src/share/vm/utilities/taskqueue.hpp

Mon, 09 Aug 2010 05:41:05 -0700

author
jcoomes
date
Mon, 09 Aug 2010 05:41:05 -0700
changeset 2064
5f429ee79634
parent 2020
a93a9eda13f7
child 2188
8b10f48633dc
permissions
-rw-r--r--

6966222: G1: simplify TaskQueue overflow handling
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Simple TaskQueue stats that are collected by default in debug builds.
    27 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    28 #define TASKQUEUE_STATS 1
    29 #elif !defined(TASKQUEUE_STATS)
    30 #define TASKQUEUE_STATS 0
    31 #endif
    33 #if TASKQUEUE_STATS
    34 #define TASKQUEUE_STATS_ONLY(code) code
    35 #else
    36 #define TASKQUEUE_STATS_ONLY(code)
    37 #endif // TASKQUEUE_STATS
    39 #if TASKQUEUE_STATS
    40 class TaskQueueStats {
    41 public:
    42   enum StatId {
    43     push,             // number of taskqueue pushes
    44     pop,              // number of taskqueue pops
    45     pop_slow,         // subset of taskqueue pops that were done slow-path
    46     steal_attempt,    // number of taskqueue steal attempts
    47     steal,            // number of taskqueue steals
    48     overflow,         // number of overflow pushes
    49     overflow_max_len, // max length of overflow stack
    50     last_stat_id
    51   };
    53 public:
    54   inline TaskQueueStats()       { reset(); }
    56   inline void record_push()     { ++_stats[push]; }
    57   inline void record_pop()      { ++_stats[pop]; }
    58   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
    59   inline void record_steal(bool success);
    60   inline void record_overflow(size_t new_length);
    62   TaskQueueStats & operator +=(const TaskQueueStats & addend);
    64   inline size_t get(StatId id) const { return _stats[id]; }
    65   inline const size_t* get() const   { return _stats; }
    67   inline void reset();
    69   // Print the specified line of the header (does not include a line separator).
    70   static void print_header(unsigned int line, outputStream* const stream = tty,
    71                            unsigned int width = 10);
    72   // Print the statistics (does not include a line separator).
    73   void print(outputStream* const stream = tty, unsigned int width = 10) const;
    75   DEBUG_ONLY(void verify() const;)
    77 private:
    78   size_t                    _stats[last_stat_id];
    79   static const char * const _names[last_stat_id];
    80 };
    82 void TaskQueueStats::record_steal(bool success) {
    83   ++_stats[steal_attempt];
    84   if (success) ++_stats[steal];
    85 }
    87 void TaskQueueStats::record_overflow(size_t new_len) {
    88   ++_stats[overflow];
    89   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
    90 }
    92 void TaskQueueStats::reset() {
    93   memset(_stats, 0, sizeof(_stats));
    94 }
    95 #endif // TASKQUEUE_STATS
    97 template <unsigned int N>
    98 class TaskQueueSuper: public CHeapObj {
    99 protected:
   100   // Internal type for indexing the queue; also used for the tag.
   101   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   103   // The first free element after the last one pushed (mod N).
   104   volatile uint _bottom;
   106   enum { MOD_N_MASK = N - 1 };
   108   class Age {
   109   public:
   110     Age(size_t data = 0)         { _data = data; }
   111     Age(const Age& age)          { _data = age._data; }
   112     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   114     Age   get()        const volatile { return _data; }
   115     void  set(Age age) volatile       { _data = age._data; }
   117     idx_t top()        const volatile { return _fields._top; }
   118     idx_t tag()        const volatile { return _fields._tag; }
   120     // Increment top; if it wraps, increment tag also.
   121     void increment() {
   122       _fields._top = increment_index(_fields._top);
   123       if (_fields._top == 0) ++_fields._tag;
   124     }
   126     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   127       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   128                                           (volatile intptr_t *)&_data,
   129                                           (intptr_t)old_age._data);
   130     }
   132     bool operator ==(const Age& other) const { return _data == other._data; }
   134   private:
   135     struct fields {
   136       idx_t _top;
   137       idx_t _tag;
   138     };
   139     union {
   140       size_t _data;
   141       fields _fields;
   142     };
   143   };
   145   volatile Age _age;
   147   // These both operate mod N.
