src/share/vm/utilities/taskqueue.hpp

Fri, 16 Jul 2010 21:33:21 -0700

author
jcoomes
date
Fri, 16 Jul 2010 21:33:21 -0700
changeset 2020
a93a9eda13f7
parent 1993
b2a00dd3117c
child 2064
5f429ee79634
permissions
-rw-r--r--

6962947: shared TaskQueue statistics
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Simple TaskQueue stats that are collected by default in debug builds.
    27 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    28 #define TASKQUEUE_STATS 1
    29 #elif !defined(TASKQUEUE_STATS)
    30 #define TASKQUEUE_STATS 0
    31 #endif
    33 #if TASKQUEUE_STATS
    34 #define TASKQUEUE_STATS_ONLY(code) code
    35 #else
    36 #define TASKQUEUE_STATS_ONLY(code)
    37 #endif // TASKQUEUE_STATS
    39 #if TASKQUEUE_STATS
    40 class TaskQueueStats {
    41 public:
    42   enum StatId {
    43     push,             // number of taskqueue pushes
    44     pop,              // number of taskqueue pops
    45     pop_slow,         // subset of taskqueue pops that were done slow-path
    46     steal_attempt,    // number of taskqueue steal attempts
    47     steal,            // number of taskqueue steals
    48     overflow,         // number of overflow pushes
    49     overflow_max_len, // max length of overflow stack
    50     last_stat_id
    51   };
    53 public:
    54   inline TaskQueueStats()       { reset(); }
    56   inline void record_push()     { ++_stats[push]; }
    57   inline void record_pop()      { ++_stats[pop]; }
    58   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    59   inline void record_steal(bool success);
    60   inline void record_overflow(size_t new_length);
    62   inline size_t get(StatId id) const { return _stats[id]; }
    63   inline const size_t* get() const   { return _stats; }
    65   inline void reset();
    67   static void print_header(unsigned int line, outputStream* const stream = tty,
    68                            unsigned int width = 10);
    69   void print(outputStream* const stream = tty, unsigned int width = 10) const;
    71 private:
    72   size_t                    _stats[last_stat_id];
    73   static const char * const _names[last_stat_id];
    74 };
    76 void TaskQueueStats::record_steal(bool success) {
    77   ++_stats[steal_attempt];
    78   if (success) ++_stats[steal];
    79 }
    81 void TaskQueueStats::record_overflow(size_t new_len) {
    82   ++_stats[overflow];
    83   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
    84 }
    86 void TaskQueueStats::reset() {
    87   memset(_stats, 0, sizeof(_stats));
    88 }
    89 #endif // TASKQUEUE_STATS
    91 template <unsigned int N>
    92 class TaskQueueSuper: public CHeapObj {
    93 protected:
    94   // Internal type for indexing the queue; also used for the tag.
    95   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
    97   // The first free element after the last one pushed (mod N).
    98   volatile uint _bottom;
   100   enum { MOD_N_MASK = N - 1 };
   102   class Age {
   103   public:
   104     Age(size_t data = 0)         { _data = data; }
   105     Age(const Age& age)          { _data = age._data; }
   106     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   108     Age   get()        const volatile { return _data; }
   109     void  set(Age age) volatile       { _data = age._data; }
   111     idx_t top()        const volatile { return _fields._top; }
   112     idx_t tag()        const volatile { return _fields._tag; }
   114     // Increment top; if it wraps, increment tag also.
   115     void increment() {
   116       _fields._top = increment_index(_fields._top);
   117       if (_fields._top == 0) ++_fields._tag;
   118     }
   120     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   121       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   122                                           (volatile intptr_t *)&_data,
   123                                           (intptr_t)old_age._data);
   124     }
   126     bool operator ==(const Age& other) const { return _data == other._data; }
   128   private:
   129     struct fields {
   130       idx_t _top;
   131       idx_t _tag;
   132     };
   133     union {
   134       size_t _data;
   135       fields _fields;
   136     };
   137   };
   139   volatile Age _age;
   141   // These both operate mod N.
