to avoid O(N^2) node blow-up.
  1107       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1108       if( p2 ) {                // Found CSE
  1109         p->destruct();          // Recover useless new node
  1110         p = p2;                 // Use old node
  1111       } else {
  1112         igvn.register_new_node_with_optimizer(p, old_phi);
  1114       // Make old Phi refer to new Phi.
  1115       old_phi->add_req(p);
  1116       // Check for the special case of making the old phi useless and
  1117       // disappear it.  In JavaGrande I have a case where this useless
  1118       // Phi is the loop limit and prevents recognizing a CountedLoop
  1119       // which in turn prevents removing an empty loop.
  1120       Node *id_old_phi = old_phi->Identity( &igvn );
  1121       if( id_old_phi != old_phi ) { // Found a simple identity?
  1122         // Note that I cannot call 'replace_node' here, because
  1123         // that will yank the edge from old_phi to the Region and
  1124         // I'm mid-iteration over the Region's uses.
  1125         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1126           Node* use = old_phi->last_out(i);
  1127           igvn.hash_delete(use);
  1128           igvn._worklist.push(use);
  1129           uint uses_found = 0;
  1130           for (uint j = 0; j < use->len(); j++) {
  1131             if (use->in(j) == old_phi) {
  1132               if (j < use->req()) use->set_req (j, id_old_phi);
  1133               else                use->set_prec(j, id_old_phi);
  1134               uses_found++;
  1137           i -= uses_found;    // we deleted 1 or more copies of this edge
  1140       igvn._worklist.push(old_phi);
  1143   // Finally clean out the fall-in edges from the RegionNode
  1144   for( i = oreq-1; i>0; i-- ) {
  1145     if( !phase->is_member( this, _head->in(i) ) ) {
  1146       _head->del_req(i);
  1149   // Transform landing pad
  1150   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1151   // Insert landing pad into the header
  1152   _head->add_req(landing_pad);
  1155 //------------------------------split_outer_loop-------------------------------
  1156 // Split out the outermost loop from this shared header.
  1157 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1158   PhaseIterGVN &igvn = phase->_igvn;
  1160   // Find index of outermost loop; it should also be my tail.
  1161   uint outer_idx = 1;
  1162   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1164   // Make a LoopNode for the outermost loop.
  1165   Node *ctl = _head->in(LoopNode::EntryControl);
  1166   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
  1167   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1168   phase->set_created_loop_node();
  1170   Node* pred = phase->clone_loop_predicates(ctl, outer, true);
  1171   // Outermost loop falls into '_head' loop
  1172   _head->set_req(LoopNode::EntryControl, pred);
  1173   _head->del_req(outer_idx);
  1174   // Split all the Phis up between '_head' loop and 'outer' loop.
  1175   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1176     Node *out = _head->fast_out(j);
  1177     if( out->is_Phi() ) {
  1178       PhiNode *old_phi = out->as_Phi();
  1179       assert( old_phi->region() == _head, "" );
  1180       Node *phi = PhiNode::make_blank(outer, old_phi);
  1181       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1182       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1183       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1184       // Make old Phi point to new Phi on the fall-in path
  1185       igvn.hash_delete(old_phi);
  1186       old_phi->set_req(LoopNode::EntryControl, phi);
  1187       old_phi->del_req(outer_idx);
  1188       igvn._worklist.push(old_phi);
  1192   // Use the new loop head instead of the old shared one
  1193   _head = outer;
  1194   phase->set_loop(_head, this);
  1197 //------------------------------fix_parent-------------------------------------
  1198 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1199   loop->_parent = parent;
  1200   if( loop->_child ) fix_parent( loop->_child, loop   );
  1201   if( loop->_next  ) fix_parent( loop->_next , parent );
  1204 //------------------------------estimate_path_freq-----------------------------
  1205 static float estimate_path_freq( Node *n ) {
  1206   // Try to extract some path frequency info
  1207   IfNode *iff;
  1208   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1209     uint nop = n->Opcode();
  1210     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1211       n = n->in(0);
  1212       continue;
  1214     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1215       // Assume call does not always throw exceptions: means the call-site
  1216       // count is also the frequency of the fall-through path.
  1217       assert( n->is_CatchProj(), "" );
  1218       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1219         return 0.0f;            // Assume call exception path is rare
  1220       Node *call = n->in(0)->in(0)->in(0);
  1221       assert( call->is_Call(), "expect a call here" );
  1222       const JVMState *jvms = ((CallNode*)call)->jvms();
  1223       ciMethodData* methodData = jvms->method()->method_data();
  1224       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1225       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1226       if ((data == NULL) || !data->is_CounterData()) {
  1227         // no call profile available, try call's control input
  1228         n = n->in(0);
  1229         continue;
  1231       return data->as_CounterData()->count()/FreqCountInvocations;
  1233     // See if there's a gating IF test
  1234     Node *n_c = n->in(0);
  1235     if( !n_c->is_If() ) break;       // No estimate available
  1236     iff = n_c->as_If();
  1237     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1238       // Compute how much count comes on this path
  1239       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1240     // Have no count info.  Skip dull uncommon-trap like branches.
  1241     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1242         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1243       break;
  1244     // Skip through never-taken branch; look for a real loop exit.
  1245     n = iff->in(0);
  1247   return 0.0f;                  // No estimate available
  1250 //------------------------------merge_many_backedges---------------------------
  1251 // Merge all the backedges from the shared header into a private Region.
  1252 // Feed that region as the one backedge to this loop.
  1253 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1254   uint i;
  1256   // Scan for the top 2 hottest backedges
  1257   float hotcnt = 0.0f;
  1258   float warmcnt = 0.0f;
  1259   uint hot_idx = 0;
  1260   // Loop starts at 2 because slot 1 is the fall-in path
  1261   for( i = 2; i < _head->req(); i++ ) {
  1262     float cnt = estimate_path_freq(_head->in(i));
  1263     if( cnt > hotcnt ) {       // Grab hottest path
  1264       warmcnt = hotcnt;
  1265       hotcnt = cnt;
  1266       hot_idx = i;
  1267     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1268       warmcnt = cnt;
  1272   // See if the hottest backedge is worthy of being an inner loop
  1273   // by being much hotter than the next hottest backedge.
  1274   if( hotcnt <= 0.0001 ||
  1275       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1277   // Peel out the backedges into a private merge point; peel
  1278   // them all except optionally hot_idx.
  1279   PhaseIterGVN &igvn = phase->_igvn;
  1281   Node *hot_tail = NULL;
  1282   // Make a Region for the merge point
  1283   Node *r = new (phase->C, 1) RegionNode(1);
  1284   for( i = 2; i < _head->req(); i++ ) {
  1285     if( i != hot_idx )
  1286       r->add_req( _head->in(i) );
  1287     else hot_tail = _head->in(i);
  1289   igvn.register_new_node_with_optimizer(r, _head);
  1290   // Plug region into end of loop _head, followed by hot_tail
  1291   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1292   _head->set_req(2, r);
  1293   if( hot_idx ) _head->add_req(hot_tail);
  1295   // Split all the Phis up between '_head' loop and the Region 'r'
  1296   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1297     Node *out = _head->fast_out(j);
  1298     if( out->is_Phi() ) {
  1299       PhiNode* n = out->as_Phi();
  1300       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1301       Node *hot_phi = NULL;
  1302       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
  1303       // Check all inputs for the ones to peel out
  1304       uint j = 1;
  1305       for( uint i = 2; i < n->req(); i++ ) {
  1306         if( i != hot_idx )
  1307           phi->set_req( j++, n->in(i) );
  1308         else hot_phi = n->in(i);
  1310       // Register the phi but do not transform until whole place transforms
  1311       igvn.register_new_node_with_optimizer(phi, n);
  1312       // Add the merge phi to the old Phi
  1313       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1314       n->set_req(2, phi);
  1315       if( hot_idx ) n->add_req(hot_phi);
  1320   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1321   // of self loop tree.  Turn self into a loop headed by _head and with
  1322   // tail being the new merge point.
  1323   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1324   phase->set_loop(_tail,ilt);   // Adjust tail
  1325   _tail = r;                    // Self's tail is new merge point
  1326   phase->set_loop(r,this);
  1327   ilt->_child = _child;         // New guy has my children
  1328   _child = ilt;                 // Self has new guy as only child
  1329   ilt->_parent = this;          // new guy has self for parent
  1330   ilt->_nest = _nest;           // Same nesting depth (for now)
  1332   // Starting with 'ilt', look for child loop trees using the same shared
  1333   // header.  Flatten these out; they will no longer be loops in the end.
  1334   IdealLoopTree **pilt = &_child;
  1335   while( ilt ) {
  1336     if( ilt->_head == _head ) {
  1337       uint i;
  1338       for( i = 2; i < _head->req(); i++ )
  1339         if( _head->in(i) == ilt->_tail )
  1340           break;                // Still a loop
  1341       if( i == _head->req() ) { // No longer a loop
  1342         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1343         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1344         IdealLoopTree **cp = &ilt->_child;
  1345         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1346         *cp = ilt->_next;       // Hang next list at end of child list
  1347         *pilt = ilt->_child;    // Move child up to replace ilt
  1348         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1349         ilt = ilt->_child;      // Repeat using new ilt
  1350         continue;               // do not advance over ilt->_child
  1352       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1353       phase->set_loop(_head,ilt);
  1355     pilt = &ilt->_child;        // Advance to next
  1356     ilt = *pilt;
  1359   if( _child ) fix_parent( _child, this );
  1362 //------------------------------beautify_loops---------------------------------
  1363 // Split shared headers and insert loop landing pads.
  1364 // Insert a LoopNode to replace the RegionNode.
  1365 // Return TRUE if loop tree is structurally changed.
  1366 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1367   bool result = false;
  1368   // Cache parts in locals for easy
  1369   PhaseIterGVN &igvn = phase->_igvn;
  1371   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1373   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1374   int fall_in_cnt = 0;
  1375   for( uint i = 1; i < _head->req(); i++ )
  1376     if( !phase->is_member( this, _head->in(i) ) )
  1377       fall_in_cnt++;
  1378   assert( fall_in_cnt, "at least 1 fall-in path" );
  1379   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1380     split_fall_in( phase, fall_in_cnt );
  1382   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1383   // the left.
