src/share/vm/opto/loopnode.cpp

Fri, 29 Jul 2011 09:16:29 -0700

author
kvn
date
Fri, 29 Jul 2011 09:16:29 -0700
changeset 3043
c96c3eb1efae
parent 2979
aacaff365100
child 3048
6987871cfb9b
permissions
-rw-r--r--

7068051: SIGSEGV in PhaseIdealLoop::build_loop_late_post
Summary: Removed predicate cloning from loop peeling optimization and from split fall-in paths.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if( n->in(0) ) {
    92     early = n->in(0);
    93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for( ; i < n->req(); i++ ) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if( c_d > e_d ) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if( c_d == e_d &&    // Same depth?
   111                early != cin ) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while( 1 ) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if( n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d )
   121           break;                // early is deeper; keep him
   122         if( n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d ) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   return early;
   136 }
   138 //------------------------------set_early_ctrl---------------------------------
   139 // Set earliest legal control
   140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   141   Node *early = get_early_ctrl(n);
   143   // Record earliest legal location
   144   set_ctrl(n, early);
   145 }
   147 //------------------------------set_subtree_ctrl-------------------------------
   148 // set missing _ctrl entries on new nodes
   149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   150   // Already set?  Get out.
   151   if( _nodes[n->_idx] ) return;
   152   // Recursively set _nodes array to indicate where the Node goes
   153   uint i;
   154   for( i = 0; i < n->req(); ++i ) {
   155     Node *m = n->in(i);
   156     if( m && m != C->root() )
   157       set_subtree_ctrl( m );
   158   }
   160   // Fixup self
   161   set_early_ctrl( n );
   162 }
   164 //------------------------------is_counted_loop--------------------------------
   165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   166   PhaseGVN *gvn = &_igvn;
   168   // Counted loop head must be a good RegionNode with only 3 not NULL
   169   // control input edges: Self, Entry, LoopBack.
   170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   171     return false;
   173   Node *init_control = x->in(LoopNode::EntryControl);
   174   Node *back_control = x->in(LoopNode::LoopBackControl);
   175   if (init_control == NULL || back_control == NULL)    // Partially dead
   176     return false;
   177   // Must also check for TOP when looking for a dead loop
   178   if (init_control->is_top() || back_control->is_top())
   179     return false;
   181   // Allow funny placement of Safepoint
   182   if (back_control->Opcode() == Op_SafePoint)
   183     back_control = back_control->in(TypeFunc::Control);
   185   // Controlling test for loop
   186   Node *iftrue = back_control;
   187   uint iftrue_op = iftrue->Opcode();
   188   if (iftrue_op != Op_IfTrue &&
   189       iftrue_op != Op_IfFalse)
   190     // I have a weird back-control.  Probably the loop-exit test is in
   191     // the middle of the loop and I am looking at some trailing control-flow
   192     // merge point.  To fix this I would have to partially peel the loop.
   193     return false; // Obscure back-control
   195   // Get boolean guarding loop-back test
   196   Node *iff = iftrue->in(0);
   197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   198     return false;
   199   BoolNode *test = iff->in(1)->as_Bool();
   200   BoolTest::mask bt = test->_test._test;
   201   float cl_prob = iff->as_If()->_prob;
   202   if (iftrue_op == Op_IfFalse) {
   203     bt = BoolTest(bt).negate();
   204     cl_prob = 1.0 - cl_prob;
   205   }
   206   // Get backedge compare
   207   Node *cmp = test->in(1);
   208   int cmp_op = cmp->Opcode();
   209   if (cmp_op != Op_CmpI)
   210     return false;                // Avoid pointer & float compares
   212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   213   Node *incr  = cmp->in(1);
   214   Node *limit = cmp->in(2);
   216   // ---------
   217   // need 'loop()' test to tell if limit is loop invariant
   218   // ---------
   220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   221     Node *tmp = incr;            // Then reverse order into the CmpI
   222     incr = limit;
   223     limit = tmp;
   224     bt = BoolTest(bt).commute(); // And commute the exit test
   225   }
   226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   227     return false;
   228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   229     return false;
   231   Node* phi_incr = NULL;
   232   // Trip-counter increment must be commutative & associative.
   233   if (incr->is_Phi()) {
   234     if (incr->as_Phi()->region() != x || incr->req() != 3)
   235       return false; // Not simple trip counter expression
   236     phi_incr = incr;
   237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   239       return false;
   240   }
   242   Node* trunc1 = NULL;
   243   Node* trunc2 = NULL;
   244   const TypeInt* iv_trunc_t = NULL;
   245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   246     return false; // Funny increment opcode
   247   }
   248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   250   // Get merge point
   251   Node *xphi = incr->in(1);
   252   Node *stride = incr->in(2);
   253   if (!stride->is_Con()) {     // Oops, swap these
   254     if (!xphi->is_Con())       // Is the other guy a constant?
   255       return false;             // Nope, unknown stride, bail out
   256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   257     xphi = stride;
   258     stride = tmp;
   259   }
   260   // Stride must be constant
   261   int stride_con = stride->get_int();
   262   if (stride_con == 0)
   263     return false; // missed some peephole opt
   265   if (!xphi->is_Phi())
   266     return false; // Too much math on the trip counter
   267   if (phi_incr != NULL && phi_incr != xphi)
   268     return false;
   269   PhiNode *phi = xphi->as_Phi();
   271   // Phi must be of loop header; backedge must wrap to increment
   272   if (phi->region() != x)
   273     return false;
   274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   276     return false;
   277   }
   278   Node *init_trip = phi->in(LoopNode::EntryControl);
   280   // If iv trunc type is smaller than int, check for possible wrap.
   281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   282     assert(trunc1 != NULL, "must have found some truncation");
   284     // Get a better type for the phi (filtered thru if's)
   285     const TypeInt* phi_ft = filtered_type(phi);
   287     // Can iv take on a value that will wrap?
   288     //
   289     // Ensure iv's limit is not within "stride" of the wrap value.
   290     //
   291     // Example for "short" type
   292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   293     //    If the stride is +10, then the last value of the induction
   294     //    variable before the increment (phi_ft->_hi) must be
   295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   296     //    ensure no truncation occurs after the increment.
   298     if (stride_con > 0) {
   299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   300           iv_trunc_t->_lo > phi_ft->_lo) {
   301         return false;  // truncation may occur
   302       }
   303     } else if (stride_con < 0) {
   304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   305           iv_trunc_t->_hi < phi_ft->_hi) {
   306         return false;  // truncation may occur
   307       }
   308     }
   309     // No possibility of wrap so truncation can be discarded
   310     // Promote iv type to Int
   311   } else {
   312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   313   }
   315   // If the condition is inverted and we will be rolling
   316   // through MININT to MAXINT, then bail out.
   317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   318       // Odd stride
   319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   320       // Count down loop rolls through MAXINT
   321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   322       // Count up loop rolls through MININT
   323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   324     return false; // Bail out
   325   }
   327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   328   const TypeInt* limit_t = gvn->type(limit)->is_int();
   330   if (stride_con > 0) {
   331     long init_p = (long)init_t->_lo + stride_con;
   332     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
   333       return false; // cyclic loop or this loop trips only once
   334   } else {
   335     long init_p = (long)init_t->_hi + stride_con;
   336     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
   337       return false; // cyclic loop or this loop trips only once
   338   }
   340   // =================================================
   341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   342   //
   343   assert(x->Opcode() == Op_Loop, "regular loops only");
   344   C->print_method("Before CountedLoop", 3);
   346   Node *hook = new (C, 6) Node(6);
   348   if (LoopLimitCheck) {
   350   // ===================================================
   351   // Generate loop limit check to avoid integer overflow
   352   // in cases like next (cyclic loops):
   353   //
   354   // for (i=0; i <= max_jint; i++) {}
   355   // for (i=0; i <  max_jint; i+=2) {}
   356   //
   357   //
   358   // Limit check predicate depends on the loop test:
   359   //
   360   // for(;i != limit; i++)       --> limit <= (max_jint)
   361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   363   //
   365   // Check if limit is excluded to do more precise int overflow check.
   366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   369   // If compare points directly to the phi we need to adjust
   370   // the compare so that it points to the incr. Limit have
   371   // to be adjusted to keep trip count the same and the
   372   // adjusted limit should be checked for int overflow.
   373   if (phi_incr != NULL) {
   374     stride_m  += stride_con;
   375   }
   377   if (limit->is_Con()) {
   378     int limit_con = limit->get_int();
   379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   381       // Bailout: it could be integer overflow.
   382       return false;
   383     }
   384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   386       // Limit's type may satisfy the condition, for example,
   387       // when it is an array length.
   388   } else {
   389     // Generate loop's limit check.
   390     // Loop limit check predicate should be near the loop.
   391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   392     if (!limit_check_proj) {
   393       // The limit check predicate is not generated if this method trapped here before.
   394 #ifdef ASSERT
   395       if (TraceLoopLimitCheck) {
   396         tty->print("missing loop limit check:");
   397         loop->dump_head();
   398         x->dump(1);
   399       }
   400 #endif
   401       return false;
   402     }
   404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   405     Node* cmp_limit;
   406     Node* bol;
   408     if (stride_con > 0) {
   409       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   410       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
   411     } else {
   412       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   413       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
   414     }
   415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   416     bol = _igvn.register_new_node_with_optimizer(bol);
   417     set_subtree_ctrl(bol);
   419     // Replace condition in original predicate but preserve Opaque node
   420     // so that previous predicates could be found.
   421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   423     Node* opq = check_iff->in(1)->in(1);
   424     _igvn.hash_delete(opq);
   425     opq->set_req(1, bol);
   426     // Update ctrl.
   427     set_ctrl(opq, check_iff->in(0));
   428     set_ctrl(check_iff->in(1), check_iff->in(0));
   430 #ifndef PRODUCT
   431     // report that the loop predication has been actually performed
   432     // for this loop
   433     if (TraceLoopLimitCheck) {
   434       tty->print_cr("Counted Loop Limit Check generated:");
   435       debug_only( bol->dump(2); )
   436     }
   437 #endif
   438   }
   440   if (phi_incr != NULL) {
   441     // If compare points directly to the phi we need to adjust
   442     // the compare so that it points to the incr. Limit have
   443     // to be adjusted to keep trip count the same and we
   444     // should avoid int overflow.
   445     //
   446     //   i = init; do {} while(i++ < limit);
   447     // is converted to
   448     //   i = init; do {} while(++i < limit+1);
   449     //
   450     limit = gvn->transform(new (C, 3) AddINode(limit, stride));
   451   }
   453   // Now we need to canonicalize loop condition.
   454   if (bt == BoolTest::ne) {
   455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   456     // 'ne' can be replaced with 'lt' only when init < limit.
   457     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   458       bt = BoolTest::lt;
   459     // 'ne' can be replaced with 'gt' only when init > limit.
   460     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   461       bt = BoolTest::gt;
   462   }
   464   if (incl_limit) {
   465     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   466     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   467     //
   468     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   469     limit = gvn->transform(new (C, 3) AddINode(limit, one));
   470     if (bt == BoolTest::le)
   471       bt = BoolTest::lt;
   472     else if (bt == BoolTest::ge)
   473       bt = BoolTest::gt;
   474     else
   475       ShouldNotReachHere();
   476   }
   477   set_subtree_ctrl( limit );
   479   } else { // LoopLimitCheck
   481   // If compare points to incr, we are ok.  Otherwise the compare
   482   // can directly point to the phi; in this case adjust the compare so that
   483   // it points to the incr by adjusting the limit.
   484   if (cmp->in(1) == phi || cmp->in(2) == phi)
   485     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   487   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   488   // Final value for iterator should be: trip_count * stride + init_trip.
   489   Node *one_p = gvn->intcon( 1);
   490   Node *one_m = gvn->intcon(-1);
   492   Node *trip_count = NULL;
   493   switch( bt ) {
   494   case BoolTest::eq:
   495     ShouldNotReachHere();
   496   case BoolTest::ne:            // Ahh, the case we desire
   497     if (stride_con == 1)
   498       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   499     else if (stride_con == -1)
   500       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   501     else
   502       ShouldNotReachHere();
   503     set_subtree_ctrl(trip_count);
   504     //_loop.map(trip_count->_idx,loop(limit));
   505     break;
   506   case BoolTest::le:            // Maybe convert to '<' case
   507     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   508     set_subtree_ctrl( limit );
   509     hook->init_req(4, limit);
   511     bt = BoolTest::lt;
   512     // Make the new limit be in the same loop nest as the old limit
   513     //_loop.map(limit->_idx,limit_loop);
   514     // Fall into next case
   515   case BoolTest::lt: {          // Maybe convert to '!=' case
   516     if (stride_con < 0) // Count down loop rolls through MAXINT
   517       ShouldNotReachHere();
   518     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   519     set_subtree_ctrl( range );
   520     hook->init_req(0, range);
   522     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   523     set_subtree_ctrl( bias );
   524     hook->init_req(1, bias);
   526     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   527     set_subtree_ctrl( bias1 );
   528     hook->init_req(2, bias1);
   530     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   531     set_subtree_ctrl( trip_count );
   532     hook->init_req(3, trip_count);
   533     break;
   534   }
   536   case BoolTest::ge:            // Maybe convert to '>' case
   537     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   538     set_subtree_ctrl( limit );
   539     hook->init_req(4 ,limit);
   541     bt = BoolTest::gt;
   542     // Make the new limit be in the same loop nest as the old limit
   543     //_loop.map(limit->_idx,limit_loop);
   544     // Fall into next case
   545   case BoolTest::gt: {          // Maybe convert to '!=' case
   546     if (stride_con > 0) // count up loop rolls through MININT
   547       ShouldNotReachHere();
   548     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   549     set_subtree_ctrl( range );
   550     hook->init_req(0, range);
   552     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   553     set_subtree_ctrl( bias );
   554     hook->init_req(1, bias);
   556     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   557     set_subtree_ctrl( bias1 );
   558     hook->init_req(2, bias1);
   560     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   561     set_subtree_ctrl( trip_count );
   562     hook->init_req(3, trip_count);
   563     break;
   564   }
   565   } // switch( bt )
   567   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   568   set_subtree_ctrl( span );
   569   hook->init_req(5, span);
   571   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   572   set_subtree_ctrl( limit );
   574   } // LoopLimitCheck
   576   // Check for SafePoint on backedge and remove
   577   Node *sfpt = x->in(LoopNode::LoopBackControl);
   578   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   579     lazy_replace( sfpt, iftrue );
   580     loop->_tail = iftrue;
   581   }
   583   // Build a canonical trip test.
