src/share/vm/utilities/taskqueue.hpp

Thu, 01 Jul 2010 21:40:45 -0700

author
jcoomes
date
Thu, 01 Jul 2010 21:40:45 -0700
changeset 1993
b2a00dd3117c
parent 1907
c18cbe5936b8
child 2020
a93a9eda13f7
permissions
-rw-r--r--

6957084: simplify TaskQueue overflow handling
Reviewed-by: ysr, jmasa

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 template <unsigned int N>
    26 class TaskQueueSuper: public CHeapObj {
    27 protected:
    28   // Internal type for indexing the queue; also used for the tag.
    29   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
    31   // The first free element after the last one pushed (mod N).
    32   volatile uint _bottom;
    34   enum { MOD_N_MASK = N - 1 };
    36   class Age {
    37   public:
    38     Age(size_t data = 0)         { _data = data; }
    39     Age(const Age& age)          { _data = age._data; }
    40     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
    42     Age   get()        const volatile { return _data; }
    43     void  set(Age age) volatile       { _data = age._data; }
    45     idx_t top()        const volatile { return _fields._top; }
    46     idx_t tag()        const volatile { return _fields._tag; }
    48     // Increment top; if it wraps, increment tag also.
    49     void increment() {
    50       _fields._top = increment_index(_fields._top);
    51       if (_fields._top == 0) ++_fields._tag;
    52     }
    54     Age cmpxchg(const Age new_age, const Age old_age) volatile {
    55       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
    56                                           (volatile intptr_t *)&_data,
    57                                           (intptr_t)old_age._data);
    58     }
    60     bool operator ==(const Age& other) const { return _data == other._data; }
    62   private:
    63     struct fields {
    64       idx_t _top;
    65       idx_t _tag;
    66     };
    67     union {
    68       size_t _data;
    69       fields _fields;
    70     };
    71   };
    73   volatile Age _age;
    75   // These both operate mod N.
    76   static uint increment_index(uint ind) {
    77     return (ind + 1) & MOD_N_MASK;
    78   }
    79   static uint decrement_index(uint ind) {
    80     return (ind - 1) & MOD_N_MASK;
    81   }
    83   // Returns a number in the range [0..N).  If the result is "N-1", it should be
    84   // interpreted as 0.
    85   uint dirty_size(uint bot, uint top) const {
    86     return (bot - top) & MOD_N_MASK;
    87   }
    89   // Returns the size corresponding to the given "bot" and "top".
    90   uint size(uint bot, uint top) const {
    91     uint sz = dirty_size(bot, top);
    92     // Has the queue "wrapped", so that bottom is less than top?  There's a
    93     // complicated special case here.  A pair of threads could perform pop_local
    94     // and pop_global operations concurrently, starting from a state in which
    95     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
    96     // and the pop_global in incrementing _top (in which case the pop_global
    97     // will be awarded the contested queue element.)  The resulting state must
    98     // be interpreted as an empty queue.  (We only need to worry about one such
    99     // event: only the queue owner performs pop_local's, and several concurrent
   100     // threads attempting to perform the pop_global will all perform the same
   101     // CAS, and only one can succeed.)  Any stealing thread that reads after
   102     // either the increment or decrement will see an empty queue, and will not
   103     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   104     // modified by concurrent queues, so the owner thread can reset the state to
   105     // _bottom == top so subsequent pushes will be performed normally.
   106     return (sz == N - 1) ? 0 : sz;
   107   }
   109 public:
   110   TaskQueueSuper() : _bottom(0), _age() {}
   112   // Return true if the TaskQueue contains/does not contain any tasks.
   113   bool peek()     const { return _bottom != _age.top(); }
   114   bool is_empty() const { return size() == 0; }
   116   // Return an estimate of the number of elements in the queue.
   117   // The "careful" version admits the possibility of pop_local/pop_global
   118   // races.
   119   uint size() const {
   120     return size(_bottom, _age.top());
   121   }
   123   uint dirty_size() const {
   124     return dirty_size(_bottom, _age.top());
   125   }
   127   void set_empty() {
   128     _bottom = 0;
   129     _age.set(0);
   130   }
   132   // Maximum number of elements allowed in the queue.  This is two less
   133   // than the actual queue size, for somewhat complicated reasons.
   134   uint max_elems() const { return N - 2; }
   136   // Total size of queue.
