src/cpu/sparc/vm/sparc.ad

Tue, 25 Mar 2014 17:07:36 -0700

author
kvn
date
Tue, 25 Mar 2014 17:07:36 -0700
changeset 6518
62c54fcc0a35
parent 6517
a433eb716ce1
parent 6375
085b304a1cc5
child 6620
17b2fbdb6637
permissions
-rw-r--r--

Merge

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Header information of the source block.
   461 // Method declarations/definitions which are used outside
   462 // the ad-scope can conveniently be defined here.
   463 //
   464 // To keep related declarations/definitions/uses close together,
   465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   467 // Must be visible to the DFA in dfa_sparc.cpp
   468 extern bool can_branch_register( Node *bol, Node *cmp );
   470 extern bool use_block_zeroing(Node* count);
   472 // Macros to extract hi & lo halves from a long pair.
   473 // G0 is not part of any long pair, so assert on that.
   474 // Prevents accidentally using G1 instead of G0.
   475 #define LONG_HI_REG(x) (x)
   476 #define LONG_LO_REG(x) (x)
   478 class CallStubImpl {
   480   //--------------------------------------------------------------
   481   //---<  Used for optimization in Compile::Shorten_branches  >---
   482   //--------------------------------------------------------------
   484  public:
   485   // Size of call trampoline stub.
   486   static uint size_call_trampoline() {
   487     return 0; // no call trampolines on this platform
   488   }
   490   // number of relocations needed by a call trampoline stub
   491   static uint reloc_call_trampoline() {
   492     return 0; // no call trampolines on this platform
   493   }
   494 };
   496 class HandlerImpl {
   498  public:
   500   static int emit_exception_handler(CodeBuffer &cbuf);
   501   static int emit_deopt_handler(CodeBuffer& cbuf);
   503   static uint size_exception_handler() {
   504     if (TraceJumps) {
   505       return (400); // just a guess
   506     }
   507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
   508   }
   510   static uint size_deopt_handler() {
   511     if (TraceJumps) {
   512       return (400); // just a guess
   513     }
   514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
   515   }
   516 };
   518 %}
   520 source %{
   521 #define __ _masm.
   523 // tertiary op of a LoadP or StoreP encoding
   524 #define REGP_OP true
   526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   528 static Register reg_to_register_object(int register_encoding);
   530 // Used by the DFA in dfa_sparc.cpp.
   531 // Check for being able to use a V9 branch-on-register.  Requires a
   532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   533 // extended.  Doesn't work following an integer ADD, for example, because of
   534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   536 // replace them with zero, which could become sign-extension in a different OS
   537 // release.  There's no obvious reason why an interrupt will ever fill these
   538 // bits with non-zero junk (the registers are reloaded with standard LD
   539 // instructions which either zero-fill or sign-fill).
   540 bool can_branch_register( Node *bol, Node *cmp ) {
   541   if( !BranchOnRegister ) return false;
   542 #ifdef _LP64
   543   if( cmp->Opcode() == Op_CmpP )
   544     return true;  // No problems with pointer compares
   545 #endif
   546   if( cmp->Opcode() == Op_CmpL )
   547     return true;  // No problems with long compares
   549   if( !SparcV9RegsHiBitsZero ) return false;
   550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   551       bol->as_Bool()->_test._test != BoolTest::eq )
   552      return false;
   554   // Check for comparing against a 'safe' value.  Any operation which
   555   // clears out the high word is safe.  Thus, loads and certain shifts
   556   // are safe, as are non-negative constants.  Any operation which
   557   // preserves zero bits in the high word is safe as long as each of its
   558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   559   // inputs are safe.  At present, the only important case to recognize
   560   // seems to be loads.  Constants should fold away, and shifts &
   561   // logicals can use the 'cc' forms.
   562   Node *x = cmp->in(1);
   563   if( x->is_Load() ) return true;
   564   if( x->is_Phi() ) {
   565     for( uint i = 1; i < x->req(); i++ )
   566       if( !x->in(i)->is_Load() )
   567         return false;
   568     return true;
   569   }
   570   return false;
   571 }
   573 bool use_block_zeroing(Node* count) {
   574   // Use BIS for zeroing if count is not constant
   575   // or it is >= BlockZeroingLowLimit.
   576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   577 }
   579 // ****************************************************************************
   581 // REQUIRED FUNCTIONALITY
   583 // !!!!! Special hack to get all type of calls to specify the byte offset
   584 //       from the start of the call to the point where the return address
   585 //       will point.
   586 //       The "return address" is the address of the call instruction, plus 8.
   588 int MachCallStaticJavaNode::ret_addr_offset() {
   589   int offset = NativeCall::instruction_size;  // call; delay slot
   590   if (_method_handle_invoke)
   591     offset += 4;  // restore SP
   592   return offset;
   593 }
   595 int MachCallDynamicJavaNode::ret_addr_offset() {
   596   int vtable_index = this->_vtable_index;
   597   if (vtable_index < 0) {
   598     // must be invalid_vtable_index, not nonvirtual_vtable_index
   599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   600     return (NativeMovConstReg::instruction_size +
   601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   602   } else {
   603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   606     int klass_load_size;
   607     if (UseCompressedClassPointers) {
   608       assert(Universe::heap() != NULL, "java heap should be initialized");
   609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   610     } else {
   611       klass_load_size = 1*BytesPerInstWord;
   612     }
   613     if (Assembler::is_simm13(v_off)) {
   614       return klass_load_size +
   615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   616              NativeCall::instruction_size);  // call; delay slot
   617     } else {
   618       return klass_load_size +
   619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   620              NativeCall::instruction_size);  // call; delay slot
   621     }
   622   }
   623 }
   625 int MachCallRuntimeNode::ret_addr_offset() {
   626 #ifdef _LP64
   627   if (MacroAssembler::is_far_target(entry_point())) {
   628     return NativeFarCall::instruction_size;
   629   } else {
   630     return NativeCall::instruction_size;
   631   }
   632 #else
   633   return NativeCall::instruction_size;  // call; delay slot
   634 #endif
   635 }
   637 // Indicate if the safepoint node needs the polling page as an input.
   638 // Since Sparc does not have absolute addressing, it does.
   639 bool SafePointNode::needs_polling_address_input() {
   640   return true;
   641 }
   643 // emit an interrupt that is caught by the debugger (for debugging compiler)
   644 void emit_break(CodeBuffer &cbuf) {
   645   MacroAssembler _masm(&cbuf);
   646   __ breakpoint_trap();
   647 }
   649 #ifndef PRODUCT
   650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   651   st->print("TA");
   652 }
   653 #endif
   655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   656   emit_break(cbuf);
   657 }
   659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   660   return MachNode::size(ra_);
   661 }
   663 // Traceable jump
   664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   665   MacroAssembler _masm(&cbuf);
   666   Register rdest = reg_to_register_object(jump_target);
   667   __ JMP(rdest, 0);
   668   __ delayed()->nop();
   669 }
   671 // Traceable jump and set exception pc
   672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   673   MacroAssembler _masm(&cbuf);
   674   Register rdest = reg_to_register_object(jump_target);
   675   __ JMP(rdest, 0);
   676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   677 }
   679 void emit_nop(CodeBuffer &cbuf) {
   680   MacroAssembler _masm(&cbuf);
   681   __ nop();
   682 }
   684 void emit_illtrap(CodeBuffer &cbuf) {
   685   MacroAssembler _masm(&cbuf);
   686   __ illtrap(0);
   687 }
   690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   691   assert(n->rule() != loadUB_rule, "");
   693   intptr_t offset = 0;
   694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   695   const Node* addr = n->get_base_and_disp(offset, adr_type);
   696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   699   atype = atype->add_offset(offset);
   700   assert(disp32 == offset, "wrong disp32");
   701   return atype->_offset;
   702 }
   705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   706   assert(n->rule() != loadUB_rule, "");
   708   intptr_t offset = 0;
   709   Node* addr = n->in(2);
   710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   712     Node* a = addr->in(2/*AddPNode::Address*/);
   713     Node* o = addr->in(3/*AddPNode::Offset*/);
   714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   716     assert(atype->isa_oop_ptr(), "still an oop");
   717   }
   718   offset = atype->is_ptr()->_offset;
   719   if (offset != Type::OffsetBot)  offset += disp32;
   720   return offset;
   721 }
   723 static inline jdouble replicate_immI(int con, int count, int width) {
   724   // Load a constant replicated "count" times with width "width"
   725   assert(count*width == 8 && width <= 4, "sanity");
   726   int bit_width = width * 8;
   727   jlong val = con;
   728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   729   for (int i = 0; i < count - 1; i++) {
   730     val |= (val << bit_width);
   731   }
   732   jdouble dval = *((jdouble*) &val);  // coerce to double type
   733   return dval;
   734 }
   736 static inline jdouble replicate_immF(float con) {
   737   // Replicate float con 2 times and pack into vector.
   738   int val = *((int*)&con);
   739   jlong lval = val;
   740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   742   return dval;
   743 }
   745 // Standard Sparc opcode form2 field breakdown
   746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   748   int op = (f30 << 30) |
   749            (f29 << 29) |
   750            (f25 << 25) |
   751            (f22 << 22) |
   752            (f20 << 20) |
   753            (f19 << 19) |
   754            (f0  <<  0);
   755   cbuf.insts()->emit_int32(op);
   756 }
   758 // Standard Sparc opcode form2 field breakdown
   759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   760   f0 >>= 10;           // Drop 10 bits
   761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   762   int op = (f30 << 30) |
   763            (f25 << 25) |
   764            (f22 << 22) |
   765            (f0  <<  0);
   766   cbuf.insts()->emit_int32(op);
   767 }
   769 // Standard Sparc opcode form3 field breakdown
   770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   771   int op = (f30 << 30) |
   772            (f25 << 25) |
   773            (f19 << 19) |
   774            (f14 << 14) |
   775            (f5  <<  5) |
   776            (f0  <<  0);
   777   cbuf.insts()->emit_int32(op);
   778 }
   780 // Standard Sparc opcode form3 field breakdown
   781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   782   simm13 &= (1<<13)-1; // Mask to 13 bits
   783   int op = (f30 << 30) |
   784            (f25 << 25) |
   785            (f19 << 19) |
   786            (f14 << 14) |
   787            (1   << 13) | // bit to indicate immediate-mode
   788            (simm13<<0);
   789   cbuf.insts()->emit_int32(op);
   790 }
   792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   793   simm10 &= (1<<10)-1; // Mask to 10 bits
   794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   795 }
   797 #ifdef ASSERT
   798 // Helper function for VerifyOops in emit_form3_mem_reg
   799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   800   warning("VerifyOops encountered unexpected instruction:");
   801   n->dump(2);
   802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   803 }
   804 #endif
   807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
   808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   810 #ifdef ASSERT
   811   // The following code implements the +VerifyOops feature.
   812   // It verifies oop values which are loaded into or stored out of
   813   // the current method activation.  +VerifyOops complements techniques
   814   // like ScavengeALot, because it eagerly inspects oops in transit,
   815   // as they enter or leave the stack, as opposed to ScavengeALot,
   816   // which inspects oops "at rest", in the stack or heap, at safepoints.
   817   // For this reason, +VerifyOops can sometimes detect bugs very close
   818   // to their point of creation.  It can also serve as a cross-check
   819   // on the validity of oop maps, when used toegether with ScavengeALot.
   821   // It would be good to verify oops at other points, especially
   822   // when an oop is used as a base pointer for a load or store.
   823   // This is presently difficult, because it is hard to know when
   824   // a base address is biased or not.  (If we had such information,
   825   // it would be easy and useful to make a two-argument version of
   826   // verify_oop which unbiases the base, and performs verification.)
   828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   829   bool is_verified_oop_base  = false;
   830   bool is_verified_oop_load  = false;
   831   bool is_verified_oop_store = false;
   832   int tmp_enc = -1;
   833   if (VerifyOops && src1_enc != R_SP_enc) {
   834     // classify the op, mainly for an assert check
   835     int st_op = 0, ld_op = 0;
   836     switch (primary) {
   837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   841     case Assembler::std_op3:  st_op = Op_StoreL; break;
   842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   857     default: ShouldNotReachHere();
   858     }
   859     if (tertiary == REGP_OP) {
   860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   862       else                          ShouldNotReachHere();
   863       if (st_op) {
   864         // a store
   865         // inputs are (0:control, 1:memory, 2:address, 3:value)
   866         Node* n2 = n->in(3);
   867         if (n2 != NULL) {
   868           const Type* t = n2->bottom_type();
   869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   870         }
   871       } else {
   872         // a load
   873         const Type* t = n->bottom_type();
   874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   875       }
   876     }
   878     if (ld_op) {
   879       // a Load
   880       // inputs are (0:control, 1:memory, 2:address)
   881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   892           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   893           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   894           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   895           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   896           !(n->rule() == loadUB_rule)) {
   897         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   898       }
   899     } else if (st_op) {
   900       // a Store
   901       // inputs are (0:control, 1:memory, 2:address, 3:value)
   902       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   903           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   904           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   905           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   906           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   907           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   908           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   909         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   910       }
   911     }
   913     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   914       Node* addr = n->in(2);
   915       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   916         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   917         if (atype != NULL) {
   918           intptr_t offset = get_offset_from_base(n, atype, disp32);
   919           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   920           if (offset != offset_2) {
   921             get_offset_from_base(n, atype, disp32);
   922             get_offset_from_base_2(n, atype, disp32);
   923           }
   924           assert(offset == offset_2, "different offsets");
   925           if (offset == disp32) {
   926             // we now know that src1 is a true oop pointer
   927             is_verified_oop_base = true;
   928             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   929               if( primary == Assembler::ldd_op3 ) {
   930                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   931               } else {
   932                 tmp_enc = dst_enc;
   933                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   934                 assert(src1_enc != dst_enc, "");
   935               }
   936             }
   937           }
   938           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   939                        || offset == oopDesc::mark_offset_in_bytes())) {
   940                       // loading the mark should not be allowed either, but
   941                       // we don't check this since it conflicts with InlineObjectHash
   942                       // usage of LoadINode to get the mark. We could keep the
   943                       // check if we create a new LoadMarkNode
   944             // but do not verify the object before its header is initialized
   945             ShouldNotReachHere();
   946           }
   947         }
   948       }
   949     }
   950   }
   951 #endif
   953   uint instr;
   954   instr = (Assembler::ldst_op << 30)
   955         | (dst_enc        << 25)
   956         | (primary        << 19)
   957         | (src1_enc       << 14);
   959   uint index = src2_enc;
   960   int disp = disp32;
   962   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
   963     disp += STACK_BIAS;
   964     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
   965     if (!Assembler::is_simm13(disp)) {
   966       ra->C->record_method_not_compilable("unable to handle large constant offsets");
   967       return;
   968     }
   969   }
   971   // We should have a compiler bailout here rather than a guarantee.