   584   // Clone code, as old values may be in use.
   585   Node* nphi = PhiNode::make(x, init_trip, TypeInt::INT);
   586   nphi = _igvn.register_new_node_with_optimizer(nphi);
   587   set_ctrl(nphi, get_ctrl(phi));
   589   incr = incr->clone();
   590   incr->set_req(1,nphi);
   591   incr->set_req(2,stride);
   592   incr = _igvn.register_new_node_with_optimizer(incr);
   593   set_early_ctrl( incr );
   595   nphi->set_req(LoopNode::LoopBackControl, incr);
   596   _igvn.replace_node(phi, nphi);
   597   phi = nphi->as_Phi();
   599   cmp = cmp->clone();
   600   cmp->set_req(1,incr);
   601   cmp->set_req(2,limit);
   602   cmp = _igvn.register_new_node_with_optimizer(cmp);
   603   set_ctrl(cmp, iff->in(0));
   605   test = test->clone()->as_Bool();
   606   (*(BoolTest*)&test->_test)._test = bt;
   607   test->set_req(1,cmp);
   608   _igvn.register_new_node_with_optimizer(test);
   609   set_ctrl(test, iff->in(0));
   611   // Replace the old IfNode with a new LoopEndNode
   612   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   613   IfNode *le = lex->as_If();
   614   uint dd = dom_depth(iff);
   615   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   616   set_loop(le, loop);
   618   // Get the loop-exit control
   619   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   621   // Need to swap loop-exit and loop-back control?
   622   if (iftrue_op == Op_IfFalse) {
   623     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   624     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   626     loop->_tail = back_control = ift2;
   627     set_loop(ift2, loop);
   628     set_loop(iff2, get_loop(iffalse));
   630     // Lazy update of 'get_ctrl' mechanism.
   631     lazy_replace_proj( iffalse, iff2 );
   632     lazy_replace_proj( iftrue,  ift2 );
   634     // Swap names
   635     iffalse = iff2;
   636     iftrue  = ift2;
   637   } else {
   638     _igvn.hash_delete(iffalse);
   639     _igvn.hash_delete(iftrue);
   640     iffalse->set_req_X( 0, le, &_igvn );
   641     iftrue ->set_req_X( 0, le, &_igvn );
   642   }
   644   set_idom(iftrue,  le, dd+1);
   645   set_idom(iffalse, le, dd+1);
   646   assert(iff->outcnt() == 0, "should be dead now");
   647   lazy_replace( iff, le ); // fix 'get_ctrl'
   649   // Now setup a new CountedLoopNode to replace the existing LoopNode
   650   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   651   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   652   // The following assert is approximately true, and defines the intention
   653   // of can_be_counted_loop.  It fails, however, because phase->type
   654   // is not yet initialized for this loop and its parts.
   655   //assert(l->can_be_counted_loop(this), "sanity");
   656   _igvn.register_new_node_with_optimizer(l);
   657   set_loop(l, loop);
   658   loop->_head = l;
   659   // Fix all data nodes placed at the old loop head.
   660   // Uses the lazy-update mechanism of 'get_ctrl'.
   661   lazy_replace( x, l );
   662   set_idom(l, init_control, dom_depth(x));
   664   // Check for immediately preceding SafePoint and remove
   665   Node *sfpt2 = le->in(0);
   666   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   667     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   669   // Free up intermediate goo
   670   _igvn.remove_dead_node(hook);
   672 #ifdef ASSERT
   673   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   674   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   675 #endif
   676 #ifndef PRODUCT
   677   if (TraceLoopOpts) {
   678     tty->print("Counted      ");
   679     loop->dump_head();
   680   }
   681 #endif
   683   C->print_method("After CountedLoop", 3);
   685   return true;
   686 }
   688 //----------------------exact_limit-------------------------------------------
   689 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   690   assert(loop->_head->is_CountedLoop(), "");
   691   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   693   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   694       cl->limit()->Opcode() == Op_LoopLimit) {
   695     // Old code has exact limit (it could be incorrect in case of int overflow).
   696     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   697     return cl->limit();
   698   }
   699   Node *limit = NULL;
   700 #ifdef ASSERT
   701   BoolTest::mask bt = cl->loopexit()->test_trip();
   702   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   703 #endif
   704   if (cl->has_exact_trip_count()) {
   705     // Simple case: loop has constant boundaries.
   706     // Use longs to avoid integer overflow.
   707     int stride_con = cl->stride_con();
   708     long  init_con = cl->init_trip()->get_int();
   709     long limit_con = cl->limit()->get_int();
   710     julong trip_cnt = cl->trip_count();
   711     long final_con = init_con + trip_cnt*stride_con;
   712     final_con -= stride_con;
   713     int final_int = (int)final_con;
   714     // The final value should be in integer range since the loop
   715     // is counted and the limit was checked for overflow.
   716     assert(final_con == (long)final_int, "final value should be integer");
   717     limit = _igvn.intcon(final_int);
   718   } else {
   719     // Create new LoopLimit node to get exact limit (final iv value).
   720     limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   721     register_new_node(limit, cl->in(LoopNode::EntryControl));
   722   }
   723   assert(limit != NULL, "sanity");
   724   return limit;
   725 }
   727 //------------------------------Ideal------------------------------------------
   728 // Return a node which is more "ideal" than the current node.
   729 // Attempt to convert into a counted-loop.
   730 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   731   if (!can_be_counted_loop(phase)) {
   732     phase->C->set_major_progress();
   733   }
   734   return RegionNode::Ideal(phase, can_reshape);
   735 }
   738 //=============================================================================
   739 //------------------------------Ideal------------------------------------------
   740 // Return a node which is more "ideal" than the current node.
   741 // Attempt to convert into a counted-loop.
   742 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   743   return RegionNode::Ideal(phase, can_reshape);
   744 }
   746 //------------------------------dump_spec--------------------------------------
   747 // Dump special per-node info
   748 #ifndef PRODUCT
   749 void CountedLoopNode::dump_spec(outputStream *st) const {
   750   LoopNode::dump_spec(st);
   751   if (stride_is_con()) {
   752     st->print("stride: %d ",stride_con());
   753   }
   754   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   755   if (is_main_loop()) st->print("main of N%d", _idx);
   756   if (is_post_loop()) st->print("post of N%d", _main_idx);
   757 }
   758 #endif
   760 //=============================================================================
   761 int CountedLoopEndNode::stride_con() const {
   762   return stride()->bottom_type()->is_int()->get_con();
   763 }
   765 //=============================================================================
   766 //------------------------------Value-----------------------------------------
   767 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   768   const Type* init_t   = phase->type(in(Init));
   769   const Type* limit_t  = phase->type(in(Limit));
   770   const Type* stride_t = phase->type(in(Stride));
   771   // Either input is TOP ==> the result is TOP
   772   if (init_t   == Type::TOP) return Type::TOP;
   773   if (limit_t  == Type::TOP) return Type::TOP;
   774   if (stride_t == Type::TOP) return Type::TOP;
   776   int stride_con = stride_t->is_int()->get_con();
   777   if (stride_con == 1)
   778     return NULL;  // Identity
   780   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   781     // Use longs to avoid integer overflow.
   782     long init_con   =  init_t->is_int()->get_con();
   783     long limit_con  = limit_t->is_int()->get_con();
   784     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   785     long trip_count = (limit_con - init_con + stride_m)/stride_con;
   786     long final_con  = init_con + stride_con*trip_count;
   787     int final_int = (int)final_con;
   788     // The final value should be in integer range since the loop
   789     // is counted and the limit was checked for overflow.
   790     assert(final_con == (long)final_int, "final value should be integer");
   791     return TypeInt::make(final_int);
   792   }
   794   return bottom_type(); // TypeInt::INT
   795 }
   797 //------------------------------Ideal------------------------------------------
   798 // Return a node which is more "ideal" than the current node.
   799 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   800   if (phase->type(in(Init))   == Type::TOP ||
   801       phase->type(in(Limit))  == Type::TOP ||
   802       phase->type(in(Stride)) == Type::TOP)
   803     return NULL;  // Dead
   805   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   806   if (stride_con == 1)
   807     return NULL;  // Identity
   809   if (in(Init)->is_Con() && in(Limit)->is_Con())
   810     return NULL;  // Value
   812   // Delay following optimizations until all loop optimizations
   813   // done to keep Ideal graph simple.
   814   if (!can_reshape || phase->C->major_progress())
   815     return NULL;
   817   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   818   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   819   int stride_p;
   820   long lim, ini;
   821   julong max;
   822   if (stride_con > 0) {
   823     stride_p = stride_con;
   824     lim = limit_t->_hi;
   825     ini = init_t->_lo;
   826     max = (julong)max_jint;
   827   } else {
   828     stride_p = -stride_con;
   829     lim = init_t->_hi;
   830     ini = limit_t->_lo;
   831     max = (julong)min_jint;
   832   }
   833   julong range = lim - ini + stride_p;
   834   if (range <= max) {
   835     // Convert to integer expression if it is not overflow.
   836     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   837     Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
   838     Node *bias  = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
   839     Node *trip  = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
   840     Node *span  = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
   841     return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
   842   }
   844   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   845       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   846     // Convert to long expression to avoid integer overflow
   847     // and let igvn optimizer convert this division.
   848     //
   849     Node*   init   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
   850     Node*  limit   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
   851     Node* stride   = phase->longcon(stride_con);
   852     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   854     Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
   855     Node *bias  = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
   856     Node *span;
   857     if (stride_con > 0 && is_power_of_2(stride_p)) {
   858       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   859       // and avoid generating rounding for division. Zero trip guard should
   860       // guarantee that init < limit but sometimes the guard is missing and
   861       // we can get situation when init > limit. Note, for the empty loop
   862       // optimization zero trip guard is generated explicitly which leaves
   863       // only RCE predicate where exact limit is used and the predicate
   864       // will simply fail forcing recompilation.
   865       Node* neg_stride   = phase->longcon(-stride_con);
   866       span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
   867     } else {
   868       Node *trip  = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
   869       span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
   870     }
   871     // Convert back to int
   872     Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
   873     return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
   874   }
   876   return NULL;    // No progress
   877 }
   879 //------------------------------Identity---------------------------------------
   880 // If stride == 1 return limit node.
   881 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
   882   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   883   if (stride_con == 1 || stride_con == -1)
   884     return in(Limit);
   885   return this;
   886 }
   888 //=============================================================================
   889 //----------------------match_incr_with_optional_truncation--------------------
   890 // Match increment with optional truncation:
   891 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   892 // Return NULL for failure. Success returns the increment node.
   893 Node* CountedLoopNode::match_incr_with_optional_truncation(
   894                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   895   // Quick cutouts:
   896   if (expr == NULL || expr->req() != 3)  return false;
   898   Node *t1 = NULL;
   899   Node *t2 = NULL;
   900   const TypeInt* trunc_t = TypeInt::INT;
   901   Node* n1 = expr;
   902   int   n1op = n1->Opcode();
   904   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   905   if (n1op == Op_AndI &&
   906       n1->in(2)->is_Con() &&
   907       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   908     // %%% This check should match any mask of 2**K-1.
   909     t1 = n1;
   910     n1 = t1->in(1);
   911     n1op = n1->Opcode();
   912     trunc_t = TypeInt::CHAR;
   913   } else if (n1op == Op_RShiftI &&
   914              n1->in(1) != NULL &&
   915              n1->in(1)->Opcode() == Op_LShiftI &&
   916              n1->in(2) == n1->in(1)->in(2) &&
   917              n1->in(2)->is_Con()) {
   918     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   919     // %%% This check should match any shift in [1..31].
   920     if (shift == 16 || shift == 8) {
   921       t1 = n1;
   922       t2 = t1->in(1);
   923       n1 = t2->in(1);
   924       n1op = n1->Opcode();
   925       if (shift == 16) {
   926         trunc_t = TypeInt::SHORT;
   927       } else if (shift == 8) {
   928         trunc_t = TypeInt::BYTE;
   929       }
   930     }
   931   }
   933   // If (maybe after stripping) it is an AddI, we won:
   934   if (n1op == Op_AddI) {
   935     *trunc1 = t1;
   936     *trunc2 = t2;
   937     *trunc_type = trunc_t;
   938     return n1;
   939   }
   941   // failed
   942   return NULL;
   943 }
   946 //------------------------------filtered_type--------------------------------
   947 // Return a type based on condition control flow
   948 // A successful return will be a type that is restricted due
   949 // to a series of dominating if-tests, such as:
   950 //    if (i < 10) {
   951 //       if (i > 0) {
   952 //          here: "i" type is [1..10)
   953 //       }
   954 //    }
   955 // or a control flow merge
   956 //    if (i < 10) {
   957 //       do {
   958 //          phi( , ) -- at top of loop type is [min_int..10)
   959 //         i = ?
