src/share/vm/opto/loopnode.cpp

Wed, 04 May 2011 13:12:42 -0700

author
kvn
date
Wed, 04 May 2011 13:12:42 -0700
changeset 2877
bad7ecd0b6ed
parent 2747
3af54845df98
child 2979
aacaff365100
permissions
-rw-r--r--

5091921: Sign flip issues in loop optimizer
Summary: Fix integer overflow problem in the code generated by loop optimizer.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if( n->in(0) ) {
    92     early = n->in(0);
    93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for( ; i < n->req(); i++ ) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if( c_d > e_d ) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if( c_d == e_d &&    // Same depth?
   111                early != cin ) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while( 1 ) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if( n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d )
   121           break;                // early is deeper; keep him
   122         if( n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d ) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   return early;
   136 }
   138 //------------------------------set_early_ctrl---------------------------------
   139 // Set earliest legal control
   140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   141   Node *early = get_early_ctrl(n);
   143   // Record earliest legal location
   144   set_ctrl(n, early);
   145 }
   147 //------------------------------set_subtree_ctrl-------------------------------
   148 // set missing _ctrl entries on new nodes
   149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   150   // Already set?  Get out.
   151   if( _nodes[n->_idx] ) return;
   152   // Recursively set _nodes array to indicate where the Node goes
   153   uint i;
   154   for( i = 0; i < n->req(); ++i ) {
   155     Node *m = n->in(i);
   156     if( m && m != C->root() )
   157       set_subtree_ctrl( m );
   158   }
   160   // Fixup self
   161   set_early_ctrl( n );
   162 }
   164 //------------------------------is_counted_loop--------------------------------
   165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   166   PhaseGVN *gvn = &_igvn;
   168   // Counted loop head must be a good RegionNode with only 3 not NULL
   169   // control input edges: Self, Entry, LoopBack.
   170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   171     return false;
   173   Node *init_control = x->in(LoopNode::EntryControl);
   174   Node *back_control = x->in(LoopNode::LoopBackControl);
   175   if (init_control == NULL || back_control == NULL)    // Partially dead
   176     return false;
   177   // Must also check for TOP when looking for a dead loop
   178   if (init_control->is_top() || back_control->is_top())
   179     return false;
   181   // Allow funny placement of Safepoint
   182   if (back_control->Opcode() == Op_SafePoint)
   183     back_control = back_control->in(TypeFunc::Control);
   185   // Controlling test for loop
   186   Node *iftrue = back_control;
   187   uint iftrue_op = iftrue->Opcode();
   188   if (iftrue_op != Op_IfTrue &&
   189       iftrue_op != Op_IfFalse)
   190     // I have a weird back-control.  Probably the loop-exit test is in
   191     // the middle of the loop and I am looking at some trailing control-flow
   192     // merge point.  To fix this I would have to partially peel the loop.
   193     return false; // Obscure back-control
   195   // Get boolean guarding loop-back test
   196   Node *iff = iftrue->in(0);
   197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   198     return false;
   199   BoolNode *test = iff->in(1)->as_Bool();
   200   BoolTest::mask bt = test->_test._test;
   201   float cl_prob = iff->as_If()->_prob;
   202   if (iftrue_op == Op_IfFalse) {
   203     bt = BoolTest(bt).negate();
   204     cl_prob = 1.0 - cl_prob;
   205   }
   206   // Get backedge compare
   207   Node *cmp = test->in(1);
   208   int cmp_op = cmp->Opcode();
   209   if (cmp_op != Op_CmpI)
   210     return false;                // Avoid pointer & float compares
   212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   213   Node *incr  = cmp->in(1);
   214   Node *limit = cmp->in(2);
   216   // ---------
   217   // need 'loop()' test to tell if limit is loop invariant
   218   // ---------
   220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   221     Node *tmp = incr;            // Then reverse order into the CmpI
   222     incr = limit;
   223     limit = tmp;
   224     bt = BoolTest(bt).commute(); // And commute the exit test
   225   }
   226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   227     return false;
   228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   229     return false;
   231   Node* phi_incr = NULL;
   232   // Trip-counter increment must be commutative & associative.
   233   if (incr->is_Phi()) {
   234     if (incr->as_Phi()->region() != x || incr->req() != 3)
   235       return false; // Not simple trip counter expression
   236     phi_incr = incr;
   237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   239       return false;
   240   }
   242   Node* trunc1 = NULL;
   243   Node* trunc2 = NULL;
   244   const TypeInt* iv_trunc_t = NULL;
   245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   246     return false; // Funny increment opcode
   247   }
   248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   250   // Get merge point
   251   Node *xphi = incr->in(1);
   252   Node *stride = incr->in(2);
   253   if (!stride->is_Con()) {     // Oops, swap these
   254     if (!xphi->is_Con())       // Is the other guy a constant?
   255       return false;             // Nope, unknown stride, bail out
   256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   257     xphi = stride;
   258     stride = tmp;
   259   }
   260   // Stride must be constant
   261   int stride_con = stride->get_int();
   262   if (stride_con == 0)
   263     return false; // missed some peephole opt
   265   if (!xphi->is_Phi())
   266     return false; // Too much math on the trip counter
   267   if (phi_incr != NULL && phi_incr != xphi)
   268     return false;
   269   PhiNode *phi = xphi->as_Phi();
   271   // Phi must be of loop header; backedge must wrap to increment
   272   if (phi->region() != x)
   273     return false;
   274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   276     return false;
   277   }
   278   Node *init_trip = phi->in(LoopNode::EntryControl);
   280   // If iv trunc type is smaller than int, check for possible wrap.
   281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   282     assert(trunc1 != NULL, "must have found some truncation");
   284     // Get a better type for the phi (filtered thru if's)
   285     const TypeInt* phi_ft = filtered_type(phi);
   287     // Can iv take on a value that will wrap?
   288     //
   289     // Ensure iv's limit is not within "stride" of the wrap value.
   290     //
   291     // Example for "short" type
   292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   293     //    If the stride is +10, then the last value of the induction
   294     //    variable before the increment (phi_ft->_hi) must be
   295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   296     //    ensure no truncation occurs after the increment.
   298     if (stride_con > 0) {
   299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   300           iv_trunc_t->_lo > phi_ft->_lo) {
   301         return false;  // truncation may occur
   302       }
   303     } else if (stride_con < 0) {
   304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   305           iv_trunc_t->_hi < phi_ft->_hi) {
   306         return false;  // truncation may occur
   307       }
   308     }
   309     // No possibility of wrap so truncation can be discarded
   310     // Promote iv type to Int
   311   } else {
   312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   313   }
   315   // If the condition is inverted and we will be rolling
   316   // through MININT to MAXINT, then bail out.
   317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   318       // Odd stride
   319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   320       // Count down loop rolls through MAXINT
   321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   322       // Count up loop rolls through MININT
   323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   324     return false; // Bail out
   325   }
   327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   328   const TypeInt* limit_t = gvn->type(limit)->is_int();
   330   if (stride_con > 0) {
   331     long init_p = (long)init_t->_lo + stride_con;
   332     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
   333       return false; // cyclic loop or this loop trips only once
   334   } else {
   335     long init_p = (long)init_t->_hi + stride_con;
   336     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
   337       return false; // cyclic loop or this loop trips only once
   338   }
   340   // =================================================
   341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   342   //
   343   assert(x->Opcode() == Op_Loop, "regular loops only");
   344   C->print_method("Before CountedLoop", 3);
   346   Node *hook = new (C, 6) Node(6);
   348   if (LoopLimitCheck) {
   350   // ===================================================
   351   // Generate loop limit check to avoid integer overflow
   352   // in cases like next (cyclic loops):
   353   //
   354   // for (i=0; i <= max_jint; i++) {}
   355   // for (i=0; i <  max_jint; i+=2) {}
   356   //
   357   //
   358   // Limit check predicate depends on the loop test:
   359   //
   360   // for(;i != limit; i++)       --> limit <= (max_jint)
   361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   363   //
   365   // Check if limit is excluded to do more precise int overflow check.
   366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   369   // If compare points directly to the phi we need to adjust
   370   // the compare so that it points to the incr. Limit have
   371   // to be adjusted to keep trip count the same and the
   372   // adjusted limit should be checked for int overflow.
   373   if (phi_incr != NULL) {
   374     stride_m  += stride_con;
   375   }
   377   if (limit->is_Con()) {
   378     int limit_con = limit->get_int();
   379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   381       // Bailout: it could be integer overflow.
   382       return false;
   383     }
   384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   386       // Limit's type may satisfy the condition, for example,
   387       // when it is an array length.
   388   } else {
   389     // Generate loop's limit check.
   390     // Loop limit check predicate should be near the loop.
   391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   392     if (!limit_check_proj) {
   393       // The limit check predicate is not generated if this method trapped here before.
   394 #ifdef ASSERT
   395       if (TraceLoopLimitCheck) {
   396         tty->print("missing loop limit check:");
   397         loop->dump_head();
   398         x->dump(1);
   399       }
   400 #endif
   401       return false;
   402     }
   404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   405     Node* cmp_limit;
   406     Node* bol;
   408     if (stride_con > 0) {
   409       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   410       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
   411     } else {
   412       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   413       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
   414     }
   415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   416     bol = _igvn.register_new_node_with_optimizer(bol);
   417     set_subtree_ctrl(bol);
   419     // Replace condition in original predicate but preserve Opaque node
   420     // so that previous predicates could be found.
   421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   423     Node* opq = check_iff->in(1)->in(1);
   424     _igvn.hash_delete(opq);
   425     opq->set_req(1, bol);
   426     // Update ctrl.
   427     set_ctrl(opq, check_iff->in(0));
   428     set_ctrl(check_iff->in(1), check_iff->in(0));
   430 #ifndef PRODUCT
   431     // report that the loop predication has been actually performed
   432     // for this loop
   433     if (TraceLoopLimitCheck) {
   434       tty->print_cr("Counted Loop Limit Check generated:");
   435       debug_only( bol->dump(2); )
   436     }
   437 #endif
   438   }
   440   if (phi_incr != NULL) {
   441     // If compare points directly to the phi we need to adjust
   442     // the compare so that it points to the incr. Limit have
   443     // to be adjusted to keep trip count the same and we
   444     // should avoid int overflow.
   445     //
   446     //   i = init; do {} while(i++ < limit);
   447     // is converted to
   448     //   i = init; do {} while(++i < limit+1);
   449     //
   450     limit = gvn->transform(new (C, 3) AddINode(limit, stride));
   451   }
   453   // Now we need to canonicalize loop condition.
   454   if (bt == BoolTest::ne) {
   455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   456     bt = (stride_con > 0) ? BoolTest::lt : BoolTest::gt;
   457   }
   459   if (incl_limit) {
   460     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   461     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   462     //
   463     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   464     limit = gvn->transform(new (C, 3) AddINode(limit, one));
   465     if (bt == BoolTest::le)
   466       bt = BoolTest::lt;
   467     else if (bt == BoolTest::ge)
   468       bt = BoolTest::gt;
   469     else
   470       ShouldNotReachHere();
   471   }
   472   set_subtree_ctrl( limit );
   474   } else { // LoopLimitCheck
   476   // If compare points to incr, we are ok.  Otherwise the compare
   477   // can directly point to the phi; in this case adjust the compare so that
   478   // it points to the incr by adjusting the limit.
   479   if (cmp->in(1) == phi || cmp->in(2) == phi)
   480     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   482   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   483   // Final value for iterator should be: trip_count * stride + init_trip.
   484   Node *one_p = gvn->intcon( 1);
   485   Node *one_m = gvn->intcon(-1);
   487   Node *trip_count = NULL;
   488   switch( bt ) {
   489   case BoolTest::eq:
   490     ShouldNotReachHere();
   491   case BoolTest::ne:            // Ahh, the case we desire
   492     if (stride_con == 1)
   493       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   494     else if (stride_con == -1)
   495       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   496     else
   497       ShouldNotReachHere();
   498     set_subtree_ctrl(trip_count);
   499     //_loop.map(trip_count->_idx,loop(limit));
   500     break;
   501   case BoolTest::le:            // Maybe convert to '<' case
   502     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   503     set_subtree_ctrl( limit );
   504     hook->init_req(4, limit);
   506     bt = BoolTest::lt;
   507     // Make the new limit be in the same loop nest as the old limit
   508     //_loop.map(limit->_idx,limit_loop);
   509     // Fall into next case
   510   case BoolTest::lt: {          // Maybe convert to '!=' case
   511     if (stride_con < 0) // Count down loop rolls through MAXINT
   512       ShouldNotReachHere();
   513     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   514     set_subtree_ctrl( range );
   515     hook->init_req(0, range);
   517     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   518     set_subtree_ctrl( bias );
   519     hook->init_req(1, bias);
   521     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   522     set_subtree_ctrl( bias1 );
   523     hook->init_req(2, bias1);
   525     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   526     set_subtree_ctrl( trip_count );
   527     hook->init_req(3, trip_count);
   528     break;
   529   }
   531   case BoolTest::ge:            // Maybe convert to '>' case
   532     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   533     set_subtree_ctrl( limit );
   534     hook->init_req(4 ,limit);
   536     bt = BoolTest::gt;
   537     // Make the new limit be in the same loop nest as the old limit
   538     //_loop.map(limit->_idx,limit_loop);
   539     // Fall into next case
   540   case BoolTest::gt: {          // Maybe convert to '!=' case
   541     if (stride_con > 0) // count up loop rolls through MININT
   542       ShouldNotReachHere();
   543     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   544     set_subtree_ctrl( range );
   545     hook->init_req(0, range);
   547     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   548     set_subtree_ctrl( bias );
   549     hook->init_req(1, bias);
   551     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   552     set_subtree_ctrl( bias1 );
   553     hook->init_req(2, bias1);
   555     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   556     set_subtree_ctrl( trip_count );
   557     hook->init_req(3, trip_count);
   558     break;
   559   }
   560   } // switch( bt )
   562   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   563   set_subtree_ctrl( span );
   564   hook->init_req(5, span);
   566   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   567   set_subtree_ctrl( limit );
   569   } // LoopLimitCheck
   571   // Check for SafePoint on backedge and remove
   572   Node *sfpt = x->in(LoopNode::LoopBackControl);
   573   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   574     lazy_replace( sfpt, iftrue );
   575     loop->_tail = iftrue;
   576   }
   578   // Build a canonical trip test.