   972   // Better yet would be some mechanism to handle variable-size matches correctly.
   973   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   975   if( disp == 0 ) {
   976     // use reg-reg form
   977     // bit 13 is already zero
   978     instr |= index;
   979   } else {
   980     // use reg-imm form
   981     instr |= 0x00002000;          // set bit 13 to one
   982     instr |= disp & 0x1FFF;
   983   }
   985   cbuf.insts()->emit_int32(instr);
   987 #ifdef ASSERT
   988   {
   989     MacroAssembler _masm(&cbuf);
   990     if (is_verified_oop_base) {
   991       __ verify_oop(reg_to_register_object(src1_enc));
   992     }
   993     if (is_verified_oop_store) {
   994       __ verify_oop(reg_to_register_object(dst_enc));
   995     }
   996     if (tmp_enc != -1) {
   997       __ mov(O7, reg_to_register_object(tmp_enc));
   998     }
   999     if (is_verified_oop_load) {
  1000       __ verify_oop(reg_to_register_object(dst_enc));
  1003 #endif
  1006 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
  1007   // The method which records debug information at every safepoint
  1008   // expects the call to be the first instruction in the snippet as
  1009   // it creates a PcDesc structure which tracks the offset of a call
  1010   // from the start of the codeBlob. This offset is computed as
  1011   // code_end() - code_begin() of the code which has been emitted
  1012   // so far.
  1013   // In this particular case we have skirted around the problem by
  1014   // putting the "mov" instruction in the delay slot but the problem
  1015   // may bite us again at some other point and a cleaner/generic
  1016   // solution using relocations would be needed.
  1017   MacroAssembler _masm(&cbuf);
  1018   __ set_inst_mark();
  1020   // We flush the current window just so that there is a valid stack copy
  1021   // the fact that the current window becomes active again instantly is
  1022   // not a problem there is nothing live in it.
  1024 #ifdef ASSERT
  1025   int startpos = __ offset();
  1026 #endif /* ASSERT */
  1028   __ call((address)entry_point, rtype);
  1030   if (preserve_g2)   __ delayed()->mov(G2, L7);
  1031   else __ delayed()->nop();
  1033   if (preserve_g2)   __ mov(L7, G2);
  1035 #ifdef ASSERT
  1036   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
  1037 #ifdef _LP64
  1038     // Trash argument dump slots.
  1039     __ set(0xb0b8ac0db0b8ac0d, G1);
  1040     __ mov(G1, G5);
  1041     __ stx(G1, SP, STACK_BIAS + 0x80);
  1042     __ stx(G1, SP, STACK_BIAS + 0x88);
  1043     __ stx(G1, SP, STACK_BIAS + 0x90);
  1044     __ stx(G1, SP, STACK_BIAS + 0x98);
  1045     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1046     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1047 #else // _LP64
  1048     // this is also a native call, so smash the first 7 stack locations,
  1049     // and the various registers
  1051     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1052     // while [SP+0x44..0x58] are the argument dump slots.
  1053     __ set((intptr_t)0xbaadf00d, G1);
  1054     __ mov(G1, G5);
  1055     __ sllx(G1, 32, G1);
  1056     __ or3(G1, G5, G1);
  1057     __ mov(G1, G5);
  1058     __ stx(G1, SP, 0x40);
  1059     __ stx(G1, SP, 0x48);
  1060     __ stx(G1, SP, 0x50);
  1061     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1062 #endif // _LP64
  1064 #endif /*ASSERT*/
  1067 //=============================================================================
  1068 // REQUIRED FUNCTIONALITY for encoding
  1069 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1070 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1073 //=============================================================================
  1074 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1076 int Compile::ConstantTable::calculate_table_base_offset() const {
  1077   if (UseRDPCForConstantTableBase) {
  1078     // The table base offset might be less but then it fits into
  1079     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1080     return Assembler::min_simm13();
  1081   } else {
  1082     int offset = -(size() / 2);
  1083     if (!Assembler::is_simm13(offset)) {
  1084       offset = Assembler::min_simm13();
  1086     return offset;
  1090 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1091 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1092   ShouldNotReachHere();
  1095 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1096   Compile* C = ra_->C;
  1097   Compile::ConstantTable& constant_table = C->constant_table();
  1098   MacroAssembler _masm(&cbuf);
  1100   Register r = as_Register(ra_->get_encode(this));
  1101   CodeSection* consts_section = __ code()->consts();
  1102   int consts_size = consts_section->align_at_start(consts_section->size());
  1103   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1105   if (UseRDPCForConstantTableBase) {
  1106     // For the following RDPC logic to work correctly the consts
  1107     // section must be allocated right before the insts section.  This
  1108     // assert checks for that.  The layout and the SECT_* constants
  1109     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1110     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1111     int insts_offset = __ offset();
  1113     // Layout:
  1114     //
  1115     // |----------- consts section ------------|----------- insts section -----------...
  1116     // |------ constant table -----|- padding -|------------------x----
  1117     //                                                            \ current PC (RDPC instruction)
  1118     // |<------------- consts_size ----------->|<- insts_offset ->|
  1119     //                                                            \ table base
  1120     // The table base offset is later added to the load displacement
  1121     // so it has to be negative.
  1122     int table_base_offset = -(consts_size + insts_offset);
  1123     int disp;
  1125     // If the displacement from the current PC to the constant table
  1126     // base fits into simm13 we set the constant table base to the
  1127     // current PC.
  1128     if (Assembler::is_simm13(table_base_offset)) {
  1129       constant_table.set_table_base_offset(table_base_offset);
  1130       disp = 0;
  1131     } else {
  1132       // Otherwise we set the constant table base offset to the
  1133       // maximum negative displacement of load instructions to keep
  1134       // the disp as small as possible:
  1135       //
  1136       // |<------------- consts_size ----------->|<- insts_offset ->|
  1137       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1138       //                                  \ table base
  1139       table_base_offset = Assembler::min_simm13();
  1140       constant_table.set_table_base_offset(table_base_offset);
  1141       disp = (consts_size + insts_offset) + table_base_offset;
  1144     __ rdpc(r);
  1146     if (disp != 0) {
  1147       assert(r != O7, "need temporary");
  1148       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1151   else {
  1152     // Materialize the constant table base.
  1153     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1154     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1155     AddressLiteral base(baseaddr, rspec);
  1156     __ set(base, r);
  1160 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1161   if (UseRDPCForConstantTableBase) {
  1162     // This is really the worst case but generally it's only 1 instruction.
  1163     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1164   } else {
  1165     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1169 #ifndef PRODUCT
  1170 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1171   char reg[128];
  1172   ra_->dump_register(this, reg);
  1173   if (UseRDPCForConstantTableBase) {
  1174     st->print("RDPC   %s\t! constant table base", reg);
  1175   } else {
  1176     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1179 #endif
  1182 //=============================================================================
  1184 #ifndef PRODUCT
  1185 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1186   Compile* C = ra_->C;
  1188   for (int i = 0; i < OptoPrologueNops; i++) {
  1189     st->print_cr("NOP"); st->print("\t");
  1192   if( VerifyThread ) {
  1193     st->print_cr("Verify_Thread"); st->print("\t");
  1196   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1198   // Calls to C2R adapters often do not accept exceptional returns.
  1199   // We require that their callers must bang for them.  But be careful, because
  1200   // some VM calls (such as call site linkage) can use several kilobytes of
  1201   // stack.  But the stack safety zone should account for that.
  1202   // See bugs 4446381, 4468289, 4497237.
  1203   if (C->need_stack_bang(framesize)) {
  1204     st->print_cr("! stack bang"); st->print("\t");
  1207   if (Assembler::is_simm13(-framesize)) {
  1208     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1209   } else {
  1210     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1211     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1212     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1216 #endif
  1218 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1219   Compile* C = ra_->C;
  1220   MacroAssembler _masm(&cbuf);
  1222   for (int i = 0; i < OptoPrologueNops; i++) {
  1223     __ nop();
  1226   __ verify_thread();
  1228   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1229   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1230   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1232   // Calls to C2R adapters often do not accept exceptional returns.
  1233   // We require that their callers must bang for them.  But be careful, because
  1234   // some VM calls (such as call site linkage) can use several kilobytes of
  1235   // stack.  But the stack safety zone should account for that.
  1236   // See bugs 4446381, 4468289, 4497237.
  1237   if (C->need_stack_bang(framesize)) {
  1238     __ generate_stack_overflow_check(framesize);
  1241   if (Assembler::is_simm13(-framesize)) {
  1242     __ save(SP, -framesize, SP);
  1243   } else {
  1244     __ sethi(-framesize & ~0x3ff, G3);
  1245     __ add(G3, -framesize & 0x3ff, G3);
  1246     __ save(SP, G3, SP);
  1248   C->set_frame_complete( __ offset() );
  1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1251     // NOTE: We set the table base offset here because users might be
  1252     // emitted before MachConstantBaseNode.
  1253     Compile::ConstantTable& constant_table = C->constant_table();
  1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1259   return MachNode::size(ra_);
  1262 int MachPrologNode::reloc() const {
  1263   return 10; // a large enough number
  1266 //=============================================================================
  1267 #ifndef PRODUCT
  1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1269   Compile* C = ra_->C;
  1271   if( do_polling() && ra_->C->is_method_compilation() ) {
  1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1273 #ifdef _LP64
  1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1275 #else
  1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1277 #endif
  1280   if( do_polling() )
  1281     st->print("RET\n\t");
  1283   st->print("RESTORE");
  1285 #endif
  1287 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1288   MacroAssembler _masm(&cbuf);
  1289   Compile* C = ra_->C;
  1291   __ verify_thread();
  1293   // If this does safepoint polling, then do it here
  1294   if( do_polling() && ra_->C->is_method_compilation() ) {
  1295     AddressLiteral polling_page(os::get_polling_page());
  1296     __ sethi(polling_page, L0);
  1297     __ relocate(relocInfo::poll_return_type);
  1298     __ ld_ptr( L0, 0, G0 );
  1301   // If this is a return, then stuff the restore in the delay slot
  1302   if( do_polling() ) {
  1303     __ ret();
  1304     __ delayed()->restore();
  1305   } else {
  1306     __ restore();
  1310 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1311   return MachNode::size(ra_);
  1314 int MachEpilogNode::reloc() const {
  1315   return 16; // a large enough number
  1318 const Pipeline * MachEpilogNode::pipeline() const {
  1319   return MachNode::pipeline_class();
  1322 int MachEpilogNode::safepoint_offset() const {
  1323   assert( do_polling(), "no return for this epilog node");
  1324   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1327 //=============================================================================
  1329 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1330 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1331 static enum RC rc_class( OptoReg::Name reg ) {
  1332   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1333   if (OptoReg::is_stack(reg)) return rc_stack;
  1334   VMReg r = OptoReg::as_VMReg(reg);
  1335   if (r->is_Register()) return rc_int;
  1336   assert(r->is_FloatRegister(), "must be");
  1337   return rc_float;
  1340 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1341   if (cbuf) {
  1342     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1344 #ifndef PRODUCT
  1345   else if (!do_size) {
  1346     if (size != 0) st->print("\n\t");
  1347     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1348     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1350 #endif
  1351   return size+4;
  1354 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1355   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1356 #ifndef PRODUCT
  1357   else if( !do_size ) {
  1358     if( size != 0 ) st->print("\n\t");
  1359     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1361 #endif
  1362   return size+4;
  1365 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1366                                         PhaseRegAlloc *ra_,
  1367                                         bool do_size,
  1368                                         outputStream* st ) const {
  1369   // Get registers to move
  1370   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1371   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1372   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1373   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1375   enum RC src_second_rc = rc_class(src_second);
  1376   enum RC src_first_rc = rc_class(src_first);
  1377   enum RC dst_second_rc = rc_class(dst_second);
  1378   enum RC dst_first_rc = rc_class(dst_first);
  1380   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1382   // Generate spill code!
  1383   int size = 0;
  1385   if( src_first == dst_first && src_second == dst_second )
  1386     return size;            // Self copy, no move
  1388   // --------------------------------------
  1389   // Check for mem-mem move.  Load into unused float registers and fall into
  1390   // the float-store case.
