src/cpu/sparc/vm/sparc.ad

Tue, 25 Mar 2014 12:54:21 -0700

author
goetz
date
Tue, 25 Mar 2014 12:54:21 -0700
changeset 6517
a433eb716ce1
parent 6507
752ba2e5f6d0
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8037821: Account for trampoline stubs when estimating code buffer sizes
Summary: Take into account space needed for "trampoline code" used by calls on PPC64.
Reviewed-by: kvn
Contributed-by: lutz.schmidt@sap.com

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Header information of the source block.
   461 // Method declarations/definitions which are used outside
   462 // the ad-scope can conveniently be defined here.
   463 //
   464 // To keep related declarations/definitions/uses close together,
   465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   467 // Must be visible to the DFA in dfa_sparc.cpp
   468 extern bool can_branch_register( Node *bol, Node *cmp );
   470 extern bool use_block_zeroing(Node* count);
   472 // Macros to extract hi & lo halves from a long pair.
   473 // G0 is not part of any long pair, so assert on that.
   474 // Prevents accidentally using G1 instead of G0.
   475 #define LONG_HI_REG(x) (x)
   476 #define LONG_LO_REG(x) (x)
   478 class CallStubImpl {
   480   //--------------------------------------------------------------
   481   //---<  Used for optimization in Compile::Shorten_branches  >---
   482   //--------------------------------------------------------------
   484  public:
   485   // Size of call trampoline stub.
   486   static uint size_call_trampoline() {
   487     return 0; // no call trampolines on this platform
   488   }
   490   // number of relocations needed by a call trampoline stub
   491   static uint reloc_call_trampoline() {
   492     return 0; // no call trampolines on this platform
   493   }
   494 };
   496 class HandlerImpl {
   498  public:
   500   static int emit_exception_handler(CodeBuffer &cbuf);
   501   static int emit_deopt_handler(CodeBuffer& cbuf);
   503   static uint size_exception_handler() {
   504     if (TraceJumps) {
   505       return (400); // just a guess
   506     }
   507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
   508   }
   510   static uint size_deopt_handler() {
   511     if (TraceJumps) {
   512       return (400); // just a guess
   513     }
   514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
   515   }
   516 };
   518 %}
   520 source %{
   521 #define __ _masm.
   523 // tertiary op of a LoadP or StoreP encoding
   524 #define REGP_OP true
   526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   528 static Register reg_to_register_object(int register_encoding);
   530 // Used by the DFA in dfa_sparc.cpp.
   531 // Check for being able to use a V9 branch-on-register.  Requires a
   532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   533 // extended.  Doesn't work following an integer ADD, for example, because of
   534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   536 // replace them with zero, which could become sign-extension in a different OS
   537 // release.  There's no obvious reason why an interrupt will ever fill these
   538 // bits with non-zero junk (the registers are reloaded with standard LD
   539 // instructions which either zero-fill or sign-fill).
   540 bool can_branch_register( Node *bol, Node *cmp ) {
   541   if( !BranchOnRegister ) return false;
   542 #ifdef _LP64
   543   if( cmp->Opcode() == Op_CmpP )
   544     return true;  // No problems with pointer compares
   545 #endif
   546   if( cmp->Opcode() == Op_CmpL )
   547     return true;  // No problems with long compares
   549   if( !SparcV9RegsHiBitsZero ) return false;
   550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   551       bol->as_Bool()->_test._test != BoolTest::eq )
   552      return false;
   554   // Check for comparing against a 'safe' value.  Any operation which
   555   // clears out the high word is safe.  Thus, loads and certain shifts
   556   // are safe, as are non-negative constants.  Any operation which
   557   // preserves zero bits in the high word is safe as long as each of its
   558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   559   // inputs are safe.  At present, the only important case to recognize
   560   // seems to be loads.  Constants should fold away, and shifts &
   561   // logicals can use the 'cc' forms.
   562   Node *x = cmp->in(1);
   563   if( x->is_Load() ) return true;
   564   if( x->is_Phi() ) {
   565     for( uint i = 1; i < x->req(); i++ )
   566       if( !x->in(i)->is_Load() )
   567         return false;
   568     return true;
   569   }
   570   return false;
   571 }
   573 bool use_block_zeroing(Node* count) {
   574   // Use BIS for zeroing if count is not constant
   575   // or it is >= BlockZeroingLowLimit.
   576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   577 }
   579 // ****************************************************************************
   581 // REQUIRED FUNCTIONALITY
   583 // !!!!! Special hack to get all type of calls to specify the byte offset
   584 //       from the start of the call to the point where the return address
   585 //       will point.
   586 //       The "return address" is the address of the call instruction, plus 8.
   588 int MachCallStaticJavaNode::ret_addr_offset() {
   589   int offset = NativeCall::instruction_size;  // call; delay slot
   590   if (_method_handle_invoke)
   591     offset += 4;  // restore SP
   592   return offset;
   593 }
   595 int MachCallDynamicJavaNode::ret_addr_offset() {
   596   int vtable_index = this->_vtable_index;
   597   if (vtable_index < 0) {
   598     // must be invalid_vtable_index, not nonvirtual_vtable_index
   599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   600     return (NativeMovConstReg::instruction_size +
   601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   602   } else {
   603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   606     int klass_load_size;
   607     if (UseCompressedClassPointers) {
   608       assert(Universe::heap() != NULL, "java heap should be initialized");
   609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   610     } else {
   611       klass_load_size = 1*BytesPerInstWord;
   612     }
   613     if (Assembler::is_simm13(v_off)) {
   614       return klass_load_size +
   615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   616              NativeCall::instruction_size);  // call; delay slot
   617     } else {
   618       return klass_load_size +
   619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   620              NativeCall::instruction_size);  // call; delay slot
   621     }
   622   }
   623 }
   625 int MachCallRuntimeNode::ret_addr_offset() {
   626 #ifdef _LP64
   627   if (MacroAssembler::is_far_target(entry_point())) {
   628     return NativeFarCall::instruction_size;
   629   } else {
   630     return NativeCall::instruction_size;
   631   }
   632 #else
   633   return NativeCall::instruction_size;  // call; delay slot
   634 #endif
   635 }
   637 // Indicate if the safepoint node needs the polling page as an input.
   638 // Since Sparc does not have absolute addressing, it does.
   639 bool SafePointNode::needs_polling_address_input() {
   640   return true;
   641 }
   643 // emit an interrupt that is caught by the debugger (for debugging compiler)
   644 void emit_break(CodeBuffer &cbuf) {
   645   MacroAssembler _masm(&cbuf);
   646   __ breakpoint_trap();
   647 }
   649 #ifndef PRODUCT
   650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   651   st->print("TA");
   652 }
   653 #endif
   655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   656   emit_break(cbuf);
   657 }
   659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   660   return MachNode::size(ra_);
   661 }
   663 // Traceable jump
   664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   665   MacroAssembler _masm(&cbuf);
   666   Register rdest = reg_to_register_object(jump_target);
   667   __ JMP(rdest, 0);
   668   __ delayed()->nop();
   669 }
   671 // Traceable jump and set exception pc
   672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   673   MacroAssembler _masm(&cbuf);
   674   Register rdest = reg_to_register_object(jump_target);
   675   __ JMP(rdest, 0);
   676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   677 }
   679 void emit_nop(CodeBuffer &cbuf) {
   680   MacroAssembler _masm(&cbuf);
   681   __ nop();
   682 }
   684 void emit_illtrap(CodeBuffer &cbuf) {
   685   MacroAssembler _masm(&cbuf);
   686   __ illtrap(0);
   687 }
   690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   691   assert(n->rule() != loadUB_rule, "");
   693   intptr_t offset = 0;
   694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   695   const Node* addr = n->get_base_and_disp(offset, adr_type);
   696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   699   atype = atype->add_offset(offset);
   700   assert(disp32 == offset, "wrong disp32");
   701   return atype->_offset;
   702 }
   705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   706   assert(n->rule() != loadUB_rule, "");
   708   intptr_t offset = 0;
   709   Node* addr = n->in(2);
   710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   712     Node* a = addr->in(2/*AddPNode::Address*/);
   713     Node* o = addr->in(3/*AddPNode::Offset*/);
   714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   716     assert(atype->isa_oop_ptr(), "still an oop");
   717   }
   718   offset = atype->is_ptr()->_offset;
   719   if (offset != Type::OffsetBot)  offset += disp32;
   720   return offset;
   721 }
   723 static inline jdouble replicate_immI(int con, int count, int width) {
   724   // Load a constant replicated "count" times with width "width"
   725   assert(count*width == 8 && width <= 4, "sanity");
   726   int bit_width = width * 8;
   727   jlong val = con;
   728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   729   for (int i = 0; i < count - 1; i++) {
   730     val |= (val << bit_width);
   731   }
   732   jdouble dval = *((jdouble*) &val);  // coerce to double type
   733   return dval;
   734 }
   736 static inline jdouble replicate_immF(float con) {
   737   // Replicate float con 2 times and pack into vector.
   738   int val = *((int*)&con);
   739   jlong lval = val;
   740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   742   return dval;
   743 }
   745 // Standard Sparc opcode form2 field breakdown
   746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   748   int op = (f30 << 30) |
   749            (f29 << 29) |
   750            (f25 << 25) |
   751            (f22 << 22) |
   752            (f20 << 20) |
   753            (f19 << 19) |
   754            (f0  <<  0);
   755   cbuf.insts()->emit_int32(op);
   756 }
   758 // Standard Sparc opcode form2 field breakdown
   759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   760   f0 >>= 10;           // Drop 10 bits
   761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   762   int op = (f30 << 30) |
   763            (f25 << 25) |
   764            (f22 << 22) |
   765            (f0  <<  0);
   766   cbuf.insts()->emit_int32(op);
   767 }
   769 // Standard Sparc opcode form3 field breakdown
   770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   771   int op = (f30 << 30) |
   772            (f25 << 25) |
   773            (f19 << 19) |
   774            (f14 << 14) |
   775            (f5  <<  5) |
   776            (f0  <<  0);
   777   cbuf.insts()->emit_int32(op);
   778 }
   780 // Standard Sparc opcode form3 field breakdown
   781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   782   simm13 &= (1<<13)-1; // Mask to 13 bits
   783   int op = (f30 << 30) |
   784            (f25 << 25) |
   785            (f19 << 19) |
   786            (f14 << 14) |
   787            (1   << 13) | // bit to indicate immediate-mode
   788            (simm13<<0);
   789   cbuf.insts()->emit_int32(op);
   790 }
   792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   793   simm10 &= (1<<10)-1; // Mask to 10 bits
   794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   795 }
   797 #ifdef ASSERT
   798 // Helper function for VerifyOops in emit_form3_mem_reg
   799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   800   warning("VerifyOops encountered unexpected instruction:");
   801   n->dump(2);
   802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   803 }
   804 #endif
   807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
   808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   810 #ifdef ASSERT
   811   // The following code implements the +VerifyOops feature.
   812   // It verifies oop values which are loaded into or stored out of
   813   // the current method activation.  +VerifyOops complements techniques
   814   // like ScavengeALot, because it eagerly inspects oops in transit,
   815   // as they enter or leave the stack, as opposed to ScavengeALot,
   816   // which inspects oops "at rest", in the stack or heap, at safepoints.
   817   // For this reason, +VerifyOops can sometimes detect bugs very close
   818   // to their point of creation.  It can also serve as a cross-check
   819   // on the validity of oop maps, when used toegether with ScavengeALot.
   821   // It would be good to verify oops at other points, especially
   822   // when an oop is used as a base pointer for a load or store.
   823   // This is presently difficult, because it is hard to know when
   824   // a base address is biased or not.  (If we had such information,
   825   // it would be easy and useful to make a two-argument version of
   826   // verify_oop which unbiases the base, and performs verification.)
   828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   829   bool is_verified_oop_base  = false;
   830   bool is_verified_oop_load  = false;
   831   bool is_verified_oop_store = false;
   832   int tmp_enc = -1;
   833   if (VerifyOops && src1_enc != R_SP_enc) {
   834     // classify the op, mainly for an assert check
   835     int st_op = 0, ld_op = 0;
   836     switch (primary) {
   837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   841     case Assembler::std_op3:  st_op = Op_StoreL; break;
   842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   857     default: ShouldNotReachHere();
   858     }
   859     if (tertiary == REGP_OP) {
   860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   862       else                          ShouldNotReachHere();
   863       if (st_op) {
   864         // a store
   865         // inputs are (0:control, 1:memory, 2:address, 3:value)
   866         Node* n2 = n->in(3);
   867         if (n2 != NULL) {
   868           const Type* t = n2->bottom_type();
   869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   870         }
   871       } else {
   872         // a load
   873         const Type* t = n->bottom_type();
   874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   875       }
   876     }
   878     if (ld_op) {
   879       // a Load
   880       // inputs are (0:control, 1:memory, 2:address)
   881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   892           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   893           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   894           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   895           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   896           !(n->rule() == loadUB_rule)) {
   897         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   898       }
   899     } else if (st_op) {
   900       // a Store
   901       // inputs are (0:control, 1:memory, 2:address, 3:value)
   902       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   903           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   904           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   905           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   906           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   907           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   908           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   909         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   910       }
   911     }
   913     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   914       Node* addr = n->in(2);
   915       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   916         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   917         if (atype != NULL) {
   918           intptr_t offset = get_offset_from_base(n, atype, disp32);
   919           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   920           if (offset != offset_2) {
   921             get_offset_from_base(n, atype, disp32);
   922             get_offset_from_base_2(n, atype, disp32);
   923           }
   924           assert(offset == offset_2, "different offsets");
   925           if (offset == disp32) {
   926             // we now know that src1 is a true oop pointer
   927             is_verified_oop_base = true;
   928             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   929               if( primary == Assembler::ldd_op3 ) {
   930                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   931               } else {
   932                 tmp_enc = dst_enc;
   933                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   934                 assert(src1_enc != dst_enc, "");
   935               }
   936             }
   937           }
   938           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   939                        || offset == oopDesc::mark_offset_in_bytes())) {
   940                       // loading the mark should not be allowed either, but
   941                       // we don't check this since it conflicts with InlineObjectHash
   942                       // usage of LoadINode to get the mark. We could keep the
   943                       // check if we create a new LoadMarkNode
   944             // but do not verify the object before its header is initialized
   945             ShouldNotReachHere();
   946           }
   947         }
   948       }
   949     }
   950   }
   951 #endif
   953   uint instr;
   954   instr = (Assembler::ldst_op << 30)
   955         | (dst_enc        << 25)
   956         | (primary        << 19)
   957         | (src1_enc       << 14);
   959   uint index = src2_enc;
   960   int disp = disp32;
   962   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
   963     disp += STACK_BIAS;
   964     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
   965     if (!Assembler::is_simm13(disp)) {
   966       ra->C->record_method_not_compilable("unable to handle large constant offsets");
   967       return;
   968     }
   969   }
   971   // We should have a compiler bailout here rather than a guarantee.
   972   // Better yet would be some mechanism to handle variable-size matches correctly.
   973   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   975   if( disp == 0 ) {
   976     // use reg-reg form
   977     // bit 13 is already zero
   978     instr |= index;
   979   } else {
   980     // use reg-imm form
   981     instr |= 0x00002000;          // set bit 13 to one
   982     instr |= disp & 0x1FFF;
   983   }
   985   cbuf.insts()->emit_int32(instr);
   987 #ifdef ASSERT
   988   {
   989     MacroAssembler _masm(&cbuf);
   990     if (is_verified_oop_base) {
   991       __ verify_oop(reg_to_register_object(src1_enc));
   992     }
   993     if (is_verified_oop_store) {
   994       __ verify_oop(reg_to_register_object(dst_enc));
   995     }
   996     if (tmp_enc != -1) {
   997       __ mov(O7, reg_to_register_object(tmp_enc));
   998     }
   999     if (is_verified_oop_load) {
  1000       __ verify_oop(reg_to_register_object(dst_enc));
  1003 #endif
  1006 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
  1007   // The method which records debug information at every safepoint
  1008   // expects the call to be the first instruction in the snippet as
  1009   // it creates a PcDesc structure which tracks the offset of a call
  1010   // from the start of the codeBlob. This offset is computed as
  1011   // code_end() - code_begin() of the code which has been emitted
  1012   // so far.
  1013   // In this particular case we have skirted around the problem by
  1014   // putting the "mov" instruction in the delay slot but the problem
  1015   // may bite us again at some other point and a cleaner/generic
  1016   // solution using relocations would be needed.
  1017   MacroAssembler _masm(&cbuf);
  1018   __ set_inst_mark();
  1020   // We flush the current window just so that there is a valid stack copy
  1021   // the fact that the current window becomes active again instantly is
  1022   // not a problem there is nothing live in it.
  1024 #ifdef ASSERT
  1025   int startpos = __ offset();
  1026 #endif /* ASSERT */
  1028   __ call((address)entry_point, rtype);
  1030   if (preserve_g2)   __ delayed()->mov(G2, L7);
  1031   else __ delayed()->nop();
  1033   if (preserve_g2)   __ mov(L7, G2);
  1035 #ifdef ASSERT
  1036   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
  1037 #ifdef _LP64
  1038     // Trash argument dump slots.
  1039     __ set(0xb0b8ac0db0b8ac0d, G1);
  1040     __ mov(G1, G5);
  1041     __ stx(G1, SP, STACK_BIAS + 0x80);
  1042     __ stx(G1, SP, STACK_BIAS + 0x88);
  1043     __ stx(G1, SP, STACK_BIAS + 0x90);
  1044     __ stx(G1, SP, STACK_BIAS + 0x98);
  1045     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1046     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1047 #else // _LP64
  1048     // this is also a native call, so smash the first 7 stack locations,
  1049     // and the various registers
  1051     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1052     // while [SP+0x44..0x58] are the argument dump slots.
  1053     __ set((intptr_t)0xbaadf00d, G1);
  1054     __ mov(G1, G5);
  1055     __ sllx(G1, 32, G1);
  1056     __ or3(G1, G5, G1);
  1057     __ mov(G1, G5);
  1058     __ stx(G1, SP, 0x40);
  1059     __ stx(G1, SP, 0x48);
  1060     __ stx(G1, SP, 0x50);
  1061     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1062 #endif // _LP64
  1064 #endif /*ASSERT*/
  1067 //=============================================================================
  1068 // REQUIRED FUNCTIONALITY for encoding
  1069 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1070 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1073 //=============================================================================
  1074 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1076 int Compile::ConstantTable::calculate_table_base_offset() const {
  1077   if (UseRDPCForConstantTableBase) {
  1078     // The table base offset might be less but then it fits into
  1079     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1080     return Assembler::min_simm13();
  1081   } else {
  1082     int offset = -(size() / 2);
  1083     if (!Assembler::is_simm13(offset)) {
  1084       offset = Assembler::min_simm13();
  1086     return offset;
  1090 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1091 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1092   ShouldNotReachHere();
  1095 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1096   Compile* C = ra_->C;
  1097   Compile::ConstantTable& constant_table = C->constant_table();
  1098   MacroAssembler _masm(&cbuf);
  1100   Register r = as_Register(ra_->get_encode(this));
  1101   CodeSection* consts_section = __ code()->consts();
  1102   int consts_size = consts_section->align_at_start(consts_section->size());
  1103   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1105   if (UseRDPCForConstantTableBase) {
  1106     // For the following RDPC logic to work correctly the consts
  1107     // section must be allocated right before the insts section.  This
  1108     // assert checks for that.  The layout and the SECT_* constants
  1109     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1110     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1111     int insts_offset = __ offset();
  1113     // Layout:
  1114     //
  1115     // |----------- consts section ------------|----------- insts section -----------...
  1116     // |------ constant table -----|- padding -|------------------x----
  1117     //                                                            \ current PC (RDPC instruction)
  1118     // |<------------- consts_size ----------->|<- insts_offset ->|
  1119     //                                                            \ table base
  1120     // The table base offset is later added to the load displacement
  1121     // so it has to be negative.
  1122     int table_base_offset = -(consts_size + insts_offset);
  1123     int disp;
  1125     // If the displacement from the current PC to the constant table
  1126     // base fits into simm13 we set the constant table base to the
  1127     // current PC.
  1128     if (Assembler::is_simm13(table_base_offset)) {
  1129       constant_table.set_table_base_offset(table_base_offset);
  1130       disp = 0;
  1131     } else {
  1132       // Otherwise we set the constant table base offset to the
  1133       // maximum negative displacement of load instructions to keep
  1134       // the disp as small as possible:
  1135       //
  1136       // |<------------- consts_size ----------->|<- insts_offset ->|
  1137       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1138       //                                  \ table base
  1139       table_base_offset = Assembler::min_simm13();
  1140       constant_table.set_table_base_offset(table_base_offset);
  1141       disp = (consts_size + insts_offset) + table_base_offset;
  1144     __ rdpc(r);
  1146     if (disp != 0) {
  1147       assert(r != O7, "need temporary");
  1148       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1151   else {
  1152     // Materialize the constant table base.
  1153     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1154     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1155     AddressLiteral base(baseaddr, rspec);
  1156     __ set(base, r);
  1160 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1161   if (UseRDPCForConstantTableBase) {
  1162     // This is really the worst case but generally it's only 1 instruction.
  1163     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1164   } else {
  1165     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1169 #ifndef PRODUCT
  1170 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1171   char reg[128];
  1172   ra_->dump_register(this, reg);
  1173   if (UseRDPCForConstantTableBase) {
  1174     st->print("RDPC   %s\t! constant table base", reg);
  1175   } else {
  1176     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1179 #endif
  1182 //=============================================================================
  1184 #ifndef PRODUCT
  1185 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1186   Compile* C = ra_->C;
  1188   for (int i = 0; i < OptoPrologueNops; i++) {
  1189     st->print_cr("NOP"); st->print("\t");
  1192   if( VerifyThread ) {
  1193     st->print_cr("Verify_Thread"); st->print("\t");
  1196   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1198   // Calls to C2R adapters often do not accept exceptional returns.
  1199   // We require that their callers must bang for them.  But be careful, because
  1200   // some VM calls (such as call site linkage) can use several kilobytes of
  1201   // stack.  But the stack safety zone should account for that.
  1202   // See bugs 4446381, 4468289, 4497237.
  1203   if (C->need_stack_bang(framesize)) {
  1204     st->print_cr("! stack bang"); st->print("\t");
  1207   if (Assembler::is_simm13(-framesize)) {
  1208     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1209   } else {
  1210     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1211     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1212     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1216 #endif
  1218 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1219   Compile* C = ra_->C;
  1220   MacroAssembler _masm(&cbuf);
  1222   for (int i = 0; i < OptoPrologueNops; i++) {
  1223     __ nop();
  1226   __ verify_thread();
  1228   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1229   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1230   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1232   // Calls to C2R adapters often do not accept exceptional returns.
  1233   // We require that their callers must bang for them.  But be careful, because
  1234   // some VM calls (such as call site linkage) can use several kilobytes of
  1235   // stack.  But the stack safety zone should account for that.
  1236   // See bugs 4446381, 4468289, 4497237.
  1237   if (C->need_stack_bang(framesize)) {
  1238     __ generate_stack_overflow_check(framesize);
  1241   if (Assembler::is_simm13(-framesize)) {
  1242     __ save(SP, -framesize, SP);
  1243   } else {
  1244     __ sethi(-framesize & ~0x3ff, G3);
  1245     __ add(G3, -framesize & 0x3ff, G3);
  1246     __ save(SP, G3, SP);
  1248   C->set_frame_complete( __ offset() );
  1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1251     // NOTE: We set the table base offset here because users might be
  1252     // emitted before MachConstantBaseNode.
  1253     Compile::ConstantTable& constant_table = C->constant_table();
  1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1259   return MachNode::size(ra_);
  1262 int MachPrologNode::reloc() const {
  1263   return 10; // a large enough number
  1266 //=============================================================================
  1267 #ifndef PRODUCT
  1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1269   Compile* C = ra_->C;
  1271   if( do_polling() && ra_->C->is_method_compilation() ) {
  1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1273 #ifdef _LP64
  1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1275 #else
  1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1277 #endif
  1280   if( do_polling() )
  1281     st->print("RET\n\t");
  1283   st->print("RESTORE");
  1285 #endif
  1287 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1288   MacroAssembler _masm(&cbuf);
  1289   Compile* C = ra_->C;
  1291   __ verify_thread();
  1293   // If this does safepoint polling, then do it here
  1294   if( do_polling() && ra_->C->is_method_compilation() ) {
  1295     AddressLiteral polling_page(os::get_polling_page());
  1296     __ sethi(polling_page, L0);
  1297     __ relocate(relocInfo::poll_return_type);
  1298     __ ld_ptr( L0, 0, G0 );
  1301   // If this is a return, then stuff the restore in the delay slot
  1302   if( do_polling() ) {
  1303     __ ret();
  1304     __ delayed()->restore();
  1305   } else {
  1306     __ restore();
  1310 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1311   return MachNode::size(ra_);
  1314 int MachEpilogNode::reloc() const {
  1315   return 16; // a large enough number
  1318 const Pipeline * MachEpilogNode::pipeline() const {
  1319   return MachNode::pipeline_class();
  1322 int MachEpilogNode::safepoint_offset() const {
  1323   assert( do_polling(), "no return for this epilog node");
  1324   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1327 //=============================================================================
  1329 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1330 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1331 static enum RC rc_class( OptoReg::Name reg ) {
  1332   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1333   if (OptoReg::is_stack(reg)) return rc_stack;
  1334   VMReg r = OptoReg::as_VMReg(reg);
  1335   if (r->is_Register()) return rc_int;
  1336   assert(r->is_FloatRegister(), "must be");
  1337   return rc_float;
  1340 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1341   if (cbuf) {
  1342     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1344 #ifndef PRODUCT
  1345   else if (!do_size) {
  1346     if (size != 0) st->print("\n\t");
  1347     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1348     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1350 #endif
  1351   return size+4;
  1354 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1355   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1356 #ifndef PRODUCT
  1357   else if( !do_size ) {
  1358     if( size != 0 ) st->print("\n\t");
  1359     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1361 #endif
  1362   return size+4;
  1365 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1366                                         PhaseRegAlloc *ra_,
  1367                                         bool do_size,
  1368                                         outputStream* st ) const {
  1369   // Get registers to move
  1370   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1371   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1372   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1373   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1375   enum RC src_second_rc = rc_class(src_second);
  1376   enum RC src_first_rc = rc_class(src_first);
  1377   enum RC dst_second_rc = rc_class(dst_second);
  1378   enum RC dst_first_rc = rc_class(dst_first);
  1380   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1382   // Generate spill code!
  1383   int size = 0;
  1385   if( src_first == dst_first && src_second == dst_second )
  1386     return size;            // Self copy, no move
  1388   // --------------------------------------
  1389   // Check for mem-mem move.  Load into unused float registers and fall into
  1390   // the float-store case.
  1391   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1392     int offset = ra_->reg2offset(src_first);
  1393     // Further check for aligned-adjacent pair, so we can use a double load
  1394     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1395       src_second    = OptoReg::Name(R_F31_num);
  1396       src_second_rc = rc_float;
  1397       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1398     } else {
  1399       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1401     src_first    = OptoReg::Name(R_F30_num);
  1402     src_first_rc = rc_float;
  1405   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1406     int offset = ra_->reg2offset(src_second);
  1407     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1408     src_second    = OptoReg::Name(R_F31_num);
  1409     src_second_rc = rc_float;
  1412   // --------------------------------------
  1413   // Check for float->int copy; requires a trip through memory
  1414   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1415     int offset = frame::register_save_words*wordSize;
  1416     if (cbuf) {
  1417       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1418       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1419       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1420       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1422 #ifndef PRODUCT
  1423     else if (!do_size) {
  1424       if (size != 0) st->print("\n\t");
  1425       st->print(  "SUB    R_SP,16,R_SP\n");
  1426       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1427       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1428       st->print("\tADD    R_SP,16,R_SP\n");
  1430 #endif
  1431     size += 16;
  1434   // Check for float->int copy on T4
  1435   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1436     // Further check for aligned-adjacent pair, so we can use a double move
  1437     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1438       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1439     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1441   // Check for int->float copy on T4
  1442   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1443     // Further check for aligned-adjacent pair, so we can use a double move
  1444     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1445       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1446     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1449   // --------------------------------------
  1450   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1451   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1452   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1453   // there.  Misaligned sources only come from native-long-returns (handled
  1454   // special below).
  1455 #ifndef _LP64
  1456   if( src_first_rc == rc_int &&     // source is already big-endian
  1457       src_second_rc != rc_bad &&    // 64-bit move
  1458       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1459     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1460     // Do the big-endian flop.
  1461     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1462     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1464 #endif
  1466   // --------------------------------------
  1467   // Check for integer reg-reg copy
  1468   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1469 #ifndef _LP64
  1470     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1471       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1472       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1473       //       operand contains the least significant word of the 64-bit value and vice versa.
  1474       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1475       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1476       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1477       if( cbuf ) {
  1478         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1479         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1480         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1481 #ifndef PRODUCT
  1482       } else if( !do_size ) {
  1483         if( size != 0 ) st->print("\n\t");
  1484         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1485         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1486         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1487 #endif
  1489       return size+12;
  1491     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1492       // returning a long value in I0/I1
  1493       // a SpillCopy must be able to target a return instruction's reg_class
  1494       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1495       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1496       //       operand contains the least significant word of the 64-bit value and vice versa.
  1497       OptoReg::Name tdest = dst_first;
  1499       if (src_first == dst_first) {
  1500         tdest = OptoReg::Name(R_O7_num);
  1501         size += 4;
  1504       if( cbuf ) {
  1505         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1506         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1507         // ShrL_reg_imm6
  1508         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1509         // ShrR_reg_imm6  src, 0, dst
  1510         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1511         if (tdest != dst_first) {
  1512           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1515 #ifndef PRODUCT
  1516       else if( !do_size ) {
  1517         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1518         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1519         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1520         if (tdest != dst_first) {
  1521           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1524 #endif // PRODUCT
  1525       return size+8;
  1527 #endif // !_LP64
  1528     // Else normal reg-reg copy
  1529     assert( src_second != dst_first, "smashed second before evacuating it" );
  1530     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1531     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1532     // This moves an aligned adjacent pair.
  1533     // See if we are done.
  1534     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1535       return size;
  1538   // Check for integer store
  1539   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1540     int offset = ra_->reg2offset(dst_first);
  1541     // Further check for aligned-adjacent pair, so we can use a double store
  1542     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1543       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1544     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1547   // Check for integer load
  1548   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1549     int offset = ra_->reg2offset(src_first);
  1550     // Further check for aligned-adjacent pair, so we can use a double load
  1551     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1552       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1553     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1556   // Check for float reg-reg copy
  1557   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1558     // Further check for aligned-adjacent pair, so we can use a double move
  1559     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1560       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1561     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1564   // Check for float store
  1565   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1566     int offset = ra_->reg2offset(dst_first);
  1567     // Further check for aligned-adjacent pair, so we can use a double store
  1568     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1569       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1570     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1573   // Check for float load
  1574   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1575     int offset = ra_->reg2offset(src_first);
  1576     // Further check for aligned-adjacent pair, so we can use a double load
  1577     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1578       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1579     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1582   // --------------------------------------------------------------------
  1583   // Check for hi bits still needing moving.  Only happens for misaligned
  1584   // arguments to native calls.
  1585   if( src_second == dst_second )
  1586     return size;               // Self copy; no move
  1587   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1589 #ifndef _LP64
  1590   // In the LP64 build, all registers can be moved as aligned/adjacent
  1591   // pairs, so there's never any need to move the high bits separately.
  1592   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1593   // all sorts of silly alignment problems.
  1595   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1596   // 32-bits of a 64-bit register, but are needed in low bits of another
  1597   // register (else it's a hi-bits-to-hi-bits copy which should have
  1598   // happened already as part of a 64-bit move)
  1599   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1600     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1601     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1602     // Shift src_second down to dst_second's low bits.
  1603     if( cbuf ) {
  1604       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1605 #ifndef PRODUCT
  1606     } else if( !do_size ) {
  1607       if( size != 0 ) st->print("\n\t");
  1608       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1609 #endif
  1611     return size+4;
  1614   // Check for high word integer store.  Must down-shift the hi bits
  1615   // into a temp register, then fall into the case of storing int bits.
  1616   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1617     // Shift src_second down to dst_second's low bits.
  1618     if( cbuf ) {
  1619       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1620 #ifndef PRODUCT
  1621     } else if( !do_size ) {
  1622       if( size != 0 ) st->print("\n\t");
  1623       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1624 #endif
  1626     size+=4;
  1627     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1630   // Check for high word integer load
  1631   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1632     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1634   // Check for high word integer store
  1635   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1636     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1638   // Check for high word float store
  1639   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1640     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1642 #endif // !_LP64
  1644   Unimplemented();
  1647 #ifndef PRODUCT
  1648 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1649   implementation( NULL, ra_, false, st );
  1651 #endif
  1653 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1654   implementation( &cbuf, ra_, false, NULL );
  1657 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1658   return implementation( NULL, ra_, true, NULL );
  1661 //=============================================================================
  1662 #ifndef PRODUCT
  1663 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1664   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1666 #endif
  1668 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1669   MacroAssembler _masm(&cbuf);
  1670   for(int i = 0; i < _count; i += 1) {
  1671     __ nop();
  1675 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1676   return 4 * _count;
  1680 //=============================================================================
  1681 #ifndef PRODUCT
  1682 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1683   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1684   int reg = ra_->get_reg_first(this);
  1685   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1687 #endif
  1689 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1690   MacroAssembler _masm(&cbuf);
  1691   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1692   int reg = ra_->get_encode(this);
  1694   if (Assembler::is_simm13(offset)) {
  1695      __ add(SP, offset, reg_to_register_object(reg));
  1696   } else {
  1697      __ set(offset, O7);
  1698      __ add(SP, O7, reg_to_register_object(reg));
  1702 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1703   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1704   assert(ra_ == ra_->C->regalloc(), "sanity");
  1705   return ra_->C->scratch_emit_size(this);
  1708 //=============================================================================
  1709 #ifndef PRODUCT
  1710 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1711   st->print_cr("\nUEP:");
  1712 #ifdef    _LP64
  1713   if (UseCompressedClassPointers) {
  1714     assert(Universe::heap() != NULL, "java heap should be initialized");
  1715     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1716     if (Universe::narrow_klass_base() != 0) {
  1717       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1718       if (Universe::narrow_klass_shift() != 0) {
  1719         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1721       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1722       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1723     } else {
  1724       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1726   } else {
  1727     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1729   st->print_cr("\tCMP    R_G5,R_G3" );
  1730   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1731 #else  // _LP64
  1732   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1733   st->print_cr("\tCMP    R_G5,R_G3" );
  1734   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1735 #endif // _LP64
  1737 #endif
  1739 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1740   MacroAssembler _masm(&cbuf);
  1741   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1742   Register temp_reg   = G3;
  1743   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1745   // Load klass from receiver
  1746   __ load_klass(O0, temp_reg);
  1747   // Compare against expected klass
  1748   __ cmp(temp_reg, G5_ic_reg);
  1749   // Branch to miss code, checks xcc or icc depending
  1750   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1753 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1754   return MachNode::size(ra_);
  1758 //=============================================================================
  1761 // Emit exception handler code.
  1762 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
  1763   Register temp_reg = G3;
  1764   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1765   MacroAssembler _masm(&cbuf);
  1767   address base =
  1768   __ start_a_stub(size_exception_handler());
  1769   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1771   int offset = __ offset();
  1773   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1774   __ delayed()->nop();
  1776   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1778   __ end_a_stub();
  1780   return offset;
  1783 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  1784   // Can't use any of the current frame's registers as we may have deopted
  1785   // at a poll and everything (including G3) can be live.
  1786   Register temp_reg = L0;
  1787   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1788   MacroAssembler _masm(&cbuf);
  1790   address base =
  1791   __ start_a_stub(size_deopt_handler());
  1792   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1794   int offset = __ offset();
  1795   __ save_frame(0);
  1796   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1797   __ delayed()->restore();
  1799   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1801   __ end_a_stub();
  1802   return offset;
  1806 // Given a register encoding, produce a Integer Register object
  1807 static Register reg_to_register_object(int register_encoding) {
  1808   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1809   return as_Register(register_encoding);
  1812 // Given a register encoding, produce a single-precision Float Register object
  1813 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1814   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1815   return as_SingleFloatRegister(register_encoding);
  1818 // Given a register encoding, produce a double-precision Float Register object
  1819 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1820   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1821   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1822   return as_DoubleFloatRegister(register_encoding);
  1825 const bool Matcher::match_rule_supported(int opcode) {
  1826   if (!has_match_rule(opcode))
  1827     return false;
  1829   switch (opcode) {
  1830   case Op_CountLeadingZerosI:
  1831   case Op_CountLeadingZerosL:
  1832   case Op_CountTrailingZerosI:
  1833   case Op_CountTrailingZerosL:
  1834   case Op_PopCountI:
  1835   case Op_PopCountL:
  1836     if (!UsePopCountInstruction)
  1837       return false;
  1838   case Op_CompareAndSwapL:
  1839 #ifdef _LP64
  1840   case Op_CompareAndSwapP:
  1841 #endif
  1842     if (!VM_Version::supports_cx8())
  1843       return false;
  1844     break;
  1847   return true;  // Per default match rules are supported.
  1850 int Matcher::regnum_to_fpu_offset(int regnum) {
  1851   return regnum - 32; // The FP registers are in the second chunk
  1854 #ifdef ASSERT
  1855 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1856 #endif
  1858 // Vector width in bytes
  1859 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1860   assert(MaxVectorSize == 8, "");
  1861   return 8;
  1864 // Vector ideal reg
  1865 const int Matcher::vector_ideal_reg(int size) {
  1866   assert(MaxVectorSize == 8, "");
  1867   return Op_RegD;
  1870 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1871   fatal("vector shift is not supported");
  1872   return Node::NotAMachineReg;
  1875 // Limits on vector size (number of elements) loaded into vector.