  1384   fall_in_cnt = 1;
  1385   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1386     fall_in_cnt++;
  1387   if( fall_in_cnt > 1 ) {
  1388     // Since I am just swapping inputs I do not need to update def-use info
  1389     Node *tmp = _head->in(1);
  1390     _head->set_req( 1, _head->in(fall_in_cnt) );
  1391     _head->set_req( fall_in_cnt, tmp );
  1392     // Swap also all Phis
  1393     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1394       Node* phi = _head->fast_out(i);
  1395       if( phi->is_Phi() ) {
  1396         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1397         tmp = phi->in(1);
  1398         phi->set_req( 1, phi->in(fall_in_cnt) );
  1399         phi->set_req( fall_in_cnt, tmp );
  1403   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1404   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1406   // If I am a shared header (multiple backedges), peel off the many
  1407   // backedges into a private merge point and use the merge point as
  1408   // the one true backedge.
  1409   if( _head->req() > 3 ) {
  1410     // Merge the many backedges into a single backedge but leave
  1411     // the hottest backedge as separate edge for the following peel.
  1412     merge_many_backedges( phase );
  1413     result = true;
  1416   // If I have one hot backedge, peel off myself loop.
  1417   // I better be the outermost loop.
  1418   if( _head->req() > 3 ) {
  1419     split_outer_loop( phase );
  1420     result = true;
  1422   } else if( !_head->is_Loop() && !_irreducible ) {
  1423     // Make a new LoopNode to replace the old loop head
  1424     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1425     l = igvn.register_new_node_with_optimizer(l, _head);
  1426     phase->set_created_loop_node();
  1427     // Go ahead and replace _head
  1428     phase->_igvn.replace_node( _head, l );
  1429     _head = l;
  1430     phase->set_loop(_head, this);
  1433   // Now recursively beautify nested loops
  1434   if( _child ) result |= _child->beautify_loops( phase );
  1435   if( _next  ) result |= _next ->beautify_loops( phase );
  1436   return result;
  1439 //------------------------------allpaths_check_safepts----------------------------
  1440 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1441 // encountered.  Helper for check_safepts.
  1442 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1443   assert(stack.size() == 0, "empty stack");
  1444   stack.push(_tail);
  1445   visited.Clear();
  1446   visited.set(_tail->_idx);
  1447   while (stack.size() > 0) {
  1448     Node* n = stack.pop();
  1449     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1450       // Terminate this path
  1451     } else if (n->Opcode() == Op_SafePoint) {
  1452       if (_phase->get_loop(n) != this) {
  1453         if (_required_safept == NULL) _required_safept = new Node_List();
  1454         _required_safept->push(n);  // save the one closest to the tail
  1456       // Terminate this path
  1457     } else {
  1458       uint start = n->is_Region() ? 1 : 0;
  1459       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1460       for (uint i = start; i < end; i++) {
  1461         Node* in = n->in(i);
  1462         assert(in->is_CFG(), "must be");
  1463         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1464           stack.push(in);
  1471 //------------------------------check_safepts----------------------------
  1472 // Given dominators, try to find loops with calls that must always be
  1473 // executed (call dominates loop tail).  These loops do not need non-call
  1474 // safepoints (ncsfpt).
  1475 //
  1476 // A complication is that a safepoint in a inner loop may be needed
  1477 // by an outer loop. In the following, the inner loop sees it has a
  1478 // call (block 3) on every path from the head (block 2) to the
  1479 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1480 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1481 //
  1482 //          entry  0
  1483 //                 |
  1484 //                 v
  1485 // outer 1,2    +->1
  1486 //              |  |
  1487 //              |  v
  1488 //              |  2<---+  ncsfpt in 2
  1489 //              |_/|\   |
  1490 //                 | v  |
  1491 // inner 2,3      /  3  |  call in 3
  1492 //               /   |  |
  1493 //              v    +--+
  1494 //        exit  4
  1495 //
  1496 //
  1497 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1498 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1499 // is first looked for in the lists for the outer loops of the current loop.
  1500 //
  1501 // The insights into the problem:
  1502 //  A) counted loops are okay
  1503 //  B) innermost loops are okay (only an inner loop can delete
  1504 //     a ncsfpt needed by an outer loop)
  1505 //  C) a loop is immune from an inner loop deleting a safepoint
  1506 //     if the loop has a call on the idom-path
  1507 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1508 //     idom-path that is not in a nested loop
  1509 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1510 //     loop needs to be prevented from deletion by an inner loop
  1511 //
  1512 // There are two analyses:
  1513 //  1) The first, and cheaper one, scans the loop body from
  1514 //     tail to head following the idom (immediate dominator)
  1515 //     chain, looking for the cases (C,D,E) above.
  1516 //     Since inner loops are scanned before outer loops, there is summary
  1517 //     information about inner loops.  Inner loops can be skipped over
  1518 //     when the tail of an inner loop is encountered.
  1519 //
  1520 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1521 //     the idom path (which is rare), scans all predecessor control paths
  1522 //     from the tail to the head, terminating a path when a call or sfpt
  1523 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1524 //
  1525 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1526   // Bottom up traversal
  1527   IdealLoopTree* ch = _child;
  1528   while (ch != NULL) {
  1529     ch->check_safepts(visited, stack);
  1530     ch = ch->_next;
  1533   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1534     bool  has_call         = false; // call on dom-path
  1535     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1536     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1537     // Scan the dom-path nodes from tail to head
  1538     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1539       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1540         has_call = true;
  1541         _has_sfpt = 1;          // Then no need for a safept!
  1542         break;
  1543       } else if (n->Opcode() == Op_SafePoint) {
  1544         if (_phase->get_loop(n) == this) {
  1545           has_local_ncsfpt = true;
  1546           break;
  1548         if (nonlocal_ncsfpt == NULL) {
  1549           nonlocal_ncsfpt = n; // save the one closest to the tail
  1551       } else {
  1552         IdealLoopTree* nlpt = _phase->get_loop(n);
  1553         if (this != nlpt) {
  1554           // If at an inner loop tail, see if the inner loop has already
  1555           // recorded seeing a call on the dom-path (and stop.)  If not,
  1556           // jump to the head of the inner loop.
  1557           assert(is_member(nlpt), "nested loop");
  1558           Node* tail = nlpt->_tail;
  1559           if (tail->in(0)->is_If()) tail = tail->in(0);
  1560           if (n == tail) {
  1561             // If inner loop has call on dom-path, so does outer loop
  1562             if (nlpt->_has_sfpt) {
  1563               has_call = true;
  1564               _has_sfpt = 1;
  1565               break;
  1567             // Skip to head of inner loop
  1568             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1569             n = nlpt->_head;
  1574     // Record safept's that this loop needs preserved when an
  1575     // inner loop attempts to delete it's safepoints.
  1576     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1577       if (nonlocal_ncsfpt != NULL) {
  1578         if (_required_safept == NULL) _required_safept = new Node_List();
  1579         _required_safept->push(nonlocal_ncsfpt);
  1580       } else {
  1581         // Failed to find a suitable safept on the dom-path.  Now use
  1582         // an all paths walk from tail to head, looking for safepoints to preserve.
  1583         allpaths_check_safepts(visited, stack);
  1589 //---------------------------is_deleteable_safept----------------------------
  1590 // Is safept not required by an outer loop?
  1591 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1592   assert(sfpt->Opcode() == Op_SafePoint, "");
  1593   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1594   while (lp != NULL) {
  1595     Node_List* sfpts = lp->_required_safept;
  1596     if (sfpts != NULL) {
  1597       for (uint i = 0; i < sfpts->size(); i++) {
  1598         if (sfpt == sfpts->at(i))
  1599           return false;
  1602     lp = lp->_parent;
  1604   return true;
  1607 //---------------------------replace_parallel_iv-------------------------------
  1608 // Replace parallel induction variable (parallel to trip counter)
  1609 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1610   assert(loop->_head->is_CountedLoop(), "");
  1611   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1612   Node *incr = cl->incr();
  1613   if (incr == NULL)
  1614     return;         // Dead loop?
  1615   Node *init = cl->init_trip();
  1616   Node *phi  = cl->phi();
  1617   // protect against stride not being a constant
  1618   if (!cl->stride_is_con())
  1619     return;
  1620   int stride_con = cl->stride_con();
  1622   PhaseGVN *gvn = &_igvn;
  1624   // Visit all children, looking for Phis
  1625   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1626     Node *out = cl->out(i);
  1627     // Look for other phis (secondary IVs). Skip dead ones
  1628     if (!out->is_Phi() || out == phi || !has_node(out))
  1629       continue;
  1630     PhiNode* phi2 = out->as_Phi();
  1631     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1632     // Look for induction variables of the form:  X += constant
  1633     if (phi2->region() != loop->_head ||
  1634         incr2->req() != 3 ||
  1635         incr2->in(1) != phi2 ||
  1636         incr2 == incr ||
  1637         incr2->Opcode() != Op_AddI ||
  1638         !incr2->in(2)->is_Con())
  1639       continue;
  1641     // Check for parallel induction variable (parallel to trip counter)
  1642     // via an affine function.  In particular, count-down loops with
  1643     // count-up array indices are common. We only RCE references off
  1644     // the trip-counter, so we need to convert all these to trip-counter
  1645     // expressions.
  1646     Node *init2 = phi2->in( LoopNode::EntryControl );
  1647     int stride_con2 = incr2->in(2)->get_int();
  1649     // The general case here gets a little tricky.  We want to find the
  1650     // GCD of all possible parallel IV's and make a new IV using this
  1651     // GCD for the loop.  Then all possible IVs are simple multiples of
  1652     // the GCD.  In practice, this will cover very few extra loops.
  1653     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1654     // where +/-1 is the common case, but other integer multiples are
  1655     // also easy to handle.
  1656     int ratio_con = stride_con2/stride_con;
  1658     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1659       // Convert to using the trip counter.  The parallel induction
  1660       // variable differs from the trip counter by a loop-invariant
  1661       // amount, the difference between their respective initial values.
  1662       // It is scaled by the 'ratio_con'.