   142   static uint increment_index(uint ind) {
   143     return (ind + 1) & MOD_N_MASK;
   144   }
   145   static uint decrement_index(uint ind) {
   146     return (ind - 1) & MOD_N_MASK;
   147   }
   149   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   150   // interpreted as 0.
   151   uint dirty_size(uint bot, uint top) const {
   152     return (bot - top) & MOD_N_MASK;
   153   }
   155   // Returns the size corresponding to the given "bot" and "top".
   156   uint size(uint bot, uint top) const {
   157     uint sz = dirty_size(bot, top);
   158     // Has the queue "wrapped", so that bottom is less than top?  There's a
   159     // complicated special case here.  A pair of threads could perform pop_local
   160     // and pop_global operations concurrently, starting from a state in which
   161     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   162     // and the pop_global in incrementing _top (in which case the pop_global
   163     // will be awarded the contested queue element.)  The resulting state must
   164     // be interpreted as an empty queue.  (We only need to worry about one such
   165     // event: only the queue owner performs pop_local's, and several concurrent
   166     // threads attempting to perform the pop_global will all perform the same
   167     // CAS, and only one can succeed.)  Any stealing thread that reads after
   168     // either the increment or decrement will see an empty queue, and will not
   169     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   170     // modified by concurrent queues, so the owner thread can reset the state to
   171     // _bottom == top so subsequent pushes will be performed normally.
   172     return (sz == N - 1) ? 0 : sz;
   173   }
   175 public:
   176   TaskQueueSuper() : _bottom(0), _age() {}
   178   // Return true if the TaskQueue contains/does not contain any tasks.
   179   bool peek()     const { return _bottom != _age.top(); }
   180   bool is_empty() const { return size() == 0; }
   182   // Return an estimate of the number of elements in the queue.
   183   // The "careful" version admits the possibility of pop_local/pop_global
   184   // races.
   185   uint size() const {
   186     return size(_bottom, _age.top());
   187   }
   189   uint dirty_size() const {
   190     return dirty_size(_bottom, _age.top());
   191   }
   193   void set_empty() {
   194     _bottom = 0;
   195     _age.set(0);
   196   }
   198   // Maximum number of elements allowed in the queue.  This is two less
   199   // than the actual queue size, for somewhat complicated reasons.
   200   uint max_elems() const { return N - 2; }
   202   // Total size of queue.
   203   static const uint total_size() { return N; }
   205   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   206 };
   208 template<class E, unsigned int N = TASKQUEUE_SIZE>
   209 class GenericTaskQueue: public TaskQueueSuper<N> {
   210 protected:
   211   typedef typename TaskQueueSuper<N>::Age Age;
   212   typedef typename TaskQueueSuper<N>::idx_t idx_t;
   214   using TaskQueueSuper<N>::_bottom;
   215   using TaskQueueSuper<N>::_age;
   216   using TaskQueueSuper<N>::increment_index;
   217   using TaskQueueSuper<N>::decrement_index;
   218   using TaskQueueSuper<N>::dirty_size;
   220 public:
   221   using TaskQueueSuper<N>::max_elems;
   222   using TaskQueueSuper<N>::size;
   223   TASKQUEUE_STATS_ONLY(using TaskQueueSuper<N>::stats;)
   225 private:
   226   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   227   bool push_slow(E t, uint dirty_n_elems);
   228   bool pop_local_slow(uint localBot, Age oldAge);
   230 public:
   231   typedef E element_type;
   233   // Initializes the queue to empty.
   234   GenericTaskQueue();
   236   void initialize();
   238   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   239   inline bool push(E t);
   241   // Attempts to claim a task from the "local" end of the queue (the most
   242   // recently pushed).  If successful, returns true and sets t to the task;
   243   // otherwise, returns false (the queue is empty).
   244   inline bool pop_local(E& t);
   246   // Like pop_local(), but uses the "global" end of the queue (the least
   247   // recently pushed).
   248   bool pop_global(E& t);
   250   // Delete any resource associated with the queue.
   251   ~GenericTaskQueue();
   253   // apply the closure to all elements in the task queue
   254   void oops_do(OopClosure* f);
   256 private:
   257   // Element array.