   579   // Clone code, as old values may be in use.
   580   Node* nphi = PhiNode::make(x, init_trip, TypeInt::INT);
   581   nphi = _igvn.register_new_node_with_optimizer(nphi);
   582   set_ctrl(nphi, get_ctrl(phi));
   584   incr = incr->clone();
   585   incr->set_req(1,nphi);
   586   incr->set_req(2,stride);
   587   incr = _igvn.register_new_node_with_optimizer(incr);
   588   set_early_ctrl( incr );
   590   nphi->set_req(LoopNode::LoopBackControl, incr);
   591   _igvn.replace_node(phi, nphi);
   592   phi = nphi->as_Phi();
   594   cmp = cmp->clone();
   595   cmp->set_req(1,incr);
   596   cmp->set_req(2,limit);
   597   cmp = _igvn.register_new_node_with_optimizer(cmp);
   598   set_ctrl(cmp, iff->in(0));
   600   test = test->clone()->as_Bool();
   601   (*(BoolTest*)&test->_test)._test = bt;
   602   test->set_req(1,cmp);
   603   _igvn.register_new_node_with_optimizer(test);
   604   set_ctrl(test, iff->in(0));
   606   // Replace the old IfNode with a new LoopEndNode
   607   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   608   IfNode *le = lex->as_If();
   609   uint dd = dom_depth(iff);
   610   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   611   set_loop(le, loop);
   613   // Get the loop-exit control
   614   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   616   // Need to swap loop-exit and loop-back control?
   617   if (iftrue_op == Op_IfFalse) {
   618     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   619     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   621     loop->_tail = back_control = ift2;
   622     set_loop(ift2, loop);
   623     set_loop(iff2, get_loop(iffalse));
   625     // Lazy update of 'get_ctrl' mechanism.
   626     lazy_replace_proj( iffalse, iff2 );
   627     lazy_replace_proj( iftrue,  ift2 );
   629     // Swap names
   630     iffalse = iff2;
   631     iftrue  = ift2;
   632   } else {
   633     _igvn.hash_delete(iffalse);
   634     _igvn.hash_delete(iftrue);
   635     iffalse->set_req_X( 0, le, &_igvn );
   636     iftrue ->set_req_X( 0, le, &_igvn );
   637   }
   639   set_idom(iftrue,  le, dd+1);
   640   set_idom(iffalse, le, dd+1);
   641   assert(iff->outcnt() == 0, "should be dead now");
   642   lazy_replace( iff, le ); // fix 'get_ctrl'
   644   // Now setup a new CountedLoopNode to replace the existing LoopNode
   645   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   646   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   647   // The following assert is approximately true, and defines the intention
   648   // of can_be_counted_loop.  It fails, however, because phase->type
   649   // is not yet initialized for this loop and its parts.
   650   //assert(l->can_be_counted_loop(this), "sanity");
   651   _igvn.register_new_node_with_optimizer(l);
   652   set_loop(l, loop);
   653   loop->_head = l;
   654   // Fix all data nodes placed at the old loop head.
   655   // Uses the lazy-update mechanism of 'get_ctrl'.
   656   lazy_replace( x, l );
   657   set_idom(l, init_control, dom_depth(x));
   659   // Check for immediately preceding SafePoint and remove
   660   Node *sfpt2 = le->in(0);
   661   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   662     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   664   // Free up intermediate goo
   665   _igvn.remove_dead_node(hook);
   667 #ifdef ASSERT
   668   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   669   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   670 #endif
   671 #ifndef PRODUCT
   672   if (TraceLoopOpts) {
   673     tty->print("Counted      ");
   674     loop->dump_head();
   675   }
   676 #endif
   678   C->print_method("After CountedLoop", 3);
   680   return true;
   681 }
   683 //----------------------exact_limit-------------------------------------------
   684 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   685   assert(loop->_head->is_CountedLoop(), "");
   686   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   688   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   689       cl->limit()->Opcode() == Op_LoopLimit) {
   690     // Old code has exact limit (it could be incorrect in case of int overflow).
   691     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   692     return cl->limit();
   693   }
   694   Node *limit = NULL;
   695 #ifdef ASSERT
   696   BoolTest::mask bt = cl->loopexit()->test_trip();
   697   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   698 #endif
   699   if (cl->has_exact_trip_count()) {
   700     // Simple case: loop has constant boundaries.
   701     // Use longs to avoid integer overflow.
   702     int stride_con = cl->stride_con();
   703     long  init_con = cl->init_trip()->get_int();
   704     long limit_con = cl->limit()->get_int();
   705     julong trip_cnt = cl->trip_count();
   706     long final_con = init_con + trip_cnt*stride_con;
   707     final_con -= stride_con;
   708     int final_int = (int)final_con;
   709     // The final value should be in integer range since the loop
   710     // is counted and the limit was checked for overflow.
   711     assert(final_con == (long)final_int, "final value should be integer");
   712     limit = _igvn.intcon(final_int);
   713   } else {
   714     // Create new LoopLimit node to get exact limit (final iv value).
   715     limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   716     register_new_node(limit, cl->in(LoopNode::EntryControl));
   717   }
   718   assert(limit != NULL, "sanity");
   719   return limit;
   720 }
   722 //------------------------------Ideal------------------------------------------
   723 // Return a node which is more "ideal" than the current node.
   724 // Attempt to convert into a counted-loop.
   725 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   726   if (!can_be_counted_loop(phase)) {
   727     phase->C->set_major_progress();
   728   }
   729   return RegionNode::Ideal(phase, can_reshape);
   730 }
   733 //=============================================================================
   734 //------------------------------Ideal------------------------------------------
   735 // Return a node which is more "ideal" than the current node.
   736 // Attempt to convert into a counted-loop.
   737 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   738   return RegionNode::Ideal(phase, can_reshape);
   739 }
   741 //------------------------------dump_spec--------------------------------------
   742 // Dump special per-node info
   743 #ifndef PRODUCT
   744 void CountedLoopNode::dump_spec(outputStream *st) const {
   745   LoopNode::dump_spec(st);
   746   if (stride_is_con()) {
   747     st->print("stride: %d ",stride_con());
   748   }
   749   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   750   if (is_main_loop()) st->print("main of N%d", _idx);
   751   if (is_post_loop()) st->print("post of N%d", _main_idx);
   752 }
   753 #endif
   755 //=============================================================================
   756 int CountedLoopEndNode::stride_con() const {
   757   return stride()->bottom_type()->is_int()->get_con();
   758 }
   760 //=============================================================================
   761 //------------------------------Value-----------------------------------------
   762 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   763   const Type* init_t   = phase->type(in(Init));
   764   const Type* limit_t  = phase->type(in(Limit));
   765   const Type* stride_t = phase->type(in(Stride));
   766   // Either input is TOP ==> the result is TOP
   767   if (init_t   == Type::TOP) return Type::TOP;
   768   if (limit_t  == Type::TOP) return Type::TOP;
   769   if (stride_t == Type::TOP) return Type::TOP;
   771   int stride_con = stride_t->is_int()->get_con();
   772   if (stride_con == 1)
   773     return NULL;  // Identity
   775   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   776     // Use longs to avoid integer overflow.
   777     long init_con   =  init_t->is_int()->get_con();
   778     long limit_con  = limit_t->is_int()->get_con();
   779     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   780     long trip_count = (limit_con - init_con + stride_m)/stride_con;
   781     long final_con  = init_con + stride_con*trip_count;
   782     int final_int = (int)final_con;
   783     // The final value should be in integer range since the loop
   784     // is counted and the limit was checked for overflow.
   785     assert(final_con == (long)final_int, "final value should be integer");
   786     return TypeInt::make(final_int);
   787   }
   789   return bottom_type(); // TypeInt::INT
   790 }
   792 //------------------------------Ideal------------------------------------------
   793 // Return a node which is more "ideal" than the current node.
   794 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   795   if (phase->type(in(Init))   == Type::TOP ||
   796       phase->type(in(Limit))  == Type::TOP ||
   797       phase->type(in(Stride)) == Type::TOP)
   798     return NULL;  // Dead
   800   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   801   if (stride_con == 1)
   802     return NULL;  // Identity
   804   if (in(Init)->is_Con() && in(Limit)->is_Con())
   805     return NULL;  // Value
   807   // Delay following optimizations until all loop optimizations
   808   // done to keep Ideal graph simple.
   809   if (!can_reshape || phase->C->major_progress())
   810     return NULL;
   812   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   813   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   814   int stride_p;
   815   long lim, ini;
   816   julong max;
   817   if (stride_con > 0) {
   818     stride_p = stride_con;
   819     lim = limit_t->_hi;
   820     ini = init_t->_lo;
   821     max = (julong)max_jint;
   822   } else {
   823     stride_p = -stride_con;
   824     lim = init_t->_hi;
   825     ini = limit_t->_lo;
   826     max = (julong)min_jint;
   827   }
   828   julong range = lim - ini + stride_p;
   829   if (range <= max) {
   830     // Convert to integer expression if it is not overflow.
   831     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   832     Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
   833     Node *bias  = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
   834     Node *trip  = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
   835     Node *span  = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
   836     return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
   837   }
   839   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   840       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   841     // Convert to long expression to avoid integer overflow
   842     // and let igvn optimizer convert this division.
   843     //
   844     Node*   init   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
   845     Node*  limit   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
   846     Node* stride   = phase->longcon(stride_con);
   847     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   849     Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
   850     Node *bias  = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
   851     Node *span;
   852     if (stride_con > 0 && is_power_of_2(stride_p)) {
   853       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   854       // and avoid generating rounding for division. Zero trip guard should
   855       // guarantee that init < limit but sometimes the guard is missing and
   856       // we can get situation when init > limit. Note, for the empty loop
   857       // optimization zero trip guard is generated explicitly which leaves
   858       // only RCE predicate where exact limit is used and the predicate
   859       // will simply fail forcing recompilation.
   860       Node* neg_stride   = phase->longcon(-stride_con);
   861       span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
   862     } else {
   863       Node *trip  = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
   864       span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
   865     }
   866     // Convert back to int
   867     Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
   868     return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
   869   }
   871   return NULL;    // No progress
   872 }
   874 //------------------------------Identity---------------------------------------
   875 // If stride == 1 return limit node.
   876 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
   877   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   878   if (stride_con == 1 || stride_con == -1)
   879     return in(Limit);
   880   return this;
   881 }
   883 //=============================================================================
   884 //----------------------match_incr_with_optional_truncation--------------------
   885 // Match increment with optional truncation:
   886 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   887 // Return NULL for failure. Success returns the increment node.
   888 Node* CountedLoopNode::match_incr_with_optional_truncation(
   889                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   890   // Quick cutouts:
   891   if (expr == NULL || expr->req() != 3)  return false;
   893   Node *t1 = NULL;
   894   Node *t2 = NULL;
   895   const TypeInt* trunc_t = TypeInt::INT;
   896   Node* n1 = expr;
   897   int   n1op = n1->Opcode();
   899   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   900   if (n1op == Op_AndI &&
   901       n1->in(2)->is_Con() &&
   902       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   903     // %%% This check should match any mask of 2**K-1.
   904     t1 = n1;
   905     n1 = t1->in(1);
   906     n1op = n1->Opcode();
   907     trunc_t = TypeInt::CHAR;
   908   } else if (n1op == Op_RShiftI &&
   909              n1->in(1) != NULL &&
   910              n1->in(1)->Opcode() == Op_LShiftI &&
   911              n1->in(2) == n1->in(1)->in(2) &&
   912              n1->in(2)->is_Con()) {
   913     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   914     // %%% This check should match any shift in [1..31].
   915     if (shift == 16 || shift == 8) {
   916       t1 = n1;
   917       t2 = t1->in(1);
   918       n1 = t2->in(1);
   919       n1op = n1->Opcode();
   920       if (shift == 16) {
   921         trunc_t = TypeInt::SHORT;
   922       } else if (shift == 8) {
   923         trunc_t = TypeInt::BYTE;
   924       }
   925     }
   926   }
   928   // If (maybe after stripping) it is an AddI, we won:
   929   if (n1op == Op_AddI) {
   930     *trunc1 = t1;
   931     *trunc2 = t2;
   932     *trunc_type = trunc_t;
   933     return n1;
   934   }
   936   // failed
   937   return NULL;
   938 }
   941 //------------------------------filtered_type--------------------------------
   942 // Return a type based on condition control flow
   943 // A successful return will be a type that is restricted due
   944 // to a series of dominating if-tests, such as:
   945 //    if (i < 10) {
   946 //       if (i > 0) {
   947 //          here: "i" type is [1..10)
   948 //       }
   949 //    }
   950 // or a control flow merge
   951 //    if (i < 10) {
   952 //       do {
   953 //          phi( , ) -- at top of loop type is [min_int..10)
   954 //         i = ?