  1663       // Perform local Ideal transformation since in most cases ratio == 1.
  1664       Node* ratio = _igvn.intcon(ratio_con);
  1665       set_ctrl(ratio, C->root());
  1666       Node* hook = new (C, 3) Node(3);
  1667       Node* ratio_init = gvn->transform(new (C, 3) MulINode(init, ratio));
  1668       hook->init_req(0, ratio_init);
  1669       Node* diff = gvn->transform(new (C, 3) SubINode(init2, ratio_init));
  1670       hook->init_req(1, diff);
  1671       Node* ratio_idx = gvn->transform(new (C, 3) MulINode(phi, ratio));
  1672       hook->init_req(2, ratio_idx);
  1673       Node* add  = gvn->transform(new (C, 3) AddINode(ratio_idx, diff));
  1674       set_subtree_ctrl(add);
  1675       _igvn.replace_node( phi2, add );
  1676       // Free up intermediate goo
  1677       _igvn.remove_dead_node(hook);
  1678       // Sometimes an induction variable is unused
  1679       if (add->outcnt() == 0) {
  1680         _igvn.remove_dead_node(add);
  1682       --i; // deleted this phi; rescan starting with next position
  1683       continue;
  1688 //------------------------------counted_loop-----------------------------------
  1689 // Convert to counted loops where possible
  1690 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1692   // For grins, set the inner-loop flag here
  1693   if (!_child) {
  1694     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1697   if (_head->is_CountedLoop() ||
  1698       phase->is_counted_loop(_head, this)) {
  1699     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1701     // Look for a safepoint to remove
  1702     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1703       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1704           phase->is_deleteable_safept(n))
  1705         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1707     // Look for induction variables
  1708     phase->replace_parallel_iv(this);
  1710   } else if (_parent != NULL && !_irreducible) {
  1711     // Not a counted loop.
  1712     // Look for a safepoint on the idom-path to remove, preserving the first one
  1713     bool found = false;
  1714     Node* n = tail();
  1715     for (; n != _head && !found; n = phase->idom(n)) {
  1716       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1717         found = true; // Found one
  1719     // Skip past it and delete the others
  1720     for (; n != _head; n = phase->idom(n)) {
  1721       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1722           phase->is_deleteable_safept(n))
  1723         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1727   // Recursively
  1728   if (_child) _child->counted_loop( phase );
  1729   if (_next)  _next ->counted_loop( phase );
  1732 #ifndef PRODUCT
  1733 //------------------------------dump_head--------------------------------------
  1734 // Dump 1 liner for loop header info
  1735 void IdealLoopTree::dump_head( ) const {
  1736   for (uint i=0; i<_nest; i++)
  1737     tty->print("  ");
  1738   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1739   if (_irreducible) tty->print(" IRREDUCIBLE");
  1740   Node* entry = _head->in(LoopNode::EntryControl);
  1741   if (LoopLimitCheck) {
  1742     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1743     if (predicate != NULL ) {
  1744       tty->print(" limit_check");
  1745       entry = entry->in(0)->in(0);
  1748   if (UseLoopPredicate) {
  1749     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1750     if (entry != NULL) {
  1751       tty->print(" predicated");
  1754   if (_head->is_CountedLoop()) {
  1755     CountedLoopNode *cl = _head->as_CountedLoop();
  1756     tty->print(" counted");
  1758     Node* init_n = cl->init_trip();
  1759     if (init_n  != NULL &&  init_n->is_Con())
  1760       tty->print(" [%d,", cl->init_trip()->get_int());
  1761     else
  1762       tty->print(" [int,");
  1763     Node* limit_n = cl->limit();
  1764     if (limit_n  != NULL &&  limit_n->is_Con())
  1765       tty->print("%d),", cl->limit()->get_int());
  1766     else
  1767       tty->print("int),");
  1768     int stride_con  = cl->stride_con();
  1769     if (stride_con > 0) tty->print("+");
  1770     tty->print("%d", stride_con);
  1772     if (cl->is_pre_loop ()) tty->print(" pre" );
  1773     if (cl->is_main_loop()) tty->print(" main");
  1774     if (cl->is_post_loop()) tty->print(" post");
  1776   tty->cr();
  1779 //------------------------------dump-------------------------------------------
  1780 // Dump loops by loop tree
  1781 void IdealLoopTree::dump( ) const {
  1782   dump_head();
  1783   if (_child) _child->dump();
  1784   if (_next)  _next ->dump();
  1787 #endif
  1789 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1790   if (loop == root) {
  1791     if (loop->_child != NULL) {
  1792       log->begin_head("loop_tree");
  1793       log->end_head();
  1794       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1795       log->tail("loop_tree");
  1796       assert(loop->_next == NULL, "what?");
  1798   } else {
  1799     Node* head = loop->_head;
  1800     log->begin_head("loop");
  1801     log->print(" idx='%d' ", head->_idx);
  1802     if (loop->_irreducible) log->print("irreducible='1' ");
  1803     if (head->is_Loop()) {
  1804       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1805       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1807     if (head->is_CountedLoop()) {
  1808       CountedLoopNode* cl = head->as_CountedLoop();
  1809       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1810       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1811       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1813     log->end_head();
  1814     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1815     log->tail("loop");
  1816     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1820 //---------------------collect_potentially_useful_predicates-----------------------
  1821 // Helper function to collect potentially useful predicates to prevent them from
  1822 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1823 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1824                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1825   if (loop->_child) { // child
  1826     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1829   // self (only loops that we can apply loop predication may use their predicates)
  1830   if (loop->_head->is_Loop() &&
  1831       !loop->_irreducible    &&
  1832       !loop->tail()->is_top()) {
  1833     LoopNode* lpn = loop->_head->as_Loop();
  1834     Node* entry = lpn->in(LoopNode::EntryControl);
  1835     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1836     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1837       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1838       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1839       entry = entry->in(0)->in(0);
  1841     predicate_proj = find_predicate(entry); // Predicate
  1842     if (predicate_proj != NULL ) {
  1843       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1847   if (loop->_next) { // sibling
  1848     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1852 //------------------------eliminate_useless_predicates-----------------------------
  1853 // Eliminate all inserted predicates if they could not be used by loop predication.
  1854 // Note: it will also eliminates loop limits check predicate since it also uses
  1855 // Opaque1 node (see Parse::add_predicate()).
  1856 void PhaseIdealLoop::eliminate_useless_predicates() {
  1857   if (C->predicate_count() == 0)
  1858     return; // no predicate left
  1860   Unique_Node_List useful_predicates; // to store useful predicates
  1861   if (C->has_loops()) {
  1862     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1865   for (int i = C->predicate_count(); i > 0; i--) {
  1866      Node * n = C->predicate_opaque1_node(i-1);
  1867      assert(n->Opcode() == Op_Opaque1, "must be");
  1868      if (!useful_predicates.member(n)) { // not in the useful list
  1869        _igvn.replace_node(n, n->in(1));
  1874 //=============================================================================
  1875 //----------------------------build_and_optimize-------------------------------
  1876 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1877 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1878 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
  1879   ResourceMark rm;
  1881   int old_progress = C->major_progress();
  1882   uint orig_worklist_size = _igvn._worklist.size();
  1884   // Reset major-progress flag for the driver's heuristics
  1885   C->clear_major_progress();
  1887 #ifndef PRODUCT
  1888   // Capture for later assert
  1889   uint unique = C->unique();
  1890   _loop_invokes++;
  1891   _loop_work += unique;
  1892 #endif
  1894   // True if the method has at least 1 irreducible loop
  1895   _has_irreducible_loops = false;
  1897   _created_loop_node = false;
  1899   Arena *a = Thread::current()->resource_area();
  1900   VectorSet visited(a);
  1901   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1902   _nodes.map(C->unique(), NULL);
  1903   memset(_nodes.adr(), 0, wordSize * C->unique());
  1905   // Pre-build the top-level outermost loop tree entry
  1906   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1907   // Do not need a safepoint at the top level
  1908   _ltree_root->_has_sfpt = 1;
  1910   // Initialize Dominators.
  1911   // Checked in clone_loop_predicate() during beautify_loops().
  1912   _idom_size = 0;
  1913   _idom      = NULL;
  1914   _dom_depth = NULL;
  1915   _dom_stk   = NULL;
  1917   // Empty pre-order array
  1918   allocate_preorders();
  1920   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1921   // IdealLoopTree entries.  Data nodes are NOT walked.
  1922   build_loop_tree();
  1923   // Check for bailout, and return
  1924   if (C->failing()) {
  1925     return;
  1928   // No loops after all
  1929   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1931   // There should always be an outer loop containing the Root and Return nodes.
  1932   // If not, we have a degenerate empty program.  Bail out in this case.
  1933   if (!has_node(C->root())) {
  1934     if (!_verify_only) {
  1935       C->clear_major_progress();
  1936       C->record_method_not_compilable("empty program detected during loop optimization");
  1938     return;
  1941   // Nothing to do, so get out
  1942   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1943     _igvn.optimize();           // Cleanup NeverBranches
  1944     return;
  1947   // Set loop nesting depth
  1948   _ltree_root->set_nest( 0 );
  1950   // Split shared headers and insert loop landing pads.
  1951   // Do not bother doing this on the Root loop of course.
  1952   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1953     C->print_method("Before beautify loops", 3);
  1954     if( _ltree_root->_child->beautify_loops( this ) ) {
  1955       // Re-build loop tree!
  1956       _ltree_root->_child = NULL;
  1957       _nodes.clear();
  1958       reallocate_preorders();
  1959       build_loop_tree();
  1960       // Check for bailout, and return
  1961       if (C->failing()) {
  1962         return;
  1964       // Reset loop nesting depth
  1965       _ltree_root->set_nest( 0 );
  1967       C->print_method("After beautify loops", 3);
  1971   // Build Dominators for elision of NULL checks & loop finding.
  1972   // Since nodes do not have a slot for immediate dominator, make
  1973   // a persistent side array for that info indexed on node->_idx.
  1974   _idom_size = C->unique();
  1975   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1976   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1977   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1978   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1980   Dominators();
  1982   if (!_verify_only) {
  1983     // As a side effect, Dominators removed any unreachable CFG paths
  1984     // into RegionNodes.  It doesn't do this test against Root, so
  1985     // we do it here.