  1876 const int Matcher::max_vector_size(const BasicType bt) {
  1877   assert(is_java_primitive(bt), "only primitive type vectors");
  1878   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1881 const int Matcher::min_vector_size(const BasicType bt) {
  1882   return max_vector_size(bt); // Same as max.
  1885 // SPARC doesn't support misaligned vectors store/load.
  1886 const bool Matcher::misaligned_vectors_ok() {
  1887   return false;
  1890 // Current (2013) SPARC platforms need to read original key
  1891 // to construct decryption expanded key 
  1892 const bool Matcher::pass_original_key_for_aes() {
  1893   return true;
  1896 // USII supports fxtof through the whole range of number, USIII doesn't
  1897 const bool Matcher::convL2FSupported(void) {
  1898   return VM_Version::has_fast_fxtof();
  1901 // Is this branch offset short enough that a short branch can be used?
  1902 //
  1903 // NOTE: If the platform does not provide any short branch variants, then
  1904 //       this method should return false for offset 0.
  1905 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1906   // The passed offset is relative to address of the branch.
  1907   // Don't need to adjust the offset.
  1908   return UseCBCond && Assembler::is_simm12(offset);
  1911 const bool Matcher::isSimpleConstant64(jlong value) {
  1912   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1913   // Depends on optimizations in MacroAssembler::setx.
  1914   int hi = (int)(value >> 32);
  1915   int lo = (int)(value & ~0);
  1916   return (hi == 0) || (hi == -1) || (lo == 0);
  1919 // No scaling for the parameter the ClearArray node.
  1920 const bool Matcher::init_array_count_is_in_bytes = true;
  1922 // Threshold size for cleararray.
  1923 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1925 // No additional cost for CMOVL.
  1926 const int Matcher::long_cmove_cost() { return 0; }
  1928 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1929 const int Matcher::float_cmove_cost() {
  1930   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1933 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1934 const bool Matcher::require_postalloc_expand = false;
  1936 // Should the Matcher clone shifts on addressing modes, expecting them to
  1937 // be subsumed into complex addressing expressions or compute them into
  1938 // registers?  True for Intel but false for most RISCs
  1939 const bool Matcher::clone_shift_expressions = false;
  1941 // Do we need to mask the count passed to shift instructions or does
  1942 // the cpu only look at the lower 5/6 bits anyway?
  1943 const bool Matcher::need_masked_shift_count = false;
  1945 bool Matcher::narrow_oop_use_complex_address() {
  1946   NOT_LP64(ShouldNotCallThis());
  1947   assert(UseCompressedOops, "only for compressed oops code");
  1948   return false;
  1951 bool Matcher::narrow_klass_use_complex_address() {
  1952   NOT_LP64(ShouldNotCallThis());
  1953   assert(UseCompressedClassPointers, "only for compressed klass code");
  1954   return false;
  1957 // Is it better to copy float constants, or load them directly from memory?
  1958 // Intel can load a float constant from a direct address, requiring no
  1959 // extra registers.  Most RISCs will have to materialize an address into a
  1960 // register first, so they would do better to copy the constant from stack.
  1961 const bool Matcher::rematerialize_float_constants = false;
  1963 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1964 // needed.  Else we split the double into 2 integer pieces and move it
  1965 // piece-by-piece.  Only happens when passing doubles into C code as the
  1966 // Java calling convention forces doubles to be aligned.
  1967 #ifdef _LP64
  1968 const bool Matcher::misaligned_doubles_ok = true;
  1969 #else
  1970 const bool Matcher::misaligned_doubles_ok = false;
  1971 #endif
  1973 // No-op on SPARC.
  1974 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1977 // Advertise here if the CPU requires explicit rounding operations
  1978 // to implement the UseStrictFP mode.
  1979 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1981 // Are floats conerted to double when stored to stack during deoptimization?
  1982 // Sparc does not handle callee-save floats.
  1983 bool Matcher::float_in_double() { return false; }
  1985 // Do ints take an entire long register or just half?
  1986 // Note that we if-def off of _LP64.
  1987 // The relevant question is how the int is callee-saved.  In _LP64
  1988 // the whole long is written but de-opt'ing will have to extract
  1989 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1990 #ifdef _LP64
  1991 const bool Matcher::int_in_long = true;
  1992 #else
  1993 const bool Matcher::int_in_long = false;
  1994 #endif
  1996 // Return whether or not this register is ever used as an argument.  This
  1997 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1998 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1999 // arguments in those registers not be available to the callee.
  2000 bool Matcher::can_be_java_arg( int reg ) {
  2001   // Standard sparc 6 args in registers
  2002   if( reg == R_I0_num ||
  2003       reg == R_I1_num ||
  2004       reg == R_I2_num ||
  2005       reg == R_I3_num ||
  2006       reg == R_I4_num ||
  2007       reg == R_I5_num ) return true;
  2008 #ifdef _LP64
  2009   // 64-bit builds can pass 64-bit pointers and longs in
  2010   // the high I registers
  2011   if( reg == R_I0H_num ||
  2012       reg == R_I1H_num ||
  2013       reg == R_I2H_num ||
  2014       reg == R_I3H_num ||
  2015       reg == R_I4H_num ||
  2016       reg == R_I5H_num ) return true;
  2018   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2019     return true;
  2022 #else
  2023   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2024   // Longs cannot be passed in O regs, because O regs become I regs
  2025   // after a 'save' and I regs get their high bits chopped off on
  2026   // interrupt.
  2027   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2028   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2029 #endif
  2030   // A few float args in registers
  2031   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2033   return false;
  2036 bool Matcher::is_spillable_arg( int reg ) {
  2037   return can_be_java_arg(reg);
  2040 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2041   // Use hardware SDIVX instruction when it is
  2042   // faster than a code which use multiply.
  2043   return VM_Version::has_fast_idiv();
  2046 // Register for DIVI projection of divmodI
  2047 RegMask Matcher::divI_proj_mask() {
  2048   ShouldNotReachHere();
  2049   return RegMask();
  2052 // Register for MODI projection of divmodI
  2053 RegMask Matcher::modI_proj_mask() {
  2054   ShouldNotReachHere();
  2055   return RegMask();
  2058 // Register for DIVL projection of divmodL
  2059 RegMask Matcher::divL_proj_mask() {
  2060   ShouldNotReachHere();
  2061   return RegMask();
  2064 // Register for MODL projection of divmodL
  2065 RegMask Matcher::modL_proj_mask() {
  2066   ShouldNotReachHere();
  2067   return RegMask();
  2070 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2071   return L7_REGP_mask();
  2074 const RegMask Matcher::mathExactI_result_proj_mask() {
  2075   return G1_REGI_mask();
  2078 const RegMask Matcher::mathExactL_result_proj_mask() {
  2079   return G1_REGL_mask();
  2082 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2083   return INT_FLAGS_mask();
  2087 %}
  2090 // The intptr_t operand types, defined by textual substitution.
  2091 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2092 #ifdef _LP64
  2093 #define immX      immL
  2094 #define immX13    immL13
  2095 #define immX13m7  immL13m7
  2096 #define iRegX     iRegL
  2097 #define g1RegX    g1RegL
  2098 #else
  2099 #define immX      immI
  2100 #define immX13    immI13
  2101 #define immX13m7  immI13m7
  2102 #define iRegX     iRegI
  2103 #define g1RegX    g1RegI
  2104 #endif
  2106 //----------ENCODING BLOCK-----------------------------------------------------
  2107 // This block specifies the encoding classes used by the compiler to output
  2108 // byte streams.  Encoding classes are parameterized macros used by
  2109 // Machine Instruction Nodes in order to generate the bit encoding of the
  2110 // instruction.  Operands specify their base encoding interface with the
  2111 // interface keyword.  There are currently supported four interfaces,
  2112 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2113 // operand to generate a function which returns its register number when
  2114 // queried.   CONST_INTER causes an operand to generate a function which
  2115 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2116 // operand to generate four functions which return the Base Register, the
  2117 // Index Register, the Scale Value, and the Offset Value of the operand when
  2118 // queried.  COND_INTER causes an operand to generate six functions which
  2119 // return the encoding code (ie - encoding bits for the instruction)
  2120 // associated with each basic boolean condition for a conditional instruction.
  2121 //
  2122 // Instructions specify two basic values for encoding.  Again, a function
  2123 // is available to check if the constant displacement is an oop. They use the
  2124 // ins_encode keyword to specify their encoding classes (which must be
  2125 // a sequence of enc_class names, and their parameters, specified in
  2126 // the encoding block), and they use the
  2127 // opcode keyword to specify, in order, their primary, secondary, and
  2128 // tertiary opcode.  Only the opcode sections which a particular instruction
  2129 // needs for encoding need to be specified.
  2130 encode %{
  2131   enc_class enc_untested %{
  2132 #ifdef ASSERT
  2133     MacroAssembler _masm(&cbuf);
  2134     __ untested("encoding");
  2135 #endif
  2136   %}
  2138   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2139     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
  2140                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2141   %}
  2143   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2144     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2145                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2146   %}
  2148   enc_class form3_mem_prefetch_read( memory mem ) %{
  2149     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2150                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2151   %}
  2153   enc_class form3_mem_prefetch_write( memory mem ) %{
  2154     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2155                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2156   %}
  2158   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2159     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2160     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2161     guarantee($mem$$index == R_G0_enc, "double index?");
  2162     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2163     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2164     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2165     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2166   %}
  2168   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2169     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2170     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2171     guarantee($mem$$index == R_G0_enc, "double index?");
  2172     // Load long with 2 instructions
  2173     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2174     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2175   %}
  2177   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2178   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2179     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2180     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2181   %}
  2183   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2184     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2185     if( $rs2$$reg != $rd$$reg )
  2186       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2187   %}
  2189   // Target lo half of long
  2190   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2191     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2192     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2193       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2194   %}
  2196   // Source lo half of long
  2197   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2198     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2199     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2200       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2201   %}
  2203   // Target hi half of long
  2204   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2205     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2206   %}
  2208   // Source lo half of long, and leave it sign extended.
  2209   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2210     // Sign extend low half
  2211     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2212   %}
  2214   // Source hi half of long, and leave it sign extended.
  2215   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2216     // Shift high half to low half
  2217     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2218   %}
  2220   // Source hi half of long
  2221   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2222     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2223     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2224       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2225   %}
  2227   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2228     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2229   %}
  2231   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2232     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2233     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2234   %}
  2236   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2237     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2238     // clear if nothing else is happening
  2239     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2240     // blt,a,pn done
  2241     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2242     // mov dst,-1 in delay slot
  2243     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2244   %}
  2246   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2247     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2248   %}
  2250   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2251     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2252   %}
  2254   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2255     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2256   %}
  2258   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2259     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2260   %}
  2262   enc_class move_return_pc_to_o1() %{
  2263     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2264   %}
  2266 #ifdef _LP64
  2267   /* %%% merge with enc_to_bool */
  2268   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2269     MacroAssembler _masm(&cbuf);
  2271     Register   src_reg = reg_to_register_object($src$$reg);
  2272     Register   dst_reg = reg_to_register_object($dst$$reg);
  2273     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2274   %}
  2275 #endif
  2277   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2278     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2279     MacroAssembler _masm(&cbuf);
  2281     Register   p_reg = reg_to_register_object($p$$reg);
  2282     Register   q_reg = reg_to_register_object($q$$reg);
  2283     Register   y_reg = reg_to_register_object($y$$reg);
  2284     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2286     __ subcc( p_reg, q_reg,   p_reg );
  2287     __ add  ( p_reg, y_reg, tmp_reg );
  2288     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2289   %}
  2291   enc_class form_d2i_helper(regD src, regF dst) %{
  2292     // fcmp %fcc0,$src,$src
  2293     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2294     // branch %fcc0 not-nan, predict taken
  2295     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2296     // fdtoi $src,$dst
  2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2298     // fitos $dst,$dst (if nan)
  2299     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2300     // clear $dst (if nan)
  2301     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2302     // carry on here...
  2303   %}
  2305   enc_class form_d2l_helper(regD src, regD dst) %{
  2306     // fcmp %fcc0,$src,$src  check for NAN
  2307     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2308     // branch %fcc0 not-nan, predict taken
  2309     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2310     // fdtox $src,$dst   convert in delay slot
  2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2312     // fxtod $dst,$dst  (if nan)
  2313     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2314     // clear $dst (if nan)
  2315     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2316     // carry on here...
  2317   %}
  2319   enc_class form_f2i_helper(regF src, regF dst) %{
  2320     // fcmps %fcc0,$src,$src
  2321     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2322     // branch %fcc0 not-nan, predict taken
  2323     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2324     // fstoi $src,$dst
  2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2326     // fitos $dst,$dst (if nan)
  2327     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2328     // clear $dst (if nan)
  2329     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2330     // carry on here...
  2331   %}
  2333   enc_class form_f2l_helper(regF src, regD dst) %{
  2334     // fcmps %fcc0,$src,$src
  2335     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2336     // branch %fcc0 not-nan, predict taken
  2337     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2338     // fstox $src,$dst
  2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2340     // fxtod $dst,$dst (if nan)
  2341     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2342     // clear $dst (if nan)
  2343     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2344     // carry on here...
  2345   %}
  2347   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2348   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2349   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2350   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2352   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2354   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2355   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2357   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2358     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2359   %}
  2361   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2362     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2363   %}
  2365   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2366     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2367   %}
  2369   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2370     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2371   %}
  2373   enc_class form3_convI2F(regF rs2, regF rd) %{
  2374     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2375   %}
  2377   // Encloding class for traceable jumps
  2378   enc_class form_jmpl(g3RegP dest) %{
  2379     emit_jmpl(cbuf, $dest$$reg);
  2380   %}
  2382   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2383     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2384   %}
  2386   enc_class form2_nop() %{
  2387     emit_nop(cbuf);
  2388   %}
  2390   enc_class form2_illtrap() %{
  2391     emit_illtrap(cbuf);
  2392   %}
  2395   // Compare longs and convert into -1, 0, 1.
  2396   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2397     // CMP $src1,$src2
  2398     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2399     // blt,a,pn done
  2400     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2401     // mov dst,-1 in delay slot
  2402     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2403     // bgt,a,pn done
  2404     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2405     // mov dst,1 in delay slot
  2406     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2407     // CLR    $dst
  2408     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2409   %}
  2411   enc_class enc_PartialSubtypeCheck() %{
  2412     MacroAssembler _masm(&cbuf);
  2413     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2414     __ delayed()->nop();
  2415   %}
  2417   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2418     MacroAssembler _masm(&cbuf);
  2419     Label* L = $labl$$label;
  2420     Assembler::Predict predict_taken =
  2421       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2423     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2424     __ delayed()->nop();
  2425   %}
  2427   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2428     MacroAssembler _masm(&cbuf);
  2429     Label* L = $labl$$label;
  2430     Assembler::Predict predict_taken =
  2431       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2433     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2434     __ delayed()->nop();
  2435   %}
  2437   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2438     int op = (Assembler::arith_op << 30) |
  2439              ($dst$$reg << 25) |
  2440              (Assembler::movcc_op3 << 19) |
  2441              (1 << 18) |                    // cc2 bit for 'icc'
  2442              ($cmp$$cmpcode << 14) |
  2443              (0 << 13) |                    // select register move
  2444              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2445              ($src$$reg << 0);
  2446     cbuf.insts()->emit_int32(op);
  2447   %}
  2449   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2450     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2451     int op = (Assembler::arith_op << 30) |
  2452              ($dst$$reg << 25) |
  2453              (Assembler::movcc_op3 << 19) |
  2454              (1 << 18) |                    // cc2 bit for 'icc'
  2455              ($cmp$$cmpcode << 14) |
  2456              (1 << 13) |                    // select immediate move
  2457              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2458              (simm11 << 0);
  2459     cbuf.insts()->emit_int32(op);
  2460   %}
  2462   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2463     int op = (Assembler::arith_op << 30) |
  2464              ($dst$$reg << 25) |
  2465              (Assembler::movcc_op3 << 19) |
  2466              (0 << 18) |                    // cc2 bit for 'fccX'
  2467              ($cmp$$cmpcode << 14) |
  2468              (0 << 13) |                    // select register move
  2469              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2470              ($src$$reg << 0);
  2471     cbuf.insts()->emit_int32(op);
  2472   %}
  2474   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2475     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2476     int op = (Assembler::arith_op << 30) |
  2477              ($dst$$reg << 25) |
  2478              (Assembler::movcc_op3 << 19) |
  2479              (0 << 18) |                    // cc2 bit for 'fccX'
  2480              ($cmp$$cmpcode << 14) |
  2481              (1 << 13) |                    // select immediate move
  2482              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2483              (simm11 << 0);
  2484     cbuf.insts()->emit_int32(op);
  2485   %}
  2487   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2488     int op = (Assembler::arith_op << 30) |
  2489              ($dst$$reg << 25) |
  2490              (Assembler::fpop2_op3 << 19) |
  2491              (0 << 18) |
  2492              ($cmp$$cmpcode << 14) |
  2493              (1 << 13) |                    // select register move
  2494              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2495              ($primary << 5) |              // select single, double or quad
  2496              ($src$$reg << 0);
  2497     cbuf.insts()->emit_int32(op);
  2498   %}
  2500   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2501     int op = (Assembler::arith_op << 30) |
  2502              ($dst$$reg << 25) |
  2503              (Assembler::fpop2_op3 << 19) |
  2504              (0 << 18) |
  2505              ($cmp$$cmpcode << 14) |
  2506              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2507              ($primary << 5) |              // select single, double or quad
  2508              ($src$$reg << 0);
  2509     cbuf.insts()->emit_int32(op);
  2510   %}
  2512   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2513   // the condition comes from opcode-field instead of an argument.
  2514   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2515     int op = (Assembler::arith_op << 30) |
  2516              ($dst$$reg << 25) |
  2517              (Assembler::movcc_op3 << 19) |
  2518              (1 << 18) |                    // cc2 bit for 'icc'
  2519              ($primary << 14) |
  2520              (0 << 13) |                    // select register move
  2521              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2522              ($src$$reg << 0);
  2523     cbuf.insts()->emit_int32(op);
  2524   %}
  2526   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2527     int op = (Assembler::arith_op << 30) |
  2528              ($dst$$reg << 25) |
  2529              (Assembler::movcc_op3 << 19) |
  2530              (6 << 16) |                    // cc2 bit for 'xcc'
  2531              ($primary << 14) |
  2532              (0 << 13) |                    // select register move
  2533              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2534              ($src$$reg << 0);
  2535     cbuf.insts()->emit_int32(op);
  2536   %}
  2538   enc_class Set13( immI13 src, iRegI rd ) %{
  2539     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2540   %}
  2542   enc_class SetHi22( immI src, iRegI rd ) %{
  2543     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2544   %}
  2546   enc_class Set32( immI src, iRegI rd ) %{
  2547     MacroAssembler _masm(&cbuf);
  2548     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2549   %}
  2551   enc_class call_epilog %{
  2552     if( VerifyStackAtCalls ) {
  2553       MacroAssembler _masm(&cbuf);
  2554       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2555       Register temp_reg = G3;
  2556       __ add(SP, framesize, temp_reg);
  2557       __ cmp(temp_reg, FP);
  2558       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2560   %}
  2562   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2563   // to G1 so the register allocator will not have to deal with the misaligned register
  2564   // pair.
  2565   enc_class adjust_long_from_native_call %{
  2566 #ifndef _LP64
  2567     if (returns_long()) {
  2568       //    sllx  O0,32,O0
  2569       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2570       //    srl   O1,0,O1
  2571       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2572       //    or    O0,O1,G1
  2573       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2575 #endif
  2576   %}
  2578   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2579     // CALL directly to the runtime
  2580     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2581     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2582                     /*preserve_g2=*/true);
  2583   %}
  2585   enc_class preserve_SP %{
  2586     MacroAssembler _masm(&cbuf);
  2587     __ mov(SP, L7_mh_SP_save);
  2588   %}
  2590   enc_class restore_SP %{
  2591     MacroAssembler _masm(&cbuf);
  2592     __ mov(L7_mh_SP_save, SP);
  2593   %}
  2595   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2596     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2597     // who we intended to call.
  2598     if (!_method) {
  2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2600     } else if (_optimized_virtual) {
  2601       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2602     } else {
  2603       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2605     if (_method) {  // Emit stub for static call.
  2606       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2608   %}
  2610   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2611     MacroAssembler _masm(&cbuf);
  2612     __ set_inst_mark();
  2613     int vtable_index = this->_vtable_index;
  2614     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2615     if (vtable_index < 0) {
  2616       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2617       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2618       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2619       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2620       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2621       __ ic_call((address)$meth$$method);
  2622     } else {
  2623       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2624       // Just go thru the vtable
  2625       // get receiver klass (receiver already checked for non-null)
  2626       // If we end up going thru a c2i adapter interpreter expects method in G5
  2627       int off = __ offset();
  2628       __ load_klass(O0, G3_scratch);
  2629       int klass_load_size;
  2630       if (UseCompressedClassPointers) {
  2631         assert(Universe::heap() != NULL, "java heap should be initialized");
  2632         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2633       } else {
  2634         klass_load_size = 1*BytesPerInstWord;
  2636       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2637       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2638       if (Assembler::is_simm13(v_off)) {
  2639         __ ld_ptr(G3, v_off, G5_method);
  2640       } else {
  2641         // Generate 2 instructions
  2642         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2643         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2644         // ld_ptr, set_hi, set
  2645         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2646                "Unexpected instruction size(s)");
  2647         __ ld_ptr(G3, G5_method, G5_method);
  2649       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2650       // However it may very well end up in handle_wrong_method if the
  2651       // method is abstract for the particular class.
  2652       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2653       // jump to target (either compiled code or c2iadapter)
  2654       __ jmpl(G3_scratch, G0, O7);
  2655       __ delayed()->nop();
  2657   %}
  2659   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2660     MacroAssembler _masm(&cbuf);
  2662     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2663     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2664                               // we might be calling a C2I adapter which needs it.
  2666     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2667     // Load nmethod
  2668     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2670     // CALL to compiled java, indirect the contents of G3
  2671     __ set_inst_mark();
  2672     __ callr(temp_reg, G0);
  2673     __ delayed()->nop();
  2674   %}
  2676 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2677     MacroAssembler _masm(&cbuf);
  2678     Register Rdividend = reg_to_register_object($src1$$reg);
  2679     Register Rdivisor = reg_to_register_object($src2$$reg);
  2680     Register Rresult = reg_to_register_object($dst$$reg);
  2682     __ sra(Rdivisor, 0, Rdivisor);
  2683     __ sra(Rdividend, 0, Rdividend);
  2684     __ sdivx(Rdividend, Rdivisor, Rresult);
  2685 %}
  2687 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2688     MacroAssembler _masm(&cbuf);
  2690     Register Rdividend = reg_to_register_object($src1$$reg);
  2691     int divisor = $imm$$constant;
  2692     Register Rresult = reg_to_register_object($dst$$reg);
  2694     __ sra(Rdividend, 0, Rdividend);
  2695     __ sdivx(Rdividend, divisor, Rresult);
  2696 %}
  2698 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2699     MacroAssembler _masm(&cbuf);
  2700     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2701     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2702     Register Rdst  = reg_to_register_object($dst$$reg);
  2704     __ sra( Rsrc1, 0, Rsrc1 );
  2705     __ sra( Rsrc2, 0, Rsrc2 );
  2706     __ mulx( Rsrc1, Rsrc2, Rdst );
  2707     __ srlx( Rdst, 32, Rdst );
  2708 %}
  2710 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2711     MacroAssembler _masm(&cbuf);
  2712     Register Rdividend = reg_to_register_object($src1$$reg);
  2713     Register Rdivisor = reg_to_register_object($src2$$reg);
  2714     Register Rresult = reg_to_register_object($dst$$reg);
  2715     Register Rscratch = reg_to_register_object($scratch$$reg);
  2717     assert(Rdividend != Rscratch, "");
  2718     assert(Rdivisor  != Rscratch, "");
  2720     __ sra(Rdividend, 0, Rdividend);
  2721     __ sra(Rdivisor, 0, Rdivisor);
  2722     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2723     __ mulx(Rscratch, Rdivisor, Rscratch);
  2724     __ sub(Rdividend, Rscratch, Rresult);
  2725 %}
  2727 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2728     MacroAssembler _masm(&cbuf);
  2730     Register Rdividend = reg_to_register_object($src1$$reg);
  2731     int divisor = $imm$$constant;
  2732     Register Rresult = reg_to_register_object($dst$$reg);
  2733     Register Rscratch = reg_to_register_object($scratch$$reg);
  2735     assert(Rdividend != Rscratch, "");
  2737     __ sra(Rdividend, 0, Rdividend);
  2738     __ sdivx(Rdividend, divisor, Rscratch);
  2739     __ mulx(Rscratch, divisor, Rscratch);
  2740     __ sub(Rdividend, Rscratch, Rresult);
  2741 %}
  2743 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2744     MacroAssembler _masm(&cbuf);
  2746     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2747     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2749     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2750 %}
  2752 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2753     MacroAssembler _masm(&cbuf);
  2755     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2756     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2758     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2759 %}
  2761 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2762     MacroAssembler _masm(&cbuf);
  2764     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2765     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2767     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2768 %}
  2770 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2771     MacroAssembler _masm(&cbuf);
  2773     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2774     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2776     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2777 %}
  2779 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2780     MacroAssembler _masm(&cbuf);
  2782     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2783     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2785     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2786 %}
  2788 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2789     MacroAssembler _masm(&cbuf);
  2791     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2792     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2794     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2795 %}
  2797 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2798     MacroAssembler _masm(&cbuf);
  2800     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2801     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2803     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2804 %}
  2806 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2807     MacroAssembler _masm(&cbuf);
  2809     Register Roop  = reg_to_register_object($oop$$reg);
  2810     Register Rbox  = reg_to_register_object($box$$reg);
  2811     Register Rscratch = reg_to_register_object($scratch$$reg);
  2812     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2814     assert(Roop  != Rscratch, "");
  2815     assert(Roop  != Rmark, "");
  2816     assert(Rbox  != Rscratch, "");
  2817     assert(Rbox  != Rmark, "");
  2819     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2820 %}
  2822 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2823     MacroAssembler _masm(&cbuf);
  2825     Register Roop  = reg_to_register_object($oop$$reg);
  2826     Register Rbox  = reg_to_register_object($box$$reg);
  2827     Register Rscratch = reg_to_register_object($scratch$$reg);
  2828     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2830     assert(Roop  != Rscratch, "");
  2831     assert(Roop  != Rmark, "");
  2832     assert(Rbox  != Rscratch, "");
  2833     assert(Rbox  != Rmark, "");
  2835     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2836   %}
  2838   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2839     MacroAssembler _masm(&cbuf);
  2840     Register Rmem = reg_to_register_object($mem$$reg);
  2841     Register Rold = reg_to_register_object($old$$reg);
  2842     Register Rnew = reg_to_register_object($new$$reg);
  2844     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2845     __ cmp( Rold, Rnew );
  2846   %}
  2848   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2849     Register Rmem = reg_to_register_object($mem$$reg);
  2850     Register Rold = reg_to_register_object($old$$reg);
  2851     Register Rnew = reg_to_register_object($new$$reg);
  2853     MacroAssembler _masm(&cbuf);
  2854     __ mov(Rnew, O7);
  2855     __ casx(Rmem, Rold, O7);
  2856     __ cmp( Rold, O7 );
  2857   %}
  2859   // raw int cas, used for compareAndSwap
  2860   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2861     Register Rmem = reg_to_register_object($mem$$reg);
  2862     Register Rold = reg_to_register_object($old$$reg);
  2863     Register Rnew = reg_to_register_object($new$$reg);
  2865     MacroAssembler _masm(&cbuf);
  2866     __ mov(Rnew, O7);
  2867     __ cas(Rmem, Rold, O7);
  2868     __ cmp( Rold, O7 );
  2869   %}
  2871   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2872     Register Rres = reg_to_register_object($res$$reg);
  2874     MacroAssembler _masm(&cbuf);
  2875     __ mov(1, Rres);
  2876     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2877   %}
  2879   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2880     Register Rres = reg_to_register_object($res$$reg);
  2882     MacroAssembler _masm(&cbuf);
  2883     __ mov(1, Rres);
  2884     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2885   %}
  2887   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2888     MacroAssembler _masm(&cbuf);
  2889     Register Rdst = reg_to_register_object($dst$$reg);
  2890     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2891                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2892     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2893                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2895     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2896     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2897   %}
  2900   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2901     Label Ldone, Lloop;
  2902     MacroAssembler _masm(&cbuf);
  2904     Register   str1_reg = reg_to_register_object($str1$$reg);
  2905     Register   str2_reg = reg_to_register_object($str2$$reg);
  2906     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2907     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2908     Register result_reg = reg_to_register_object($result$$reg);
  2910     assert(result_reg != str1_reg &&
  2911            result_reg != str2_reg &&
  2912            result_reg != cnt1_reg &&
  2913            result_reg != cnt2_reg ,
  2914            "need different registers");
  2916     // Compute the minimum of the string lengths(str1_reg) and the
  2917     // difference of the string lengths (stack)
  2919     // See if the lengths are different, and calculate min in str1_reg.
  2920     // Stash diff in O7 in case we need it for a tie-breaker.
  2921     Label Lskip;
  2922     __ subcc(cnt1_reg, cnt2_reg, O7);
  2923     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2924     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2925     // cnt2 is shorter, so use its count:
  2926     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2927     __ bind(Lskip);
  2929     // reallocate cnt1_reg, cnt2_reg, result_reg
  2930     // Note:  limit_reg holds the string length pre-scaled by 2
  2931     Register limit_reg =   cnt1_reg;
  2932     Register  chr2_reg =   cnt2_reg;
  2933     Register  chr1_reg = result_reg;
  2934     // str{12} are the base pointers
  2936     // Is the minimum length zero?
  2937     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2938     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2939     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2941     // Load first characters
  2942     __ lduh(str1_reg, 0, chr1_reg);
  2943     __ lduh(str2_reg, 0, chr2_reg);
  2945     // Compare first characters
  2946     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2947     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2948     assert(chr1_reg == result_reg, "result must be pre-placed");
  2949     __ delayed()->nop();
  2952       // Check after comparing first character to see if strings are equivalent
  2953       Label LSkip2;
  2954       // Check if the strings start at same location
  2955       __ cmp(str1_reg, str2_reg);
  2956       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2957       __ delayed()->nop();
  2959       // Check if the length difference is zero (in O7)
  2960       __ cmp(G0, O7);
  2961       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2962       __ delayed()->mov(G0, result_reg);  // result is zero
  2964       // Strings might not be equal
  2965       __ bind(LSkip2);
  2968     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2969     __ signx(limit_reg);
  2971     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2972     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2973     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2975     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2976     __ add(str1_reg, limit_reg, str1_reg);
  2977     __ add(str2_reg, limit_reg, str2_reg);
  2978     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2980     // Compare the rest of the characters
  2981     __ lduh(str1_reg, limit_reg, chr1_reg);
  2982     __ bind(Lloop);
  2983     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2984     __ lduh(str2_reg, limit_reg, chr2_reg);
  2985     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2986     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2987     assert(chr1_reg == result_reg, "result must be pre-placed");
  2988     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2989     // annul LDUH if branch is not taken to prevent access past end of string
  2990     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2991     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2993     // If strings are equal up to min length, return the length difference.
  2994     __ mov(O7, result_reg);
  2996     // Otherwise, return the difference between the first mismatched chars.
  2997     __ bind(Ldone);
  2998   %}
  3000 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  3001     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  3002     MacroAssembler _masm(&cbuf);
  3004     Register   str1_reg = reg_to_register_object($str1$$reg);
  3005     Register   str2_reg = reg_to_register_object($str2$$reg);
  3006     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  3007     Register   tmp1_reg = O7;
  3008     Register result_reg = reg_to_register_object($result$$reg);
  3010     assert(result_reg != str1_reg &&
  3011            result_reg != str2_reg &&
  3012            result_reg !=  cnt_reg &&
  3013            result_reg != tmp1_reg ,
  3014            "need different registers");
  3016     __ cmp(str1_reg, str2_reg); //same char[] ?
  3017     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3018     __ delayed()->add(G0, 1, result_reg);
  3020     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  3021     __ delayed()->add(G0, 1, result_reg); // count == 0
  3023     //rename registers
  3024     Register limit_reg =    cnt_reg;
  3025     Register  chr1_reg = result_reg;
  3026     Register  chr2_reg =   tmp1_reg;
  3028     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  3029     __ signx(limit_reg);
  3031     //check for alignment and position the pointers to the ends
  3032     __ or3(str1_reg, str2_reg, chr1_reg);
  3033     __ andcc(chr1_reg, 0x3, chr1_reg);
  3034     // notZero means at least one not 4-byte aligned.
  3035     // We could optimize the case when both arrays are not aligned
  3036     // but it is not frequent case and it requires additional checks.
  3037     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3038     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3040     // Compare char[] arrays aligned to 4 bytes.
  3041     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3042                           chr1_reg, chr2_reg, Ldone);
  3043     __ ba(Ldone);
  3044     __ delayed()->add(G0, 1, result_reg);
  3046     // char by char compare
  3047     __ bind(Lchar);
  3048     __ add(str1_reg, limit_reg, str1_reg);
  3049     __ add(str2_reg, limit_reg, str2_reg);
  3050     __ neg(limit_reg); //negate count
  3052     __ lduh(str1_reg, limit_reg, chr1_reg);
  3053     // Lchar_loop
  3054     __ bind(Lchar_loop);
  3055     __ lduh(str2_reg, limit_reg, chr2_reg);
  3056     __ cmp(chr1_reg, chr2_reg);
  3057     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3058     __ delayed()->mov(G0, result_reg); //not equal
  3059     __ inccc(limit_reg, sizeof(jchar));
  3060     // annul LDUH if branch is not taken to prevent access past end of string
  3061     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3062     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3064     __ add(G0, 1, result_reg);  //equal
  3066     __ bind(Ldone);
  3067   %}
  3069 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3070     Label Lvector, Ldone, Lloop;
  3071     MacroAssembler _masm(&cbuf);
  3073     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3074     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3075     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3076     Register   tmp2_reg = O7;
  3077     Register result_reg = reg_to_register_object($result$$reg);
  3079     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3080     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3082     // return true if the same array
  3083     __ cmp(ary1_reg, ary2_reg);
  3084     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3085     __ delayed()->add(G0, 1, result_reg); // equal
  3087     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3088     __ delayed()->mov(G0, result_reg);    // not equal
  3090     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3091     __ delayed()->mov(G0, result_reg);    // not equal
  3093     //load the lengths of arrays
  3094     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3095     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3097     // return false if the two arrays are not equal length
  3098     __ cmp(tmp1_reg, tmp2_reg);
  3099     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3100     __ delayed()->mov(G0, result_reg);     // not equal
  3102     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3103     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3105     // load array addresses
  3106     __ add(ary1_reg, base_offset, ary1_reg);
  3107     __ add(ary2_reg, base_offset, ary2_reg);
  3109     // renaming registers
  3110     Register chr1_reg  =  result_reg; // for characters in ary1
  3111     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3112     Register limit_reg =  tmp1_reg;   // length
  3114     // set byte count
  3115     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3117     // Compare char[] arrays aligned to 4 bytes.
  3118     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3119                           chr1_reg, chr2_reg, Ldone);
  3120     __ add(G0, 1, result_reg); // equals
  3122     __ bind(Ldone);
  3123   %}
  3125   enc_class enc_rethrow() %{
  3126     cbuf.set_insts_mark();
  3127     Register temp_reg = G3;
  3128     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3129     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3130     MacroAssembler _masm(&cbuf);
  3131 #ifdef ASSERT
  3132     __ save_frame(0);
  3133     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3134     __ sethi(last_rethrow_addrlit, L1);
  3135     Address addr(L1, last_rethrow_addrlit.low10());
  3136     __ rdpc(L2);
  3137     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3138     __ st_ptr(L2, addr);
  3139     __ restore();
  3140 #endif
  3141     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3142     __ delayed()->nop();
  3143   %}
  3145   enc_class emit_mem_nop() %{
  3146     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3147     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3148   %}
  3150   enc_class emit_fadd_nop() %{
  3151     // Generates the instruction FMOVS f31,f31
  3152     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3153   %}
  3155   enc_class emit_br_nop() %{
  3156     // Generates the instruction BPN,PN .
  3157     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3158   %}
  3160   enc_class enc_membar_acquire %{
  3161     MacroAssembler _masm(&cbuf);
  3162     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3163   %}
  3165   enc_class enc_membar_release %{
  3166     MacroAssembler _masm(&cbuf);
  3167     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3168   %}
  3170   enc_class enc_membar_volatile %{
  3171     MacroAssembler _masm(&cbuf);
  3172     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3173   %}
  3175 %}
  3177 //----------FRAME--------------------------------------------------------------
  3178 // Definition of frame structure and management information.
  3179 //
  3180 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3181 //                             |   (to get allocators register number
  3182 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3183 //  r   CALLER     |        |
  3184 //  o     |        +--------+      pad to even-align allocators stack-slot
  3185 //  w     V        |  pad0  |        numbers; owned by CALLER
  3186 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3187 //  h     ^        |   in   |  5
  3188 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3189 //  |     |        |        |  3
  3190 //  |     |        +--------+
  3191 //  V     |        | old out|      Empty on Intel, window on Sparc
  3192 //        |    old |preserve|      Must be even aligned.