   955 //       } while ( i < 10)
   956 //
   957 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   958   assert(n && n->bottom_type()->is_int(), "must be int");
   959   const TypeInt* filtered_t = NULL;
   960   if (!n->is_Phi()) {
   961     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   962     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   964   } else {
   965     Node* phi    = n->as_Phi();
   966     Node* region = phi->in(0);
   967     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   968     if (region && region != C->top()) {
   969       for (uint i = 1; i < phi->req(); i++) {
   970         Node* val   = phi->in(i);
   971         Node* use_c = region->in(i);
   972         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   973         if (val_t != NULL) {
   974           if (filtered_t == NULL) {
   975             filtered_t = val_t;
   976           } else {
   977             filtered_t = filtered_t->meet(val_t)->is_int();
   978           }
   979         }
   980       }
   981     }
   982   }
   983   const TypeInt* n_t = _igvn.type(n)->is_int();
   984   if (filtered_t != NULL) {
   985     n_t = n_t->join(filtered_t)->is_int();
   986   }
   987   return n_t;
   988 }
   991 //------------------------------filtered_type_from_dominators--------------------------------
   992 // Return a possibly more restrictive type for val based on condition control flow of dominators
   993 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   994   if (val->is_Con()) {
   995      return val->bottom_type()->is_int();
   996   }
   997   uint if_limit = 10; // Max number of dominating if's visited
   998   const TypeInt* rtn_t = NULL;
  1000   if (use_ctrl && use_ctrl != C->top()) {
  1001     Node* val_ctrl = get_ctrl(val);
  1002     uint val_dom_depth = dom_depth(val_ctrl);
  1003     Node* pred = use_ctrl;
  1004     uint if_cnt = 0;
  1005     while (if_cnt < if_limit) {
  1006       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1007         if_cnt++;
  1008         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1009         if (if_t != NULL) {
  1010           if (rtn_t == NULL) {
  1011             rtn_t = if_t;
  1012           } else {
  1013             rtn_t = rtn_t->join(if_t)->is_int();
  1017       pred = idom(pred);
  1018       if (pred == NULL || pred == C->top()) {
  1019         break;
  1021       // Stop if going beyond definition block of val
  1022       if (dom_depth(pred) < val_dom_depth) {
  1023         break;
  1027   return rtn_t;
  1031 //------------------------------dump_spec--------------------------------------
  1032 // Dump special per-node info
  1033 #ifndef PRODUCT
  1034 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1035   if( in(TestValue)->is_Bool() ) {
  1036     BoolTest bt( test_trip()); // Added this for g++.
  1038     st->print("[");
  1039     bt.dump_on(st);
  1040     st->print("]");
  1042   st->print(" ");
  1043   IfNode::dump_spec(st);
  1045 #endif
  1047 //=============================================================================
  1048 //------------------------------is_member--------------------------------------
  1049 // Is 'l' a member of 'this'?
  1050 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1051   while( l->_nest > _nest ) l = l->_parent;
  1052   return l == this;
  1055 //------------------------------set_nest---------------------------------------
  1056 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1057 int IdealLoopTree::set_nest( uint depth ) {
  1058   _nest = depth;
  1059   int bits = _has_call;
  1060   if( _child ) bits |= _child->set_nest(depth+1);
  1061   if( bits ) _has_call = 1;
  1062   if( _next  ) bits |= _next ->set_nest(depth  );
  1063   return bits;
  1066 //------------------------------split_fall_in----------------------------------
  1067 // Split out multiple fall-in edges from the loop header.  Move them to a
  1068 // private RegionNode before the loop.  This becomes the loop landing pad.
  1069 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1070   PhaseIterGVN &igvn = phase->_igvn;
  1071   uint i;
  1073   // Make a new RegionNode to be the landing pad.
  1074   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
  1075   phase->set_loop(landing_pad,_parent);
  1076   // Gather all the fall-in control paths into the landing pad
  1077   uint icnt = fall_in_cnt;
  1078   uint oreq = _head->req();
  1079   for( i = oreq-1; i>0; i-- )
  1080     if( !phase->is_member( this, _head->in(i) ) )
  1081       landing_pad->set_req(icnt--,_head->in(i));
  1083   // Peel off PhiNode edges as well
  1084   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1085     Node *oj = _head->fast_out(j);
  1086     if( oj->is_Phi() ) {
  1087       PhiNode* old_phi = oj->as_Phi();
  1088       assert( old_phi->region() == _head, "" );
  1089       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1090       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1091       uint icnt = fall_in_cnt;
  1092       for( i = oreq-1; i>0; i-- ) {
  1093         if( !phase->is_member( this, _head->in(i) ) ) {
  1094           p->init_req(icnt--, old_phi->in(i));
  1095           // Go ahead and clean out old edges from old phi
  1096           old_phi->del_req(i);
  1099       // Search for CSE's here, because ZKM.jar does a lot of
  1100       // loop hackery and we need to be a little incremental
  1101       // with the CSE to avoid O(N^2) node blow-up.
  1102       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1103       if( p2 ) {                // Found CSE
  1104         p->destruct();          // Recover useless new node
  1105         p = p2;                 // Use old node
  1106       } else {
  1107         igvn.register_new_node_with_optimizer(p, old_phi);
  1109       // Make old Phi refer to new Phi.
  1110       old_phi->add_req(p);
  1111       // Check for the special case of making the old phi useless and
  1112       // disappear it.  In JavaGrande I have a case where this useless
  1113       // Phi is the loop limit and prevents recognizing a CountedLoop
  1114       // which in turn prevents removing an empty loop.
  1115       Node *id_old_phi = old_phi->Identity( &igvn );
  1116       if( id_old_phi != old_phi ) { // Found a simple identity?
  1117         // Note that I cannot call 'replace_node' here, because
  1118         // that will yank the edge from old_phi to the Region and
  1119         // I'm mid-iteration over the Region's uses.
  1120         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1121           Node* use = old_phi->last_out(i);
  1122           igvn.hash_delete(use);
  1123           igvn._worklist.push(use);
  1124           uint uses_found = 0;
  1125           for (uint j = 0; j < use->len(); j++) {
  1126             if (use->in(j) == old_phi) {
  1127               if (j < use->req()) use->set_req (j, id_old_phi);
  1128               else                use->set_prec(j, id_old_phi);
  1129               uses_found++;
  1132           i -= uses_found;    // we deleted 1 or more copies of this edge
  1135       igvn._worklist.push(old_phi);
  1138   // Finally clean out the fall-in edges from the RegionNode
  1139   for( i = oreq-1; i>0; i-- ) {
  1140     if( !phase->is_member( this, _head->in(i) ) ) {
  1141       _head->del_req(i);
  1144   // Transform landing pad
  1145   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1146   // Insert landing pad into the header
  1147   _head->add_req(landing_pad);
  1150 //------------------------------split_outer_loop-------------------------------
  1151 // Split out the outermost loop from this shared header.
  1152 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1153   PhaseIterGVN &igvn = phase->_igvn;
  1155   // Find index of outermost loop; it should also be my tail.
  1156   uint outer_idx = 1;
  1157   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1159   // Make a LoopNode for the outermost loop.
  1160   Node *ctl = _head->in(LoopNode::EntryControl);
  1161   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
  1162   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1163   phase->set_created_loop_node();
  1165   Node* pred = phase->clone_loop_predicates(ctl, outer, true);
  1166   // Outermost loop falls into '_head' loop
  1167   _head->set_req(LoopNode::EntryControl, pred);
  1168   _head->del_req(outer_idx);
  1169   // Split all the Phis up between '_head' loop and 'outer' loop.
  1170   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1171     Node *out = _head->fast_out(j);
  1172     if( out->is_Phi() ) {
  1173       PhiNode *old_phi = out->as_Phi();
  1174       assert( old_phi->region() == _head, "" );
  1175       Node *phi = PhiNode::make_blank(outer, old_phi);
  1176       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1177       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1178       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1179       // Make old Phi point to new Phi on the fall-in path
  1180       igvn.hash_delete(old_phi);
  1181       old_phi->set_req(LoopNode::EntryControl, phi);
  1182       old_phi->del_req(outer_idx);
  1183       igvn._worklist.push(old_phi);
  1187   // Use the new loop head instead of the old shared one
  1188   _head = outer;
  1189   phase->set_loop(_head, this);
  1192 //------------------------------fix_parent-------------------------------------
  1193 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1194   loop->_parent = parent;
  1195   if( loop->_child ) fix_parent( loop->_child, loop   );
  1196   if( loop->_next  ) fix_parent( loop->_next , parent );
  1199 //------------------------------estimate_path_freq-----------------------------
  1200 static float estimate_path_freq( Node *n ) {
  1201   // Try to extract some path frequency info
  1202   IfNode *iff;
  1203   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1204     uint nop = n->Opcode();
  1205     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1206       n = n->in(0);
  1207       continue;
  1209     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1210       // Assume call does not always throw exceptions: means the call-site
  1211       // count is also the frequency of the fall-through path.
  1212       assert( n->is_CatchProj(), "" );
  1213       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1214         return 0.0f;            // Assume call exception path is rare
  1215       Node *call = n->in(0)->in(0)->in(0);
  1216       assert( call->is_Call(), "expect a call here" );
  1217       const JVMState *jvms = ((CallNode*)call)->jvms();
  1218       ciMethodData* methodData = jvms->method()->method_data();
  1219       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1220       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1221       if ((data == NULL) || !data->is_CounterData()) {
  1222         // no call profile available, try call's control input
  1223         n = n->in(0);
  1224         continue;
  1226       return data->as_CounterData()->count()/FreqCountInvocations;
  1228     // See if there's a gating IF test
  1229     Node *n_c = n->in(0);
  1230     if( !n_c->is_If() ) break;       // No estimate available
  1231     iff = n_c->as_If();
  1232     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1233       // Compute how much count comes on this path
  1234       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1235     // Have no count info.  Skip dull uncommon-trap like branches.
  1236     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1237         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1238       break;
  1239     // Skip through never-taken branch; look for a real loop exit.
  1240     n = iff->in(0);
  1242   return 0.0f;                  // No estimate available
  1245 //------------------------------merge_many_backedges---------------------------
  1246 // Merge all the backedges from the shared header into a private Region.
  1247 // Feed that region as the one backedge to this loop.
  1248 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1249   uint i;
  1251   // Scan for the top 2 hottest backedges
  1252   float hotcnt = 0.0f;
  1253   float warmcnt = 0.0f;
  1254   uint hot_idx = 0;
  1255   // Loop starts at 2 because slot 1 is the fall-in path
  1256   for( i = 2; i < _head->req(); i++ ) {
  1257     float cnt = estimate_path_freq(_head->in(i));
  1258     if( cnt > hotcnt ) {       // Grab hottest path
  1259       warmcnt = hotcnt;
  1260       hotcnt = cnt;
  1261       hot_idx = i;
  1262     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1263       warmcnt = cnt;
  1267   // See if the hottest backedge is worthy of being an inner loop
  1268   // by being much hotter than the next hottest backedge.
  1269   if( hotcnt <= 0.0001 ||
  1270       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1272   // Peel out the backedges into a private merge point; peel
  1273   // them all except optionally hot_idx.
  1274   PhaseIterGVN &igvn = phase->_igvn;
  1276   Node *hot_tail = NULL;
  1277   // Make a Region for the merge point
  1278   Node *r = new (phase->C, 1) RegionNode(1);
  1279   for( i = 2; i < _head->req(); i++ ) {
  1280     if( i != hot_idx )
  1281       r->add_req( _head->in(i) );
  1282     else hot_tail = _head->in(i);
  1284   igvn.register_new_node_with_optimizer(r, _head);
  1285   // Plug region into end of loop _head, followed by hot_tail
  1286   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1287   _head->set_req(2, r);
  1288   if( hot_idx ) _head->add_req(hot_tail);
  1290   // Split all the Phis up between '_head' loop and the Region 'r'
  1291   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1292     Node *out = _head->fast_out(j);
  1293     if( out->is_Phi() ) {
  1294       PhiNode* n = out->as_Phi();
  1295       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1296       Node *hot_phi = NULL;
  1297       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
  1298       // Check all inputs for the ones to peel out
  1299       uint j = 1;
  1300       for( uint i = 2; i < n->req(); i++ ) {
  1301         if( i != hot_idx )
  1302           phi->set_req( j++, n->in(i) );
  1303         else hot_phi = n->in(i);
  1305       // Register the phi but do not transform until whole place transforms
  1306       igvn.register_new_node_with_optimizer(phi, n);
  1307       // Add the merge phi to the old Phi
  1308       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1309       n->set_req(2, phi);
  1310       if( hot_idx ) n->add_req(hot_phi);
  1315   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1316   // of self loop tree.  Turn self into a loop headed by _head and with
  1317   // tail being the new merge point.
  1318   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1319   phase->set_loop(_tail,ilt);   // Adjust tail
  1320   _tail = r;                    // Self's tail is new merge point
  1321   phase->set_loop(r,this);
  1322   ilt->_child = _child;         // New guy has my children
  1323   _child = ilt;                 // Self has new guy as only child
  1324   ilt->_parent = this;          // new guy has self for parent
  1325   ilt->_nest = _nest;           // Same nesting depth (for now)
  1327   // Starting with 'ilt', look for child loop trees using the same shared
  1328   // header.  Flatten these out; they will no longer be loops in the end.
  1329   IdealLoopTree **pilt = &_child;
  1330   while( ilt ) {
  1331     if( ilt->_head == _head ) {
  1332       uint i;
  1333       for( i = 2; i < _head->req(); i++ )
  1334         if( _head->in(i) == ilt->_tail )
  1335           break;                // Still a loop
  1336       if( i == _head->req() ) { // No longer a loop
  1337         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1338         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1339         IdealLoopTree **cp = &ilt->_child;
  1340         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1341         *cp = ilt->_next;       // Hang next list at end of child list
  1342         *pilt = ilt->_child;    // Move child up to replace ilt
  1343         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1344         ilt = ilt->_child;      // Repeat using new ilt
  1345         continue;               // do not advance over ilt->_child
  1347       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1348       phase->set_loop(_head,ilt);
  1350     pilt = &ilt->_child;        // Advance to next
  1351     ilt = *pilt;
  1354   if( _child ) fix_parent( _child, this );
  1357 //------------------------------beautify_loops---------------------------------
  1358 // Split shared headers and insert loop landing pads.
  1359 // Insert a LoopNode to replace the RegionNode.
  1360 // Return TRUE if loop tree is structurally changed.
  1361 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1362   bool result = false;
  1363   // Cache parts in locals for easy
  1364   PhaseIterGVN &igvn = phase->_igvn;
  1366   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1368   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1369   int fall_in_cnt = 0;
  1370   for( uint i = 1; i < _head->req(); i++ )
  1371     if( !phase->is_member( this, _head->in(i) ) )
  1372       fall_in_cnt++;
  1373   assert( fall_in_cnt, "at least 1 fall-in path" );
  1374   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1375     split_fall_in( phase, fall_in_cnt );
  1377   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1378   // the left.