  1986     for( uint i = 1; i < C->root()->req(); i++ ) {
  1987       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1988         _igvn.hash_delete(C->root());
  1989         C->root()->del_req(i);
  1990         _igvn._worklist.push(C->root());
  1991         i--;                      // Rerun same iteration on compressed edges
  1995     // Given dominators, try to find inner loops with calls that must
  1996     // always be executed (call dominates loop tail).  These loops do
  1997     // not need a separate safepoint.
  1998     Node_List cisstack(a);
  1999     _ltree_root->check_safepts(visited, cisstack);
  2002   // Walk the DATA nodes and place into loops.  Find earliest control
  2003   // node.  For CFG nodes, the _nodes array starts out and remains
  2004   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2005   // _nodes array holds the earliest legal controlling CFG node.
  2007   // Allocate stack with enough space to avoid frequent realloc
  2008   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  2009   Node_Stack nstack( a, stack_size );
  2011   visited.Clear();
  2012   Node_List worklist(a);
  2013   // Don't need C->root() on worklist since
  2014   // it will be processed among C->top() inputs
  2015   worklist.push( C->top() );
  2016   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2017   build_loop_early( visited, worklist, nstack );
  2019   // Given early legal placement, try finding counted loops.  This placement
  2020   // is good enough to discover most loop invariants.
  2021   if( !_verify_me && !_verify_only )
  2022     _ltree_root->counted_loop( this );
  2024   // Find latest loop placement.  Find ideal loop placement.
  2025   visited.Clear();
  2026   init_dom_lca_tags();
  2027   // Need C->root() on worklist when processing outs
  2028   worklist.push( C->root() );
  2029   NOT_PRODUCT( C->verify_graph_edges(); )
  2030   worklist.push( C->top() );
  2031   build_loop_late( visited, worklist, nstack );
  2033   if (_verify_only) {
  2034     // restore major progress flag
  2035     for (int i = 0; i < old_progress; i++)
  2036       C->set_major_progress();
  2037     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2038     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2039     return;
  2042   // Some parser-inserted loop predicates could never be used by loop
  2043   // predication or they were moved away from loop during some optimizations.
  2044   // For example, peeling. Eliminate them before next loop optimizations.
  2045   if (UseLoopPredicate || LoopLimitCheck) {
  2046     eliminate_useless_predicates();
  2049   // clear out the dead code
  2050   while(_deadlist.size()) {
  2051     _igvn.remove_globally_dead_node(_deadlist.pop());
  2054 #ifndef PRODUCT
  2055   C->verify_graph_edges();
  2056   if (_verify_me) {             // Nested verify pass?
  2057     // Check to see if the verify mode is broken
  2058     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2059     return;
  2061   if(VerifyLoopOptimizations) verify();
  2062   if(TraceLoopOpts && C->has_loops()) {
  2063     _ltree_root->dump();
  2065 #endif
  2067   if (ReassociateInvariants) {
  2068     // Reassociate invariants and prep for split_thru_phi
  2069     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2070       IdealLoopTree* lpt = iter.current();
  2071       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2073       lpt->reassociate_invariants(this);
  2075       // Because RCE opportunities can be masked by split_thru_phi,
  2076       // look for RCE candidates and inhibit split_thru_phi
  2077       // on just their loop-phi's for this pass of loop opts
  2078       if (SplitIfBlocks && do_split_ifs) {
  2079         if (lpt->policy_range_check(this)) {
  2080           lpt->_rce_candidate = 1; // = true
  2086   // Check for aggressive application of split-if and other transforms
  2087   // that require basic-block info (like cloning through Phi's)
  2088   if( SplitIfBlocks && do_split_ifs ) {
  2089     visited.Clear();
  2090     split_if_with_blocks( visited, nstack );
  2091     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2094   // Perform loop predication before iteration splitting
  2095   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2096     _ltree_root->_child->loop_predication(this);
  2099   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2100     if (do_intrinsify_fill()) {
  2101       C->set_major_progress();
  2105   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2106   // range checks or one-shot null checks.
  2108   // If split-if's didn't hack the graph too bad (no CFG changes)
  2109   // then do loop opts.
  2110   if (C->has_loops() && !C->major_progress()) {
  2111     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2112     _ltree_root->_child->iteration_split( this, worklist );
  2113     // No verify after peeling!  GCM has hoisted code out of the loop.
  2114     // After peeling, the hoisted code could sink inside the peeled area.
  2115     // The peeling code does not try to recompute the best location for
  2116     // all the code before the peeled area, so the verify pass will always
  2117     // complain about it.
  2119   // Do verify graph edges in any case
  2120   NOT_PRODUCT( C->verify_graph_edges(); );
  2122   if (!do_split_ifs) {
  2123     // We saw major progress in Split-If to get here.  We forced a
  2124     // pass with unrolling and not split-if, however more split-if's
  2125     // might make progress.  If the unrolling didn't make progress
  2126     // then the major-progress flag got cleared and we won't try
  2127     // another round of Split-If.  In particular the ever-common
  2128     // instance-of/check-cast pattern requires at least 2 rounds of
  2129     // Split-If to clear out.
  2130     C->set_major_progress();
  2133   // Repeat loop optimizations if new loops were seen
  2134   if (created_loop_node()) {
  2135     C->set_major_progress();
  2138   // Keep loop predicates and perform optimizations with them
  2139   // until no more loop optimizations could be done.
  2140   // After that switch predicates off and do more loop optimizations.
  2141   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2142      C->cleanup_loop_predicates(_igvn);
  2143 #ifndef PRODUCT
  2144      if (TraceLoopOpts) {
  2145        tty->print_cr("PredicatesOff");
  2147 #endif
  2148      C->set_major_progress();
  2151   // Convert scalar to superword operations at the end of all loop opts.
  2152   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2153     // SuperWord transform
  2154     SuperWord sw(this);
  2155     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2156       IdealLoopTree* lpt = iter.current();
  2157       if (lpt->is_counted()) {
  2158         sw.transform_loop(lpt);
  2163   // Cleanup any modified bits
  2164   _igvn.optimize();
  2166   // disable assert until issue with split_flow_path is resolved (6742111)
  2167   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2168   //        "shouldn't introduce irreducible loops");
  2170   if (C->log() != NULL) {
  2171     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2175 #ifndef PRODUCT
  2176 //------------------------------print_statistics-------------------------------
  2177 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2178 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2179 void PhaseIdealLoop::print_statistics() {
  2180   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2183 //------------------------------verify-----------------------------------------
  2184 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2185 static int fail;                // debug only, so its multi-thread dont care
  2186 void PhaseIdealLoop::verify() const {
  2187   int old_progress = C->major_progress();
  2188   ResourceMark rm;
  2189   PhaseIdealLoop loop_verify( _igvn, this );
  2190   VectorSet visited(Thread::current()->resource_area());
  2192   fail = 0;
  2193   verify_compare( C->root(), &loop_verify, visited );
  2194   assert( fail == 0, "verify loops failed" );
  2195   // Verify loop structure is the same
  2196   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2197   // Reset major-progress.  It was cleared by creating a verify version of
  2198   // PhaseIdealLoop.
  2199   for( int i=0; i<old_progress; i++ )
  2200     C->set_major_progress();
  2203 //------------------------------verify_compare---------------------------------
  2204 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2205 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2206   if( !n ) return;
  2207   if( visited.test_set( n->_idx ) ) return;
  2208   if( !_nodes[n->_idx] ) {      // Unreachable
  2209     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2210     return;
  2213   uint i;
  2214   for( i = 0; i < n->req(); i++ )
  2215     verify_compare( n->in(i), loop_verify, visited );
  2217   // Check the '_nodes' block/loop structure
  2218   i = n->_idx;
  2219   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2220     if( _nodes[i] != loop_verify->_nodes[i] &&
  2221         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2222       tty->print("Mismatched control setting for: ");
  2223       n->dump();
  2224       if( fail++ > 10 ) return;
  2225       Node *c = get_ctrl_no_update(n);
  2226       tty->print("We have it as: ");
  2227       if( c->in(0) ) c->dump();
  2228         else tty->print_cr("N%d",c->_idx);
  2229       tty->print("Verify thinks: ");
  2230       if( loop_verify->has_ctrl(n) )
  2231         loop_verify->get_ctrl_no_update(n)->dump();
  2232       else
  2233         loop_verify->get_loop_idx(n)->dump();
  2234       tty->cr();
  2236   } else {                    // We have a loop
  2237     IdealLoopTree *us = get_loop_idx(n);
  2238     if( loop_verify->has_ctrl(n) ) {
  2239       tty->print("Mismatched loop setting for: ");
  2240       n->dump();
  2241       if( fail++ > 10 ) return;
  2242       tty->print("We have it as: ");
  2243       us->dump();
  2244       tty->print("Verify thinks: ");
  2245       loop_verify->get_ctrl_no_update(n)->dump();
  2246       tty->cr();
  2247     } else if (!C->major_progress()) {
  2248       // Loop selection can be messed up if we did a major progress
  2249       // operation, like split-if.  Do not verify in that case.
  2250       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2251       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2252         tty->print("Unequals loops for: ");
  2253         n->dump();
  2254         if( fail++ > 10 ) return;
  2255         tty->print("We have it as: ");
  2256         us->dump();
  2257         tty->print("Verify thinks: ");
  2258         them->dump();
  2259         tty->cr();
  2264   // Check for immediate dominators being equal
  2265   if( i >= _idom_size ) {
  2266     if( !n->is_CFG() ) return;
  2267     tty->print("CFG Node with no idom: ");
  2268     n->dump();
  2269     return;
  2271   if( !n->is_CFG() ) return;
  2272   if( n == C->root() ) return; // No IDOM here
  2274   assert(n->_idx == i, "sanity");
  2275   Node *id = idom_no_update(n);
  2276   if( id != loop_verify->idom_no_update(n) ) {
  2277     tty->print("Unequals idoms for: ");
  2278     n->dump();
  2279     if( fail++ > 10 ) return;
  2280     tty->print("We have it as: ");
  2281     id->dump();
  2282     tty->print("Verify thinks: ");
  2283     loop_verify->idom_no_update(n)->dump();
  2284     tty->cr();
  2289 //------------------------------verify_tree------------------------------------
  2290 // Verify that tree structures match.  Because the CFG can change, siblings
  2291 // within the loop tree can be reordered.  We attempt to deal with that by
  2292 // reordering the verify's loop tree if possible.