   258   volatile E* _elems;
   259 };
   261 template<class E, unsigned int N>
   262 GenericTaskQueue<E, N>::GenericTaskQueue() {
   263   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   264 }
   266 template<class E, unsigned int N>
   267 void GenericTaskQueue<E, N>::initialize() {
   268   _elems = NEW_C_HEAP_ARRAY(E, N);
   269 }
   271 template<class E, unsigned int N>
   272 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
   273   // tty->print_cr("START OopTaskQueue::oops_do");
   274   uint iters = size();
   275   uint index = _bottom;
   276   for (uint i = 0; i < iters; ++i) {
   277     index = decrement_index(index);
   278     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   279     //            index, &_elems[index], _elems[index]);
   280     E* t = (E*)&_elems[index];      // cast away volatility
   281     oop* p = (oop*)t;
   282     assert((*t)->is_oop_or_null(), "Not an oop or null");
   283     f->do_oop(p);
   284   }
   285   // tty->print_cr("END OopTaskQueue::oops_do");
   286 }
   288 template<class E, unsigned int N>
   289 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
   290   if (dirty_n_elems == N - 1) {
   291     // Actually means 0, so do the push.
   292     uint localBot = _bottom;
   293     // g++ complains if the volatile result of the assignment is unused.
   294     const_cast<E&>(_elems[localBot] = t);
   295     OrderAccess::release_store(&_bottom, increment_index(localBot));
   296     TASKQUEUE_STATS_ONLY(stats.record_push());
   297     return true;
   298   }
   299   return false;
   300 }
   302 template<class E, unsigned int N>
   303 bool GenericTaskQueue<E, N>::pop_local_slow(uint localBot, Age oldAge) {
   304   // This queue was observed to contain exactly one element; either this
   305   // thread will claim it, or a competing "pop_global".  In either case,
   306   // the queue will be logically empty afterwards.  Create a new Age value
   307   // that represents the empty queue for the given value of "_bottom".  (We
   308   // must also increment "tag" because of the case where "bottom == 1",
   309   // "top == 0".  A pop_global could read the queue element in that case,
   310   // then have the owner thread do a pop followed by another push.  Without
   311   // the incrementing of "tag", the pop_global's CAS could succeed,
   312   // allowing it to believe it has claimed the stale element.)
   313   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   314   // Perhaps a competing pop_global has already incremented "top", in which
   315   // case it wins the element.
   316   if (localBot == oldAge.top()) {
   317     // No competing pop_global has yet incremented "top"; we'll try to
   318     // install new_age, thus claiming the element.
   319     Age tempAge = _age.cmpxchg(newAge, oldAge);
   320     if (tempAge == oldAge) {
   321       // We win.
   322       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   323       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   324       return true;
   325     }
   326   }
   327   // We lose; a completing pop_global gets the element.  But the queue is empty
   328   // and top is greater than bottom.  Fix this representation of the empty queue
   329   // to become the canonical one.
   330   _age.set(newAge);
   331   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   332   return false;
   333 }
   335 template<class E, unsigned int N>
   336 bool GenericTaskQueue<E, N>::pop_global(E& t) {
   337   Age oldAge = _age.get();
   338   uint localBot = _bottom;
   339   uint n_elems = size(localBot, oldAge.top());
   340   if (n_elems == 0) {
   341     return false;
   342   }
   344   const_cast<E&>(t = _elems[oldAge.top()]);
   345   Age newAge(oldAge);
   346   newAge.increment();
   347   Age resAge = _age.cmpxchg(newAge, oldAge);
   349   // Note that using "_bottom" here might fail, since a pop_local might
   350   // have decremented it.
   351   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   352   return resAge == oldAge;
   353 }
   355 template<class E, unsigned int N>
   356 GenericTaskQueue<E, N>::~GenericTaskQueue() {
   357   FREE_C_HEAP_ARRAY(E, _elems);
   358 }
   360 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   361 // elements that do not fit in the TaskQueue.