  1379   fall_in_cnt = 1;
  1380   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1381     fall_in_cnt++;
  1382   if( fall_in_cnt > 1 ) {
  1383     // Since I am just swapping inputs I do not need to update def-use info
  1384     Node *tmp = _head->in(1);
  1385     _head->set_req( 1, _head->in(fall_in_cnt) );
  1386     _head->set_req( fall_in_cnt, tmp );
  1387     // Swap also all Phis
  1388     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1389       Node* phi = _head->fast_out(i);
  1390       if( phi->is_Phi() ) {
  1391         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1392         tmp = phi->in(1);
  1393         phi->set_req( 1, phi->in(fall_in_cnt) );
  1394         phi->set_req( fall_in_cnt, tmp );
  1398   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1399   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1401   // If I am a shared header (multiple backedges), peel off the many
  1402   // backedges into a private merge point and use the merge point as
  1403   // the one true backedge.
  1404   if( _head->req() > 3 ) {
  1405     // Merge the many backedges into a single backedge but leave
  1406     // the hottest backedge as separate edge for the following peel.
  1407     merge_many_backedges( phase );
  1408     result = true;
  1411   // If I have one hot backedge, peel off myself loop.
  1412   // I better be the outermost loop.
  1413   if( _head->req() > 3 ) {
  1414     split_outer_loop( phase );
  1415     result = true;
  1417   } else if( !_head->is_Loop() && !_irreducible ) {
  1418     // Make a new LoopNode to replace the old loop head
  1419     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1420     l = igvn.register_new_node_with_optimizer(l, _head);
  1421     phase->set_created_loop_node();
  1422     // Go ahead and replace _head
  1423     phase->_igvn.replace_node( _head, l );
  1424     _head = l;
  1425     phase->set_loop(_head, this);
  1428   // Now recursively beautify nested loops
  1429   if( _child ) result |= _child->beautify_loops( phase );
  1430   if( _next  ) result |= _next ->beautify_loops( phase );
  1431   return result;
  1434 //------------------------------allpaths_check_safepts----------------------------
  1435 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1436 // encountered.  Helper for check_safepts.
  1437 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1438   assert(stack.size() == 0, "empty stack");
  1439   stack.push(_tail);
  1440   visited.Clear();
  1441   visited.set(_tail->_idx);
  1442   while (stack.size() > 0) {
  1443     Node* n = stack.pop();
  1444     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1445       // Terminate this path
  1446     } else if (n->Opcode() == Op_SafePoint) {
  1447       if (_phase->get_loop(n) != this) {
  1448         if (_required_safept == NULL) _required_safept = new Node_List();
  1449         _required_safept->push(n);  // save the one closest to the tail
  1451       // Terminate this path
  1452     } else {
  1453       uint start = n->is_Region() ? 1 : 0;
  1454       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1455       for (uint i = start; i < end; i++) {
  1456         Node* in = n->in(i);
  1457         assert(in->is_CFG(), "must be");
  1458         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1459           stack.push(in);
  1466 //------------------------------check_safepts----------------------------
  1467 // Given dominators, try to find loops with calls that must always be
  1468 // executed (call dominates loop tail).  These loops do not need non-call
  1469 // safepoints (ncsfpt).
  1470 //
  1471 // A complication is that a safepoint in a inner loop may be needed
  1472 // by an outer loop. In the following, the inner loop sees it has a
  1473 // call (block 3) on every path from the head (block 2) to the
  1474 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1475 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1476 //
  1477 //          entry  0
  1478 //                 |
  1479 //                 v
  1480 // outer 1,2    +->1
  1481 //              |  |
  1482 //              |  v
  1483 //              |  2<---+  ncsfpt in 2
  1484 //              |_/|\   |
  1485 //                 | v  |
  1486 // inner 2,3      /  3  |  call in 3
  1487 //               /   |  |
  1488 //              v    +--+
  1489 //        exit  4
  1490 //
  1491 //
  1492 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1493 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1494 // is first looked for in the lists for the outer loops of the current loop.
  1495 //
  1496 // The insights into the problem:
  1497 //  A) counted loops are okay
  1498 //  B) innermost loops are okay (only an inner loop can delete
  1499 //     a ncsfpt needed by an outer loop)
  1500 //  C) a loop is immune from an inner loop deleting a safepoint
  1501 //     if the loop has a call on the idom-path
  1502 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1503 //     idom-path that is not in a nested loop
  1504 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1505 //     loop needs to be prevented from deletion by an inner loop
  1506 //
  1507 // There are two analyses:
  1508 //  1) The first, and cheaper one, scans the loop body from
  1509 //     tail to head following the idom (immediate dominator)
  1510 //     chain, looking for the cases (C,D,E) above.
  1511 //     Since inner loops are scanned before outer loops, there is summary
  1512 //     information about inner loops.  Inner loops can be skipped over
  1513 //     when the tail of an inner loop is encountered.
  1514 //
  1515 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1516 //     the idom path (which is rare), scans all predecessor control paths
  1517 //     from the tail to the head, terminating a path when a call or sfpt
  1518 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1519 //
  1520 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1521   // Bottom up traversal
  1522   IdealLoopTree* ch = _child;
  1523   while (ch != NULL) {
  1524     ch->check_safepts(visited, stack);
  1525     ch = ch->_next;
  1528   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1529     bool  has_call         = false; // call on dom-path
  1530     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1531     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1532     // Scan the dom-path nodes from tail to head
  1533     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1534       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1535         has_call = true;
  1536         _has_sfpt = 1;          // Then no need for a safept!
  1537         break;
  1538       } else if (n->Opcode() == Op_SafePoint) {
  1539         if (_phase->get_loop(n) == this) {
  1540           has_local_ncsfpt = true;
  1541           break;
  1543         if (nonlocal_ncsfpt == NULL) {
  1544           nonlocal_ncsfpt = n; // save the one closest to the tail
  1546       } else {
  1547         IdealLoopTree* nlpt = _phase->get_loop(n);
  1548         if (this != nlpt) {
  1549           // If at an inner loop tail, see if the inner loop has already
  1550           // recorded seeing a call on the dom-path (and stop.)  If not,
  1551           // jump to the head of the inner loop.
  1552           assert(is_member(nlpt), "nested loop");
  1553           Node* tail = nlpt->_tail;
  1554           if (tail->in(0)->is_If()) tail = tail->in(0);
  1555           if (n == tail) {
  1556             // If inner loop has call on dom-path, so does outer loop
  1557             if (nlpt->_has_sfpt) {
  1558               has_call = true;
  1559               _has_sfpt = 1;
  1560               break;
  1562             // Skip to head of inner loop
  1563             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1564             n = nlpt->_head;
  1569     // Record safept's that this loop needs preserved when an
  1570     // inner loop attempts to delete it's safepoints.
  1571     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1572       if (nonlocal_ncsfpt != NULL) {
  1573         if (_required_safept == NULL) _required_safept = new Node_List();
  1574         _required_safept->push(nonlocal_ncsfpt);
  1575       } else {
  1576         // Failed to find a suitable safept on the dom-path.  Now use
  1577         // an all paths walk from tail to head, looking for safepoints to preserve.
  1578         allpaths_check_safepts(visited, stack);
  1584 //---------------------------is_deleteable_safept----------------------------
  1585 // Is safept not required by an outer loop?
  1586 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1587   assert(sfpt->Opcode() == Op_SafePoint, "");
  1588   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1589   while (lp != NULL) {
  1590     Node_List* sfpts = lp->_required_safept;
  1591     if (sfpts != NULL) {
  1592       for (uint i = 0; i < sfpts->size(); i++) {
  1593         if (sfpt == sfpts->at(i))
  1594           return false;
  1597     lp = lp->_parent;
  1599   return true;
  1602 //---------------------------replace_parallel_iv-------------------------------
  1603 // Replace parallel induction variable (parallel to trip counter)
  1604 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1605   assert(loop->_head->is_CountedLoop(), "");
  1606   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1607   Node *incr = cl->incr();
  1608   if (incr == NULL)
  1609     return;         // Dead loop?
  1610   Node *init = cl->init_trip();
  1611   Node *phi  = cl->phi();
  1612   // protect against stride not being a constant
  1613   if (!cl->stride_is_con())
  1614     return;
  1615   int stride_con = cl->stride_con();
  1617   PhaseGVN *gvn = &_igvn;
  1619   // Visit all children, looking for Phis
  1620   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1621     Node *out = cl->out(i);
  1622     // Look for other phis (secondary IVs). Skip dead ones
  1623     if (!out->is_Phi() || out == phi || !has_node(out))
  1624       continue;
  1625     PhiNode* phi2 = out->as_Phi();
  1626     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1627     // Look for induction variables of the form:  X += constant
  1628     if (phi2->region() != loop->_head ||
  1629         incr2->req() != 3 ||
  1630         incr2->in(1) != phi2 ||
  1631         incr2 == incr ||
  1632         incr2->Opcode() != Op_AddI ||
  1633         !incr2->in(2)->is_Con())
  1634       continue;
  1636     // Check for parallel induction variable (parallel to trip counter)
  1637     // via an affine function.  In particular, count-down loops with
  1638     // count-up array indices are common. We only RCE references off
  1639     // the trip-counter, so we need to convert all these to trip-counter
  1640     // expressions.
  1641     Node *init2 = phi2->in( LoopNode::EntryControl );
  1642     int stride_con2 = incr2->in(2)->get_int();
  1644     // The general case here gets a little tricky.  We want to find the
  1645     // GCD of all possible parallel IV's and make a new IV using this
  1646     // GCD for the loop.  Then all possible IVs are simple multiples of
  1647     // the GCD.  In practice, this will cover very few extra loops.
  1648     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1649     // where +/-1 is the common case, but other integer multiples are
  1650     // also easy to handle.
  1651     int ratio_con = stride_con2/stride_con;
  1653     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1654       // Convert to using the trip counter.  The parallel induction
  1655       // variable differs from the trip counter by a loop-invariant
  1656       // amount, the difference between their respective initial values.
  1657       // It is scaled by the 'ratio_con'.
  1658       // Perform local Ideal transformation since in most cases ratio == 1.
  1659       Node* ratio = _igvn.intcon(ratio_con);
  1660       set_ctrl(ratio, C->root());
  1661       Node* hook = new (C, 3) Node(3);
  1662       Node* ratio_init = gvn->transform(new (C, 3) MulINode(init, ratio));
  1663       hook->init_req(0, ratio_init);
  1664       Node* diff = gvn->transform(new (C, 3) SubINode(init2, ratio_init));
  1665       hook->init_req(1, diff);
  1666       Node* ratio_idx = gvn->transform(new (C, 3) MulINode(phi, ratio));
  1667       hook->init_req(2, ratio_idx);
  1668       Node* add  = gvn->transform(new (C, 3) AddINode(ratio_idx, diff));
  1669       set_subtree_ctrl(add);
  1670       _igvn.replace_node( phi2, add );
  1671       // Free up intermediate goo
  1672       _igvn.remove_dead_node(hook);
  1673       // Sometimes an induction variable is unused
  1674       if (add->outcnt() == 0) {
  1675         _igvn.remove_dead_node(add);
  1677       --i; // deleted this phi; rescan starting with next position
  1678       continue;
  1683 //------------------------------counted_loop-----------------------------------
  1684 // Convert to counted loops where possible
  1685 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1687   // For grins, set the inner-loop flag here
  1688   if (!_child) {
  1689     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1692   if (_head->is_CountedLoop() ||
  1693       phase->is_counted_loop(_head, this)) {
  1694     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1696     // Look for a safepoint to remove
  1697     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1698       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1699           phase->is_deleteable_safept(n))
  1700         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1702     // Look for induction variables
  1703     phase->replace_parallel_iv(this);
  1705   } else if (_parent != NULL && !_irreducible) {
  1706     // Not a counted loop.
  1707     // Look for a safepoint on the idom-path to remove, preserving the first one
  1708     bool found = false;
  1709     Node* n = tail();
  1710     for (; n != _head && !found; n = phase->idom(n)) {
  1711       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1712         found = true; // Found one
  1714     // Skip past it and delete the others
  1715     for (; n != _head; n = phase->idom(n)) {
  1716       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1717           phase->is_deleteable_safept(n))
  1718         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1722   // Recursively
  1723   if (_child) _child->counted_loop( phase );
  1724   if (_next)  _next ->counted_loop( phase );
  1727 #ifndef PRODUCT
  1728 //------------------------------dump_head--------------------------------------
  1729 // Dump 1 liner for loop header info
  1730 void IdealLoopTree::dump_head( ) const {
  1731   for (uint i=0; i<_nest; i++)
  1732     tty->print("  ");
  1733   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1734   if (_irreducible) tty->print(" IRREDUCIBLE");
  1735   Node* entry = _head->in(LoopNode::EntryControl);
  1736   if (LoopLimitCheck) {
  1737     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1738     if (predicate != NULL ) {
  1739       tty->print(" limit_check");
  1740       entry = entry->in(0)->in(0);
  1743   if (UseLoopPredicate) {
  1744     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1745     if (entry != NULL) {
  1746       tty->print(" predicated");
  1749   if (_head->is_CountedLoop()) {
  1750     CountedLoopNode *cl = _head->as_CountedLoop();
  1751     tty->print(" counted");
  1753     Node* init_n = cl->init_trip();
  1754     if (init_n  != NULL &&  init_n->is_Con())
  1755       tty->print(" [%d,", cl->init_trip()->get_int());
  1756     else
  1757       tty->print(" [int,");
  1758     Node* limit_n = cl->limit();
  1759     if (limit_n  != NULL &&  limit_n->is_Con())
  1760       tty->print("%d),", cl->limit()->get_int());
  1761     else
  1762       tty->print("int),");
  1763     int stride_con  = cl->stride_con();
  1764     if (stride_con > 0) tty->print("+");
  1765     tty->print("%d", stride_con);
  1767     if (cl->is_pre_loop ()) tty->print(" pre" );
  1768     if (cl->is_main_loop()) tty->print(" main");
  1769     if (cl->is_post_loop()) tty->print(" post");
  1771   tty->cr();
  1774 //------------------------------dump-------------------------------------------
  1775 // Dump loops by loop tree
  1776 void IdealLoopTree::dump( ) const {
  1777   dump_head();
  1778   if (_child) _child->dump();
  1779   if (_next)  _next ->dump();
  1782 #endif
  1784 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1785   if (loop == root) {
  1786     if (loop->_child != NULL) {
  1787       log->begin_head("loop_tree");
  1788       log->end_head();
  1789       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1790       log->tail("loop_tree");
  1791       assert(loop->_next == NULL, "what?");
  1793   } else {
  1794     Node* head = loop->_head;
  1795     log->begin_head("loop");
  1796     log->print(" idx='%d' ", head->_idx);
  1797     if (loop->_irreducible) log->print("irreducible='1' ");
  1798     if (head->is_Loop()) {
  1799       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1800       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1802     if (head->is_CountedLoop()) {
  1803       CountedLoopNode* cl = head->as_CountedLoop();
  1804       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1805       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1806       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1808     log->end_head();
  1809     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1810     log->tail("loop");
  1811     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1815 //---------------------collect_potentially_useful_predicates-----------------------
  1816 // Helper function to collect potentially useful predicates to prevent them from
  1817 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1818 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1819                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1820   if (loop->_child) { // child
  1821     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1824   // self (only loops that we can apply loop predication may use their predicates)
  1825   if (loop->_head->is_Loop() &&
  1826       !loop->_irreducible    &&
  1827       !loop->tail()->is_top()) {
  1828     LoopNode* lpn = loop->_head->as_Loop();
  1829     Node* entry = lpn->in(LoopNode::EntryControl);
  1830     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1831     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1832       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1833       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1834       entry = entry->in(0)->in(0);
  1836     predicate_proj = find_predicate(entry); // Predicate
  1837     if (predicate_proj != NULL ) {
  1838       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1842   if (loop->_next) { // sibling
  1843     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1847 //------------------------eliminate_useless_predicates-----------------------------
  1848 // Eliminate all inserted predicates if they could not be used by loop predication.