  2293 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2294   assert( _parent == parent, "Badly formed loop tree" );
  2296   // Siblings not in same order?  Attempt to re-order.
  2297   if( _head != loop->_head ) {
  2298     // Find _next pointer to update
  2299     IdealLoopTree **pp = &loop->_parent->_child;
  2300     while( *pp != loop )
  2301       pp = &((*pp)->_next);
  2302     // Find proper sibling to be next
  2303     IdealLoopTree **nn = &loop->_next;
  2304     while( (*nn) && (*nn)->_head != _head )
  2305       nn = &((*nn)->_next);
  2307     // Check for no match.
  2308     if( !(*nn) ) {
  2309       // Annoyingly, irreducible loops can pick different headers
  2310       // after a major_progress operation, so the rest of the loop
  2311       // tree cannot be matched.
  2312       if (_irreducible && Compile::current()->major_progress())  return;
  2313       assert( 0, "failed to match loop tree" );
  2316     // Move (*nn) to (*pp)
  2317     IdealLoopTree *hit = *nn;
  2318     *nn = hit->_next;
  2319     hit->_next = loop;
  2320     *pp = loop;
  2321     loop = hit;
  2322     // Now try again to verify
  2325   assert( _head  == loop->_head , "mismatched loop head" );
  2326   Node *tail = _tail;           // Inline a non-updating version of
  2327   while( !tail->in(0) )         // the 'tail()' call.
  2328     tail = tail->in(1);
  2329   assert( tail == loop->_tail, "mismatched loop tail" );
  2331   // Counted loops that are guarded should be able to find their guards
  2332   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2333     CountedLoopNode *cl = _head->as_CountedLoop();
  2334     Node *init = cl->init_trip();
  2335     Node *ctrl = cl->in(LoopNode::EntryControl);
  2336     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2337     Node *iff  = ctrl->in(0);
  2338     assert( iff->Opcode() == Op_If, "" );
  2339     Node *bol  = iff->in(1);
  2340     assert( bol->Opcode() == Op_Bool, "" );
  2341     Node *cmp  = bol->in(1);
  2342     assert( cmp->Opcode() == Op_CmpI, "" );
  2343     Node *add  = cmp->in(1);
  2344     Node *opaq;
  2345     if( add->Opcode() == Op_Opaque1 ) {
  2346       opaq = add;
  2347     } else {
  2348       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2349       assert( add == init, "" );
  2350       opaq = cmp->in(2);
  2352     assert( opaq->Opcode() == Op_Opaque1, "" );
  2356   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2357   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2358   // Innermost loops need to verify loop bodies,
  2359   // but only if no 'major_progress'
  2360   int fail = 0;
  2361   if (!Compile::current()->major_progress() && _child == NULL) {
  2362     for( uint i = 0; i < _body.size(); i++ ) {
  2363       Node *n = _body.at(i);
  2364       if (n->outcnt() == 0)  continue; // Ignore dead
  2365       uint j;
  2366       for( j = 0; j < loop->_body.size(); j++ )
  2367         if( loop->_body.at(j) == n )
  2368           break;
  2369       if( j == loop->_body.size() ) { // Not found in loop body
  2370         // Last ditch effort to avoid assertion: Its possible that we
  2371         // have some users (so outcnt not zero) but are still dead.
  2372         // Try to find from root.
  2373         if (Compile::current()->root()->find(n->_idx)) {
  2374           fail++;
  2375           tty->print("We have that verify does not: ");
  2376           n->dump();
  2380     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2381       Node *n = loop->_body.at(i2);
  2382       if (n->outcnt() == 0)  continue; // Ignore dead
  2383       uint j;
  2384       for( j = 0; j < _body.size(); j++ )
  2385         if( _body.at(j) == n )
  2386           break;
  2387       if( j == _body.size() ) { // Not found in loop body
  2388         // Last ditch effort to avoid assertion: Its possible that we
  2389         // have some users (so outcnt not zero) but are still dead.
  2390         // Try to find from root.
  2391         if (Compile::current()->root()->find(n->_idx)) {
  2392           fail++;
  2393           tty->print("Verify has that we do not: ");
  2394           n->dump();
  2398     assert( !fail, "loop body mismatch" );
  2402 #endif
  2404 //------------------------------set_idom---------------------------------------
  2405 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2406   uint idx = d->_idx;
  2407   if (idx >= _idom_size) {
  2408     uint newsize = _idom_size<<1;
  2409     while( idx >= newsize ) {
  2410       newsize <<= 1;
  2412     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2413     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2414     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2415     _idom_size = newsize;
  2417   _idom[idx] = n;
  2418   _dom_depth[idx] = dom_depth;
  2421 //------------------------------recompute_dom_depth---------------------------------------
  2422 // The dominator tree is constructed with only parent pointers.
  2423 // This recomputes the depth in the tree by first tagging all
  2424 // nodes as "no depth yet" marker.  The next pass then runs up
  2425 // the dom tree from each node marked "no depth yet", and computes
  2426 // the depth on the way back down.
  2427 void PhaseIdealLoop::recompute_dom_depth() {
  2428   uint no_depth_marker = C->unique();
  2429   uint i;
  2430   // Initialize depth to "no depth yet"
  2431   for (i = 0; i < _idom_size; i++) {
  2432     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2433      _dom_depth[i] = no_depth_marker;
  2436   if (_dom_stk == NULL) {
  2437     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2438     if (init_size < 10) init_size = 10;
  2439     _dom_stk = new GrowableArray<uint>(init_size);
  2441   // Compute new depth for each node.
  2442   for (i = 0; i < _idom_size; i++) {
  2443     uint j = i;
  2444     // Run up the dom tree to find a node with a depth
  2445     while (_dom_depth[j] == no_depth_marker) {
  2446       _dom_stk->push(j);
  2447       j = _idom[j]->_idx;
  2449     // Compute the depth on the way back down this tree branch
  2450     uint dd = _dom_depth[j] + 1;
  2451     while (_dom_stk->length() > 0) {
  2452       uint j = _dom_stk->pop();
  2453       _dom_depth[j] = dd;
  2454       dd++;
  2459 //------------------------------sort-------------------------------------------
  2460 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2461 // loop tree, not the root.
  2462 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2463   if( !innermost ) return loop; // New innermost loop
  2465   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2466   assert( loop_preorder, "not yet post-walked loop" );
  2467   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2468   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2470   // Insert at start of list
  2471   while( l ) {                  // Insertion sort based on pre-order
  2472     if( l == loop ) return innermost; // Already on list!
  2473     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2474     assert( l_preorder, "not yet post-walked l" );
  2475     // Check header pre-order number to figure proper nesting
  2476     if( loop_preorder > l_preorder )
  2477       break;                    // End of insertion
  2478     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2479     // Since I split shared headers, you'd think this could not happen.
  2480     // BUT: I must first do the preorder numbering before I can discover I
  2481     // have shared headers, so the split headers all get the same preorder
  2482     // number as the RegionNode they split from.
  2483     if( loop_preorder == l_preorder &&
  2484         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2485       break;                    // Also check for shared headers (same pre#)
  2486     pp = &l->_parent;           // Chain up list
  2487     l = *pp;
  2489   // Link into list
  2490   // Point predecessor to me
  2491   *pp = loop;
  2492   // Point me to successor
  2493   IdealLoopTree *p = loop->_parent;
  2494   loop->_parent = l;            // Point me to successor
  2495   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2496   return innermost;
  2499 //------------------------------build_loop_tree--------------------------------
  2500 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2501 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2502 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2503 // tightest enclosing IdealLoopTree for post-walked.
  2504 //
  2505 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2506 // a loop backedge with that doesn't have any work on the backedge.  This
  2507 // helps me construct nested loops with shared headers better.
  2508 //
  2509 // Once I've done the forward recursion, I do the post-work.  For each child
  2510 // I check to see if there is a backedge.  Backedges define a loop!  I
  2511 // insert an IdealLoopTree at the target of the backedge.
  2512 //
  2513 // During the post-work I also check to see if I have several children
  2514 // belonging to different loops.  If so, then this Node is a decision point
  2515 // where control flow can choose to change loop nests.  It is at this
  2516 // decision point where I can figure out how loops are nested.  At this
  2517 // time I can properly order the different loop nests from my children.
  2518 // Note that there may not be any backedges at the decision point!
  2519 //
  2520 // Since the decision point can be far removed from the backedges, I can't
  2521 // order my loops at the time I discover them.  Thus at the decision point
  2522 // I need to inspect loop header pre-order numbers to properly nest my
  2523 // loops.  This means I need to sort my childrens' loops by pre-order.
  2524 // The sort is of size number-of-control-children, which generally limits
  2525 // it to size 2 (i.e., I just choose between my 2 target loops).
  2526 void PhaseIdealLoop::build_loop_tree() {
  2527   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2528   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2529   Node *n = C->root();
  2530   bltstack.push(n);
  2531   int pre_order = 1;
  2532   int stack_size;
  2534   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2535     n = bltstack.top(); // Leave node on stack
  2536     if ( !is_visited(n) ) {
  2537       // ---- Pre-pass Work ----
  2538       // Pre-walked but not post-walked nodes need a pre_order number.
  2540       set_preorder_visited( n, pre_order ); // set as visited
  2542       // ---- Scan over children ----
  2543       // Scan first over control projections that lead to loop headers.
  2544       // This helps us find inner-to-outer loops with shared headers better.
  2546       // Scan children's children for loop headers.
  2547       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2548         Node* m = n->raw_out(i);       // Child
  2549         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2550           // Scan over children's children to find loop
  2551           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2552             Node* l = m->fast_out(j);
  2553             if( is_visited(l) &&       // Been visited?