   137   static const uint total_size() { return N; }
   138 };
   140 template<class E, unsigned int N = TASKQUEUE_SIZE>
   141 class GenericTaskQueue: public TaskQueueSuper<N> {
   142 protected:
   143   typedef typename TaskQueueSuper<N>::Age Age;
   144   typedef typename TaskQueueSuper<N>::idx_t idx_t;
   146   using TaskQueueSuper<N>::_bottom;
   147   using TaskQueueSuper<N>::_age;
   148   using TaskQueueSuper<N>::increment_index;
   149   using TaskQueueSuper<N>::decrement_index;
   150   using TaskQueueSuper<N>::dirty_size;
   152 public:
   153   using TaskQueueSuper<N>::max_elems;
   154   using TaskQueueSuper<N>::size;
   156 private:
   157   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   158   bool push_slow(E t, uint dirty_n_elems);
   159   bool pop_local_slow(uint localBot, Age oldAge);
   161 public:
   162   typedef E element_type;
   164   // Initializes the queue to empty.
   165   GenericTaskQueue();
   167   void initialize();
   169   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   170   inline bool push(E t);
   172   // Attempts to claim a task from the "local" end of the queue (the most
   173   // recently pushed).  If successful, returns true and sets t to the task;
   174   // otherwise, returns false (the queue is empty).
   175   inline bool pop_local(E& t);
   177   // Like pop_local(), but uses the "global" end of the queue (the least
   178   // recently pushed).
   179   bool pop_global(E& t);
   181   // Delete any resource associated with the queue.
   182   ~GenericTaskQueue();
   184   // apply the closure to all elements in the task queue
   185   void oops_do(OopClosure* f);
   187 private:
   188   // Element array.
   189   volatile E* _elems;
   190 };
   192 template<class E, unsigned int N>
   193 GenericTaskQueue<E, N>::GenericTaskQueue() {
   194   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   195 }
   197 template<class E, unsigned int N>
   198 void GenericTaskQueue<E, N>::initialize() {
   199   _elems = NEW_C_HEAP_ARRAY(E, N);
   200 }
   202 template<class E, unsigned int N>
   203 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
   204   // tty->print_cr("START OopTaskQueue::oops_do");
   205   uint iters = size();
   206   uint index = _bottom;
   207   for (uint i = 0; i < iters; ++i) {
   208     index = decrement_index(index);
   209     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   210     //            index, &_elems[index], _elems[index]);
   211     E* t = (E*)&_elems[index];      // cast away volatility
   212     oop* p = (oop*)t;
   213     assert((*t)->is_oop_or_null(), "Not an oop or null");
   214     f->do_oop(p);
   215   }
   216   // tty->print_cr("END OopTaskQueue::oops_do");
   217 }
   219 template<class E, unsigned int N>
   220 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
   221   if (dirty_n_elems == N - 1) {
   222     // Actually means 0, so do the push.
   223     uint localBot = _bottom;
   224     // g++ complains if the volatile result of the assignment is unused.
   225     const_cast<E&>(_elems[localBot] = t);
   226     OrderAccess::release_store(&_bottom, increment_index(localBot));
   227     return true;
   228   }
   229   return false;
   230 }
   232 template<class E, unsigned int N>
   233 bool GenericTaskQueue<E, N>::
   234 pop_local_slow(uint localBot, Age oldAge) {
   235   // This queue was observed to contain exactly one element; either this
   236   // thread will claim it, or a competing "pop_global".  In either case,
   237   // the queue will be logically empty afterwards.  Create a new Age value
   238   // that represents the empty queue for the given value of "_bottom".  (We
   239   // must also increment "tag" because of the case where "bottom == 1",
   240   // "top == 0".  A pop_global could read the queue element in that case,
   241   // then have the owner thread do a pop followed by another push.  Without
   242   // the incrementing of "tag", the pop_global's CAS could succeed,
   243   // allowing it to believe it has claimed the stale element.)
   244   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   245   // Perhaps a competing pop_global has already incremented "top", in which
   246   // case it wins the element.
   247   if (localBot == oldAge.top()) {
   248     // No competing pop_global has yet incremented "top"; we'll try to
   249     // install new_age, thus claiming the element.
   250     Age tempAge = _age.cmpxchg(newAge, oldAge);
   251     if (tempAge == oldAge) {
   252       // We win.
   253       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   254       return true;
   255     }
   256   }
   257   // We lose; a completing pop_global gets the element.  But the queue is empty
   258   // and top is greater than bottom.  Fix this representation of the empty queue
   259   // to become the canonical one.