  1849 // Note: it will also eliminates loop limits check predicate since it also uses
  1850 // Opaque1 node (see Parse::add_predicate()).
  1851 void PhaseIdealLoop::eliminate_useless_predicates() {
  1852   if (C->predicate_count() == 0)
  1853     return; // no predicate left
  1855   Unique_Node_List useful_predicates; // to store useful predicates
  1856   if (C->has_loops()) {
  1857     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1860   for (int i = C->predicate_count(); i > 0; i--) {
  1861      Node * n = C->predicate_opaque1_node(i-1);
  1862      assert(n->Opcode() == Op_Opaque1, "must be");
  1863      if (!useful_predicates.member(n)) { // not in the useful list
  1864        _igvn.replace_node(n, n->in(1));
  1869 //=============================================================================
  1870 //----------------------------build_and_optimize-------------------------------
  1871 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1872 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1873 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
  1874   ResourceMark rm;
  1876   int old_progress = C->major_progress();
  1877   uint orig_worklist_size = _igvn._worklist.size();
  1879   // Reset major-progress flag for the driver's heuristics
  1880   C->clear_major_progress();
  1882 #ifndef PRODUCT
  1883   // Capture for later assert
  1884   uint unique = C->unique();
  1885   _loop_invokes++;
  1886   _loop_work += unique;
  1887 #endif
  1889   // True if the method has at least 1 irreducible loop
  1890   _has_irreducible_loops = false;
  1892   _created_loop_node = false;
  1894   Arena *a = Thread::current()->resource_area();
  1895   VectorSet visited(a);
  1896   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1897   _nodes.map(C->unique(), NULL);
  1898   memset(_nodes.adr(), 0, wordSize * C->unique());
  1900   // Pre-build the top-level outermost loop tree entry
  1901   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1902   // Do not need a safepoint at the top level
  1903   _ltree_root->_has_sfpt = 1;
  1905   // Initialize Dominators.
  1906   // Checked in clone_loop_predicate() during beautify_loops().
  1907   _idom_size = 0;
  1908   _idom      = NULL;
  1909   _dom_depth = NULL;
  1910   _dom_stk   = NULL;
  1912   // Empty pre-order array
  1913   allocate_preorders();
  1915   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1916   // IdealLoopTree entries.  Data nodes are NOT walked.
  1917   build_loop_tree();
  1918   // Check for bailout, and return
  1919   if (C->failing()) {
  1920     return;
  1923   // No loops after all
  1924   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1926   // There should always be an outer loop containing the Root and Return nodes.
  1927   // If not, we have a degenerate empty program.  Bail out in this case.
  1928   if (!has_node(C->root())) {
  1929     if (!_verify_only) {
  1930       C->clear_major_progress();
  1931       C->record_method_not_compilable("empty program detected during loop optimization");
  1933     return;
  1936   // Nothing to do, so get out
  1937   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1938     _igvn.optimize();           // Cleanup NeverBranches
  1939     return;
  1942   // Set loop nesting depth
  1943   _ltree_root->set_nest( 0 );
  1945   // Split shared headers and insert loop landing pads.
  1946   // Do not bother doing this on the Root loop of course.
  1947   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1948     C->print_method("Before beautify loops", 3);
  1949     if( _ltree_root->_child->beautify_loops( this ) ) {
  1950       // Re-build loop tree!
  1951       _ltree_root->_child = NULL;
  1952       _nodes.clear();
  1953       reallocate_preorders();
  1954       build_loop_tree();
  1955       // Check for bailout, and return
  1956       if (C->failing()) {
  1957         return;
  1959       // Reset loop nesting depth
  1960       _ltree_root->set_nest( 0 );
  1962       C->print_method("After beautify loops", 3);
  1966   // Build Dominators for elision of NULL checks & loop finding.
  1967   // Since nodes do not have a slot for immediate dominator, make
  1968   // a persistent side array for that info indexed on node->_idx.
  1969   _idom_size = C->unique();
  1970   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1971   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1972   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1973   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1975   Dominators();
  1977   if (!_verify_only) {
  1978     // As a side effect, Dominators removed any unreachable CFG paths
  1979     // into RegionNodes.  It doesn't do this test against Root, so
  1980     // we do it here.
  1981     for( uint i = 1; i < C->root()->req(); i++ ) {
  1982       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1983         _igvn.hash_delete(C->root());
  1984         C->root()->del_req(i);
  1985         _igvn._worklist.push(C->root());
  1986         i--;                      // Rerun same iteration on compressed edges
  1990     // Given dominators, try to find inner loops with calls that must
  1991     // always be executed (call dominates loop tail).  These loops do
  1992     // not need a separate safepoint.
  1993     Node_List cisstack(a);
  1994     _ltree_root->check_safepts(visited, cisstack);
  1997   // Walk the DATA nodes and place into loops.  Find earliest control
  1998   // node.  For CFG nodes, the _nodes array starts out and remains
  1999   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2000   // _nodes array holds the earliest legal controlling CFG node.
  2002   // Allocate stack with enough space to avoid frequent realloc
  2003   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  2004   Node_Stack nstack( a, stack_size );
  2006   visited.Clear();
  2007   Node_List worklist(a);
  2008   // Don't need C->root() on worklist since
  2009   // it will be processed among C->top() inputs
  2010   worklist.push( C->top() );
  2011   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2012   build_loop_early( visited, worklist, nstack );
  2014   // Given early legal placement, try finding counted loops.  This placement
  2015   // is good enough to discover most loop invariants.
  2016   if( !_verify_me && !_verify_only )
  2017     _ltree_root->counted_loop( this );
  2019   // Find latest loop placement.  Find ideal loop placement.
  2020   visited.Clear();
  2021   init_dom_lca_tags();
  2022   // Need C->root() on worklist when processing outs
  2023   worklist.push( C->root() );
  2024   NOT_PRODUCT( C->verify_graph_edges(); )
  2025   worklist.push( C->top() );
  2026   build_loop_late( visited, worklist, nstack );
  2028   if (_verify_only) {
  2029     // restore major progress flag
  2030     for (int i = 0; i < old_progress; i++)
  2031       C->set_major_progress();
  2032     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2033     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2034     return;
  2037   // Some parser-inserted loop predicates could never be used by loop
  2038   // predication or they were moved away from loop during some optimizations.
  2039   // For example, peeling. Eliminate them before next loop optimizations.
  2040   if (UseLoopPredicate || LoopLimitCheck) {
  2041     eliminate_useless_predicates();
  2044   // clear out the dead code
  2045   while(_deadlist.size()) {
  2046     _igvn.remove_globally_dead_node(_deadlist.pop());
  2049 #ifndef PRODUCT
  2050   C->verify_graph_edges();
  2051   if (_verify_me) {             // Nested verify pass?
  2052     // Check to see if the verify mode is broken
  2053     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2054     return;
  2056   if(VerifyLoopOptimizations) verify();
  2057   if(TraceLoopOpts && C->has_loops()) {
  2058     _ltree_root->dump();
  2060 #endif
  2062   if (ReassociateInvariants) {
  2063     // Reassociate invariants and prep for split_thru_phi
  2064     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2065       IdealLoopTree* lpt = iter.current();
  2066       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2068       lpt->reassociate_invariants(this);
  2070       // Because RCE opportunities can be masked by split_thru_phi,
  2071       // look for RCE candidates and inhibit split_thru_phi
  2072       // on just their loop-phi's for this pass of loop opts
  2073       if (SplitIfBlocks && do_split_ifs) {
  2074         if (lpt->policy_range_check(this)) {
  2075           lpt->_rce_candidate = 1; // = true
  2081   // Check for aggressive application of split-if and other transforms
  2082   // that require basic-block info (like cloning through Phi's)
  2083   if( SplitIfBlocks && do_split_ifs ) {
  2084     visited.Clear();
  2085     split_if_with_blocks( visited, nstack );
  2086     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2089   // Perform loop predication before iteration splitting
  2090   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2091     _ltree_root->_child->loop_predication(this);
  2094   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2095     if (do_intrinsify_fill()) {
  2096       C->set_major_progress();
  2100   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2101   // range checks or one-shot null checks.
  2103   // If split-if's didn't hack the graph too bad (no CFG changes)
  2104   // then do loop opts.
  2105   if (C->has_loops() && !C->major_progress()) {
  2106     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2107     _ltree_root->_child->iteration_split( this, worklist );
  2108     // No verify after peeling!  GCM has hoisted code out of the loop.
  2109     // After peeling, the hoisted code could sink inside the peeled area.
  2110     // The peeling code does not try to recompute the best location for
  2111     // all the code before the peeled area, so the verify pass will always
  2112     // complain about it.
  2114   // Do verify graph edges in any case
  2115   NOT_PRODUCT( C->verify_graph_edges(); );
  2117   if (!do_split_ifs) {
  2118     // We saw major progress in Split-If to get here.  We forced a
  2119     // pass with unrolling and not split-if, however more split-if's
  2120     // might make progress.  If the unrolling didn't make progress
  2121     // then the major-progress flag got cleared and we won't try
  2122     // another round of Split-If.  In particular the ever-common
  2123     // instance-of/check-cast pattern requires at least 2 rounds of
  2124     // Split-If to clear out.
  2125     C->set_major_progress();
  2128   // Repeat loop optimizations if new loops were seen
  2129   if (created_loop_node()) {
  2130     C->set_major_progress();
  2133   // Keep loop predicates and perform optimizations with them
  2134   // until no more loop optimizations could be done.
  2135   // After that switch predicates off and do more loop optimizations.
  2136   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2137      C->cleanup_loop_predicates(_igvn);
  2138 #ifndef PRODUCT
  2139      if (TraceLoopOpts) {
  2140        tty->print_cr("PredicatesOff");
  2142 #endif
  2143      C->set_major_progress();
  2146   // Convert scalar to superword operations at the end of all loop opts.
  2147   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2148     // SuperWord transform
  2149     SuperWord sw(this);
  2150     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2151       IdealLoopTree* lpt = iter.current();
  2152       if (lpt->is_counted()) {
  2153         sw.transform_loop(lpt);
  2158   // Cleanup any modified bits
  2159   _igvn.optimize();
  2161   // disable assert until issue with split_flow_path is resolved (6742111)
  2162   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2163   //        "shouldn't introduce irreducible loops");
  2165   if (C->log() != NULL) {
  2166     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2170 #ifndef PRODUCT
  2171 //------------------------------print_statistics-------------------------------
  2172 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2173 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2174 void PhaseIdealLoop::print_statistics() {
  2175   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2178 //------------------------------verify-----------------------------------------
  2179 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2180 static int fail;                // debug only, so its multi-thread dont care
  2181 void PhaseIdealLoop::verify() const {
  2182   int old_progress = C->major_progress();
  2183   ResourceMark rm;
  2184   PhaseIdealLoop loop_verify( _igvn, this );
  2185   VectorSet visited(Thread::current()->resource_area());
  2187   fail = 0;
  2188   verify_compare( C->root(), &loop_verify, visited );
  2189   assert( fail == 0, "verify loops failed" );
  2190   // Verify loop structure is the same
  2191   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2192   // Reset major-progress.  It was cleared by creating a verify version of
  2193   // PhaseIdealLoop.
  2194   for( int i=0; i<old_progress; i++ )
  2195     C->set_major_progress();
  2198 //------------------------------verify_compare---------------------------------
  2199 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2200 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2201   if( !n ) return;
  2202   if( visited.test_set( n->_idx ) ) return;
  2203   if( !_nodes[n->_idx] ) {      // Unreachable
  2204     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2205     return;
  2208   uint i;
  2209   for( i = 0; i < n->req(); i++ )
  2210     verify_compare( n->in(i), loop_verify, visited );
  2212   // Check the '_nodes' block/loop structure
  2213   i = n->_idx;
  2214   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2215     if( _nodes[i] != loop_verify->_nodes[i] &&
  2216         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2217       tty->print("Mismatched control setting for: ");
  2218       n->dump();
  2219       if( fail++ > 10 ) return;
  2220       Node *c = get_ctrl_no_update(n);
  2221       tty->print("We have it as: ");
  2222       if( c->in(0) ) c->dump();
  2223         else tty->print_cr("N%d",c->_idx);
  2224       tty->print("Verify thinks: ");
  2225       if( loop_verify->has_ctrl(n) )
  2226         loop_verify->get_ctrl_no_update(n)->dump();
  2227       else
  2228         loop_verify->get_loop_idx(n)->dump();
  2229       tty->cr();
  2231   } else {                    // We have a loop
  2232     IdealLoopTree *us = get_loop_idx(n);
  2233     if( loop_verify->has_ctrl(n) ) {
  2234       tty->print("Mismatched loop setting for: ");
  2235       n->dump();
  2236       if( fail++ > 10 ) return;
  2237       tty->print("We have it as: ");
  2238       us->dump();
  2239       tty->print("Verify thinks: ");
  2240       loop_verify->get_ctrl_no_update(n)->dump();
  2241       tty->cr();
  2242     } else if (!C->major_progress()) {
  2243       // Loop selection can be messed up if we did a major progress
  2244       // operation, like split-if.  Do not verify in that case.