   148   static uint increment_index(uint ind) {
   149     return (ind + 1) & MOD_N_MASK;
   150   }
   151   static uint decrement_index(uint ind) {
   152     return (ind - 1) & MOD_N_MASK;
   153   }
   155   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   156   // interpreted as 0.
   157   uint dirty_size(uint bot, uint top) const {
   158     return (bot - top) & MOD_N_MASK;
   159   }
   161   // Returns the size corresponding to the given "bot" and "top".
   162   uint size(uint bot, uint top) const {
   163     uint sz = dirty_size(bot, top);
   164     // Has the queue "wrapped", so that bottom is less than top?  There's a
   165     // complicated special case here.  A pair of threads could perform pop_local
   166     // and pop_global operations concurrently, starting from a state in which
   167     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   168     // and the pop_global in incrementing _top (in which case the pop_global
   169     // will be awarded the contested queue element.)  The resulting state must
   170     // be interpreted as an empty queue.  (We only need to worry about one such
   171     // event: only the queue owner performs pop_local's, and several concurrent
   172     // threads attempting to perform the pop_global will all perform the same
   173     // CAS, and only one can succeed.)  Any stealing thread that reads after
   174     // either the increment or decrement will see an empty queue, and will not
   175     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   176     // modified by concurrent queues, so the owner thread can reset the state to
   177     // _bottom == top so subsequent pushes will be performed normally.
   178     return (sz == N - 1) ? 0 : sz;
   179   }
   181 public:
   182   TaskQueueSuper() : _bottom(0), _age() {}
   184   // Return true if the TaskQueue contains/does not contain any tasks.
   185   bool peek()     const { return _bottom != _age.top(); }
   186   bool is_empty() const { return size() == 0; }
   188   // Return an estimate of the number of elements in the queue.
   189   // The "careful" version admits the possibility of pop_local/pop_global
   190   // races.
   191   uint size() const {
   192     return size(_bottom, _age.top());
   193   }
   195   uint dirty_size() const {
   196     return dirty_size(_bottom, _age.top());
   197   }
   199   void set_empty() {
   200     _bottom = 0;
   201     _age.set(0);
   202   }
   204   // Maximum number of elements allowed in the queue.  This is two less
   205   // than the actual queue size, for somewhat complicated reasons.
   206   uint max_elems() const { return N - 2; }
   208   // Total size of queue.
   209   static const uint total_size() { return N; }
   211   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   212 };
   214 template<class E, unsigned int N = TASKQUEUE_SIZE>
   215 class GenericTaskQueue: public TaskQueueSuper<N> {
   216 protected:
   217   typedef typename TaskQueueSuper<N>::Age Age;
   218   typedef typename TaskQueueSuper<N>::idx_t idx_t;
   220   using TaskQueueSuper<N>::_bottom;
   221   using TaskQueueSuper<N>::_age;
   222   using TaskQueueSuper<N>::increment_index;
   223   using TaskQueueSuper<N>::decrement_index;
   224   using TaskQueueSuper<N>::dirty_size;
   226 public:
   227   using TaskQueueSuper<N>::max_elems;
   228   using TaskQueueSuper<N>::size;
   229   TASKQUEUE_STATS_ONLY(using TaskQueueSuper<N>::stats;)
   231 private:
   232   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   233   bool push_slow(E t, uint dirty_n_elems);
   234   bool pop_local_slow(uint localBot, Age oldAge);
   236 public:
   237   typedef E element_type;
   239   // Initializes the queue to empty.
   240   GenericTaskQueue();
   242   void initialize();
   244   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   245   inline bool push(E t);
   247   // Attempts to claim a task from the "local" end of the queue (the most
   248   // recently pushed).  If successful, returns true and sets t to the task;
   249   // otherwise, returns false (the queue is empty).
   250   inline bool pop_local(E& t);
   252   // Like pop_local(), but uses the "global" end of the queue (the least
   253   // recently pushed).
   254   bool pop_global(E& t);
   256   // Delete any resource associated with the queue.
   257   ~GenericTaskQueue();
   259   // apply the closure to all elements in the task queue
   260   void oops_do(OopClosure* f);
   262 private:
   263   // Element array.