  2554                 !is_postvisited(l) &&  // But not post-visited
  2555                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2556               // Found!  Scan the DFS down this path before doing other paths
  2557               bltstack.push(m);
  2558               break;
  2563       pre_order++;
  2565     else if ( !is_postvisited(n) ) {
  2566       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2567       // such as com.sun.rsasign.am::a.
  2568       // For non-recursive version, first, process current children.
  2569       // On next iteration, check if additional children were added.
  2570       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2571         Node* u = n->raw_out(k);
  2572         if ( u->is_CFG() && !is_visited(u) ) {
  2573           bltstack.push(u);
  2576       if ( bltstack.length() == stack_size ) {
  2577         // There were no additional children, post visit node now
  2578         (void)bltstack.pop(); // Remove node from stack
  2579         pre_order = build_loop_tree_impl( n, pre_order );
  2580         // Check for bailout
  2581         if (C->failing()) {
  2582           return;
  2584         // Check to grow _preorders[] array for the case when
  2585         // build_loop_tree_impl() adds new nodes.
  2586         check_grow_preorders();
  2589     else {
  2590       (void)bltstack.pop(); // Remove post-visited node from stack
  2595 //------------------------------build_loop_tree_impl---------------------------
  2596 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2597   // ---- Post-pass Work ----
  2598   // Pre-walked but not post-walked nodes need a pre_order number.
  2600   // Tightest enclosing loop for this Node
  2601   IdealLoopTree *innermost = NULL;
  2603   // For all children, see if any edge is a backedge.  If so, make a loop
  2604   // for it.  Then find the tightest enclosing loop for the self Node.
  2605   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2606     Node* m = n->fast_out(i);   // Child
  2607     if( n == m ) continue;      // Ignore control self-cycles
  2608     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2610     IdealLoopTree *l;           // Child's loop
  2611     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2612       // Found a backedge
  2613       assert( get_preorder(m) < pre_order, "should be backedge" );
  2614       // Check for the RootNode, which is already a LoopNode and is allowed
  2615       // to have multiple "backedges".
  2616       if( m == C->root()) {     // Found the root?
  2617         l = _ltree_root;        // Root is the outermost LoopNode
  2618       } else {                  // Else found a nested loop
  2619         // Insert a LoopNode to mark this loop.
  2620         l = new IdealLoopTree(this, m, n);
  2621       } // End of Else found a nested loop
  2622       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2623         set_loop(m, l);         // Set loop header to loop now
  2625     } else {                    // Else not a nested loop
  2626       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2627       l = get_loop(m);          // Get previously determined loop
  2628       // If successor is header of a loop (nest), move up-loop till it
  2629       // is a member of some outer enclosing loop.  Since there are no
  2630       // shared headers (I've split them already) I only need to go up
  2631       // at most 1 level.
  2632       while( l && l->_head == m ) // Successor heads loop?
  2633         l = l->_parent;         // Move up 1 for me
  2634       // If this loop is not properly parented, then this loop
  2635       // has no exit path out, i.e. its an infinite loop.
  2636       if( !l ) {
  2637         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2638         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2639         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2640         // many backedges as well.
  2642         // Here I set the loop to be the root loop.  I could have, after
  2643         // inserting a bogus loop exit, restarted the recursion and found my
  2644         // new loop exit.  This would make the infinite loop a first-class
  2645         // loop and it would then get properly optimized.  What's the use of
  2646         // optimizing an infinite loop?
  2647         l = _ltree_root;        // Oops, found infinite loop
  2649         if (!_verify_only) {
  2650           // Insert the NeverBranch between 'm' and it's control user.
  2651           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2652           _igvn.register_new_node_with_optimizer(iff);
  2653           set_loop(iff, l);
  2654           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2655           _igvn.register_new_node_with_optimizer(if_t);
  2656           set_loop(if_t, l);
  2658           Node* cfg = NULL;       // Find the One True Control User of m
  2659           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2660             Node* x = m->fast_out(j);
  2661             if (x->is_CFG() && x != m && x != iff)
  2662               { cfg = x; break; }
  2664           assert(cfg != NULL, "must find the control user of m");
  2665           uint k = 0;             // Probably cfg->in(0)
  2666           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2667           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2669           // Now create the never-taken loop exit
  2670           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2671           _igvn.register_new_node_with_optimizer(if_f);
  2672           set_loop(if_f, l);
  2673           // Find frame ptr for Halt.  Relies on the optimizer
  2674           // V-N'ing.  Easier and quicker than searching through
  2675           // the program structure.
  2676           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2677           _igvn.register_new_node_with_optimizer(frame);
  2678           // Halt & Catch Fire
  2679           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2680           _igvn.register_new_node_with_optimizer(halt);
  2681           set_loop(halt, l);
  2682           C->root()->add_req(halt);
  2684         set_loop(C->root(), _ltree_root);
  2687     // Weeny check for irreducible.  This child was already visited (this
  2688     // IS the post-work phase).  Is this child's loop header post-visited
  2689     // as well?  If so, then I found another entry into the loop.
  2690     if (!_verify_only) {
  2691       while( is_postvisited(l->_head) ) {
  2692         // found irreducible
  2693         l->_irreducible = 1; // = true
  2694         l = l->_parent;
  2695         _has_irreducible_loops = true;
  2696         // Check for bad CFG here to prevent crash, and bailout of compile
  2697         if (l == NULL) {
  2698           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2699           return pre_order;
  2704     // This Node might be a decision point for loops.  It is only if
  2705     // it's children belong to several different loops.  The sort call
  2706     // does a trivial amount of work if there is only 1 child or all
  2707     // children belong to the same loop.  If however, the children
  2708     // belong to different loops, the sort call will properly set the
  2709     // _parent pointers to show how the loops nest.
  2710     //
  2711     // In any case, it returns the tightest enclosing loop.
  2712     innermost = sort( l, innermost );
  2715   // Def-use info will have some dead stuff; dead stuff will have no
  2716   // loop decided on.
  2718   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2719   if( innermost && innermost->_head == n ) {
  2720     assert( get_loop(n) == innermost, "" );
  2721     IdealLoopTree *p = innermost->_parent;
  2722     IdealLoopTree *l = innermost;
  2723     while( p && l->_head == n ) {
  2724       l->_next = p->_child;     // Put self on parents 'next child'
  2725       p->_child = l;            // Make self as first child of parent
  2726       l = p;                    // Now walk up the parent chain
  2727       p = l->_parent;
  2729   } else {
  2730     // Note that it is possible for a LoopNode to reach here, if the
  2731     // backedge has been made unreachable (hence the LoopNode no longer
  2732     // denotes a Loop, and will eventually be removed).
  2734     // Record tightest enclosing loop for self.  Mark as post-visited.
  2735     set_loop(n, innermost);
  2736     // Also record has_call flag early on
  2737     if( innermost ) {
  2738       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2739         // Do not count uncommon calls
  2740         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2741           Node *iff = n->in(0)->in(0);
  2742           if( !iff->is_If() ||
  2743               (n->in(0)->Opcode() == Op_IfFalse &&
  2744                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2745               (iff->as_If()->_prob >= 0.01) )
  2746             innermost->_has_call = 1;
  2748       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2749         // Disable loop optimizations if the loop has a scalar replaceable
  2750         // allocation. This disabling may cause a potential performance lost
  2751         // if the allocation is not eliminated for some reason.
  2752         innermost->_allow_optimizations = false;
  2753         innermost->_has_call = 1; // = true
  2758   // Flag as post-visited now
  2759   set_postvisited(n);
  2760   return pre_order;
  2764 //------------------------------build_loop_early-------------------------------
  2765 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2766 // First pass computes the earliest controlling node possible.  This is the
  2767 // controlling input with the deepest dominating depth.
  2768 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2769   while (worklist.size() != 0) {
  2770     // Use local variables nstack_top_n & nstack_top_i to cache values
  2771     // on nstack's top.
  2772     Node *nstack_top_n = worklist.pop();
  2773     uint  nstack_top_i = 0;
  2774 //while_nstack_nonempty:
  2775     while (true) {
  2776       // Get parent node and next input's index from stack's top.
  2777       Node  *n = nstack_top_n;
  2778       uint   i = nstack_top_i;
  2779       uint cnt = n->req(); // Count of inputs
  2780       if (i == 0) {        // Pre-process the node.
  2781         if( has_node(n) &&            // Have either loop or control already?
  2782             !has_ctrl(n) ) {          // Have loop picked out already?
  2783           // During "merge_many_backedges" we fold up several nested loops
  2784           // into a single loop.  This makes the members of the original
  2785           // loop bodies pointing to dead loops; they need to move up
  2786           // to the new UNION'd larger loop.  I set the _head field of these
  2787           // dead loops to NULL and the _parent field points to the owning
  2788           // loop.  Shades of UNION-FIND algorithm.
  2789           IdealLoopTree *ilt;
  2790           while( !(ilt = get_loop(n))->_head ) {
  2791             // Normally I would use a set_loop here.  But in this one special
  2792             // case, it is legal (and expected) to change what loop a Node
  2793             // belongs to.
  2794             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2796           // Remove safepoints ONLY if I've already seen I don't need one.
  2797           // (the old code here would yank a 2nd safepoint after seeing a
  2798           // first one, even though the 1st did not dominate in the loop body
  2799           // and thus could be avoided indefinitely)
  2800           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2801               is_deleteable_safept(n)) {
  2802             Node *in = n->in(TypeFunc::Control);
  2803             lazy_replace(n,in);       // Pull safepoint now
  2804             // Carry on with the recursion "as if" we are walking
  2805             // only the control input
  2806             if( !visited.test_set( in->_idx ) ) {
  2807               worklist.push(in);      // Visit this guy later, using worklist
  2809             // Get next node from nstack:
  2810             // - skip n's inputs processing by setting i > cnt;
  2811             // - we also will not call set_early_ctrl(n) since
  2812             //   has_node(n) == true (see the condition above).
  2813             i = cnt + 1;
  2816       } // if (i == 0)
  2818       // Visit all inputs
  2819       bool done = true;       // Assume all n's inputs will be processed
  2820       while (i < cnt) {
  2821         Node *in = n->in(i);
  2822         ++i;
  2823         if (in == NULL) continue;
  2824         if (in->pinned() && !in->is_CFG())
  2825           set_ctrl(in, in->in(0));
  2826         int is_visited = visited.test_set( in->_idx );
  2827         if (!has_node(in)) {  // No controlling input yet?