  2245       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2246       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2247         tty->print("Unequals loops for: ");
  2248         n->dump();
  2249         if( fail++ > 10 ) return;
  2250         tty->print("We have it as: ");
  2251         us->dump();
  2252         tty->print("Verify thinks: ");
  2253         them->dump();
  2254         tty->cr();
  2259   // Check for immediate dominators being equal
  2260   if( i >= _idom_size ) {
  2261     if( !n->is_CFG() ) return;
  2262     tty->print("CFG Node with no idom: ");
  2263     n->dump();
  2264     return;
  2266   if( !n->is_CFG() ) return;
  2267   if( n == C->root() ) return; // No IDOM here
  2269   assert(n->_idx == i, "sanity");
  2270   Node *id = idom_no_update(n);
  2271   if( id != loop_verify->idom_no_update(n) ) {
  2272     tty->print("Unequals idoms for: ");
  2273     n->dump();
  2274     if( fail++ > 10 ) return;
  2275     tty->print("We have it as: ");
  2276     id->dump();
  2277     tty->print("Verify thinks: ");
  2278     loop_verify->idom_no_update(n)->dump();
  2279     tty->cr();
  2284 //------------------------------verify_tree------------------------------------
  2285 // Verify that tree structures match.  Because the CFG can change, siblings
  2286 // within the loop tree can be reordered.  We attempt to deal with that by
  2287 // reordering the verify's loop tree if possible.
  2288 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2289   assert( _parent == parent, "Badly formed loop tree" );
  2291   // Siblings not in same order?  Attempt to re-order.
  2292   if( _head != loop->_head ) {
  2293     // Find _next pointer to update
  2294     IdealLoopTree **pp = &loop->_parent->_child;
  2295     while( *pp != loop )
  2296       pp = &((*pp)->_next);
  2297     // Find proper sibling to be next
  2298     IdealLoopTree **nn = &loop->_next;
  2299     while( (*nn) && (*nn)->_head != _head )
  2300       nn = &((*nn)->_next);
  2302     // Check for no match.
  2303     if( !(*nn) ) {
  2304       // Annoyingly, irreducible loops can pick different headers
  2305       // after a major_progress operation, so the rest of the loop
  2306       // tree cannot be matched.
  2307       if (_irreducible && Compile::current()->major_progress())  return;
  2308       assert( 0, "failed to match loop tree" );
  2311     // Move (*nn) to (*pp)
  2312     IdealLoopTree *hit = *nn;
  2313     *nn = hit->_next;
  2314     hit->_next = loop;
  2315     *pp = loop;
  2316     loop = hit;
  2317     // Now try again to verify
  2320   assert( _head  == loop->_head , "mismatched loop head" );
  2321   Node *tail = _tail;           // Inline a non-updating version of
  2322   while( !tail->in(0) )         // the 'tail()' call.
  2323     tail = tail->in(1);
  2324   assert( tail == loop->_tail, "mismatched loop tail" );
  2326   // Counted loops that are guarded should be able to find their guards
  2327   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2328     CountedLoopNode *cl = _head->as_CountedLoop();
  2329     Node *init = cl->init_trip();
  2330     Node *ctrl = cl->in(LoopNode::EntryControl);
  2331     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2332     Node *iff  = ctrl->in(0);
  2333     assert( iff->Opcode() == Op_If, "" );
  2334     Node *bol  = iff->in(1);
  2335     assert( bol->Opcode() == Op_Bool, "" );
  2336     Node *cmp  = bol->in(1);
  2337     assert( cmp->Opcode() == Op_CmpI, "" );
  2338     Node *add  = cmp->in(1);
  2339     Node *opaq;
  2340     if( add->Opcode() == Op_Opaque1 ) {
  2341       opaq = add;
  2342     } else {
  2343       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2344       assert( add == init, "" );
  2345       opaq = cmp->in(2);
  2347     assert( opaq->Opcode() == Op_Opaque1, "" );
  2351   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2352   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2353   // Innermost loops need to verify loop bodies,
  2354   // but only if no 'major_progress'
  2355   int fail = 0;
  2356   if (!Compile::current()->major_progress() && _child == NULL) {
  2357     for( uint i = 0; i < _body.size(); i++ ) {
  2358       Node *n = _body.at(i);
  2359       if (n->outcnt() == 0)  continue; // Ignore dead
  2360       uint j;
  2361       for( j = 0; j < loop->_body.size(); j++ )
  2362         if( loop->_body.at(j) == n )
  2363           break;
  2364       if( j == loop->_body.size() ) { // Not found in loop body
  2365         // Last ditch effort to avoid assertion: Its possible that we
  2366         // have some users (so outcnt not zero) but are still dead.
  2367         // Try to find from root.
  2368         if (Compile::current()->root()->find(n->_idx)) {
  2369           fail++;
  2370           tty->print("We have that verify does not: ");
  2371           n->dump();
  2375     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2376       Node *n = loop->_body.at(i2);
  2377       if (n->outcnt() == 0)  continue; // Ignore dead
  2378       uint j;
  2379       for( j = 0; j < _body.size(); j++ )
  2380         if( _body.at(j) == n )
  2381           break;
  2382       if( j == _body.size() ) { // Not found in loop body
  2383         // Last ditch effort to avoid assertion: Its possible that we
  2384         // have some users (so outcnt not zero) but are still dead.
  2385         // Try to find from root.
  2386         if (Compile::current()->root()->find(n->_idx)) {
  2387           fail++;
  2388           tty->print("Verify has that we do not: ");
  2389           n->dump();
  2393     assert( !fail, "loop body mismatch" );
  2397 #endif
  2399 //------------------------------set_idom---------------------------------------
  2400 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2401   uint idx = d->_idx;
  2402   if (idx >= _idom_size) {
  2403     uint newsize = _idom_size<<1;
  2404     while( idx >= newsize ) {
  2405       newsize <<= 1;
  2407     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2408     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2409     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2410     _idom_size = newsize;
  2412   _idom[idx] = n;
  2413   _dom_depth[idx] = dom_depth;
  2416 //------------------------------recompute_dom_depth---------------------------------------
  2417 // The dominator tree is constructed with only parent pointers.
  2418 // This recomputes the depth in the tree by first tagging all
  2419 // nodes as "no depth yet" marker.  The next pass then runs up
  2420 // the dom tree from each node marked "no depth yet", and computes
  2421 // the depth on the way back down.
  2422 void PhaseIdealLoop::recompute_dom_depth() {
  2423   uint no_depth_marker = C->unique();
  2424   uint i;
  2425   // Initialize depth to "no depth yet"
  2426   for (i = 0; i < _idom_size; i++) {
  2427     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2428      _dom_depth[i] = no_depth_marker;
  2431   if (_dom_stk == NULL) {
  2432     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2433     if (init_size < 10) init_size = 10;
  2434     _dom_stk = new GrowableArray<uint>(init_size);
  2436   // Compute new depth for each node.
  2437   for (i = 0; i < _idom_size; i++) {
  2438     uint j = i;
  2439     // Run up the dom tree to find a node with a depth
  2440     while (_dom_depth[j] == no_depth_marker) {
  2441       _dom_stk->push(j);
  2442       j = _idom[j]->_idx;
  2444     // Compute the depth on the way back down this tree branch
  2445     uint dd = _dom_depth[j] + 1;
  2446     while (_dom_stk->length() > 0) {
  2447       uint j = _dom_stk->pop();
  2448       _dom_depth[j] = dd;
  2449       dd++;
  2454 //------------------------------sort-------------------------------------------
  2455 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2456 // loop tree, not the root.
  2457 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2458   if( !innermost ) return loop; // New innermost loop
  2460   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2461   assert( loop_preorder, "not yet post-walked loop" );
  2462   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2463   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2465   // Insert at start of list
  2466   while( l ) {                  // Insertion sort based on pre-order
  2467     if( l == loop ) return innermost; // Already on list!
  2468     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2469     assert( l_preorder, "not yet post-walked l" );
  2470     // Check header pre-order number to figure proper nesting
  2471     if( loop_preorder > l_preorder )
  2472       break;                    // End of insertion
  2473     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2474     // Since I split shared headers, you'd think this could not happen.
  2475     // BUT: I must first do the preorder numbering before I can discover I
  2476     // have shared headers, so the split headers all get the same preorder
  2477     // number as the RegionNode they split from.
  2478     if( loop_preorder == l_preorder &&
  2479         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2480       break;                    // Also check for shared headers (same pre#)
  2481     pp = &l->_parent;           // Chain up list
  2482     l = *pp;
  2484   // Link into list
  2485   // Point predecessor to me
  2486   *pp = loop;
  2487   // Point me to successor
  2488   IdealLoopTree *p = loop->_parent;
  2489   loop->_parent = l;            // Point me to successor
  2490   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2491   return innermost;
  2494 //------------------------------build_loop_tree--------------------------------
  2495 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2496 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2497 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2498 // tightest enclosing IdealLoopTree for post-walked.
  2499 //
  2500 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2501 // a loop backedge with that doesn't have any work on the backedge.  This
  2502 // helps me construct nested loops with shared headers better.
  2503 //
  2504 // Once I've done the forward recursion, I do the post-work.  For each child
  2505 // I check to see if there is a backedge.  Backedges define a loop!  I
  2506 // insert an IdealLoopTree at the target of the backedge.
  2507 //
  2508 // During the post-work I also check to see if I have several children
  2509 // belonging to different loops.  If so, then this Node is a decision point
  2510 // where control flow can choose to change loop nests.  It is at this
  2511 // decision point where I can figure out how loops are nested.  At this
  2512 // time I can properly order the different loop nests from my children.
  2513 // Note that there may not be any backedges at the decision point!
  2514 //
  2515 // Since the decision point can be far removed from the backedges, I can't
  2516 // order my loops at the time I discover them.  Thus at the decision point
  2517 // I need to inspect loop header pre-order numbers to properly nest my
  2518 // loops.  This means I need to sort my childrens' loops by pre-order.
  2519 // The sort is of size number-of-control-children, which generally limits
  2520 // it to size 2 (i.e., I just choose between my 2 target loops).
  2521 void PhaseIdealLoop::build_loop_tree() {
  2522   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2523   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2524   Node *n = C->root();
  2525   bltstack.push(n);
  2526   int pre_order = 1;
  2527   int stack_size;
  2529   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2530     n = bltstack.top(); // Leave node on stack
  2531     if ( !is_visited(n) ) {
  2532       // ---- Pre-pass Work ----
  2533       // Pre-walked but not post-walked nodes need a pre_order number.
  2535       set_preorder_visited( n, pre_order ); // set as visited
  2537       // ---- Scan over children ----
  2538       // Scan first over control projections that lead to loop headers.
  2539       // This helps us find inner-to-outer loops with shared headers better.
  2541       // Scan children's children for loop headers.
  2542       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2543         Node* m = n->raw_out(i);       // Child
  2544         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2545           // Scan over children's children to find loop
  2546           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2547             Node* l = m->fast_out(j);
  2548             if( is_visited(l) &&       // Been visited?
  2549                 !is_postvisited(l) &&  // But not post-visited
  2550                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2551               // Found!  Scan the DFS down this path before doing other paths
  2552               bltstack.push(m);
  2553               break;
  2558       pre_order++;
  2560     else if ( !is_postvisited(n) ) {
  2561       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2562       // such as com.sun.rsasign.am::a.
  2563       // For non-recursive version, first, process current children.
  2564       // On next iteration, check if additional children were added.
  2565       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2566         Node* u = n->raw_out(k);
  2567         if ( u->is_CFG() && !is_visited(u) ) {
  2568           bltstack.push(u);
  2571       if ( bltstack.length() == stack_size ) {
  2572         // There were no additional children, post visit node now
  2573         (void)bltstack.pop(); // Remove node from stack
  2574         pre_order = build_loop_tree_impl( n, pre_order );
  2575         // Check for bailout
  2576         if (C->failing()) {
  2577           return;
  2579         // Check to grow _preorders[] array for the case when
  2580         // build_loop_tree_impl() adds new nodes.
  2581         check_grow_preorders();
  2584     else {
  2585       (void)bltstack.pop(); // Remove post-visited node from stack
  2590 //------------------------------build_loop_tree_impl---------------------------
  2591 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2592   // ---- Post-pass Work ----
  2593   // Pre-walked but not post-walked nodes need a pre_order number.
  2595   // Tightest enclosing loop for this Node
  2596   IdealLoopTree *innermost = NULL;
  2598   // For all children, see if any edge is a backedge.  If so, make a loop
  2599   // for it.  Then find the tightest enclosing loop for the self Node.
  2600   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2601     Node* m = n->fast_out(i);   // Child
  2602     if( n == m ) continue;      // Ignore control self-cycles
  2603     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2605     IdealLoopTree *l;           // Child's loop
  2606     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2607       // Found a backedge
  2608       assert( get_preorder(m) < pre_order, "should be backedge" );
  2609       // Check for the RootNode, which is already a LoopNode and is allowed
  2610       // to have multiple "backedges".
  2611       if( m == C->root()) {     // Found the root?
  2612         l = _ltree_root;        // Root is the outermost LoopNode
  2613       } else {                  // Else found a nested loop
  2614         // Insert a LoopNode to mark this loop.