   362 //
   363 // Three methods from super classes are overridden:
   364 //
   365 // initialize() - initialize the super classes and create the overflow stack
   366 // push() - push onto the task queue or, if that fails, onto the overflow stack
   367 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   368 //
   369 // Note that size() is not overridden--it returns the number of elements in the
   370 // TaskQueue, and does not include the size of the overflow stack.  This
   371 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   372 template<class E, unsigned int N = TASKQUEUE_SIZE>
   373 class OverflowTaskQueue: public GenericTaskQueue<E, N>
   374 {
   375 public:
   376   typedef GrowableArray<E>       overflow_t;
   377   typedef GenericTaskQueue<E, N> taskqueue_t;
   379   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   381   OverflowTaskQueue();
   382   ~OverflowTaskQueue();
   383   void initialize();
   385   inline overflow_t* overflow_stack() const { return _overflow_stack; }
   387   // Push task t onto the queue or onto the overflow stack.  Return true.
   388   inline bool push(E t);
   390   // Attempt to pop from the overflow stack; return true if anything was popped.
   391   inline bool pop_overflow(E& t);
   393   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   394   inline bool overflow_empty()  const { return overflow_stack()->is_empty(); }
   395   inline bool is_empty()        const {
   396     return taskqueue_empty() && overflow_empty();
   397   }
   399 private:
   400   overflow_t* _overflow_stack;
   401 };
   403 template <class E, unsigned int N>
   404 OverflowTaskQueue<E, N>::OverflowTaskQueue()
   405 {
   406   _overflow_stack = NULL;
   407 }
   409 template <class E, unsigned int N>
   410 OverflowTaskQueue<E, N>::~OverflowTaskQueue()
   411 {
   412   if (_overflow_stack != NULL) {
   413     delete _overflow_stack;
   414     _overflow_stack = NULL;
   415   }
   416 }
   418 template <class E, unsigned int N>
   419 void OverflowTaskQueue<E, N>::initialize()
   420 {
   421   taskqueue_t::initialize();
   422   assert(_overflow_stack == NULL, "memory leak");
   423   _overflow_stack = new (ResourceObj::C_HEAP) GrowableArray<E>(10, true);
   424 }
   426 template <class E, unsigned int N>
   427 bool OverflowTaskQueue<E, N>::push(E t)
   428 {
   429   if (!taskqueue_t::push(t)) {
   430     overflow_stack()->push(t);
   431     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->length()));
   432   }
   433   return true;
   434 }
   436 template <class E, unsigned int N>
   437 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
   438 {
   439   if (overflow_empty()) return false;
   440   t = overflow_stack()->pop();
   441   return true;
   442 }
   444 class TaskQueueSetSuper: public CHeapObj {
   445 protected:
   446   static int randomParkAndMiller(int* seed0);
   447 public:
   448   // Returns "true" if some TaskQueue in the set contains a task.
   449   virtual bool peek() = 0;
   450 };
   452 template<class T>
   453 class GenericTaskQueueSet: public TaskQueueSetSuper {
   454 private:
   455   uint _n;
   456   T** _queues;
   458 public:
   459   typedef typename T::element_type E;
   461   GenericTaskQueueSet(int n) : _n(n) {
   462     typedef T* GenericTaskQueuePtr;
   463     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   464     for (int i = 0; i < n; i++) {
   465       _queues[i] = NULL;
   466     }
   467   }
   469   bool steal_1_random(uint queue_num, int* seed, E& t);
   470   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   471   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   473   void register_queue(uint i, T* q);
   475   T* queue(uint n);
   477   // The thread with queue number "queue_num" (and whose random number seed is
   478   // at "seed") is trying to steal a task from some other queue.  (It may try
   479   // several queues, according to some configuration parameter.)  If some steal
   480   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   481   // false.
   482   bool steal(uint queue_num, int* seed, E& t);
   484   bool peek();
   485 };
   487 template<class T> void
   488 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
   489   assert(i < _n, "index out of range.");
   490   _queues[i] = q;
   491 }
   493 template<class T> T*
   494 GenericTaskQueueSet<T>::queue(uint i) {
   495   return _queues[i];
   496 }
   498 template<class T> bool
   499 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
   500   for (uint i = 0; i < 2 * _n; i++) {
   501     if (steal_best_of_2(queue_num, seed, t)) {
   502       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   503       return true;
   504     }
   505   }
   506   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   507   return false;
   508 }
   510 template<class T> bool
   511 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   512   if (_n > 2) {
   513     int best_k;
   514     uint best_sz = 0;
   515     for (uint k = 0; k < _n; k++) {
   516       if (k == queue_num) continue;
   517       uint sz = _queues[k]->size();
   518       if (sz > best_sz) {
   519         best_sz = sz;
   520         best_k = k;
   521       }
   522     }
   523     return best_sz > 0 && _queues[best_k]->pop_global(t);
   524   } else if (_n == 2) {
   525     // Just try the other one.