  3193 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3194 //        |        |   in   |  3   area for Intel ret address
  3195 //     Owned by    |preserve|      Empty on Sparc.
  3196 //       SELF      +--------+
  3197 //        |        |  pad2  |  2   pad to align old SP
  3198 //        |        +--------+  1
  3199 //        |        | locks  |  0
  3200 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3201 //        |        |  pad1  | 11   pad to align new SP
  3202 //        |        +--------+
  3203 //        |        |        | 10
  3204 //        |        | spills |  9   spills
  3205 //        V        |        |  8   (pad0 slot for callee)
  3206 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3207 //        ^        |  out   |  7
  3208 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3209 //     Owned by    +--------+
  3210 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3211 //        |    new |preserve|      Must be even-aligned.
  3212 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3213 //        |        |        |
  3214 //
  3215 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3216 //         known from SELF's arguments and the Java calling convention.
  3217 //         Region 6-7 is determined per call site.
  3218 // Note 2: If the calling convention leaves holes in the incoming argument
  3219 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3220 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3221 //         incoming area, as the Java calling convention is completely under
  3222 //         the control of the AD file.  Doubles can be sorted and packed to
  3223 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3224 //         varargs C calling conventions.
  3225 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3226 //         even aligned with pad0 as needed.
  3227 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3228 //         region 6-11 is even aligned; it may be padded out more so that
  3229 //         the region from SP to FP meets the minimum stack alignment.
  3231 frame %{
  3232   // What direction does stack grow in (assumed to be same for native & Java)
  3233   stack_direction(TOWARDS_LOW);
  3235   // These two registers define part of the calling convention
  3236   // between compiled code and the interpreter.
  3237   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3238   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3240   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3241   cisc_spilling_operand_name(indOffset);
  3243   // Number of stack slots consumed by a Monitor enter
  3244 #ifdef _LP64
  3245   sync_stack_slots(2);
  3246 #else
  3247   sync_stack_slots(1);
  3248 #endif
  3250   // Compiled code's Frame Pointer
  3251   frame_pointer(R_SP);
  3253   // Stack alignment requirement
  3254   stack_alignment(StackAlignmentInBytes);
  3255   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3256   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3258   // Number of stack slots between incoming argument block and the start of
  3259   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3260   // EPILOG must remove this many slots.
  3261   in_preserve_stack_slots(0);
  3263   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3264   // for calls to C.  Supports the var-args backing area for register parms.
  3265   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3266 #ifdef _LP64
  3267   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3268   varargs_C_out_slots_killed(12);
  3269 #else
  3270   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3271   varargs_C_out_slots_killed( 7);
  3272 #endif
  3274   // The after-PROLOG location of the return address.  Location of
  3275   // return address specifies a type (REG or STACK) and a number
  3276   // representing the register number (i.e. - use a register name) or
  3277   // stack slot.
  3278   return_addr(REG R_I7);          // Ret Addr is in register I7
  3280   // Body of function which returns an OptoRegs array locating
  3281   // arguments either in registers or in stack slots for calling
  3282   // java
  3283   calling_convention %{
  3284     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3286   %}
  3288   // Body of function which returns an OptoRegs array locating
  3289   // arguments either in registers or in stack slots for callin
  3290   // C.
  3291   c_calling_convention %{
  3292     // This is obviously always outgoing
  3293     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3294   %}
  3296   // Location of native (C/C++) and interpreter return values.  This is specified to
  3297   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3298   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3299   // to and from the register pairs is done by the appropriate call and epilog
  3300   // opcodes.  This simplifies the register allocator.
  3301   c_return_value %{
  3302     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3303 #ifdef     _LP64
  3304     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3305     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3306     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3307     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3308 #else  // !_LP64
  3309     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3310     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3311     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3312     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3313 #endif
  3314     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3315                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3316   %}
  3318   // Location of compiled Java return values.  Same as C
  3319   return_value %{
  3320     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3321 #ifdef     _LP64
  3322     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3323     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3324     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3325     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3326 #else  // !_LP64
  3327     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3328     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3329     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3330     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3331 #endif
  3332     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3333                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3334   %}
  3336 %}
  3339 //----------ATTRIBUTES---------------------------------------------------------
  3340 //----------Operand Attributes-------------------------------------------------
  3341 op_attrib op_cost(1);          // Required cost attribute
  3343 //----------Instruction Attributes---------------------------------------------
  3344 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3345 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3346 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3347 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3348                                    // non-matching short branch variant of some
  3349                                                             // long branch?
  3351 //----------OPERANDS-----------------------------------------------------------
  3352 // Operand definitions must precede instruction definitions for correct parsing
  3353 // in the ADLC because operands constitute user defined types which are used in
  3354 // instruction definitions.
  3356 //----------Simple Operands----------------------------------------------------
  3357 // Immediate Operands
  3358 // Integer Immediate: 32-bit
  3359 operand immI() %{
  3360   match(ConI);
  3362   op_cost(0);
  3363   // formats are generated automatically for constants and base registers
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Integer Immediate: 8-bit
  3369 operand immI8() %{
  3370   predicate(Assembler::is_simm8(n->get_int()));
  3371   match(ConI);
  3372   op_cost(0);
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 13-bit
  3378 operand immI13() %{
  3379   predicate(Assembler::is_simm13(n->get_int()));
  3380   match(ConI);
  3381   op_cost(0);
  3383   format %{ %}
  3384   interface(CONST_INTER);
  3385 %}
  3387 // Integer Immediate: 13-bit minus 7
  3388 operand immI13m7() %{
  3389   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3390   match(ConI);
  3391   op_cost(0);
  3393   format %{ %}
  3394   interface(CONST_INTER);
  3395 %}
  3397 // Integer Immediate: 16-bit
  3398 operand immI16() %{
  3399   predicate(Assembler::is_simm16(n->get_int()));
  3400   match(ConI);
  3401   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
  3407 operand immU12() %{
  3408   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3409   match(ConI);
  3410   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Integer Immediate: 6-bit
  3417 operand immU6() %{
  3418   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3419   match(ConI);
  3420   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Integer Immediate: 11-bit
  3426 operand immI11() %{
  3427   predicate(Assembler::is_simm11(n->get_int()));
  3428   match(ConI);
  3429   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: 5-bit
  3435 operand immI5() %{
  3436   predicate(Assembler::is_simm5(n->get_int()));
  3437   match(ConI);
  3438   op_cost(0);
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Int Immediate non-negative
  3444 operand immU31()
  3445 %{
  3446   predicate(n->get_int() >= 0);
  3447   match(ConI);
  3449   op_cost(0);
  3450   format %{ %}
  3451   interface(CONST_INTER);
  3452 %}
  3454 // Integer Immediate: 0-bit
  3455 operand immI0() %{
  3456   predicate(n->get_int() == 0);
  3457   match(ConI);
  3458   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 // Integer Immediate: the value 10
  3465 operand immI10() %{
  3466   predicate(n->get_int() == 10);
  3467   match(ConI);
  3468   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 // Integer Immediate: the values 0-31
  3475 operand immU5() %{
  3476   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3477   match(ConI);
  3478   op_cost(0);
  3480   format %{ %}
  3481   interface(CONST_INTER);
  3482 %}
  3484 // Integer Immediate: the values 1-31
  3485 operand immI_1_31() %{
  3486   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3487   match(ConI);
  3488   op_cost(0);
  3490   format %{ %}
  3491   interface(CONST_INTER);
  3492 %}
  3494 // Integer Immediate: the values 32-63
  3495 operand immI_32_63() %{
  3496   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3497   match(ConI);
  3498   op_cost(0);
  3500   format %{ %}
  3501   interface(CONST_INTER);
  3502 %}
  3504 // Immediates for special shifts (sign extend)
  3506 // Integer Immediate: the value 16
  3507 operand immI_16() %{
  3508   predicate(n->get_int() == 16);
  3509   match(ConI);
  3510   op_cost(0);
  3512   format %{ %}
  3513   interface(CONST_INTER);
  3514 %}
  3516 // Integer Immediate: the value 24
  3517 operand immI_24() %{
  3518   predicate(n->get_int() == 24);
  3519   match(ConI);
  3520   op_cost(0);
  3522   format %{ %}
  3523   interface(CONST_INTER);
  3524 %}
  3526 // Integer Immediate: the value 255
  3527 operand immI_255() %{
  3528   predicate( n->get_int() == 255 );
  3529   match(ConI);
  3530   op_cost(0);
  3532   format %{ %}
  3533   interface(CONST_INTER);
  3534 %}
  3536 // Integer Immediate: the value 65535
  3537 operand immI_65535() %{
  3538   predicate(n->get_int() == 65535);
  3539   match(ConI);
  3540   op_cost(0);
  3542   format %{ %}
  3543   interface(CONST_INTER);
  3544 %}
  3546 // Long Immediate: the value FF
  3547 operand immL_FF() %{
  3548   predicate( n->get_long() == 0xFFL );
  3549   match(ConL);
  3550   op_cost(0);
  3552   format %{ %}
  3553   interface(CONST_INTER);
  3554 %}
  3556 // Long Immediate: the value FFFF
  3557 operand immL_FFFF() %{
  3558   predicate( n->get_long() == 0xFFFFL );
  3559   match(ConL);
  3560   op_cost(0);
  3562   format %{ %}
  3563   interface(CONST_INTER);
  3564 %}
  3566 // Pointer Immediate: 32 or 64-bit
  3567 operand immP() %{
  3568   match(ConP);
  3570   op_cost(5);
  3571   // formats are generated automatically for constants and base registers
  3572   format %{ %}
  3573   interface(CONST_INTER);
  3574 %}
  3576 #ifdef _LP64
  3577 // Pointer Immediate: 64-bit
  3578 operand immP_set() %{
  3579   predicate(!VM_Version::is_niagara_plus());
  3580   match(ConP);
  3582   op_cost(5);
  3583   // formats are generated automatically for constants and base registers
  3584   format %{ %}
  3585   interface(CONST_INTER);
  3586 %}
  3588 // Pointer Immediate: 64-bit
  3589 // From Niagara2 processors on a load should be better than materializing.
  3590 operand immP_load() %{
  3591   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3592   match(ConP);
  3594   op_cost(5);
  3595   // formats are generated automatically for constants and base registers
  3596   format %{ %}
  3597   interface(CONST_INTER);
  3598 %}
  3600 // Pointer Immediate: 64-bit
  3601 operand immP_no_oop_cheap() %{
  3602   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3603   match(ConP);
  3605   op_cost(5);
  3606   // formats are generated automatically for constants and base registers
  3607   format %{ %}
  3608   interface(CONST_INTER);
  3609 %}
  3610 #endif
  3612 operand immP13() %{
  3613   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3614   match(ConP);
  3615   op_cost(0);
  3617   format %{ %}
  3618   interface(CONST_INTER);
  3619 %}
  3621 operand immP0() %{
  3622   predicate(n->get_ptr() == 0);
  3623   match(ConP);
  3624   op_cost(0);
  3626   format %{ %}
  3627   interface(CONST_INTER);
  3628 %}
  3630 operand immP_poll() %{
  3631   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3632   match(ConP);
  3634   // formats are generated automatically for constants and base registers
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 // Pointer Immediate
  3640 operand immN()
  3641 %{
  3642   match(ConN);
  3644   op_cost(10);
  3645   format %{ %}
  3646   interface(CONST_INTER);
  3647 %}
  3649 operand immNKlass()
  3650 %{
  3651   match(ConNKlass);
  3653   op_cost(10);
  3654   format %{ %}
  3655   interface(CONST_INTER);
  3656 %}
  3658 // NULL Pointer Immediate
  3659 operand immN0()
  3660 %{
  3661   predicate(n->get_narrowcon() == 0);
  3662   match(ConN);
  3664   op_cost(0);
  3665   format %{ %}
  3666   interface(CONST_INTER);
  3667 %}
  3669 operand immL() %{
  3670   match(ConL);
  3671   op_cost(40);
  3672   // formats are generated automatically for constants and base registers
  3673   format %{ %}
  3674   interface(CONST_INTER);
  3675 %}
  3677 operand immL0() %{
  3678   predicate(n->get_long() == 0L);
  3679   match(ConL);
  3680   op_cost(0);
  3681   // formats are generated automatically for constants and base registers
  3682   format %{ %}
  3683   interface(CONST_INTER);
  3684 %}
  3686 // Integer Immediate: 5-bit
  3687 operand immL5() %{
  3688   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3689   match(ConL);
  3690   op_cost(0);
  3691   format %{ %}
  3692   interface(CONST_INTER);
  3693 %}
  3695 // Long Immediate: 13-bit
  3696 operand immL13() %{
  3697   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3698   match(ConL);
  3699   op_cost(0);
  3701   format %{ %}
  3702   interface(CONST_INTER);
  3703 %}
  3705 // Long Immediate: 13-bit minus 7
  3706 operand immL13m7() %{
  3707   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3708   match(ConL);
  3709   op_cost(0);
  3711   format %{ %}
  3712   interface(CONST_INTER);
  3713 %}
  3715 // Long Immediate: low 32-bit mask
  3716 operand immL_32bits() %{
  3717   predicate(n->get_long() == 0xFFFFFFFFL);
  3718   match(ConL);
  3719   op_cost(0);
  3721   format %{ %}
  3722   interface(CONST_INTER);
  3723 %}
  3725 // Long Immediate: cheap (materialize in <= 3 instructions)
  3726 operand immL_cheap() %{
  3727   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3728   match(ConL);
  3729   op_cost(0);
  3731   format %{ %}
  3732   interface(CONST_INTER);
  3733 %}
  3735 // Long Immediate: expensive (materialize in > 3 instructions)
  3736 operand immL_expensive() %{
  3737   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3738   match(ConL);
  3739   op_cost(0);
  3741   format %{ %}
  3742   interface(CONST_INTER);
  3743 %}
  3745 // Double Immediate
  3746 operand immD() %{
  3747   match(ConD);
  3749   op_cost(40);
  3750   format %{ %}
  3751   interface(CONST_INTER);
  3752 %}
  3754 operand immD0() %{
  3755 #ifdef _LP64
  3756   // on 64-bit architectures this comparision is faster
  3757   predicate(jlong_cast(n->getd()) == 0);
  3758 #else
  3759   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3760 #endif
  3761   match(ConD);
  3763   op_cost(0);
  3764   format %{ %}
  3765   interface(CONST_INTER);
  3766 %}
  3768 // Float Immediate
  3769 operand immF() %{
  3770   match(ConF);
  3772   op_cost(20);
  3773   format %{ %}
  3774   interface(CONST_INTER);
  3775 %}
  3777 // Float Immediate: 0
  3778 operand immF0() %{
  3779   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3780   match(ConF);
  3782   op_cost(0);
  3783   format %{ %}
  3784   interface(CONST_INTER);
  3785 %}
  3787 // Integer Register Operands
  3788 // Integer Register
  3789 operand iRegI() %{
  3790   constraint(ALLOC_IN_RC(int_reg));
  3791   match(RegI);
  3793   match(notemp_iRegI);
  3794   match(g1RegI);
  3795   match(o0RegI);
  3796   match(iRegIsafe);
  3798   format %{ %}
  3799   interface(REG_INTER);
  3800 %}
  3802 operand notemp_iRegI() %{
  3803   constraint(ALLOC_IN_RC(notemp_int_reg));
  3804   match(RegI);
  3806   match(o0RegI);
  3808   format %{ %}
  3809   interface(REG_INTER);
  3810 %}
  3812 operand o0RegI() %{
  3813   constraint(ALLOC_IN_RC(o0_regI));
  3814   match(iRegI);
  3816   format %{ %}
  3817   interface(REG_INTER);
  3818 %}
  3820 // Pointer Register
  3821 operand iRegP() %{
  3822   constraint(ALLOC_IN_RC(ptr_reg));
  3823   match(RegP);
  3825   match(lock_ptr_RegP);
  3826   match(g1RegP);
  3827   match(g2RegP);
  3828   match(g3RegP);
  3829   match(g4RegP);
  3830   match(i0RegP);
  3831   match(o0RegP);
  3832   match(o1RegP);
  3833   match(l7RegP);
  3835   format %{ %}
  3836   interface(REG_INTER);
  3837 %}
  3839 operand sp_ptr_RegP() %{
  3840   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3841   match(RegP);
  3842   match(iRegP);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 operand lock_ptr_RegP() %{
  3849   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3850   match(RegP);
  3851   match(i0RegP);
  3852   match(o0RegP);
  3853   match(o1RegP);
  3854   match(l7RegP);
  3856   format %{ %}
  3857   interface(REG_INTER);
  3858 %}
  3860 operand g1RegP() %{
  3861   constraint(ALLOC_IN_RC(g1_regP));
  3862   match(iRegP);
  3864   format %{ %}
  3865   interface(REG_INTER);
  3866 %}
  3868 operand g2RegP() %{
  3869   constraint(ALLOC_IN_RC(g2_regP));
  3870   match(iRegP);
  3872   format %{ %}
  3873   interface(REG_INTER);
  3874 %}
  3876 operand g3RegP() %{
  3877   constraint(ALLOC_IN_RC(g3_regP));
  3878   match(iRegP);
  3880   format %{ %}
  3881   interface(REG_INTER);
  3882 %}
  3884 operand g1RegI() %{
  3885   constraint(ALLOC_IN_RC(g1_regI));
  3886   match(iRegI);
  3888   format %{ %}
  3889   interface(REG_INTER);
  3890 %}
  3892 operand g3RegI() %{
  3893   constraint(ALLOC_IN_RC(g3_regI));
  3894   match(iRegI);
  3896   format %{ %}
  3897   interface(REG_INTER);
  3898 %}
  3900 operand g4RegI() %{
  3901   constraint(ALLOC_IN_RC(g4_regI));
  3902   match(iRegI);
  3904   format %{ %}
  3905   interface(REG_INTER);
  3906 %}
  3908 operand g4RegP() %{
  3909   constraint(ALLOC_IN_RC(g4_regP));
  3910   match(iRegP);
  3912   format %{ %}
  3913   interface(REG_INTER);
  3914 %}
  3916 operand i0RegP() %{
  3917   constraint(ALLOC_IN_RC(i0_regP));
  3918   match(iRegP);
  3920   format %{ %}
  3921   interface(REG_INTER);
  3922 %}
  3924 operand o0RegP() %{
  3925   constraint(ALLOC_IN_RC(o0_regP));
  3926   match(iRegP);
  3928   format %{ %}
  3929   interface(REG_INTER);
  3930 %}
  3932 operand o1RegP() %{
  3933   constraint(ALLOC_IN_RC(o1_regP));
  3934   match(iRegP);
  3936   format %{ %}
  3937   interface(REG_INTER);
  3938 %}
  3940 operand o2RegP() %{
  3941   constraint(ALLOC_IN_RC(o2_regP));
  3942   match(iRegP);
  3944   format %{ %}
  3945   interface(REG_INTER);
  3946 %}
  3948 operand o7RegP() %{
  3949   constraint(ALLOC_IN_RC(o7_regP));
  3950   match(iRegP);
  3952   format %{ %}
  3953   interface(REG_INTER);
  3954 %}
  3956 operand l7RegP() %{
  3957   constraint(ALLOC_IN_RC(l7_regP));
  3958   match(iRegP);
  3960   format %{ %}
  3961   interface(REG_INTER);
  3962 %}
  3964 operand o7RegI() %{
  3965   constraint(ALLOC_IN_RC(o7_regI));
  3966   match(iRegI);
  3968   format %{ %}
  3969   interface(REG_INTER);
  3970 %}
  3972 operand iRegN() %{
  3973   constraint(ALLOC_IN_RC(int_reg));
  3974   match(RegN);
  3976   format %{ %}
  3977   interface(REG_INTER);
  3978 %}
  3980 // Long Register
  3981 operand iRegL() %{
  3982   constraint(ALLOC_IN_RC(long_reg));
  3983   match(RegL);
  3985   format %{ %}
  3986   interface(REG_INTER);
  3987 %}
  3989 operand o2RegL() %{
  3990   constraint(ALLOC_IN_RC(o2_regL));
  3991   match(iRegL);
  3993   format %{ %}
  3994   interface(REG_INTER);
  3995 %}
  3997 operand o7RegL() %{
  3998   constraint(ALLOC_IN_RC(o7_regL));
  3999   match(iRegL);
  4001   format %{ %}
  4002   interface(REG_INTER);
  4003 %}
  4005 operand g1RegL() %{
  4006   constraint(ALLOC_IN_RC(g1_regL));
  4007   match(iRegL);
  4009   format %{ %}
  4010   interface(REG_INTER);
  4011 %}
  4013 operand g3RegL() %{
  4014   constraint(ALLOC_IN_RC(g3_regL));
  4015   match(iRegL);
  4017   format %{ %}
  4018   interface(REG_INTER);
  4019 %}
  4021 // Int Register safe
  4022 // This is 64bit safe
  4023 operand iRegIsafe() %{
  4024   constraint(ALLOC_IN_RC(long_reg));
  4026   match(iRegI);
  4028   format %{ %}
  4029   interface(REG_INTER);
  4030 %}
  4032 // Condition Code Flag Register
  4033 operand flagsReg() %{
  4034   constraint(ALLOC_IN_RC(int_flags));
  4035   match(RegFlags);
  4037   format %{ "ccr" %} // both ICC and XCC
  4038   interface(REG_INTER);
  4039 %}
  4041 // Condition Code Register, unsigned comparisons.
  4042 operand flagsRegU() %{
  4043   constraint(ALLOC_IN_RC(int_flags));
  4044   match(RegFlags);
  4046   format %{ "icc_U" %}
  4047   interface(REG_INTER);
  4048 %}
  4050 // Condition Code Register, pointer comparisons.
  4051 operand flagsRegP() %{
  4052   constraint(ALLOC_IN_RC(int_flags));
  4053   match(RegFlags);
  4055 #ifdef _LP64
  4056   format %{ "xcc_P" %}
  4057 #else
  4058   format %{ "icc_P" %}
  4059 #endif
  4060   interface(REG_INTER);
  4061 %}
  4063 // Condition Code Register, long comparisons.
  4064 operand flagsRegL() %{
  4065   constraint(ALLOC_IN_RC(int_flags));
  4066   match(RegFlags);
  4068   format %{ "xcc_L" %}
  4069   interface(REG_INTER);
  4070 %}
  4072 // Condition Code Register, floating comparisons, unordered same as "less".
  4073 operand flagsRegF() %{
  4074   constraint(ALLOC_IN_RC(float_flags));
  4075   match(RegFlags);
  4076   match(flagsRegF0);
  4078   format %{ %}
  4079   interface(REG_INTER);
  4080 %}
  4082 operand flagsRegF0() %{
  4083   constraint(ALLOC_IN_RC(float_flag0));
  4084   match(RegFlags);
  4086   format %{ %}
  4087   interface(REG_INTER);
  4088 %}
  4091 // Condition Code Flag Register used by long compare
  4092 operand flagsReg_long_LTGE() %{
  4093   constraint(ALLOC_IN_RC(int_flags));
  4094   match(RegFlags);
  4095   format %{ "icc_LTGE" %}
  4096   interface(REG_INTER);
  4097 %}
  4098 operand flagsReg_long_EQNE() %{
  4099   constraint(ALLOC_IN_RC(int_flags));
  4100   match(RegFlags);
  4101   format %{ "icc_EQNE" %}
  4102   interface(REG_INTER);
  4103 %}
  4104 operand flagsReg_long_LEGT() %{
  4105   constraint(ALLOC_IN_RC(int_flags));
  4106   match(RegFlags);
  4107   format %{ "icc_LEGT" %}
  4108   interface(REG_INTER);
  4109 %}
  4112 operand regD() %{
  4113   constraint(ALLOC_IN_RC(dflt_reg));
  4114   match(RegD);
  4116   match(regD_low);
  4118   format %{ %}
  4119   interface(REG_INTER);
  4120 %}
  4122 operand regF() %{
  4123   constraint(ALLOC_IN_RC(sflt_reg));
  4124   match(RegF);
  4126   format %{ %}
  4127   interface(REG_INTER);
  4128 %}
  4130 operand regD_low() %{
  4131   constraint(ALLOC_IN_RC(dflt_low_reg));
  4132   match(regD);
  4134   format %{ %}
  4135   interface(REG_INTER);
  4136 %}
  4138 // Special Registers
  4140 // Method Register
  4141 operand inline_cache_regP(iRegP reg) %{
  4142   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4143   match(reg);
  4144   format %{ %}
  4145   interface(REG_INTER);
  4146 %}
  4148 operand interpreter_method_oop_regP(iRegP reg) %{
  4149   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4150   match(reg);
  4151   format %{ %}
  4152   interface(REG_INTER);
  4153 %}
  4156 //----------Complex Operands---------------------------------------------------
  4157 // Indirect Memory Reference
  4158 operand indirect(sp_ptr_RegP reg) %{
  4159   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4160   match(reg);
  4162   op_cost(100);
  4163   format %{ "[$reg]" %}
  4164   interface(MEMORY_INTER) %{
  4165     base($reg);
  4166     index(0x0);
  4167     scale(0x0);
  4168     disp(0x0);
  4169   %}
  4170 %}
  4172 // Indirect with simm13 Offset
  4173 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4174   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4175   match(AddP reg offset);
  4177   op_cost(100);
  4178   format %{ "[$reg + $offset]" %}
  4179   interface(MEMORY_INTER) %{
  4180     base($reg);
  4181     index(0x0);
  4182     scale(0x0);
  4183     disp($offset);
  4184   %}
  4185 %}
  4187 // Indirect with simm13 Offset minus 7
  4188 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4189   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4190   match(AddP reg offset);
  4192   op_cost(100);
  4193   format %{ "[$reg + $offset]" %}
  4194   interface(MEMORY_INTER) %{
  4195     base($reg);
  4196     index(0x0);
  4197     scale(0x0);
  4198     disp($offset);
  4199   %}
  4200 %}
  4202 // Note:  Intel has a swapped version also, like this:
  4203 //operand indOffsetX(iRegI reg, immP offset) %{
  4204 //  constraint(ALLOC_IN_RC(int_reg));
  4205 //  match(AddP offset reg);
  4206 //
  4207 //  op_cost(100);
  4208 //  format %{ "[$reg + $offset]" %}
  4209 //  interface(MEMORY_INTER) %{
  4210 //    base($reg);
  4211 //    index(0x0);
  4212 //    scale(0x0);
  4213 //    disp($offset);
  4214 //  %}
  4215 //%}
  4216 //// However, it doesn't make sense for SPARC, since
  4217 // we have no particularly good way to embed oops in
  4218 // single instructions.
  4220 // Indirect with Register Index
  4221 operand indIndex(iRegP addr, iRegX index) %{
  4222   constraint(ALLOC_IN_RC(ptr_reg));
  4223   match(AddP addr index);
  4225   op_cost(100);
  4226   format %{ "[$addr + $index]" %}
  4227   interface(MEMORY_INTER) %{
  4228     base($addr);
  4229     index($index);
  4230     scale(0x0);
  4231     disp(0x0);
  4232   %}
  4233 %}
  4235 //----------Special Memory Operands--------------------------------------------
  4236 // Stack Slot Operand - This operand is used for loading and storing temporary
  4237 //                      values on the stack where a match requires a value to
  4238 //                      flow through memory.
  4239 operand stackSlotI(sRegI reg) %{
  4240   constraint(ALLOC_IN_RC(stack_slots));
  4241   op_cost(100);
  4242   //match(RegI);
  4243   format %{ "[$reg]" %}
  4244   interface(MEMORY_INTER) %{
  4245     base(0xE);   // R_SP
  4246     index(0x0);
  4247     scale(0x0);
  4248     disp($reg);  // Stack Offset
  4249   %}
  4250 %}
  4252 operand stackSlotP(sRegP reg) %{
  4253   constraint(ALLOC_IN_RC(stack_slots));
  4254   op_cost(100);
  4255   //match(RegP);
  4256   format %{ "[$reg]" %}
  4257   interface(MEMORY_INTER) %{
  4258     base(0xE);   // R_SP
  4259     index(0x0);
  4260     scale(0x0);
  4261     disp($reg);  // Stack Offset
  4262   %}
  4263 %}
  4265 operand stackSlotF(sRegF reg) %{
  4266   constraint(ALLOC_IN_RC(stack_slots));
  4267   op_cost(100);
  4268   //match(RegF);
  4269   format %{ "[$reg]" %}
  4270   interface(MEMORY_INTER) %{
  4271     base(0xE);   // R_SP
  4272     index(0x0);
  4273     scale(0x0);
  4274     disp($reg);  // Stack Offset
  4275   %}
  4276 %}
  4277 operand stackSlotD(sRegD reg) %{
  4278   constraint(ALLOC_IN_RC(stack_slots));
  4279   op_cost(100);
  4280   //match(RegD);
  4281   format %{ "[$reg]" %}
  4282   interface(MEMORY_INTER) %{
  4283     base(0xE);   // R_SP
  4284     index(0x0);
  4285     scale(0x0);
  4286     disp($reg);  // Stack Offset
  4287   %}
  4288 %}
  4289 operand stackSlotL(sRegL reg) %{
  4290   constraint(ALLOC_IN_RC(stack_slots));
  4291   op_cost(100);
  4292   //match(RegL);
  4293   format %{ "[$reg]" %}
  4294   interface(MEMORY_INTER) %{
  4295     base(0xE);   // R_SP
  4296     index(0x0);
  4297     scale(0x0);
  4298     disp($reg);  // Stack Offset
  4299   %}
  4300 %}
  4302 // Operands for expressing Control Flow
  4303 // NOTE:  Label is a predefined operand which should not be redefined in
  4304 //        the AD file.  It is generically handled within the ADLC.
  4306 //----------Conditional Branch Operands----------------------------------------
  4307 // Comparison Op  - This is the operation of the comparison, and is limited to
  4308 //                  the following set of codes:
  4309 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4310 //
  4311 // Other attributes of the comparison, such as unsignedness, are specified
  4312 // by the comparison instruction that sets a condition code flags register.
  4313 // That result is represented by a flags operand whose subtype is appropriate
  4314 // to the unsignedness (etc.) of the comparison.
  4315 //
  4316 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4317 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4318 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4320 operand cmpOp() %{
  4321   match(Bool);
  4323   format %{ "" %}
  4324   interface(COND_INTER) %{
  4325     equal(0x1);
  4326     not_equal(0x9);
  4327     less(0x3);
  4328     greater_equal(0xB);
  4329     less_equal(0x2);
  4330     greater(0xA);
  4331     overflow(0x7);
  4332     no_overflow(0xF);
  4333   %}
  4334 %}
  4336 // Comparison Op, unsigned
  4337 operand cmpOpU() %{
  4338   match(Bool);
  4339   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4340             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4342   format %{ "u" %}
  4343   interface(COND_INTER) %{
  4344     equal(0x1);
  4345     not_equal(0x9);
  4346     less(0x5);
  4347     greater_equal(0xD);
  4348     less_equal(0x4);
  4349     greater(0xC);
  4350     overflow(0x7);
  4351     no_overflow(0xF);
  4352   %}
  4353 %}
  4355 // Comparison Op, pointer (same as unsigned)
  4356 operand cmpOpP() %{
  4357   match(Bool);
  4358   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4359             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4361   format %{ "p" %}
  4362   interface(COND_INTER) %{
  4363     equal(0x1);
  4364     not_equal(0x9);
  4365     less(0x5);
  4366     greater_equal(0xD);
  4367     less_equal(0x4);
  4368     greater(0xC);
  4369     overflow(0x7);
  4370     no_overflow(0xF);
  4371   %}
  4372 %}
  4374 // Comparison Op, branch-register encoding
  4375 operand cmpOp_reg() %{
  4376   match(Bool);
  4377   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4378             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4380   format %{ "" %}
  4381   interface(COND_INTER) %{
  4382     equal        (0x1);
  4383     not_equal    (0x5);
  4384     less         (0x3);
  4385     greater_equal(0x7);
  4386     less_equal   (0x2);
  4387     greater      (0x6);
  4388     overflow(0x7); // not supported
  4389     no_overflow(0xF); // not supported
  4390   %}
  4391 %}
  4393 // Comparison Code, floating, unordered same as less
  4394 operand cmpOpF() %{
  4395   match(Bool);
  4396   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4397             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4399   format %{ "fl" %}
  4400   interface(COND_INTER) %{
  4401     equal(0x9);
  4402     not_equal(0x1);
  4403     less(0x3);
  4404     greater_equal(0xB);
  4405     less_equal(0xE);
  4406     greater(0x6);
  4408     overflow(0x7); // not supported
  4409     no_overflow(0xF); // not supported
  4410   %}
  4411 %}
  4413 // Used by long compare
  4414 operand cmpOp_commute() %{
  4415   match(Bool);
  4416   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4417             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4419   format %{ "" %}
  4420   interface(COND_INTER) %{
  4421     equal(0x1);
  4422     not_equal(0x9);
  4423     less(0xA);
  4424     greater_equal(0x2);
  4425     less_equal(0xB);
  4426     greater(0x3);
  4427     overflow(0x7);
  4428     no_overflow(0xF);
  4429   %}
  4430 %}
  4432 //----------OPERAND CLASSES----------------------------------------------------
  4433 // Operand Classes are groups of operands that are used to simplify
  4434 // instruction definitions by not requiring the AD writer to specify separate
  4435 // instructions for every form of operand when the instruction accepts
  4436 // multiple operand types with the same basic encoding and format.  The classic
  4437 // case of this is memory operands.
  4438 opclass memory( indirect, indOffset13, indIndex );
  4439 opclass indIndexMemory( indIndex );
  4441 //----------PIPELINE-----------------------------------------------------------
  4442 pipeline %{
  4444 //----------ATTRIBUTES---------------------------------------------------------
  4445 attributes %{
  4446   fixed_size_instructions;           // Fixed size instructions
  4447   branch_has_delay_slot;             // Branch has delay slot following
  4448   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4449   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4450   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4451   instruction_fetch_units = 1;       // of 16 bytes
  4453   // List of nop instructions
  4454   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4455 %}
  4457 //----------RESOURCES----------------------------------------------------------
  4458 // Resources are the functional units available to the machine
  4459 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4461 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4462 // Pipeline Description specifies the stages in the machine's pipeline
  4464 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4466 //----------PIPELINE CLASSES---------------------------------------------------
  4467 // Pipeline Classes describe the stages in which input and output are
  4468 // referenced by the hardware pipeline.
  4470 // Integer ALU reg-reg operation
  4471 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4472     single_instruction;
  4473     dst   : E(write);
  4474     src1  : R(read);
  4475     src2  : R(read);
  4476     IALU  : R;
  4477 %}
  4479 // Integer ALU reg-reg long operation
  4480 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4481     instruction_count(2);
  4482     dst   : E(write);
  4483     src1  : R(read);
  4484     src2  : R(read);
  4485     IALU  : R;
  4486     IALU  : R;
  4487 %}
  4489 // Integer ALU reg-reg long dependent operation
  4490 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4491     instruction_count(1); multiple_bundles;
  4492     dst   : E(write);
  4493     src1  : R(read);
  4494     src2  : R(read);
  4495     cr    : E(write);
  4496     IALU  : R(2);
  4497 %}
  4499 // Integer ALU reg-imm operaion
  4500 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4501     single_instruction;
  4502     dst   : E(write);
  4503     src1  : R(read);
  4504     IALU  : R;
  4505 %}
  4507 // Integer ALU reg-reg operation with condition code
  4508 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4509     single_instruction;
  4510     dst   : E(write);
  4511     cr    : E(write);
  4512     src1  : R(read);
  4513     src2  : R(read);
  4514     IALU  : R;
  4515 %}
  4517 // Integer ALU reg-imm operation with condition code
  4518 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4519     single_instruction;
  4520     dst   : E(write);
  4521     cr    : E(write);
  4522     src1  : R(read);
  4523     IALU  : R;
  4524 %}
  4526 // Integer ALU zero-reg operation
  4527 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4528     single_instruction;
  4529     dst   : E(write);
  4530     src2  : R(read);
  4531     IALU  : R;
  4532 %}
  4534 // Integer ALU zero-reg operation with condition code only
  4535 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4536     single_instruction;
  4537     cr    : E(write);
  4538     src   : R(read);
  4539     IALU  : R;
  4540 %}
  4542 // Integer ALU reg-reg operation with condition code only
  4543 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4544     single_instruction;
  4545     cr    : E(write);
  4546     src1  : R(read);
  4547     src2  : R(read);
  4548     IALU  : R;
  4549 %}
  4551 // Integer ALU reg-imm operation with condition code only
  4552 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4553     single_instruction;
  4554     cr    : E(write);
  4555     src1  : R(read);
  4556     IALU  : R;
  4557 %}
  4559 // Integer ALU reg-reg-zero operation with condition code only
  4560 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4561     single_instruction;
  4562     cr    : E(write);
  4563     src1  : R(read);
  4564     src2  : R(read);
  4565     IALU  : R;
  4566 %}
  4568 // Integer ALU reg-imm-zero operation with condition code only
  4569 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4570     single_instruction;
  4571     cr    : E(write);
  4572     src1  : R(read);
  4573     IALU  : R;
  4574 %}
  4576 // Integer ALU reg-reg operation with condition code, src1 modified
  4577 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4578     single_instruction;
  4579     cr    : E(write);
  4580     src1  : E(write);
  4581     src1  : R(read);
  4582     src2  : R(read);
  4583     IALU  : R;
  4584 %}
  4586 // Integer ALU reg-imm operation with condition code, src1 modified
  4587 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4588     single_instruction;
  4589     cr    : E(write);
  4590     src1  : E(write);
  4591     src1  : R(read);
  4592     IALU  : R;
  4593 %}
  4595 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4596     multiple_bundles;
  4597     dst   : E(write)+4;
  4598     cr    : E(write);
  4599     src1  : R(read);
  4600     src2  : R(read);
  4601     IALU  : R(3);
  4602     BR    : R(2);
  4603 %}
  4605 // Integer ALU operation
  4606 pipe_class ialu_none(iRegI dst) %{
  4607     single_instruction;
  4608     dst   : E(write);
  4609     IALU  : R;
  4610 %}
  4612 // Integer ALU reg operation
  4613 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4614     single_instruction; may_have_no_code;
  4615     dst   : E(write);
  4616     src   : R(read);
  4617     IALU  : R;
  4618 %}
  4620 // Integer ALU reg conditional operation
  4621 // This instruction has a 1 cycle stall, and cannot execute
  4622 // in the same cycle as the instruction setting the condition
  4623 // code. We kludge this by pretending to read the condition code
  4624 // 1 cycle earlier, and by marking the functional units as busy
  4625 // for 2 cycles with the result available 1 cycle later than
  4626 // is really the case.