   260   _age.set(newAge);
   261   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   262   return false;
   263 }
   265 template<class E, unsigned int N>
   266 bool GenericTaskQueue<E, N>::pop_global(E& t) {
   267   Age oldAge = _age.get();
   268   uint localBot = _bottom;
   269   uint n_elems = size(localBot, oldAge.top());
   270   if (n_elems == 0) {
   271     return false;
   272   }
   274   const_cast<E&>(t = _elems[oldAge.top()]);
   275   Age newAge(oldAge);
   276   newAge.increment();
   277   Age resAge = _age.cmpxchg(newAge, oldAge);
   279   // Note that using "_bottom" here might fail, since a pop_local might
   280   // have decremented it.
   281   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   282   return resAge == oldAge;
   283 }
   285 template<class E, unsigned int N>
   286 GenericTaskQueue<E, N>::~GenericTaskQueue() {
   287   FREE_C_HEAP_ARRAY(E, _elems);
   288 }
   290 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   291 // elements that do not fit in the TaskQueue.
   292 //
   293 // Three methods from super classes are overridden:
   294 //
   295 // initialize() - initialize the super classes and create the overflow stack
   296 // push() - push onto the task queue or, if that fails, onto the overflow stack
   297 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   298 //
   299 // Note that size() is not overridden--it returns the number of elements in the
   300 // TaskQueue, and does not include the size of the overflow stack.  This
   301 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   302 template<class E, unsigned int N = TASKQUEUE_SIZE>
   303 class OverflowTaskQueue: public GenericTaskQueue<E, N>
   304 {
   305 public:
   306   typedef GrowableArray<E>       overflow_t;
   307   typedef GenericTaskQueue<E, N> taskqueue_t;
   309   OverflowTaskQueue();
   310   ~OverflowTaskQueue();
   311   void initialize();
   313   inline overflow_t* overflow_stack() const { return _overflow_stack; }
   315   // Push task t onto the queue or onto the overflow stack.  Return true.
   316   inline bool push(E t);
   318   // Attempt to pop from the overflow stack; return true if anything was popped.
   319   inline bool pop_overflow(E& t);
   321   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   322   inline bool overflow_empty()  const { return overflow_stack()->is_empty(); }
   323   inline bool is_empty()        const {
   324     return taskqueue_empty() && overflow_empty();
   325   }
   327 private:
   328   overflow_t* _overflow_stack;
   329 };
   331 template <class E, unsigned int N>
   332 OverflowTaskQueue<E, N>::OverflowTaskQueue()
   333 {
   334   _overflow_stack = NULL;
   335 }
   337 template <class E, unsigned int N>
   338 OverflowTaskQueue<E, N>::~OverflowTaskQueue()
   339 {
   340   if (_overflow_stack != NULL) {
   341     delete _overflow_stack;
   342     _overflow_stack = NULL;
   343   }
   344 }
   346 template <class E, unsigned int N>
   347 void OverflowTaskQueue<E, N>::initialize()
   348 {
   349   taskqueue_t::initialize();
   350   assert(_overflow_stack == NULL, "memory leak");
   351   _overflow_stack = new (ResourceObj::C_HEAP) GrowableArray<E>(10, true);
   352 }
   354 template <class E, unsigned int N>
   355 bool OverflowTaskQueue<E, N>::push(E t)
   356 {
   357   if (!taskqueue_t::push(t)) {
   358     overflow_stack()->push(t);
   359   }
   360   return true;
   361 }
   363 template <class E, unsigned int N>
   364 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
   365 {
   366   if (overflow_empty()) return false;
   367   t = overflow_stack()->pop();
   368   return true;
   369 }
   371 class TaskQueueSetSuper: public CHeapObj {
   372 protected:
   373   static int randomParkAndMiller(int* seed0);
   374 public:
   375   // Returns "true" if some TaskQueue in the set contains a task.
   376   virtual bool peek() = 0;
   377 };
   379 template<class T>
   380 class GenericTaskQueueSet: public TaskQueueSetSuper {
   381 private:
   382   uint _n;
   383   T** _queues;
   385 public:
   386   typedef typename T::element_type E;
   388   GenericTaskQueueSet(int n) : _n(n) {
   389     typedef T* GenericTaskQueuePtr;
   390     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   391     for (int i = 0; i < n; i++) {
   392       _queues[i] = NULL;
   393     }
   394   }
   396   bool steal_1_random(uint queue_num, int* seed, E& t);
   397   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   398   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   400   void register_queue(uint i, T* q);
   402   T* queue(uint n);
   404   // The thread with queue number "queue_num" (and whose random number seed is
   405   // at "seed") is trying to steal a task from some other queue.  (It may try
   406   // several queues, according to some configuration parameter.)  If some steal
   407   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   408   // false.