  2828           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2829           assert( !is_visited, "visit only once" );
  2830           nstack.push(n, i);  // Save parent node and next input's index.
  2831           nstack_top_n = in;  // Process current input now.
  2832           nstack_top_i = 0;
  2833           done = false;       // Not all n's inputs processed.
  2834           break; // continue while_nstack_nonempty;
  2835         } else if (!is_visited) {
  2836           // This guy has a location picked out for him, but has not yet
  2837           // been visited.  Happens to all CFG nodes, for instance.
  2838           // Visit him using the worklist instead of recursion, to break
  2839           // cycles.  Since he has a location already we do not need to
  2840           // find his location before proceeding with the current Node.
  2841           worklist.push(in);  // Visit this guy later, using worklist
  2844       if (done) {
  2845         // All of n's inputs have been processed, complete post-processing.
  2847         // Compute earliest point this Node can go.
  2848         // CFG, Phi, pinned nodes already know their controlling input.
  2849         if (!has_node(n)) {
  2850           // Record earliest legal location
  2851           set_early_ctrl( n );
  2853         if (nstack.is_empty()) {
  2854           // Finished all nodes on stack.
  2855           // Process next node on the worklist.
  2856           break;
  2858         // Get saved parent node and next input's index.
  2859         nstack_top_n = nstack.node();
  2860         nstack_top_i = nstack.index();
  2861         nstack.pop();
  2863     } // while (true)
  2867 //------------------------------dom_lca_internal--------------------------------
  2868 // Pair-wise LCA
  2869 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2870   if( !n1 ) return n2;          // Handle NULL original LCA
  2871   assert( n1->is_CFG(), "" );
  2872   assert( n2->is_CFG(), "" );
  2873   // find LCA of all uses
  2874   uint d1 = dom_depth(n1);
  2875   uint d2 = dom_depth(n2);
  2876   while (n1 != n2) {
  2877     if (d1 > d2) {
  2878       n1 =      idom(n1);
  2879       d1 = dom_depth(n1);
  2880     } else if (d1 < d2) {
  2881       n2 =      idom(n2);
  2882       d2 = dom_depth(n2);
  2883     } else {
  2884       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2885       // of the tree might have the same depth.  These sections have
  2886       // to be searched more carefully.
  2888       // Scan up all the n1's with equal depth, looking for n2.
  2889       Node *t1 = idom(n1);
  2890       while (dom_depth(t1) == d1) {
  2891         if (t1 == n2)  return n2;
  2892         t1 = idom(t1);
  2894       // Scan up all the n2's with equal depth, looking for n1.
  2895       Node *t2 = idom(n2);
  2896       while (dom_depth(t2) == d2) {
  2897         if (t2 == n1)  return n1;
  2898         t2 = idom(t2);
  2900       // Move up to a new dominator-depth value as well as up the dom-tree.
  2901       n1 = t1;
  2902       n2 = t2;
  2903       d1 = dom_depth(n1);
  2904       d2 = dom_depth(n2);
  2907   return n1;
  2910 //------------------------------compute_idom-----------------------------------
  2911 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2912 // IDOMs are correct.
  2913 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2914   assert( region->is_Region(), "" );
  2915   Node *LCA = NULL;
  2916   for( uint i = 1; i < region->req(); i++ ) {
  2917     if( region->in(i) != C->top() )
  2918       LCA = dom_lca( LCA, region->in(i) );
  2920   return LCA;
  2923 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2924   bool had_error = false;
  2925 #ifdef ASSERT
  2926   if (early != C->root()) {
  2927     // Make sure that there's a dominance path from use to LCA
  2928     Node* d = use;
  2929     while (d != LCA) {
  2930       d = idom(d);
  2931       if (d == C->root()) {
  2932         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2933         n->dump();
  2934         use->dump();
  2935         had_error = true;
  2936         break;
  2940 #endif
  2941   return had_error;
  2945 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2946   // Compute LCA over list of uses
  2947   bool had_error = false;
  2948   Node *LCA = NULL;
  2949   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2950     Node* c = n->fast_out(i);
  2951     if (_nodes[c->_idx] == NULL)
  2952       continue;                 // Skip the occasional dead node
  2953     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2954       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2955         if( c->in(j) == n ) {   // Found matching input?
  2956           Node *use = c->in(0)->in(j);
  2957           if (_verify_only && use->is_top()) continue;
  2958           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2959           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2962     } else {
  2963       // For CFG data-users, use is in the block just prior
  2964       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2965       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2966       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2969   assert(!had_error, "bad dominance");
  2970   return LCA;
  2973 //------------------------------get_late_ctrl----------------------------------
  2974 // Compute latest legal control.
  2975 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2976   assert(early != NULL, "early control should not be NULL");
  2978   Node* LCA = compute_lca_of_uses(n, early);
  2979 #ifdef ASSERT
  2980   if (LCA == C->root() && LCA != early) {
  2981     // def doesn't dominate uses so print some useful debugging output
  2982     compute_lca_of_uses(n, early, true);
  2984 #endif
  2986   // if this is a load, check for anti-dependent stores
  2987   // We use a conservative algorithm to identify potential interfering
  2988   // instructions and for rescheduling the load.  The users of the memory
  2989   // input of this load are examined.  Any use which is not a load and is
  2990   // dominated by early is considered a potentially interfering store.
  2991   // This can produce false positives.
  2992   if (n->is_Load() && LCA != early) {
  2993     Node_List worklist;
  2995     Node *mem = n->in(MemNode::Memory);
  2996     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2997       Node* s = mem->fast_out(i);
  2998       worklist.push(s);
  3000     while(worklist.size() != 0 && LCA != early) {
  3001       Node* s = worklist.pop();
  3002       if (s->is_Load()) {
  3003         continue;
  3004       } else if (s->is_MergeMem()) {
  3005         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3006           Node* s1 = s->fast_out(i);
  3007           worklist.push(s1);
  3009       } else {
  3010         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3011         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3012         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3013           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3019   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3020   return LCA;
  3023 // true if CFG node d dominates CFG node n
  3024 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3025   if (d == n)
  3026     return true;
  3027   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3028   uint dd = dom_depth(d);
  3029   while (dom_depth(n) >= dd) {
  3030     if (n == d)
  3031       return true;
  3032     n = idom(n);
  3034   return false;
  3037 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3038 // Pair-wise LCA with tags.
  3039 // Tag each index with the node 'tag' currently being processed
  3040 // before advancing up the dominator chain using idom().
  3041 // Later calls that find a match to 'tag' know that this path has already
  3042 // been considered in the current LCA (which is input 'n1' by convention).
  3043 // Since get_late_ctrl() is only called once for each node, the tag array
  3044 // does not need to be cleared between calls to get_late_ctrl().
  3045 // Algorithm trades a larger constant factor for better asymptotic behavior
  3046 //
  3047 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3048   uint d1 = dom_depth(n1);
  3049   uint d2 = dom_depth(n2);
  3051   do {
  3052     if (d1 > d2) {
  3053       // current lca is deeper than n2
  3054       _dom_lca_tags.map(n1->_idx, tag);
  3055       n1 =      idom(n1);
  3056       d1 = dom_depth(n1);
  3057     } else if (d1 < d2) {
  3058       // n2 is deeper than current lca
  3059       Node *memo = _dom_lca_tags[n2->_idx];
  3060       if( memo == tag ) {
  3061         return n1;    // Return the current LCA
  3063       _dom_lca_tags.map(n2->_idx, tag);
  3064       n2 =      idom(n2);
  3065       d2 = dom_depth(n2);
  3066     } else {
  3067       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3068       // of the tree might have the same depth.  These sections have
  3069       // to be searched more carefully.
  3071       // Scan up all the n1's with equal depth, looking for n2.
  3072       _dom_lca_tags.map(n1->_idx, tag);
  3073       Node *t1 = idom(n1);
  3074       while (dom_depth(t1) == d1) {
  3075         if (t1 == n2)  return n2;
  3076         _dom_lca_tags.map(t1->_idx, tag);
  3077         t1 = idom(t1);
  3079       // Scan up all the n2's with equal depth, looking for n1.
  3080       _dom_lca_tags.map(n2->_idx, tag);
  3081       Node *t2 = idom(n2);
  3082       while (dom_depth(t2) == d2) {
  3083         if (t2 == n1)  return n1;
  3084         _dom_lca_tags.map(t2->_idx, tag);
  3085         t2 = idom(t2);
  3087       // Move up to a new dominator-depth value as well as up the dom-tree.
  3088       n1 = t1;
  3089       n2 = t2;
  3090       d1 = dom_depth(n1);
  3091       d2 = dom_depth(n2);
  3093   } while (n1 != n2);
  3094   return n1;
  3097 //------------------------------init_dom_lca_tags------------------------------
  3098 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3099 // Intended use does not involve any growth for the array, so it could
  3100 // be of fixed size.
  3101 void PhaseIdealLoop::init_dom_lca_tags() {
  3102   uint limit = C->unique() + 1;
  3103   _dom_lca_tags.map( limit, NULL );
  3104 #ifdef ASSERT
  3105   for( uint i = 0; i < limit; ++i ) {
  3106     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3108 #endif // ASSERT
  3111 //------------------------------clear_dom_lca_tags------------------------------
  3112 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3113 // Intended use does not involve any growth for the array, so it could
  3114 // be of fixed size.
  3115 void PhaseIdealLoop::clear_dom_lca_tags() {
  3116   uint limit = C->unique() + 1;
  3117   _dom_lca_tags.map( limit, NULL );
  3118   _dom_lca_tags.clear();
  3119 #ifdef ASSERT
  3120   for( uint i = 0; i < limit; ++i ) {
  3121     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3123 #endif // ASSERT
  3126 //------------------------------build_loop_late--------------------------------
  3127 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3128 // Second pass finds latest legal placement, and ideal loop placement.