   960 //       } while ( i < 10)
   961 //
   962 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   963   assert(n && n->bottom_type()->is_int(), "must be int");
   964   const TypeInt* filtered_t = NULL;
   965   if (!n->is_Phi()) {
   966     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   967     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   969   } else {
   970     Node* phi    = n->as_Phi();
   971     Node* region = phi->in(0);
   972     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   973     if (region && region != C->top()) {
   974       for (uint i = 1; i < phi->req(); i++) {
   975         Node* val   = phi->in(i);
   976         Node* use_c = region->in(i);
   977         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   978         if (val_t != NULL) {
   979           if (filtered_t == NULL) {
   980             filtered_t = val_t;
   981           } else {
   982             filtered_t = filtered_t->meet(val_t)->is_int();
   983           }
   984         }
   985       }
   986     }
   987   }
   988   const TypeInt* n_t = _igvn.type(n)->is_int();
   989   if (filtered_t != NULL) {
   990     n_t = n_t->join(filtered_t)->is_int();
   991   }
   992   return n_t;
   993 }
   996 //------------------------------filtered_type_from_dominators--------------------------------
   997 // Return a possibly more restrictive type for val based on condition control flow of dominators
   998 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   999   if (val->is_Con()) {
  1000      return val->bottom_type()->is_int();
  1002   uint if_limit = 10; // Max number of dominating if's visited
  1003   const TypeInt* rtn_t = NULL;
  1005   if (use_ctrl && use_ctrl != C->top()) {
  1006     Node* val_ctrl = get_ctrl(val);
  1007     uint val_dom_depth = dom_depth(val_ctrl);
  1008     Node* pred = use_ctrl;
  1009     uint if_cnt = 0;
  1010     while (if_cnt < if_limit) {
  1011       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1012         if_cnt++;
  1013         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1014         if (if_t != NULL) {
  1015           if (rtn_t == NULL) {
  1016             rtn_t = if_t;
  1017           } else {
  1018             rtn_t = rtn_t->join(if_t)->is_int();
  1022       pred = idom(pred);
  1023       if (pred == NULL || pred == C->top()) {
  1024         break;
  1026       // Stop if going beyond definition block of val
  1027       if (dom_depth(pred) < val_dom_depth) {
  1028         break;
  1032   return rtn_t;
  1036 //------------------------------dump_spec--------------------------------------
  1037 // Dump special per-node info
  1038 #ifndef PRODUCT
  1039 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1040   if( in(TestValue)->is_Bool() ) {
  1041     BoolTest bt( test_trip()); // Added this for g++.
  1043     st->print("[");
  1044     bt.dump_on(st);
  1045     st->print("]");
  1047   st->print(" ");
  1048   IfNode::dump_spec(st);
  1050 #endif
  1052 //=============================================================================
  1053 //------------------------------is_member--------------------------------------
  1054 // Is 'l' a member of 'this'?
  1055 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1056   while( l->_nest > _nest ) l = l->_parent;
  1057   return l == this;
  1060 //------------------------------set_nest---------------------------------------
  1061 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1062 int IdealLoopTree::set_nest( uint depth ) {
  1063   _nest = depth;
  1064   int bits = _has_call;
  1065   if( _child ) bits |= _child->set_nest(depth+1);
  1066   if( bits ) _has_call = 1;
  1067   if( _next  ) bits |= _next ->set_nest(depth  );
  1068   return bits;
  1071 //------------------------------split_fall_in----------------------------------
  1072 // Split out multiple fall-in edges from the loop header.  Move them to a
  1073 // private RegionNode before the loop.  This becomes the loop landing pad.
  1074 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1075   PhaseIterGVN &igvn = phase->_igvn;
  1076   uint i;
  1078   // Make a new RegionNode to be the landing pad.
  1079   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
  1080   phase->set_loop(landing_pad,_parent);
  1081   // Gather all the fall-in control paths into the landing pad
  1082   uint icnt = fall_in_cnt;
  1083   uint oreq = _head->req();
  1084   for( i = oreq-1; i>0; i-- )
  1085     if( !phase->is_member( this, _head->in(i) ) )
  1086       landing_pad->set_req(icnt--,_head->in(i));
  1088   // Peel off PhiNode edges as well
  1089   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1090     Node *oj = _head->fast_out(j);
  1091     if( oj->is_Phi() ) {
  1092       PhiNode* old_phi = oj->as_Phi();
  1093       assert( old_phi->region() == _head, "" );
  1094       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1095       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1096       uint icnt = fall_in_cnt;
  1097       for( i = oreq-1; i>0; i-- ) {
  1098         if( !phase->is_member( this, _head->in(i) ) ) {
  1099           p->init_req(icnt--, old_phi->in(i));
  1100           // Go ahead and clean out old edges from old phi
  1101           old_phi->del_req(i);
  1104       // Search for CSE's here, because ZKM.jar does a lot of
  1105       // loop hackery and we need to be a little incremental
  1106       // with the CSE to avoid O(N^2) node blow-up.
  1107       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1108       if( p2 ) {                // Found CSE
  1109         p->destruct();          // Recover useless new node
  1110         p = p2;                 // Use old node
  1111       } else {
  1112         igvn.register_new_node_with_optimizer(p, old_phi);
  1114       // Make old Phi refer to new Phi.
  1115       old_phi->add_req(p);
  1116       // Check for the special case of making the old phi useless and
  1117       // disappear it.  In JavaGrande I have a case where this useless
  1118       // Phi is the loop limit and prevents recognizing a CountedLoop
  1119       // which in turn prevents removing an empty loop.
  1120       Node *id_old_phi = old_phi->Identity( &igvn );
  1121       if( id_old_phi != old_phi ) { // Found a simple identity?
  1122         // Note that I cannot call 'replace_node' here, because
  1123         // that will yank the edge from old_phi to the Region and
  1124         // I'm mid-iteration over the Region's uses.
  1125         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1126           Node* use = old_phi->last_out(i);
  1127           igvn.hash_delete(use);
  1128           igvn._worklist.push(use);
  1129           uint uses_found = 0;
  1130           for (uint j = 0; j < use->len(); j++) {
  1131             if (use->in(j) == old_phi) {
  1132               if (j < use->req()) use->set_req (j, id_old_phi);
  1133               else                use->set_prec(j, id_old_phi);
  1134               uses_found++;
  1137           i -= uses_found;    // we deleted 1 or more copies of this edge
  1140       igvn._worklist.push(old_phi);
  1143   // Finally clean out the fall-in edges from the RegionNode
  1144   for( i = oreq-1; i>0; i-- ) {
  1145     if( !phase->is_member( this, _head->in(i) ) ) {
  1146       _head->del_req(i);
  1149   // Transform landing pad
  1150   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1151   // Insert landing pad into the header
  1152   _head->add_req(landing_pad);
  1155 //------------------------------split_outer_loop-------------------------------
  1156 // Split out the outermost loop from this shared header.
  1157 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1158   PhaseIterGVN &igvn = phase->_igvn;
  1160   // Find index of outermost loop; it should also be my tail.
  1161   uint outer_idx = 1;
  1162   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1164   // Make a LoopNode for the outermost loop.
  1165   Node *ctl = _head->in(LoopNode::EntryControl);
  1166   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
  1167   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1168   phase->set_created_loop_node();
  1170   // Outermost loop falls into '_head' loop
  1171   _head->set_req(LoopNode::EntryControl, outer);
  1172   _head->del_req(outer_idx);
  1173   // Split all the Phis up between '_head' loop and 'outer' loop.
  1174   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1175     Node *out = _head->fast_out(j);
  1176     if( out->is_Phi() ) {
  1177       PhiNode *old_phi = out->as_Phi();
  1178       assert( old_phi->region() == _head, "" );
  1179       Node *phi = PhiNode::make_blank(outer, old_phi);
  1180       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1181       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1182       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1183       // Make old Phi point to new Phi on the fall-in path
  1184       igvn.hash_delete(old_phi);
  1185       old_phi->set_req(LoopNode::EntryControl, phi);
  1186       old_phi->del_req(outer_idx);
  1187       igvn._worklist.push(old_phi);
  1191   // Use the new loop head instead of the old shared one
  1192   _head = outer;
  1193   phase->set_loop(_head, this);
  1196 //------------------------------fix_parent-------------------------------------
  1197 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1198   loop->_parent = parent;
  1199   if( loop->_child ) fix_parent( loop->_child, loop   );
  1200   if( loop->_next  ) fix_parent( loop->_next , parent );
  1203 //------------------------------estimate_path_freq-----------------------------
  1204 static float estimate_path_freq( Node *n ) {
  1205   // Try to extract some path frequency info
  1206   IfNode *iff;
  1207   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1208     uint nop = n->Opcode();
  1209     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1210       n = n->in(0);
  1211       continue;
  1213     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1214       // Assume call does not always throw exceptions: means the call-site
  1215       // count is also the frequency of the fall-through path.
  1216       assert( n->is_CatchProj(), "" );
  1217       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1218         return 0.0f;            // Assume call exception path is rare
  1219       Node *call = n->in(0)->in(0)->in(0);
  1220       assert( call->is_Call(), "expect a call here" );
  1221       const JVMState *jvms = ((CallNode*)call)->jvms();
  1222       ciMethodData* methodData = jvms->method()->method_data();
  1223       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1224       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1225       if ((data == NULL) || !data->is_CounterData()) {
  1226         // no call profile available, try call's control input
  1227         n = n->in(0);
  1228         continue;
  1230       return data->as_CounterData()->count()/FreqCountInvocations;
  1232     // See if there's a gating IF test
  1233     Node *n_c = n->in(0);
  1234     if( !n_c->is_If() ) break;       // No estimate available
  1235     iff = n_c->as_If();
  1236     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1237       // Compute how much count comes on this path
  1238       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1239     // Have no count info.  Skip dull uncommon-trap like branches.
  1240     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1241         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1242       break;
  1243     // Skip through never-taken branch; look for a real loop exit.
  1244     n = iff->in(0);
  1246   return 0.0f;                  // No estimate available
  1249 //------------------------------merge_many_backedges---------------------------
  1250 // Merge all the backedges from the shared header into a private Region.
  1251 // Feed that region as the one backedge to this loop.
  1252 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1253   uint i;
  1255   // Scan for the top 2 hottest backedges
  1256   float hotcnt = 0.0f;
  1257   float warmcnt = 0.0f;
  1258   uint hot_idx = 0;
  1259   // Loop starts at 2 because slot 1 is the fall-in path
  1260   for( i = 2; i < _head->req(); i++ ) {
  1261     float cnt = estimate_path_freq(_head->in(i));
  1262     if( cnt > hotcnt ) {       // Grab hottest path
  1263       warmcnt = hotcnt;
  1264       hotcnt = cnt;
  1265       hot_idx = i;
  1266     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1267       warmcnt = cnt;
  1271   // See if the hottest backedge is worthy of being an inner loop
  1272   // by being much hotter than the next hottest backedge.
  1273   if( hotcnt <= 0.0001 ||
  1274       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1276   // Peel out the backedges into a private merge point; peel
  1277   // them all except optionally hot_idx.
  1278   PhaseIterGVN &igvn = phase->_igvn;
  1280   Node *hot_tail = NULL;
  1281   // Make a Region for the merge point
  1282   Node *r = new (phase->C, 1) RegionNode(1);
  1283   for( i = 2; i < _head->req(); i++ ) {
  1284     if( i != hot_idx )
  1285       r->add_req( _head->in(i) );
  1286     else hot_tail = _head->in(i);
  1288   igvn.register_new_node_with_optimizer(r, _head);
  1289   // Plug region into end of loop _head, followed by hot_tail
  1290   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1291   _head->set_req(2, r);
  1292   if( hot_idx ) _head->add_req(hot_tail);
  1294   // Split all the Phis up between '_head' loop and the Region 'r'
  1295   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1296     Node *out = _head->fast_out(j);
  1297     if( out->is_Phi() ) {
  1298       PhiNode* n = out->as_Phi();
  1299       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1300       Node *hot_phi = NULL;
  1301       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
  1302       // Check all inputs for the ones to peel out
  1303       uint j = 1;
  1304       for( uint i = 2; i < n->req(); i++ ) {
  1305         if( i != hot_idx )
  1306           phi->set_req( j++, n->in(i) );
  1307         else hot_phi = n->in(i);
  1309       // Register the phi but do not transform until whole place transforms
  1310       igvn.register_new_node_with_optimizer(phi, n);
  1311       // Add the merge phi to the old Phi
  1312       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1313       n->set_req(2, phi);
  1314       if( hot_idx ) n->add_req(hot_phi);
  1319   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1320   // of self loop tree.  Turn self into a loop headed by _head and with
  1321   // tail being the new merge point.
  1322   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1323   phase->set_loop(_tail,ilt);   // Adjust tail
  1324   _tail = r;                    // Self's tail is new merge point
  1325   phase->set_loop(r,this);
  1326   ilt->_child = _child;         // New guy has my children
  1327   _child = ilt;                 // Self has new guy as only child
  1328   ilt->_parent = this;          // new guy has self for parent
  1329   ilt->_nest = _nest;           // Same nesting depth (for now)
  1331   // Starting with 'ilt', look for child loop trees using the same shared
  1332   // header.  Flatten these out; they will no longer be loops in the end.
  1333   IdealLoopTree **pilt = &_child;
  1334   while( ilt ) {
  1335     if( ilt->_head == _head ) {
  1336       uint i;
  1337       for( i = 2; i < _head->req(); i++ )
  1338         if( _head->in(i) == ilt->_tail )
  1339           break;                // Still a loop
  1340       if( i == _head->req() ) { // No longer a loop
  1341         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1342         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1343         IdealLoopTree **cp = &ilt->_child;
  1344         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1345         *cp = ilt->_next;       // Hang next list at end of child list
  1346         *pilt = ilt->_child;    // Move child up to replace ilt
  1347         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1348         ilt = ilt->_child;      // Repeat using new ilt
  1349         continue;               // do not advance over ilt->_child
  1351       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1352       phase->set_loop(_head,ilt);
  1354     pilt = &ilt->_child;        // Advance to next
  1355     ilt = *pilt;
  1358   if( _child ) fix_parent( _child, this );
  1361 //------------------------------beautify_loops---------------------------------
  1362 // Split shared headers and insert loop landing pads.
  1363 // Insert a LoopNode to replace the RegionNode.
  1364 // Return TRUE if loop tree is structurally changed.
  1365 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1366   bool result = false;
  1367   // Cache parts in locals for easy
  1368   PhaseIterGVN &igvn = phase->_igvn;
  1370   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1372   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1373   int fall_in_cnt = 0;
  1374   for( uint i = 1; i < _head->req(); i++ )
  1375     if( !phase->is_member( this, _head->in(i) ) )
  1376       fall_in_cnt++;
  1377   assert( fall_in_cnt, "at least 1 fall-in path" );
  1378   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1379     split_fall_in( phase, fall_in_cnt );
  1381   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1382   // the left.