   409   bool steal(uint queue_num, int* seed, E& t);
   411   bool peek();
   412 };
   414 template<class T> void
   415 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
   416   assert(i < _n, "index out of range.");
   417   _queues[i] = q;
   418 }
   420 template<class T> T*
   421 GenericTaskQueueSet<T>::queue(uint i) {
   422   return _queues[i];
   423 }
   425 template<class T> bool
   426 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
   427   for (uint i = 0; i < 2 * _n; i++)
   428     if (steal_best_of_2(queue_num, seed, t))
   429       return true;
   430   return false;
   431 }
   433 template<class T> bool
   434 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   435   if (_n > 2) {
   436     int best_k;
   437     uint best_sz = 0;
   438     for (uint k = 0; k < _n; k++) {
   439       if (k == queue_num) continue;
   440       uint sz = _queues[k]->size();
   441       if (sz > best_sz) {
   442         best_sz = sz;
   443         best_k = k;
   444       }
   445     }
   446     return best_sz > 0 && _queues[best_k]->pop_global(t);
   447   } else if (_n == 2) {
   448     // Just try the other one.
   449     int k = (queue_num + 1) % 2;
   450     return _queues[k]->pop_global(t);
   451   } else {
   452     assert(_n == 1, "can't be zero.");
   453     return false;
   454   }
   455 }
   457 template<class T> bool
   458 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
   459   if (_n > 2) {
   460     uint k = queue_num;
   461     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   462     return _queues[2]->pop_global(t);
   463   } else if (_n == 2) {
   464     // Just try the other one.
   465     int k = (queue_num + 1) % 2;
   466     return _queues[k]->pop_global(t);
   467   } else {
   468     assert(_n == 1, "can't be zero.");
   469     return false;
   470   }
   471 }
   473 template<class T> bool
   474 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   475   if (_n > 2) {
   476     uint k1 = queue_num;
   477     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   478     uint k2 = queue_num;
   479     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   480     // Sample both and try the larger.
   481     uint sz1 = _queues[k1]->size();
   482     uint sz2 = _queues[k2]->size();
   483     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   484     else return _queues[k1]->pop_global(t);
   485   } else if (_n == 2) {
   486     // Just try the other one.
   487     uint k = (queue_num + 1) % 2;
   488     return _queues[k]->pop_global(t);
   489   } else {
   490     assert(_n == 1, "can't be zero.");
   491     return false;
   492   }
   493 }
   495 template<class T>
   496 bool GenericTaskQueueSet<T>::peek() {
   497   // Try all the queues.
   498   for (uint j = 0; j < _n; j++) {
   499     if (_queues[j]->peek())
   500       return true;
   501   }
   502   return false;
   503 }
   505 // When to terminate from the termination protocol.
   506 class TerminatorTerminator: public CHeapObj {
   507 public:
   508   virtual bool should_exit_termination() = 0;
   509 };
   511 // A class to aid in the termination of a set of parallel tasks using
   512 // TaskQueueSet's for work stealing.
   514 #undef TRACESPINNING
   516 class ParallelTaskTerminator: public StackObj {
   517 private:
   518   int _n_threads;
   519   TaskQueueSetSuper* _queue_set;
   520   int _offered_termination;
   522 #ifdef TRACESPINNING
   523   static uint _total_yields;
   524   static uint _total_spins;
   525   static uint _total_peeks;
   526 #endif
   528   bool peek_in_queue_set();
   529 protected:
   530   virtual void yield();
   531   void sleep(uint millis);
   533 public:
   535   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   536   // queue sets of work queues of other threads.
   537   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   539   // The current thread has no work, and is ready to terminate if everyone
   540   // else is.  If returns "true", all threads are terminated.  If returns
   541   // "false", available work has been observed in one of the task queues,
   542   // so the global task is not complete.
   543   bool offer_termination() {
   544     return offer_termination(NULL);
   545   }
   547   // As above, but it also terminates if the should_exit_termination()
   548   // method of the terminator parameter returns true. If terminator is
   549   // NULL, then it is ignored.
   550   bool offer_termination(TerminatorTerminator* terminator);
   552   // Reset the terminator, so that it may be reused again.
   553   // The caller is responsible for ensuring that this is done
   554   // in an MT-safe manner, once the previous round of use of
   555   // the terminator is finished.