  1391   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1392     int offset = ra_->reg2offset(src_first);
  1393     // Further check for aligned-adjacent pair, so we can use a double load
  1394     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1395       src_second    = OptoReg::Name(R_F31_num);
  1396       src_second_rc = rc_float;
  1397       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1398     } else {
  1399       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1401     src_first    = OptoReg::Name(R_F30_num);
  1402     src_first_rc = rc_float;
  1405   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1406     int offset = ra_->reg2offset(src_second);
  1407     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1408     src_second    = OptoReg::Name(R_F31_num);
  1409     src_second_rc = rc_float;
  1412   // --------------------------------------
  1413   // Check for float->int copy; requires a trip through memory
  1414   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1415     int offset = frame::register_save_words*wordSize;
  1416     if (cbuf) {
  1417       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1418       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1419       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1420       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1422 #ifndef PRODUCT
  1423     else if (!do_size) {
  1424       if (size != 0) st->print("\n\t");
  1425       st->print(  "SUB    R_SP,16,R_SP\n");
  1426       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1427       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1428       st->print("\tADD    R_SP,16,R_SP\n");
  1430 #endif
  1431     size += 16;
  1434   // Check for float->int copy on T4
  1435   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1436     // Further check for aligned-adjacent pair, so we can use a double move
  1437     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1438       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1439     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1441   // Check for int->float copy on T4
  1442   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1443     // Further check for aligned-adjacent pair, so we can use a double move
  1444     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1445       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1446     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1449   // --------------------------------------
  1450   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1451   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1452   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1453   // there.  Misaligned sources only come from native-long-returns (handled
  1454   // special below).
  1455 #ifndef _LP64
  1456   if( src_first_rc == rc_int &&     // source is already big-endian
  1457       src_second_rc != rc_bad &&    // 64-bit move
  1458       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1459     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1460     // Do the big-endian flop.
  1461     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1462     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1464 #endif
  1466   // --------------------------------------
  1467   // Check for integer reg-reg copy
  1468   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1469 #ifndef _LP64
  1470     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1471       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1472       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1473       //       operand contains the least significant word of the 64-bit value and vice versa.
  1474       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1475       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1476       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1477       if( cbuf ) {
  1478         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1479         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1480         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1481 #ifndef PRODUCT
  1482       } else if( !do_size ) {
  1483         if( size != 0 ) st->print("\n\t");
  1484         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1485         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1486         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1487 #endif
  1489       return size+12;
  1491     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1492       // returning a long value in I0/I1
  1493       // a SpillCopy must be able to target a return instruction's reg_class
  1494       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1495       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1496       //       operand contains the least significant word of the 64-bit value and vice versa.
  1497       OptoReg::Name tdest = dst_first;
  1499       if (src_first == dst_first) {
  1500         tdest = OptoReg::Name(R_O7_num);
  1501         size += 4;
  1504       if( cbuf ) {
  1505         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1506         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1507         // ShrL_reg_imm6
  1508         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1509         // ShrR_reg_imm6  src, 0, dst
  1510         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1511         if (tdest != dst_first) {
  1512           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1515 #ifndef PRODUCT
  1516       else if( !do_size ) {
  1517         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1518         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1519         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1520         if (tdest != dst_first) {
  1521           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1524 #endif // PRODUCT
  1525       return size+8;
  1527 #endif // !_LP64
  1528     // Else normal reg-reg copy
  1529     assert( src_second != dst_first, "smashed second before evacuating it" );
  1530     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1531     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1532     // This moves an aligned adjacent pair.
  1533     // See if we are done.
  1534     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1535       return size;
  1538   // Check for integer store
  1539   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1540     int offset = ra_->reg2offset(dst_first);
  1541     // Further check for aligned-adjacent pair, so we can use a double store
  1542     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1543       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1544     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1547   // Check for integer load
  1548   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1549     int offset = ra_->reg2offset(src_first);
  1550     // Further check for aligned-adjacent pair, so we can use a double load
  1551     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1552       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1553     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1556   // Check for float reg-reg copy
  1557   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1558     // Further check for aligned-adjacent pair, so we can use a double move
  1559     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1560       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1561     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1564   // Check for float store
  1565   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1566     int offset = ra_->reg2offset(dst_first);
  1567     // Further check for aligned-adjacent pair, so we can use a double store
  1568     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1569       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1570     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1573   // Check for float load
  1574   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1575     int offset = ra_->reg2offset(src_first);
  1576     // Further check for aligned-adjacent pair, so we can use a double load
  1577     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1578       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1579     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1582   // --------------------------------------------------------------------
  1583   // Check for hi bits still needing moving.  Only happens for misaligned
  1584   // arguments to native calls.
  1585   if( src_second == dst_second )
  1586     return size;               // Self copy; no move
  1587   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1589 #ifndef _LP64
  1590   // In the LP64 build, all registers can be moved as aligned/adjacent
  1591   // pairs, so there's never any need to move the high bits separately.
  1592   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1593   // all sorts of silly alignment problems.
  1595   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1596   // 32-bits of a 64-bit register, but are needed in low bits of another
  1597   // register (else it's a hi-bits-to-hi-bits copy which should have
  1598   // happened already as part of a 64-bit move)
  1599   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1600     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1601     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1602     // Shift src_second down to dst_second's low bits.
  1603     if( cbuf ) {
  1604       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1605 #ifndef PRODUCT
  1606     } else if( !do_size ) {
  1607       if( size != 0 ) st->print("\n\t");
  1608       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1609 #endif
  1611     return size+4;
  1614   // Check for high word integer store.  Must down-shift the hi bits
  1615   // into a temp register, then fall into the case of storing int bits.
  1616   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1617     // Shift src_second down to dst_second's low bits.
  1618     if( cbuf ) {
  1619       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1620 #ifndef PRODUCT
  1621     } else if( !do_size ) {
  1622       if( size != 0 ) st->print("\n\t");
  1623       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1624 #endif
  1626     size+=4;
  1627     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1630   // Check for high word integer load
  1631   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1632     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1634   // Check for high word integer store
  1635   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1636     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1638   // Check for high word float store
  1639   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1640     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1642 #endif // !_LP64
  1644   Unimplemented();
  1647 #ifndef PRODUCT
  1648 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1649   implementation( NULL, ra_, false, st );
  1651 #endif
  1653 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1654   implementation( &cbuf, ra_, false, NULL );
  1657 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1658   return implementation( NULL, ra_, true, NULL );
  1661 //=============================================================================
  1662 #ifndef PRODUCT
  1663 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1664   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1666 #endif
  1668 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1669   MacroAssembler _masm(&cbuf);
  1670   for(int i = 0; i < _count; i += 1) {
  1671     __ nop();
  1675 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1676   return 4 * _count;
  1680 //=============================================================================
  1681 #ifndef PRODUCT
  1682 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1683   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1684   int reg = ra_->get_reg_first(this);
  1685   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1687 #endif
  1689 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1690   MacroAssembler _masm(&cbuf);
  1691   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1692   int reg = ra_->get_encode(this);
  1694   if (Assembler::is_simm13(offset)) {
  1695      __ add(SP, offset, reg_to_register_object(reg));
  1696   } else {
  1697      __ set(offset, O7);
  1698      __ add(SP, O7, reg_to_register_object(reg));
  1702 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1703   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1704   assert(ra_ == ra_->C->regalloc(), "sanity");
  1705   return ra_->C->scratch_emit_size(this);
  1708 //=============================================================================
  1709 #ifndef PRODUCT
  1710 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1711   st->print_cr("\nUEP:");
  1712 #ifdef    _LP64
  1713   if (UseCompressedClassPointers) {
  1714     assert(Universe::heap() != NULL, "java heap should be initialized");
  1715     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1716     if (Universe::narrow_klass_base() != 0) {
  1717       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1718       if (Universe::narrow_klass_shift() != 0) {
  1719         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1721       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1722       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1723     } else {
  1724       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1726   } else {
  1727     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1729   st->print_cr("\tCMP    R_G5,R_G3" );
  1730   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1731 #else  // _LP64
  1732   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1733   st->print_cr("\tCMP    R_G5,R_G3" );
  1734   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1735 #endif // _LP64
  1737 #endif
  1739 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1740   MacroAssembler _masm(&cbuf);
  1741   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1742   Register temp_reg   = G3;
  1743   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1745   // Load klass from receiver
  1746   __ load_klass(O0, temp_reg);
  1747   // Compare against expected klass
  1748   __ cmp(temp_reg, G5_ic_reg);
  1749   // Branch to miss code, checks xcc or icc depending
  1750   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1753 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1754   return MachNode::size(ra_);
  1758 //=============================================================================
  1761 // Emit exception handler code.
  1762 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
  1763   Register temp_reg = G3;
  1764   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1765   MacroAssembler _masm(&cbuf);
  1767   address base =
  1768   __ start_a_stub(size_exception_handler());
  1769   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1771   int offset = __ offset();
  1773   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1774   __ delayed()->nop();
  1776   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1778   __ end_a_stub();
  1780   return offset;
  1783 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  1784   // Can't use any of the current frame's registers as we may have deopted
  1785   // at a poll and everything (including G3) can be live.
  1786   Register temp_reg = L0;
  1787   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1788   MacroAssembler _masm(&cbuf);
  1790   address base =
  1791   __ start_a_stub(size_deopt_handler());
  1792   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1794   int offset = __ offset();
  1795   __ save_frame(0);
  1796   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1797   __ delayed()->restore();
  1799   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1801   __ end_a_stub();
  1802   return offset;
  1806 // Given a register encoding, produce a Integer Register object
  1807 static Register reg_to_register_object(int register_encoding) {
  1808   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1809   return as_Register(register_encoding);
  1812 // Given a register encoding, produce a single-precision Float Register object
  1813 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1814   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1815   return as_SingleFloatRegister(register_encoding);
  1818 // Given a register encoding, produce a double-precision Float Register object
  1819 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1820   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1821   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1822   return as_DoubleFloatRegister(register_encoding);
  1825 const bool Matcher::match_rule_supported(int opcode) {
  1826   if (!has_match_rule(opcode))
  1827     return false;
  1829   switch (opcode) {
  1830   case Op_CountLeadingZerosI:
  1831   case Op_CountLeadingZerosL:
  1832   case Op_CountTrailingZerosI:
  1833   case Op_CountTrailingZerosL:
  1834   case Op_PopCountI:
  1835   case Op_PopCountL:
  1836     if (!UsePopCountInstruction)
  1837       return false;
  1838   case Op_CompareAndSwapL:
  1839 #ifdef _LP64
  1840   case Op_CompareAndSwapP:
  1841 #endif
  1842     if (!VM_Version::supports_cx8())
  1843       return false;
  1844     break;
  1847   return true;  // Per default match rules are supported.
  1850 int Matcher::regnum_to_fpu_offset(int regnum) {
  1851   return regnum - 32; // The FP registers are in the second chunk
  1854 #ifdef ASSERT
  1855 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1856 #endif
  1858 // Vector width in bytes
  1859 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1860   assert(MaxVectorSize == 8, "");
  1861   return 8;
  1864 // Vector ideal reg
  1865 const int Matcher::vector_ideal_reg(int size) {
  1866   assert(MaxVectorSize == 8, "");
  1867   return Op_RegD;
  1870 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1871   fatal("vector shift is not supported");
  1872   return Node::NotAMachineReg;
  1875 // Limits on vector size (number of elements) loaded into vector.
  1876 const int Matcher::max_vector_size(const BasicType bt) {
  1877   assert(is_java_primitive(bt), "only primitive type vectors");
  1878   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1881 const int Matcher::min_vector_size(const BasicType bt) {
  1882   return max_vector_size(bt); // Same as max.
  1885 // SPARC doesn't support misaligned vectors store/load.
  1886 const bool Matcher::misaligned_vectors_ok() {
  1887   return false;
  1890 // Current (2013) SPARC platforms need to read original key
  1891 // to construct decryption expanded key 
  1892 const bool Matcher::pass_original_key_for_aes() {
  1893   return true;
  1896 // USII supports fxtof through the whole range of number, USIII doesn't
  1897 const bool Matcher::convL2FSupported(void) {
  1898   return VM_Version::has_fast_fxtof();
  1901 // Is this branch offset short enough that a short branch can be used?
  1902 //
  1903 // NOTE: If the platform does not provide any short branch variants, then
  1904 //       this method should return false for offset 0.
  1905 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1906   // The passed offset is relative to address of the branch.
  1907   // Don't need to adjust the offset.
  1908   return UseCBCond && Assembler::is_simm12(offset);
  1911 const bool Matcher::isSimpleConstant64(jlong value) {
  1912   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1913   // Depends on optimizations in MacroAssembler::setx.
  1914   int hi = (int)(value >> 32);
  1915   int lo = (int)(value & ~0);
  1916   return (hi == 0) || (hi == -1) || (lo == 0);
  1919 // No scaling for the parameter the ClearArray node.
  1920 const bool Matcher::init_array_count_is_in_bytes = true;
  1922 // Threshold size for cleararray.
  1923 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1925 // No additional cost for CMOVL.
  1926 const int Matcher::long_cmove_cost() { return 0; }
  1928 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1929 const int Matcher::float_cmove_cost() {
  1930   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1933 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1934 const bool Matcher::require_postalloc_expand = false;
  1936 // Should the Matcher clone shifts on addressing modes, expecting them to
  1937 // be subsumed into complex addressing expressions or compute them into
  1938 // registers?  True for Intel but false for most RISCs
  1939 const bool Matcher::clone_shift_expressions = false;
  1941 // Do we need to mask the count passed to shift instructions or does
  1942 // the cpu only look at the lower 5/6 bits anyway?