  4627 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4628     single_instruction;
  4629     op2_out : C(write);
  4630     op1     : R(read);
  4631     cr      : R(read);       // This is really E, with a 1 cycle stall
  4632     BR      : R(2);
  4633     MS      : R(2);
  4634 %}
  4636 #ifdef _LP64
  4637 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4638     instruction_count(1); multiple_bundles;
  4639     dst     : C(write)+1;
  4640     src     : R(read)+1;
  4641     IALU    : R(1);
  4642     BR      : E(2);
  4643     MS      : E(2);
  4644 %}
  4645 #endif
  4647 // Integer ALU reg operation
  4648 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4649     single_instruction; may_have_no_code;
  4650     dst   : E(write);
  4651     src   : R(read);
  4652     IALU  : R;
  4653 %}
  4654 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4655     single_instruction; may_have_no_code;
  4656     dst   : E(write);
  4657     src   : R(read);
  4658     IALU  : R;
  4659 %}
  4661 // Two integer ALU reg operations
  4662 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4663     instruction_count(2);
  4664     dst   : E(write);
  4665     src   : R(read);
  4666     A0    : R;
  4667     A1    : R;
  4668 %}
  4670 // Two integer ALU reg operations
  4671 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4672     instruction_count(2); may_have_no_code;
  4673     dst   : E(write);
  4674     src   : R(read);
  4675     A0    : R;
  4676     A1    : R;
  4677 %}
  4679 // Integer ALU imm operation
  4680 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4681     single_instruction;
  4682     dst   : E(write);
  4683     IALU  : R;
  4684 %}
  4686 // Integer ALU reg-reg with carry operation
  4687 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4688     single_instruction;
  4689     dst   : E(write);
  4690     src1  : R(read);
  4691     src2  : R(read);
  4692     IALU  : R;
  4693 %}
  4695 // Integer ALU cc operation
  4696 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4697     single_instruction;
  4698     dst   : E(write);
  4699     cc    : R(read);
  4700     IALU  : R;
  4701 %}
  4703 // Integer ALU cc / second IALU operation
  4704 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4705     instruction_count(1); multiple_bundles;
  4706     dst   : E(write)+1;
  4707     src   : R(read);
  4708     IALU  : R;
  4709 %}
  4711 // Integer ALU cc / second IALU operation
  4712 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4713     instruction_count(1); multiple_bundles;
  4714     dst   : E(write)+1;
  4715     p     : R(read);
  4716     q     : R(read);
  4717     IALU  : R;
  4718 %}
  4720 // Integer ALU hi-lo-reg operation
  4721 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4722     instruction_count(1); multiple_bundles;
  4723     dst   : E(write)+1;
  4724     IALU  : R(2);
  4725 %}
  4727 // Float ALU hi-lo-reg operation (with temp)
  4728 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4729     instruction_count(1); multiple_bundles;
  4730     dst   : E(write)+1;
  4731     IALU  : R(2);
  4732 %}
  4734 // Long Constant
  4735 pipe_class loadConL( iRegL dst, immL src ) %{
  4736     instruction_count(2); multiple_bundles;
  4737     dst   : E(write)+1;
  4738     IALU  : R(2);
  4739     IALU  : R(2);
  4740 %}
  4742 // Pointer Constant
  4743 pipe_class loadConP( iRegP dst, immP src ) %{
  4744     instruction_count(0); multiple_bundles;
  4745     fixed_latency(6);
  4746 %}
  4748 // Polling Address
  4749 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4750 #ifdef _LP64
  4751     instruction_count(0); multiple_bundles;
  4752     fixed_latency(6);
  4753 #else
  4754     dst   : E(write);
  4755     IALU  : R;
  4756 #endif
  4757 %}
  4759 // Long Constant small
  4760 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4761     instruction_count(2);
  4762     dst   : E(write);
  4763     IALU  : R;
  4764     IALU  : R;
  4765 %}
  4767 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4768 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4769     instruction_count(1); multiple_bundles;
  4770     src   : R(read);
  4771     dst   : M(write)+1;
  4772     IALU  : R;
  4773     MS    : E;
  4774 %}
  4776 // Integer ALU nop operation
  4777 pipe_class ialu_nop() %{
  4778     single_instruction;
  4779     IALU  : R;
  4780 %}
  4782 // Integer ALU nop operation
  4783 pipe_class ialu_nop_A0() %{
  4784     single_instruction;
  4785     A0    : R;
  4786 %}
  4788 // Integer ALU nop operation
  4789 pipe_class ialu_nop_A1() %{
  4790     single_instruction;
  4791     A1    : R;
  4792 %}
  4794 // Integer Multiply reg-reg operation
  4795 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4796     single_instruction;
  4797     dst   : E(write);
  4798     src1  : R(read);
  4799     src2  : R(read);
  4800     MS    : R(5);
  4801 %}
  4803 // Integer Multiply reg-imm operation
  4804 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4805     single_instruction;
  4806     dst   : E(write);
  4807     src1  : R(read);
  4808     MS    : R(5);
  4809 %}
  4811 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4812     single_instruction;
  4813     dst   : E(write)+4;
  4814     src1  : R(read);
  4815     src2  : R(read);
  4816     MS    : R(6);
  4817 %}
  4819 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4820     single_instruction;
  4821     dst   : E(write)+4;
  4822     src1  : R(read);
  4823     MS    : R(6);
  4824 %}
  4826 // Integer Divide reg-reg
  4827 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4828     instruction_count(1); multiple_bundles;
  4829     dst   : E(write);
  4830     temp  : E(write);
  4831     src1  : R(read);
  4832     src2  : R(read);
  4833     temp  : R(read);
  4834     MS    : R(38);
  4835 %}
  4837 // Integer Divide reg-imm
  4838 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4839     instruction_count(1); multiple_bundles;
  4840     dst   : E(write);
  4841     temp  : E(write);
  4842     src1  : R(read);
  4843     temp  : R(read);
  4844     MS    : R(38);
  4845 %}
  4847 // Long Divide
  4848 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4849     dst  : E(write)+71;
  4850     src1 : R(read);
  4851     src2 : R(read)+1;
  4852     MS   : R(70);
  4853 %}
  4855 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4856     dst  : E(write)+71;
  4857     src1 : R(read);
  4858     MS   : R(70);
  4859 %}
  4861 // Floating Point Add Float
  4862 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4863     single_instruction;
  4864     dst   : X(write);
  4865     src1  : E(read);
  4866     src2  : E(read);
  4867     FA    : R;
  4868 %}
  4870 // Floating Point Add Double
  4871 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4872     single_instruction;
  4873     dst   : X(write);
  4874     src1  : E(read);
  4875     src2  : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Conditional Move based on integer flags
  4880 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src   : E(read);
  4884     cr    : R(read);
  4885     FA    : R(2);
  4886     BR    : R(2);
  4887 %}
  4889 // Floating Point Conditional Move based on integer flags
  4890 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4891     single_instruction;
  4892     dst   : X(write);
  4893     src   : E(read);
  4894     cr    : R(read);
  4895     FA    : R(2);
  4896     BR    : R(2);
  4897 %}
  4899 // Floating Point Multiply Float
  4900 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4901     single_instruction;
  4902     dst   : X(write);
  4903     src1  : E(read);
  4904     src2  : E(read);
  4905     FM    : R;
  4906 %}
  4908 // Floating Point Multiply Double
  4909 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4910     single_instruction;
  4911     dst   : X(write);
  4912     src1  : E(read);
  4913     src2  : E(read);
  4914     FM    : R;
  4915 %}
  4917 // Floating Point Divide Float
  4918 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src1  : E(read);
  4922     src2  : E(read);
  4923     FM    : R;
  4924     FDIV  : C(14);
  4925 %}
  4927 // Floating Point Divide Double
  4928 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src1  : E(read);
  4932     src2  : E(read);
  4933     FM    : R;
  4934     FDIV  : C(17);
  4935 %}
  4937 // Floating Point Move/Negate/Abs Float
  4938 pipe_class faddF_reg(regF dst, regF src) %{
  4939     single_instruction;
  4940     dst   : W(write);
  4941     src   : E(read);
  4942     FA    : R(1);
  4943 %}
  4945 // Floating Point Move/Negate/Abs Double
  4946 pipe_class faddD_reg(regD dst, regD src) %{
  4947     single_instruction;
  4948     dst   : W(write);
  4949     src   : E(read);
  4950     FA    : R;
  4951 %}
  4953 // Floating Point Convert F->D
  4954 pipe_class fcvtF2D(regD dst, regF src) %{
  4955     single_instruction;
  4956     dst   : X(write);
  4957     src   : E(read);
  4958     FA    : R;
  4959 %}
  4961 // Floating Point Convert I->D
  4962 pipe_class fcvtI2D(regD dst, regF src) %{
  4963     single_instruction;
  4964     dst   : X(write);
  4965     src   : E(read);
  4966     FA    : R;
  4967 %}
  4969 // Floating Point Convert LHi->D
  4970 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4971     single_instruction;
  4972     dst   : X(write);
  4973     src   : E(read);
  4974     FA    : R;
  4975 %}
  4977 // Floating Point Convert L->D
  4978 pipe_class fcvtL2D(regD dst, regF src) %{
  4979     single_instruction;
  4980     dst   : X(write);
  4981     src   : E(read);
  4982     FA    : R;
  4983 %}
  4985 // Floating Point Convert L->F
  4986 pipe_class fcvtL2F(regD dst, regF src) %{
  4987     single_instruction;
  4988     dst   : X(write);
  4989     src   : E(read);
  4990     FA    : R;
  4991 %}
  4993 // Floating Point Convert D->F
  4994 pipe_class fcvtD2F(regD dst, regF src) %{
  4995     single_instruction;
  4996     dst   : X(write);
  4997     src   : E(read);
  4998     FA    : R;
  4999 %}
  5001 // Floating Point Convert I->L
  5002 pipe_class fcvtI2L(regD dst, regF src) %{
  5003     single_instruction;
  5004     dst   : X(write);
  5005     src   : E(read);
  5006     FA    : R;
  5007 %}
  5009 // Floating Point Convert D->F
  5010 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  5011     instruction_count(1); multiple_bundles;
  5012     dst   : X(write)+6;
  5013     src   : E(read);
  5014     FA    : R;
  5015 %}
  5017 // Floating Point Convert D->L
  5018 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  5019     instruction_count(1); multiple_bundles;
  5020     dst   : X(write)+6;
  5021     src   : E(read);
  5022     FA    : R;
  5023 %}
  5025 // Floating Point Convert F->I
  5026 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  5027     instruction_count(1); multiple_bundles;
  5028     dst   : X(write)+6;
  5029     src   : E(read);
  5030     FA    : R;
  5031 %}
  5033 // Floating Point Convert F->L
  5034 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  5035     instruction_count(1); multiple_bundles;
  5036     dst   : X(write)+6;
  5037     src   : E(read);
  5038     FA    : R;
  5039 %}
  5041 // Floating Point Convert I->F
  5042 pipe_class fcvtI2F(regF dst, regF src) %{
  5043     single_instruction;
  5044     dst   : X(write);
  5045     src   : E(read);
  5046     FA    : R;
  5047 %}
  5049 // Floating Point Compare
  5050 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5051     single_instruction;
  5052     cr    : X(write);
  5053     src1  : E(read);
  5054     src2  : E(read);
  5055     FA    : R;
  5056 %}
  5058 // Floating Point Compare
  5059 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5060     single_instruction;
  5061     cr    : X(write);
  5062     src1  : E(read);
  5063     src2  : E(read);
  5064     FA    : R;
  5065 %}
  5067 // Floating Add Nop
  5068 pipe_class fadd_nop() %{
  5069     single_instruction;
  5070     FA  : R;
  5071 %}
  5073 // Integer Store to Memory
  5074 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5075     single_instruction;
  5076     mem   : R(read);
  5077     src   : C(read);
  5078     MS    : R;
  5079 %}
  5081 // Integer Store to Memory
  5082 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5083     single_instruction;
  5084     mem   : R(read);
  5085     src   : C(read);
  5086     MS    : R;
  5087 %}
  5089 // Integer Store Zero to Memory
  5090 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5091     single_instruction;
  5092     mem   : R(read);
  5093     MS    : R;
  5094 %}
  5096 // Special Stack Slot Store
  5097 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5098     single_instruction;
  5099     stkSlot : R(read);
  5100     src     : C(read);
  5101     MS      : R;
  5102 %}
  5104 // Special Stack Slot Store
  5105 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5106     instruction_count(2); multiple_bundles;
  5107     stkSlot : R(read);
  5108     src     : C(read);
  5109     MS      : R(2);
  5110 %}
  5112 // Float Store
  5113 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5114     single_instruction;
  5115     mem : R(read);
  5116     src : C(read);
  5117     MS  : R;
  5118 %}
  5120 // Float Store
  5121 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5122     single_instruction;
  5123     mem : R(read);
  5124     MS  : R;
  5125 %}
  5127 // Double Store
  5128 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5129     instruction_count(1);
  5130     mem : R(read);
  5131     src : C(read);
  5132     MS  : R;
  5133 %}
  5135 // Double Store
  5136 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5137     single_instruction;
  5138     mem : R(read);
  5139     MS  : R;
  5140 %}
  5142 // Special Stack Slot Float Store
  5143 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5144     single_instruction;
  5145     stkSlot : R(read);
  5146     src     : C(read);
  5147     MS      : R;
  5148 %}
  5150 // Special Stack Slot Double Store
  5151 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5152     single_instruction;
  5153     stkSlot : R(read);
  5154     src     : C(read);
  5155     MS      : R;
  5156 %}
  5158 // Integer Load (when sign bit propagation not needed)
  5159 pipe_class iload_mem(iRegI dst, memory mem) %{
  5160     single_instruction;
  5161     mem : R(read);
  5162     dst : C(write);
  5163     MS  : R;
  5164 %}
  5166 // Integer Load from stack operand
  5167 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5168     single_instruction;
  5169     mem : R(read);
  5170     dst : C(write);
  5171     MS  : R;
  5172 %}
  5174 // Integer Load (when sign bit propagation or masking is needed)
  5175 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5176     single_instruction;
  5177     mem : R(read);
  5178     dst : M(write);
  5179     MS  : R;
  5180 %}
  5182 // Float Load
  5183 pipe_class floadF_mem(regF dst, memory mem) %{
  5184     single_instruction;
  5185     mem : R(read);
  5186     dst : M(write);
  5187     MS  : R;
  5188 %}
  5190 // Float Load
  5191 pipe_class floadD_mem(regD dst, memory mem) %{
  5192     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5193     mem : R(read);
  5194     dst : M(write);
  5195     MS  : R;
  5196 %}
  5198 // Float Load
  5199 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5200     single_instruction;
  5201     stkSlot : R(read);
  5202     dst : M(write);
  5203     MS  : R;
  5204 %}
  5206 // Float Load
  5207 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5208     single_instruction;
  5209     stkSlot : R(read);
  5210     dst : M(write);
  5211     MS  : R;
  5212 %}
  5214 // Memory Nop
  5215 pipe_class mem_nop() %{
  5216     single_instruction;
  5217     MS  : R;
  5218 %}
  5220 pipe_class sethi(iRegP dst, immI src) %{
  5221     single_instruction;
  5222     dst  : E(write);
  5223     IALU : R;
  5224 %}
  5226 pipe_class loadPollP(iRegP poll) %{
  5227     single_instruction;
  5228     poll : R(read);
  5229     MS   : R;
  5230 %}
  5232 pipe_class br(Universe br, label labl) %{
  5233     single_instruction_with_delay_slot;
  5234     BR  : R;
  5235 %}
  5237 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5238     single_instruction_with_delay_slot;
  5239     cr    : E(read);
  5240     BR    : R;
  5241 %}
  5243 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5244     single_instruction_with_delay_slot;
  5245     op1 : E(read);
  5246     BR  : R;
  5247     MS  : R;
  5248 %}
  5250 // Compare and branch
  5251 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5252     instruction_count(2); has_delay_slot;
  5253     cr    : E(write);
  5254     src1  : R(read);
  5255     src2  : R(read);
  5256     IALU  : R;
  5257     BR    : R;
  5258 %}
  5260 // Compare and branch
  5261 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5262     instruction_count(2); has_delay_slot;
  5263     cr    : E(write);
  5264     src1  : R(read);
  5265     IALU  : R;
  5266     BR    : R;
  5267 %}
  5269 // Compare and branch using cbcond
  5270 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5271     single_instruction;
  5272     src1  : E(read);
  5273     src2  : E(read);
  5274     IALU  : R;
  5275     BR    : R;
  5276 %}
  5278 // Compare and branch using cbcond
  5279 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5280     single_instruction;
  5281     src1  : E(read);
  5282     IALU  : R;
  5283     BR    : R;
  5284 %}
  5286 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5287     single_instruction_with_delay_slot;
  5288     cr    : E(read);
  5289     BR    : R;
  5290 %}
  5292 pipe_class br_nop() %{
  5293     single_instruction;
  5294     BR  : R;
  5295 %}
  5297 pipe_class simple_call(method meth) %{
  5298     instruction_count(2); multiple_bundles; force_serialization;
  5299     fixed_latency(100);
  5300     BR  : R(1);
  5301     MS  : R(1);
  5302     A0  : R(1);
  5303 %}
  5305 pipe_class compiled_call(method meth) %{
  5306     instruction_count(1); multiple_bundles; force_serialization;
  5307     fixed_latency(100);
  5308     MS  : R(1);
  5309 %}
  5311 pipe_class call(method meth) %{
  5312     instruction_count(0); multiple_bundles; force_serialization;
  5313     fixed_latency(100);
  5314 %}
  5316 pipe_class tail_call(Universe ignore, label labl) %{
  5317     single_instruction; has_delay_slot;
  5318     fixed_latency(100);
  5319     BR  : R(1);
  5320     MS  : R(1);
  5321 %}
  5323 pipe_class ret(Universe ignore) %{
  5324     single_instruction; has_delay_slot;
  5325     BR  : R(1);
  5326     MS  : R(1);
  5327 %}
  5329 pipe_class ret_poll(g3RegP poll) %{
  5330     instruction_count(3); has_delay_slot;
  5331     poll : E(read);
  5332     MS   : R;
  5333 %}
  5335 // The real do-nothing guy
  5336 pipe_class empty( ) %{
  5337     instruction_count(0);
  5338 %}
  5340 pipe_class long_memory_op() %{
  5341     instruction_count(0); multiple_bundles; force_serialization;
  5342     fixed_latency(25);
  5343     MS  : R(1);
  5344 %}
  5346 // Check-cast
  5347 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5348     array : R(read);
  5349     match  : R(read);
  5350     IALU   : R(2);
  5351     BR     : R(2);
  5352     MS     : R;
  5353 %}
  5355 // Convert FPU flags into +1,0,-1
  5356 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5357     src1  : E(read);
  5358     src2  : E(read);
  5359     dst   : E(write);
  5360     FA    : R;
  5361     MS    : R(2);
  5362     BR    : R(2);
  5363 %}
  5365 // Compare for p < q, and conditionally add y
  5366 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5367     p     : E(read);
  5368     q     : E(read);
  5369     y     : E(read);
  5370     IALU  : R(3)
  5371 %}
  5373 // Perform a compare, then move conditionally in a branch delay slot.
  5374 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5375     src2   : E(read);
  5376     srcdst : E(read);
  5377     IALU   : R;
  5378     BR     : R;
  5379 %}
  5381 // Define the class for the Nop node
  5382 define %{
  5383    MachNop = ialu_nop;
  5384 %}
  5386 %}
  5388 //----------INSTRUCTIONS-------------------------------------------------------
  5390 //------------Special Stack Slot instructions - no match rules-----------------
  5391 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5392   // No match rule to avoid chain rule match.
  5393   effect(DEF dst, USE src);
  5394   ins_cost(MEMORY_REF_COST);
  5395   size(4);
  5396   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5397   opcode(Assembler::ldf_op3);
  5398   ins_encode(simple_form3_mem_reg(src, dst));
  5399   ins_pipe(floadF_stk);
  5400 %}
  5402 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5403   // No match rule to avoid chain rule match.
  5404   effect(DEF dst, USE src);
  5405   ins_cost(MEMORY_REF_COST);
  5406   size(4);
  5407   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5408   opcode(Assembler::lddf_op3);
  5409   ins_encode(simple_form3_mem_reg(src, dst));
  5410   ins_pipe(floadD_stk);
  5411 %}
  5413 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5414   // No match rule to avoid chain rule match.
  5415   effect(DEF dst, USE src);
  5416   ins_cost(MEMORY_REF_COST);
  5417   size(4);
  5418   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5419   opcode(Assembler::stf_op3);
  5420   ins_encode(simple_form3_mem_reg(dst, src));
  5421   ins_pipe(fstoreF_stk_reg);
  5422 %}
  5424 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5425   // No match rule to avoid chain rule match.
  5426   effect(DEF dst, USE src);
  5427   ins_cost(MEMORY_REF_COST);
  5428   size(4);
  5429   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5430   opcode(Assembler::stdf_op3);
  5431   ins_encode(simple_form3_mem_reg(dst, src));
  5432   ins_pipe(fstoreD_stk_reg);
  5433 %}
  5435 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5436   effect(DEF dst, USE src);
  5437   ins_cost(MEMORY_REF_COST*2);
  5438   size(8);
  5439   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5440             "STW    R_G0,$dst.lo" %}
  5441   opcode(Assembler::stw_op3);
  5442   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5443   ins_pipe(lstoreI_stk_reg);
  5444 %}
  5446 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5447   // No match rule to avoid chain rule match.
  5448   effect(DEF dst, USE src);
  5449   ins_cost(MEMORY_REF_COST);
  5450   size(4);
  5451   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5452   opcode(Assembler::stx_op3);
  5453   ins_encode(simple_form3_mem_reg( dst, src ) );
  5454   ins_pipe(istore_stk_reg);
  5455 %}
  5457 //---------- Chain stack slots between similar types --------
  5459 // Load integer from stack slot
  5460 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5461   match(Set dst src);
  5462   ins_cost(MEMORY_REF_COST);
  5464   size(4);
  5465   format %{ "LDUW   $src,$dst\t!stk" %}
  5466   opcode(Assembler::lduw_op3);
  5467   ins_encode(simple_form3_mem_reg( src, dst ) );
  5468   ins_pipe(iload_mem);
  5469 %}
  5471 // Store integer to stack slot
  5472 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5473   match(Set dst src);
  5474   ins_cost(MEMORY_REF_COST);
  5476   size(4);
  5477   format %{ "STW    $src,$dst\t!stk" %}
  5478   opcode(Assembler::stw_op3);
  5479   ins_encode(simple_form3_mem_reg( dst, src ) );
  5480   ins_pipe(istore_mem_reg);
  5481 %}
  5483 // Load long from stack slot
  5484 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5485   match(Set dst src);
  5487   ins_cost(MEMORY_REF_COST);
  5488   size(4);
  5489   format %{ "LDX    $src,$dst\t! long" %}
  5490   opcode(Assembler::ldx_op3);
  5491   ins_encode(simple_form3_mem_reg( src, dst ) );
  5492   ins_pipe(iload_mem);
  5493 %}
  5495 // Store long to stack slot
  5496 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5497   match(Set dst src);
  5499   ins_cost(MEMORY_REF_COST);
  5500   size(4);
  5501   format %{ "STX    $src,$dst\t! long" %}
  5502   opcode(Assembler::stx_op3);
  5503   ins_encode(simple_form3_mem_reg( dst, src ) );
  5504   ins_pipe(istore_mem_reg);
  5505 %}
  5507 #ifdef _LP64
  5508 // Load pointer from stack slot, 64-bit encoding
  5509 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5510   match(Set dst src);
  5511   ins_cost(MEMORY_REF_COST);
  5512   size(4);
  5513   format %{ "LDX    $src,$dst\t!ptr" %}
  5514   opcode(Assembler::ldx_op3);
  5515   ins_encode(simple_form3_mem_reg( src, dst ) );
  5516   ins_pipe(iload_mem);
  5517 %}
  5519 // Store pointer to stack slot
  5520 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5521   match(Set dst src);
  5522   ins_cost(MEMORY_REF_COST);
  5523   size(4);
  5524   format %{ "STX    $src,$dst\t!ptr" %}
  5525   opcode(Assembler::stx_op3);
  5526   ins_encode(simple_form3_mem_reg( dst, src ) );
  5527   ins_pipe(istore_mem_reg);
  5528 %}
  5529 #else // _LP64
  5530 // Load pointer from stack slot, 32-bit encoding
  5531 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5532   match(Set dst src);
  5533   ins_cost(MEMORY_REF_COST);
  5534   format %{ "LDUW   $src,$dst\t!ptr" %}
  5535   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5536   ins_encode(simple_form3_mem_reg( src, dst ) );
  5537   ins_pipe(iload_mem);
  5538 %}
  5540 // Store pointer to stack slot
  5541 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5542   match(Set dst src);
  5543   ins_cost(MEMORY_REF_COST);
  5544   format %{ "STW    $src,$dst\t!ptr" %}
  5545   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5546   ins_encode(simple_form3_mem_reg( dst, src ) );
  5547   ins_pipe(istore_mem_reg);
  5548 %}
  5549 #endif // _LP64
  5551 //------------Special Nop instructions for bundling - no match rules-----------
  5552 // Nop using the A0 functional unit
  5553 instruct Nop_A0() %{
  5554   ins_cost(0);
  5556   format %{ "NOP    ! Alu Pipeline" %}
  5557   opcode(Assembler::or_op3, Assembler::arith_op);
  5558   ins_encode( form2_nop() );
  5559   ins_pipe(ialu_nop_A0);
  5560 %}
  5562 // Nop using the A1 functional unit
  5563 instruct Nop_A1( ) %{
  5564   ins_cost(0);
  5566   format %{ "NOP    ! Alu Pipeline" %}
  5567   opcode(Assembler::or_op3, Assembler::arith_op);
  5568   ins_encode( form2_nop() );
  5569   ins_pipe(ialu_nop_A1);
  5570 %}
  5572 // Nop using the memory functional unit
  5573 instruct Nop_MS( ) %{
  5574   ins_cost(0);
  5576   format %{ "NOP    ! Memory Pipeline" %}
  5577   ins_encode( emit_mem_nop );
  5578   ins_pipe(mem_nop);
  5579 %}
  5581 // Nop using the floating add functional unit
  5582 instruct Nop_FA( ) %{
  5583   ins_cost(0);
  5585   format %{ "NOP    ! Floating Add Pipeline" %}
  5586   ins_encode( emit_fadd_nop );
  5587   ins_pipe(fadd_nop);
  5588 %}
  5590 // Nop using the branch functional unit
  5591 instruct Nop_BR( ) %{
  5592   ins_cost(0);
  5594   format %{ "NOP    ! Branch Pipeline" %}
  5595   ins_encode( emit_br_nop );
  5596   ins_pipe(br_nop);
  5597 %}
  5599 //----------Load/Store/Move Instructions---------------------------------------
  5600 //----------Load Instructions--------------------------------------------------
  5601 // Load Byte (8bit signed)
  5602 instruct loadB(iRegI dst, memory mem) %{
  5603   match(Set dst (LoadB mem));
  5604   ins_cost(MEMORY_REF_COST);
  5606   size(4);
  5607   format %{ "LDSB   $mem,$dst\t! byte" %}
  5608   ins_encode %{
  5609     __ ldsb($mem$$Address, $dst$$Register);
  5610   %}
  5611   ins_pipe(iload_mask_mem);
  5612 %}
  5614 // Load Byte (8bit signed) into a Long Register
  5615 instruct loadB2L(iRegL dst, memory mem) %{
  5616   match(Set dst (ConvI2L (LoadB mem)));
  5617   ins_cost(MEMORY_REF_COST);
  5619   size(4);
  5620   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5621   ins_encode %{
  5622     __ ldsb($mem$$Address, $dst$$Register);
  5623   %}
  5624   ins_pipe(iload_mask_mem);
  5625 %}
  5627 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5628 instruct loadUB(iRegI dst, memory mem) %{
  5629   match(Set dst (LoadUB mem));
  5630   ins_cost(MEMORY_REF_COST);
  5632   size(4);
  5633   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5634   ins_encode %{
  5635     __ ldub($mem$$Address, $dst$$Register);
  5636   %}
  5637   ins_pipe(iload_mem);
  5638 %}
  5640 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5641 instruct loadUB2L(iRegL dst, memory mem) %{
  5642   match(Set dst (ConvI2L (LoadUB mem)));
  5643   ins_cost(MEMORY_REF_COST);
  5645   size(4);
  5646   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5647   ins_encode %{
  5648     __ ldub($mem$$Address, $dst$$Register);
  5649   %}
  5650   ins_pipe(iload_mem);
  5651 %}
  5653 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5654 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5655   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5656   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5658   size(2*4);
  5659   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5660             "AND    $dst,$mask,$dst" %}
  5661   ins_encode %{
  5662     __ ldub($mem$$Address, $dst$$Register);
  5663     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5664   %}
  5665   ins_pipe(iload_mem);
  5666 %}
  5668 // Load Short (16bit signed)
  5669 instruct loadS(iRegI dst, memory mem) %{
  5670   match(Set dst (LoadS mem));
  5671   ins_cost(MEMORY_REF_COST);
  5673   size(4);
  5674   format %{ "LDSH   $mem,$dst\t! short" %}
  5675   ins_encode %{
  5676     __ ldsh($mem$$Address, $dst$$Register);
  5677   %}
  5678   ins_pipe(iload_mask_mem);
  5679 %}
  5681 // Load Short (16 bit signed) to Byte (8 bit signed)
  5682 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5683   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5684   ins_cost(MEMORY_REF_COST);
  5686   size(4);
  5688   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5689   ins_encode %{
  5690     __ ldsb($mem$$Address, $dst$$Register, 1);
  5691   %}
  5692   ins_pipe(iload_mask_mem);
  5693 %}
  5695 // Load Short (16bit signed) into a Long Register
  5696 instruct loadS2L(iRegL dst, memory mem) %{
  5697   match(Set dst (ConvI2L (LoadS mem)));
  5698   ins_cost(MEMORY_REF_COST);
  5700   size(4);
  5701   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5702   ins_encode %{
  5703     __ ldsh($mem$$Address, $dst$$Register);
  5704   %}
  5705   ins_pipe(iload_mask_mem);
  5706 %}
  5708 // Load Unsigned Short/Char (16bit UNsigned)
  5709 instruct loadUS(iRegI dst, memory mem) %{
  5710   match(Set dst (LoadUS mem));
  5711   ins_cost(MEMORY_REF_COST);
  5713   size(4);
  5714   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5715   ins_encode %{
  5716     __ lduh($mem$$Address, $dst$$Register);
  5717   %}
  5718   ins_pipe(iload_mem);
  5719 %}
  5721 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5722 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5723   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5724   ins_cost(MEMORY_REF_COST);
  5726   size(4);
  5727   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5728   ins_encode %{
  5729     __ ldsb($mem$$Address, $dst$$Register, 1);
  5730   %}
  5731   ins_pipe(iload_mask_mem);
  5732 %}
  5734 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5735 instruct loadUS2L(iRegL dst, memory mem) %{
  5736   match(Set dst (ConvI2L (LoadUS mem)));
  5737   ins_cost(MEMORY_REF_COST);
  5739   size(4);
  5740   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5741   ins_encode %{
  5742     __ lduh($mem$$Address, $dst$$Register);
  5743   %}
  5744   ins_pipe(iload_mem);
  5745 %}
  5747 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5748 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5749   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5750   ins_cost(MEMORY_REF_COST);
  5752   size(4);
  5753   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5754   ins_encode %{
  5755     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5756   %}
  5757   ins_pipe(iload_mem);
  5758 %}
  5760 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5761 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5762   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5763   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5765   size(2*4);
  5766   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5767             "AND    $dst,$mask,$dst" %}
  5768   ins_encode %{
  5769     Register Rdst = $dst$$Register;
  5770     __ lduh($mem$$Address, Rdst);
  5771     __ and3(Rdst, $mask$$constant, Rdst);
  5772   %}
  5773   ins_pipe(iload_mem);
  5774 %}
  5776 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5777 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5778   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5779   effect(TEMP dst, TEMP tmp);
  5780   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5782   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5783             "SET    $mask,$tmp\n\t"
  5784             "AND    $dst,$tmp,$dst" %}
  5785   ins_encode %{
  5786     Register Rdst = $dst$$Register;
  5787     Register Rtmp = $tmp$$Register;
  5788     __ lduh($mem$$Address, Rdst);
  5789     __ set($mask$$constant, Rtmp);
  5790     __ and3(Rdst, Rtmp, Rdst);
  5791   %}
  5792   ins_pipe(iload_mem);
  5793 %}
  5795 // Load Integer
  5796 instruct loadI(iRegI dst, memory mem) %{
  5797   match(Set dst (LoadI mem));
  5798   ins_cost(MEMORY_REF_COST);
  5800   size(4);
  5801   format %{ "LDUW   $mem,$dst\t! int" %}
  5802   ins_encode %{
  5803     __ lduw($mem$$Address, $dst$$Register);
  5804   %}
  5805   ins_pipe(iload_mem);
  5806 %}
  5808 // Load Integer to Byte (8 bit signed)
  5809 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5810   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5811   ins_cost(MEMORY_REF_COST);
  5813   size(4);
  5815   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5816   ins_encode %{
  5817     __ ldsb($mem$$Address, $dst$$Register, 3);
  5818   %}
  5819   ins_pipe(iload_mask_mem);
  5820 %}
  5822 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5823 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5824   match(Set dst (AndI (LoadI mem) mask));
  5825   ins_cost(MEMORY_REF_COST);
  5827   size(4);
  5829   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5830   ins_encode %{
  5831     __ ldub($mem$$Address, $dst$$Register, 3);
  5832   %}
  5833   ins_pipe(iload_mask_mem);
  5834 %}
  5836 // Load Integer to Short (16 bit signed)
  5837 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5838   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5839   ins_cost(MEMORY_REF_COST);
  5841   size(4);
  5843   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5844   ins_encode %{
  5845     __ ldsh($mem$$Address, $dst$$Register, 2);
  5846   %}
  5847   ins_pipe(iload_mask_mem);
  5848 %}
  5850 // Load Integer to Unsigned Short (16 bit UNsigned)
  5851 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5852   match(Set dst (AndI (LoadI mem) mask));
  5853   ins_cost(MEMORY_REF_COST);
  5855   size(4);
  5857   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5858   ins_encode %{
  5859     __ lduh($mem$$Address, $dst$$Register, 2);
  5860   %}
  5861   ins_pipe(iload_mask_mem);
  5862 %}
  5864 // Load Integer into a Long Register
  5865 instruct loadI2L(iRegL dst, memory mem) %{
  5866   match(Set dst (ConvI2L (LoadI mem)));
  5867   ins_cost(MEMORY_REF_COST);
  5869   size(4);
  5870   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5871   ins_encode %{
  5872     __ ldsw($mem$$Address, $dst$$Register);
  5873   %}
  5874   ins_pipe(iload_mask_mem);
  5875 %}
  5877 // Load Integer with mask 0xFF into a Long Register
  5878 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5879   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5880   ins_cost(MEMORY_REF_COST);
  5882   size(4);
  5883   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5884   ins_encode %{
  5885     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5886   %}
  5887   ins_pipe(iload_mem);
  5888 %}
  5890 // Load Integer with mask 0xFFFF into a Long Register
  5891 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5892   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5893   ins_cost(MEMORY_REF_COST);
  5895   size(4);
  5896   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5897   ins_encode %{
  5898     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5899   %}
  5900   ins_pipe(iload_mem);
  5901 %}
  5903 // Load Integer with a 12-bit mask into a Long Register
  5904 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
  5905   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5906   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5908   size(2*4);
  5909   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
  5910             "AND    $dst,$mask,$dst" %}
  5911   ins_encode %{
  5912     Register Rdst = $dst$$Register;
  5913     __ lduw($mem$$Address, Rdst);
  5914     __ and3(Rdst, $mask$$constant, Rdst);
  5915   %}
  5916   ins_pipe(iload_mem);
  5917 %}
  5919 // Load Integer with a 31-bit mask into a Long Register
  5920 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
  5921   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5922   effect(TEMP dst, TEMP tmp);
  5923   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5925   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
  5926             "SET    $mask,$tmp\n\t"
  5927             "AND    $dst,$tmp,$dst" %}
  5928   ins_encode %{
  5929     Register Rdst = $dst$$Register;
  5930     Register Rtmp = $tmp$$Register;
  5931     __ lduw($mem$$Address, Rdst);
  5932     __ set($mask$$constant, Rtmp);
  5933     __ and3(Rdst, Rtmp, Rdst);
  5934   %}
  5935   ins_pipe(iload_mem);
  5936 %}
  5938 // Load Unsigned Integer into a Long Register
  5939 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5940   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5941   ins_cost(MEMORY_REF_COST);
  5943   size(4);
  5944   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5945   ins_encode %{
  5946     __ lduw($mem$$Address, $dst$$Register);
  5947   %}
  5948   ins_pipe(iload_mem);
  5949 %}
  5951 // Load Long - aligned
  5952 instruct loadL(iRegL dst, memory mem ) %{
  5953   match(Set dst (LoadL mem));
  5954   ins_cost(MEMORY_REF_COST);
  5956   size(4);
  5957   format %{ "LDX    $mem,$dst\t! long" %}
  5958   ins_encode %{
  5959     __ ldx($mem$$Address, $dst$$Register);
  5960   %}
  5961   ins_pipe(iload_mem);
  5962 %}
  5964 // Load Long - UNaligned
  5965 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5966   match(Set dst (LoadL_unaligned mem));
  5967   effect(KILL tmp);
  5968   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5969   size(16);
  5970   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5971           "\tLDUW   $mem  ,$dst\n"
  5972           "\tSLLX   #32, $dst, $dst\n"
  5973           "\tOR     $dst, R_O7, $dst" %}
  5974   opcode(Assembler::lduw_op3);
  5975   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5976   ins_pipe(iload_mem);
  5977 %}
  5979 // Load Range
  5980 instruct loadRange(iRegI dst, memory mem) %{
  5981   match(Set dst (LoadRange mem));
  5982   ins_cost(MEMORY_REF_COST);
  5984   size(4);
  5985   format %{ "LDUW   $mem,$dst\t! range" %}
  5986   opcode(Assembler::lduw_op3);
  5987   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5988   ins_pipe(iload_mem);
  5989 %}
  5991 // Load Integer into %f register (for fitos/fitod)
  5992 instruct loadI_freg(regF dst, memory mem) %{
  5993   match(Set dst (LoadI mem));
  5994   ins_cost(MEMORY_REF_COST);
  5995   size(4);
  5997   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5998   opcode(Assembler::ldf_op3);
  5999   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6000   ins_pipe(floadF_mem);
  6001 %}
  6003 // Load Pointer
  6004 instruct loadP(iRegP dst, memory mem) %{
  6005   match(Set dst (LoadP mem));
  6006   ins_cost(MEMORY_REF_COST);
  6007   size(4);
  6009 #ifndef _LP64
  6010   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6011   ins_encode %{
  6012     __ lduw($mem$$Address, $dst$$Register);
  6013   %}
  6014 #else
  6015   format %{ "LDX    $mem,$dst\t! ptr" %}
  6016   ins_encode %{
  6017     __ ldx($mem$$Address, $dst$$Register);
  6018   %}
  6019 #endif
  6020   ins_pipe(iload_mem);
  6021 %}
  6023 // Load Compressed Pointer
  6024 instruct loadN(iRegN dst, memory mem) %{
  6025   match(Set dst (LoadN mem));
  6026   ins_cost(MEMORY_REF_COST);
  6027   size(4);
  6029   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6030   ins_encode %{
  6031     __ lduw($mem$$Address, $dst$$Register);
  6032   %}
  6033   ins_pipe(iload_mem);
  6034 %}
  6036 // Load Klass Pointer
  6037 instruct loadKlass(iRegP dst, memory mem) %{
  6038   match(Set dst (LoadKlass mem));
  6039   ins_cost(MEMORY_REF_COST);
  6040   size(4);
  6042 #ifndef _LP64
  6043   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6044   ins_encode %{
  6045     __ lduw($mem$$Address, $dst$$Register);
  6046   %}
  6047 #else
  6048   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6049   ins_encode %{
  6050     __ ldx($mem$$Address, $dst$$Register);
  6051   %}
  6052 #endif
  6053   ins_pipe(iload_mem);
  6054 %}
  6056 // Load narrow Klass Pointer
  6057 instruct loadNKlass(iRegN dst, memory mem) %{
  6058   match(Set dst (LoadNKlass mem));
  6059   ins_cost(MEMORY_REF_COST);
  6060   size(4);
  6062   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6063   ins_encode %{
  6064     __ lduw($mem$$Address, $dst$$Register);
  6065   %}
  6066   ins_pipe(iload_mem);
  6067 %}
  6069 // Load Double
  6070 instruct loadD(regD dst, memory mem) %{
  6071   match(Set dst (LoadD mem));
  6072   ins_cost(MEMORY_REF_COST);
  6074   size(4);
  6075   format %{ "LDDF   $mem,$dst" %}
  6076   opcode(Assembler::lddf_op3);
  6077   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6078   ins_pipe(floadD_mem);
  6079 %}
  6081 // Load Double - UNaligned
  6082 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6083   match(Set dst (LoadD_unaligned mem));
  6084   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6085   size(8);
  6086   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6087           "\tLDF    $mem+4,$dst.lo\t!" %}
  6088   opcode(Assembler::ldf_op3);
  6089   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6090   ins_pipe(iload_mem);
  6091 %}
  6093 // Load Float
  6094 instruct loadF(regF dst, memory mem) %{
  6095   match(Set dst (LoadF mem));
  6096   ins_cost(MEMORY_REF_COST);
  6098   size(4);
  6099   format %{ "LDF    $mem,$dst" %}
  6100   opcode(Assembler::ldf_op3);
  6101   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6102   ins_pipe(floadF_mem);
  6103 %}
  6105 // Load Constant
  6106 instruct loadConI( iRegI dst, immI src ) %{
  6107   match(Set dst src);
  6108   ins_cost(DEFAULT_COST * 3/2);
  6109   format %{ "SET    $src,$dst" %}
  6110   ins_encode( Set32(src, dst) );
  6111   ins_pipe(ialu_hi_lo_reg);
  6112 %}
  6114 instruct loadConI13( iRegI dst, immI13 src ) %{
  6115   match(Set dst src);
  6117   size(4);
  6118   format %{ "MOV    $src,$dst" %}
  6119   ins_encode( Set13( src, dst ) );
  6120   ins_pipe(ialu_imm);
  6121 %}
  6123 #ifndef _LP64
  6124 instruct loadConP(iRegP dst, immP con) %{
  6125   match(Set dst con);
  6126   ins_cost(DEFAULT_COST * 3/2);
  6127   format %{ "SET    $con,$dst\t!ptr" %}
  6128   ins_encode %{
  6129     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6130       intptr_t val = $con$$constant;
  6131     if (constant_reloc == relocInfo::oop_type) {
  6132       __ set_oop_constant((jobject) val, $dst$$Register);
  6133     } else if (constant_reloc == relocInfo::metadata_type) {
  6134       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6135     } else {          // non-oop pointers, e.g. card mark base, heap top
  6136       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6137       __ set(val, $dst$$Register);
  6139   %}
  6140   ins_pipe(loadConP);
  6141 %}
  6142 #else
  6143 instruct loadConP_set(iRegP dst, immP_set con) %{
  6144   match(Set dst con);
  6145   ins_cost(DEFAULT_COST * 3/2);
  6146   format %{ "SET    $con,$dst\t! ptr" %}
  6147   ins_encode %{
  6148     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6149       intptr_t val = $con$$constant;
  6150     if (constant_reloc == relocInfo::oop_type) {
  6151       __ set_oop_constant((jobject) val, $dst$$Register);
  6152     } else if (constant_reloc == relocInfo::metadata_type) {
  6153       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6154     } else {          // non-oop pointers, e.g. card mark base, heap top
  6155       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6156       __ set(val, $dst$$Register);
  6158   %}
  6159   ins_pipe(loadConP);
  6160 %}
  6162 instruct loadConP_load(iRegP dst, immP_load con) %{
  6163   match(Set dst con);
  6164   ins_cost(MEMORY_REF_COST);
  6165   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6166   ins_encode %{
  6167     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6168     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6169   %}
  6170   ins_pipe(loadConP);
  6171 %}
  6173 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6174   match(Set dst con);
  6175   ins_cost(DEFAULT_COST * 3/2);
  6176   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6177   ins_encode %{
  6178     __ set($con$$constant, $dst$$Register);
  6179   %}
  6180   ins_pipe(loadConP);
  6181 %}
  6182 #endif // _LP64
  6184 instruct loadConP0(iRegP dst, immP0 src) %{
  6185   match(Set dst src);
  6187   size(4);
  6188   format %{ "CLR    $dst\t!ptr" %}
  6189   ins_encode %{
  6190     __ clr($dst$$Register);
  6191   %}
  6192   ins_pipe(ialu_imm);
  6193 %}
  6195 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6196   match(Set dst src);
  6197   ins_cost(DEFAULT_COST);
  6198   format %{ "SET    $src,$dst\t!ptr" %}
  6199   ins_encode %{
  6200     AddressLiteral polling_page(os::get_polling_page());
  6201     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6202   %}
  6203   ins_pipe(loadConP_poll);
  6204 %}
  6206 instruct loadConN0(iRegN dst, immN0 src) %{
  6207   match(Set dst src);
  6209   size(4);
  6210   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6211   ins_encode %{
  6212     __ clr($dst$$Register);
  6213   %}
  6214   ins_pipe(ialu_imm);
  6215 %}
  6217 instruct loadConN(iRegN dst, immN src) %{
  6218   match(Set dst src);
  6219   ins_cost(DEFAULT_COST * 3/2);
  6220   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6221   ins_encode %{
  6222     Register dst = $dst$$Register;
  6223     __ set_narrow_oop((jobject)$src$$constant, dst);
  6224   %}
  6225   ins_pipe(ialu_hi_lo_reg);
  6226 %}
  6228 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6229   match(Set dst src);
  6230   ins_cost(DEFAULT_COST * 3/2);
  6231   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6232   ins_encode %{
  6233     Register dst = $dst$$Register;
  6234     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6235   %}
  6236   ins_pipe(ialu_hi_lo_reg);
  6237 %}
  6239 // Materialize long value (predicated by immL_cheap).