  1383   fall_in_cnt = 1;
  1384   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1385     fall_in_cnt++;
  1386   if( fall_in_cnt > 1 ) {
  1387     // Since I am just swapping inputs I do not need to update def-use info
  1388     Node *tmp = _head->in(1);
  1389     _head->set_req( 1, _head->in(fall_in_cnt) );
  1390     _head->set_req( fall_in_cnt, tmp );
  1391     // Swap also all Phis
  1392     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1393       Node* phi = _head->fast_out(i);
  1394       if( phi->is_Phi() ) {
  1395         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1396         tmp = phi->in(1);
  1397         phi->set_req( 1, phi->in(fall_in_cnt) );
  1398         phi->set_req( fall_in_cnt, tmp );
  1402   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1403   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1405   // If I am a shared header (multiple backedges), peel off the many
  1406   // backedges into a private merge point and use the merge point as
  1407   // the one true backedge.
  1408   if( _head->req() > 3 ) {
  1409     // Merge the many backedges into a single backedge but leave
  1410     // the hottest backedge as separate edge for the following peel.
  1411     merge_many_backedges( phase );
  1412     result = true;
  1415   // If I have one hot backedge, peel off myself loop.
  1416   // I better be the outermost loop.
  1417   if( _head->req() > 3 ) {
  1418     split_outer_loop( phase );
  1419     result = true;
  1421   } else if( !_head->is_Loop() && !_irreducible ) {
  1422     // Make a new LoopNode to replace the old loop head
  1423     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1424     l = igvn.register_new_node_with_optimizer(l, _head);
  1425     phase->set_created_loop_node();
  1426     // Go ahead and replace _head
  1427     phase->_igvn.replace_node( _head, l );
  1428     _head = l;
  1429     phase->set_loop(_head, this);
  1432   // Now recursively beautify nested loops
  1433   if( _child ) result |= _child->beautify_loops( phase );
  1434   if( _next  ) result |= _next ->beautify_loops( phase );
  1435   return result;
  1438 //------------------------------allpaths_check_safepts----------------------------
  1439 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1440 // encountered.  Helper for check_safepts.
  1441 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1442   assert(stack.size() == 0, "empty stack");
  1443   stack.push(_tail);
  1444   visited.Clear();
  1445   visited.set(_tail->_idx);
  1446   while (stack.size() > 0) {
  1447     Node* n = stack.pop();
  1448     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1449       // Terminate this path
  1450     } else if (n->Opcode() == Op_SafePoint) {
  1451       if (_phase->get_loop(n) != this) {
  1452         if (_required_safept == NULL) _required_safept = new Node_List();
  1453         _required_safept->push(n);  // save the one closest to the tail
  1455       // Terminate this path
  1456     } else {
  1457       uint start = n->is_Region() ? 1 : 0;
  1458       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1459       for (uint i = start; i < end; i++) {
  1460         Node* in = n->in(i);
  1461         assert(in->is_CFG(), "must be");
  1462         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1463           stack.push(in);
  1470 //------------------------------check_safepts----------------------------
  1471 // Given dominators, try to find loops with calls that must always be
  1472 // executed (call dominates loop tail).  These loops do not need non-call
  1473 // safepoints (ncsfpt).
  1474 //
  1475 // A complication is that a safepoint in a inner loop may be needed
  1476 // by an outer loop. In the following, the inner loop sees it has a
  1477 // call (block 3) on every path from the head (block 2) to the
  1478 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1479 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1480 //
  1481 //          entry  0
  1482 //                 |
  1483 //                 v
  1484 // outer 1,2    +->1
  1485 //              |  |
  1486 //              |  v
  1487 //              |  2<---+  ncsfpt in 2
  1488 //              |_/|\   |
  1489 //                 | v  |
  1490 // inner 2,3      /  3  |  call in 3
  1491 //               /   |  |
  1492 //              v    +--+
  1493 //        exit  4
  1494 //
  1495 //
  1496 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1497 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1498 // is first looked for in the lists for the outer loops of the current loop.
  1499 //
  1500 // The insights into the problem:
  1501 //  A) counted loops are okay
  1502 //  B) innermost loops are okay (only an inner loop can delete
  1503 //     a ncsfpt needed by an outer loop)
  1504 //  C) a loop is immune from an inner loop deleting a safepoint
  1505 //     if the loop has a call on the idom-path
  1506 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1507 //     idom-path that is not in a nested loop
  1508 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1509 //     loop needs to be prevented from deletion by an inner loop
  1510 //
  1511 // There are two analyses:
  1512 //  1) The first, and cheaper one, scans the loop body from
  1513 //     tail to head following the idom (immediate dominator)
  1514 //     chain, looking for the cases (C,D,E) above.
  1515 //     Since inner loops are scanned before outer loops, there is summary
  1516 //     information about inner loops.  Inner loops can be skipped over
  1517 //     when the tail of an inner loop is encountered.
  1518 //
  1519 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1520 //     the idom path (which is rare), scans all predecessor control paths
  1521 //     from the tail to the head, terminating a path when a call or sfpt
  1522 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1523 //
  1524 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1525   // Bottom up traversal
  1526   IdealLoopTree* ch = _child;
  1527   while (ch != NULL) {
  1528     ch->check_safepts(visited, stack);
  1529     ch = ch->_next;
  1532   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1533     bool  has_call         = false; // call on dom-path
  1534     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1535     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1536     // Scan the dom-path nodes from tail to head
  1537     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1538       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1539         has_call = true;
  1540         _has_sfpt = 1;          // Then no need for a safept!
  1541         break;
  1542       } else if (n->Opcode() == Op_SafePoint) {
  1543         if (_phase->get_loop(n) == this) {
  1544           has_local_ncsfpt = true;
  1545           break;
  1547         if (nonlocal_ncsfpt == NULL) {
  1548           nonlocal_ncsfpt = n; // save the one closest to the tail
  1550       } else {
  1551         IdealLoopTree* nlpt = _phase->get_loop(n);
  1552         if (this != nlpt) {
  1553           // If at an inner loop tail, see if the inner loop has already
  1554           // recorded seeing a call on the dom-path (and stop.)  If not,
  1555           // jump to the head of the inner loop.
  1556           assert(is_member(nlpt), "nested loop");
  1557           Node* tail = nlpt->_tail;
  1558           if (tail->in(0)->is_If()) tail = tail->in(0);
  1559           if (n == tail) {
  1560             // If inner loop has call on dom-path, so does outer loop
  1561             if (nlpt->_has_sfpt) {
  1562               has_call = true;
  1563               _has_sfpt = 1;
  1564               break;
  1566             // Skip to head of inner loop
  1567             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1568             n = nlpt->_head;
  1573     // Record safept's that this loop needs preserved when an
  1574     // inner loop attempts to delete it's safepoints.
  1575     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1576       if (nonlocal_ncsfpt != NULL) {
  1577         if (_required_safept == NULL) _required_safept = new Node_List();
  1578         _required_safept->push(nonlocal_ncsfpt);
  1579       } else {
  1580         // Failed to find a suitable safept on the dom-path.  Now use
  1581         // an all paths walk from tail to head, looking for safepoints to preserve.
  1582         allpaths_check_safepts(visited, stack);
  1588 //---------------------------is_deleteable_safept----------------------------
  1589 // Is safept not required by an outer loop?
  1590 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1591   assert(sfpt->Opcode() == Op_SafePoint, "");
  1592   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1593   while (lp != NULL) {
  1594     Node_List* sfpts = lp->_required_safept;
  1595     if (sfpts != NULL) {
  1596       for (uint i = 0; i < sfpts->size(); i++) {
  1597         if (sfpt == sfpts->at(i))
  1598           return false;
  1601     lp = lp->_parent;
  1603   return true;
  1606 //---------------------------replace_parallel_iv-------------------------------
  1607 // Replace parallel induction variable (parallel to trip counter)
  1608 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1609   assert(loop->_head->is_CountedLoop(), "");
  1610   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1611   Node *incr = cl->incr();
  1612   if (incr == NULL)
  1613     return;         // Dead loop?
  1614   Node *init = cl->init_trip();
  1615   Node *phi  = cl->phi();
  1616   // protect against stride not being a constant
  1617   if (!cl->stride_is_con())
  1618     return;
  1619   int stride_con = cl->stride_con();
  1621   PhaseGVN *gvn = &_igvn;
  1623   // Visit all children, looking for Phis
  1624   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1625     Node *out = cl->out(i);
  1626     // Look for other phis (secondary IVs). Skip dead ones
  1627     if (!out->is_Phi() || out == phi || !has_node(out))
  1628       continue;
  1629     PhiNode* phi2 = out->as_Phi();
  1630     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1631     // Look for induction variables of the form:  X += constant
  1632     if (phi2->region() != loop->_head ||
  1633         incr2->req() != 3 ||
  1634         incr2->in(1) != phi2 ||
  1635         incr2 == incr ||
  1636         incr2->Opcode() != Op_AddI ||
  1637         !incr2->in(2)->is_Con())
  1638       continue;
  1640     // Check for parallel induction variable (parallel to trip counter)
  1641     // via an affine function.  In particular, count-down loops with
  1642     // count-up array indices are common. We only RCE references off
  1643     // the trip-counter, so we need to convert all these to trip-counter
  1644     // expressions.
  1645     Node *init2 = phi2->in( LoopNode::EntryControl );
  1646     int stride_con2 = incr2->in(2)->get_int();
  1648     // The general case here gets a little tricky.  We want to find the
  1649     // GCD of all possible parallel IV's and make a new IV using this
  1650     // GCD for the loop.  Then all possible IVs are simple multiples of
  1651     // the GCD.  In practice, this will cover very few extra loops.
  1652     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1653     // where +/-1 is the common case, but other integer multiples are
  1654     // also easy to handle.
  1655     int ratio_con = stride_con2/stride_con;
  1657     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1658       // Convert to using the trip counter.  The parallel induction
  1659       // variable differs from the trip counter by a loop-invariant
  1660       // amount, the difference between their respective initial values.
  1661       // It is scaled by the 'ratio_con'.
  1662       // Perform local Ideal transformation since in most cases ratio == 1.
  1663       Node* ratio = _igvn.intcon(ratio_con);
  1664       set_ctrl(ratio, C->root());
  1665       Node* hook = new (C, 3) Node(3);
  1666       Node* ratio_init = gvn->transform(new (C, 3) MulINode(init, ratio));
  1667       hook->init_req(0, ratio_init);
  1668       Node* diff = gvn->transform(new (C, 3) SubINode(init2, ratio_init));
  1669       hook->init_req(1, diff);
  1670       Node* ratio_idx = gvn->transform(new (C, 3) MulINode(phi, ratio));
  1671       hook->init_req(2, ratio_idx);
  1672       Node* add  = gvn->transform(new (C, 3) AddINode(ratio_idx, diff));
  1673       set_subtree_ctrl(add);
  1674       _igvn.replace_node( phi2, add );
  1675       // Free up intermediate goo
  1676       _igvn.remove_dead_node(hook);
  1677       // Sometimes an induction variable is unused
  1678       if (add->outcnt() == 0) {
  1679         _igvn.remove_dead_node(add);
  1681       --i; // deleted this phi; rescan starting with next position
  1682       continue;
  1687 //------------------------------counted_loop-----------------------------------
  1688 // Convert to counted loops where possible
  1689 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1691   // For grins, set the inner-loop flag here
  1692   if (!_child) {
  1693     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1696   if (_head->is_CountedLoop() ||
  1697       phase->is_counted_loop(_head, this)) {
  1698     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1700     // Look for a safepoint to remove
  1701     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1702       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1703           phase->is_deleteable_safept(n))
  1704         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1706     // Look for induction variables
  1707     phase->replace_parallel_iv(this);
  1709   } else if (_parent != NULL && !_irreducible) {
  1710     // Not a counted loop.
  1711     // Look for a safepoint on the idom-path to remove, preserving the first one
  1712     bool found = false;
  1713     Node* n = tail();
  1714     for (; n != _head && !found; n = phase->idom(n)) {
  1715       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1716         found = true; // Found one
  1718     // Skip past it and delete the others
  1719     for (; n != _head; n = phase->idom(n)) {
  1720       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1721           phase->is_deleteable_safept(n))
  1722         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1726   // Recursively
  1727   if (_child) _child->counted_loop( phase );
  1728   if (_next)  _next ->counted_loop( phase );
  1731 #ifndef PRODUCT
  1732 //------------------------------dump_head--------------------------------------
  1733 // Dump 1 liner for loop header info
  1734 void IdealLoopTree::dump_head( ) const {
  1735   for (uint i=0; i<_nest; i++)
  1736     tty->print("  ");
  1737   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1738   if (_irreducible) tty->print(" IRREDUCIBLE");
  1739   Node* entry = _head->in(LoopNode::EntryControl);
  1740   if (LoopLimitCheck) {
  1741     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1742     if (predicate != NULL ) {
  1743       tty->print(" limit_check");
  1744       entry = entry->in(0)->in(0);
  1747   if (UseLoopPredicate) {
  1748     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1749     if (entry != NULL) {
  1750       tty->print(" predicated");
  1753   if (_head->is_CountedLoop()) {
  1754     CountedLoopNode *cl = _head->as_CountedLoop();
  1755     tty->print(" counted");
  1757     Node* init_n = cl->init_trip();
  1758     if (init_n  != NULL &&  init_n->is_Con())
  1759       tty->print(" [%d,", cl->init_trip()->get_int());
  1760     else
  1761       tty->print(" [int,");
  1762     Node* limit_n = cl->limit();
  1763     if (limit_n  != NULL &&  limit_n->is_Con())
  1764       tty->print("%d),", cl->limit()->get_int());
  1765     else
  1766       tty->print("int),");
  1767     int stride_con  = cl->stride_con();
  1768     if (stride_con > 0) tty->print("+");
  1769     tty->print("%d", stride_con);
  1771     if (cl->is_pre_loop ()) tty->print(" pre" );
  1772     if (cl->is_main_loop()) tty->print(" main");
  1773     if (cl->is_post_loop()) tty->print(" post");
  1775   tty->cr();
  1778 //------------------------------dump-------------------------------------------
  1779 // Dump loops by loop tree
  1780 void IdealLoopTree::dump( ) const {
  1781   dump_head();
  1782   if (_child) _child->dump();
  1783   if (_next)  _next ->dump();
  1786 #endif
  1788 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1789   if (loop == root) {
  1790     if (loop->_child != NULL) {
  1791       log->begin_head("loop_tree");
  1792       log->end_head();
  1793       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1794       log->tail("loop_tree");
  1795       assert(loop->_next == NULL, "what?");
  1797   } else {
  1798     Node* head = loop->_head;
  1799     log->begin_head("loop");
  1800     log->print(" idx='%d' ", head->_idx);
  1801     if (loop->_irreducible) log->print("irreducible='1' ");
  1802     if (head->is_Loop()) {
  1803       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1804       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1806     if (head->is_CountedLoop()) {
  1807       CountedLoopNode* cl = head->as_CountedLoop();
  1808       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1809       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1810       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1812     log->end_head();
  1813     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1814     log->tail("loop");
  1815     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1819 //---------------------collect_potentially_useful_predicates-----------------------
  1820 // Helper function to collect potentially useful predicates to prevent them from
  1821 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1822 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1823                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1824   if (loop->_child) { // child
  1825     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1828   // self (only loops that we can apply loop predication may use their predicates)
  1829   if (loop->_head->is_Loop() &&
  1830       !loop->_irreducible    &&
  1831       !loop->tail()->is_top()) {
  1832     LoopNode* lpn = loop->_head->as_Loop();
  1833     Node* entry = lpn->in(LoopNode::EntryControl);
  1834     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1835     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1836       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1837       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1838       entry = entry->in(0)->in(0);
  1840     predicate_proj = find_predicate(entry); // Predicate
  1841     if (predicate_proj != NULL ) {
  1842       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1846   if (loop->_next) { // sibling
  1847     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1851 //------------------------eliminate_useless_predicates-----------------------------
  1852 // Eliminate all inserted predicates if they could not be used by loop predication.