   264   volatile E* _elems;
   265 };
   267 template<class E, unsigned int N>
   268 GenericTaskQueue<E, N>::GenericTaskQueue() {
   269   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   270 }
   272 template<class E, unsigned int N>
   273 void GenericTaskQueue<E, N>::initialize() {
   274   _elems = NEW_C_HEAP_ARRAY(E, N);
   275 }
   277 template<class E, unsigned int N>
   278 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
   279   // tty->print_cr("START OopTaskQueue::oops_do");
   280   uint iters = size();
   281   uint index = _bottom;
   282   for (uint i = 0; i < iters; ++i) {
   283     index = decrement_index(index);
   284     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   285     //            index, &_elems[index], _elems[index]);
   286     E* t = (E*)&_elems[index];      // cast away volatility
   287     oop* p = (oop*)t;
   288     assert((*t)->is_oop_or_null(), "Not an oop or null");
   289     f->do_oop(p);
   290   }
   291   // tty->print_cr("END OopTaskQueue::oops_do");
   292 }
   294 template<class E, unsigned int N>
   295 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
   296   if (dirty_n_elems == N - 1) {
   297     // Actually means 0, so do the push.
   298     uint localBot = _bottom;
   299     // g++ complains if the volatile result of the assignment is unused.
   300     const_cast<E&>(_elems[localBot] = t);
   301     OrderAccess::release_store(&_bottom, increment_index(localBot));
   302     TASKQUEUE_STATS_ONLY(stats.record_push());
   303     return true;
   304   }
   305   return false;
   306 }
   308 template<class E, unsigned int N>
   309 bool GenericTaskQueue<E, N>::pop_local_slow(uint localBot, Age oldAge) {
   310   // This queue was observed to contain exactly one element; either this
   311   // thread will claim it, or a competing "pop_global".  In either case,
   312   // the queue will be logically empty afterwards.  Create a new Age value
   313   // that represents the empty queue for the given value of "_bottom".  (We
   314   // must also increment "tag" because of the case where "bottom == 1",
   315   // "top == 0".  A pop_global could read the queue element in that case,
   316   // then have the owner thread do a pop followed by another push.  Without
   317   // the incrementing of "tag", the pop_global's CAS could succeed,
   318   // allowing it to believe it has claimed the stale element.)
   319   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   320   // Perhaps a competing pop_global has already incremented "top", in which
   321   // case it wins the element.
   322   if (localBot == oldAge.top()) {
   323     // No competing pop_global has yet incremented "top"; we'll try to
   324     // install new_age, thus claiming the element.
   325     Age tempAge = _age.cmpxchg(newAge, oldAge);
   326     if (tempAge == oldAge) {
   327       // We win.
   328       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   329       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   330       return true;
   331     }
   332   }
   333   // We lose; a completing pop_global gets the element.  But the queue is empty
   334   // and top is greater than bottom.  Fix this representation of the empty queue
   335   // to become the canonical one.
   336   _age.set(newAge);
   337   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   338   return false;
   339 }
   341 template<class E, unsigned int N>
   342 bool GenericTaskQueue<E, N>::pop_global(E& t) {
   343   Age oldAge = _age.get();
   344   uint localBot = _bottom;
   345   uint n_elems = size(localBot, oldAge.top());
   346   if (n_elems == 0) {
   347     return false;
   348   }
   350   const_cast<E&>(t = _elems[oldAge.top()]);
   351   Age newAge(oldAge);
   352   newAge.increment();
   353   Age resAge = _age.cmpxchg(newAge, oldAge);
   355   // Note that using "_bottom" here might fail, since a pop_local might
   356   // have decremented it.
   357   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   358   return resAge == oldAge;
   359 }
   361 template<class E, unsigned int N>
   362 GenericTaskQueue<E, N>::~GenericTaskQueue() {
   363   FREE_C_HEAP_ARRAY(E, _elems);
   364 }
   366 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   367 // elements that do not fit in the TaskQueue.