  6240 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6241   match(Set dst con);
  6242   effect(KILL tmp);
  6243   ins_cost(DEFAULT_COST * 3);
  6244   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6245   ins_encode %{
  6246     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6247   %}
  6248   ins_pipe(loadConL);
  6249 %}
  6251 // Load long value from constant table (predicated by immL_expensive).
  6252 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6253   match(Set dst con);
  6254   ins_cost(MEMORY_REF_COST);
  6255   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6256   ins_encode %{
  6257       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6258     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6259   %}
  6260   ins_pipe(loadConL);
  6261 %}
  6263 instruct loadConL0( iRegL dst, immL0 src ) %{
  6264   match(Set dst src);
  6265   ins_cost(DEFAULT_COST);
  6266   size(4);
  6267   format %{ "CLR    $dst\t! long" %}
  6268   ins_encode( Set13( src, dst ) );
  6269   ins_pipe(ialu_imm);
  6270 %}
  6272 instruct loadConL13( iRegL dst, immL13 src ) %{
  6273   match(Set dst src);
  6274   ins_cost(DEFAULT_COST * 2);
  6276   size(4);
  6277   format %{ "MOV    $src,$dst\t! long" %}
  6278   ins_encode( Set13( src, dst ) );
  6279   ins_pipe(ialu_imm);
  6280 %}
  6282 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6283   match(Set dst con);
  6284   effect(KILL tmp);
  6285   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6286   ins_encode %{
  6287       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6288     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6289   %}
  6290   ins_pipe(loadConFD);
  6291 %}
  6293 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6294   match(Set dst con);
  6295   effect(KILL tmp);
  6296   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6297   ins_encode %{
  6298     // XXX This is a quick fix for 6833573.
  6299     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6300     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6301     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6302   %}
  6303   ins_pipe(loadConFD);
  6304 %}
  6306 // Prefetch instructions.
  6307 // Must be safe to execute with invalid address (cannot fault).
  6309 instruct prefetchr( memory mem ) %{
  6310   match( PrefetchRead mem );
  6311   ins_cost(MEMORY_REF_COST);
  6312   size(4);
  6314   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6315   opcode(Assembler::prefetch_op3);
  6316   ins_encode( form3_mem_prefetch_read( mem ) );
  6317   ins_pipe(iload_mem);
  6318 %}
  6320 instruct prefetchw( memory mem ) %{
  6321   match( PrefetchWrite mem );
  6322   ins_cost(MEMORY_REF_COST);
  6323   size(4);
  6325   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6326   opcode(Assembler::prefetch_op3);
  6327   ins_encode( form3_mem_prefetch_write( mem ) );
  6328   ins_pipe(iload_mem);
  6329 %}
  6331 // Prefetch instructions for allocation.
  6333 instruct prefetchAlloc( memory mem ) %{
  6334   predicate(AllocatePrefetchInstr == 0);
  6335   match( PrefetchAllocation mem );
  6336   ins_cost(MEMORY_REF_COST);
  6337   size(4);
  6339   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6340   opcode(Assembler::prefetch_op3);
  6341   ins_encode( form3_mem_prefetch_write( mem ) );
  6342   ins_pipe(iload_mem);
  6343 %}
  6345 // Use BIS instruction to prefetch for allocation.
  6346 // Could fault, need space at the end of TLAB.
  6347 instruct prefetchAlloc_bis( iRegP dst ) %{
  6348   predicate(AllocatePrefetchInstr == 1);
  6349   match( PrefetchAllocation dst );
  6350   ins_cost(MEMORY_REF_COST);
  6351   size(4);
  6353   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6354   ins_encode %{
  6355     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6356   %}
  6357   ins_pipe(istore_mem_reg);
  6358 %}
  6360 // Next code is used for finding next cache line address to prefetch.
  6361 #ifndef _LP64
  6362 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6363   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6364   ins_cost(DEFAULT_COST);
  6365   size(4);
  6367   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6368   ins_encode %{
  6369     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6370   %}
  6371   ins_pipe(ialu_reg_imm);
  6372 %}
  6373 #else
  6374 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6375   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6376   ins_cost(DEFAULT_COST);
  6377   size(4);
  6379   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6380   ins_encode %{
  6381     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6382   %}
  6383   ins_pipe(ialu_reg_imm);
  6384 %}
  6385 #endif
  6387 //----------Store Instructions-------------------------------------------------
  6388 // Store Byte
  6389 instruct storeB(memory mem, iRegI src) %{
  6390   match(Set mem (StoreB mem src));
  6391   ins_cost(MEMORY_REF_COST);
  6393   size(4);
  6394   format %{ "STB    $src,$mem\t! byte" %}
  6395   opcode(Assembler::stb_op3);
  6396   ins_encode(simple_form3_mem_reg( mem, src ) );
  6397   ins_pipe(istore_mem_reg);
  6398 %}
  6400 instruct storeB0(memory mem, immI0 src) %{
  6401   match(Set mem (StoreB mem src));
  6402   ins_cost(MEMORY_REF_COST);
  6404   size(4);
  6405   format %{ "STB    $src,$mem\t! byte" %}
  6406   opcode(Assembler::stb_op3);
  6407   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6408   ins_pipe(istore_mem_zero);
  6409 %}
  6411 instruct storeCM0(memory mem, immI0 src) %{
  6412   match(Set mem (StoreCM mem src));
  6413   ins_cost(MEMORY_REF_COST);
  6415   size(4);
  6416   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6417   opcode(Assembler::stb_op3);
  6418   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6419   ins_pipe(istore_mem_zero);
  6420 %}
  6422 // Store Char/Short
  6423 instruct storeC(memory mem, iRegI src) %{
  6424   match(Set mem (StoreC mem src));
  6425   ins_cost(MEMORY_REF_COST);
  6427   size(4);
  6428   format %{ "STH    $src,$mem\t! short" %}
  6429   opcode(Assembler::sth_op3);
  6430   ins_encode(simple_form3_mem_reg( mem, src ) );
  6431   ins_pipe(istore_mem_reg);
  6432 %}
  6434 instruct storeC0(memory mem, immI0 src) %{
  6435   match(Set mem (StoreC mem src));
  6436   ins_cost(MEMORY_REF_COST);
  6438   size(4);
  6439   format %{ "STH    $src,$mem\t! short" %}
  6440   opcode(Assembler::sth_op3);
  6441   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6442   ins_pipe(istore_mem_zero);
  6443 %}
  6445 // Store Integer
  6446 instruct storeI(memory mem, iRegI src) %{
  6447   match(Set mem (StoreI mem src));
  6448   ins_cost(MEMORY_REF_COST);
  6450   size(4);
  6451   format %{ "STW    $src,$mem" %}
  6452   opcode(Assembler::stw_op3);
  6453   ins_encode(simple_form3_mem_reg( mem, src ) );
  6454   ins_pipe(istore_mem_reg);
  6455 %}
  6457 // Store Long
  6458 instruct storeL(memory mem, iRegL src) %{
  6459   match(Set mem (StoreL mem src));
  6460   ins_cost(MEMORY_REF_COST);
  6461   size(4);
  6462   format %{ "STX    $src,$mem\t! long" %}
  6463   opcode(Assembler::stx_op3);
  6464   ins_encode(simple_form3_mem_reg( mem, src ) );
  6465   ins_pipe(istore_mem_reg);
  6466 %}
  6468 instruct storeI0(memory mem, immI0 src) %{
  6469   match(Set mem (StoreI mem src));
  6470   ins_cost(MEMORY_REF_COST);
  6472   size(4);
  6473   format %{ "STW    $src,$mem" %}
  6474   opcode(Assembler::stw_op3);
  6475   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6476   ins_pipe(istore_mem_zero);
  6477 %}
  6479 instruct storeL0(memory mem, immL0 src) %{
  6480   match(Set mem (StoreL mem src));
  6481   ins_cost(MEMORY_REF_COST);
  6483   size(4);
  6484   format %{ "STX    $src,$mem" %}
  6485   opcode(Assembler::stx_op3);
  6486   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6487   ins_pipe(istore_mem_zero);
  6488 %}
  6490 // Store Integer from float register (used after fstoi)
  6491 instruct storeI_Freg(memory mem, regF src) %{
  6492   match(Set mem (StoreI mem src));
  6493   ins_cost(MEMORY_REF_COST);
  6495   size(4);
  6496   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6497   opcode(Assembler::stf_op3);
  6498   ins_encode(simple_form3_mem_reg( mem, src ) );
  6499   ins_pipe(fstoreF_mem_reg);
  6500 %}
  6502 // Store Pointer
  6503 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6504   match(Set dst (StoreP dst src));
  6505   ins_cost(MEMORY_REF_COST);
  6506   size(4);
  6508 #ifndef _LP64
  6509   format %{ "STW    $src,$dst\t! ptr" %}
  6510   opcode(Assembler::stw_op3, 0, REGP_OP);
  6511 #else
  6512   format %{ "STX    $src,$dst\t! ptr" %}
  6513   opcode(Assembler::stx_op3, 0, REGP_OP);
  6514 #endif
  6515   ins_encode( form3_mem_reg( dst, src ) );
  6516   ins_pipe(istore_mem_spORreg);
  6517 %}
  6519 instruct storeP0(memory dst, immP0 src) %{
  6520   match(Set dst (StoreP dst src));
  6521   ins_cost(MEMORY_REF_COST);
  6522   size(4);
  6524 #ifndef _LP64
  6525   format %{ "STW    $src,$dst\t! ptr" %}
  6526   opcode(Assembler::stw_op3, 0, REGP_OP);
  6527 #else
  6528   format %{ "STX    $src,$dst\t! ptr" %}
  6529   opcode(Assembler::stx_op3, 0, REGP_OP);
  6530 #endif
  6531   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6532   ins_pipe(istore_mem_zero);
  6533 %}
  6535 // Store Compressed Pointer
  6536 instruct storeN(memory dst, iRegN src) %{
  6537    match(Set dst (StoreN dst src));
  6538    ins_cost(MEMORY_REF_COST);
  6539    size(4);
  6541    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6542    ins_encode %{
  6543      Register base = as_Register($dst$$base);
  6544      Register index = as_Register($dst$$index);
  6545      Register src = $src$$Register;
  6546      if (index != G0) {
  6547        __ stw(src, base, index);
  6548      } else {
  6549        __ stw(src, base, $dst$$disp);
  6551    %}
  6552    ins_pipe(istore_mem_spORreg);
  6553 %}
  6555 instruct storeNKlass(memory dst, iRegN src) %{
  6556    match(Set dst (StoreNKlass dst src));
  6557    ins_cost(MEMORY_REF_COST);
  6558    size(4);
  6560    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6561    ins_encode %{
  6562      Register base = as_Register($dst$$base);
  6563      Register index = as_Register($dst$$index);
  6564      Register src = $src$$Register;
  6565      if (index != G0) {
  6566        __ stw(src, base, index);
  6567      } else {
  6568        __ stw(src, base, $dst$$disp);
  6570    %}
  6571    ins_pipe(istore_mem_spORreg);
  6572 %}
  6574 instruct storeN0(memory dst, immN0 src) %{
  6575    match(Set dst (StoreN dst src));
  6576    ins_cost(MEMORY_REF_COST);
  6577    size(4);
  6579    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6580    ins_encode %{
  6581      Register base = as_Register($dst$$base);
  6582      Register index = as_Register($dst$$index);
  6583      if (index != G0) {
  6584        __ stw(0, base, index);
  6585      } else {
  6586        __ stw(0, base, $dst$$disp);
  6588    %}
  6589    ins_pipe(istore_mem_zero);
  6590 %}
  6592 // Store Double
  6593 instruct storeD( memory mem, regD src) %{
  6594   match(Set mem (StoreD mem src));
  6595   ins_cost(MEMORY_REF_COST);
  6597   size(4);
  6598   format %{ "STDF   $src,$mem" %}
  6599   opcode(Assembler::stdf_op3);
  6600   ins_encode(simple_form3_mem_reg( mem, src ) );
  6601   ins_pipe(fstoreD_mem_reg);
  6602 %}
  6604 instruct storeD0( memory mem, immD0 src) %{
  6605   match(Set mem (StoreD mem src));
  6606   ins_cost(MEMORY_REF_COST);
  6608   size(4);
  6609   format %{ "STX    $src,$mem" %}
  6610   opcode(Assembler::stx_op3);
  6611   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6612   ins_pipe(fstoreD_mem_zero);
  6613 %}
  6615 // Store Float
  6616 instruct storeF( memory mem, regF src) %{
  6617   match(Set mem (StoreF mem src));
  6618   ins_cost(MEMORY_REF_COST);
  6620   size(4);
  6621   format %{ "STF    $src,$mem" %}
  6622   opcode(Assembler::stf_op3);
  6623   ins_encode(simple_form3_mem_reg( mem, src ) );
  6624   ins_pipe(fstoreF_mem_reg);
  6625 %}
  6627 instruct storeF0( memory mem, immF0 src) %{
  6628   match(Set mem (StoreF mem src));
  6629   ins_cost(MEMORY_REF_COST);
  6631   size(4);
  6632   format %{ "STW    $src,$mem\t! storeF0" %}
  6633   opcode(Assembler::stw_op3);
  6634   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6635   ins_pipe(fstoreF_mem_zero);
  6636 %}
  6638 // Convert oop pointer into compressed form
  6639 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6640   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6641   match(Set dst (EncodeP src));
  6642   format %{ "encode_heap_oop $src, $dst" %}
  6643   ins_encode %{
  6644     __ encode_heap_oop($src$$Register, $dst$$Register);
  6645   %}
  6646   ins_pipe(ialu_reg);
  6647 %}
  6649 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6650   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6651   match(Set dst (EncodeP src));
  6652   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6653   ins_encode %{
  6654     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6655   %}
  6656   ins_pipe(ialu_reg);
  6657 %}
  6659 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6660   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6661             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6662   match(Set dst (DecodeN src));
  6663   format %{ "decode_heap_oop $src, $dst" %}
  6664   ins_encode %{
  6665     __ decode_heap_oop($src$$Register, $dst$$Register);
  6666   %}
  6667   ins_pipe(ialu_reg);
  6668 %}
  6670 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6671   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6672             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6673   match(Set dst (DecodeN src));
  6674   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6675   ins_encode %{
  6676     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6677   %}
  6678   ins_pipe(ialu_reg);
  6679 %}
  6681 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6682   match(Set dst (EncodePKlass src));
  6683   format %{ "encode_klass_not_null $src, $dst" %}
  6684   ins_encode %{
  6685     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6686   %}
  6687   ins_pipe(ialu_reg);
  6688 %}
  6690 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6691   match(Set dst (DecodeNKlass src));
  6692   format %{ "decode_klass_not_null $src, $dst" %}
  6693   ins_encode %{
  6694     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6695   %}
  6696   ins_pipe(ialu_reg);
  6697 %}
  6699 //----------MemBar Instructions-----------------------------------------------
  6700 // Memory barrier flavors
  6702 instruct membar_acquire() %{
  6703   match(MemBarAcquire);
  6704   match(LoadFence);
  6705   ins_cost(4*MEMORY_REF_COST);
  6707   size(0);
  6708   format %{ "MEMBAR-acquire" %}
  6709   ins_encode( enc_membar_acquire );
  6710   ins_pipe(long_memory_op);
  6711 %}
  6713 instruct membar_acquire_lock() %{
  6714   match(MemBarAcquireLock);
  6715   ins_cost(0);
  6717   size(0);
  6718   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6719   ins_encode( );
  6720   ins_pipe(empty);
  6721 %}
  6723 instruct membar_release() %{
  6724   match(MemBarRelease);
  6725   match(StoreFence);
  6726   ins_cost(4*MEMORY_REF_COST);
  6728   size(0);
  6729   format %{ "MEMBAR-release" %}
  6730   ins_encode( enc_membar_release );
  6731   ins_pipe(long_memory_op);
  6732 %}
  6734 instruct membar_release_lock() %{
  6735   match(MemBarReleaseLock);
  6736   ins_cost(0);
  6738   size(0);
  6739   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6740   ins_encode( );
  6741   ins_pipe(empty);
  6742 %}
  6744 instruct membar_volatile() %{
  6745   match(MemBarVolatile);
  6746   ins_cost(4*MEMORY_REF_COST);
  6748   size(4);
  6749   format %{ "MEMBAR-volatile" %}
  6750   ins_encode( enc_membar_volatile );
  6751   ins_pipe(long_memory_op);
  6752 %}
  6754 instruct unnecessary_membar_volatile() %{
  6755   match(MemBarVolatile);
  6756   predicate(Matcher::post_store_load_barrier(n));
  6757   ins_cost(0);
  6759   size(0);
  6760   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6761   ins_encode( );
  6762   ins_pipe(empty);
  6763 %}
  6765 instruct membar_storestore() %{
  6766   match(MemBarStoreStore);
  6767   ins_cost(0);
  6769   size(0);
  6770   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6771   ins_encode( );
  6772   ins_pipe(empty);
  6773 %}
  6775 //----------Register Move Instructions-----------------------------------------
  6776 instruct roundDouble_nop(regD dst) %{
  6777   match(Set dst (RoundDouble dst));
  6778   ins_cost(0);
  6779   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6780   ins_encode( );
  6781   ins_pipe(empty);
  6782 %}
  6785 instruct roundFloat_nop(regF dst) %{
  6786   match(Set dst (RoundFloat dst));
  6787   ins_cost(0);
  6788   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6789   ins_encode( );
  6790   ins_pipe(empty);
  6791 %}
  6794 // Cast Index to Pointer for unsafe natives
  6795 instruct castX2P(iRegX src, iRegP dst) %{
  6796   match(Set dst (CastX2P src));
  6798   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6799   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6800   ins_pipe(ialu_reg);
  6801 %}
  6803 // Cast Pointer to Index for unsafe natives
  6804 instruct castP2X(iRegP src, iRegX dst) %{
  6805   match(Set dst (CastP2X src));
  6807   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6808   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6809   ins_pipe(ialu_reg);
  6810 %}
  6812 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6813   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6814   match(Set stkSlot src);   // chain rule
  6815   ins_cost(MEMORY_REF_COST);
  6816   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6817   opcode(Assembler::stdf_op3);
  6818   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6819   ins_pipe(fstoreD_stk_reg);
  6820 %}
  6822 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6823   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6824   match(Set dst stkSlot);   // chain rule
  6825   ins_cost(MEMORY_REF_COST);
  6826   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6827   opcode(Assembler::lddf_op3);
  6828   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6829   ins_pipe(floadD_stk);
  6830 %}
  6832 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6833   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6834   match(Set stkSlot src);   // chain rule
  6835   ins_cost(MEMORY_REF_COST);
  6836   format %{ "STF   $src,$stkSlot\t!stk" %}
  6837   opcode(Assembler::stf_op3);
  6838   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6839   ins_pipe(fstoreF_stk_reg);
  6840 %}
  6842 //----------Conditional Move---------------------------------------------------
  6843 // Conditional move
  6844 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6845   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6846   ins_cost(150);
  6847   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6848   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6849   ins_pipe(ialu_reg);
  6850 %}
  6852 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6853   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6854   ins_cost(140);
  6855   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6856   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6857   ins_pipe(ialu_imm);
  6858 %}
  6860 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6861   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6862   ins_cost(150);
  6863   size(4);
  6864   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6865   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6866   ins_pipe(ialu_reg);
  6867 %}
  6869 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6870   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6871   ins_cost(140);
  6872   size(4);
  6873   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6874   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6875   ins_pipe(ialu_imm);
  6876 %}
  6878 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6879   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6880   ins_cost(150);
  6881   size(4);
  6882   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6883   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6884   ins_pipe(ialu_reg);
  6885 %}
  6887 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6888   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6889   ins_cost(140);
  6890   size(4);
  6891   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6892   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6893   ins_pipe(ialu_imm);
  6894 %}
  6896 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6897   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6898   ins_cost(150);
  6899   size(4);
  6900   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6901   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6902   ins_pipe(ialu_reg);
  6903 %}
  6905 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6906   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6907   ins_cost(140);
  6908   size(4);
  6909   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6910   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6911   ins_pipe(ialu_imm);
  6912 %}
  6914 // Conditional move for RegN. Only cmov(reg,reg).
  6915 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6916   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6917   ins_cost(150);
  6918   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6919   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6920   ins_pipe(ialu_reg);
  6921 %}
  6923 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6924 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6925   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6926   ins_cost(150);
  6927   size(4);
  6928   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6929   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6930   ins_pipe(ialu_reg);
  6931 %}
  6933 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6934 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6935   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6936   ins_cost(150);
  6937   size(4);
  6938   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6939   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6940   ins_pipe(ialu_reg);
  6941 %}
  6943 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6944   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6945   ins_cost(150);
  6946   size(4);
  6947   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6948   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6949   ins_pipe(ialu_reg);
  6950 %}
  6952 // Conditional move
  6953 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6954   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6955   ins_cost(150);
  6956   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6957   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6958   ins_pipe(ialu_reg);
  6959 %}
  6961 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6962   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6963   ins_cost(140);
  6964   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6965   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6966   ins_pipe(ialu_imm);
  6967 %}
  6969 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6970 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6971   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6972   ins_cost(150);
  6974   size(4);
  6975   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6976   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6977   ins_pipe(ialu_reg);
  6978 %}
  6980 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6981   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6982   ins_cost(150);
  6984   size(4);
  6985   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6986   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6987   ins_pipe(ialu_reg);
  6988 %}
  6990 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6991   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6992   ins_cost(140);
  6994   size(4);
  6995   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6996   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6997   ins_pipe(ialu_imm);
  6998 %}
  7000 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  7001   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  7002   ins_cost(140);
  7004   size(4);
  7005   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  7006   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  7007   ins_pipe(ialu_imm);
  7008 %}
  7010 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  7011   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7012   ins_cost(150);
  7013   size(4);
  7014   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7015   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7016   ins_pipe(ialu_imm);
  7017 %}
  7019 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  7020   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7021   ins_cost(140);
  7022   size(4);
  7023   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7024   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  7025   ins_pipe(ialu_imm);
  7026 %}
  7028 // Conditional move
  7029 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7030   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7031   ins_cost(150);
  7032   opcode(0x101);
  7033   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7034   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7035   ins_pipe(int_conditional_float_move);
  7036 %}
  7038 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7039   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7040   ins_cost(150);
  7042   size(4);
  7043   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7044   opcode(0x101);
  7045   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7046   ins_pipe(int_conditional_float_move);
  7047 %}
  7049 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7050   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7051   ins_cost(150);
  7053   size(4);
  7054   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7055   opcode(0x101);
  7056   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7057   ins_pipe(int_conditional_float_move);
  7058 %}
  7060 // Conditional move,
  7061 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7062   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7063   ins_cost(150);
  7064   size(4);
  7065   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7066   opcode(0x1);
  7067   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7068   ins_pipe(int_conditional_double_move);
  7069 %}
  7071 // Conditional move
  7072 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7073   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7074   ins_cost(150);
  7075   size(4);
  7076   opcode(0x102);
  7077   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7078   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7079   ins_pipe(int_conditional_double_move);
  7080 %}
  7082 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7083   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7084   ins_cost(150);
  7086   size(4);
  7087   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7088   opcode(0x102);
  7089   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7090   ins_pipe(int_conditional_double_move);
  7091 %}
  7093 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7094   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7095   ins_cost(150);
  7097   size(4);
  7098   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7099   opcode(0x102);
  7100   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7101   ins_pipe(int_conditional_double_move);
  7102 %}
  7104 // Conditional move,
  7105 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7106   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7107   ins_cost(150);
  7108   size(4);
  7109   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7110   opcode(0x2);
  7111   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7112   ins_pipe(int_conditional_double_move);
  7113 %}
  7115 // Conditional move
  7116 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7117   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7118   ins_cost(150);
  7119   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7120   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7121   ins_pipe(ialu_reg);
  7122 %}
  7124 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7125   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7126   ins_cost(140);
  7127   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7128   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7129   ins_pipe(ialu_imm);
  7130 %}
  7132 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7133   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7134   ins_cost(150);
  7136   size(4);
  7137   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7138   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7139   ins_pipe(ialu_reg);
  7140 %}
  7143 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7144   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7145   ins_cost(150);
  7147   size(4);
  7148   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7149   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7150   ins_pipe(ialu_reg);
  7151 %}
  7154 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7155   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7156   ins_cost(150);
  7158   size(4);
  7159   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7160   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7161   ins_pipe(ialu_reg);
  7162 %}
  7166 //----------OS and Locking Instructions----------------------------------------
  7168 // This name is KNOWN by the ADLC and cannot be changed.
  7169 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7170 // for this guy.
  7171 instruct tlsLoadP(g2RegP dst) %{
  7172   match(Set dst (ThreadLocal));
  7174   size(0);
  7175   ins_cost(0);
  7176   format %{ "# TLS is in G2" %}
  7177   ins_encode( /*empty encoding*/ );
  7178   ins_pipe(ialu_none);
  7179 %}
  7181 instruct checkCastPP( iRegP dst ) %{
  7182   match(Set dst (CheckCastPP dst));
  7184   size(0);
  7185   format %{ "# checkcastPP of $dst" %}
  7186   ins_encode( /*empty encoding*/ );
  7187   ins_pipe(empty);
  7188 %}
  7191 instruct castPP( iRegP dst ) %{
  7192   match(Set dst (CastPP dst));
  7193   format %{ "# castPP of $dst" %}
  7194   ins_encode( /*empty encoding*/ );
  7195   ins_pipe(empty);
  7196 %}
  7198 instruct castII( iRegI dst ) %{
  7199   match(Set dst (CastII dst));
  7200   format %{ "# castII of $dst" %}
  7201   ins_encode( /*empty encoding*/ );
  7202   ins_cost(0);
  7203   ins_pipe(empty);
  7204 %}
  7206 //----------Arithmetic Instructions--------------------------------------------
  7207 // Addition Instructions
  7208 // Register Addition
  7209 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7210   match(Set dst (AddI src1 src2));
  7212   size(4);
  7213   format %{ "ADD    $src1,$src2,$dst" %}
  7214   ins_encode %{
  7215     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7216   %}
  7217   ins_pipe(ialu_reg_reg);
  7218 %}
  7220 // Immediate Addition
  7221 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7222   match(Set dst (AddI src1 src2));
  7224   size(4);
  7225   format %{ "ADD    $src1,$src2,$dst" %}
  7226   opcode(Assembler::add_op3, Assembler::arith_op);
  7227   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7228   ins_pipe(ialu_reg_imm);
  7229 %}
  7231 // Pointer Register Addition
  7232 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7233   match(Set dst (AddP src1 src2));
  7235   size(4);
  7236   format %{ "ADD    $src1,$src2,$dst" %}
  7237   opcode(Assembler::add_op3, Assembler::arith_op);
  7238   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7239   ins_pipe(ialu_reg_reg);
  7240 %}
  7242 // Pointer Immediate Addition
  7243 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7244   match(Set dst (AddP src1 src2));
  7246   size(4);
  7247   format %{ "ADD    $src1,$src2,$dst" %}
  7248   opcode(Assembler::add_op3, Assembler::arith_op);
  7249   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7250   ins_pipe(ialu_reg_imm);
  7251 %}
  7253 // Long Addition
  7254 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7255   match(Set dst (AddL src1 src2));
  7257   size(4);
  7258   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7259   opcode(Assembler::add_op3, Assembler::arith_op);
  7260   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7261   ins_pipe(ialu_reg_reg);
  7262 %}
  7264 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7265   match(Set dst (AddL src1 con));
  7267   size(4);
  7268   format %{ "ADD    $src1,$con,$dst" %}
  7269   opcode(Assembler::add_op3, Assembler::arith_op);
  7270   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7271   ins_pipe(ialu_reg_imm);
  7272 %}
  7274 //----------Conditional_store--------------------------------------------------
  7275 // Conditional-store of the updated heap-top.
  7276 // Used during allocation of the shared heap.