  1853 // Note: it will also eliminates loop limits check predicate since it also uses
  1854 // Opaque1 node (see Parse::add_predicate()).
  1855 void PhaseIdealLoop::eliminate_useless_predicates() {
  1856   if (C->predicate_count() == 0)
  1857     return; // no predicate left
  1859   Unique_Node_List useful_predicates; // to store useful predicates
  1860   if (C->has_loops()) {
  1861     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1864   for (int i = C->predicate_count(); i > 0; i--) {
  1865      Node * n = C->predicate_opaque1_node(i-1);
  1866      assert(n->Opcode() == Op_Opaque1, "must be");
  1867      if (!useful_predicates.member(n)) { // not in the useful list
  1868        _igvn.replace_node(n, n->in(1));
  1873 //=============================================================================
  1874 //----------------------------build_and_optimize-------------------------------
  1875 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1876 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1877 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
  1878   ResourceMark rm;
  1880   int old_progress = C->major_progress();
  1881   uint orig_worklist_size = _igvn._worklist.size();
  1883   // Reset major-progress flag for the driver's heuristics
  1884   C->clear_major_progress();
  1886 #ifndef PRODUCT
  1887   // Capture for later assert
  1888   uint unique = C->unique();
  1889   _loop_invokes++;
  1890   _loop_work += unique;
  1891 #endif
  1893   // True if the method has at least 1 irreducible loop
  1894   _has_irreducible_loops = false;
  1896   _created_loop_node = false;
  1898   Arena *a = Thread::current()->resource_area();
  1899   VectorSet visited(a);
  1900   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1901   _nodes.map(C->unique(), NULL);
  1902   memset(_nodes.adr(), 0, wordSize * C->unique());
  1904   // Pre-build the top-level outermost loop tree entry
  1905   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1906   // Do not need a safepoint at the top level
  1907   _ltree_root->_has_sfpt = 1;
  1909   // Initialize Dominators.
  1910   // Checked in clone_loop_predicate() during beautify_loops().
  1911   _idom_size = 0;
  1912   _idom      = NULL;
  1913   _dom_depth = NULL;
  1914   _dom_stk   = NULL;
  1916   // Empty pre-order array
  1917   allocate_preorders();
  1919   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1920   // IdealLoopTree entries.  Data nodes are NOT walked.
  1921   build_loop_tree();
  1922   // Check for bailout, and return
  1923   if (C->failing()) {
  1924     return;
  1927   // No loops after all
  1928   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1930   // There should always be an outer loop containing the Root and Return nodes.
  1931   // If not, we have a degenerate empty program.  Bail out in this case.
  1932   if (!has_node(C->root())) {
  1933     if (!_verify_only) {
  1934       C->clear_major_progress();
  1935       C->record_method_not_compilable("empty program detected during loop optimization");
  1937     return;
  1940   // Nothing to do, so get out
  1941   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1942     _igvn.optimize();           // Cleanup NeverBranches
  1943     return;
  1946   // Set loop nesting depth
  1947   _ltree_root->set_nest( 0 );
  1949   // Split shared headers and insert loop landing pads.
  1950   // Do not bother doing this on the Root loop of course.
  1951   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1952     C->print_method("Before beautify loops", 3);
  1953     if( _ltree_root->_child->beautify_loops( this ) ) {
  1954       // Re-build loop tree!
  1955       _ltree_root->_child = NULL;
  1956       _nodes.clear();
  1957       reallocate_preorders();
  1958       build_loop_tree();
  1959       // Check for bailout, and return
  1960       if (C->failing()) {
  1961         return;
  1963       // Reset loop nesting depth
  1964       _ltree_root->set_nest( 0 );
  1966       C->print_method("After beautify loops", 3);
  1970   // Build Dominators for elision of NULL checks & loop finding.
  1971   // Since nodes do not have a slot for immediate dominator, make
  1972   // a persistent side array for that info indexed on node->_idx.
  1973   _idom_size = C->unique();
  1974   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1975   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1976   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1977   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1979   Dominators();
  1981   if (!_verify_only) {
  1982     // As a side effect, Dominators removed any unreachable CFG paths
  1983     // into RegionNodes.  It doesn't do this test against Root, so
  1984     // we do it here.
  1985     for( uint i = 1; i < C->root()->req(); i++ ) {
  1986       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1987         _igvn.hash_delete(C->root());
  1988         C->root()->del_req(i);
  1989         _igvn._worklist.push(C->root());
  1990         i--;                      // Rerun same iteration on compressed edges
  1994     // Given dominators, try to find inner loops with calls that must
  1995     // always be executed (call dominates loop tail).  These loops do
  1996     // not need a separate safepoint.
  1997     Node_List cisstack(a);
  1998     _ltree_root->check_safepts(visited, cisstack);
  2001   // Walk the DATA nodes and place into loops.  Find earliest control
  2002   // node.  For CFG nodes, the _nodes array starts out and remains
  2003   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2004   // _nodes array holds the earliest legal controlling CFG node.
  2006   // Allocate stack with enough space to avoid frequent realloc
  2007   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  2008   Node_Stack nstack( a, stack_size );
  2010   visited.Clear();
  2011   Node_List worklist(a);
  2012   // Don't need C->root() on worklist since
  2013   // it will be processed among C->top() inputs
  2014   worklist.push( C->top() );
  2015   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2016   build_loop_early( visited, worklist, nstack );
  2018   // Given early legal placement, try finding counted loops.  This placement
  2019   // is good enough to discover most loop invariants.
  2020   if( !_verify_me && !_verify_only )
  2021     _ltree_root->counted_loop( this );
  2023   // Find latest loop placement.  Find ideal loop placement.
  2024   visited.Clear();
  2025   init_dom_lca_tags();
  2026   // Need C->root() on worklist when processing outs
  2027   worklist.push( C->root() );
  2028   NOT_PRODUCT( C->verify_graph_edges(); )
  2029   worklist.push( C->top() );
  2030   build_loop_late( visited, worklist, nstack );
  2032   if (_verify_only) {
  2033     // restore major progress flag
  2034     for (int i = 0; i < old_progress; i++)
  2035       C->set_major_progress();
  2036     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2037     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2038     return;
  2041   // Some parser-inserted loop predicates could never be used by loop
  2042   // predication or they were moved away from loop during some optimizations.
  2043   // For example, peeling. Eliminate them before next loop optimizations.
  2044   if (UseLoopPredicate || LoopLimitCheck) {
  2045     eliminate_useless_predicates();
  2048   // clear out the dead code
  2049   while(_deadlist.size()) {
  2050     _igvn.remove_globally_dead_node(_deadlist.pop());
  2053 #ifndef PRODUCT
  2054   C->verify_graph_edges();
  2055   if (_verify_me) {             // Nested verify pass?
  2056     // Check to see if the verify mode is broken
  2057     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2058     return;
  2060   if(VerifyLoopOptimizations) verify();
  2061   if(TraceLoopOpts && C->has_loops()) {
  2062     _ltree_root->dump();
  2064 #endif
  2066   if (ReassociateInvariants) {
  2067     // Reassociate invariants and prep for split_thru_phi
  2068     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2069       IdealLoopTree* lpt = iter.current();
  2070       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2072       lpt->reassociate_invariants(this);
  2074       // Because RCE opportunities can be masked by split_thru_phi,
  2075       // look for RCE candidates and inhibit split_thru_phi
  2076       // on just their loop-phi's for this pass of loop opts
  2077       if (SplitIfBlocks && do_split_ifs) {
  2078         if (lpt->policy_range_check(this)) {
  2079           lpt->_rce_candidate = 1; // = true
  2085   // Check for aggressive application of split-if and other transforms
  2086   // that require basic-block info (like cloning through Phi's)
  2087   if( SplitIfBlocks && do_split_ifs ) {
  2088     visited.Clear();
  2089     split_if_with_blocks( visited, nstack );
  2090     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2093   // Perform loop predication before iteration splitting
  2094   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2095     _ltree_root->_child->loop_predication(this);
  2098   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2099     if (do_intrinsify_fill()) {
  2100       C->set_major_progress();
  2104   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2105   // range checks or one-shot null checks.
  2107   // If split-if's didn't hack the graph too bad (no CFG changes)
  2108   // then do loop opts.
  2109   if (C->has_loops() && !C->major_progress()) {
  2110     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2111     _ltree_root->_child->iteration_split( this, worklist );
  2112     // No verify after peeling!  GCM has hoisted code out of the loop.
  2113     // After peeling, the hoisted code could sink inside the peeled area.
  2114     // The peeling code does not try to recompute the best location for
  2115     // all the code before the peeled area, so the verify pass will always
  2116     // complain about it.
  2118   // Do verify graph edges in any case
  2119   NOT_PRODUCT( C->verify_graph_edges(); );
  2121   if (!do_split_ifs) {
  2122     // We saw major progress in Split-If to get here.  We forced a
  2123     // pass with unrolling and not split-if, however more split-if's
  2124     // might make progress.  If the unrolling didn't make progress
  2125     // then the major-progress flag got cleared and we won't try
  2126     // another round of Split-If.  In particular the ever-common
  2127     // instance-of/check-cast pattern requires at least 2 rounds of
  2128     // Split-If to clear out.
  2129     C->set_major_progress();
  2132   // Repeat loop optimizations if new loops were seen
  2133   if (created_loop_node()) {
  2134     C->set_major_progress();
  2137   // Keep loop predicates and perform optimizations with them
  2138   // until no more loop optimizations could be done.
  2139   // After that switch predicates off and do more loop optimizations.
  2140   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2141      C->cleanup_loop_predicates(_igvn);
  2142 #ifndef PRODUCT
  2143      if (TraceLoopOpts) {
  2144        tty->print_cr("PredicatesOff");
  2146 #endif
  2147      C->set_major_progress();
  2150   // Convert scalar to superword operations at the end of all loop opts.
  2151   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2152     // SuperWord transform
  2153     SuperWord sw(this);
  2154     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2155       IdealLoopTree* lpt = iter.current();
  2156       if (lpt->is_counted()) {
  2157         sw.transform_loop(lpt);
  2162   // Cleanup any modified bits
  2163   _igvn.optimize();
  2165   // disable assert until issue with split_flow_path is resolved (6742111)
  2166   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2167   //        "shouldn't introduce irreducible loops");
  2169   if (C->log() != NULL) {
  2170     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2174 #ifndef PRODUCT
  2175 //------------------------------print_statistics-------------------------------
  2176 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2177 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2178 void PhaseIdealLoop::print_statistics() {
  2179   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2182 //------------------------------verify-----------------------------------------
  2183 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2184 static int fail;                // debug only, so its multi-thread dont care
  2185 void PhaseIdealLoop::verify() const {
  2186   int old_progress = C->major_progress();
  2187   ResourceMark rm;
  2188   PhaseIdealLoop loop_verify( _igvn, this );
  2189   VectorSet visited(Thread::current()->resource_area());
  2191   fail = 0;
  2192   verify_compare( C->root(), &loop_verify, visited );
  2193   assert( fail == 0, "verify loops failed" );
  2194   // Verify loop structure is the same
  2195   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2196   // Reset major-progress.  It was cleared by creating a verify version of
  2197   // PhaseIdealLoop.
  2198   for( int i=0; i<old_progress; i++ )
  2199     C->set_major_progress();
  2202 //------------------------------verify_compare---------------------------------
  2203 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2204 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2205   if( !n ) return;
  2206   if( visited.test_set( n->_idx ) ) return;
  2207   if( !_nodes[n->_idx] ) {      // Unreachable
  2208     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2209     return;
  2212   uint i;
  2213   for( i = 0; i < n->req(); i++ )
  2214     verify_compare( n->in(i), loop_verify, visited );
  2216   // Check the '_nodes' block/loop structure
  2217   i = n->_idx;
  2218   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2219     if( _nodes[i] != loop_verify->_nodes[i] &&
  2220         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2221       tty->print("Mismatched control setting for: ");
  2222       n->dump();
  2223       if( fail++ > 10 ) return;
  2224       Node *c = get_ctrl_no_update(n);
  2225       tty->print("We have it as: ");
  2226       if( c->in(0) ) c->dump();
  2227         else tty->print_cr("N%d",c->_idx);
  2228       tty->print("Verify thinks: ");
  2229       if( loop_verify->has_ctrl(n) )
  2230         loop_verify->get_ctrl_no_update(n)->dump();
  2231       else
  2232         loop_verify->get_loop_idx(n)->dump();
  2233       tty->cr();
  2235   } else {                    // We have a loop
  2236     IdealLoopTree *us = get_loop_idx(n);
  2237     if( loop_verify->has_ctrl(n) ) {
  2238       tty->print("Mismatched loop setting for: ");
  2239       n->dump();
  2240       if( fail++ > 10 ) return;
  2241       tty->print("We have it as: ");
  2242       us->dump();
  2243       tty->print("Verify thinks: ");
  2244       loop_verify->get_ctrl_no_update(n)->dump();
  2245       tty->cr();
  2246     } else if (!C->major_progress()) {
  2247       // Loop selection can be messed up if we did a major progress
  2248       // operation, like split-if.  Do not verify in that case.