  3129 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3130   while (worklist.size() != 0) {
  3131     Node *n = worklist.pop();
  3132     // Only visit once
  3133     if (visited.test_set(n->_idx)) continue;
  3134     uint cnt = n->outcnt();
  3135     uint   i = 0;
  3136     while (true) {
  3137       assert( _nodes[n->_idx], "no dead nodes" );
  3138       // Visit all children
  3139       if (i < cnt) {
  3140         Node* use = n->raw_out(i);
  3141         ++i;
  3142         // Check for dead uses.  Aggressively prune such junk.  It might be
  3143         // dead in the global sense, but still have local uses so I cannot
  3144         // easily call 'remove_dead_node'.
  3145         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3146           // Due to cycles, we might not hit the same fixed point in the verify
  3147           // pass as we do in the regular pass.  Instead, visit such phis as
  3148           // simple uses of the loop head.
  3149           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3150             if( !visited.test(use->_idx) )
  3151               worklist.push(use);
  3152           } else if( !visited.test_set(use->_idx) ) {
  3153             nstack.push(n, i); // Save parent and next use's index.
  3154             n   = use;         // Process all children of current use.
  3155             cnt = use->outcnt();
  3156             i   = 0;
  3158         } else {
  3159           // Do not visit around the backedge of loops via data edges.
  3160           // push dead code onto a worklist
  3161           _deadlist.push(use);
  3163       } else {
  3164         // All of n's children have been processed, complete post-processing.
  3165         build_loop_late_post(n);
  3166         if (nstack.is_empty()) {
  3167           // Finished all nodes on stack.
  3168           // Process next node on the worklist.
  3169           break;
  3171         // Get saved parent node and next use's index. Visit the rest of uses.
  3172         n   = nstack.node();
  3173         cnt = n->outcnt();
  3174         i   = nstack.index();
  3175         nstack.pop();
  3181 //------------------------------build_loop_late_post---------------------------
  3182 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3183 // Second pass finds latest legal placement, and ideal loop placement.
  3184 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3186   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3187     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3190   // CFG and pinned nodes already handled
  3191   if( n->in(0) ) {
  3192     if( n->in(0)->is_top() ) return; // Dead?
  3194     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3195     // _must_ be pinned (they have to observe their control edge of course).
  3196     // Unlike Stores (which modify an unallocable resource, the memory
  3197     // state), Mods/Loads can float around.  So free them up.
  3198     bool pinned = true;
  3199     switch( n->Opcode() ) {
  3200     case Op_DivI:
  3201     case Op_DivF:
  3202     case Op_DivD:
  3203     case Op_ModI:
  3204     case Op_ModF:
  3205     case Op_ModD:
  3206     case Op_LoadB:              // Same with Loads; they can sink
  3207     case Op_LoadUS:             // during loop optimizations.
  3208     case Op_LoadD:
  3209     case Op_LoadF:
  3210     case Op_LoadI:
  3211     case Op_LoadKlass:
  3212     case Op_LoadNKlass:
  3213     case Op_LoadL:
  3214     case Op_LoadS:
  3215     case Op_LoadP:
  3216     case Op_LoadN:
  3217     case Op_LoadRange:
  3218     case Op_LoadD_unaligned:
  3219     case Op_LoadL_unaligned:
  3220     case Op_StrComp:            // Does a bunch of load-like effects
  3221     case Op_StrEquals:
  3222     case Op_StrIndexOf:
  3223     case Op_AryEq:
  3224       pinned = false;
  3226     if( pinned ) {
  3227       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3228       if( !chosen_loop->_child )       // Inner loop?
  3229         chosen_loop->_body.push(n); // Collect inner loops
  3230       return;
  3232   } else {                      // No slot zero
  3233     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3234       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3235       return;
  3237     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3240   // Do I have a "safe range" I can select over?
  3241   Node *early = get_ctrl(n);// Early location already computed
  3243   // Compute latest point this Node can go
  3244   Node *LCA = get_late_ctrl( n, early );
  3245   // LCA is NULL due to uses being dead
  3246   if( LCA == NULL ) {
  3247 #ifdef ASSERT
  3248     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3249       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3251 #endif
  3252     _nodes.map(n->_idx, 0);     // This node is useless
  3253     _deadlist.push(n);
  3254     return;
  3256   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3258   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3259   Node *least = legal;          // Best legal position so far
  3260   while( early != legal ) {     // While not at earliest legal
  3261 #ifdef ASSERT
  3262     if (legal->is_Start() && !early->is_Root()) {
  3263       // Bad graph. Print idom path and fail.
  3264       tty->print_cr( "Bad graph detected in build_loop_late");
  3265       tty->print("n: ");n->dump(); tty->cr();
  3266       tty->print("early: ");early->dump(); tty->cr();
  3267       int ct = 0;
  3268       Node *dbg_legal = LCA;
  3269       while(!dbg_legal->is_Start() && ct < 100) {
  3270         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  3271         ct++;
  3272         dbg_legal = idom(dbg_legal);
  3274       assert(false, "Bad graph detected in build_loop_late");
  3276 #endif
  3277     // Find least loop nesting depth
  3278     legal = idom(legal);        // Bump up the IDOM tree
  3279     // Check for lower nesting depth
  3280     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3281       least = legal;
  3283   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3285   // Try not to place code on a loop entry projection
  3286   // which can inhibit range check elimination.
  3287   if (least != early) {
  3288     Node* ctrl_out = least->unique_ctrl_out();
  3289     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3290         least == ctrl_out->in(LoopNode::EntryControl)) {
  3291       Node* least_dom = idom(least);
  3292       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3293         least = least_dom;
  3298 #ifdef ASSERT
  3299   // If verifying, verify that 'verify_me' has a legal location
  3300   // and choose it as our location.
  3301   if( _verify_me ) {
  3302     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3303     Node *legal = LCA;
  3304     while( early != legal ) {   // While not at earliest legal
  3305       if( legal == v_ctrl ) break;  // Check for prior good location
  3306       legal = idom(legal)      ;// Bump up the IDOM tree
  3308     // Check for prior good location
  3309     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3311 #endif
  3313   // Assign discovered "here or above" point
  3314   least = find_non_split_ctrl(least);
  3315   set_ctrl(n, least);
  3317   // Collect inner loop bodies
  3318   IdealLoopTree *chosen_loop = get_loop(least);
  3319   if( !chosen_loop->_child )   // Inner loop?
  3320     chosen_loop->_body.push(n);// Collect inner loops
  3323 #ifndef PRODUCT
  3324 //------------------------------dump-------------------------------------------
  3325 void PhaseIdealLoop::dump( ) const {
  3326   ResourceMark rm;
  3327   Arena* arena = Thread::current()->resource_area();
  3328   Node_Stack stack(arena, C->unique() >> 2);
  3329   Node_List rpo_list;
  3330   VectorSet visited(arena);
  3331   visited.set(C->top()->_idx);
  3332   rpo( C->root(), stack, visited, rpo_list );
  3333   // Dump root loop indexed by last element in PO order
  3334   dump( _ltree_root, rpo_list.size(), rpo_list );
  3337 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3338   loop->dump_head();
  3340   // Now scan for CFG nodes in the same loop
  3341   for( uint j=idx; j > 0;  j-- ) {
  3342     Node *n = rpo_list[j-1];
  3343     if( !_nodes[n->_idx] )      // Skip dead nodes
  3344       continue;
  3345     if( get_loop(n) != loop ) { // Wrong loop nest
  3346       if( get_loop(n)->_head == n &&    // Found nested loop?
  3347           get_loop(n)->_parent == loop )
  3348         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3349       continue;
  3352     // Dump controlling node
  3353     for( uint x = 0; x < loop->_nest; x++ )
  3354       tty->print("  ");
  3355     tty->print("C");
  3356     if( n == C->root() ) {
  3357       n->dump();
  3358     } else {
  3359       Node* cached_idom   = idom_no_update(n);
  3360       Node *computed_idom = n->in(0);
  3361       if( n->is_Region() ) {
  3362         computed_idom = compute_idom(n);
  3363         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3364         // any MultiBranch ctrl node), so apply a similar transform to
  3365         // the cached idom returned from idom_no_update.
  3366         cached_idom = find_non_split_ctrl(cached_idom);
  3368       tty->print(" ID:%d",computed_idom->_idx);
  3369       n->dump();
  3370       if( cached_idom != computed_idom ) {
  3371         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3372                       computed_idom->_idx, cached_idom->_idx);
  3375     // Dump nodes it controls
  3376     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3377       // (k < C->unique() && get_ctrl(find(k)) == n)
  3378       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3379         Node *m = C->root()->find(k);
  3380         if( m && m->outcnt() > 0 ) {
  3381           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3382             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3383                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3385           for( uint j = 0; j < loop->_nest; j++ )
  3386             tty->print("  ");
  3387           tty->print(" ");
  3388           m->dump();
  3395 // Collect a R-P-O for the whole CFG.
  3396 // Result list is in post-order (scan backwards for RPO)
  3397 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3398   stk.push(start, 0);
  3399   visited.set(start->_idx);
  3401   while (stk.is_nonempty()) {
  3402     Node* m   = stk.node();
  3403     uint  idx = stk.index();
  3404     if (idx < m->outcnt()) {
  3405       stk.set_index(idx + 1);
  3406       Node* n = m->raw_out(idx);
  3407       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3408         stk.push(n, 0);
  3410     } else {
  3411       rpo_list.push(m);
  3412       stk.pop();
  3416 #endif
  3419 //=============================================================================
  3420 //------------------------------LoopTreeIterator-----------------------------------
  3422 // Advance to next loop tree using a preorder, left-to-right traversal.
  3423 void LoopTreeIterator::next() {
  3424   assert(!done(), "must not be done.");
  3425   if (_curnt->_child != NULL) {
  3426     _curnt = _curnt->_child;
  3427   } else if (_curnt->_next != NULL) {
  3428     _curnt = _curnt->_next;
  3429   } else {
  3430     while (_curnt != _root && _curnt->_next == NULL) {
  3431       _curnt = _curnt->_parent;
  3433     if (_curnt == _root) {
  3434       _curnt = NULL;
  3435       assert(done(), "must be done.");
  3436     } else {
  3437       assert(_curnt->_next != NULL, "must be more to do");
  3438       _curnt = _curnt->_next;

mercurial