   526     int k = (queue_num + 1) % 2;
   527     return _queues[k]->pop_global(t);
   528   } else {
   529     assert(_n == 1, "can't be zero.");
   530     return false;
   531   }
   532 }
   534 template<class T> bool
   535 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
   536   if (_n > 2) {
   537     uint k = queue_num;
   538     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   539     return _queues[2]->pop_global(t);
   540   } else if (_n == 2) {
   541     // Just try the other one.
   542     int k = (queue_num + 1) % 2;
   543     return _queues[k]->pop_global(t);
   544   } else {
   545     assert(_n == 1, "can't be zero.");
   546     return false;
   547   }
   548 }
   550 template<class T> bool
   551 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   552   if (_n > 2) {
   553     uint k1 = queue_num;
   554     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   555     uint k2 = queue_num;
   556     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   557     // Sample both and try the larger.
   558     uint sz1 = _queues[k1]->size();
   559     uint sz2 = _queues[k2]->size();
   560     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   561     else return _queues[k1]->pop_global(t);
   562   } else if (_n == 2) {
   563     // Just try the other one.
   564     uint k = (queue_num + 1) % 2;
   565     return _queues[k]->pop_global(t);
   566   } else {
   567     assert(_n == 1, "can't be zero.");
   568     return false;
   569   }
   570 }
   572 template<class T>
   573 bool GenericTaskQueueSet<T>::peek() {
   574   // Try all the queues.
   575   for (uint j = 0; j < _n; j++) {
   576     if (_queues[j]->peek())
   577       return true;
   578   }
   579   return false;
   580 }
   582 // When to terminate from the termination protocol.
   583 class TerminatorTerminator: public CHeapObj {
   584 public:
   585   virtual bool should_exit_termination() = 0;
   586 };
   588 // A class to aid in the termination of a set of parallel tasks using
   589 // TaskQueueSet's for work stealing.
   591 #undef TRACESPINNING
   593 class ParallelTaskTerminator: public StackObj {
   594 private:
   595   int _n_threads;
   596   TaskQueueSetSuper* _queue_set;
   597   int _offered_termination;
   599 #ifdef TRACESPINNING
   600   static uint _total_yields;
   601   static uint _total_spins;
   602   static uint _total_peeks;
   603 #endif
   605   bool peek_in_queue_set();
   606 protected:
   607   virtual void yield();
   608   void sleep(uint millis);
   610 public:
   612   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   613   // queue sets of work queues of other threads.
   614   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   616   // The current thread has no work, and is ready to terminate if everyone
   617   // else is.  If returns "true", all threads are terminated.  If returns
   618   // "false", available work has been observed in one of the task queues,
   619   // so the global task is not complete.
   620   bool offer_termination() {
   621     return offer_termination(NULL);
   622   }
   624   // As above, but it also terminates if the should_exit_termination()
   625   // method of the terminator parameter returns true. If terminator is
   626   // NULL, then it is ignored.
   627   bool offer_termination(TerminatorTerminator* terminator);
   629   // Reset the terminator, so that it may be reused again.
   630   // The caller is responsible for ensuring that this is done
   631   // in an MT-safe manner, once the previous round of use of
   632   // the terminator is finished.
   633   void reset_for_reuse();
   635 #ifdef TRACESPINNING
   636   static uint total_yields() { return _total_yields; }
   637   static uint total_spins() { return _total_spins; }
   638   static uint total_peeks() { return _total_peeks; }
   639   static void print_termination_counts();
   640 #endif
   641 };
   643 template<class E, unsigned int N> inline bool
   644 GenericTaskQueue<E, N>::push(E t) {
   645   uint localBot = _bottom;
   646   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   647   idx_t top = _age.top();
   648   uint dirty_n_elems = dirty_size(localBot, top);
   649   assert(dirty_n_elems < N, "n_elems out of range.");
   650   if (dirty_n_elems < max_elems()) {
   651     // g++ complains if the volatile result of the assignment is unused.