  2249       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2250       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2251         tty->print("Unequals loops for: ");
  2252         n->dump();
  2253         if( fail++ > 10 ) return;
  2254         tty->print("We have it as: ");
  2255         us->dump();
  2256         tty->print("Verify thinks: ");
  2257         them->dump();
  2258         tty->cr();
  2263   // Check for immediate dominators being equal
  2264   if( i >= _idom_size ) {
  2265     if( !n->is_CFG() ) return;
  2266     tty->print("CFG Node with no idom: ");
  2267     n->dump();
  2268     return;
  2270   if( !n->is_CFG() ) return;
  2271   if( n == C->root() ) return; // No IDOM here
  2273   assert(n->_idx == i, "sanity");
  2274   Node *id = idom_no_update(n);
  2275   if( id != loop_verify->idom_no_update(n) ) {
  2276     tty->print("Unequals idoms for: ");
  2277     n->dump();
  2278     if( fail++ > 10 ) return;
  2279     tty->print("We have it as: ");
  2280     id->dump();
  2281     tty->print("Verify thinks: ");
  2282     loop_verify->idom_no_update(n)->dump();
  2283     tty->cr();
  2288 //------------------------------verify_tree------------------------------------
  2289 // Verify that tree structures match.  Because the CFG can change, siblings
  2290 // within the loop tree can be reordered.  We attempt to deal with that by
  2291 // reordering the verify's loop tree if possible.
  2292 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2293   assert( _parent == parent, "Badly formed loop tree" );
  2295   // Siblings not in same order?  Attempt to re-order.
  2296   if( _head != loop->_head ) {
  2297     // Find _next pointer to update
  2298     IdealLoopTree **pp = &loop->_parent->_child;
  2299     while( *pp != loop )
  2300       pp = &((*pp)->_next);
  2301     // Find proper sibling to be next
  2302     IdealLoopTree **nn = &loop->_next;
  2303     while( (*nn) && (*nn)->_head != _head )
  2304       nn = &((*nn)->_next);
  2306     // Check for no match.
  2307     if( !(*nn) ) {
  2308       // Annoyingly, irreducible loops can pick different headers
  2309       // after a major_progress operation, so the rest of the loop
  2310       // tree cannot be matched.
  2311       if (_irreducible && Compile::current()->major_progress())  return;
  2312       assert( 0, "failed to match loop tree" );
  2315     // Move (*nn) to (*pp)
  2316     IdealLoopTree *hit = *nn;
  2317     *nn = hit->_next;
  2318     hit->_next = loop;
  2319     *pp = loop;
  2320     loop = hit;
  2321     // Now try again to verify
  2324   assert( _head  == loop->_head , "mismatched loop head" );
  2325   Node *tail = _tail;           // Inline a non-updating version of
  2326   while( !tail->in(0) )         // the 'tail()' call.
  2327     tail = tail->in(1);
  2328   assert( tail == loop->_tail, "mismatched loop tail" );
  2330   // Counted loops that are guarded should be able to find their guards
  2331   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2332     CountedLoopNode *cl = _head->as_CountedLoop();
  2333     Node *init = cl->init_trip();
  2334     Node *ctrl = cl->in(LoopNode::EntryControl);
  2335     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2336     Node *iff  = ctrl->in(0);
  2337     assert( iff->Opcode() == Op_If, "" );
  2338     Node *bol  = iff->in(1);
  2339     assert( bol->Opcode() == Op_Bool, "" );
  2340     Node *cmp  = bol->in(1);
  2341     assert( cmp->Opcode() == Op_CmpI, "" );
  2342     Node *add  = cmp->in(1);
  2343     Node *opaq;
  2344     if( add->Opcode() == Op_Opaque1 ) {
  2345       opaq = add;
  2346     } else {
  2347       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2348       assert( add == init, "" );
  2349       opaq = cmp->in(2);
  2351     assert( opaq->Opcode() == Op_Opaque1, "" );
  2355   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2356   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2357   // Innermost loops need to verify loop bodies,
  2358   // but only if no 'major_progress'
  2359   int fail = 0;
  2360   if (!Compile::current()->major_progress() && _child == NULL) {
  2361     for( uint i = 0; i < _body.size(); i++ ) {
  2362       Node *n = _body.at(i);
  2363       if (n->outcnt() == 0)  continue; // Ignore dead
  2364       uint j;
  2365       for( j = 0; j < loop->_body.size(); j++ )
  2366         if( loop->_body.at(j) == n )
  2367           break;
  2368       if( j == loop->_body.size() ) { // Not found in loop body
  2369         // Last ditch effort to avoid assertion: Its possible that we
  2370         // have some users (so outcnt not zero) but are still dead.
  2371         // Try to find from root.
  2372         if (Compile::current()->root()->find(n->_idx)) {
  2373           fail++;
  2374           tty->print("We have that verify does not: ");
  2375           n->dump();
  2379     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2380       Node *n = loop->_body.at(i2);
  2381       if (n->outcnt() == 0)  continue; // Ignore dead
  2382       uint j;
  2383       for( j = 0; j < _body.size(); j++ )
  2384         if( _body.at(j) == n )
  2385           break;
  2386       if( j == _body.size() ) { // Not found in loop body
  2387         // Last ditch effort to avoid assertion: Its possible that we
  2388         // have some users (so outcnt not zero) but are still dead.
  2389         // Try to find from root.
  2390         if (Compile::current()->root()->find(n->_idx)) {
  2391           fail++;
  2392           tty->print("Verify has that we do not: ");
  2393           n->dump();
  2397     assert( !fail, "loop body mismatch" );
  2401 #endif
  2403 //------------------------------set_idom---------------------------------------
  2404 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2405   uint idx = d->_idx;
  2406   if (idx >= _idom_size) {
  2407     uint newsize = _idom_size<<1;
  2408     while( idx >= newsize ) {
  2409       newsize <<= 1;
  2411     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2412     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2413     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2414     _idom_size = newsize;
  2416   _idom[idx] = n;
  2417   _dom_depth[idx] = dom_depth;
  2420 //------------------------------recompute_dom_depth---------------------------------------
  2421 // The dominator tree is constructed with only parent pointers.
  2422 // This recomputes the depth in the tree by first tagging all
  2423 // nodes as "no depth yet" marker.  The next pass then runs up
  2424 // the dom tree from each node marked "no depth yet", and computes
  2425 // the depth on the way back down.
  2426 void PhaseIdealLoop::recompute_dom_depth() {
  2427   uint no_depth_marker = C->unique();
  2428   uint i;
  2429   // Initialize depth to "no depth yet"
  2430   for (i = 0; i < _idom_size; i++) {
  2431     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2432      _dom_depth[i] = no_depth_marker;
  2435   if (_dom_stk == NULL) {
  2436     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2437     if (init_size < 10) init_size = 10;
  2438     _dom_stk = new GrowableArray<uint>(init_size);
  2440   // Compute new depth for each node.
  2441   for (i = 0; i < _idom_size; i++) {
  2442     uint j = i;
  2443     // Run up the dom tree to find a node with a depth
  2444     while (_dom_depth[j] == no_depth_marker) {
  2445       _dom_stk->push(j);
  2446       j = _idom[j]->_idx;
  2448     // Compute the depth on the way back down this tree branch
  2449     uint dd = _dom_depth[j] + 1;
  2450     while (_dom_stk->length() > 0) {
  2451       uint j = _dom_stk->pop();
  2452       _dom_depth[j] = dd;
  2453       dd++;
  2458 //------------------------------sort-------------------------------------------
  2459 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2460 // loop tree, not the root.
  2461 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2462   if( !innermost ) return loop; // New innermost loop
  2464   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2465   assert( loop_preorder, "not yet post-walked loop" );
  2466   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2467   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2469   // Insert at start of list
  2470   while( l ) {                  // Insertion sort based on pre-order
  2471     if( l == loop ) return innermost; // Already on list!
  2472     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2473     assert( l_preorder, "not yet post-walked l" );
  2474     // Check header pre-order number to figure proper nesting
  2475     if( loop_preorder > l_preorder )
  2476       break;                    // End of insertion
  2477     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2478     // Since I split shared headers, you'd think this could not happen.
  2479     // BUT: I must first do the preorder numbering before I can discover I
  2480     // have shared headers, so the split headers all get the same preorder
  2481     // number as the RegionNode they split from.
  2482     if( loop_preorder == l_preorder &&
  2483         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2484       break;                    // Also check for shared headers (same pre#)
  2485     pp = &l->_parent;           // Chain up list
  2486     l = *pp;
  2488   // Link into list
  2489   // Point predecessor to me
  2490   *pp = loop;
  2491   // Point me to successor
  2492   IdealLoopTree *p = loop->_parent;
  2493   loop->_parent = l;            // Point me to successor
  2494   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2495   return innermost;
  2498 //------------------------------build_loop_tree--------------------------------
  2499 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2500 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2501 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2502 // tightest enclosing IdealLoopTree for post-walked.
  2503 //
  2504 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2505 // a loop backedge with that doesn't have any work on the backedge.  This
  2506 // helps me construct nested loops with shared headers better.
  2507 //
  2508 // Once I've done the forward recursion, I do the post-work.  For each child
  2509 // I check to see if there is a backedge.  Backedges define a loop!  I
  2510 // insert an IdealLoopTree at the target of the backedge.
  2511 //
  2512 // During the post-work I also check to see if I have several children
  2513 // belonging to different loops.  If so, then this Node is a decision point
  2514 // where control flow can choose to change loop nests.  It is at this
  2515 // decision point where I can figure out how loops are nested.  At this
  2516 // time I can properly order the different loop nests from my children.
  2517 // Note that there may not be any backedges at the decision point!
  2518 //
  2519 // Since the decision point can be far removed from the backedges, I can't
  2520 // order my loops at the time I discover them.  Thus at the decision point
  2521 // I need to inspect loop header pre-order numbers to properly nest my
  2522 // loops.  This means I need to sort my childrens' loops by pre-order.
  2523 // The sort is of size number-of-control-children, which generally limits
  2524 // it to size 2 (i.e., I just choose between my 2 target loops).
  2525 void PhaseIdealLoop::build_loop_tree() {
  2526   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2527   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2528   Node *n = C->root();
  2529   bltstack.push(n);
  2530   int pre_order = 1;
  2531   int stack_size;
  2533   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2534     n = bltstack.top(); // Leave node on stack
  2535     if ( !is_visited(n) ) {
  2536       // ---- Pre-pass Work ----
  2537       // Pre-walked but not post-walked nodes need a pre_order number.
  2539       set_preorder_visited( n, pre_order ); // set as visited
  2541       // ---- Scan over children ----
  2542       // Scan first over control projections that lead to loop headers.
  2543       // This helps us find inner-to-outer loops with shared headers better.
  2545       // Scan children's children for loop headers.
  2546       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2547         Node* m = n->raw_out(i);       // Child
  2548         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2549           // Scan over children's children to find loop
  2550           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2551             Node* l = m->fast_out(j);
  2552             if( is_visited(l) &&       // Been visited?
  2553                 !is_postvisited(l) &&  // But not post-visited
  2554                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2555               // Found!  Scan the DFS down this path before doing other paths
  2556               bltstack.push(m);
  2557               break;
  2562       pre_order++;
  2564     else if ( !is_postvisited(n) ) {
  2565       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2566       // such as com.sun.rsasign.am::a.
  2567       // For non-recursive version, first, process current children.
  2568       // On next iteration, check if additional children were added.
  2569       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2570         Node* u = n->raw_out(k);
  2571         if ( u->is_CFG() && !is_visited(u) ) {
  2572           bltstack.push(u);
  2575       if ( bltstack.length() == stack_size ) {
  2576         // There were no additional children, post visit node now
  2577         (void)bltstack.pop(); // Remove node from stack
  2578         pre_order = build_loop_tree_impl( n, pre_order );
  2579         // Check for bailout
  2580         if (C->failing()) {
  2581           return;
  2583         // Check to grow _preorders[] array for the case when
  2584         // build_loop_tree_impl() adds new nodes.
  2585         check_grow_preorders();
  2588     else {
  2589       (void)bltstack.pop(); // Remove post-visited node from stack
  2594 //------------------------------build_loop_tree_impl---------------------------
  2595 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2596   // ---- Post-pass Work ----
  2597   // Pre-walked but not post-walked nodes need a pre_order number.
  2599   // Tightest enclosing loop for this Node
  2600   IdealLoopTree *innermost = NULL;
  2602   // For all children, see if any edge is a backedge.  If so, make a loop
  2603   // for it.  Then find the tightest enclosing loop for the self Node.
  2604   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2605     Node* m = n->fast_out(i);   // Child
  2606     if( n == m ) continue;      // Ignore control self-cycles
  2607     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2609     IdealLoopTree *l;           // Child's loop
  2610     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2611       // Found a backedge
  2612       assert( get_preorder(m) < pre_order, "should be backedge" );
  2613       // Check for the RootNode, which is already a LoopNode and is allowed
  2614       // to have multiple "backedges".
  2615       if( m == C->root()) {     // Found the root?
  2616         l = _ltree_root;        // Root is the outermost LoopNode
  2617       } else {                  // Else found a nested loop
  2618         // Insert a LoopNode to mark this loop.