  7277 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7279 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7280 instruct loadPLocked(iRegP dst, memory mem) %{
  7281   match(Set dst (LoadPLocked mem));
  7282   ins_cost(MEMORY_REF_COST);
  7284 #ifndef _LP64
  7285   size(4);
  7286   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7287   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7288 #else
  7289   format %{ "LDX    $mem,$dst\t! ptr" %}
  7290   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7291 #endif
  7292   ins_encode( form3_mem_reg( mem, dst ) );
  7293   ins_pipe(iload_mem);
  7294 %}
  7296 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7297   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7298   effect( KILL newval );
  7299   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7300             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7301   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7302   ins_pipe( long_memory_op );
  7303 %}
  7305 // Conditional-store of an int value.
  7306 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7307   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7308   effect( KILL newval );
  7309   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7310             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7311   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7312   ins_pipe( long_memory_op );
  7313 %}
  7315 // Conditional-store of a long value.
  7316 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7317   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7318   effect( KILL newval );
  7319   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7320             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7321   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7322   ins_pipe( long_memory_op );
  7323 %}
  7325 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7327 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7328   predicate(VM_Version::supports_cx8());
  7329   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7330   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7331   format %{
  7332             "MOV    $newval,O7\n\t"
  7333             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7334             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7335             "MOV    1,$res\n\t"
  7336             "MOVne  xcc,R_G0,$res"
  7337   %}
  7338   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7339               enc_lflags_ne_to_boolean(res) );
  7340   ins_pipe( long_memory_op );
  7341 %}
  7344 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7345   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7346   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7347   format %{
  7348             "MOV    $newval,O7\n\t"
  7349             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7350             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7351             "MOV    1,$res\n\t"
  7352             "MOVne  icc,R_G0,$res"
  7353   %}
  7354   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7355               enc_iflags_ne_to_boolean(res) );
  7356   ins_pipe( long_memory_op );
  7357 %}
  7359 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7360 #ifdef _LP64
  7361   predicate(VM_Version::supports_cx8());
  7362 #endif
  7363   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7364   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7365   format %{
  7366             "MOV    $newval,O7\n\t"
  7367             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7368             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7369             "MOV    1,$res\n\t"
  7370             "MOVne  xcc,R_G0,$res"
  7371   %}
  7372 #ifdef _LP64
  7373   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7374               enc_lflags_ne_to_boolean(res) );
  7375 #else
  7376   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7377               enc_iflags_ne_to_boolean(res) );
  7378 #endif
  7379   ins_pipe( long_memory_op );
  7380 %}
  7382 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7383   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7384   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7385   format %{
  7386             "MOV    $newval,O7\n\t"
  7387             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7388             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7389             "MOV    1,$res\n\t"
  7390             "MOVne  icc,R_G0,$res"
  7391   %}
  7392   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7393               enc_iflags_ne_to_boolean(res) );
  7394   ins_pipe( long_memory_op );
  7395 %}
  7397 instruct xchgI( memory mem, iRegI newval) %{
  7398   match(Set newval (GetAndSetI mem newval));
  7399   format %{ "SWAP  [$mem],$newval" %}
  7400   size(4);
  7401   ins_encode %{
  7402     __ swap($mem$$Address, $newval$$Register);
  7403   %}
  7404   ins_pipe( long_memory_op );
  7405 %}
  7407 #ifndef _LP64
  7408 instruct xchgP( memory mem, iRegP newval) %{
  7409   match(Set newval (GetAndSetP mem newval));
  7410   format %{ "SWAP  [$mem],$newval" %}
  7411   size(4);
  7412   ins_encode %{
  7413     __ swap($mem$$Address, $newval$$Register);
  7414   %}
  7415   ins_pipe( long_memory_op );
  7416 %}
  7417 #endif
  7419 instruct xchgN( memory mem, iRegN newval) %{
  7420   match(Set newval (GetAndSetN mem newval));
  7421   format %{ "SWAP  [$mem],$newval" %}
  7422   size(4);
  7423   ins_encode %{
  7424     __ swap($mem$$Address, $newval$$Register);
  7425   %}
  7426   ins_pipe( long_memory_op );
  7427 %}
  7429 //---------------------
  7430 // Subtraction Instructions
  7431 // Register Subtraction
  7432 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7433   match(Set dst (SubI src1 src2));
  7435   size(4);
  7436   format %{ "SUB    $src1,$src2,$dst" %}
  7437   opcode(Assembler::sub_op3, Assembler::arith_op);
  7438   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7439   ins_pipe(ialu_reg_reg);
  7440 %}
  7442 // Immediate Subtraction
  7443 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7444   match(Set dst (SubI src1 src2));
  7446   size(4);
  7447   format %{ "SUB    $src1,$src2,$dst" %}
  7448   opcode(Assembler::sub_op3, Assembler::arith_op);
  7449   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7450   ins_pipe(ialu_reg_imm);
  7451 %}
  7453 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7454   match(Set dst (SubI zero src2));
  7456   size(4);
  7457   format %{ "NEG    $src2,$dst" %}
  7458   opcode(Assembler::sub_op3, Assembler::arith_op);
  7459   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7460   ins_pipe(ialu_zero_reg);
  7461 %}
  7463 // Long subtraction
  7464 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7465   match(Set dst (SubL src1 src2));
  7467   size(4);
  7468   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7469   opcode(Assembler::sub_op3, Assembler::arith_op);
  7470   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7471   ins_pipe(ialu_reg_reg);
  7472 %}
  7474 // Immediate Subtraction
  7475 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7476   match(Set dst (SubL src1 con));
  7478   size(4);
  7479   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7480   opcode(Assembler::sub_op3, Assembler::arith_op);
  7481   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7482   ins_pipe(ialu_reg_imm);
  7483 %}
  7485 // Long negation
  7486 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7487   match(Set dst (SubL zero src2));
  7489   size(4);
  7490   format %{ "NEG    $src2,$dst\t! long" %}
  7491   opcode(Assembler::sub_op3, Assembler::arith_op);
  7492   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7493   ins_pipe(ialu_zero_reg);
  7494 %}
  7496 // Multiplication Instructions
  7497 // Integer Multiplication
  7498 // Register Multiplication
  7499 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7500   match(Set dst (MulI src1 src2));
  7502   size(4);
  7503   format %{ "MULX   $src1,$src2,$dst" %}
  7504   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7505   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7506   ins_pipe(imul_reg_reg);
  7507 %}
  7509 // Immediate Multiplication
  7510 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7511   match(Set dst (MulI src1 src2));
  7513   size(4);
  7514   format %{ "MULX   $src1,$src2,$dst" %}
  7515   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7516   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7517   ins_pipe(imul_reg_imm);
  7518 %}
  7520 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7521   match(Set dst (MulL src1 src2));
  7522   ins_cost(DEFAULT_COST * 5);
  7523   size(4);
  7524   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7525   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7526   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7527   ins_pipe(mulL_reg_reg);
  7528 %}
  7530 // Immediate Multiplication
  7531 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7532   match(Set dst (MulL src1 src2));
  7533   ins_cost(DEFAULT_COST * 5);
  7534   size(4);
  7535   format %{ "MULX   $src1,$src2,$dst" %}
  7536   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7537   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7538   ins_pipe(mulL_reg_imm);
  7539 %}
  7541 // Integer Division
  7542 // Register Division
  7543 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7544   match(Set dst (DivI src1 src2));
  7545   ins_cost((2+71)*DEFAULT_COST);
  7547   format %{ "SRA     $src2,0,$src2\n\t"
  7548             "SRA     $src1,0,$src1\n\t"
  7549             "SDIVX   $src1,$src2,$dst" %}
  7550   ins_encode( idiv_reg( src1, src2, dst ) );
  7551   ins_pipe(sdiv_reg_reg);
  7552 %}
  7554 // Immediate Division
  7555 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7556   match(Set dst (DivI src1 src2));
  7557   ins_cost((2+71)*DEFAULT_COST);
  7559   format %{ "SRA     $src1,0,$src1\n\t"
  7560             "SDIVX   $src1,$src2,$dst" %}
  7561   ins_encode( idiv_imm( src1, src2, dst ) );
  7562   ins_pipe(sdiv_reg_imm);
  7563 %}
  7565 //----------Div-By-10-Expansion------------------------------------------------
  7566 // Extract hi bits of a 32x32->64 bit multiply.
  7567 // Expand rule only, not matched
  7568 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7569   effect( DEF dst, USE src1, USE src2 );
  7570   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7571             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7572   ins_encode( enc_mul_hi(dst,src1,src2));
  7573   ins_pipe(sdiv_reg_reg);
  7574 %}
  7576 // Magic constant, reciprocal of 10
  7577 instruct loadConI_x66666667(iRegIsafe dst) %{
  7578   effect( DEF dst );
  7580   size(8);
  7581   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7582   ins_encode( Set32(0x66666667, dst) );
  7583   ins_pipe(ialu_hi_lo_reg);
  7584 %}
  7586 // Register Shift Right Arithmetic Long by 32-63
  7587 instruct sra_31( iRegI dst, iRegI src ) %{
  7588   effect( DEF dst, USE src );
  7589   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7590   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7591   ins_pipe(ialu_reg_reg);
  7592 %}
  7594 // Arithmetic Shift Right by 8-bit immediate
  7595 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7596   effect( DEF dst, USE src );
  7597   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7598   opcode(Assembler::sra_op3, Assembler::arith_op);
  7599   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7600   ins_pipe(ialu_reg_imm);
  7601 %}
  7603 // Integer DIV with 10
  7604 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7605   match(Set dst (DivI src div));
  7606   ins_cost((6+6)*DEFAULT_COST);
  7607   expand %{
  7608     iRegIsafe tmp1;               // Killed temps;
  7609     iRegIsafe tmp2;               // Killed temps;
  7610     iRegI tmp3;                   // Killed temps;
  7611     iRegI tmp4;                   // Killed temps;
  7612     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7613     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7614     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7615     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7616     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7617   %}
  7618 %}
  7620 // Register Long Division
  7621 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7622   match(Set dst (DivL src1 src2));
  7623   ins_cost(DEFAULT_COST*71);
  7624   size(4);
  7625   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7626   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7627   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7628   ins_pipe(divL_reg_reg);
  7629 %}
  7631 // Register Long Division
  7632 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7633   match(Set dst (DivL src1 src2));
  7634   ins_cost(DEFAULT_COST*71);
  7635   size(4);
  7636   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7637   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7638   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7639   ins_pipe(divL_reg_imm);
  7640 %}
  7642 // Integer Remainder
  7643 // Register Remainder
  7644 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7645   match(Set dst (ModI src1 src2));
  7646   effect( KILL ccr, KILL temp);
  7648   format %{ "SREM   $src1,$src2,$dst" %}
  7649   ins_encode( irem_reg(src1, src2, dst, temp) );
  7650   ins_pipe(sdiv_reg_reg);
  7651 %}
  7653 // Immediate Remainder
  7654 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7655   match(Set dst (ModI src1 src2));
  7656   effect( KILL ccr, KILL temp);
  7658   format %{ "SREM   $src1,$src2,$dst" %}
  7659   ins_encode( irem_imm(src1, src2, dst, temp) );
  7660   ins_pipe(sdiv_reg_imm);
  7661 %}
  7663 // Register Long Remainder
  7664 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7665   effect(DEF dst, USE src1, USE src2);
  7666   size(4);
  7667   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7668   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7669   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7670   ins_pipe(divL_reg_reg);
  7671 %}
  7673 // Register Long Division
  7674 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7675   effect(DEF dst, USE src1, USE src2);
  7676   size(4);
  7677   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7678   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7679   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7680   ins_pipe(divL_reg_imm);
  7681 %}
  7683 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7684   effect(DEF dst, USE src1, USE src2);
  7685   size(4);
  7686   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7687   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7688   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7689   ins_pipe(mulL_reg_reg);
  7690 %}
  7692 // Immediate Multiplication
  7693 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7694   effect(DEF dst, USE src1, USE src2);
  7695   size(4);
  7696   format %{ "MULX   $src1,$src2,$dst" %}
  7697   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7698   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7699   ins_pipe(mulL_reg_imm);
  7700 %}
  7702 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7703   effect(DEF dst, USE src1, USE src2);
  7704   size(4);
  7705   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7706   opcode(Assembler::sub_op3, Assembler::arith_op);
  7707   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7708   ins_pipe(ialu_reg_reg);
  7709 %}
  7711 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7712   effect(DEF dst, USE src1, USE src2);
  7713   size(4);
  7714   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7715   opcode(Assembler::sub_op3, Assembler::arith_op);
  7716   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7717   ins_pipe(ialu_reg_reg);
  7718 %}
  7720 // Register Long Remainder
  7721 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7722   match(Set dst (ModL src1 src2));
  7723   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7724   expand %{
  7725     iRegL tmp1;
  7726     iRegL tmp2;
  7727     divL_reg_reg_1(tmp1, src1, src2);
  7728     mulL_reg_reg_1(tmp2, tmp1, src2);
  7729     subL_reg_reg_1(dst,  src1, tmp2);
  7730   %}
  7731 %}
  7733 // Register Long Remainder
  7734 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7735   match(Set dst (ModL src1 src2));
  7736   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7737   expand %{
  7738     iRegL tmp1;
  7739     iRegL tmp2;
  7740     divL_reg_imm13_1(tmp1, src1, src2);
  7741     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7742     subL_reg_reg_2  (dst,  src1, tmp2);
  7743   %}
  7744 %}
  7746 // Integer Shift Instructions
  7747 // Register Shift Left
  7748 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7749   match(Set dst (LShiftI src1 src2));
  7751   size(4);
  7752   format %{ "SLL    $src1,$src2,$dst" %}
  7753   opcode(Assembler::sll_op3, Assembler::arith_op);
  7754   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7755   ins_pipe(ialu_reg_reg);
  7756 %}
  7758 // Register Shift Left Immediate
  7759 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7760   match(Set dst (LShiftI src1 src2));
  7762   size(4);
  7763   format %{ "SLL    $src1,$src2,$dst" %}
  7764   opcode(Assembler::sll_op3, Assembler::arith_op);
  7765   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7766   ins_pipe(ialu_reg_imm);
  7767 %}
  7769 // Register Shift Left
  7770 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7771   match(Set dst (LShiftL src1 src2));
  7773   size(4);
  7774   format %{ "SLLX   $src1,$src2,$dst" %}
  7775   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7776   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7777   ins_pipe(ialu_reg_reg);
  7778 %}
  7780 // Register Shift Left Immediate
  7781 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7782   match(Set dst (LShiftL src1 src2));
  7784   size(4);
  7785   format %{ "SLLX   $src1,$src2,$dst" %}
  7786   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7787   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7788   ins_pipe(ialu_reg_imm);
  7789 %}
  7791 // Register Arithmetic Shift Right
  7792 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7793   match(Set dst (RShiftI src1 src2));
  7794   size(4);
  7795   format %{ "SRA    $src1,$src2,$dst" %}
  7796   opcode(Assembler::sra_op3, Assembler::arith_op);
  7797   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7798   ins_pipe(ialu_reg_reg);
  7799 %}
  7801 // Register Arithmetic Shift Right Immediate
  7802 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7803   match(Set dst (RShiftI src1 src2));
  7805   size(4);
  7806   format %{ "SRA    $src1,$src2,$dst" %}
  7807   opcode(Assembler::sra_op3, Assembler::arith_op);
  7808   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7809   ins_pipe(ialu_reg_imm);
  7810 %}
  7812 // Register Shift Right Arithmatic Long
  7813 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7814   match(Set dst (RShiftL src1 src2));
  7816   size(4);
  7817   format %{ "SRAX   $src1,$src2,$dst" %}
  7818   opcode(Assembler::srax_op3, Assembler::arith_op);
  7819   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7820   ins_pipe(ialu_reg_reg);
  7821 %}
  7823 // Register Shift Left Immediate
  7824 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7825   match(Set dst (RShiftL src1 src2));
  7827   size(4);
  7828   format %{ "SRAX   $src1,$src2,$dst" %}
  7829   opcode(Assembler::srax_op3, Assembler::arith_op);
  7830   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7831   ins_pipe(ialu_reg_imm);
  7832 %}
  7834 // Register Shift Right
  7835 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7836   match(Set dst (URShiftI src1 src2));
  7838   size(4);
  7839   format %{ "SRL    $src1,$src2,$dst" %}
  7840   opcode(Assembler::srl_op3, Assembler::arith_op);
  7841   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7842   ins_pipe(ialu_reg_reg);
  7843 %}
  7845 // Register Shift Right Immediate
  7846 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7847   match(Set dst (URShiftI src1 src2));
  7849   size(4);
  7850   format %{ "SRL    $src1,$src2,$dst" %}
  7851   opcode(Assembler::srl_op3, Assembler::arith_op);
  7852   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7853   ins_pipe(ialu_reg_imm);
  7854 %}
  7856 // Register Shift Right
  7857 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7858   match(Set dst (URShiftL src1 src2));
  7860   size(4);
  7861   format %{ "SRLX   $src1,$src2,$dst" %}
  7862   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7863   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7864   ins_pipe(ialu_reg_reg);
  7865 %}
  7867 // Register Shift Right Immediate
  7868 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7869   match(Set dst (URShiftL src1 src2));
  7871   size(4);
  7872   format %{ "SRLX   $src1,$src2,$dst" %}
  7873   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7874   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7875   ins_pipe(ialu_reg_imm);
  7876 %}
  7878 // Register Shift Right Immediate with a CastP2X
  7879 #ifdef _LP64
  7880 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7881   match(Set dst (URShiftL (CastP2X src1) src2));
  7882   size(4);
  7883   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7884   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7885   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7886   ins_pipe(ialu_reg_imm);
  7887 %}
  7888 #else
  7889 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7890   match(Set dst (URShiftI (CastP2X src1) src2));
  7891   size(4);
  7892   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7893   opcode(Assembler::srl_op3, Assembler::arith_op);
  7894   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7895   ins_pipe(ialu_reg_imm);
  7896 %}
  7897 #endif
  7900 //----------Floating Point Arithmetic Instructions-----------------------------
  7902 //  Add float single precision
  7903 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7904   match(Set dst (AddF src1 src2));
  7906   size(4);
  7907   format %{ "FADDS  $src1,$src2,$dst" %}
  7908   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7909   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7910   ins_pipe(faddF_reg_reg);
  7911 %}
  7913 //  Add float double precision
  7914 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7915   match(Set dst (AddD src1 src2));
  7917   size(4);
  7918   format %{ "FADDD  $src1,$src2,$dst" %}
  7919   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7920   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7921   ins_pipe(faddD_reg_reg);
  7922 %}
  7924 //  Sub float single precision
  7925 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7926   match(Set dst (SubF src1 src2));
  7928   size(4);
  7929   format %{ "FSUBS  $src1,$src2,$dst" %}
  7930   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7931   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7932   ins_pipe(faddF_reg_reg);
  7933 %}
  7935 //  Sub float double precision
  7936 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7937   match(Set dst (SubD src1 src2));
  7939   size(4);
  7940   format %{ "FSUBD  $src1,$src2,$dst" %}
  7941   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7942   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7943   ins_pipe(faddD_reg_reg);
  7944 %}
  7946 //  Mul float single precision
  7947 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7948   match(Set dst (MulF src1 src2));
  7950   size(4);
  7951   format %{ "FMULS  $src1,$src2,$dst" %}
  7952   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7953   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7954   ins_pipe(fmulF_reg_reg);
  7955 %}
  7957 //  Mul float double precision
  7958 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7959   match(Set dst (MulD src1 src2));
  7961   size(4);
  7962   format %{ "FMULD  $src1,$src2,$dst" %}
  7963   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7964   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7965   ins_pipe(fmulD_reg_reg);
  7966 %}
  7968 //  Div float single precision
  7969 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7970   match(Set dst (DivF src1 src2));
  7972   size(4);
  7973   format %{ "FDIVS  $src1,$src2,$dst" %}
  7974   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7975   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7976   ins_pipe(fdivF_reg_reg);
  7977 %}
  7979 //  Div float double precision
  7980 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7981   match(Set dst (DivD src1 src2));
  7983   size(4);
  7984   format %{ "FDIVD  $src1,$src2,$dst" %}
  7985   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7986   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7987   ins_pipe(fdivD_reg_reg);
  7988 %}
  7990 //  Absolute float double precision
  7991 instruct absD_reg(regD dst, regD src) %{
  7992   match(Set dst (AbsD src));
  7994   format %{ "FABSd  $src,$dst" %}
  7995   ins_encode(fabsd(dst, src));
  7996   ins_pipe(faddD_reg);
  7997 %}
  7999 //  Absolute float single precision
  8000 instruct absF_reg(regF dst, regF src) %{
  8001   match(Set dst (AbsF src));
  8003   format %{ "FABSs  $src,$dst" %}
  8004   ins_encode(fabss(dst, src));
  8005   ins_pipe(faddF_reg);
  8006 %}
  8008 instruct negF_reg(regF dst, regF src) %{
  8009   match(Set dst (NegF src));
  8011   size(4);
  8012   format %{ "FNEGs  $src,$dst" %}
  8013   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  8014   ins_encode(form3_opf_rs2F_rdF(src, dst));
  8015   ins_pipe(faddF_reg);
  8016 %}
  8018 instruct negD_reg(regD dst, regD src) %{
  8019   match(Set dst (NegD src));
  8021   format %{ "FNEGd  $src,$dst" %}
  8022   ins_encode(fnegd(dst, src));
  8023   ins_pipe(faddD_reg);
  8024 %}
  8026 //  Sqrt float double precision
  8027 instruct sqrtF_reg_reg(regF dst, regF src) %{
  8028   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8030   size(4);
  8031   format %{ "FSQRTS $src,$dst" %}
  8032   ins_encode(fsqrts(dst, src));
  8033   ins_pipe(fdivF_reg_reg);
  8034 %}
  8036 //  Sqrt float double precision
  8037 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8038   match(Set dst (SqrtD src));
  8040   size(4);
  8041   format %{ "FSQRTD $src,$dst" %}
  8042   ins_encode(fsqrtd(dst, src));
  8043   ins_pipe(fdivD_reg_reg);
  8044 %}
  8046 //----------Logical Instructions-----------------------------------------------
  8047 // And Instructions
  8048 // Register And
  8049 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8050   match(Set dst (AndI src1 src2));
  8052   size(4);
  8053   format %{ "AND    $src1,$src2,$dst" %}
  8054   opcode(Assembler::and_op3, Assembler::arith_op);
  8055   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8056   ins_pipe(ialu_reg_reg);
  8057 %}
  8059 // Immediate And
  8060 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8061   match(Set dst (AndI src1 src2));
  8063   size(4);
  8064   format %{ "AND    $src1,$src2,$dst" %}
  8065   opcode(Assembler::and_op3, Assembler::arith_op);
  8066   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8067   ins_pipe(ialu_reg_imm);
  8068 %}
  8070 // Register And Long
  8071 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8072   match(Set dst (AndL src1 src2));
  8074   ins_cost(DEFAULT_COST);
  8075   size(4);
  8076   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8077   opcode(Assembler::and_op3, Assembler::arith_op);
  8078   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8079   ins_pipe(ialu_reg_reg);
  8080 %}
  8082 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8083   match(Set dst (AndL src1 con));
  8085   ins_cost(DEFAULT_COST);
  8086   size(4);
  8087   format %{ "AND    $src1,$con,$dst\t! long" %}
  8088   opcode(Assembler::and_op3, Assembler::arith_op);
  8089   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8090   ins_pipe(ialu_reg_imm);
  8091 %}
  8093 // Or Instructions
  8094 // Register Or
  8095 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8096   match(Set dst (OrI src1 src2));
  8098   size(4);
  8099   format %{ "OR     $src1,$src2,$dst" %}
  8100   opcode(Assembler::or_op3, Assembler::arith_op);
  8101   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8102   ins_pipe(ialu_reg_reg);
  8103 %}
  8105 // Immediate Or
  8106 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8107   match(Set dst (OrI src1 src2));
  8109   size(4);
  8110   format %{ "OR     $src1,$src2,$dst" %}
  8111   opcode(Assembler::or_op3, Assembler::arith_op);
  8112   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8113   ins_pipe(ialu_reg_imm);
  8114 %}
  8116 // Register Or Long
  8117 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8118   match(Set dst (OrL src1 src2));
  8120   ins_cost(DEFAULT_COST);
  8121   size(4);
  8122   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8123   opcode(Assembler::or_op3, Assembler::arith_op);
  8124   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8125   ins_pipe(ialu_reg_reg);
  8126 %}
  8128 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8129   match(Set dst (OrL src1 con));
  8130   ins_cost(DEFAULT_COST*2);
  8132   ins_cost(DEFAULT_COST);
  8133   size(4);
  8134   format %{ "OR     $src1,$con,$dst\t! long" %}
  8135   opcode(Assembler::or_op3, Assembler::arith_op);
  8136   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8137   ins_pipe(ialu_reg_imm);
  8138 %}
  8140 #ifndef _LP64
  8142 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8143 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8144   match(Set dst (OrI src1 (CastP2X src2)));
  8146   size(4);
  8147   format %{ "OR     $src1,$src2,$dst" %}
  8148   opcode(Assembler::or_op3, Assembler::arith_op);
  8149   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8150   ins_pipe(ialu_reg_reg);
  8151 %}
  8153 #else
  8155 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8156   match(Set dst (OrL src1 (CastP2X src2)));
  8158   ins_cost(DEFAULT_COST);
  8159   size(4);
  8160   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8161   opcode(Assembler::or_op3, Assembler::arith_op);
  8162   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8163   ins_pipe(ialu_reg_reg);
  8164 %}
  8166 #endif
  8168 // Xor Instructions
  8169 // Register Xor
  8170 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8171   match(Set dst (XorI src1 src2));
  8173   size(4);
  8174   format %{ "XOR    $src1,$src2,$dst" %}
  8175   opcode(Assembler::xor_op3, Assembler::arith_op);
  8176   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8177   ins_pipe(ialu_reg_reg);
  8178 %}
  8180 // Immediate Xor
  8181 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8182   match(Set dst (XorI src1 src2));
  8184   size(4);
  8185   format %{ "XOR    $src1,$src2,$dst" %}
  8186   opcode(Assembler::xor_op3, Assembler::arith_op);
  8187   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8188   ins_pipe(ialu_reg_imm);
  8189 %}
  8191 // Register Xor Long
  8192 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8193   match(Set dst (XorL src1 src2));
  8195   ins_cost(DEFAULT_COST);
  8196   size(4);
  8197   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8198   opcode(Assembler::xor_op3, Assembler::arith_op);
  8199   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8200   ins_pipe(ialu_reg_reg);
  8201 %}
  8203 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8204   match(Set dst (XorL src1 con));
  8206   ins_cost(DEFAULT_COST);
  8207   size(4);
  8208   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8209   opcode(Assembler::xor_op3, Assembler::arith_op);
  8210   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8211   ins_pipe(ialu_reg_imm);
  8212 %}
  8214 //----------Convert to Boolean-------------------------------------------------
  8215 // Nice hack for 32-bit tests but doesn't work for
  8216 // 64-bit pointers.
  8217 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8218   match(Set dst (Conv2B src));
  8219   effect( KILL ccr );
  8220   ins_cost(DEFAULT_COST*2);
  8221   format %{ "CMP    R_G0,$src\n\t"
  8222             "ADDX   R_G0,0,$dst" %}
  8223   ins_encode( enc_to_bool( src, dst ) );
  8224   ins_pipe(ialu_reg_ialu);
  8225 %}
  8227 #ifndef _LP64
  8228 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8229   match(Set dst (Conv2B src));
  8230   effect( KILL ccr );
  8231   ins_cost(DEFAULT_COST*2);
  8232   format %{ "CMP    R_G0,$src\n\t"
  8233             "ADDX   R_G0,0,$dst" %}
  8234   ins_encode( enc_to_bool( src, dst ) );
  8235   ins_pipe(ialu_reg_ialu);
  8236 %}
  8237 #else
  8238 instruct convP2B( iRegI dst, iRegP src ) %{
  8239   match(Set dst (Conv2B src));
  8240   ins_cost(DEFAULT_COST*2);
  8241   format %{ "MOV    $src,$dst\n\t"
  8242             "MOVRNZ $src,1,$dst" %}
  8243   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8244   ins_pipe(ialu_clr_and_mover);
  8245 %}
  8246 #endif
  8248 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8249   match(Set dst (CmpLTMask src zero));
  8250   effect(KILL ccr);
  8251   size(4);
  8252   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8253   ins_encode %{
  8254     __ sra($src$$Register, 31, $dst$$Register);
  8255   %}
  8256   ins_pipe(ialu_reg_imm);
  8257 %}
  8259 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8260   match(Set dst (CmpLTMask p q));
  8261   effect( KILL ccr );
  8262   ins_cost(DEFAULT_COST*4);
  8263   format %{ "CMP    $p,$q\n\t"
  8264             "MOV    #0,$dst\n\t"
  8265             "BLT,a  .+8\n\t"
  8266             "MOV    #-1,$dst" %}
  8267   ins_encode( enc_ltmask(p,q,dst) );
  8268   ins_pipe(ialu_reg_reg_ialu);
  8269 %}
  8271 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8272   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8273   effect(KILL ccr, TEMP tmp);
  8274   ins_cost(DEFAULT_COST*3);
  8276   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8277             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8278             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8279   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8280   ins_pipe(cadd_cmpltmask);
  8281 %}
  8283 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8284   match(Set p (AndI (CmpLTMask p q) y));
  8285   effect(KILL ccr);
  8286   ins_cost(DEFAULT_COST*3);
  8288   format %{ "CMP  $p,$q\n\t"
  8289             "MOV  $y,$p\n\t"
  8290             "MOVge G0,$p" %}
  8291   ins_encode %{
  8292     __ cmp($p$$Register, $q$$Register);
  8293     __ mov($y$$Register, $p$$Register);
  8294     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8295   %}
  8296   ins_pipe(ialu_reg_reg_ialu);
  8297 %}
  8299 //-----------------------------------------------------------------
  8300 // Direct raw moves between float and general registers using VIS3.
  8302 //  ins_pipe(faddF_reg);
  8303 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8304   predicate(UseVIS >= 3);
  8305   match(Set dst (MoveF2I src));
  8307   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8308   ins_encode %{
  8309     __ movstouw($src$$FloatRegister, $dst$$Register);
  8310   %}
  8311   ins_pipe(ialu_reg_reg);
  8312 %}
  8314 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8315   predicate(UseVIS >= 3);
  8316   match(Set dst (MoveI2F src));
  8318   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8319   ins_encode %{
  8320     __ movwtos($src$$Register, $dst$$FloatRegister);
  8321   %}
  8322   ins_pipe(ialu_reg_reg);
  8323 %}
  8325 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8326   predicate(UseVIS >= 3);
  8327   match(Set dst (MoveD2L src));
  8329   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8330   ins_encode %{
  8331     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8332   %}
  8333   ins_pipe(ialu_reg_reg);
  8334 %}
  8336 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8337   predicate(UseVIS >= 3);
  8338   match(Set dst (MoveL2D src));
  8340   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8341   ins_encode %{
  8342     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8343   %}
  8344   ins_pipe(ialu_reg_reg);
  8345 %}
  8348 // Raw moves between float and general registers using stack.
  8350 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8351   match(Set dst (MoveF2I src));
  8352   effect(DEF dst, USE src);
  8353   ins_cost(MEMORY_REF_COST);
  8355   size(4);
  8356   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8357   opcode(Assembler::lduw_op3);
  8358   ins_encode(simple_form3_mem_reg( src, dst ) );
  8359   ins_pipe(iload_mem);
  8360 %}
  8362 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8363   match(Set dst (MoveI2F src));
  8364   effect(DEF dst, USE src);
  8365   ins_cost(MEMORY_REF_COST);
  8367   size(4);
  8368   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8369   opcode(Assembler::ldf_op3);
  8370   ins_encode(simple_form3_mem_reg(src, dst));
  8371   ins_pipe(floadF_stk);
  8372 %}
  8374 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8375   match(Set dst (MoveD2L src));
  8376   effect(DEF dst, USE src);
  8377   ins_cost(MEMORY_REF_COST);
  8379   size(4);
  8380   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8381   opcode(Assembler::ldx_op3);
  8382   ins_encode(simple_form3_mem_reg( src, dst ) );
  8383   ins_pipe(iload_mem);
  8384 %}
  8386 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8387   match(Set dst (MoveL2D src));
  8388   effect(DEF dst, USE src);
  8389   ins_cost(MEMORY_REF_COST);
  8391   size(4);
  8392   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8393   opcode(Assembler::lddf_op3);
  8394   ins_encode(simple_form3_mem_reg(src, dst));
  8395   ins_pipe(floadD_stk);
  8396 %}
  8398 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8399   match(Set dst (MoveF2I src));
  8400   effect(DEF dst, USE src);
  8401   ins_cost(MEMORY_REF_COST);
  8403   size(4);
  8404   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8405   opcode(Assembler::stf_op3);
  8406   ins_encode(simple_form3_mem_reg(dst, src));
  8407   ins_pipe(fstoreF_stk_reg);
  8408 %}
  8410 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8411   match(Set dst (MoveI2F src));
  8412   effect(DEF dst, USE src);
  8413   ins_cost(MEMORY_REF_COST);
  8415   size(4);
  8416   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8417   opcode(Assembler::stw_op3);
  8418   ins_encode(simple_form3_mem_reg( dst, src ) );
  8419   ins_pipe(istore_mem_reg);
  8420 %}
  8422 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8423   match(Set dst (MoveD2L src));
  8424   effect(DEF dst, USE src);
  8425   ins_cost(MEMORY_REF_COST);
  8427   size(4);
  8428   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8429   opcode(Assembler::stdf_op3);
  8430   ins_encode(simple_form3_mem_reg(dst, src));
  8431   ins_pipe(fstoreD_stk_reg);
  8432 %}
  8434 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8435   match(Set dst (MoveL2D src));
  8436   effect(DEF dst, USE src);
  8437   ins_cost(MEMORY_REF_COST);
  8439   size(4);
  8440   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8441   opcode(Assembler::stx_op3);
  8442   ins_encode(simple_form3_mem_reg( dst, src ) );
  8443   ins_pipe(istore_mem_reg);
  8444 %}
  8447 //----------Arithmetic Conversion Instructions---------------------------------
  8448 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8450 instruct convD2F_reg(regF dst, regD src) %{
  8451   match(Set dst (ConvD2F src));
  8452   size(4);
  8453   format %{ "FDTOS  $src,$dst" %}
  8454   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8455   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8456   ins_pipe(fcvtD2F);
  8457 %}
  8460 // Convert a double to an int in a float register.
  8461 // If the double is a NAN, stuff a zero in instead.
  8462 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8463   effect(DEF dst, USE src, KILL fcc0);
  8464   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8465             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8466             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8467             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8468             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8469       "skip:" %}
  8470   ins_encode(form_d2i_helper(src,dst));
  8471   ins_pipe(fcvtD2I);
  8472 %}
  8474 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8475   match(Set dst (ConvD2I src));
  8476   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8477   expand %{
  8478     regF tmp;
  8479     convD2I_helper(tmp, src);
  8480     regF_to_stkI(dst, tmp);
  8481   %}
  8482 %}
  8484 instruct convD2I_reg(iRegI dst, regD src) %{
  8485   predicate(UseVIS >= 3);
  8486   match(Set dst (ConvD2I src));
  8487   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8488   expand %{
  8489     regF tmp;
  8490     convD2I_helper(tmp, src);
  8491     MoveF2I_reg_reg(dst, tmp);
  8492   %}
  8493 %}
  8496 // Convert a double to a long in a double register.
  8497 // If the double is a NAN, stuff a zero in instead.
  8498 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8499   effect(DEF dst, USE src, KILL fcc0);
  8500   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8501             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8502             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8503             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8504             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8505       "skip:" %}
  8506   ins_encode(form_d2l_helper(src,dst));
  8507   ins_pipe(fcvtD2L);
  8508 %}
  8510 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8511   match(Set dst (ConvD2L src));
  8512   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8513   expand %{
  8514     regD tmp;
  8515     convD2L_helper(tmp, src);
  8516     regD_to_stkL(dst, tmp);
  8517   %}
  8518 %}
  8520 instruct convD2L_reg(iRegL dst, regD src) %{
  8521   predicate(UseVIS >= 3);
  8522   match(Set dst (ConvD2L src));
  8523   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8524   expand %{
  8525     regD tmp;
  8526     convD2L_helper(tmp, src);
  8527     MoveD2L_reg_reg(dst, tmp);
  8528   %}
  8529 %}
  8532 instruct convF2D_reg(regD dst, regF src) %{
  8533   match(Set dst (ConvF2D src));
  8534   format %{ "FSTOD  $src,$dst" %}
  8535   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8536   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8537   ins_pipe(fcvtF2D);
  8538 %}
  8541 // Convert a float to an int in a float register.
  8542 // If the float is a NAN, stuff a zero in instead.
  8543 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8544   effect(DEF dst, USE src, KILL fcc0);
  8545   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8546             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8547             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8548             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8549             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8550       "skip:" %}
  8551   ins_encode(form_f2i_helper(src,dst));
  8552   ins_pipe(fcvtF2I);
  8553 %}
  8555 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8556   match(Set dst (ConvF2I src));
  8557   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8558   expand %{
  8559     regF tmp;
  8560     convF2I_helper(tmp, src);
  8561     regF_to_stkI(dst, tmp);
  8562   %}
  8563 %}
  8565 instruct convF2I_reg(iRegI dst, regF src) %{
  8566   predicate(UseVIS >= 3);
  8567   match(Set dst (ConvF2I src));
  8568   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8569   expand %{
  8570     regF tmp;
  8571     convF2I_helper(tmp, src);
  8572     MoveF2I_reg_reg(dst, tmp);
  8573   %}
  8574 %}
  8577 // Convert a float to a long in a float register.
  8578 // If the float is a NAN, stuff a zero in instead.