  2615         l = new IdealLoopTree(this, m, n);
  2616       } // End of Else found a nested loop
  2617       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2618         set_loop(m, l);         // Set loop header to loop now
  2620     } else {                    // Else not a nested loop
  2621       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2622       l = get_loop(m);          // Get previously determined loop
  2623       // If successor is header of a loop (nest), move up-loop till it
  2624       // is a member of some outer enclosing loop.  Since there are no
  2625       // shared headers (I've split them already) I only need to go up
  2626       // at most 1 level.
  2627       while( l && l->_head == m ) // Successor heads loop?
  2628         l = l->_parent;         // Move up 1 for me
  2629       // If this loop is not properly parented, then this loop
  2630       // has no exit path out, i.e. its an infinite loop.
  2631       if( !l ) {
  2632         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2633         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2634         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2635         // many backedges as well.
  2637         // Here I set the loop to be the root loop.  I could have, after
  2638         // inserting a bogus loop exit, restarted the recursion and found my
  2639         // new loop exit.  This would make the infinite loop a first-class
  2640         // loop and it would then get properly optimized.  What's the use of
  2641         // optimizing an infinite loop?
  2642         l = _ltree_root;        // Oops, found infinite loop
  2644         if (!_verify_only) {
  2645           // Insert the NeverBranch between 'm' and it's control user.
  2646           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2647           _igvn.register_new_node_with_optimizer(iff);
  2648           set_loop(iff, l);
  2649           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2650           _igvn.register_new_node_with_optimizer(if_t);
  2651           set_loop(if_t, l);
  2653           Node* cfg = NULL;       // Find the One True Control User of m
  2654           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2655             Node* x = m->fast_out(j);
  2656             if (x->is_CFG() && x != m && x != iff)
  2657               { cfg = x; break; }
  2659           assert(cfg != NULL, "must find the control user of m");
  2660           uint k = 0;             // Probably cfg->in(0)
  2661           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2662           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2664           // Now create the never-taken loop exit
  2665           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2666           _igvn.register_new_node_with_optimizer(if_f);
  2667           set_loop(if_f, l);
  2668           // Find frame ptr for Halt.  Relies on the optimizer
  2669           // V-N'ing.  Easier and quicker than searching through
  2670           // the program structure.
  2671           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2672           _igvn.register_new_node_with_optimizer(frame);
  2673           // Halt & Catch Fire
  2674           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2675           _igvn.register_new_node_with_optimizer(halt);
  2676           set_loop(halt, l);
  2677           C->root()->add_req(halt);
  2679         set_loop(C->root(), _ltree_root);
  2682     // Weeny check for irreducible.  This child was already visited (this
  2683     // IS the post-work phase).  Is this child's loop header post-visited
  2684     // as well?  If so, then I found another entry into the loop.
  2685     if (!_verify_only) {
  2686       while( is_postvisited(l->_head) ) {
  2687         // found irreducible
  2688         l->_irreducible = 1; // = true
  2689         l = l->_parent;
  2690         _has_irreducible_loops = true;
  2691         // Check for bad CFG here to prevent crash, and bailout of compile
  2692         if (l == NULL) {
  2693           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2694           return pre_order;
  2699     // This Node might be a decision point for loops.  It is only if
  2700     // it's children belong to several different loops.  The sort call
  2701     // does a trivial amount of work if there is only 1 child or all
  2702     // children belong to the same loop.  If however, the children
  2703     // belong to different loops, the sort call will properly set the
  2704     // _parent pointers to show how the loops nest.
  2705     //
  2706     // In any case, it returns the tightest enclosing loop.
  2707     innermost = sort( l, innermost );
  2710   // Def-use info will have some dead stuff; dead stuff will have no
  2711   // loop decided on.
  2713   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2714   if( innermost && innermost->_head == n ) {
  2715     assert( get_loop(n) == innermost, "" );
  2716     IdealLoopTree *p = innermost->_parent;
  2717     IdealLoopTree *l = innermost;
  2718     while( p && l->_head == n ) {
  2719       l->_next = p->_child;     // Put self on parents 'next child'
  2720       p->_child = l;            // Make self as first child of parent
  2721       l = p;                    // Now walk up the parent chain
  2722       p = l->_parent;
  2724   } else {
  2725     // Note that it is possible for a LoopNode to reach here, if the
  2726     // backedge has been made unreachable (hence the LoopNode no longer
  2727     // denotes a Loop, and will eventually be removed).
  2729     // Record tightest enclosing loop for self.  Mark as post-visited.
  2730     set_loop(n, innermost);
  2731     // Also record has_call flag early on
  2732     if( innermost ) {
  2733       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2734         // Do not count uncommon calls
  2735         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2736           Node *iff = n->in(0)->in(0);
  2737           if( !iff->is_If() ||
  2738               (n->in(0)->Opcode() == Op_IfFalse &&
  2739                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2740               (iff->as_If()->_prob >= 0.01) )
  2741             innermost->_has_call = 1;
  2743       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2744         // Disable loop optimizations if the loop has a scalar replaceable
  2745         // allocation. This disabling may cause a potential performance lost
  2746         // if the allocation is not eliminated for some reason.
  2747         innermost->_allow_optimizations = false;
  2748         innermost->_has_call = 1; // = true
  2753   // Flag as post-visited now
  2754   set_postvisited(n);
  2755   return pre_order;
  2759 //------------------------------build_loop_early-------------------------------
  2760 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2761 // First pass computes the earliest controlling node possible.  This is the
  2762 // controlling input with the deepest dominating depth.
  2763 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2764   while (worklist.size() != 0) {
  2765     // Use local variables nstack_top_n & nstack_top_i to cache values
  2766     // on nstack's top.
  2767     Node *nstack_top_n = worklist.pop();
  2768     uint  nstack_top_i = 0;
  2769 //while_nstack_nonempty:
  2770     while (true) {
  2771       // Get parent node and next input's index from stack's top.
  2772       Node  *n = nstack_top_n;
  2773       uint   i = nstack_top_i;
  2774       uint cnt = n->req(); // Count of inputs
  2775       if (i == 0) {        // Pre-process the node.
  2776         if( has_node(n) &&            // Have either loop or control already?
  2777             !has_ctrl(n) ) {          // Have loop picked out already?
  2778           // During "merge_many_backedges" we fold up several nested loops
  2779           // into a single loop.  This makes the members of the original
  2780           // loop bodies pointing to dead loops; they need to move up
  2781           // to the new UNION'd larger loop.  I set the _head field of these
  2782           // dead loops to NULL and the _parent field points to the owning
  2783           // loop.  Shades of UNION-FIND algorithm.
  2784           IdealLoopTree *ilt;
  2785           while( !(ilt = get_loop(n))->_head ) {
  2786             // Normally I would use a set_loop here.  But in this one special
  2787             // case, it is legal (and expected) to change what loop a Node
  2788             // belongs to.
  2789             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2791           // Remove safepoints ONLY if I've already seen I don't need one.
  2792           // (the old code here would yank a 2nd safepoint after seeing a
  2793           // first one, even though the 1st did not dominate in the loop body
  2794           // and thus could be avoided indefinitely)
  2795           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2796               is_deleteable_safept(n)) {
  2797             Node *in = n->in(TypeFunc::Control);
  2798             lazy_replace(n,in);       // Pull safepoint now
  2799             // Carry on with the recursion "as if" we are walking
  2800             // only the control input
  2801             if( !visited.test_set( in->_idx ) ) {
  2802               worklist.push(in);      // Visit this guy later, using worklist
  2804             // Get next node from nstack:
  2805             // - skip n's inputs processing by setting i > cnt;
  2806             // - we also will not call set_early_ctrl(n) since
  2807             //   has_node(n) == true (see the condition above).
  2808             i = cnt + 1;
  2811       } // if (i == 0)
  2813       // Visit all inputs
  2814       bool done = true;       // Assume all n's inputs will be processed
  2815       while (i < cnt) {
  2816         Node *in = n->in(i);
  2817         ++i;
  2818         if (in == NULL) continue;
  2819         if (in->pinned() && !in->is_CFG())
  2820           set_ctrl(in, in->in(0));
  2821         int is_visited = visited.test_set( in->_idx );
  2822         if (!has_node(in)) {  // No controlling input yet?
  2823           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2824           assert( !is_visited, "visit only once" );
  2825           nstack.push(n, i);  // Save parent node and next input's index.
  2826           nstack_top_n = in;  // Process current input now.
  2827           nstack_top_i = 0;
  2828           done = false;       // Not all n's inputs processed.
  2829           break; // continue while_nstack_nonempty;
  2830         } else if (!is_visited) {
  2831           // This guy has a location picked out for him, but has not yet
  2832           // been visited.  Happens to all CFG nodes, for instance.
  2833           // Visit him using the worklist instead of recursion, to break
  2834           // cycles.  Since he has a location already we do not need to
  2835           // find his location before proceeding with the current Node.
  2836           worklist.push(in);  // Visit this guy later, using worklist
  2839       if (done) {
  2840         // All of n's inputs have been processed, complete post-processing.
  2842         // Compute earliest point this Node can go.
  2843         // CFG, Phi, pinned nodes already know their controlling input.
  2844         if (!has_node(n)) {
  2845           // Record earliest legal location
  2846           set_early_ctrl( n );
  2848         if (nstack.is_empty()) {
  2849           // Finished all nodes on stack.
  2850           // Process next node on the worklist.
  2851           break;
  2853         // Get saved parent node and next input's index.
  2854         nstack_top_n = nstack.node();
  2855         nstack_top_i = nstack.index();
  2856         nstack.pop();
  2858     } // while (true)
  2862 //------------------------------dom_lca_internal--------------------------------
  2863 // Pair-wise LCA
  2864 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2865   if( !n1 ) return n2;          // Handle NULL original LCA
  2866   assert( n1->is_CFG(), "" );
  2867   assert( n2->is_CFG(), "" );
  2868   // find LCA of all uses
  2869   uint d1 = dom_depth(n1);
  2870   uint d2 = dom_depth(n2);
  2871   while (n1 != n2) {
  2872     if (d1 > d2) {
  2873       n1 =      idom(n1);
  2874       d1 = dom_depth(n1);
  2875     } else if (d1 < d2) {
  2876       n2 =      idom(n2);
  2877       d2 = dom_depth(n2);
  2878     } else {
  2879       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2880       // of the tree might have the same depth.  These sections have
  2881       // to be searched more carefully.
  2883       // Scan up all the n1's with equal depth, looking for n2.
  2884       Node *t1 = idom(n1);
  2885       while (dom_depth(t1) == d1) {
  2886         if (t1 == n2)  return n2;
  2887         t1 = idom(t1);
  2889       // Scan up all the n2's with equal depth, looking for n1.
  2890       Node *t2 = idom(n2);
  2891       while (dom_depth(t2) == d2) {
  2892         if (t2 == n1)  return n1;
  2893         t2 = idom(t2);
  2895       // Move up to a new dominator-depth value as well as up the dom-tree.
  2896       n1 = t1;
  2897       n2 = t2;
  2898       d1 = dom_depth(n1);
  2899       d2 = dom_depth(n2);
  2902   return n1;
  2905 //------------------------------compute_idom-----------------------------------
  2906 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2907 // IDOMs are correct.
  2908 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2909   assert( region->is_Region(), "" );
  2910   Node *LCA = NULL;
  2911   for( uint i = 1; i < region->req(); i++ ) {
  2912     if( region->in(i) != C->top() )
  2913       LCA = dom_lca( LCA, region->in(i) );
  2915   return LCA;
  2918 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2919   bool had_error = false;
  2920 #ifdef ASSERT
  2921   if (early != C->root()) {
  2922     // Make sure that there's a dominance path from use to LCA
  2923     Node* d = use;
  2924     while (d != LCA) {
  2925       d = idom(d);
  2926       if (d == C->root()) {
  2927         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2928         n->dump();
  2929         use->dump();
  2930         had_error = true;
  2931         break;
  2935 #endif
  2936   return had_error;
  2940 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2941   // Compute LCA over list of uses
  2942   bool had_error = false;
  2943   Node *LCA = NULL;
  2944   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2945     Node* c = n->fast_out(i);
  2946     if (_nodes[c->_idx] == NULL)
  2947       continue;                 // Skip the occasional dead node
  2948     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2949       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2950         if( c->in(j) == n ) {   // Found matching input?
  2951           Node *use = c->in(0)->in(j);
  2952           if (_verify_only && use->is_top()) continue;
  2953           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2954           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2957     } else {
  2958       // For CFG data-users, use is in the block just prior
  2959       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2960       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2961       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2964   assert(!had_error, "bad dominance");
  2965   return LCA;
  2968 //------------------------------get_late_ctrl----------------------------------
  2969 // Compute latest legal control.
  2970 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2971   assert(early != NULL, "early control should not be NULL");
  2973   Node* LCA = compute_lca_of_uses(n, early);
  2974 #ifdef ASSERT
  2975   if (LCA == C->root() && LCA != early) {
  2976     // def doesn't dominate uses so print some useful debugging output
  2977     compute_lca_of_uses(n, early, true);
  2979 #endif
  2981   // if this is a load, check for anti-dependent stores
  2982   // We use a conservative algorithm to identify potential interfering
  2983   // instructions and for rescheduling the load.  The users of the memory
  2984   // input of this load are examined.  Any use which is not a load and is
  2985   // dominated by early is considered a potentially interfering store.
  2986   // This can produce false positives.
  2987   if (n->is_Load() && LCA != early) {
  2988     Node_List worklist;
  2990     Node *mem = n->in(MemNode::Memory);
  2991     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2992       Node* s = mem->fast_out(i);
  2993       worklist.push(s);
  2995     while(worklist.size() != 0 && LCA != early) {
  2996       Node* s = worklist.pop();
  2997       if (s->is_Load()) {
  2998         continue;
  2999       } else if (s->is_MergeMem()) {
  3000         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3001           Node* s1 = s->fast_out(i);
  3002           worklist.push(s1);
  3004       } else {
  3005         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3006         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3007         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3008           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3014   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3015   return LCA;
  3018 // true if CFG node d dominates CFG node n
  3019 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3020   if (d == n)
  3021     return true;
  3022   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3023   uint dd = dom_depth(d);
  3024   while (dom_depth(n) >= dd) {
  3025     if (n == d)
  3026       return true;
  3027     n = idom(n);
  3029   return false;
  3032 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3033 // Pair-wise LCA with tags.