   368 //
   369 // Three methods from super classes are overridden:
   370 //
   371 // initialize() - initialize the super classes and create the overflow stack
   372 // push() - push onto the task queue or, if that fails, onto the overflow stack
   373 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   374 //
   375 // Note that size() is not overridden--it returns the number of elements in the
   376 // TaskQueue, and does not include the size of the overflow stack.  This
   377 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   378 template<class E, unsigned int N = TASKQUEUE_SIZE>
   379 class OverflowTaskQueue: public GenericTaskQueue<E, N>
   380 {
   381 public:
   382   typedef GrowableArray<E>       overflow_t;
   383   typedef GenericTaskQueue<E, N> taskqueue_t;
   385   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   387   OverflowTaskQueue();
   388   ~OverflowTaskQueue();
   389   void initialize();
   391   inline overflow_t* overflow_stack() const { return _overflow_stack; }
   393   // Push task t onto the queue or onto the overflow stack.  Return true.
   394   inline bool push(E t);
   396   // Attempt to pop from the overflow stack; return true if anything was popped.
   397   inline bool pop_overflow(E& t);
   399   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   400   inline bool overflow_empty()  const { return overflow_stack()->is_empty(); }
   401   inline bool is_empty()        const {
   402     return taskqueue_empty() && overflow_empty();
   403   }
   405 private:
   406   overflow_t* _overflow_stack;
   407 };
   409 template <class E, unsigned int N>
   410 OverflowTaskQueue<E, N>::OverflowTaskQueue()
   411 {
   412   _overflow_stack = NULL;
   413 }
   415 template <class E, unsigned int N>
   416 OverflowTaskQueue<E, N>::~OverflowTaskQueue()
   417 {
   418   if (_overflow_stack != NULL) {
   419     delete _overflow_stack;
   420     _overflow_stack = NULL;
   421   }
   422 }
   424 template <class E, unsigned int N>
   425 void OverflowTaskQueue<E, N>::initialize()
   426 {
   427   taskqueue_t::initialize();
   428   assert(_overflow_stack == NULL, "memory leak");
   429   _overflow_stack = new (ResourceObj::C_HEAP) GrowableArray<E>(10, true);
   430 }
   432 template <class E, unsigned int N>
   433 bool OverflowTaskQueue<E, N>::push(E t)
   434 {
   435   if (!taskqueue_t::push(t)) {
   436     overflow_stack()->push(t);
   437     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->length()));
   438   }
   439   return true;
   440 }
   442 template <class E, unsigned int N>
   443 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
   444 {
   445   if (overflow_empty()) return false;
   446   t = overflow_stack()->pop();
   447   return true;
   448 }
   450 class TaskQueueSetSuper: public CHeapObj {
   451 protected:
   452   static int randomParkAndMiller(int* seed0);
   453 public:
   454   // Returns "true" if some TaskQueue in the set contains a task.
   455   virtual bool peek() = 0;
   456 };
   458 template<class T>
   459 class GenericTaskQueueSet: public TaskQueueSetSuper {
   460 private:
   461   uint _n;
   462   T** _queues;
   464 public:
   465   typedef typename T::element_type E;
   467   GenericTaskQueueSet(int n) : _n(n) {
   468     typedef T* GenericTaskQueuePtr;
   469     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   470     for (int i = 0; i < n; i++) {
   471       _queues[i] = NULL;
   472     }
   473   }
   475   bool steal_1_random(uint queue_num, int* seed, E& t);
   476   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   477   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   479   void register_queue(uint i, T* q);
   481   T* queue(uint n);
   483   // The thread with queue number "queue_num" (and whose random number seed is
   484   // at "seed") is trying to steal a task from some other queue.  (It may try
   485   // several queues, according to some configuration parameter.)  If some steal
   486   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   487   // false.