  8579 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8580   effect(DEF dst, USE src, KILL fcc0);
  8581   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8582             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8583             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8584             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8585             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8586       "skip:" %}
  8587   ins_encode(form_f2l_helper(src,dst));
  8588   ins_pipe(fcvtF2L);
  8589 %}
  8591 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8592   match(Set dst (ConvF2L src));
  8593   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8594   expand %{
  8595     regD tmp;
  8596     convF2L_helper(tmp, src);
  8597     regD_to_stkL(dst, tmp);
  8598   %}
  8599 %}
  8601 instruct convF2L_reg(iRegL dst, regF src) %{
  8602   predicate(UseVIS >= 3);
  8603   match(Set dst (ConvF2L src));
  8604   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8605   expand %{
  8606     regD tmp;
  8607     convF2L_helper(tmp, src);
  8608     MoveD2L_reg_reg(dst, tmp);
  8609   %}
  8610 %}
  8613 instruct convI2D_helper(regD dst, regF tmp) %{
  8614   effect(USE tmp, DEF dst);
  8615   format %{ "FITOD  $tmp,$dst" %}
  8616   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8617   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8618   ins_pipe(fcvtI2D);
  8619 %}
  8621 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8622   match(Set dst (ConvI2D src));
  8623   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8624   expand %{
  8625     regF tmp;
  8626     stkI_to_regF(tmp, src);
  8627     convI2D_helper(dst, tmp);
  8628   %}
  8629 %}
  8631 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8632   predicate(UseVIS >= 3);
  8633   match(Set dst (ConvI2D src));
  8634   expand %{
  8635     regF tmp;
  8636     MoveI2F_reg_reg(tmp, src);
  8637     convI2D_helper(dst, tmp);
  8638   %}
  8639 %}
  8641 instruct convI2D_mem(regD_low dst, memory mem) %{
  8642   match(Set dst (ConvI2D (LoadI mem)));
  8643   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8644   size(8);
  8645   format %{ "LDF    $mem,$dst\n\t"
  8646             "FITOD  $dst,$dst" %}
  8647   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8648   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8649   ins_pipe(floadF_mem);
  8650 %}
  8653 instruct convI2F_helper(regF dst, regF tmp) %{
  8654   effect(DEF dst, USE tmp);
  8655   format %{ "FITOS  $tmp,$dst" %}
  8656   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8657   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8658   ins_pipe(fcvtI2F);
  8659 %}
  8661 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8662   match(Set dst (ConvI2F src));
  8663   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8664   expand %{
  8665     regF tmp;
  8666     stkI_to_regF(tmp,src);
  8667     convI2F_helper(dst, tmp);
  8668   %}
  8669 %}
  8671 instruct convI2F_reg(regF dst, iRegI src) %{
  8672   predicate(UseVIS >= 3);
  8673   match(Set dst (ConvI2F src));
  8674   ins_cost(DEFAULT_COST);
  8675   expand %{
  8676     regF tmp;
  8677     MoveI2F_reg_reg(tmp, src);
  8678     convI2F_helper(dst, tmp);
  8679   %}
  8680 %}
  8682 instruct convI2F_mem( regF dst, memory mem ) %{
  8683   match(Set dst (ConvI2F (LoadI mem)));
  8684   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8685   size(8);
  8686   format %{ "LDF    $mem,$dst\n\t"
  8687             "FITOS  $dst,$dst" %}
  8688   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8689   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8690   ins_pipe(floadF_mem);
  8691 %}
  8694 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8695   match(Set dst (ConvI2L src));
  8696   size(4);
  8697   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8698   opcode(Assembler::sra_op3, Assembler::arith_op);
  8699   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8700   ins_pipe(ialu_reg_reg);
  8701 %}
  8703 // Zero-extend convert int to long
  8704 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8705   match(Set dst (AndL (ConvI2L src) mask) );
  8706   size(4);
  8707   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8708   opcode(Assembler::srl_op3, Assembler::arith_op);
  8709   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8710   ins_pipe(ialu_reg_reg);
  8711 %}
  8713 // Zero-extend long
  8714 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8715   match(Set dst (AndL src mask) );
  8716   size(4);
  8717   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8718   opcode(Assembler::srl_op3, Assembler::arith_op);
  8719   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8720   ins_pipe(ialu_reg_reg);
  8721 %}
  8724 //-----------
  8725 // Long to Double conversion using V8 opcodes.
  8726 // Still useful because cheetah traps and becomes
  8727 // amazingly slow for some common numbers.
  8729 // Magic constant, 0x43300000
  8730 instruct loadConI_x43300000(iRegI dst) %{
  8731   effect(DEF dst);
  8732   size(4);
  8733   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8734   ins_encode(SetHi22(0x43300000, dst));
  8735   ins_pipe(ialu_none);
  8736 %}
  8738 // Magic constant, 0x41f00000
  8739 instruct loadConI_x41f00000(iRegI dst) %{
  8740   effect(DEF dst);
  8741   size(4);
  8742   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8743   ins_encode(SetHi22(0x41f00000, dst));
  8744   ins_pipe(ialu_none);
  8745 %}
  8747 // Construct a double from two float halves
  8748 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8749   effect(DEF dst, USE src1, USE src2);
  8750   size(8);
  8751   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8752             "FMOVS  $src2.lo,$dst.lo" %}
  8753   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8754   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8755   ins_pipe(faddD_reg_reg);
  8756 %}
  8758 // Convert integer in high half of a double register (in the lower half of
  8759 // the double register file) to double
  8760 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8761   effect(DEF dst, USE src);
  8762   size(4);
  8763   format %{ "FITOD  $src,$dst" %}
  8764   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8765   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8766   ins_pipe(fcvtLHi2D);
  8767 %}
  8769 // Add float double precision
  8770 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8771   effect(DEF dst, USE src1, USE src2);
  8772   size(4);
  8773   format %{ "FADDD  $src1,$src2,$dst" %}
  8774   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8775   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8776   ins_pipe(faddD_reg_reg);
  8777 %}
  8779 // Sub float double precision
  8780 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8781   effect(DEF dst, USE src1, USE src2);
  8782   size(4);
  8783   format %{ "FSUBD  $src1,$src2,$dst" %}
  8784   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8785   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8786   ins_pipe(faddD_reg_reg);
  8787 %}
  8789 // Mul float double precision
  8790 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8791   effect(DEF dst, USE src1, USE src2);
  8792   size(4);
  8793   format %{ "FMULD  $src1,$src2,$dst" %}
  8794   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8795   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8796   ins_pipe(fmulD_reg_reg);
  8797 %}
  8799 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8800   match(Set dst (ConvL2D src));
  8801   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8803   expand %{
  8804     regD_low   tmpsrc;
  8805     iRegI      ix43300000;
  8806     iRegI      ix41f00000;
  8807     stackSlotL lx43300000;
  8808     stackSlotL lx41f00000;
  8809     regD_low   dx43300000;
  8810     regD       dx41f00000;
  8811     regD       tmp1;
  8812     regD_low   tmp2;
  8813     regD       tmp3;
  8814     regD       tmp4;
  8816     stkL_to_regD(tmpsrc, src);
  8818     loadConI_x43300000(ix43300000);
  8819     loadConI_x41f00000(ix41f00000);
  8820     regI_to_stkLHi(lx43300000, ix43300000);
  8821     regI_to_stkLHi(lx41f00000, ix41f00000);
  8822     stkL_to_regD(dx43300000, lx43300000);
  8823     stkL_to_regD(dx41f00000, lx41f00000);
  8825     convI2D_regDHi_regD(tmp1, tmpsrc);
  8826     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8827     subD_regD_regD(tmp3, tmp2, dx43300000);
  8828     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8829     addD_regD_regD(dst, tmp3, tmp4);
  8830   %}
  8831 %}
  8833 // Long to Double conversion using fast fxtof
  8834 instruct convL2D_helper(regD dst, regD tmp) %{
  8835   effect(DEF dst, USE tmp);
  8836   size(4);
  8837   format %{ "FXTOD  $tmp,$dst" %}
  8838   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8839   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8840   ins_pipe(fcvtL2D);
  8841 %}
  8843 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8844   predicate(VM_Version::has_fast_fxtof());
  8845   match(Set dst (ConvL2D src));
  8846   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8847   expand %{
  8848     regD tmp;
  8849     stkL_to_regD(tmp, src);
  8850     convL2D_helper(dst, tmp);
  8851   %}
  8852 %}
  8854 instruct convL2D_reg(regD dst, iRegL src) %{
  8855   predicate(UseVIS >= 3);
  8856   match(Set dst (ConvL2D src));
  8857   expand %{
  8858     regD tmp;
  8859     MoveL2D_reg_reg(tmp, src);
  8860     convL2D_helper(dst, tmp);
  8861   %}
  8862 %}
  8864 // Long to Float conversion using fast fxtof
  8865 instruct convL2F_helper(regF dst, regD tmp) %{
  8866   effect(DEF dst, USE tmp);
  8867   size(4);
  8868   format %{ "FXTOS  $tmp,$dst" %}
  8869   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8870   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8871   ins_pipe(fcvtL2F);
  8872 %}
  8874 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8875   match(Set dst (ConvL2F src));
  8876   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8877   expand %{
  8878     regD tmp;
  8879     stkL_to_regD(tmp, src);
  8880     convL2F_helper(dst, tmp);
  8881   %}
  8882 %}
  8884 instruct convL2F_reg(regF dst, iRegL src) %{
  8885   predicate(UseVIS >= 3);
  8886   match(Set dst (ConvL2F src));
  8887   ins_cost(DEFAULT_COST);
  8888   expand %{
  8889     regD tmp;
  8890     MoveL2D_reg_reg(tmp, src);
  8891     convL2F_helper(dst, tmp);
  8892   %}
  8893 %}
  8895 //-----------
  8897 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8898   match(Set dst (ConvL2I src));
  8899 #ifndef _LP64
  8900   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8901   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8902   ins_pipe(ialu_move_reg_I_to_L);
  8903 #else
  8904   size(4);
  8905   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8906   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8907   ins_pipe(ialu_reg);
  8908 #endif
  8909 %}
  8911 // Register Shift Right Immediate
  8912 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8913   match(Set dst (ConvL2I (RShiftL src cnt)));
  8915   size(4);
  8916   format %{ "SRAX   $src,$cnt,$dst" %}
  8917   opcode(Assembler::srax_op3, Assembler::arith_op);
  8918   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8919   ins_pipe(ialu_reg_imm);
  8920 %}
  8922 //----------Control Flow Instructions------------------------------------------
  8923 // Compare Instructions
  8924 // Compare Integers
  8925 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8926   match(Set icc (CmpI op1 op2));
  8927   effect( DEF icc, USE op1, USE op2 );
  8929   size(4);
  8930   format %{ "CMP    $op1,$op2" %}
  8931   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8932   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8933   ins_pipe(ialu_cconly_reg_reg);
  8934 %}
  8936 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8937   match(Set icc (CmpU op1 op2));
  8939   size(4);
  8940   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8941   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8942   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8943   ins_pipe(ialu_cconly_reg_reg);
  8944 %}
  8946 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8947   match(Set icc (CmpI op1 op2));
  8948   effect( DEF icc, USE op1 );
  8950   size(4);
  8951   format %{ "CMP    $op1,$op2" %}
  8952   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8953   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8954   ins_pipe(ialu_cconly_reg_imm);
  8955 %}
  8957 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8958   match(Set icc (CmpI (AndI op1 op2) zero));
  8960   size(4);
  8961   format %{ "BTST   $op2,$op1" %}
  8962   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8963   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8964   ins_pipe(ialu_cconly_reg_reg_zero);
  8965 %}
  8967 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8968   match(Set icc (CmpI (AndI op1 op2) zero));
  8970   size(4);
  8971   format %{ "BTST   $op2,$op1" %}
  8972   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8973   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8974   ins_pipe(ialu_cconly_reg_imm_zero);
  8975 %}
  8977 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8978   match(Set xcc (CmpL op1 op2));
  8979   effect( DEF xcc, USE op1, USE op2 );
  8981   size(4);
  8982   format %{ "CMP    $op1,$op2\t\t! long" %}
  8983   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8984   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8985   ins_pipe(ialu_cconly_reg_reg);
  8986 %}
  8988 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8989   match(Set xcc (CmpL op1 con));
  8990   effect( DEF xcc, USE op1, USE con );
  8992   size(4);
  8993   format %{ "CMP    $op1,$con\t\t! long" %}
  8994   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8995   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8996   ins_pipe(ialu_cconly_reg_reg);
  8997 %}
  8999 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  9000   match(Set xcc (CmpL (AndL op1 op2) zero));
  9001   effect( DEF xcc, USE op1, USE op2 );
  9003   size(4);
  9004   format %{ "BTST   $op1,$op2\t\t! long" %}
  9005   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9006   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9007   ins_pipe(ialu_cconly_reg_reg);
  9008 %}
  9010 // useful for checking the alignment of a pointer:
  9011 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9012   match(Set xcc (CmpL (AndL op1 con) zero));
  9013   effect( DEF xcc, USE op1, USE con );
  9015   size(4);
  9016   format %{ "BTST   $op1,$con\t\t! long" %}
  9017   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9018   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9019   ins_pipe(ialu_cconly_reg_reg);
  9020 %}
  9022 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
  9023   match(Set icc (CmpU op1 op2));
  9025   size(4);
  9026   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9027   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9028   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9029   ins_pipe(ialu_cconly_reg_imm);
  9030 %}
  9032 // Compare Pointers
  9033 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9034   match(Set pcc (CmpP op1 op2));
  9036   size(4);
  9037   format %{ "CMP    $op1,$op2\t! ptr" %}
  9038   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9039   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9040   ins_pipe(ialu_cconly_reg_reg);
  9041 %}
  9043 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9044   match(Set pcc (CmpP op1 op2));
  9046   size(4);
  9047   format %{ "CMP    $op1,$op2\t! ptr" %}
  9048   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9049   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9050   ins_pipe(ialu_cconly_reg_imm);
  9051 %}
  9053 // Compare Narrow oops
  9054 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9055   match(Set icc (CmpN op1 op2));
  9057   size(4);
  9058   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9059   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9060   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9061   ins_pipe(ialu_cconly_reg_reg);
  9062 %}
  9064 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9065   match(Set icc (CmpN op1 op2));
  9067   size(4);
  9068   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9069   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9070   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9071   ins_pipe(ialu_cconly_reg_imm);
  9072 %}
  9074 //----------Max and Min--------------------------------------------------------
  9075 // Min Instructions
  9076 // Conditional move for min
  9077 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9078   effect( USE_DEF op2, USE op1, USE icc );
  9080   size(4);
  9081   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9082   opcode(Assembler::less);
  9083   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9084   ins_pipe(ialu_reg_flags);
  9085 %}
  9087 // Min Register with Register.
  9088 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9089   match(Set op2 (MinI op1 op2));
  9090   ins_cost(DEFAULT_COST*2);
  9091   expand %{
  9092     flagsReg icc;
  9093     compI_iReg(icc,op1,op2);
  9094     cmovI_reg_lt(op2,op1,icc);
  9095   %}
  9096 %}
  9098 // Max Instructions
  9099 // Conditional move for max
  9100 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9101   effect( USE_DEF op2, USE op1, USE icc );
  9102   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9103   opcode(Assembler::greater);
  9104   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9105   ins_pipe(ialu_reg_flags);
  9106 %}
  9108 // Max Register with Register
  9109 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9110   match(Set op2 (MaxI op1 op2));
  9111   ins_cost(DEFAULT_COST*2);
  9112   expand %{
  9113     flagsReg icc;
  9114     compI_iReg(icc,op1,op2);
  9115     cmovI_reg_gt(op2,op1,icc);
  9116   %}
  9117 %}
  9120 //----------Float Compares----------------------------------------------------
  9121 // Compare floating, generate condition code
  9122 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9123   match(Set fcc (CmpF src1 src2));
  9125   size(4);
  9126   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9127   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9128   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9129   ins_pipe(faddF_fcc_reg_reg_zero);
  9130 %}
  9132 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9133   match(Set fcc (CmpD src1 src2));
  9135   size(4);
  9136   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9137   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9138   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9139   ins_pipe(faddD_fcc_reg_reg_zero);
  9140 %}
  9143 // Compare floating, generate -1,0,1
  9144 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9145   match(Set dst (CmpF3 src1 src2));
  9146   effect(KILL fcc0);
  9147   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9148   format %{ "fcmpl  $dst,$src1,$src2" %}
  9149   // Primary = float
  9150   opcode( true );
  9151   ins_encode( floating_cmp( dst, src1, src2 ) );
  9152   ins_pipe( floating_cmp );
  9153 %}
  9155 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9156   match(Set dst (CmpD3 src1 src2));
  9157   effect(KILL fcc0);
  9158   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9159   format %{ "dcmpl  $dst,$src1,$src2" %}
  9160   // Primary = double (not float)
  9161   opcode( false );
  9162   ins_encode( floating_cmp( dst, src1, src2 ) );
  9163   ins_pipe( floating_cmp );
  9164 %}
  9166 //----------Branches---------------------------------------------------------
  9167 // Jump
  9168 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9169 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9170   match(Jump switch_val);
  9171   effect(TEMP table);
  9173   ins_cost(350);
  9175   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9176              "LD     [O7 + $switch_val], O7\n\t"
  9177              "JUMP   O7" %}
  9178   ins_encode %{
  9179     // Calculate table address into a register.
  9180     Register table_reg;
  9181     Register label_reg = O7;
  9182     // If we are calculating the size of this instruction don't trust
  9183     // zero offsets because they might change when
  9184     // MachConstantBaseNode decides to optimize the constant table
  9185     // base.
  9186     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9187       table_reg = $constanttablebase;
  9188     } else {
  9189       table_reg = O7;
  9190       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9191       __ add($constanttablebase, con_offset, table_reg);
  9194     // Jump to base address + switch value
  9195     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9196     __ jmp(label_reg, G0);
  9197     __ delayed()->nop();
  9198   %}
  9199   ins_pipe(ialu_reg_reg);
  9200 %}
  9202 // Direct Branch.  Use V8 version with longer range.
  9203 instruct branch(label labl) %{
  9204   match(Goto);
  9205   effect(USE labl);
  9207   size(8);
  9208   ins_cost(BRANCH_COST);
  9209   format %{ "BA     $labl" %}
  9210   ins_encode %{
  9211     Label* L = $labl$$label;
  9212     __ ba(*L);
  9213     __ delayed()->nop();
  9214   %}
  9215   ins_pipe(br);
  9216 %}
  9218 // Direct Branch, short with no delay slot
  9219 instruct branch_short(label labl) %{
  9220   match(Goto);
  9221   predicate(UseCBCond);
  9222   effect(USE labl);
  9224   size(4);
  9225   ins_cost(BRANCH_COST);
  9226   format %{ "BA     $labl\t! short branch" %}
  9227   ins_encode %{
  9228     Label* L = $labl$$label;
  9229     assert(__ use_cbcond(*L), "back to back cbcond");
  9230     __ ba_short(*L);
  9231   %}
  9232   ins_short_branch(1);
  9233   ins_avoid_back_to_back(1);
  9234   ins_pipe(cbcond_reg_imm);
  9235 %}
  9237 // Conditional Direct Branch
  9238 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9239   match(If cmp icc);
  9240   effect(USE labl);
  9242   size(8);
  9243   ins_cost(BRANCH_COST);
  9244   format %{ "BP$cmp   $icc,$labl" %}
  9245   // Prim = bits 24-22, Secnd = bits 31-30
  9246   ins_encode( enc_bp( labl, cmp, icc ) );
  9247   ins_pipe(br_cc);
  9248 %}
  9250 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9251   match(If cmp icc);
  9252   effect(USE labl);
  9254   ins_cost(BRANCH_COST);
  9255   format %{ "BP$cmp  $icc,$labl" %}
  9256   // Prim = bits 24-22, Secnd = bits 31-30
  9257   ins_encode( enc_bp( labl, cmp, icc ) );
  9258   ins_pipe(br_cc);
  9259 %}
  9261 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9262   match(If cmp pcc);
  9263   effect(USE labl);
  9265   size(8);
  9266   ins_cost(BRANCH_COST);
  9267   format %{ "BP$cmp  $pcc,$labl" %}
  9268   ins_encode %{
  9269     Label* L = $labl$$label;
  9270     Assembler::Predict predict_taken =
  9271       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9273     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9274     __ delayed()->nop();
  9275   %}
  9276   ins_pipe(br_cc);
  9277 %}
  9279 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9280   match(If cmp fcc);
  9281   effect(USE labl);
  9283   size(8);
  9284   ins_cost(BRANCH_COST);
  9285   format %{ "FBP$cmp $fcc,$labl" %}
  9286   ins_encode %{
  9287     Label* L = $labl$$label;
  9288     Assembler::Predict predict_taken =
  9289       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9291     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9292     __ delayed()->nop();
  9293   %}
  9294   ins_pipe(br_fcc);
  9295 %}
  9297 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9298   match(CountedLoopEnd cmp icc);
  9299   effect(USE labl);
  9301   size(8);
  9302   ins_cost(BRANCH_COST);
  9303   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9304   // Prim = bits 24-22, Secnd = bits 31-30
  9305   ins_encode( enc_bp( labl, cmp, icc ) );
  9306   ins_pipe(br_cc);
  9307 %}
  9309 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9310   match(CountedLoopEnd cmp icc);
  9311   effect(USE labl);
  9313   size(8);
  9314   ins_cost(BRANCH_COST);
  9315   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9316   // Prim = bits 24-22, Secnd = bits 31-30
  9317   ins_encode( enc_bp( labl, cmp, icc ) );
  9318   ins_pipe(br_cc);
  9319 %}
  9321 // Compare and branch instructions
  9322 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9323   match(If cmp (CmpI op1 op2));
  9324   effect(USE labl, KILL icc);
  9326   size(12);
  9327   ins_cost(BRANCH_COST);
  9328   format %{ "CMP    $op1,$op2\t! int\n\t"
  9329             "BP$cmp   $labl" %}
  9330   ins_encode %{
  9331     Label* L = $labl$$label;
  9332     Assembler::Predict predict_taken =
  9333       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9334     __ cmp($op1$$Register, $op2$$Register);
  9335     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9336     __ delayed()->nop();
  9337   %}
  9338   ins_pipe(cmp_br_reg_reg);
  9339 %}
  9341 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9342   match(If cmp (CmpI op1 op2));
  9343   effect(USE labl, KILL icc);
  9345   size(12);
  9346   ins_cost(BRANCH_COST);
  9347   format %{ "CMP    $op1,$op2\t! int\n\t"
  9348             "BP$cmp   $labl" %}
  9349   ins_encode %{
  9350     Label* L = $labl$$label;
  9351     Assembler::Predict predict_taken =
  9352       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9353     __ cmp($op1$$Register, $op2$$constant);
  9354     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9355     __ delayed()->nop();
  9356   %}
  9357   ins_pipe(cmp_br_reg_imm);
  9358 %}
  9360 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9361   match(If cmp (CmpU op1 op2));
  9362   effect(USE labl, KILL icc);
  9364   size(12);
  9365   ins_cost(BRANCH_COST);
  9366   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9367             "BP$cmp  $labl" %}
  9368   ins_encode %{
  9369     Label* L = $labl$$label;
  9370     Assembler::Predict predict_taken =
  9371       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9372     __ cmp($op1$$Register, $op2$$Register);
  9373     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9374     __ delayed()->nop();
  9375   %}
  9376   ins_pipe(cmp_br_reg_reg);
  9377 %}
  9379 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9380   match(If cmp (CmpU op1 op2));
  9381   effect(USE labl, KILL icc);
  9383   size(12);
  9384   ins_cost(BRANCH_COST);
  9385   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9386             "BP$cmp  $labl" %}
  9387   ins_encode %{
  9388     Label* L = $labl$$label;
  9389     Assembler::Predict predict_taken =
  9390       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9391     __ cmp($op1$$Register, $op2$$constant);
  9392     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9393     __ delayed()->nop();
  9394   %}
  9395   ins_pipe(cmp_br_reg_imm);
  9396 %}
  9398 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9399   match(If cmp (CmpL op1 op2));
  9400   effect(USE labl, KILL xcc);
  9402   size(12);
  9403   ins_cost(BRANCH_COST);
  9404   format %{ "CMP    $op1,$op2\t! long\n\t"
  9405             "BP$cmp   $labl" %}
  9406   ins_encode %{
  9407     Label* L = $labl$$label;
  9408     Assembler::Predict predict_taken =
  9409       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9410     __ cmp($op1$$Register, $op2$$Register);
  9411     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9412     __ delayed()->nop();
  9413   %}
  9414   ins_pipe(cmp_br_reg_reg);
  9415 %}
  9417 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9418   match(If cmp (CmpL op1 op2));
  9419   effect(USE labl, KILL xcc);
  9421   size(12);
  9422   ins_cost(BRANCH_COST);
  9423   format %{ "CMP    $op1,$op2\t! long\n\t"
  9424             "BP$cmp   $labl" %}
  9425   ins_encode %{
  9426     Label* L = $labl$$label;
  9427     Assembler::Predict predict_taken =
  9428       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9429     __ cmp($op1$$Register, $op2$$constant);
  9430     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9431     __ delayed()->nop();
  9432   %}
  9433   ins_pipe(cmp_br_reg_imm);
  9434 %}
  9436 // Compare Pointers and branch
  9437 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9438   match(If cmp (CmpP op1 op2));
  9439   effect(USE labl, KILL pcc);
  9441   size(12);
  9442   ins_cost(BRANCH_COST);
  9443   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9444             "B$cmp   $labl" %}
  9445   ins_encode %{
  9446     Label* L = $labl$$label;
  9447     Assembler::Predict predict_taken =
  9448       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9449     __ cmp($op1$$Register, $op2$$Register);
  9450     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9451     __ delayed()->nop();
  9452   %}
  9453   ins_pipe(cmp_br_reg_reg);
  9454 %}
  9456 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9457   match(If cmp (CmpP op1 null));
  9458   effect(USE labl, KILL pcc);
  9460   size(12);
  9461   ins_cost(BRANCH_COST);
  9462   format %{ "CMP    $op1,0\t! ptr\n\t"
  9463             "B$cmp   $labl" %}
  9464   ins_encode %{
  9465     Label* L = $labl$$label;
  9466     Assembler::Predict predict_taken =
  9467       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9468     __ cmp($op1$$Register, G0);
  9469     // bpr() is not used here since it has shorter distance.
  9470     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9471     __ delayed()->nop();
  9472   %}
  9473   ins_pipe(cmp_br_reg_reg);
  9474 %}
  9476 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9477   match(If cmp (CmpN op1 op2));
  9478   effect(USE labl, KILL icc);
  9480   size(12);
  9481   ins_cost(BRANCH_COST);
  9482   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9483             "BP$cmp   $labl" %}
  9484   ins_encode %{
  9485     Label* L = $labl$$label;
  9486     Assembler::Predict predict_taken =
  9487       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9488     __ cmp($op1$$Register, $op2$$Register);
  9489     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9490     __ delayed()->nop();
  9491   %}
  9492   ins_pipe(cmp_br_reg_reg);
  9493 %}
  9495 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9496   match(If cmp (CmpN op1 null));
  9497   effect(USE labl, KILL icc);
  9499   size(12);
  9500   ins_cost(BRANCH_COST);
  9501   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9502             "BP$cmp   $labl" %}
  9503   ins_encode %{
  9504     Label* L = $labl$$label;
  9505     Assembler::Predict predict_taken =
  9506       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9507     __ cmp($op1$$Register, G0);
  9508     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9509     __ delayed()->nop();
  9510   %}
  9511   ins_pipe(cmp_br_reg_reg);
  9512 %}
  9514 // Loop back branch
  9515 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9516   match(CountedLoopEnd cmp (CmpI op1 op2));
  9517   effect(USE labl, KILL icc);
  9519   size(12);
  9520   ins_cost(BRANCH_COST);
  9521   format %{ "CMP    $op1,$op2\t! int\n\t"
  9522             "BP$cmp   $labl\t! Loop end" %}
  9523   ins_encode %{
  9524     Label* L = $labl$$label;
  9525     Assembler::Predict predict_taken =
  9526       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9527     __ cmp($op1$$Register, $op2$$Register);
  9528     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9529     __ delayed()->nop();
  9530   %}
  9531   ins_pipe(cmp_br_reg_reg);
  9532 %}
  9534 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9535   match(CountedLoopEnd cmp (CmpI op1 op2));
  9536   effect(USE labl, KILL icc);
  9538   size(12);
  9539   ins_cost(BRANCH_COST);
  9540   format %{ "CMP    $op1,$op2\t! int\n\t"
  9541             "BP$cmp   $labl\t! Loop end" %}
  9542   ins_encode %{
  9543     Label* L = $labl$$label;
  9544     Assembler::Predict predict_taken =
  9545       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9546     __ cmp($op1$$Register, $op2$$constant);
  9547     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9548     __ delayed()->nop();
  9549   %}
  9550   ins_pipe(cmp_br_reg_imm);
  9551 %}
  9553 // Short compare and branch instructions
  9554 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9555   match(If cmp (CmpI op1 op2));
  9556   predicate(UseCBCond);
  9557   effect(USE labl, KILL icc);
  9559   size(4);
  9560   ins_cost(BRANCH_COST);
  9561   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9562   ins_encode %{
  9563     Label* L = $labl$$label;
  9564     assert(__ use_cbcond(*L), "back to back cbcond");
  9565     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9566   %}
  9567   ins_short_branch(1);
  9568   ins_avoid_back_to_back(1);
  9569   ins_pipe(cbcond_reg_reg);
  9570 %}
  9572 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9573   match(If cmp (CmpI op1 op2));
  9574   predicate(UseCBCond);
  9575   effect(USE labl, KILL icc);
  9577   size(4);
  9578   ins_cost(BRANCH_COST);
  9579   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9580   ins_encode %{
  9581     Label* L = $labl$$label;
  9582     assert(__ use_cbcond(*L), "back to back cbcond");
  9583     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9584   %}
  9585   ins_short_branch(1);
  9586   ins_avoid_back_to_back(1);
  9587   ins_pipe(cbcond_reg_imm);
  9588 %}
  9590 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9591   match(If cmp (CmpU op1 op2));
  9592   predicate(UseCBCond);
  9593   effect(USE labl, KILL icc);
  9595   size(4);
  9596   ins_cost(BRANCH_COST);
  9597   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9598   ins_encode %{
  9599     Label* L = $labl$$label;
  9600     assert(__ use_cbcond(*L), "back to back cbcond");
  9601     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9602   %}
  9603   ins_short_branch(1);
  9604   ins_avoid_back_to_back(1);
  9605   ins_pipe(cbcond_reg_reg);
  9606 %}
  9608 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9609   match(If cmp (CmpU op1 op2));
  9610   predicate(UseCBCond);
  9611   effect(USE labl, KILL icc);
  9613   size(4);
  9614   ins_cost(BRANCH_COST);
  9615   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9616   ins_encode %{
  9617     Label* L = $labl$$label;
  9618     assert(__ use_cbcond(*L), "back to back cbcond");
  9619     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9620   %}
  9621   ins_short_branch(1);
  9622   ins_avoid_back_to_back(1);
  9623   ins_pipe(cbcond_reg_imm);
  9624 %}
  9626 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9627   match(If cmp (CmpL op1 op2));
  9628   predicate(UseCBCond);
  9629   effect(USE labl, KILL xcc);
  9631   size(4);
  9632   ins_cost(BRANCH_COST);
  9633   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9634   ins_encode %{
  9635     Label* L = $labl$$label;
  9636     assert(__ use_cbcond(*L), "back to back cbcond");
  9637     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9638   %}
  9639   ins_short_branch(1);
  9640   ins_avoid_back_to_back(1);
  9641   ins_pipe(cbcond_reg_reg);
  9642 %}
  9644 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9645   match(If cmp (CmpL op1 op2));
  9646   predicate(UseCBCond);
  9647   effect(USE labl, KILL xcc);
  9649   size(4);
  9650   ins_cost(BRANCH_COST);
  9651   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9652   ins_encode %{
  9653     Label* L = $labl$$label;
  9654     assert(__ use_cbcond(*L), "back to back cbcond");
  9655     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9656   %}
  9657   ins_short_branch(1);
  9658   ins_avoid_back_to_back(1);
  9659   ins_pipe(cbcond_reg_imm);
  9660 %}
  9662 // Compare Pointers and branch
  9663 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9664   match(If cmp (CmpP op1 op2));
  9665   predicate(UseCBCond);
  9666   effect(USE labl, KILL pcc);
  9668   size(4);
  9669   ins_cost(BRANCH_COST);
  9670 #ifdef _LP64
  9671   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9672 #else
  9673   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9674 #endif
  9675   ins_encode %{
  9676     Label* L = $labl$$label;
  9677     assert(__ use_cbcond(*L), "back to back cbcond");
  9678     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9679   %}
  9680   ins_short_branch(1);
  9681   ins_avoid_back_to_back(1);
  9682   ins_pipe(cbcond_reg_reg);
  9683 %}
  9685 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9686   match(If cmp (CmpP op1 null));
  9687   predicate(UseCBCond);
  9688   effect(USE labl, KILL pcc);
  9690   size(4);
  9691   ins_cost(BRANCH_COST);
  9692 #ifdef _LP64
  9693   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9694 #else
  9695   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9696 #endif
  9697   ins_encode %{
  9698     Label* L = $labl$$label;
  9699     assert(__ use_cbcond(*L), "back to back cbcond");
  9700     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9701   %}
  9702   ins_short_branch(1);
  9703   ins_avoid_back_to_back(1);
  9704   ins_pipe(cbcond_reg_reg);
  9705 %}
  9707 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9708   match(If cmp (CmpN op1 op2));
  9709   predicate(UseCBCond);
  9710   effect(USE labl, KILL icc);
  9712   size(4);
  9713   ins_cost(BRANCH_COST);
  9714   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9715   ins_encode %{
  9716     Label* L = $labl$$label;
  9717     assert(__ use_cbcond(*L), "back to back cbcond");
  9718     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9719   %}
  9720   ins_short_branch(1);
  9721   ins_avoid_back_to_back(1);
  9722   ins_pipe(cbcond_reg_reg);
  9723 %}
  9725 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9726   match(If cmp (CmpN op1 null));
  9727   predicate(UseCBCond);
  9728   effect(USE labl, KILL icc);
  9730   size(4);
  9731   ins_cost(BRANCH_COST);
  9732   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9733   ins_encode %{
  9734     Label* L = $labl$$label;
  9735     assert(__ use_cbcond(*L), "back to back cbcond");
  9736     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9737   %}
  9738   ins_short_branch(1);
  9739   ins_avoid_back_to_back(1);
  9740   ins_pipe(cbcond_reg_reg);
  9741 %}
  9743 // Loop back branch
  9744 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9745   match(CountedLoopEnd cmp (CmpI op1 op2));
  9746   predicate(UseCBCond);
  9747   effect(USE labl, KILL icc);
  9749   size(4);
  9750   ins_cost(BRANCH_COST);
  9751   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9752   ins_encode %{
  9753     Label* L = $labl$$label;
  9754     assert(__ use_cbcond(*L), "back to back cbcond");
  9755     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9756   %}
  9757   ins_short_branch(1);
  9758   ins_avoid_back_to_back(1);
  9759   ins_pipe(cbcond_reg_reg);
  9760 %}
  9762 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9763   match(CountedLoopEnd cmp (CmpI op1 op2));
  9764   predicate(UseCBCond);
  9765   effect(USE labl, KILL icc);
  9767   size(4);
  9768   ins_cost(BRANCH_COST);
  9769   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9770   ins_encode %{
  9771     Label* L = $labl$$label;
  9772     assert(__ use_cbcond(*L), "back to back cbcond");
  9773     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9774   %}
  9775   ins_short_branch(1);
  9776   ins_avoid_back_to_back(1);
  9777   ins_pipe(cbcond_reg_imm);
  9778 %}
  9780 // Branch-on-register tests all 64 bits.  We assume that values
  9781 // in 64-bit registers always remains zero or sign extended
  9782 // unless our code munges the high bits.  Interrupts can chop
  9783 // the high order bits to zero or sign at any time.
  9784 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9785   match(If cmp (CmpI op1 zero));
  9786   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9787   effect(USE labl);
  9789   size(8);
  9790   ins_cost(BRANCH_COST);
  9791   format %{ "BR$cmp   $op1,$labl" %}
  9792   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9793   ins_pipe(br_reg);
  9794 %}
  9796 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9797   match(If cmp (CmpP op1 null));
  9798   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9799   effect(USE labl);
  9801   size(8);
  9802   ins_cost(BRANCH_COST);
  9803   format %{ "BR$cmp   $op1,$labl" %}
  9804   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9805   ins_pipe(br_reg);
  9806 %}
  9808 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9809   match(If cmp (CmpL op1 zero));
  9810   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9811   effect(USE labl);
  9813   size(8);
  9814   ins_cost(BRANCH_COST);
  9815   format %{ "BR$cmp   $op1,$labl" %}
  9816   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9817   ins_pipe(br_reg);
  9818 %}
  9821 // ============================================================================
  9822 // Long Compare
  9823 //
  9824 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9825 // is tricky.  The flavor of compare used depends on whether we are testing
  9826 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9827 // The GE test is the negated LT test.  The LE test can be had by commuting
  9828 // the operands (yielding a GE test) and then negating; negate again for the
  9829 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9830 // NE test is negated from that.
  9832 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9833 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9834 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9835 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9836 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9837 // foo match ends up with the wrong leaf.  One fix is to not match both
  9838 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9839 // both forms beat the trinary form of long-compare and both are very useful
  9840 // on Intel which has so few registers.