  3034 // Tag each index with the node 'tag' currently being processed
  3035 // before advancing up the dominator chain using idom().
  3036 // Later calls that find a match to 'tag' know that this path has already
  3037 // been considered in the current LCA (which is input 'n1' by convention).
  3038 // Since get_late_ctrl() is only called once for each node, the tag array
  3039 // does not need to be cleared between calls to get_late_ctrl().
  3040 // Algorithm trades a larger constant factor for better asymptotic behavior
  3041 //
  3042 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3043   uint d1 = dom_depth(n1);
  3044   uint d2 = dom_depth(n2);
  3046   do {
  3047     if (d1 > d2) {
  3048       // current lca is deeper than n2
  3049       _dom_lca_tags.map(n1->_idx, tag);
  3050       n1 =      idom(n1);
  3051       d1 = dom_depth(n1);
  3052     } else if (d1 < d2) {
  3053       // n2 is deeper than current lca
  3054       Node *memo = _dom_lca_tags[n2->_idx];
  3055       if( memo == tag ) {
  3056         return n1;    // Return the current LCA
  3058       _dom_lca_tags.map(n2->_idx, tag);
  3059       n2 =      idom(n2);
  3060       d2 = dom_depth(n2);
  3061     } else {
  3062       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3063       // of the tree might have the same depth.  These sections have
  3064       // to be searched more carefully.
  3066       // Scan up all the n1's with equal depth, looking for n2.
  3067       _dom_lca_tags.map(n1->_idx, tag);
  3068       Node *t1 = idom(n1);
  3069       while (dom_depth(t1) == d1) {
  3070         if (t1 == n2)  return n2;
  3071         _dom_lca_tags.map(t1->_idx, tag);
  3072         t1 = idom(t1);
  3074       // Scan up all the n2's with equal depth, looking for n1.
  3075       _dom_lca_tags.map(n2->_idx, tag);
  3076       Node *t2 = idom(n2);
  3077       while (dom_depth(t2) == d2) {
  3078         if (t2 == n1)  return n1;
  3079         _dom_lca_tags.map(t2->_idx, tag);
  3080         t2 = idom(t2);
  3082       // Move up to a new dominator-depth value as well as up the dom-tree.
  3083       n1 = t1;
  3084       n2 = t2;
  3085       d1 = dom_depth(n1);
  3086       d2 = dom_depth(n2);
  3088   } while (n1 != n2);
  3089   return n1;
  3092 //------------------------------init_dom_lca_tags------------------------------
  3093 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3094 // Intended use does not involve any growth for the array, so it could
  3095 // be of fixed size.
  3096 void PhaseIdealLoop::init_dom_lca_tags() {
  3097   uint limit = C->unique() + 1;
  3098   _dom_lca_tags.map( limit, NULL );
  3099 #ifdef ASSERT
  3100   for( uint i = 0; i < limit; ++i ) {
  3101     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3103 #endif // ASSERT
  3106 //------------------------------clear_dom_lca_tags------------------------------
  3107 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3108 // Intended use does not involve any growth for the array, so it could
  3109 // be of fixed size.
  3110 void PhaseIdealLoop::clear_dom_lca_tags() {
  3111   uint limit = C->unique() + 1;
  3112   _dom_lca_tags.map( limit, NULL );
  3113   _dom_lca_tags.clear();
  3114 #ifdef ASSERT
  3115   for( uint i = 0; i < limit; ++i ) {
  3116     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3118 #endif // ASSERT
  3121 //------------------------------build_loop_late--------------------------------
  3122 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3123 // Second pass finds latest legal placement, and ideal loop placement.
  3124 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3125   while (worklist.size() != 0) {
  3126     Node *n = worklist.pop();
  3127     // Only visit once
  3128     if (visited.test_set(n->_idx)) continue;
  3129     uint cnt = n->outcnt();
  3130     uint   i = 0;
  3131     while (true) {
  3132       assert( _nodes[n->_idx], "no dead nodes" );
  3133       // Visit all children
  3134       if (i < cnt) {
  3135         Node* use = n->raw_out(i);
  3136         ++i;
  3137         // Check for dead uses.  Aggressively prune such junk.  It might be
  3138         // dead in the global sense, but still have local uses so I cannot
  3139         // easily call 'remove_dead_node'.
  3140         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3141           // Due to cycles, we might not hit the same fixed point in the verify
  3142           // pass as we do in the regular pass.  Instead, visit such phis as
  3143           // simple uses of the loop head.
  3144           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3145             if( !visited.test(use->_idx) )
  3146               worklist.push(use);
  3147           } else if( !visited.test_set(use->_idx) ) {
  3148             nstack.push(n, i); // Save parent and next use's index.
  3149             n   = use;         // Process all children of current use.
  3150             cnt = use->outcnt();
  3151             i   = 0;
  3153         } else {
  3154           // Do not visit around the backedge of loops via data edges.
  3155           // push dead code onto a worklist
  3156           _deadlist.push(use);
  3158       } else {
  3159         // All of n's children have been processed, complete post-processing.
  3160         build_loop_late_post(n);
  3161         if (nstack.is_empty()) {
  3162           // Finished all nodes on stack.
  3163           // Process next node on the worklist.
  3164           break;
  3166         // Get saved parent node and next use's index. Visit the rest of uses.
  3167         n   = nstack.node();
  3168         cnt = n->outcnt();
  3169         i   = nstack.index();
  3170         nstack.pop();
  3176 //------------------------------build_loop_late_post---------------------------
  3177 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3178 // Second pass finds latest legal placement, and ideal loop placement.
  3179 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3181   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3182     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3185   // CFG and pinned nodes already handled
  3186   if( n->in(0) ) {
  3187     if( n->in(0)->is_top() ) return; // Dead?
  3189     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3190     // _must_ be pinned (they have to observe their control edge of course).
  3191     // Unlike Stores (which modify an unallocable resource, the memory
  3192     // state), Mods/Loads can float around.  So free them up.
  3193     bool pinned = true;
  3194     switch( n->Opcode() ) {
  3195     case Op_DivI:
  3196     case Op_DivF:
  3197     case Op_DivD:
  3198     case Op_ModI:
  3199     case Op_ModF:
  3200     case Op_ModD:
  3201     case Op_LoadB:              // Same with Loads; they can sink
  3202     case Op_LoadUS:             // during loop optimizations.
  3203     case Op_LoadD:
  3204     case Op_LoadF:
  3205     case Op_LoadI:
  3206     case Op_LoadKlass:
  3207     case Op_LoadNKlass:
  3208     case Op_LoadL:
  3209     case Op_LoadS:
  3210     case Op_LoadP:
  3211     case Op_LoadN:
  3212     case Op_LoadRange:
  3213     case Op_LoadD_unaligned:
  3214     case Op_LoadL_unaligned:
  3215     case Op_StrComp:            // Does a bunch of load-like effects
  3216     case Op_StrEquals:
  3217     case Op_StrIndexOf:
  3218     case Op_AryEq:
  3219       pinned = false;
  3221     if( pinned ) {
  3222       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3223       if( !chosen_loop->_child )       // Inner loop?
  3224         chosen_loop->_body.push(n); // Collect inner loops
  3225       return;
  3227   } else {                      // No slot zero
  3228     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3229       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3230       return;
  3232     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3235   // Do I have a "safe range" I can select over?
  3236   Node *early = get_ctrl(n);// Early location already computed
  3238   // Compute latest point this Node can go
  3239   Node *LCA = get_late_ctrl( n, early );
  3240   // LCA is NULL due to uses being dead
  3241   if( LCA == NULL ) {
  3242 #ifdef ASSERT
  3243     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3244       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3246 #endif
  3247     _nodes.map(n->_idx, 0);     // This node is useless
  3248     _deadlist.push(n);
  3249     return;
  3251   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3253   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3254   Node *least = legal;          // Best legal position so far
  3255   while( early != legal ) {     // While not at earliest legal
  3256 #ifdef ASSERT
  3257     if (legal->is_Start() && !early->is_Root()) {
  3258       // Bad graph. Print idom path and fail.
  3259       tty->print_cr( "Bad graph detected in build_loop_late");
  3260       tty->print("n: ");n->dump(); tty->cr();
  3261       tty->print("early: ");early->dump(); tty->cr();
  3262       int ct = 0;
  3263       Node *dbg_legal = LCA;
  3264       while(!dbg_legal->is_Start() && ct < 100) {
  3265         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  3266         ct++;
  3267         dbg_legal = idom(dbg_legal);
  3269       assert(false, "Bad graph detected in build_loop_late");
  3271 #endif
  3272     // Find least loop nesting depth
  3273     legal = idom(legal);        // Bump up the IDOM tree
  3274     // Check for lower nesting depth
  3275     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3276       least = legal;
  3278   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3280   // Try not to place code on a loop entry projection
  3281   // which can inhibit range check elimination.
  3282   if (least != early) {
  3283     Node* ctrl_out = least->unique_ctrl_out();
  3284     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3285         least == ctrl_out->in(LoopNode::EntryControl)) {
  3286       Node* least_dom = idom(least);
  3287       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3288         least = least_dom;
  3293 #ifdef ASSERT
  3294   // If verifying, verify that 'verify_me' has a legal location
  3295   // and choose it as our location.
  3296   if( _verify_me ) {
  3297     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3298     Node *legal = LCA;
  3299     while( early != legal ) {   // While not at earliest legal
  3300       if( legal == v_ctrl ) break;  // Check for prior good location
  3301       legal = idom(legal)      ;// Bump up the IDOM tree
  3303     // Check for prior good location
  3304     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3306 #endif
  3308   // Assign discovered "here or above" point
  3309   least = find_non_split_ctrl(least);
  3310   set_ctrl(n, least);
  3312   // Collect inner loop bodies
  3313   IdealLoopTree *chosen_loop = get_loop(least);
  3314   if( !chosen_loop->_child )   // Inner loop?
  3315     chosen_loop->_body.push(n);// Collect inner loops
  3318 #ifndef PRODUCT
  3319 //------------------------------dump-------------------------------------------
  3320 void PhaseIdealLoop::dump( ) const {
  3321   ResourceMark rm;
  3322   Arena* arena = Thread::current()->resource_area();
  3323   Node_Stack stack(arena, C->unique() >> 2);
  3324   Node_List rpo_list;
  3325   VectorSet visited(arena);
  3326   visited.set(C->top()->_idx);
  3327   rpo( C->root(), stack, visited, rpo_list );
  3328   // Dump root loop indexed by last element in PO order
  3329   dump( _ltree_root, rpo_list.size(), rpo_list );
  3332 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3333   loop->dump_head();
  3335   // Now scan for CFG nodes in the same loop
  3336   for( uint j=idx; j > 0;  j-- ) {
  3337     Node *n = rpo_list[j-1];
  3338     if( !_nodes[n->_idx] )      // Skip dead nodes
  3339       continue;
  3340     if( get_loop(n) != loop ) { // Wrong loop nest
  3341       if( get_loop(n)->_head == n &&    // Found nested loop?
  3342           get_loop(n)->_parent == loop )
  3343         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3344       continue;
  3347     // Dump controlling node
  3348     for( uint x = 0; x < loop->_nest; x++ )
  3349       tty->print("  ");
  3350     tty->print("C");
  3351     if( n == C->root() ) {
  3352       n->dump();
  3353     } else {
  3354       Node* cached_idom   = idom_no_update(n);
  3355       Node *computed_idom = n->in(0);
  3356       if( n->is_Region() ) {
  3357         computed_idom = compute_idom(n);
  3358         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3359         // any MultiBranch ctrl node), so apply a similar transform to
  3360         // the cached idom returned from idom_no_update.
  3361         cached_idom = find_non_split_ctrl(cached_idom);
  3363       tty->print(" ID:%d",computed_idom->_idx);
  3364       n->dump();
  3365       if( cached_idom != computed_idom ) {
  3366         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3367                       computed_idom->_idx, cached_idom->_idx);
  3370     // Dump nodes it controls
  3371     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3372       // (k < C->unique() && get_ctrl(find(k)) == n)
  3373       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3374         Node *m = C->root()->find(k);
  3375         if( m && m->outcnt() > 0 ) {
  3376           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3377             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3378                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3380           for( uint j = 0; j < loop->_nest; j++ )
  3381             tty->print("  ");
  3382           tty->print(" ");
  3383           m->dump();
  3390 // Collect a R-P-O for the whole CFG.
  3391 // Result list is in post-order (scan backwards for RPO)
  3392 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3393   stk.push(start, 0);
  3394   visited.set(start->_idx);
  3396   while (stk.is_nonempty()) {
  3397     Node* m   = stk.node();
  3398     uint  idx = stk.index();
  3399     if (idx < m->outcnt()) {
  3400       stk.set_index(idx + 1);
  3401       Node* n = m->raw_out(idx);
  3402       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3403         stk.push(n, 0);
  3405     } else {
  3406       rpo_list.push(m);
  3407       stk.pop();
  3411 #endif
  3414 //=============================================================================
  3415 //------------------------------LoopTreeIterator-----------------------------------
  3417 // Advance to next loop tree using a preorder, left-to-right traversal.
  3418 void LoopTreeIterator::next() {
  3419   assert(!done(), "must not be done.");
  3420   if (_curnt->_child != NULL) {
  3421     _curnt = _curnt->_child;
  3422   } else if (_curnt->_next != NULL) {
  3423     _curnt = _curnt->_next;
  3424   } else {
  3425     while (_curnt != _root && _curnt->_next == NULL) {
  3426       _curnt = _curnt->_parent;
  3428     if (_curnt == _root) {
  3429       _curnt = NULL;
  3430       assert(done(), "must be done.");
  3431     } else {
  3432       assert(_curnt->_next != NULL, "must be more to do");
  3433       _curnt = _curnt->_next;

mercurial