   488   bool steal(uint queue_num, int* seed, E& t);
   490   bool peek();
   491 };
   493 template<class T> void
   494 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
   495   assert(i < _n, "index out of range.");
   496   _queues[i] = q;
   497 }
   499 template<class T> T*
   500 GenericTaskQueueSet<T>::queue(uint i) {
   501   return _queues[i];
   502 }
   504 template<class T> bool
   505 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
   506   for (uint i = 0; i < 2 * _n; i++) {
   507     if (steal_best_of_2(queue_num, seed, t)) {
   508       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   509       return true;
   510     }
   511   }
   512   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   513   return false;
   514 }
   516 template<class T> bool
   517 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   518   if (_n > 2) {
   519     int best_k;
   520     uint best_sz = 0;
   521     for (uint k = 0; k < _n; k++) {
   522       if (k == queue_num) continue;
   523       uint sz = _queues[k]->size();
   524       if (sz > best_sz) {
   525         best_sz = sz;
   526         best_k = k;
   527       }
   528     }
   529     return best_sz > 0 && _queues[best_k]->pop_global(t);
   530   } else if (_n == 2) {
   531     // Just try the other one.
   532     int k = (queue_num + 1) % 2;
   533     return _queues[k]->pop_global(t);
   534   } else {
   535     assert(_n == 1, "can't be zero.");
   536     return false;
   537   }
   538 }
   540 template<class T> bool
   541 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
   542   if (_n > 2) {
   543     uint k = queue_num;
   544     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   545     return _queues[2]->pop_global(t);
   546   } else if (_n == 2) {
   547     // Just try the other one.
   548     int k = (queue_num + 1) % 2;
   549     return _queues[k]->pop_global(t);
   550   } else {
   551     assert(_n == 1, "can't be zero.");
   552     return false;
   553   }
   554 }
   556 template<class T> bool
   557 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   558   if (_n > 2) {
   559     uint k1 = queue_num;
   560     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   561     uint k2 = queue_num;
   562     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   563     // Sample both and try the larger.
   564     uint sz1 = _queues[k1]->size();
   565     uint sz2 = _queues[k2]->size();
   566     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   567     else return _queues[k1]->pop_global(t);
   568   } else if (_n == 2) {
   569     // Just try the other one.
   570     uint k = (queue_num + 1) % 2;
   571     return _queues[k]->pop_global(t);
   572   } else {
   573     assert(_n == 1, "can't be zero.");
   574     return false;
   575   }
   576 }
   578 template<class T>
   579 bool GenericTaskQueueSet<T>::peek() {
   580   // Try all the queues.
   581   for (uint j = 0; j < _n; j++) {
   582     if (_queues[j]->peek())
   583       return true;
   584   }
   585   return false;
   586 }
   588 // When to terminate from the termination protocol.
   589 class TerminatorTerminator: public CHeapObj {
   590 public:
   591   virtual bool should_exit_termination() = 0;
   592 };
   594 // A class to aid in the termination of a set of parallel tasks using
   595 // TaskQueueSet's for work stealing.
   597 #undef TRACESPINNING
   599 class ParallelTaskTerminator: public StackObj {
   600 private:
   601   int _n_threads;
   602   TaskQueueSetSuper* _queue_set;
   603   int _offered_termination;
   605 #ifdef TRACESPINNING
   606   static uint _total_yields;
   607   static uint _total_spins;
   608   static uint _total_peeks;
   609 #endif
   611   bool peek_in_queue_set();
   612 protected:
   613   virtual void yield();
   614   void sleep(uint millis);
   616 public:
   618   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   619   // queue sets of work queues of other threads.
   620   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   622   // The current thread has no work, and is ready to terminate if everyone
   623   // else is.  If returns "true", all threads are terminated.  If returns
   624   // "false", available work has been observed in one of the task queues,
   625   // so the global task is not complete.
   626   bool offer_termination() {
   627     return offer_termination(NULL);
   628   }
   630   // As above, but it also terminates if the should_exit_termination()
   631   // method of the terminator parameter returns true. If terminator is
   632   // NULL, then it is ignored.
   633   bool offer_termination(TerminatorTerminator* terminator);
   635   // Reset the terminator, so that it may be reused again.
   636   // The caller is responsible for ensuring that this is done
   637   // in an MT-safe manner, once the previous round of use of
   638   // the terminator is finished.
   639   void reset_for_reuse();
   641 #ifdef TRACESPINNING
   642   static uint total_yields() { return _total_yields; }
   643   static uint total_spins() { return _total_spins; }
   644   static uint total_peeks() { return _total_peeks; }
   645   static void print_termination_counts();
   646 #endif
   647 };
   649 template<class E, unsigned int N> inline bool
   650 GenericTaskQueue<E, N>::push(E t) {
   651   uint localBot = _bottom;
   652   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   653   idx_t top = _age.top();
   654   uint dirty_n_elems = dirty_size(localBot, top);
   655   assert(dirty_n_elems < N, "n_elems out of range.");
   656   if (dirty_n_elems < max_elems()) {
   657     // g++ complains if the volatile result of the assignment is unused.