  9842 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9843   match(If cmp xcc);
  9844   effect(USE labl);
  9846   size(8);
  9847   ins_cost(BRANCH_COST);
  9848   format %{ "BP$cmp   $xcc,$labl" %}
  9849   ins_encode %{
  9850     Label* L = $labl$$label;
  9851     Assembler::Predict predict_taken =
  9852       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9854     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9855     __ delayed()->nop();
  9856   %}
  9857   ins_pipe(br_cc);
  9858 %}
  9860 // Manifest a CmpL3 result in an integer register.  Very painful.
  9861 // This is the test to avoid.
  9862 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9863   match(Set dst (CmpL3 src1 src2) );
  9864   effect( KILL ccr );
  9865   ins_cost(6*DEFAULT_COST);
  9866   size(24);
  9867   format %{ "CMP    $src1,$src2\t\t! long\n"
  9868           "\tBLT,a,pn done\n"
  9869           "\tMOV    -1,$dst\t! delay slot\n"
  9870           "\tBGT,a,pn done\n"
  9871           "\tMOV    1,$dst\t! delay slot\n"
  9872           "\tCLR    $dst\n"
  9873     "done:"     %}
  9874   ins_encode( cmpl_flag(src1,src2,dst) );
  9875   ins_pipe(cmpL_reg);
  9876 %}
  9878 // Conditional move
  9879 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9880   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9881   ins_cost(150);
  9882   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9883   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9884   ins_pipe(ialu_reg);
  9885 %}
  9887 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9888   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9889   ins_cost(140);
  9890   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9891   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9892   ins_pipe(ialu_imm);
  9893 %}
  9895 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9896   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9897   ins_cost(150);
  9898   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9899   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9900   ins_pipe(ialu_reg);
  9901 %}
  9903 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9904   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9905   ins_cost(140);
  9906   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9907   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9908   ins_pipe(ialu_imm);
  9909 %}
  9911 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9912   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9913   ins_cost(150);
  9914   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9915   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9916   ins_pipe(ialu_reg);
  9917 %}
  9919 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9920   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9921   ins_cost(150);
  9922   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9924   ins_pipe(ialu_reg);
  9925 %}
  9927 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9928   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9929   ins_cost(140);
  9930   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9931   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9932   ins_pipe(ialu_imm);
  9933 %}
  9935 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9936   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9937   ins_cost(150);
  9938   opcode(0x101);
  9939   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9940   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9941   ins_pipe(int_conditional_float_move);
  9942 %}
  9944 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9945   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9946   ins_cost(150);
  9947   opcode(0x102);
  9948   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9949   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9950   ins_pipe(int_conditional_float_move);
  9951 %}
  9953 // ============================================================================
  9954 // Safepoint Instruction
  9955 instruct safePoint_poll(iRegP poll) %{
  9956   match(SafePoint poll);
  9957   effect(USE poll);
  9959   size(4);
  9960 #ifdef _LP64
  9961   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9962 #else
  9963   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9964 #endif
  9965   ins_encode %{
  9966     __ relocate(relocInfo::poll_type);
  9967     __ ld_ptr($poll$$Register, 0, G0);
  9968   %}
  9969   ins_pipe(loadPollP);
  9970 %}
  9972 // ============================================================================
  9973 // Call Instructions
  9974 // Call Java Static Instruction
  9975 instruct CallStaticJavaDirect( method meth ) %{
  9976   match(CallStaticJava);
  9977   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9978   effect(USE meth);
  9980   size(8);
  9981   ins_cost(CALL_COST);
  9982   format %{ "CALL,static  ; NOP ==> " %}
  9983   ins_encode( Java_Static_Call( meth ), call_epilog );
  9984   ins_pipe(simple_call);
  9985 %}
  9987 // Call Java Static Instruction (method handle version)
  9988 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9989   match(CallStaticJava);
  9990   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9991   effect(USE meth, KILL l7_mh_SP_save);
  9993   size(16);
  9994   ins_cost(CALL_COST);
  9995   format %{ "CALL,static/MethodHandle" %}
  9996   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9997   ins_pipe(simple_call);
  9998 %}
 10000 // Call Java Dynamic Instruction
 10001 instruct CallDynamicJavaDirect( method meth ) %{
 10002   match(CallDynamicJava);
 10003   effect(USE meth);
 10005   ins_cost(CALL_COST);
 10006   format %{ "SET    (empty),R_G5\n\t"
 10007             "CALL,dynamic  ; NOP ==> " %}
 10008   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
 10009   ins_pipe(call);
 10010 %}
 10012 // Call Runtime Instruction
 10013 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10014   match(CallRuntime);
 10015   effect(USE meth, KILL l7);
 10016   ins_cost(CALL_COST);
 10017   format %{ "CALL,runtime" %}
 10018   ins_encode( Java_To_Runtime( meth ),
 10019               call_epilog, adjust_long_from_native_call );
 10020   ins_pipe(simple_call);
 10021 %}
 10023 // Call runtime without safepoint - same as CallRuntime
 10024 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10025   match(CallLeaf);
 10026   effect(USE meth, KILL l7);
 10027   ins_cost(CALL_COST);
 10028   format %{ "CALL,runtime leaf" %}
 10029   ins_encode( Java_To_Runtime( meth ),
 10030               call_epilog,
 10031               adjust_long_from_native_call );
 10032   ins_pipe(simple_call);
 10033 %}
 10035 // Call runtime without safepoint - same as CallLeaf
 10036 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10037   match(CallLeafNoFP);
 10038   effect(USE meth, KILL l7);
 10039   ins_cost(CALL_COST);
 10040   format %{ "CALL,runtime leaf nofp" %}
 10041   ins_encode( Java_To_Runtime( meth ),
 10042               call_epilog,
 10043               adjust_long_from_native_call );
 10044   ins_pipe(simple_call);
 10045 %}
 10047 // Tail Call; Jump from runtime stub to Java code.
 10048 // Also known as an 'interprocedural jump'.
 10049 // Target of jump will eventually return to caller.
 10050 // TailJump below removes the return address.
 10051 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10052   match(TailCall jump_target method_oop );
 10054   ins_cost(CALL_COST);
 10055   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10056   ins_encode(form_jmpl(jump_target));
 10057   ins_pipe(tail_call);
 10058 %}
 10061 // Return Instruction
 10062 instruct Ret() %{
 10063   match(Return);
 10065   // The epilogue node did the ret already.
 10066   size(0);
 10067   format %{ "! return" %}
 10068   ins_encode();
 10069   ins_pipe(empty);
 10070 %}
 10073 // Tail Jump; remove the return address; jump to target.
 10074 // TailCall above leaves the return address around.
 10075 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10076 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10077 // "restore" before this instruction (in Epilogue), we need to materialize it
 10078 // in %i0.
 10079 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10080   match( TailJump jump_target ex_oop );
 10081   ins_cost(CALL_COST);
 10082   format %{ "! discard R_O7\n\t"
 10083             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10084   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10085   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10086   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10087   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10088   ins_pipe(tail_call);
 10089 %}
 10091 // Create exception oop: created by stack-crawling runtime code.
 10092 // Created exception is now available to this handler, and is setup
 10093 // just prior to jumping to this handler.  No code emitted.
 10094 instruct CreateException( o0RegP ex_oop )
 10095 %{
 10096   match(Set ex_oop (CreateEx));
 10097   ins_cost(0);
 10099   size(0);
 10100   // use the following format syntax
 10101   format %{ "! exception oop is in R_O0; no code emitted" %}
 10102   ins_encode();
 10103   ins_pipe(empty);
 10104 %}
 10107 // Rethrow exception:
 10108 // The exception oop will come in the first argument position.
 10109 // Then JUMP (not call) to the rethrow stub code.
 10110 instruct RethrowException()
 10111 %{
 10112   match(Rethrow);
 10113   ins_cost(CALL_COST);
 10115   // use the following format syntax
 10116   format %{ "Jmp    rethrow_stub" %}
 10117   ins_encode(enc_rethrow);
 10118   ins_pipe(tail_call);
 10119 %}
 10122 // Die now
 10123 instruct ShouldNotReachHere( )
 10124 %{
 10125   match(Halt);
 10126   ins_cost(CALL_COST);
 10128   size(4);
 10129   // Use the following format syntax
 10130   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10131   ins_encode( form2_illtrap() );
 10132   ins_pipe(tail_call);
 10133 %}
 10135 // ============================================================================
 10136 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10137 // array for an instance of the superklass.  Set a hidden internal cache on a
 10138 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10139 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10140 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10141   match(Set index (PartialSubtypeCheck sub super));
 10142   effect( KILL pcc, KILL o7 );
 10143   ins_cost(DEFAULT_COST*10);
 10144   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10145   ins_encode( enc_PartialSubtypeCheck() );
 10146   ins_pipe(partial_subtype_check_pipe);
 10147 %}
 10149 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10150   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10151   effect( KILL idx, KILL o7 );
 10152   ins_cost(DEFAULT_COST*10);
 10153   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10154   ins_encode( enc_PartialSubtypeCheck() );
 10155   ins_pipe(partial_subtype_check_pipe);
 10156 %}
 10159 // ============================================================================
 10160 // inlined locking and unlocking
 10162 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10163   match(Set pcc (FastLock object box));
 10165   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10166   ins_cost(100);
 10168   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10169   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10170   ins_pipe(long_memory_op);
 10171 %}
 10174 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10175   match(Set pcc (FastUnlock object box));
 10176   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10177   ins_cost(100);
 10179   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10180   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10181   ins_pipe(long_memory_op);
 10182 %}
 10184 // The encodings are generic.
 10185 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10186   predicate(!use_block_zeroing(n->in(2)) );
 10187   match(Set dummy (ClearArray cnt base));
 10188   effect(TEMP temp, KILL ccr);
 10189   ins_cost(300);
 10190   format %{ "MOV    $cnt,$temp\n"
 10191     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10192     "        BRge   loop\t\t! Clearing loop\n"
 10193     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10195   ins_encode %{
 10196     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10197     Register nof_bytes_arg    = $cnt$$Register;
 10198     Register nof_bytes_tmp    = $temp$$Register;
 10199     Register base_pointer_arg = $base$$Register;
 10201     Label loop;
 10202     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10204     // Loop and clear, walking backwards through the array.
 10205     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10206     __ bind(loop);
 10207     __ deccc(nof_bytes_tmp, 8);
 10208     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10209     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10210     // %%%% this mini-loop must not cross a cache boundary!
 10211   %}
 10212   ins_pipe(long_memory_op);
 10213 %}
 10215 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10216   predicate(use_block_zeroing(n->in(2)));
 10217   match(Set dummy (ClearArray cnt base));
 10218   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10219   ins_cost(300);
 10220   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10222   ins_encode %{
 10224     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10225     Register to    = $base$$Register;
 10226     Register count = $cnt$$Register;
 10228     Label Ldone;
 10229     __ nop(); // Separate short branches
 10230     // Use BIS for zeroing (temp is not used).
 10231     __ bis_zeroing(to, count, G0, Ldone);
 10232     __ bind(Ldone);
 10234   %}
 10235   ins_pipe(long_memory_op);
 10236 %}
 10238 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10239   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10240   match(Set dummy (ClearArray cnt base));
 10241   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10242   ins_cost(300);
 10243   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10245   ins_encode %{
 10247     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10248     Register to    = $base$$Register;
 10249     Register count = $cnt$$Register;
 10250     Register temp  = $tmp$$Register;
 10252     Label Ldone;
 10253     __ nop(); // Separate short branches
 10254     // Use BIS for zeroing
 10255     __ bis_zeroing(to, count, temp, Ldone);
 10256     __ bind(Ldone);
 10258   %}
 10259   ins_pipe(long_memory_op);
 10260 %}
 10262 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10263                         o7RegI tmp, flagsReg ccr) %{
 10264   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10265   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10266   ins_cost(300);
 10267   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10268   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10269   ins_pipe(long_memory_op);
 10270 %}
 10272 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10273                        o7RegI tmp, flagsReg ccr) %{
 10274   match(Set result (StrEquals (Binary str1 str2) cnt));
 10275   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10276   ins_cost(300);
 10277   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10278   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10279   ins_pipe(long_memory_op);
 10280 %}
 10282 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10283                       o7RegI tmp2, flagsReg ccr) %{
 10284   match(Set result (AryEq ary1 ary2));
 10285   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10286   ins_cost(300);
 10287   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10288   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10289   ins_pipe(long_memory_op);
 10290 %}
 10293 //---------- Zeros Count Instructions ------------------------------------------
 10295 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10296   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10297   match(Set dst (CountLeadingZerosI src));
 10298   effect(TEMP dst, TEMP tmp, KILL cr);
 10300   // x |= (x >> 1);
 10301   // x |= (x >> 2);
 10302   // x |= (x >> 4);
 10303   // x |= (x >> 8);
 10304   // x |= (x >> 16);
 10305   // return (WORDBITS - popc(x));
 10306   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10307             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10308             "OR      $dst,$tmp,$dst\n\t"
 10309             "SRL     $dst,2,$tmp\n\t"
 10310             "OR      $dst,$tmp,$dst\n\t"
 10311             "SRL     $dst,4,$tmp\n\t"
 10312             "OR      $dst,$tmp,$dst\n\t"
 10313             "SRL     $dst,8,$tmp\n\t"
 10314             "OR      $dst,$tmp,$dst\n\t"
 10315             "SRL     $dst,16,$tmp\n\t"
 10316             "OR      $dst,$tmp,$dst\n\t"
 10317             "POPC    $dst,$dst\n\t"
 10318             "MOV     32,$tmp\n\t"
 10319             "SUB     $tmp,$dst,$dst" %}
 10320   ins_encode %{
 10321     Register Rdst = $dst$$Register;
 10322     Register Rsrc = $src$$Register;
 10323     Register Rtmp = $tmp$$Register;
 10324     __ srl(Rsrc, 1,    Rtmp);
 10325     __ srl(Rsrc, 0,    Rdst);
 10326     __ or3(Rdst, Rtmp, Rdst);
 10327     __ srl(Rdst, 2,    Rtmp);
 10328     __ or3(Rdst, Rtmp, Rdst);
 10329     __ srl(Rdst, 4,    Rtmp);
 10330     __ or3(Rdst, Rtmp, Rdst);
 10331     __ srl(Rdst, 8,    Rtmp);
 10332     __ or3(Rdst, Rtmp, Rdst);
 10333     __ srl(Rdst, 16,   Rtmp);
 10334     __ or3(Rdst, Rtmp, Rdst);
 10335     __ popc(Rdst, Rdst);
 10336     __ mov(BitsPerInt, Rtmp);
 10337     __ sub(Rtmp, Rdst, Rdst);
 10338   %}
 10339   ins_pipe(ialu_reg);
 10340 %}
 10342 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10343   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10344   match(Set dst (CountLeadingZerosL src));
 10345   effect(TEMP dst, TEMP tmp, KILL cr);
 10347   // x |= (x >> 1);
 10348   // x |= (x >> 2);
 10349   // x |= (x >> 4);
 10350   // x |= (x >> 8);
 10351   // x |= (x >> 16);
 10352   // x |= (x >> 32);
 10353   // return (WORDBITS - popc(x));
 10354   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10355             "OR      $src,$tmp,$dst\n\t"
 10356             "SRLX    $dst,2,$tmp\n\t"
 10357             "OR      $dst,$tmp,$dst\n\t"
 10358             "SRLX    $dst,4,$tmp\n\t"
 10359             "OR      $dst,$tmp,$dst\n\t"
 10360             "SRLX    $dst,8,$tmp\n\t"
 10361             "OR      $dst,$tmp,$dst\n\t"
 10362             "SRLX    $dst,16,$tmp\n\t"
 10363             "OR      $dst,$tmp,$dst\n\t"
 10364             "SRLX    $dst,32,$tmp\n\t"
 10365             "OR      $dst,$tmp,$dst\n\t"
 10366             "POPC    $dst,$dst\n\t"
 10367             "MOV     64,$tmp\n\t"
 10368             "SUB     $tmp,$dst,$dst" %}
 10369   ins_encode %{
 10370     Register Rdst = $dst$$Register;
 10371     Register Rsrc = $src$$Register;
 10372     Register Rtmp = $tmp$$Register;
 10373     __ srlx(Rsrc, 1,    Rtmp);
 10374     __ or3( Rsrc, Rtmp, Rdst);
 10375     __ srlx(Rdst, 2,    Rtmp);
 10376     __ or3( Rdst, Rtmp, Rdst);
 10377     __ srlx(Rdst, 4,    Rtmp);
 10378     __ or3( Rdst, Rtmp, Rdst);
 10379     __ srlx(Rdst, 8,    Rtmp);
 10380     __ or3( Rdst, Rtmp, Rdst);
 10381     __ srlx(Rdst, 16,   Rtmp);
 10382     __ or3( Rdst, Rtmp, Rdst);
 10383     __ srlx(Rdst, 32,   Rtmp);
 10384     __ or3( Rdst, Rtmp, Rdst);
 10385     __ popc(Rdst, Rdst);
 10386     __ mov(BitsPerLong, Rtmp);
 10387     __ sub(Rtmp, Rdst, Rdst);
 10388   %}
 10389   ins_pipe(ialu_reg);
 10390 %}
 10392 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10393   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10394   match(Set dst (CountTrailingZerosI src));
 10395   effect(TEMP dst, KILL cr);
 10397   // return popc(~x & (x - 1));
 10398   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10399             "ANDN    $dst,$src,$dst\n\t"
 10400             "SRL     $dst,R_G0,$dst\n\t"
 10401             "POPC    $dst,$dst" %}
 10402   ins_encode %{
 10403     Register Rdst = $dst$$Register;
 10404     Register Rsrc = $src$$Register;
 10405     __ sub(Rsrc, 1, Rdst);
 10406     __ andn(Rdst, Rsrc, Rdst);
 10407     __ srl(Rdst, G0, Rdst);
 10408     __ popc(Rdst, Rdst);
 10409   %}
 10410   ins_pipe(ialu_reg);
 10411 %}
 10413 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10414   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10415   match(Set dst (CountTrailingZerosL src));
 10416   effect(TEMP dst, KILL cr);
 10418   // return popc(~x & (x - 1));
 10419   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10420             "ANDN    $dst,$src,$dst\n\t"
 10421             "POPC    $dst,$dst" %}
 10422   ins_encode %{
 10423     Register Rdst = $dst$$Register;
 10424     Register Rsrc = $src$$Register;
 10425     __ sub(Rsrc, 1, Rdst);
 10426     __ andn(Rdst, Rsrc, Rdst);
 10427     __ popc(Rdst, Rdst);
 10428   %}
 10429   ins_pipe(ialu_reg);
 10430 %}
 10433 //---------- Population Count Instructions -------------------------------------
 10435 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10436   predicate(UsePopCountInstruction);
 10437   match(Set dst (PopCountI src));
 10439   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10440             "POPC   $dst, $dst" %}
 10441   ins_encode %{
 10442     __ srl($src$$Register, G0, $dst$$Register);
 10443     __ popc($dst$$Register, $dst$$Register);
 10444   %}
 10445   ins_pipe(ialu_reg);
 10446 %}
 10448 // Note: Long.bitCount(long) returns an int.
 10449 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10450   predicate(UsePopCountInstruction);
 10451   match(Set dst (PopCountL src));
 10453   format %{ "POPC   $src, $dst" %}
 10454   ins_encode %{
 10455     __ popc($src$$Register, $dst$$Register);
 10456   %}
 10457   ins_pipe(ialu_reg);
 10458 %}
 10461 // ============================================================================
 10462 //------------Bytes reverse--------------------------------------------------
 10464 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10465   match(Set dst (ReverseBytesI src));
 10467   // Op cost is artificially doubled to make sure that load or store
 10468   // instructions are preferred over this one which requires a spill
 10469   // onto a stack slot.
 10470   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10471   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10473   ins_encode %{
 10474     __ set($src$$disp + STACK_BIAS, O7);
 10475     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10476   %}
 10477   ins_pipe( iload_mem );
 10478 %}
 10480 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10481   match(Set dst (ReverseBytesL src));
 10483   // Op cost is artificially doubled to make sure that load or store
 10484   // instructions are preferred over this one which requires a spill
 10485   // onto a stack slot.
 10486   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10487   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10489   ins_encode %{
 10490     __ set($src$$disp + STACK_BIAS, O7);
 10491     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10492   %}
 10493   ins_pipe( iload_mem );
 10494 %}
 10496 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10497   match(Set dst (ReverseBytesUS src));
 10499   // Op cost is artificially doubled to make sure that load or store
 10500   // instructions are preferred over this one which requires a spill
 10501   // onto a stack slot.
 10502   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10503   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10505   ins_encode %{
 10506     // the value was spilled as an int so bias the load
 10507     __ set($src$$disp + STACK_BIAS + 2, O7);
 10508     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10509   %}
 10510   ins_pipe( iload_mem );
 10511 %}
 10513 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10514   match(Set dst (ReverseBytesS src));
 10516   // Op cost is artificially doubled to make sure that load or store
 10517   // instructions are preferred over this one which requires a spill
 10518   // onto a stack slot.
 10519   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10520   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10522   ins_encode %{
 10523     // the value was spilled as an int so bias the load
 10524     __ set($src$$disp + STACK_BIAS + 2, O7);
 10525     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10526   %}
 10527   ins_pipe( iload_mem );
 10528 %}
 10530 // Load Integer reversed byte order
 10531 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10532   match(Set dst (ReverseBytesI (LoadI src)));
 10534   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10535   size(4);
 10536   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10538   ins_encode %{
 10539     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10540   %}
 10541   ins_pipe(iload_mem);
 10542 %}
 10544 // Load Long - aligned and reversed
 10545 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10546   match(Set dst (ReverseBytesL (LoadL src)));
 10548   ins_cost(MEMORY_REF_COST);
 10549   size(4);
 10550   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10552   ins_encode %{
 10553     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10554   %}
 10555   ins_pipe(iload_mem);
 10556 %}
 10558 // Load unsigned short / char reversed byte order
 10559 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10560   match(Set dst (ReverseBytesUS (LoadUS src)));
 10562   ins_cost(MEMORY_REF_COST);
 10563   size(4);
 10564   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10566   ins_encode %{
 10567     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10568   %}
 10569   ins_pipe(iload_mem);
 10570 %}
 10572 // Load short reversed byte order
 10573 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10574   match(Set dst (ReverseBytesS (LoadS src)));
 10576   ins_cost(MEMORY_REF_COST);
 10577   size(4);
 10578   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10580   ins_encode %{
 10581     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10582   %}
 10583   ins_pipe(iload_mem);
 10584 %}
 10586 // Store Integer reversed byte order
 10587 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10588   match(Set dst (StoreI dst (ReverseBytesI src)));
 10590   ins_cost(MEMORY_REF_COST);
 10591   size(4);
 10592   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10594   ins_encode %{
 10595     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10596   %}
 10597   ins_pipe(istore_mem_reg);
 10598 %}
 10600 // Store Long reversed byte order
 10601 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10602   match(Set dst (StoreL dst (ReverseBytesL src)));
 10604   ins_cost(MEMORY_REF_COST);
 10605   size(4);
 10606   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10608   ins_encode %{
 10609     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10610   %}
 10611   ins_pipe(istore_mem_reg);
 10612 %}
 10614 // Store unsighed short/char reversed byte order
 10615 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10616   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10618   ins_cost(MEMORY_REF_COST);
 10619   size(4);
 10620   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10622   ins_encode %{
 10623     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10624   %}
 10625   ins_pipe(istore_mem_reg);
 10626 %}
 10628 // Store short reversed byte order
 10629 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10630   match(Set dst (StoreC dst (ReverseBytesS src)));
 10632   ins_cost(MEMORY_REF_COST);
 10633   size(4);
 10634   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10636   ins_encode %{
 10637     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10638   %}
 10639   ins_pipe(istore_mem_reg);
 10640 %}
 10642 // ====================VECTOR INSTRUCTIONS=====================================
 10644 // Load Aligned Packed values into a Double Register
 10645 instruct loadV8(regD dst, memory mem) %{
 10646   predicate(n->as_LoadVector()->memory_size() == 8);
 10647   match(Set dst (LoadVector mem));
 10648   ins_cost(MEMORY_REF_COST);
 10649   size(4);
 10650   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10651   ins_encode %{
 10652     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10653   %}
 10654   ins_pipe(floadD_mem);
 10655 %}
 10657 // Store Vector in Double register to memory
 10658 instruct storeV8(memory mem, regD src) %{
 10659   predicate(n->as_StoreVector()->memory_size() == 8);
 10660   match(Set mem (StoreVector mem src));
 10661   ins_cost(MEMORY_REF_COST);
 10662   size(4);
 10663   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10664   ins_encode %{
 10665     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10666   %}
 10667   ins_pipe(fstoreD_mem_reg);
 10668 %}
 10670 // Store Zero into vector in memory
 10671 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10672   predicate(n->as_StoreVector()->memory_size() == 8);
 10673   match(Set mem (StoreVector mem (ReplicateB zero)));
 10674   ins_cost(MEMORY_REF_COST);
 10675   size(4);
 10676   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10677   ins_encode %{
 10678     __ stx(G0, $mem$$Address);
 10679   %}
 10680   ins_pipe(fstoreD_mem_zero);
 10681 %}
 10683 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10684   predicate(n->as_StoreVector()->memory_size() == 8);
 10685   match(Set mem (StoreVector mem (ReplicateS zero)));
 10686   ins_cost(MEMORY_REF_COST);
 10687   size(4);
 10688   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10689   ins_encode %{
 10690     __ stx(G0, $mem$$Address);
 10691   %}
 10692   ins_pipe(fstoreD_mem_zero);
 10693 %}
 10695 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10696   predicate(n->as_StoreVector()->memory_size() == 8);
 10697   match(Set mem (StoreVector mem (ReplicateI zero)));
 10698   ins_cost(MEMORY_REF_COST);
 10699   size(4);
 10700   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10701   ins_encode %{
 10702     __ stx(G0, $mem$$Address);
 10703   %}
 10704   ins_pipe(fstoreD_mem_zero);
 10705 %}
 10707 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10708   predicate(n->as_StoreVector()->memory_size() == 8);
 10709   match(Set mem (StoreVector mem (ReplicateF zero)));
 10710   ins_cost(MEMORY_REF_COST);
 10711   size(4);
 10712   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10713   ins_encode %{
 10714     __ stx(G0, $mem$$Address);
 10715   %}
 10716   ins_pipe(fstoreD_mem_zero);
 10717 %}
 10719 // Replicate scalar to packed byte values into Double register
 10720 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10721   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10722   match(Set dst (ReplicateB src));
 10723   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10724   format %{ "SLLX  $src,56,$tmp\n\t"
 10725             "SRLX  $tmp, 8,$tmp2\n\t"
 10726             "OR    $tmp,$tmp2,$tmp\n\t"
 10727             "SRLX  $tmp,16,$tmp2\n\t"
 10728             "OR    $tmp,$tmp2,$tmp\n\t"
 10729             "SRLX  $tmp,32,$tmp2\n\t"
 10730             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10731             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10732   ins_encode %{
 10733     Register Rsrc = $src$$Register;
 10734     Register Rtmp = $tmp$$Register;
 10735     Register Rtmp2 = $tmp2$$Register;
 10736     __ sllx(Rsrc,    56, Rtmp);
 10737     __ srlx(Rtmp,     8, Rtmp2);
 10738     __ or3 (Rtmp, Rtmp2, Rtmp);
 10739     __ srlx(Rtmp,    16, Rtmp2);
 10740     __ or3 (Rtmp, Rtmp2, Rtmp);
 10741     __ srlx(Rtmp,    32, Rtmp2);
 10742     __ or3 (Rtmp, Rtmp2, Rtmp);
 10743     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10744   %}
 10745   ins_pipe(ialu_reg);
 10746 %}
 10748 // Replicate scalar to packed byte values into Double stack
 10749 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10750   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10751   match(Set dst (ReplicateB src));
 10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10753   format %{ "SLLX  $src,56,$tmp\n\t"
 10754             "SRLX  $tmp, 8,$tmp2\n\t"
 10755             "OR    $tmp,$tmp2,$tmp\n\t"
 10756             "SRLX  $tmp,16,$tmp2\n\t"
 10757             "OR    $tmp,$tmp2,$tmp\n\t"
 10758             "SRLX  $tmp,32,$tmp2\n\t"
 10759             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10760             "STX   $tmp,$dst\t! regL to stkD" %}
 10761   ins_encode %{
 10762     Register Rsrc = $src$$Register;
 10763     Register Rtmp = $tmp$$Register;
 10764     Register Rtmp2 = $tmp2$$Register;
 10765     __ sllx(Rsrc,    56, Rtmp);
 10766     __ srlx(Rtmp,     8, Rtmp2);
 10767     __ or3 (Rtmp, Rtmp2, Rtmp);
 10768     __ srlx(Rtmp,    16, Rtmp2);
 10769     __ or3 (Rtmp, Rtmp2, Rtmp);
 10770     __ srlx(Rtmp,    32, Rtmp2);
 10771     __ or3 (Rtmp, Rtmp2, Rtmp);
 10772     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10773     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10774   %}
 10775   ins_pipe(ialu_reg);
 10776 %}
 10778 // Replicate scalar constant to packed byte values in Double register
 10779 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10780   predicate(n->as_Vector()->length() == 8);
 10781   match(Set dst (ReplicateB con));
 10782   effect(KILL tmp);
 10783   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10784   ins_encode %{
 10785     // XXX This is a quick fix for 6833573.
 10786     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10787     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10788     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10789   %}
 10790   ins_pipe(loadConFD);
 10791 %}
 10793 // Replicate scalar to packed char/short values into Double register
 10794 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10795   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10796   match(Set dst (ReplicateS src));
 10797   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10798   format %{ "SLLX  $src,48,$tmp\n\t"
 10799             "SRLX  $tmp,16,$tmp2\n\t"
 10800             "OR    $tmp,$tmp2,$tmp\n\t"
 10801             "SRLX  $tmp,32,$tmp2\n\t"
 10802             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10803             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10804   ins_encode %{
 10805     Register Rsrc = $src$$Register;
 10806     Register Rtmp = $tmp$$Register;
 10807     Register Rtmp2 = $tmp2$$Register;
 10808     __ sllx(Rsrc,    48, Rtmp);
 10809     __ srlx(Rtmp,    16, Rtmp2);
 10810     __ or3 (Rtmp, Rtmp2, Rtmp);
 10811     __ srlx(Rtmp,    32, Rtmp2);
 10812     __ or3 (Rtmp, Rtmp2, Rtmp);
 10813     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10814   %}
 10815   ins_pipe(ialu_reg);
 10816 %}
 10818 // Replicate scalar to packed char/short values into Double stack
 10819 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10820   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10821   match(Set dst (ReplicateS src));
 10822   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10823   format %{ "SLLX  $src,48,$tmp\n\t"
 10824             "SRLX  $tmp,16,$tmp2\n\t"
 10825             "OR    $tmp,$tmp2,$tmp\n\t"
 10826             "SRLX  $tmp,32,$tmp2\n\t"
 10827             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10828             "STX   $tmp,$dst\t! regL to stkD" %}
 10829   ins_encode %{
 10830     Register Rsrc = $src$$Register;
 10831     Register Rtmp = $tmp$$Register;
 10832     Register Rtmp2 = $tmp2$$Register;
 10833     __ sllx(Rsrc,    48, Rtmp);
 10834     __ srlx(Rtmp,    16, Rtmp2);
 10835     __ or3 (Rtmp, Rtmp2, Rtmp);
 10836     __ srlx(Rtmp,    32, Rtmp2);
 10837     __ or3 (Rtmp, Rtmp2, Rtmp);
 10838     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10839     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10840   %}
 10841   ins_pipe(ialu_reg);
 10842 %}
 10844 // Replicate scalar constant to packed char/short values in Double register
 10845 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10846   predicate(n->as_Vector()->length() == 4);
 10847   match(Set dst (ReplicateS con));
 10848   effect(KILL tmp);
 10849   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10850   ins_encode %{
 10851     // XXX This is a quick fix for 6833573.
 10852     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10853     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10854     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10855   %}
 10856   ins_pipe(loadConFD);
 10857 %}
 10859 // Replicate scalar to packed int values into Double register
 10860 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10861   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10862   match(Set dst (ReplicateI src));
 10863   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10864   format %{ "SLLX  $src,32,$tmp\n\t"
 10865             "SRLX  $tmp,32,$tmp2\n\t"
 10866             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10867             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10868   ins_encode %{
 10869     Register Rsrc = $src$$Register;
 10870     Register Rtmp = $tmp$$Register;
 10871     Register Rtmp2 = $tmp2$$Register;
 10872     __ sllx(Rsrc,    32, Rtmp);
 10873     __ srlx(Rtmp,    32, Rtmp2);
 10874     __ or3 (Rtmp, Rtmp2, Rtmp);
 10875     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10876   %}
 10877   ins_pipe(ialu_reg);
 10878 %}
 10880 // Replicate scalar to packed int values into Double stack
 10881 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10882   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10883   match(Set dst (ReplicateI src));
 10884   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10885   format %{ "SLLX  $src,32,$tmp\n\t"
 10886             "SRLX  $tmp,32,$tmp2\n\t"
 10887             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10888             "STX   $tmp,$dst\t! regL to stkD" %}
 10889   ins_encode %{
 10890     Register Rsrc = $src$$Register;
 10891     Register Rtmp = $tmp$$Register;
 10892     Register Rtmp2 = $tmp2$$Register;
 10893     __ sllx(Rsrc,    32, Rtmp);
 10894     __ srlx(Rtmp,    32, Rtmp2);
 10895     __ or3 (Rtmp, Rtmp2, Rtmp);
 10896     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10897     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10898   %}
 10899   ins_pipe(ialu_reg);
 10900 %}
 10902 // Replicate scalar zero constant to packed int values in Double register
 10903 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10904   predicate(n->as_Vector()->length() == 2);
 10905   match(Set dst (ReplicateI con));
 10906   effect(KILL tmp);
 10907   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10908   ins_encode %{
 10909     // XXX This is a quick fix for 6833573.
 10910     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10911     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10912     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10913   %}
 10914   ins_pipe(loadConFD);
 10915 %}
 10917 // Replicate scalar to packed float values into Double stack
 10918 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10919   predicate(n->as_Vector()->length() == 2);
 10920   match(Set dst (ReplicateF src));
 10921   ins_cost(MEMORY_REF_COST*2);
 10922   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10923             "STF    $src,$dst.lo" %}
 10924   opcode(Assembler::stf_op3);
 10925   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10926   ins_pipe(fstoreF_stk_reg);
 10927 %}
 10929 // Replicate scalar zero constant to packed float values in Double register
 10930 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10931   predicate(n->as_Vector()->length() == 2);
 10932   match(Set dst (ReplicateF con));
 10933   effect(KILL tmp);
 10934   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10935   ins_encode %{
 10936     // XXX This is a quick fix for 6833573.
 10937     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10938     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10939     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10940   %}
 10941   ins_pipe(loadConFD);
 10942 %}
 10944 //----------PEEPHOLE RULES-----------------------------------------------------
 10945 // These must follow all instruction definitions as they use the names
 10946 // defined in the instructions definitions.
 10947 //
 10948 // peepmatch ( root_instr_name [preceding_instruction]* );
 10949 //
 10950 // peepconstraint %{
 10951 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10952 //  [, ...] );
 10953 // // instruction numbers are zero-based using left to right order in peepmatch
 10954 //
 10955 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10956 // // provide an instruction_number.operand_name for each operand that appears
 10957 // // in the replacement instruction's match rule
 10958 //
 10959 // ---------VM FLAGS---------------------------------------------------------
 10960 //
 10961 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10962 //
 10963 // Each peephole rule is given an identifying number starting with zero and
 10964 // increasing by one in the order seen by the parser.  An individual peephole
 10965 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10966 // on the command-line.
 10967 //
 10968 // ---------CURRENT LIMITATIONS----------------------------------------------
 10969 //
 10970 // Only match adjacent instructions in same basic block
 10971 // Only equality constraints
 10972 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10973 // Only one replacement instruction
 10974 //
 10975 // ---------EXAMPLE----------------------------------------------------------
 10976 //
 10977 // // pertinent parts of existing instructions in architecture description
 10978 // instruct movI(eRegI dst, eRegI src) %{
 10979 //   match(Set dst (CopyI src));
 10980 // %}
 10981 //
 10982 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10983 //   match(Set dst (AddI dst src));
 10984 //   effect(KILL cr);
 10985 // %}
 10986 //
 10987 // // Change (inc mov) to lea
 10988 // peephole %{
 10989 //   // increment preceeded by register-register move
 10990 //   peepmatch ( incI_eReg movI );
 10991 //   // require that the destination register of the increment
 10992 //   // match the destination register of the move
 10993 //   peepconstraint ( 0.dst == 1.dst );
 10994 //   // construct a replacement instruction that sets
 10995 //   // the destination to ( move's source register + one )
 10996 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10997 // %}
 10998 //
 11000 // // Change load of spilled value to only a spill
 11001 // instruct storeI(memory mem, eRegI src) %{
 11002 //   match(Set mem (StoreI mem src));
 11003 // %}
 11004 //
 11005 // instruct loadI(eRegI dst, memory mem) %{
 11006 //   match(Set dst (LoadI mem));
 11007 // %}
 11008 //
 11009 // peephole %{
 11010 //   peepmatch ( loadI storeI );
 11011 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 11012 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 11013 // %}
 11015 //----------SMARTSPILL RULES---------------------------------------------------
 11016 // These must follow all instruction definitions as they use the names
 11017 // defined in the instructions definitions.
 11018 //
 11019 // SPARC will probably not have any of these rules due to RISC instruction set.
 11021 //----------PIPELINE-----------------------------------------------------------
 11022 // Rules which define the behavior of the target architectures pipeline.

mercurial