   652     const_cast<E&>(_elems[localBot] = t);
   653     OrderAccess::release_store(&_bottom, increment_index(localBot));
   654     TASKQUEUE_STATS_ONLY(stats.record_push());
   655     return true;
   656   } else {
   657     return push_slow(t, dirty_n_elems);
   658   }
   659 }
   661 template<class E, unsigned int N> inline bool
   662 GenericTaskQueue<E, N>::pop_local(E& t) {
   663   uint localBot = _bottom;
   664   // This value cannot be N-1.  That can only occur as a result of
   665   // the assignment to bottom in this method.  If it does, this method
   666   // resets the size to 0 before the next call (which is sequential,
   667   // since this is pop_local.)
   668   uint dirty_n_elems = dirty_size(localBot, _age.top());
   669   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   670   if (dirty_n_elems == 0) return false;
   671   localBot = decrement_index(localBot);
   672   _bottom = localBot;
   673   // This is necessary to prevent any read below from being reordered
   674   // before the store just above.
   675   OrderAccess::fence();
   676   const_cast<E&>(t = _elems[localBot]);
   677   // This is a second read of "age"; the "size()" above is the first.
   678   // If there's still at least one element in the queue, based on the
   679   // "_bottom" and "age" we've read, then there can be no interference with
   680   // a "pop_global" operation, and we're done.
   681   idx_t tp = _age.top();    // XXX
   682   if (size(localBot, tp) > 0) {
   683     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   684     TASKQUEUE_STATS_ONLY(stats.record_pop());
   685     return true;
   686   } else {
   687     // Otherwise, the queue contained exactly one element; we take the slow
   688     // path.
   689     return pop_local_slow(localBot, _age.get());
   690   }
   691 }
   693 typedef GenericTaskQueue<oop>             OopTaskQueue;
   694 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
   696 #ifdef _MSC_VER
   697 #pragma warning(push)
   698 // warning C4522: multiple assignment operators specified
   699 #pragma warning(disable:4522)
   700 #endif
   702 // This is a container class for either an oop* or a narrowOop*.
   703 // Both are pushed onto a task queue and the consumer will test is_narrow()
   704 // to determine which should be processed.
   705 class StarTask {
   706   void*  _holder;        // either union oop* or narrowOop*
   708   enum { COMPRESSED_OOP_MASK = 1 };
   710  public:
   711   StarTask(narrowOop* p) {
   712     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   713     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   714   }
   715   StarTask(oop* p)       {
   716     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   717     _holder = (void*)p;
   718   }
   719   StarTask()             { _holder = NULL; }
   720   operator oop*()        { return (oop*)_holder; }
   721   operator narrowOop*()  {
   722     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   723   }
   725   StarTask& operator=(const StarTask& t) {
   726     _holder = t._holder;
   727     return *this;
   728   }
   729   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   730     _holder = t._holder;
   731     return *this;
   732   }
   734   bool is_narrow() const {
   735     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   736   }
   737 };
   739 class ObjArrayTask
   740 {
   741 public:
   742   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   743   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   744     assert(idx <= size_t(max_jint), "too big");
   745   }
   746   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   748   ObjArrayTask& operator =(const ObjArrayTask& t) {
   749     _obj = t._obj;
   750     _index = t._index;
   751     return *this;
   752   }
   753   volatile ObjArrayTask&
   754   operator =(const volatile ObjArrayTask& t) volatile {
   755     _obj = t._obj;
   756     _index = t._index;
   757     return *this;
   758   }
   760   inline oop obj()   const { return _obj; }
   761   inline int index() const { return _index; }
   763   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   765 private:
   766   oop _obj;
   767   int _index;
   768 };
   770 #ifdef _MSC_VER
   771 #pragma warning(pop)
   772 #endif
   774 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
   775 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
   777 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
   778 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;

mercurial