  1943 const bool Matcher::need_masked_shift_count = false;
  1945 bool Matcher::narrow_oop_use_complex_address() {
  1946   NOT_LP64(ShouldNotCallThis());
  1947   assert(UseCompressedOops, "only for compressed oops code");
  1948   return false;
  1951 bool Matcher::narrow_klass_use_complex_address() {
  1952   NOT_LP64(ShouldNotCallThis());
  1953   assert(UseCompressedClassPointers, "only for compressed klass code");
  1954   return false;
  1957 // Is it better to copy float constants, or load them directly from memory?
  1958 // Intel can load a float constant from a direct address, requiring no
  1959 // extra registers.  Most RISCs will have to materialize an address into a
  1960 // register first, so they would do better to copy the constant from stack.
  1961 const bool Matcher::rematerialize_float_constants = false;
  1963 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1964 // needed.  Else we split the double into 2 integer pieces and move it
  1965 // piece-by-piece.  Only happens when passing doubles into C code as the
  1966 // Java calling convention forces doubles to be aligned.
  1967 #ifdef _LP64
  1968 const bool Matcher::misaligned_doubles_ok = true;
  1969 #else
  1970 const bool Matcher::misaligned_doubles_ok = false;
  1971 #endif
  1973 // No-op on SPARC.
  1974 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1977 // Advertise here if the CPU requires explicit rounding operations
  1978 // to implement the UseStrictFP mode.
  1979 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1981 // Are floats conerted to double when stored to stack during deoptimization?
  1982 // Sparc does not handle callee-save floats.
  1983 bool Matcher::float_in_double() { return false; }
  1985 // Do ints take an entire long register or just half?
  1986 // Note that we if-def off of _LP64.
  1987 // The relevant question is how the int is callee-saved.  In _LP64
  1988 // the whole long is written but de-opt'ing will have to extract
  1989 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1990 #ifdef _LP64
  1991 const bool Matcher::int_in_long = true;
  1992 #else
  1993 const bool Matcher::int_in_long = false;
  1994 #endif
  1996 // Return whether or not this register is ever used as an argument.  This
  1997 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1998 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1999 // arguments in those registers not be available to the callee.
  2000 bool Matcher::can_be_java_arg( int reg ) {
  2001   // Standard sparc 6 args in registers
  2002   if( reg == R_I0_num ||
  2003       reg == R_I1_num ||
  2004       reg == R_I2_num ||
  2005       reg == R_I3_num ||
  2006       reg == R_I4_num ||
  2007       reg == R_I5_num ) return true;
  2008 #ifdef _LP64
  2009   // 64-bit builds can pass 64-bit pointers and longs in
  2010   // the high I registers
  2011   if( reg == R_I0H_num ||
  2012       reg == R_I1H_num ||
  2013       reg == R_I2H_num ||
  2014       reg == R_I3H_num ||
  2015       reg == R_I4H_num ||
  2016       reg == R_I5H_num ) return true;
  2018   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2019     return true;
  2022 #else
  2023   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2024   // Longs cannot be passed in O regs, because O regs become I regs
  2025   // after a 'save' and I regs get their high bits chopped off on
  2026   // interrupt.
  2027   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2028   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2029 #endif
  2030   // A few float args in registers
  2031   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2033   return false;
  2036 bool Matcher::is_spillable_arg( int reg ) {
  2037   return can_be_java_arg(reg);
  2040 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2041   // Use hardware SDIVX instruction when it is
  2042   // faster than a code which use multiply.
  2043   return VM_Version::has_fast_idiv();
  2046 // Register for DIVI projection of divmodI
  2047 RegMask Matcher::divI_proj_mask() {
  2048   ShouldNotReachHere();
  2049   return RegMask();
  2052 // Register for MODI projection of divmodI
  2053 RegMask Matcher::modI_proj_mask() {
  2054   ShouldNotReachHere();
  2055   return RegMask();
  2058 // Register for DIVL projection of divmodL
  2059 RegMask Matcher::divL_proj_mask() {
  2060   ShouldNotReachHere();
  2061   return RegMask();
  2064 // Register for MODL projection of divmodL
  2065 RegMask Matcher::modL_proj_mask() {
  2066   ShouldNotReachHere();
  2067   return RegMask();
  2070 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2071   return L7_REGP_mask();
  2074 %}
  2077 // The intptr_t operand types, defined by textual substitution.
  2078 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2079 #ifdef _LP64
  2080 #define immX      immL
  2081 #define immX13    immL13
  2082 #define immX13m7  immL13m7
  2083 #define iRegX     iRegL
  2084 #define g1RegX    g1RegL
  2085 #else
  2086 #define immX      immI
  2087 #define immX13    immI13
  2088 #define immX13m7  immI13m7
  2089 #define iRegX     iRegI
  2090 #define g1RegX    g1RegI
  2091 #endif
  2093 //----------ENCODING BLOCK-----------------------------------------------------
  2094 // This block specifies the encoding classes used by the compiler to output
  2095 // byte streams.  Encoding classes are parameterized macros used by
  2096 // Machine Instruction Nodes in order to generate the bit encoding of the
  2097 // instruction.  Operands specify their base encoding interface with the
  2098 // interface keyword.  There are currently supported four interfaces,
  2099 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2100 // operand to generate a function which returns its register number when
  2101 // queried.   CONST_INTER causes an operand to generate a function which
  2102 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2103 // operand to generate four functions which return the Base Register, the
  2104 // Index Register, the Scale Value, and the Offset Value of the operand when
  2105 // queried.  COND_INTER causes an operand to generate six functions which
  2106 // return the encoding code (ie - encoding bits for the instruction)
  2107 // associated with each basic boolean condition for a conditional instruction.
  2108 //
  2109 // Instructions specify two basic values for encoding.  Again, a function
  2110 // is available to check if the constant displacement is an oop. They use the
  2111 // ins_encode keyword to specify their encoding classes (which must be
  2112 // a sequence of enc_class names, and their parameters, specified in
  2113 // the encoding block), and they use the
  2114 // opcode keyword to specify, in order, their primary, secondary, and
  2115 // tertiary opcode.  Only the opcode sections which a particular instruction
  2116 // needs for encoding need to be specified.
  2117 encode %{
  2118   enc_class enc_untested %{
  2119 #ifdef ASSERT
  2120     MacroAssembler _masm(&cbuf);
  2121     __ untested("encoding");
  2122 #endif
  2123   %}
  2125   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2126     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
  2127                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2128   %}
  2130   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2131     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2132                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2133   %}
  2135   enc_class form3_mem_prefetch_read( memory mem ) %{
  2136     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2137                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2138   %}
  2140   enc_class form3_mem_prefetch_write( memory mem ) %{
  2141     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2142                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2143   %}
  2145   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2146     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2147     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2148     guarantee($mem$$index == R_G0_enc, "double index?");
  2149     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2150     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2151     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2152     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2153   %}
  2155   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2156     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2157     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2158     guarantee($mem$$index == R_G0_enc, "double index?");
  2159     // Load long with 2 instructions
  2160     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2161     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2162   %}
  2164   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2165   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2166     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2167     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2168   %}
  2170   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2171     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2172     if( $rs2$$reg != $rd$$reg )
  2173       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2174   %}
  2176   // Target lo half of long
  2177   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2178     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2179     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2180       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2181   %}
  2183   // Source lo half of long
  2184   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2185     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2186     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2187       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2188   %}
  2190   // Target hi half of long
  2191   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2192     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2193   %}
  2195   // Source lo half of long, and leave it sign extended.
  2196   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2197     // Sign extend low half
  2198     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2199   %}
  2201   // Source hi half of long, and leave it sign extended.
  2202   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2203     // Shift high half to low half
  2204     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2205   %}
  2207   // Source hi half of long
  2208   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2209     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2210     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2211       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2212   %}
  2214   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2215     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2216   %}
  2218   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2219     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2220     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2221   %}
  2223   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2224     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2225     // clear if nothing else is happening
  2226     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2227     // blt,a,pn done
  2228     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2229     // mov dst,-1 in delay slot
  2230     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2231   %}
  2233   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2234     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2235   %}
  2237   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2238     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2239   %}
  2241   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2242     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2243   %}
  2245   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2246     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2247   %}
  2249   enc_class move_return_pc_to_o1() %{
  2250     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2251   %}
  2253 #ifdef _LP64
  2254   /* %%% merge with enc_to_bool */
  2255   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2256     MacroAssembler _masm(&cbuf);
  2258     Register   src_reg = reg_to_register_object($src$$reg);
  2259     Register   dst_reg = reg_to_register_object($dst$$reg);
  2260     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2261   %}
  2262 #endif
  2264   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2265     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2266     MacroAssembler _masm(&cbuf);
  2268     Register   p_reg = reg_to_register_object($p$$reg);
  2269     Register   q_reg = reg_to_register_object($q$$reg);
  2270     Register   y_reg = reg_to_register_object($y$$reg);
  2271     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2273     __ subcc( p_reg, q_reg,   p_reg );
  2274     __ add  ( p_reg, y_reg, tmp_reg );
  2275     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2276   %}
  2278   enc_class form_d2i_helper(regD src, regF dst) %{
  2279     // fcmp %fcc0,$src,$src
  2280     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2281     // branch %fcc0 not-nan, predict taken
  2282     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2283     // fdtoi $src,$dst
  2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2285     // fitos $dst,$dst (if nan)
  2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2287     // clear $dst (if nan)
  2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2289     // carry on here...
  2290   %}
  2292   enc_class form_d2l_helper(regD src, regD dst) %{
  2293     // fcmp %fcc0,$src,$src  check for NAN
  2294     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2295     // branch %fcc0 not-nan, predict taken
  2296     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2297     // fdtox $src,$dst   convert in delay slot
  2298     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2299     // fxtod $dst,$dst  (if nan)
  2300     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2301     // clear $dst (if nan)
  2302     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2303     // carry on here...
  2304   %}
  2306   enc_class form_f2i_helper(regF src, regF dst) %{
  2307     // fcmps %fcc0,$src,$src
  2308     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2309     // branch %fcc0 not-nan, predict taken
  2310     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2311     // fstoi $src,$dst
  2312     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2313     // fitos $dst,$dst (if nan)
  2314     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2315     // clear $dst (if nan)
  2316     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2317     // carry on here...
  2318   %}
  2320   enc_class form_f2l_helper(regF src, regD dst) %{
  2321     // fcmps %fcc0,$src,$src
  2322     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2323     // branch %fcc0 not-nan, predict taken
  2324     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2325     // fstox $src,$dst
  2326     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2327     // fxtod $dst,$dst (if nan)
  2328     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2329     // clear $dst (if nan)
  2330     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2331     // carry on here...
  2332   %}
  2334   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2335   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2336   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2337   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2339   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2341   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2342   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2344   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2345     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2346   %}
  2348   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2349     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2350   %}
  2352   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2353     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2354   %}
  2356   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2357     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2358   %}
  2360   enc_class form3_convI2F(regF rs2, regF rd) %{
  2361     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2362   %}
  2364   // Encloding class for traceable jumps
  2365   enc_class form_jmpl(g3RegP dest) %{
  2366     emit_jmpl(cbuf, $dest$$reg);
  2367   %}
  2369   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2370     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2371   %}
  2373   enc_class form2_nop() %{
  2374     emit_nop(cbuf);
  2375   %}
  2377   enc_class form2_illtrap() %{
  2378     emit_illtrap(cbuf);
  2379   %}
  2382   // Compare longs and convert into -1, 0, 1.