  2619         l = new IdealLoopTree(this, m, n);
  2620       } // End of Else found a nested loop
  2621       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2622         set_loop(m, l);         // Set loop header to loop now
  2624     } else {                    // Else not a nested loop
  2625       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2626       l = get_loop(m);          // Get previously determined loop
  2627       // If successor is header of a loop (nest), move up-loop till it
  2628       // is a member of some outer enclosing loop.  Since there are no
  2629       // shared headers (I've split them already) I only need to go up
  2630       // at most 1 level.
  2631       while( l && l->_head == m ) // Successor heads loop?
  2632         l = l->_parent;         // Move up 1 for me
  2633       // If this loop is not properly parented, then this loop
  2634       // has no exit path out, i.e. its an infinite loop.
  2635       if( !l ) {
  2636         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2637         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2638         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2639         // many backedges as well.
  2641         // Here I set the loop to be the root loop.  I could have, after
  2642         // inserting a bogus loop exit, restarted the recursion and found my
  2643         // new loop exit.  This would make the infinite loop a first-class
  2644         // loop and it would then get properly optimized.  What's the use of
  2645         // optimizing an infinite loop?
  2646         l = _ltree_root;        // Oops, found infinite loop
  2648         if (!_verify_only) {
  2649           // Insert the NeverBranch between 'm' and it's control user.
  2650           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2651           _igvn.register_new_node_with_optimizer(iff);
  2652           set_loop(iff, l);
  2653           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2654           _igvn.register_new_node_with_optimizer(if_t);
  2655           set_loop(if_t, l);
  2657           Node* cfg = NULL;       // Find the One True Control User of m
  2658           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2659             Node* x = m->fast_out(j);
  2660             if (x->is_CFG() && x != m && x != iff)
  2661               { cfg = x; break; }
  2663           assert(cfg != NULL, "must find the control user of m");
  2664           uint k = 0;             // Probably cfg->in(0)
  2665           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2666           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2668           // Now create the never-taken loop exit
  2669           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2670           _igvn.register_new_node_with_optimizer(if_f);
  2671           set_loop(if_f, l);
  2672           // Find frame ptr for Halt.  Relies on the optimizer
  2673           // V-N'ing.  Easier and quicker than searching through
  2674           // the program structure.
  2675           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2676           _igvn.register_new_node_with_optimizer(frame);
  2677           // Halt & Catch Fire
  2678           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2679           _igvn.register_new_node_with_optimizer(halt);
  2680           set_loop(halt, l);
  2681           C->root()->add_req(halt);
  2683         set_loop(C->root(), _ltree_root);
  2686     // Weeny check for irreducible.  This child was already visited (this
  2687     // IS the post-work phase).  Is this child's loop header post-visited
  2688     // as well?  If so, then I found another entry into the loop.
  2689     if (!_verify_only) {
  2690       while( is_postvisited(l->_head) ) {
  2691         // found irreducible
  2692         l->_irreducible = 1; // = true
  2693         l = l->_parent;
  2694         _has_irreducible_loops = true;
  2695         // Check for bad CFG here to prevent crash, and bailout of compile
  2696         if (l == NULL) {
  2697           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2698           return pre_order;
  2703     // This Node might be a decision point for loops.  It is only if
  2704     // it's children belong to several different loops.  The sort call
  2705     // does a trivial amount of work if there is only 1 child or all
  2706     // children belong to the same loop.  If however, the children
  2707     // belong to different loops, the sort call will properly set the
  2708     // _parent pointers to show how the loops nest.
  2709     //
  2710     // In any case, it returns the tightest enclosing loop.
  2711     innermost = sort( l, innermost );
  2714   // Def-use info will have some dead stuff; dead stuff will have no
  2715   // loop decided on.
  2717   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2718   if( innermost && innermost->_head == n ) {
  2719     assert( get_loop(n) == innermost, "" );
  2720     IdealLoopTree *p = innermost->_parent;
  2721     IdealLoopTree *l = innermost;
  2722     while( p && l->_head == n ) {
  2723       l->_next = p->_child;     // Put self on parents 'next child'
  2724       p->_child = l;            // Make self as first child of parent
  2725       l = p;                    // Now walk up the parent chain
  2726       p = l->_parent;
  2728   } else {
  2729     // Note that it is possible for a LoopNode to reach here, if the
  2730     // backedge has been made unreachable (hence the LoopNode no longer
  2731     // denotes a Loop, and will eventually be removed).
  2733     // Record tightest enclosing loop for self.  Mark as post-visited.
  2734     set_loop(n, innermost);
  2735     // Also record has_call flag early on
  2736     if( innermost ) {
  2737       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2738         // Do not count uncommon calls
  2739         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2740           Node *iff = n->in(0)->in(0);
  2741           if( !iff->is_If() ||
  2742               (n->in(0)->Opcode() == Op_IfFalse &&
  2743                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2744               (iff->as_If()->_prob >= 0.01) )
  2745             innermost->_has_call = 1;
  2747       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2748         // Disable loop optimizations if the loop has a scalar replaceable
  2749         // allocation. This disabling may cause a potential performance lost
  2750         // if the allocation is not eliminated for some reason.
  2751         innermost->_allow_optimizations = false;
  2752         innermost->_has_call = 1; // = true
  2757   // Flag as post-visited now
  2758   set_postvisited(n);
  2759   return pre_order;
  2763 //------------------------------build_loop_early-------------------------------
  2764 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2765 // First pass computes the earliest controlling node possible.  This is the
  2766 // controlling input with the deepest dominating depth.
  2767 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2768   while (worklist.size() != 0) {
  2769     // Use local variables nstack_top_n & nstack_top_i to cache values
  2770     // on nstack's top.
  2771     Node *nstack_top_n = worklist.pop();
  2772     uint  nstack_top_i = 0;
  2773 //while_nstack_nonempty:
  2774     while (true) {
  2775       // Get parent node and next input's index from stack's top.
  2776       Node  *n = nstack_top_n;
  2777       uint   i = nstack_top_i;
  2778       uint cnt = n->req(); // Count of inputs
  2779       if (i == 0) {        // Pre-process the node.
  2780         if( has_node(n) &&            // Have either loop or control already?
  2781             !has_ctrl(n) ) {          // Have loop picked out already?
  2782           // During "merge_many_backedges" we fold up several nested loops
  2783           // into a single loop.  This makes the members of the original
  2784           // loop bodies pointing to dead loops; they need to move up
  2785           // to the new UNION'd larger loop.  I set the _head field of these
  2786           // dead loops to NULL and the _parent field points to the owning
  2787           // loop.  Shades of UNION-FIND algorithm.
  2788           IdealLoopTree *ilt;
  2789           while( !(ilt = get_loop(n))->_head ) {
  2790             // Normally I would use a set_loop here.  But in this one special
  2791             // case, it is legal (and expected) to change what loop a Node
  2792             // belongs to.
  2793             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2795           // Remove safepoints ONLY if I've already seen I don't need one.
  2796           // (the old code here would yank a 2nd safepoint after seeing a
  2797           // first one, even though the 1st did not dominate in the loop body
  2798           // and thus could be avoided indefinitely)
  2799           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2800               is_deleteable_safept(n)) {
  2801             Node *in = n->in(TypeFunc::Control);
  2802             lazy_replace(n,in);       // Pull safepoint now
  2803             // Carry on with the recursion "as if" we are walking
  2804             // only the control input
  2805             if( !visited.test_set( in->_idx ) ) {
  2806               worklist.push(in);      // Visit this guy later, using worklist
  2808             // Get next node from nstack:
  2809             // - skip n's inputs processing by setting i > cnt;
  2810             // - we also will not call set_early_ctrl(n) since
  2811             //   has_node(n) == true (see the condition above).
  2812             i = cnt + 1;
  2815       } // if (i == 0)
  2817       // Visit all inputs
  2818       bool done = true;       // Assume all n's inputs will be processed
  2819       while (i < cnt) {
  2820         Node *in = n->in(i);
  2821         ++i;
  2822         if (in == NULL) continue;
  2823         if (in->pinned() && !in->is_CFG())
  2824           set_ctrl(in, in->in(0));
  2825         int is_visited = visited.test_set( in->_idx );
  2826         if (!has_node(in)) {  // No controlling input yet?
  2827           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2828           assert( !is_visited, "visit only once" );
  2829           nstack.push(n, i);  // Save parent node and next input's index.
  2830           nstack_top_n = in;  // Process current input now.
  2831           nstack_top_i = 0;
  2832           done = false;       // Not all n's inputs processed.
  2833           break; // continue while_nstack_nonempty;
  2834         } else if (!is_visited) {
  2835           // This guy has a location picked out for him, but has not yet
  2836           // been visited.  Happens to all CFG nodes, for instance.
  2837           // Visit him using the worklist instead of recursion, to break
  2838           // cycles.  Since he has a location already we do not need to
  2839           // find his location before proceeding with the current Node.
  2840           worklist.push(in);  // Visit this guy later, using worklist
  2843       if (done) {
  2844         // All of n's inputs have been processed, complete post-processing.
  2846         // Compute earliest point this Node can go.
  2847         // CFG, Phi, pinned nodes already know their controlling input.
  2848         if (!has_node(n)) {
  2849           // Record earliest legal location
  2850           set_early_ctrl( n );
  2852         if (nstack.is_empty()) {
  2853           // Finished all nodes on stack.
  2854           // Process next node on the worklist.
  2855           break;
  2857         // Get saved parent node and next input's index.
  2858         nstack_top_n = nstack.node();
  2859         nstack_top_i = nstack.index();
  2860         nstack.pop();
  2862     } // while (true)
  2866 //------------------------------dom_lca_internal--------------------------------
  2867 // Pair-wise LCA
  2868 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2869   if( !n1 ) return n2;          // Handle NULL original LCA
  2870   assert( n1->is_CFG(), "" );
  2871   assert( n2->is_CFG(), "" );
  2872   // find LCA of all uses
  2873   uint d1 = dom_depth(n1);
  2874   uint d2 = dom_depth(n2);
  2875   while (n1 != n2) {
  2876     if (d1 > d2) {
  2877       n1 =      idom(n1);
  2878       d1 = dom_depth(n1);
  2879     } else if (d1 < d2) {
  2880       n2 =      idom(n2);
  2881       d2 = dom_depth(n2);
  2882     } else {
  2883       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2884       // of the tree might have the same depth.  These sections have
  2885       // to be searched more carefully.
  2887       // Scan up all the n1's with equal depth, looking for n2.
  2888       Node *t1 = idom(n1);
  2889       while (dom_depth(t1) == d1) {
  2890         if (t1 == n2)  return n2;
  2891         t1 = idom(t1);
  2893       // Scan up all the n2's with equal depth, looking for n1.
  2894       Node *t2 = idom(n2);
  2895       while (dom_depth(t2) == d2) {
  2896         if (t2 == n1)  return n1;
  2897         t2 = idom(t2);
  2899       // Move up to a new dominator-depth value as well as up the dom-tree.
  2900       n1 = t1;
  2901       n2 = t2;
  2902       d1 = dom_depth(n1);
  2903       d2 = dom_depth(n2);
  2906   return n1;
  2909 //------------------------------compute_idom-----------------------------------
  2910 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2911 // IDOMs are correct.
  2912 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2913   assert( region->is_Region(), "" );
  2914   Node *LCA = NULL;
  2915   for( uint i = 1; i < region->req(); i++ ) {
  2916     if( region->in(i) != C->top() )
  2917       LCA = dom_lca( LCA, region->in(i) );
  2919   return LCA;
  2922 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2923   bool had_error = false;
  2924 #ifdef ASSERT
  2925   if (early != C->root()) {
  2926     // Make sure that there's a dominance path from use to LCA
  2927     Node* d = use;
  2928     while (d != LCA) {
  2929       d = idom(d);
  2930       if (d == C->root()) {
  2931         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2932         n->dump();
  2933         use->dump();
  2934         had_error = true;
  2935         break;
  2939 #endif
  2940   return had_error;
  2944 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2945   // Compute LCA over list of uses
  2946   bool had_error = false;
  2947   Node *LCA = NULL;
  2948   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2949     Node* c = n->fast_out(i);
  2950     if (_nodes[c->_idx] == NULL)
  2951       continue;                 // Skip the occasional dead node
  2952     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2953       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2954         if( c->in(j) == n ) {   // Found matching input?
  2955           Node *use = c->in(0)->in(j);
  2956           if (_verify_only && use->is_top()) continue;
  2957           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2958           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2961     } else {
  2962       // For CFG data-users, use is in the block just prior
  2963       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2964       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2965       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2968   assert(!had_error, "bad dominance");
  2969   return LCA;
  2972 //------------------------------get_late_ctrl----------------------------------
  2973 // Compute latest legal control.
  2974 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2975   assert(early != NULL, "early control should not be NULL");
  2977   Node* LCA = compute_lca_of_uses(n, early);
  2978 #ifdef ASSERT
  2979   if (LCA == C->root() && LCA != early) {
  2980     // def doesn't dominate uses so print some useful debugging output
  2981     compute_lca_of_uses(n, early, true);
  2983 #endif
  2985   // if this is a load, check for anti-dependent stores
  2986   // We use a conservative algorithm to identify potential interfering
  2987   // instructions and for rescheduling the load.  The users of the memory
  2988   // input of this load are examined.  Any use which is not a load and is
  2989   // dominated by early is considered a potentially interfering store.
  2990   // This can produce false positives.
  2991   if (n->is_Load() && LCA != early) {
  2992     Node_List worklist;
  2994     Node *mem = n->in(MemNode::Memory);
  2995     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2996       Node* s = mem->fast_out(i);
  2997       worklist.push(s);
  2999     while(worklist.size() != 0 && LCA != early) {
  3000       Node* s = worklist.pop();
  3001       if (s->is_Load()) {
  3002         continue;
  3003       } else if (s->is_MergeMem()) {
  3004         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3005           Node* s1 = s->fast_out(i);
  3006           worklist.push(s1);
  3008       } else {
  3009         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3010         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3011         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3012           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3018   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3019   return LCA;
  3022 // true if CFG node d dominates CFG node n
  3023 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3024   if (d == n)
  3025     return true;
  3026   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3027   uint dd = dom_depth(d);
  3028   while (dom_depth(n) >= dd) {
  3029     if (n == d)
  3030       return true;
  3031     n = idom(n);
  3033   return false;
  3036 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3037 // Pair-wise LCA with tags.