   556   void reset_for_reuse();
   558 #ifdef TRACESPINNING
   559   static uint total_yields() { return _total_yields; }
   560   static uint total_spins() { return _total_spins; }
   561   static uint total_peeks() { return _total_peeks; }
   562   static void print_termination_counts();
   563 #endif
   564 };
   566 template<class E, unsigned int N> inline bool
   567 GenericTaskQueue<E, N>::push(E t) {
   568   uint localBot = _bottom;
   569   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   570   idx_t top = _age.top();
   571   uint dirty_n_elems = dirty_size(localBot, top);
   572   assert(dirty_n_elems < N, "n_elems out of range.");
   573   if (dirty_n_elems < max_elems()) {
   574     // g++ complains if the volatile result of the assignment is unused.
   575     const_cast<E&>(_elems[localBot] = t);
   576     OrderAccess::release_store(&_bottom, increment_index(localBot));
   577     return true;
   578   } else {
   579     return push_slow(t, dirty_n_elems);
   580   }
   581 }
   583 template<class E, unsigned int N> inline bool
   584 GenericTaskQueue<E, N>::pop_local(E& t) {
   585   uint localBot = _bottom;
   586   // This value cannot be N-1.  That can only occur as a result of
   587   // the assignment to bottom in this method.  If it does, this method
   588   // resets the size to 0 before the next call (which is sequential,
   589   // since this is pop_local.)
   590   uint dirty_n_elems = dirty_size(localBot, _age.top());
   591   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   592   if (dirty_n_elems == 0) return false;
   593   localBot = decrement_index(localBot);
   594   _bottom = localBot;
   595   // This is necessary to prevent any read below from being reordered
   596   // before the store just above.
   597   OrderAccess::fence();
   598   const_cast<E&>(t = _elems[localBot]);
   599   // This is a second read of "age"; the "size()" above is the first.
   600   // If there's still at least one element in the queue, based on the
   601   // "_bottom" and "age" we've read, then there can be no interference with
   602   // a "pop_global" operation, and we're done.
   603   idx_t tp = _age.top();    // XXX
   604   if (size(localBot, tp) > 0) {
   605     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   606     return true;
   607   } else {
   608     // Otherwise, the queue contained exactly one element; we take the slow
   609     // path.
   610     return pop_local_slow(localBot, _age.get());
   611   }
   612 }
   614 typedef GenericTaskQueue<oop>             OopTaskQueue;
   615 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
   617 #ifdef _MSC_VER
   618 #pragma warning(push)
   619 // warning C4522: multiple assignment operators specified
   620 #pragma warning(disable:4522)
   621 #endif
   623 // This is a container class for either an oop* or a narrowOop*.
   624 // Both are pushed onto a task queue and the consumer will test is_narrow()
   625 // to determine which should be processed.
   626 class StarTask {
   627   void*  _holder;        // either union oop* or narrowOop*
   629   enum { COMPRESSED_OOP_MASK = 1 };
   631  public:
   632   StarTask(narrowOop* p) {
   633     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   634     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   635   }
   636   StarTask(oop* p)       {
   637     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   638     _holder = (void*)p;
   639   }
   640   StarTask()             { _holder = NULL; }
   641   operator oop*()        { return (oop*)_holder; }
   642   operator narrowOop*()  {
   643     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   644   }
   646   StarTask& operator=(const StarTask& t) {
   647     _holder = t._holder;
   648     return *this;
   649   }
   650   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   651     _holder = t._holder;
   652     return *this;
   653   }
   655   bool is_narrow() const {
   656     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   657   }
   658 };
   660 class ObjArrayTask
   661 {
   662 public:
   663   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   664   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   665     assert(idx <= size_t(max_jint), "too big");
   666   }
   667   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   669   ObjArrayTask& operator =(const ObjArrayTask& t) {
   670     _obj = t._obj;
   671     _index = t._index;
   672     return *this;
   673   }
   674   volatile ObjArrayTask&
   675   operator =(const volatile ObjArrayTask& t) volatile {
   676     _obj = t._obj;
   677     _index = t._index;
   678     return *this;
   679   }
   681   inline oop obj()   const { return _obj; }
   682   inline int index() const { return _index; }
   684   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   686 private:
   687   oop _obj;
   688   int _index;
   689 };
   691 #ifdef _MSC_VER
   692 #pragma warning(pop)
   693 #endif
   695 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
   696 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
   698 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
   699 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;

mercurial