   658     const_cast<E&>(_elems[localBot] = t);
   659     OrderAccess::release_store(&_bottom, increment_index(localBot));
   660     TASKQUEUE_STATS_ONLY(stats.record_push());
   661     return true;
   662   } else {
   663     return push_slow(t, dirty_n_elems);
   664   }
   665 }
   667 template<class E, unsigned int N> inline bool
   668 GenericTaskQueue<E, N>::pop_local(E& t) {
   669   uint localBot = _bottom;
   670   // This value cannot be N-1.  That can only occur as a result of
   671   // the assignment to bottom in this method.  If it does, this method
   672   // resets the size to 0 before the next call (which is sequential,
   673   // since this is pop_local.)
   674   uint dirty_n_elems = dirty_size(localBot, _age.top());
   675   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   676   if (dirty_n_elems == 0) return false;
   677   localBot = decrement_index(localBot);
   678   _bottom = localBot;
   679   // This is necessary to prevent any read below from being reordered
   680   // before the store just above.
   681   OrderAccess::fence();
   682   const_cast<E&>(t = _elems[localBot]);
   683   // This is a second read of "age"; the "size()" above is the first.
   684   // If there's still at least one element in the queue, based on the
   685   // "_bottom" and "age" we've read, then there can be no interference with
   686   // a "pop_global" operation, and we're done.
   687   idx_t tp = _age.top();    // XXX
   688   if (size(localBot, tp) > 0) {
   689     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   690     TASKQUEUE_STATS_ONLY(stats.record_pop());
   691     return true;
   692   } else {
   693     // Otherwise, the queue contained exactly one element; we take the slow
   694     // path.
   695     return pop_local_slow(localBot, _age.get());
   696   }
   697 }
   699 typedef GenericTaskQueue<oop>             OopTaskQueue;
   700 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
   702 #ifdef _MSC_VER
   703 #pragma warning(push)
   704 // warning C4522: multiple assignment operators specified
   705 #pragma warning(disable:4522)
   706 #endif
   708 // This is a container class for either an oop* or a narrowOop*.
   709 // Both are pushed onto a task queue and the consumer will test is_narrow()
   710 // to determine which should be processed.
   711 class StarTask {
   712   void*  _holder;        // either union oop* or narrowOop*
   714   enum { COMPRESSED_OOP_MASK = 1 };
   716  public:
   717   StarTask(narrowOop* p) {
   718     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   719     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   720   }
   721   StarTask(oop* p)       {
   722     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   723     _holder = (void*)p;
   724   }
   725   StarTask()             { _holder = NULL; }
   726   operator oop*()        { return (oop*)_holder; }
   727   operator narrowOop*()  {
   728     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   729   }
   731   StarTask& operator=(const StarTask& t) {
   732     _holder = t._holder;
   733     return *this;
   734   }
   735   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   736     _holder = t._holder;
   737     return *this;
   738   }
   740   bool is_narrow() const {
   741     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   742   }
   743 };
   745 class ObjArrayTask
   746 {
   747 public:
   748   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   749   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   750     assert(idx <= size_t(max_jint), "too big");
   751   }
   752   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   754   ObjArrayTask& operator =(const ObjArrayTask& t) {
   755     _obj = t._obj;
   756     _index = t._index;
   757     return *this;
   758   }
   759   volatile ObjArrayTask&
   760   operator =(const volatile ObjArrayTask& t) volatile {
   761     _obj = t._obj;
   762     _index = t._index;
   763     return *this;
   764   }
   766   inline oop obj()   const { return _obj; }
   767   inline int index() const { return _index; }
   769   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   771 private:
   772   oop _obj;
   773   int _index;
   774 };
   776 #ifdef _MSC_VER
   777 #pragma warning(pop)
   778 #endif
   780 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
   781 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
   783 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
   784 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;

mercurial