  2383   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2384     // CMP $src1,$src2
  2385     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2386     // blt,a,pn done
  2387     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2388     // mov dst,-1 in delay slot
  2389     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2390     // bgt,a,pn done
  2391     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2392     // mov dst,1 in delay slot
  2393     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2394     // CLR    $dst
  2395     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2396   %}
  2398   enc_class enc_PartialSubtypeCheck() %{
  2399     MacroAssembler _masm(&cbuf);
  2400     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2401     __ delayed()->nop();
  2402   %}
  2404   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2405     MacroAssembler _masm(&cbuf);
  2406     Label* L = $labl$$label;
  2407     Assembler::Predict predict_taken =
  2408       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2410     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2411     __ delayed()->nop();
  2412   %}
  2414   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2415     MacroAssembler _masm(&cbuf);
  2416     Label* L = $labl$$label;
  2417     Assembler::Predict predict_taken =
  2418       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2420     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2421     __ delayed()->nop();
  2422   %}
  2424   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2425     int op = (Assembler::arith_op << 30) |
  2426              ($dst$$reg << 25) |
  2427              (Assembler::movcc_op3 << 19) |
  2428              (1 << 18) |                    // cc2 bit for 'icc'
  2429              ($cmp$$cmpcode << 14) |
  2430              (0 << 13) |                    // select register move
  2431              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2432              ($src$$reg << 0);
  2433     cbuf.insts()->emit_int32(op);
  2434   %}
  2436   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2437     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2438     int op = (Assembler::arith_op << 30) |
  2439              ($dst$$reg << 25) |
  2440              (Assembler::movcc_op3 << 19) |
  2441              (1 << 18) |                    // cc2 bit for 'icc'
  2442              ($cmp$$cmpcode << 14) |
  2443              (1 << 13) |                    // select immediate move
  2444              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2445              (simm11 << 0);
  2446     cbuf.insts()->emit_int32(op);
  2447   %}
  2449   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2450     int op = (Assembler::arith_op << 30) |
  2451              ($dst$$reg << 25) |
  2452              (Assembler::movcc_op3 << 19) |
  2453              (0 << 18) |                    // cc2 bit for 'fccX'
  2454              ($cmp$$cmpcode << 14) |
  2455              (0 << 13) |                    // select register move
  2456              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2457              ($src$$reg << 0);
  2458     cbuf.insts()->emit_int32(op);
  2459   %}
  2461   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2462     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2463     int op = (Assembler::arith_op << 30) |
  2464              ($dst$$reg << 25) |
  2465              (Assembler::movcc_op3 << 19) |
  2466              (0 << 18) |                    // cc2 bit for 'fccX'
  2467              ($cmp$$cmpcode << 14) |
  2468              (1 << 13) |                    // select immediate move
  2469              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2470              (simm11 << 0);
  2471     cbuf.insts()->emit_int32(op);
  2472   %}
  2474   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2475     int op = (Assembler::arith_op << 30) |
  2476              ($dst$$reg << 25) |
  2477              (Assembler::fpop2_op3 << 19) |
  2478              (0 << 18) |
  2479              ($cmp$$cmpcode << 14) |
  2480              (1 << 13) |                    // select register move
  2481              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2482              ($primary << 5) |              // select single, double or quad
  2483              ($src$$reg << 0);
  2484     cbuf.insts()->emit_int32(op);
  2485   %}
  2487   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2488     int op = (Assembler::arith_op << 30) |
  2489              ($dst$$reg << 25) |
  2490              (Assembler::fpop2_op3 << 19) |
  2491              (0 << 18) |
  2492              ($cmp$$cmpcode << 14) |
  2493              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2494              ($primary << 5) |              // select single, double or quad
  2495              ($src$$reg << 0);
  2496     cbuf.insts()->emit_int32(op);
  2497   %}
  2499   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2500   // the condition comes from opcode-field instead of an argument.
  2501   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2502     int op = (Assembler::arith_op << 30) |
  2503              ($dst$$reg << 25) |
  2504              (Assembler::movcc_op3 << 19) |
  2505              (1 << 18) |                    // cc2 bit for 'icc'
  2506              ($primary << 14) |
  2507              (0 << 13) |                    // select register move
  2508              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2509              ($src$$reg << 0);
  2510     cbuf.insts()->emit_int32(op);
  2511   %}
  2513   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2514     int op = (Assembler::arith_op << 30) |
  2515              ($dst$$reg << 25) |
  2516              (Assembler::movcc_op3 << 19) |
  2517              (6 << 16) |                    // cc2 bit for 'xcc'
  2518              ($primary << 14) |
  2519              (0 << 13) |                    // select register move
  2520              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2521              ($src$$reg << 0);
  2522     cbuf.insts()->emit_int32(op);
  2523   %}
  2525   enc_class Set13( immI13 src, iRegI rd ) %{
  2526     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2527   %}
  2529   enc_class SetHi22( immI src, iRegI rd ) %{
  2530     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2531   %}
  2533   enc_class Set32( immI src, iRegI rd ) %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2536   %}
  2538   enc_class call_epilog %{
  2539     if( VerifyStackAtCalls ) {
  2540       MacroAssembler _masm(&cbuf);
  2541       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2542       Register temp_reg = G3;
  2543       __ add(SP, framesize, temp_reg);
  2544       __ cmp(temp_reg, FP);
  2545       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2547   %}
  2549   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2550   // to G1 so the register allocator will not have to deal with the misaligned register
  2551   // pair.
  2552   enc_class adjust_long_from_native_call %{
  2553 #ifndef _LP64
  2554     if (returns_long()) {
  2555       //    sllx  O0,32,O0
  2556       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2557       //    srl   O1,0,O1
  2558       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2559       //    or    O0,O1,G1
  2560       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2562 #endif
  2563   %}
  2565   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2566     // CALL directly to the runtime
  2567     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2568     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2569                     /*preserve_g2=*/true);
  2570   %}
  2572   enc_class preserve_SP %{
  2573     MacroAssembler _masm(&cbuf);
  2574     __ mov(SP, L7_mh_SP_save);
  2575   %}
  2577   enc_class restore_SP %{
  2578     MacroAssembler _masm(&cbuf);
  2579     __ mov(L7_mh_SP_save, SP);
  2580   %}
  2582   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2583     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2584     // who we intended to call.
  2585     if (!_method) {
  2586       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2587     } else if (_optimized_virtual) {
  2588       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2589     } else {
  2590       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2592     if (_method) {  // Emit stub for static call.
  2593       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2595   %}
  2597   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2598     MacroAssembler _masm(&cbuf);
  2599     __ set_inst_mark();
  2600     int vtable_index = this->_vtable_index;
  2601     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2602     if (vtable_index < 0) {
  2603       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2604       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2605       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2606       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2607       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2608       __ ic_call((address)$meth$$method);
  2609     } else {
  2610       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2611       // Just go thru the vtable
  2612       // get receiver klass (receiver already checked for non-null)
  2613       // If we end up going thru a c2i adapter interpreter expects method in G5
  2614       int off = __ offset();
  2615       __ load_klass(O0, G3_scratch);
  2616       int klass_load_size;
  2617       if (UseCompressedClassPointers) {
  2618         assert(Universe::heap() != NULL, "java heap should be initialized");
  2619         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2620       } else {
  2621         klass_load_size = 1*BytesPerInstWord;
  2623       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2624       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2625       if (Assembler::is_simm13(v_off)) {
  2626         __ ld_ptr(G3, v_off, G5_method);
  2627       } else {
  2628         // Generate 2 instructions
  2629         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2630         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2631         // ld_ptr, set_hi, set
  2632         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2633                "Unexpected instruction size(s)");
  2634         __ ld_ptr(G3, G5_method, G5_method);
  2636       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2637       // However it may very well end up in handle_wrong_method if the
  2638       // method is abstract for the particular class.
  2639       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2640       // jump to target (either compiled code or c2iadapter)
  2641       __ jmpl(G3_scratch, G0, O7);
  2642       __ delayed()->nop();
  2644   %}
  2646   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2647     MacroAssembler _masm(&cbuf);
  2649     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2650     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2651                               // we might be calling a C2I adapter which needs it.
  2653     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2654     // Load nmethod
  2655     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2657     // CALL to compiled java, indirect the contents of G3
  2658     __ set_inst_mark();
  2659     __ callr(temp_reg, G0);
  2660     __ delayed()->nop();
  2661   %}
  2663 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2664     MacroAssembler _masm(&cbuf);
  2665     Register Rdividend = reg_to_register_object($src1$$reg);
  2666     Register Rdivisor = reg_to_register_object($src2$$reg);
  2667     Register Rresult = reg_to_register_object($dst$$reg);
  2669     __ sra(Rdivisor, 0, Rdivisor);
  2670     __ sra(Rdividend, 0, Rdividend);
  2671     __ sdivx(Rdividend, Rdivisor, Rresult);
  2672 %}
  2674 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2675     MacroAssembler _masm(&cbuf);
  2677     Register Rdividend = reg_to_register_object($src1$$reg);
  2678     int divisor = $imm$$constant;
  2679     Register Rresult = reg_to_register_object($dst$$reg);
  2681     __ sra(Rdividend, 0, Rdividend);
  2682     __ sdivx(Rdividend, divisor, Rresult);
  2683 %}
  2685 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2686     MacroAssembler _masm(&cbuf);
  2687     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2688     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2689     Register Rdst  = reg_to_register_object($dst$$reg);
  2691     __ sra( Rsrc1, 0, Rsrc1 );
  2692     __ sra( Rsrc2, 0, Rsrc2 );
  2693     __ mulx( Rsrc1, Rsrc2, Rdst );
  2694     __ srlx( Rdst, 32, Rdst );
  2695 %}
  2697 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2698     MacroAssembler _masm(&cbuf);
  2699     Register Rdividend = reg_to_register_object($src1$$reg);
  2700     Register Rdivisor = reg_to_register_object($src2$$reg);
  2701     Register Rresult = reg_to_register_object($dst$$reg);
  2702     Register Rscratch = reg_to_register_object($scratch$$reg);
  2704     assert(Rdividend != Rscratch, "");
  2705     assert(Rdivisor  != Rscratch, "");
  2707     __ sra(Rdividend, 0, Rdividend);
  2708     __ sra(Rdivisor, 0, Rdivisor);
  2709     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2710     __ mulx(Rscratch, Rdivisor, Rscratch);
  2711     __ sub(Rdividend, Rscratch, Rresult);
  2712 %}
  2714 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2715     MacroAssembler _masm(&cbuf);
  2717     Register Rdividend = reg_to_register_object($src1$$reg);
  2718     int divisor = $imm$$constant;
  2719     Register Rresult = reg_to_register_object($dst$$reg);
  2720     Register Rscratch = reg_to_register_object($scratch$$reg);
  2722     assert(Rdividend != Rscratch, "");
  2724     __ sra(Rdividend, 0, Rdividend);
  2725     __ sdivx(Rdividend, divisor, Rscratch);
  2726     __ mulx(Rscratch, divisor, Rscratch);
  2727     __ sub(Rdividend, Rscratch, Rresult);
  2728 %}
  2730 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2731     MacroAssembler _masm(&cbuf);
  2733     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2734     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2736     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2737 %}
  2739 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2740     MacroAssembler _masm(&cbuf);
  2742     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2743     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2745     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2746 %}
  2748 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2749     MacroAssembler _masm(&cbuf);
  2751     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2752     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2754     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2755 %}
  2757 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2758     MacroAssembler _masm(&cbuf);
  2760     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2761     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2763     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2764 %}
  2766 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2767     MacroAssembler _masm(&cbuf);
  2769     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2770     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2772     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2773 %}
  2775 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2776     MacroAssembler _masm(&cbuf);
  2778     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2779     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2781     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2782 %}
  2784 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2785     MacroAssembler _masm(&cbuf);
  2787     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2788     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2790     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2791 %}
  2793 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2794     MacroAssembler _masm(&cbuf);
  2796     Register Roop  = reg_to_register_object($oop$$reg);
  2797     Register Rbox  = reg_to_register_object($box$$reg);
  2798     Register Rscratch = reg_to_register_object($scratch$$reg);
  2799     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2801     assert(Roop  != Rscratch, "");
  2802     assert(Roop  != Rmark, "");
  2803     assert(Rbox  != Rscratch, "");
  2804     assert(Rbox  != Rmark, "");
  2806     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2807 %}
  2809 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2810     MacroAssembler _masm(&cbuf);
  2812     Register Roop  = reg_to_register_object($oop$$reg);
  2813     Register Rbox  = reg_to_register_object($box$$reg);
  2814     Register Rscratch = reg_to_register_object($scratch$$reg);
  2815     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2817     assert(Roop  != Rscratch, "");
  2818     assert(Roop  != Rmark, "");
  2819     assert(Rbox  != Rscratch, "");
  2820     assert(Rbox  != Rmark, "");
  2822     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2823   %}
  2825   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2826     MacroAssembler _masm(&cbuf);
  2827     Register Rmem = reg_to_register_object($mem$$reg);
  2828     Register Rold = reg_to_register_object($old$$reg);
  2829     Register Rnew = reg_to_register_object($new$$reg);
  2831     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2832     __ cmp( Rold, Rnew );
  2833   %}
  2835   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2836     Register Rmem = reg_to_register_object($mem$$reg);
  2837     Register Rold = reg_to_register_object($old$$reg);
  2838     Register Rnew = reg_to_register_object($new$$reg);
  2840     MacroAssembler _masm(&cbuf);
  2841     __ mov(Rnew, O7);
  2842     __ casx(Rmem, Rold, O7);
  2843     __ cmp( Rold, O7 );
  2844   %}
  2846   // raw int cas, used for compareAndSwap
  2847   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2848     Register Rmem = reg_to_register_object($mem$$reg);
  2849     Register Rold = reg_to_register_object($old$$reg);
  2850     Register Rnew = reg_to_register_object($new$$reg);
  2852     MacroAssembler _masm(&cbuf);
  2853     __ mov(Rnew, O7);
  2854     __ cas(Rmem, Rold, O7);
  2855     __ cmp( Rold, O7 );
  2856   %}
  2858   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2859     Register Rres = reg_to_register_object($res$$reg);
  2861     MacroAssembler _masm(&cbuf);
  2862     __ mov(1, Rres);
  2863     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2864   %}
  2866   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2867     Register Rres = reg_to_register_object($res$$reg);
  2869     MacroAssembler _masm(&cbuf);
  2870     __ mov(1, Rres);
  2871     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2872   %}
  2874   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2875     MacroAssembler _masm(&cbuf);
  2876     Register Rdst = reg_to_register_object($dst$$reg);
  2877     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2878                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2879     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2880                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2882     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2883     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2884   %}
  2887   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2888     Label Ldone, Lloop;
  2889     MacroAssembler _masm(&cbuf);
  2891     Register   str1_reg = reg_to_register_object($str1$$reg);
  2892     Register   str2_reg = reg_to_register_object($str2$$reg);
  2893     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2894     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2895     Register result_reg = reg_to_register_object($result$$reg);
  2897     assert(result_reg != str1_reg &&
  2898            result_reg != str2_reg &&
  2899            result_reg != cnt1_reg &&
  2900            result_reg != cnt2_reg ,
  2901            "need different registers");
  2903     // Compute the minimum of the string lengths(str1_reg) and the
  2904     // difference of the string lengths (stack)
  2906     // See if the lengths are different, and calculate min in str1_reg.