  3038 // Tag each index with the node 'tag' currently being processed
  3039 // before advancing up the dominator chain using idom().
  3040 // Later calls that find a match to 'tag' know that this path has already
  3041 // been considered in the current LCA (which is input 'n1' by convention).
  3042 // Since get_late_ctrl() is only called once for each node, the tag array
  3043 // does not need to be cleared between calls to get_late_ctrl().
  3044 // Algorithm trades a larger constant factor for better asymptotic behavior
  3045 //
  3046 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3047   uint d1 = dom_depth(n1);
  3048   uint d2 = dom_depth(n2);
  3050   do {
  3051     if (d1 > d2) {
  3052       // current lca is deeper than n2
  3053       _dom_lca_tags.map(n1->_idx, tag);
  3054       n1 =      idom(n1);
  3055       d1 = dom_depth(n1);
  3056     } else if (d1 < d2) {
  3057       // n2 is deeper than current lca
  3058       Node *memo = _dom_lca_tags[n2->_idx];
  3059       if( memo == tag ) {
  3060         return n1;    // Return the current LCA
  3062       _dom_lca_tags.map(n2->_idx, tag);
  3063       n2 =      idom(n2);
  3064       d2 = dom_depth(n2);
  3065     } else {
  3066       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3067       // of the tree might have the same depth.  These sections have
  3068       // to be searched more carefully.
  3070       // Scan up all the n1's with equal depth, looking for n2.
  3071       _dom_lca_tags.map(n1->_idx, tag);
  3072       Node *t1 = idom(n1);
  3073       while (dom_depth(t1) == d1) {
  3074         if (t1 == n2)  return n2;
  3075         _dom_lca_tags.map(t1->_idx, tag);
  3076         t1 = idom(t1);
  3078       // Scan up all the n2's with equal depth, looking for n1.
  3079       _dom_lca_tags.map(n2->_idx, tag);
  3080       Node *t2 = idom(n2);
  3081       while (dom_depth(t2) == d2) {
  3082         if (t2 == n1)  return n1;
  3083         _dom_lca_tags.map(t2->_idx, tag);
  3084         t2 = idom(t2);
  3086       // Move up to a new dominator-depth value as well as up the dom-tree.
  3087       n1 = t1;
  3088       n2 = t2;
  3089       d1 = dom_depth(n1);
  3090       d2 = dom_depth(n2);
  3092   } while (n1 != n2);
  3093   return n1;
  3096 //------------------------------init_dom_lca_tags------------------------------
  3097 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3098 // Intended use does not involve any growth for the array, so it could
  3099 // be of fixed size.
  3100 void PhaseIdealLoop::init_dom_lca_tags() {
  3101   uint limit = C->unique() + 1;
  3102   _dom_lca_tags.map( limit, NULL );
  3103 #ifdef ASSERT
  3104   for( uint i = 0; i < limit; ++i ) {
  3105     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3107 #endif // ASSERT
  3110 //------------------------------clear_dom_lca_tags------------------------------
  3111 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3112 // Intended use does not involve any growth for the array, so it could
  3113 // be of fixed size.
  3114 void PhaseIdealLoop::clear_dom_lca_tags() {
  3115   uint limit = C->unique() + 1;
  3116   _dom_lca_tags.map( limit, NULL );
  3117   _dom_lca_tags.clear();
  3118 #ifdef ASSERT
  3119   for( uint i = 0; i < limit; ++i ) {
  3120     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3122 #endif // ASSERT
  3125 //------------------------------build_loop_late--------------------------------
  3126 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3127 // Second pass finds latest legal placement, and ideal loop placement.
  3128 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3129   while (worklist.size() != 0) {
  3130     Node *n = worklist.pop();
  3131     // Only visit once
  3132     if (visited.test_set(n->_idx)) continue;
  3133     uint cnt = n->outcnt();
  3134     uint   i = 0;
  3135     while (true) {
  3136       assert( _nodes[n->_idx], "no dead nodes" );
  3137       // Visit all children
  3138       if (i < cnt) {
  3139         Node* use = n->raw_out(i);
  3140         ++i;
  3141         // Check for dead uses.  Aggressively prune such junk.  It might be
  3142         // dead in the global sense, but still have local uses so I cannot
  3143         // easily call 'remove_dead_node'.
  3144         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3145           // Due to cycles, we might not hit the same fixed point in the verify
  3146           // pass as we do in the regular pass.  Instead, visit such phis as
  3147           // simple uses of the loop head.
  3148           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3149             if( !visited.test(use->_idx) )
  3150               worklist.push(use);
  3151           } else if( !visited.test_set(use->_idx) ) {
  3152             nstack.push(n, i); // Save parent and next use's index.
  3153             n   = use;         // Process all children of current use.
  3154             cnt = use->outcnt();
  3155             i   = 0;
  3157         } else {
  3158           // Do not visit around the backedge of loops via data edges.
  3159           // push dead code onto a worklist
  3160           _deadlist.push(use);
  3162       } else {
  3163         // All of n's children have been processed, complete post-processing.
  3164         build_loop_late_post(n);
  3165         if (nstack.is_empty()) {
  3166           // Finished all nodes on stack.
  3167           // Process next node on the worklist.
  3168           break;
  3170         // Get saved parent node and next use's index. Visit the rest of uses.
  3171         n   = nstack.node();
  3172         cnt = n->outcnt();
  3173         i   = nstack.index();
  3174         nstack.pop();
  3180 //------------------------------build_loop_late_post---------------------------
  3181 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3182 // Second pass finds latest legal placement, and ideal loop placement.
  3183 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3185   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3186     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3189   // CFG and pinned nodes already handled
  3190   if( n->in(0) ) {
  3191     if( n->in(0)->is_top() ) return; // Dead?
  3193     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3194     // _must_ be pinned (they have to observe their control edge of course).
  3195     // Unlike Stores (which modify an unallocable resource, the memory
  3196     // state), Mods/Loads can float around.  So free them up.
  3197     bool pinned = true;
  3198     switch( n->Opcode() ) {
  3199     case Op_DivI:
  3200     case Op_DivF:
  3201     case Op_DivD:
  3202     case Op_ModI:
  3203     case Op_ModF:
  3204     case Op_ModD:
  3205     case Op_LoadB:              // Same with Loads; they can sink
  3206     case Op_LoadUS:             // during loop optimizations.
  3207     case Op_LoadD:
  3208     case Op_LoadF:
  3209     case Op_LoadI:
  3210     case Op_LoadKlass:
  3211     case Op_LoadNKlass:
  3212     case Op_LoadL:
  3213     case Op_LoadS:
  3214     case Op_LoadP:
  3215     case Op_LoadN:
  3216     case Op_LoadRange:
  3217     case Op_LoadD_unaligned:
  3218     case Op_LoadL_unaligned:
  3219     case Op_StrComp:            // Does a bunch of load-like effects
  3220     case Op_StrEquals:
  3221     case Op_StrIndexOf:
  3222     case Op_AryEq:
  3223       pinned = false;
  3225     if( pinned ) {
  3226       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3227       if( !chosen_loop->_child )       // Inner loop?
  3228         chosen_loop->_body.push(n); // Collect inner loops
  3229       return;
  3231   } else {                      // No slot zero
  3232     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3233       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3234       return;
  3236     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3239   // Do I have a "safe range" I can select over?
  3240   Node *early = get_ctrl(n);// Early location already computed
  3242   // Compute latest point this Node can go
  3243   Node *LCA = get_late_ctrl( n, early );
  3244   // LCA is NULL due to uses being dead
  3245   if( LCA == NULL ) {
  3246 #ifdef ASSERT
  3247     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3248       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3250 #endif
  3251     _nodes.map(n->_idx, 0);     // This node is useless
  3252     _deadlist.push(n);
  3253     return;
  3255   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3257   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3258   Node *least = legal;          // Best legal position so far
  3259   while( early != legal ) {     // While not at earliest legal
  3260 #ifdef ASSERT
  3261     if (legal->is_Start() && !early->is_Root()) {
  3262       // Bad graph. Print idom path and fail.
  3263       tty->print_cr( "Bad graph detected in build_loop_late");
  3264       tty->print("n: ");n->dump(); tty->cr();
  3265       tty->print("early: ");early->dump(); tty->cr();
  3266       int ct = 0;
  3267       Node *dbg_legal = LCA;
  3268       while(!dbg_legal->is_Start() && ct < 100) {
  3269         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  3270         ct++;
  3271         dbg_legal = idom(dbg_legal);
  3273       assert(false, "Bad graph detected in build_loop_late");
  3275 #endif
  3276     // Find least loop nesting depth
  3277     legal = idom(legal);        // Bump up the IDOM tree
  3278     // Check for lower nesting depth
  3279     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3280       least = legal;
  3282   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3284   // Try not to place code on a loop entry projection
  3285   // which can inhibit range check elimination.
  3286   if (least != early) {
  3287     Node* ctrl_out = least->unique_ctrl_out();
  3288     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3289         least == ctrl_out->in(LoopNode::EntryControl)) {
  3290       Node* least_dom = idom(least);
  3291       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3292         least = least_dom;
  3297 #ifdef ASSERT
  3298   // If verifying, verify that 'verify_me' has a legal location
  3299   // and choose it as our location.
  3300   if( _verify_me ) {
  3301     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3302     Node *legal = LCA;
  3303     while( early != legal ) {   // While not at earliest legal
  3304       if( legal == v_ctrl ) break;  // Check for prior good location
  3305       legal = idom(legal)      ;// Bump up the IDOM tree
  3307     // Check for prior good location
  3308     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3310 #endif
  3312   // Assign discovered "here or above" point
  3313   least = find_non_split_ctrl(least);
  3314   set_ctrl(n, least);
  3316   // Collect inner loop bodies
  3317   IdealLoopTree *chosen_loop = get_loop(least);
  3318   if( !chosen_loop->_child )   // Inner loop?
  3319     chosen_loop->_body.push(n);// Collect inner loops
  3322 #ifndef PRODUCT
  3323 //------------------------------dump-------------------------------------------
  3324 void PhaseIdealLoop::dump( ) const {
  3325   ResourceMark rm;
  3326   Arena* arena = Thread::current()->resource_area();
  3327   Node_Stack stack(arena, C->unique() >> 2);
  3328   Node_List rpo_list;
  3329   VectorSet visited(arena);
  3330   visited.set(C->top()->_idx);
  3331   rpo( C->root(), stack, visited, rpo_list );
  3332   // Dump root loop indexed by last element in PO order
  3333   dump( _ltree_root, rpo_list.size(), rpo_list );
  3336 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3337   loop->dump_head();
  3339   // Now scan for CFG nodes in the same loop
  3340   for( uint j=idx; j > 0;  j-- ) {
  3341     Node *n = rpo_list[j-1];
  3342     if( !_nodes[n->_idx] )      // Skip dead nodes
  3343       continue;
  3344     if( get_loop(n) != loop ) { // Wrong loop nest
  3345       if( get_loop(n)->_head == n &&    // Found nested loop?
  3346           get_loop(n)->_parent == loop )
  3347         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3348       continue;
  3351     // Dump controlling node
  3352     for( uint x = 0; x < loop->_nest; x++ )
  3353       tty->print("  ");
  3354     tty->print("C");
  3355     if( n == C->root() ) {
  3356       n->dump();
  3357     } else {
  3358       Node* cached_idom   = idom_no_update(n);
  3359       Node *computed_idom = n->in(0);
  3360       if( n->is_Region() ) {
  3361         computed_idom = compute_idom(n);
  3362         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3363         // any MultiBranch ctrl node), so apply a similar transform to
  3364         // the cached idom returned from idom_no_update.
  3365         cached_idom = find_non_split_ctrl(cached_idom);
  3367       tty->print(" ID:%d",computed_idom->_idx);
  3368       n->dump();
  3369       if( cached_idom != computed_idom ) {
  3370         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3371                       computed_idom->_idx, cached_idom->_idx);
  3374     // Dump nodes it controls
  3375     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3376       // (k < C->unique() && get_ctrl(find(k)) == n)
  3377       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3378         Node *m = C->root()->find(k);
  3379         if( m && m->outcnt() > 0 ) {
  3380           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3381             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3382                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3384           for( uint j = 0; j < loop->_nest; j++ )
  3385             tty->print("  ");
  3386           tty->print(" ");
  3387           m->dump();
  3394 // Collect a R-P-O for the whole CFG.
  3395 // Result list is in post-order (scan backwards for RPO)
  3396 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3397   stk.push(start, 0);
  3398   visited.set(start->_idx);
  3400   while (stk.is_nonempty()) {
  3401     Node* m   = stk.node();
  3402     uint  idx = stk.index();
  3403     if (idx < m->outcnt()) {
  3404       stk.set_index(idx + 1);
  3405       Node* n = m->raw_out(idx);
  3406       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3407         stk.push(n, 0);
  3409     } else {
  3410       rpo_list.push(m);
  3411       stk.pop();
  3415 #endif
  3418 //=============================================================================
  3419 //------------------------------LoopTreeIterator-----------------------------------
  3421 // Advance to next loop tree using a preorder, left-to-right traversal.
  3422 void LoopTreeIterator::next() {
  3423   assert(!done(), "must not be done.");
  3424   if (_curnt->_child != NULL) {
  3425     _curnt = _curnt->_child;
  3426   } else if (_curnt->_next != NULL) {
  3427     _curnt = _curnt->_next;
  3428   } else {
  3429     while (_curnt != _root && _curnt->_next == NULL) {
  3430       _curnt = _curnt->_parent;
  3432     if (_curnt == _root) {
  3433       _curnt = NULL;
  3434       assert(done(), "must be done.");
  3435     } else {
  3436       assert(_curnt->_next != NULL, "must be more to do");
  3437       _curnt = _curnt->_next;

mercurial