  2907     // Stash diff in O7 in case we need it for a tie-breaker.
  2908     Label Lskip;
  2909     __ subcc(cnt1_reg, cnt2_reg, O7);
  2910     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2911     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2912     // cnt2 is shorter, so use its count:
  2913     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2914     __ bind(Lskip);
  2916     // reallocate cnt1_reg, cnt2_reg, result_reg
  2917     // Note:  limit_reg holds the string length pre-scaled by 2
  2918     Register limit_reg =   cnt1_reg;
  2919     Register  chr2_reg =   cnt2_reg;
  2920     Register  chr1_reg = result_reg;
  2921     // str{12} are the base pointers
  2923     // Is the minimum length zero?
  2924     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2925     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2926     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2928     // Load first characters
  2929     __ lduh(str1_reg, 0, chr1_reg);
  2930     __ lduh(str2_reg, 0, chr2_reg);
  2932     // Compare first characters
  2933     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2934     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2935     assert(chr1_reg == result_reg, "result must be pre-placed");
  2936     __ delayed()->nop();
  2939       // Check after comparing first character to see if strings are equivalent
  2940       Label LSkip2;
  2941       // Check if the strings start at same location
  2942       __ cmp(str1_reg, str2_reg);
  2943       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2944       __ delayed()->nop();
  2946       // Check if the length difference is zero (in O7)
  2947       __ cmp(G0, O7);
  2948       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2949       __ delayed()->mov(G0, result_reg);  // result is zero
  2951       // Strings might not be equal
  2952       __ bind(LSkip2);
  2955     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2956     __ signx(limit_reg);
  2958     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2959     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2960     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2962     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2963     __ add(str1_reg, limit_reg, str1_reg);
  2964     __ add(str2_reg, limit_reg, str2_reg);
  2965     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2967     // Compare the rest of the characters
  2968     __ lduh(str1_reg, limit_reg, chr1_reg);
  2969     __ bind(Lloop);
  2970     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2971     __ lduh(str2_reg, limit_reg, chr2_reg);
  2972     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2973     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2974     assert(chr1_reg == result_reg, "result must be pre-placed");
  2975     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2976     // annul LDUH if branch is not taken to prevent access past end of string
  2977     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2978     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2980     // If strings are equal up to min length, return the length difference.
  2981     __ mov(O7, result_reg);
  2983     // Otherwise, return the difference between the first mismatched chars.
  2984     __ bind(Ldone);
  2985   %}
  2987 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2988     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2989     MacroAssembler _masm(&cbuf);
  2991     Register   str1_reg = reg_to_register_object($str1$$reg);
  2992     Register   str2_reg = reg_to_register_object($str2$$reg);
  2993     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2994     Register   tmp1_reg = O7;
  2995     Register result_reg = reg_to_register_object($result$$reg);
  2997     assert(result_reg != str1_reg &&
  2998            result_reg != str2_reg &&
  2999            result_reg !=  cnt_reg &&
  3000            result_reg != tmp1_reg ,
  3001            "need different registers");
  3003     __ cmp(str1_reg, str2_reg); //same char[] ?
  3004     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3005     __ delayed()->add(G0, 1, result_reg);
  3007     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  3008     __ delayed()->add(G0, 1, result_reg); // count == 0
  3010     //rename registers
  3011     Register limit_reg =    cnt_reg;
  3012     Register  chr1_reg = result_reg;
  3013     Register  chr2_reg =   tmp1_reg;
  3015     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  3016     __ signx(limit_reg);
  3018     //check for alignment and position the pointers to the ends
  3019     __ or3(str1_reg, str2_reg, chr1_reg);
  3020     __ andcc(chr1_reg, 0x3, chr1_reg);
  3021     // notZero means at least one not 4-byte aligned.
  3022     // We could optimize the case when both arrays are not aligned
  3023     // but it is not frequent case and it requires additional checks.
  3024     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3025     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3027     // Compare char[] arrays aligned to 4 bytes.
  3028     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3029                           chr1_reg, chr2_reg, Ldone);
  3030     __ ba(Ldone);
  3031     __ delayed()->add(G0, 1, result_reg);
  3033     // char by char compare
  3034     __ bind(Lchar);
  3035     __ add(str1_reg, limit_reg, str1_reg);
  3036     __ add(str2_reg, limit_reg, str2_reg);
  3037     __ neg(limit_reg); //negate count
  3039     __ lduh(str1_reg, limit_reg, chr1_reg);
  3040     // Lchar_loop
  3041     __ bind(Lchar_loop);
  3042     __ lduh(str2_reg, limit_reg, chr2_reg);
  3043     __ cmp(chr1_reg, chr2_reg);
  3044     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3045     __ delayed()->mov(G0, result_reg); //not equal
  3046     __ inccc(limit_reg, sizeof(jchar));
  3047     // annul LDUH if branch is not taken to prevent access past end of string
  3048     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3049     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3051     __ add(G0, 1, result_reg);  //equal
  3053     __ bind(Ldone);
  3054   %}
  3056 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3057     Label Lvector, Ldone, Lloop;
  3058     MacroAssembler _masm(&cbuf);
  3060     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3061     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3062     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3063     Register   tmp2_reg = O7;
  3064     Register result_reg = reg_to_register_object($result$$reg);
  3066     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3067     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3069     // return true if the same array
  3070     __ cmp(ary1_reg, ary2_reg);
  3071     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3072     __ delayed()->add(G0, 1, result_reg); // equal
  3074     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3075     __ delayed()->mov(G0, result_reg);    // not equal
  3077     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3078     __ delayed()->mov(G0, result_reg);    // not equal
  3080     //load the lengths of arrays
  3081     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3082     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3084     // return false if the two arrays are not equal length
  3085     __ cmp(tmp1_reg, tmp2_reg);
  3086     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3087     __ delayed()->mov(G0, result_reg);     // not equal
  3089     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3090     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3092     // load array addresses
  3093     __ add(ary1_reg, base_offset, ary1_reg);
  3094     __ add(ary2_reg, base_offset, ary2_reg);
  3096     // renaming registers
  3097     Register chr1_reg  =  result_reg; // for characters in ary1
  3098     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3099     Register limit_reg =  tmp1_reg;   // length
  3101     // set byte count
  3102     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3104     // Compare char[] arrays aligned to 4 bytes.
  3105     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3106                           chr1_reg, chr2_reg, Ldone);
  3107     __ add(G0, 1, result_reg); // equals
  3109     __ bind(Ldone);
  3110   %}
  3112   enc_class enc_rethrow() %{
  3113     cbuf.set_insts_mark();
  3114     Register temp_reg = G3;
  3115     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3116     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3117     MacroAssembler _masm(&cbuf);
  3118 #ifdef ASSERT
  3119     __ save_frame(0);
  3120     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3121     __ sethi(last_rethrow_addrlit, L1);
  3122     Address addr(L1, last_rethrow_addrlit.low10());
  3123     __ rdpc(L2);
  3124     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3125     __ st_ptr(L2, addr);
  3126     __ restore();
  3127 #endif
  3128     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3129     __ delayed()->nop();
  3130   %}
  3132   enc_class emit_mem_nop() %{
  3133     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3134     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3135   %}
  3137   enc_class emit_fadd_nop() %{
  3138     // Generates the instruction FMOVS f31,f31
  3139     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3140   %}
  3142   enc_class emit_br_nop() %{
  3143     // Generates the instruction BPN,PN .
  3144     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3145   %}
  3147   enc_class enc_membar_acquire %{
  3148     MacroAssembler _masm(&cbuf);
  3149     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3150   %}
  3152   enc_class enc_membar_release %{
  3153     MacroAssembler _masm(&cbuf);
  3154     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3155   %}
  3157   enc_class enc_membar_volatile %{
  3158     MacroAssembler _masm(&cbuf);
  3159     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3160   %}
  3162 %}
  3164 //----------FRAME--------------------------------------------------------------
  3165 // Definition of frame structure and management information.
  3166 //
  3167 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3168 //                             |   (to get allocators register number
  3169 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3170 //  r   CALLER     |        |
  3171 //  o     |        +--------+      pad to even-align allocators stack-slot
  3172 //  w     V        |  pad0  |        numbers; owned by CALLER
  3173 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3174 //  h     ^        |   in   |  5
  3175 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3176 //  |     |        |        |  3
  3177 //  |     |        +--------+
  3178 //  V     |        | old out|      Empty on Intel, window on Sparc
  3179 //        |    old |preserve|      Must be even aligned.
  3180 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3181 //        |        |   in   |  3   area for Intel ret address
  3182 //     Owned by    |preserve|      Empty on Sparc.
  3183 //       SELF      +--------+
  3184 //        |        |  pad2  |  2   pad to align old SP
  3185 //        |        +--------+  1
  3186 //        |        | locks  |  0
  3187 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3188 //        |        |  pad1  | 11   pad to align new SP
  3189 //        |        +--------+
  3190 //        |        |        | 10
  3191 //        |        | spills |  9   spills
  3192 //        V        |        |  8   (pad0 slot for callee)
  3193 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3194 //        ^        |  out   |  7
  3195 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3196 //     Owned by    +--------+
  3197 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3198 //        |    new |preserve|      Must be even-aligned.
  3199 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3200 //        |        |        |
  3201 //
  3202 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3203 //         known from SELF's arguments and the Java calling convention.
  3204 //         Region 6-7 is determined per call site.
  3205 // Note 2: If the calling convention leaves holes in the incoming argument
  3206 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3207 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3208 //         incoming area, as the Java calling convention is completely under
  3209 //         the control of the AD file.  Doubles can be sorted and packed to
  3210 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3211 //         varargs C calling conventions.
  3212 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3213 //         even aligned with pad0 as needed.
  3214 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3215 //         region 6-11 is even aligned; it may be padded out more so that
  3216 //         the region from SP to FP meets the minimum stack alignment.
  3218 frame %{
  3219   // What direction does stack grow in (assumed to be same for native & Java)
  3220   stack_direction(TOWARDS_LOW);
  3222   // These two registers define part of the calling convention
  3223   // between compiled code and the interpreter.
  3224   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3225   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3227   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3228   cisc_spilling_operand_name(indOffset);
  3230   // Number of stack slots consumed by a Monitor enter
  3231 #ifdef _LP64
  3232   sync_stack_slots(2);
  3233 #else
  3234   sync_stack_slots(1);
  3235 #endif
  3237   // Compiled code's Frame Pointer
  3238   frame_pointer(R_SP);
  3240   // Stack alignment requirement
  3241   stack_alignment(StackAlignmentInBytes);
  3242   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3243   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3245   // Number of stack slots between incoming argument block and the start of
  3246   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3247   // EPILOG must remove this many slots.
  3248   in_preserve_stack_slots(0);
  3250   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3251   // for calls to C.  Supports the var-args backing area for register parms.
  3252   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3253 #ifdef _LP64
  3254   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3255   varargs_C_out_slots_killed(12);
  3256 #else
  3257   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3258   varargs_C_out_slots_killed( 7);
  3259 #endif
  3261   // The after-PROLOG location of the return address.  Location of
  3262   // return address specifies a type (REG or STACK) and a number
  3263   // representing the register number (i.e. - use a register name) or
  3264   // stack slot.
  3265   return_addr(REG R_I7);          // Ret Addr is in register I7
  3267   // Body of function which returns an OptoRegs array locating
  3268   // arguments either in registers or in stack slots for calling
  3269   // java
  3270   calling_convention %{
  3271     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3273   %}
  3275   // Body of function which returns an OptoRegs array locating
  3276   // arguments either in registers or in stack slots for callin
  3277   // C.
  3278   c_calling_convention %{
  3279     // This is obviously always outgoing
  3280     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3281   %}
  3283   // Location of native (C/C++) and interpreter return values.  This is specified to
  3284   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3285   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3286   // to and from the register pairs is done by the appropriate call and epilog
  3287   // opcodes.  This simplifies the register allocator.
  3288   c_return_value %{
  3289     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3290 #ifdef     _LP64
  3291     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3292     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3293     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3294     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3295 #else  // !_LP64
  3296     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3297     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3298     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3299     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3300 #endif
  3301     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3302                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3303   %}
  3305   // Location of compiled Java return values.  Same as C
  3306   return_value %{
  3307     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3308 #ifdef     _LP64
  3309     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3310     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3311     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3312     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3313 #else  // !_LP64
  3314     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3315     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3316     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3317     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3318 #endif
  3319     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3320                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3321   %}
  3323 %}
  3326 //----------ATTRIBUTES---------------------------------------------------------
  3327 //----------Operand Attributes-------------------------------------------------
  3328 op_attrib op_cost(1);          // Required cost attribute
  3330 //----------Instruction Attributes---------------------------------------------
  3331 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3332 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3333 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3334 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3335                                    // non-matching short branch variant of some
  3336                                                             // long branch?
  3338 //----------OPERANDS-----------------------------------------------------------
  3339 // Operand definitions must precede instruction definitions for correct parsing
  3340 // in the ADLC because operands constitute user defined types which are used in
  3341 // instruction definitions.
  3343 //----------Simple Operands----------------------------------------------------
  3344 // Immediate Operands
  3345 // Integer Immediate: 32-bit
  3346 operand immI() %{
  3347   match(ConI);
  3349   op_cost(0);
  3350   // formats are generated automatically for constants and base registers
  3351   format %{ %}
  3352   interface(CONST_INTER);
  3353 %}
  3355 // Integer Immediate: 8-bit
  3356 operand immI8() %{
  3357   predicate(Assembler::is_simm8(n->get_int()));
  3358   match(ConI);
  3359   op_cost(0);
  3360   format %{ %}
  3361   interface(CONST_INTER);
  3362 %}
  3364 // Integer Immediate: 13-bit
  3365 operand immI13() %{
  3366   predicate(Assembler::is_simm13(n->get_int()));
  3367   match(ConI);
  3368   op_cost(0);
  3370   format %{ %}
  3371   interface(CONST_INTER);
  3372 %}
  3374 // Integer Immediate: 13-bit minus 7
  3375 operand immI13m7() %{
  3376   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3377   match(ConI);
  3378   op_cost(0);
  3380   format %{ %}
  3381   interface(CONST_INTER);
  3382 %}
  3384 // Integer Immediate: 16-bit
  3385 operand immI16() %{
  3386   predicate(Assembler::is_simm16(n->get_int()));
  3387   match(ConI);
  3388   op_cost(0);
  3389   format %{ %}
  3390   interface(CONST_INTER);
  3391 %}
  3393 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
  3394 operand immU12() %{
  3395   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3396   match(ConI);
  3397   op_cost(0);
  3399   format %{ %}
  3400   interface(CONST_INTER);
  3401 %}
  3403 // Integer Immediate: 6-bit
  3404 operand immU6() %{
  3405   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3406   match(ConI);
  3407   op_cost(0);
  3408   format %{ %}
  3409   interface(CONST_INTER);
  3410 %}
  3412 // Integer Immediate: 11-bit
  3413 operand immI11() %{
  3414   predicate(Assembler::is_simm11(n->get_int()));
  3415   match(ConI);
  3416   op_cost(0);
  3417   format %{ %}
  3418   interface(CONST_INTER);
  3419 %}
  3421 // Integer Immediate: 5-bit
  3422 operand immI5() %{
  3423   predicate(Assembler::is_simm5(n->get_int()));
  3424   match(ConI);
  3425   op_cost(0);
  3426   format %{ %}
  3427   interface(CONST_INTER);
  3428 %}
  3430 // Int Immediate non-negative
  3431 operand immU31()
  3432 %{
  3433   predicate(n->get_int() >= 0);
  3434   match(ConI);
  3436   op_cost(0);
  3437   format %{ %}
  3438   interface(CONST_INTER);
  3439 %}
  3441 // Integer Immediate: 0-bit
  3442 operand immI0() %{
  3443   predicate(n->get_int() == 0);
  3444   match(ConI);
  3445   op_cost(0);
  3447   format %{ %}
  3448   interface(CONST_INTER);
  3449 %}
  3451 // Integer Immediate: the value 10
  3452 operand immI10() %{
  3453   predicate(n->get_int() == 10);
  3454   match(ConI);
  3455   op_cost(0);
  3457   format %{ %}
  3458   interface(CONST_INTER);
  3459 %}
  3461 // Integer Immediate: the values 0-31
  3462 operand immU5() %{
  3463   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3464   match(ConI);
  3465   op_cost(0);
  3467   format %{ %}
  3468   interface(CONST_INTER);
  3469 %}
  3471 // Integer Immediate: the values 1-31
  3472 operand immI_1_31() %{
  3473   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3474   match(ConI);
  3475   op_cost(0);
  3477   format %{ %}
  3478   interface(CONST_INTER);
  3479 %}
  3481 // Integer Immediate: the values 32-63
  3482 operand immI_32_63() %{
  3483   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3484   match(ConI);
  3485   op_cost(0);
  3487   format %{ %}
  3488   interface(CONST_INTER);
  3489 %}
  3491 // Immediates for special shifts (sign extend)
  3493 // Integer Immediate: the value 16
  3494 operand immI_16() %{
  3495   predicate(n->get_int() == 16);
  3496   match(ConI);
  3497   op_cost(0);
  3499   format %{ %}
  3500   interface(CONST_INTER);
  3501 %}
  3503 // Integer Immediate: the value 24
  3504 operand immI_24() %{
  3505   predicate(n->get_int() == 24);
  3506   match(ConI);
  3507   op_cost(0);
  3509   format %{ %}
  3510   interface(CONST_INTER);
  3511 %}
  3513 // Integer Immediate: the value 255
  3514 operand immI_255() %{
  3515   predicate( n->get_int() == 255 );
  3516   match(ConI);
  3517   op_cost(0);
  3519   format %{ %}
  3520   interface(CONST_INTER);
  3521 %}
  3523 // Integer Immediate: the value 65535
  3524 operand immI_65535() %{
  3525   predicate(n->get_int() == 65535);
  3526   match(ConI);
  3527   op_cost(0);
  3529   format %{ %}
  3530   interface(CONST_INTER);
  3531 %}
  3533 // Long Immediate: the value FF
  3534 operand immL_FF() %{
  3535   predicate( n->get_long() == 0xFFL );
  3536   match(ConL);
  3537   op_cost(0);
  3539   format %{ %}
  3540   interface(CONST_INTER);
  3541 %}
  3543 // Long Immediate: the value FFFF
  3544 operand immL_FFFF() %{
  3545   predicate( n->get_long() == 0xFFFFL );
  3546   match(ConL);
  3547   op_cost(0);
  3549   format %{ %}
  3550   interface(CONST_INTER);
  3551 %}
  3553 // Pointer Immediate: 32 or 64-bit
  3554 operand immP() %{
  3555   match(ConP);
  3557   op_cost(5);
  3558   // formats are generated automatically for constants and base registers
  3559   format %{ %}
  3560   interface(CONST_INTER);
  3561 %}
  3563 #ifdef _LP64
  3564 // Pointer Immediate: 64-bit
  3565 operand immP_set() %{
  3566   predicate(!VM_Version::is_niagara_plus());
  3567   match(ConP);
  3569   op_cost(5);
  3570   // formats are generated automatically for constants and base registers
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3575 // Pointer Immediate: 64-bit
  3576 // From Niagara2 processors on a load should be better than materializing.
  3577 operand immP_load() %{
  3578   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3579   match(ConP);
  3581   op_cost(5);
  3582   // formats are generated automatically for constants and base registers
  3583   format %{ %}
  3584   interface(CONST_INTER);
  3585 %}
  3587 // Pointer Immediate: 64-bit
  3588 operand immP_no_oop_cheap() %{
  3589   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3590   match(ConP);
  3592   op_cost(5);
  3593   // formats are generated automatically for constants and base registers
  3594   format %{ %}
  3595   interface(CONST_INTER);
  3596 %}
  3597 #endif
  3599 operand immP13() %{
  3600   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3601   match(ConP);
  3602   op_cost(0);
  3604   format %{ %}
  3605   interface(CONST_INTER);
  3606 %}
  3608 operand immP0() %{
  3609   predicate(n->get_ptr() == 0);
  3610   match(ConP);
  3611   op_cost(0);
  3613   format %{ %}
  3614   interface(CONST_INTER);
  3615 %}
  3617 operand immP_poll() %{
  3618   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3619   match(ConP);
  3621   // formats are generated automatically for constants and base registers
  3622   format %{ %}
  3623   interface(CONST_INTER);
  3624 %}
  3626 // Pointer Immediate
  3627 operand immN()
  3628 %{
  3629   match(ConN);
  3631   op_cost(10);
  3632   format %{ %}
  3633   interface(CONST_INTER);
  3634 %}
  3636 operand immNKlass()
  3637 %{
  3638   match(ConNKlass);
  3640   op_cost(10);
  3641   format %{ %}
  3642   interface(CONST_INTER);
  3643 %}
  3645 // NULL Pointer Immediate
  3646 operand immN0()
  3647 %{
  3648   predicate(n->get_narrowcon() == 0);
  3649   match(ConN);
  3651   op_cost(0);
  3652   format %{ %}
  3653   interface(CONST_INTER);
  3654 %}
  3656 operand immL() %{
  3657   match(ConL);
  3658   op_cost(40);
  3659   // formats are generated automatically for constants and base registers
  3660   format %{ %}
  3661   interface(CONST_INTER);
  3662 %}
  3664 operand immL0() %{
  3665   predicate(n->get_long() == 0L);
  3666   match(ConL);
  3667   op_cost(0);
  3668   // formats are generated automatically for constants and base registers
  3669   format %{ %}
  3670   interface(CONST_INTER);
  3671 %}
  3673 // Integer Immediate: 5-bit
  3674 operand immL5() %{
  3675   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3676   match(ConL);
  3677   op_cost(0);
  3678   format %{ %}
  3679   interface(CONST_INTER);
  3680 %}
  3682 // Long Immediate: 13-bit
  3683 operand immL13() %{
  3684   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3685   match(ConL);
  3686   op_cost(0);
  3688   format %{ %}
  3689   interface(CONST_INTER);
  3690 %}
  3692 // Long Immediate: 13-bit minus 7
  3693 operand immL13m7() %{
  3694   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3695   match(ConL);
  3696   op_cost(0);
  3698   format %{ %}
  3699   interface(CONST_INTER);
  3700 %}
  3702 // Long Immediate: low 32-bit mask
  3703 operand immL_32bits() %{
  3704   predicate(n->get_long() == 0xFFFFFFFFL);
  3705   match(ConL);
  3706   op_cost(0);
  3708   format %{ %}
  3709   interface(CONST_INTER);
  3710 %}
  3712 // Long Immediate: cheap (materialize in <= 3 instructions)
  3713 operand immL_cheap() %{
  3714   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3715   match(ConL);
  3716   op_cost(0);
  3718   format %{ %}
  3719   interface(CONST_INTER);
  3720 %}
  3722 // Long Immediate: expensive (materialize in > 3 instructions)
  3723 operand immL_expensive() %{
  3724   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3725   match(ConL);
  3726   op_cost(0);
  3728   format %{ %}
  3729   interface(CONST_INTER);
  3730 %}
  3732 // Double Immediate
  3733 operand immD() %{
  3734   match(ConD);
  3736   op_cost(40);
  3737   format %{ %}
  3738   interface(CONST_INTER);
  3739 %}
  3741 operand immD0() %{
  3742 #ifdef _LP64
  3743   // on 64-bit architectures this comparision is faster
  3744   predicate(jlong_cast(n->getd()) == 0);
  3745 #else
  3746   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3747 #endif
  3748   match(ConD);
  3750   op_cost(0);
  3751   format %{ %}
  3752   interface(CONST_INTER);
  3753 %}
  3755 // Float Immediate
  3756 operand immF() %{
  3757   match(ConF);
  3759   op_cost(20);
  3760   format %{ %}
  3761   interface(CONST_INTER);
  3762 %}
  3764 // Float Immediate: 0
  3765 operand immF0() %{
  3766   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3767   match(ConF);
  3769   op_cost(0);
  3770   format %{ %}
  3771   interface(CONST_INTER);
  3772 %}
  3774 // Integer Register Operands
  3775 // Integer Register
  3776 operand iRegI() %{
  3777   constraint(ALLOC_IN_RC(int_reg));
  3778   match(RegI);
  3780   match(notemp_iRegI);
  3781   match(g1RegI);
  3782   match(o0RegI);
  3783   match(iRegIsafe);
  3785   format %{ %}
  3786   interface(REG_INTER);
  3787 %}
  3789 operand notemp_iRegI() %{
  3790   constraint(ALLOC_IN_RC(notemp_int_reg));
  3791   match(RegI);
  3793   match(o0RegI);
  3795   format %{ %}
  3796   interface(REG_INTER);
  3797 %}
  3799 operand o0RegI() %{
  3800   constraint(ALLOC_IN_RC(o0_regI));
  3801   match(iRegI);
  3803   format %{ %}
  3804   interface(REG_INTER);
  3805 %}
  3807 // Pointer Register
  3808 operand iRegP() %{
  3809   constraint(ALLOC_IN_RC(ptr_reg));
  3810   match(RegP);
  3812   match(lock_ptr_RegP);
  3813   match(g1RegP);
  3814   match(g2RegP);
  3815   match(g3RegP);
  3816   match(g4RegP);
  3817   match(i0RegP);
  3818   match(o0RegP);
  3819   match(o1RegP);
  3820   match(l7RegP);
  3822   format %{ %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand sp_ptr_RegP() %{
  3827   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3828   match(RegP);
  3829   match(iRegP);
  3831   format %{ %}
  3832   interface(REG_INTER);
  3833 %}
  3835 operand lock_ptr_RegP() %{
  3836   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3837   match(RegP);
  3838   match(i0RegP);
  3839   match(o0RegP);
  3840   match(o1RegP);
  3841   match(l7RegP);
  3843   format %{ %}
  3844   interface(REG_INTER);
  3845 %}
  3847 operand g1RegP() %{
  3848   constraint(ALLOC_IN_RC(g1_regP));
  3849   match(iRegP);
  3851   format %{ %}
  3852   interface(REG_INTER);
  3853 %}
  3855 operand g2RegP() %{
  3856   constraint(ALLOC_IN_RC(g2_regP));
  3857   match(iRegP);
  3859   format %{ %}
  3860   interface(REG_INTER);
  3861 %}
  3863 operand g3RegP() %{
  3864   constraint(ALLOC_IN_RC(g3_regP));
  3865   match(iRegP);
  3867   format %{ %}
  3868   interface(REG_INTER);
  3869 %}
  3871 operand g1RegI() %{
  3872   constraint(ALLOC_IN_RC(g1_regI));
  3873   match(iRegI);
  3875   format %{ %}
  3876   interface(REG_INTER);
  3877 %}
  3879 operand g3RegI() %{
  3880   constraint(ALLOC_IN_RC(g3_regI));
  3881   match(iRegI);
  3883   format %{ %}
  3884   interface(REG_INTER);
  3885 %}
  3887 operand g4RegI() %{
  3888   constraint(ALLOC_IN_RC(g4_regI));
  3889   match(iRegI);
  3891   format %{ %}
  3892   interface(REG_INTER);
  3893 %}
  3895 operand g4RegP() %{
  3896   constraint(ALLOC_IN_RC(g4_regP));
  3897   match(iRegP);
  3899   format %{ %}
  3900   interface(REG_INTER);
  3901 %}
  3903 operand i0RegP() %{
  3904   constraint(ALLOC_IN_RC(i0_regP));
  3905   match(iRegP);
  3907   format %{ %}
  3908   interface(REG_INTER);
  3909 %}
  3911 operand o0RegP() %{
  3912   constraint(ALLOC_IN_RC(o0_regP));
  3913   match(iRegP);
  3915   format %{ %}
  3916   interface(REG_INTER);
  3917 %}
  3919 operand o1RegP() %{
  3920   constraint(ALLOC_IN_RC(o1_regP));
  3921   match(iRegP);
  3923   format %{ %}
  3924   interface(REG_INTER);
  3925 %}
  3927 operand o2RegP() %{
  3928   constraint(ALLOC_IN_RC(o2_regP));
  3929   match(iRegP);
  3931   format %{ %}
  3932   interface(REG_INTER);
  3933 %}
  3935 operand o7RegP() %{
  3936   constraint(ALLOC_IN_RC(o7_regP));
  3937   match(iRegP);
  3939   format %{ %}
  3940   interface(REG_INTER);
  3941 %}
  3943 operand l7RegP() %{
  3944   constraint(ALLOC_IN_RC(l7_regP));
  3945   match(iRegP);
  3947   format %{ %}
  3948   interface(REG_INTER);
  3949 %}
  3951 operand o7RegI() %{
  3952   constraint(ALLOC_IN_RC(o7_regI));
  3953   match(iRegI);
  3955   format %{ %}
  3956   interface(REG_INTER);
  3957 %}
  3959 operand iRegN() %{
  3960   constraint(ALLOC_IN_RC(int_reg));
  3961   match(RegN);
  3963   format %{ %}
  3964   interface(REG_INTER);
  3965 %}
  3967 // Long Register
  3968 operand iRegL() %{
  3969   constraint(ALLOC_IN_RC(long_reg));
  3970   match(RegL);
  3972   format %{ %}
  3973   interface(REG_INTER);
  3974 %}
  3976 operand o2RegL() %{
  3977   constraint(ALLOC_IN_RC(o2_regL));
  3978   match(iRegL);
  3980   format %{ %}
  3981   interface(REG_INTER);
  3982 %}
  3984 operand o7RegL() %{
  3985   constraint(ALLOC_IN_RC(o7_regL));
  3986   match(iRegL);
  3988   format %{ %}
  3989   interface(REG_INTER);
  3990 %}
  3992 operand g1RegL() %{
  3993   constraint(ALLOC_IN_RC(g1_regL));
  3994   match(iRegL);
  3996   format %{ %}
  3997   interface(REG_INTER);
  3998 %}
  4000 operand g3RegL() %{
  4001   constraint(ALLOC_IN_RC(g3_regL));
  4002   match(iRegL);
  4004   format %{ %}
  4005   interface(REG_INTER);
  4006 %}
  4008 // Int Register safe
  4009 // This is 64bit safe
  4010 operand iRegIsafe() %{
  4011   constraint(ALLOC_IN_RC(long_reg));
  4013   match(iRegI);
  4015   format %{ %}
  4016   interface(REG_INTER);
  4017 %}
  4019 // Condition Code Flag Register
  4020 operand flagsReg() %{
  4021   constraint(ALLOC_IN_RC(int_flags));
  4022   match(RegFlags);
  4024   format %{ "ccr" %} // both ICC and XCC
  4025   interface(REG_INTER);
  4026 %}
  4028 // Condition Code Register, unsigned comparisons.
  4029 operand flagsRegU() %{
  4030   constraint(ALLOC_IN_RC(int_flags));
  4031   match(RegFlags);
  4033   format %{ "icc_U" %}
  4034   interface(REG_INTER);
  4035 %}
  4037 // Condition Code Register, pointer comparisons.
  4038 operand flagsRegP() %{
  4039   constraint(ALLOC_IN_RC(int_flags));
  4040   match(RegFlags);
  4042 #ifdef _LP64
  4043   format %{ "xcc_P" %}
  4044 #else
  4045   format %{ "icc_P" %}
  4046 #endif
  4047   interface(REG_INTER);
  4048 %}
  4050 // Condition Code Register, long comparisons.
  4051 operand flagsRegL() %{
  4052   constraint(ALLOC_IN_RC(int_flags));
  4053   match(RegFlags);
  4055   format %{ "xcc_L" %}
  4056   interface(REG_INTER);
  4057 %}
  4059 // Condition Code Register, floating comparisons, unordered same as "less".
  4060 operand flagsRegF() %{
  4061   constraint(ALLOC_IN_RC(float_flags));
  4062   match(RegFlags);
  4063   match(flagsRegF0);
  4065   format %{ %}
  4066   interface(REG_INTER);
  4067 %}
  4069 operand flagsRegF0() %{
  4070   constraint(ALLOC_IN_RC(float_flag0));
  4071   match(RegFlags);
  4073   format %{ %}
  4074   interface(REG_INTER);
  4075 %}
  4078 // Condition Code Flag Register used by long compare
  4079 operand flagsReg_long_LTGE() %{
  4080   constraint(ALLOC_IN_RC(int_flags));
  4081   match(RegFlags);
  4082   format %{ "icc_LTGE" %}
  4083   interface(REG_INTER);
  4084 %}
  4085 operand flagsReg_long_EQNE() %{
  4086   constraint(ALLOC_IN_RC(int_flags));
  4087   match(RegFlags);
  4088   format %{ "icc_EQNE" %}
  4089   interface(REG_INTER);
  4090 %}
  4091 operand flagsReg_long_LEGT() %{
  4092   constraint(ALLOC_IN_RC(int_flags));
  4093   match(RegFlags);
  4094   format %{ "icc_LEGT" %}
  4095   interface(REG_INTER);
  4096 %}
  4099 operand regD() %{
  4100   constraint(ALLOC_IN_RC(dflt_reg));
  4101   match(RegD);
  4103   match(regD_low);
  4105   format %{ %}
  4106   interface(REG_INTER);
  4107 %}
  4109 operand regF() %{
  4110   constraint(ALLOC_IN_RC(sflt_reg));
  4111   match(RegF);
  4113   format %{ %}
  4114   interface(REG_INTER);
  4115 %}
  4117 operand regD_low() %{
  4118   constraint(ALLOC_IN_RC(dflt_low_reg));
  4119   match(regD);
  4121   format %{ %}
  4122   interface(REG_INTER);
  4123 %}
  4125 // Special Registers
  4127 // Method Register
  4128 operand inline_cache_regP(iRegP reg) %{
  4129   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4130   match(reg);
  4131   format %{ %}
  4132   interface(REG_INTER);
  4133 %}
  4135 operand interpreter_method_oop_regP(iRegP reg) %{
  4136   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4137   match(reg);
  4138   format %{ %}
  4139   interface(REG_INTER);
  4140 %}
  4143 //----------Complex Operands---------------------------------------------------
  4144 // Indirect Memory Reference
  4145 operand indirect(sp_ptr_RegP reg) %{
  4146   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4147   match(reg);
  4149   op_cost(100);
  4150   format %{ "[$reg]" %}
  4151   interface(MEMORY_INTER) %{
  4152     base($reg);
  4153     index(0x0);
  4154     scale(0x0);
  4155     disp(0x0);
  4156   %}
  4157 %}
  4159 // Indirect with simm13 Offset
  4160 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4161   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4162   match(AddP reg offset);
  4164   op_cost(100);
  4165   format %{ "[$reg + $offset]" %}
  4166   interface(MEMORY_INTER) %{
  4167     base($reg);
  4168     index(0x0);
  4169     scale(0x0);
  4170     disp($offset);
  4171   %}
  4172 %}
  4174 // Indirect with simm13 Offset minus 7
  4175 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4176   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4177   match(AddP reg offset);
  4179   op_cost(100);
  4180   format %{ "[$reg + $offset]" %}
  4181   interface(MEMORY_INTER) %{
  4182     base($reg);
  4183     index(0x0);
  4184     scale(0x0);
  4185     disp($offset);
  4186   %}
  4187 %}
  4189 // Note:  Intel has a swapped version also, like this:
  4190 //operand indOffsetX(iRegI reg, immP offset) %{
  4191 //  constraint(ALLOC_IN_RC(int_reg));
  4192 //  match(AddP offset reg);
  4193 //
  4194 //  op_cost(100);
  4195 //  format %{ "[$reg + $offset]" %}
  4196 //  interface(MEMORY_INTER) %{
  4197 //    base($reg);
  4198 //    index(0x0);
  4199 //    scale(0x0);
  4200 //    disp($offset);
  4201 //  %}
  4202 //%}
  4203 //// However, it doesn't make sense for SPARC, since
  4204 // we have no particularly good way to embed oops in
  4205 // single instructions.
  4207 // Indirect with Register Index
  4208 operand indIndex(iRegP addr, iRegX index) %{
  4209   constraint(ALLOC_IN_RC(ptr_reg));
  4210   match(AddP addr index);
  4212   op_cost(100);
  4213   format %{ "[$addr + $index]" %}
  4214   interface(MEMORY_INTER) %{
  4215     base($addr);
  4216     index($index);
  4217     scale(0x0);
  4218     disp(0x0);
  4219   %}
  4220 %}
  4222 //----------Special Memory Operands--------------------------------------------
  4223 // Stack Slot Operand - This operand is used for loading and storing temporary
  4224 //                      values on the stack where a match requires a value to
  4225 //                      flow through memory.
  4226 operand stackSlotI(sRegI reg) %{
  4227   constraint(ALLOC_IN_RC(stack_slots));
  4228   op_cost(100);
  4229   //match(RegI);
  4230   format %{ "[$reg]" %}
  4231   interface(MEMORY_INTER) %{
  4232     base(0xE);   // R_SP
  4233     index(0x0);
  4234     scale(0x0);
  4235     disp($reg);  // Stack Offset
  4236   %}
  4237 %}
  4239 operand stackSlotP(sRegP reg) %{
  4240   constraint(ALLOC_IN_RC(stack_slots));
  4241   op_cost(100);
  4242   //match(RegP);
  4243   format %{ "[$reg]" %}
  4244   interface(MEMORY_INTER) %{
  4245     base(0xE);   // R_SP
  4246     index(0x0);
  4247     scale(0x0);
  4248     disp($reg);  // Stack Offset
  4249   %}
  4250 %}
  4252 operand stackSlotF(sRegF reg) %{
  4253   constraint(ALLOC_IN_RC(stack_slots));
  4254   op_cost(100);
  4255   //match(RegF);
  4256   format %{ "[$reg]" %}
  4257   interface(MEMORY_INTER) %{
  4258     base(0xE);   // R_SP
  4259     index(0x0);
  4260     scale(0x0);
  4261     disp($reg);  // Stack Offset
  4262   %}
  4263 %}
  4264 operand stackSlotD(sRegD reg) %{
  4265   constraint(ALLOC_IN_RC(stack_slots));
  4266   op_cost(100);
  4267   //match(RegD);
  4268   format %{ "[$reg]" %}
  4269   interface(MEMORY_INTER) %{
  4270     base(0xE);   // R_SP
  4271     index(0x0);
  4272     scale(0x0);
  4273     disp($reg);  // Stack Offset
  4274   %}
  4275 %}
  4276 operand stackSlotL(sRegL reg) %{
  4277   constraint(ALLOC_IN_RC(stack_slots));
  4278   op_cost(100);
  4279   //match(RegL);
  4280   format %{ "[$reg]" %}
  4281   interface(MEMORY_INTER) %{
  4282     base(0xE);   // R_SP
  4283     index(0x0);
  4284     scale(0x0);
  4285     disp($reg);  // Stack Offset
  4286   %}
  4287 %}
  4289 // Operands for expressing Control Flow
  4290 // NOTE:  Label is a predefined operand which should not be redefined in
  4291 //        the AD file.  It is generically handled within the ADLC.
  4293 //----------Conditional Branch Operands----------------------------------------
  4294 // Comparison Op  - This is the operation of the comparison, and is limited to
  4295 //                  the following set of codes:
  4296 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4297 //
  4298 // Other attributes of the comparison, such as unsignedness, are specified
  4299 // by the comparison instruction that sets a condition code flags register.
  4300 // That result is represented by a flags operand whose subtype is appropriate
  4301 // to the unsignedness (etc.) of the comparison.
  4302 //
  4303 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4304 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4305 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4307 operand cmpOp() %{
  4308   match(Bool);
  4310   format %{ "" %}
  4311   interface(COND_INTER) %{
  4312     equal(0x1);
  4313     not_equal(0x9);
  4314     less(0x3);
  4315     greater_equal(0xB);
  4316     less_equal(0x2);
  4317     greater(0xA);
  4318     overflow(0x7);
  4319     no_overflow(0xF);
  4320   %}
  4321 %}
  4323 // Comparison Op, unsigned
  4324 operand cmpOpU() %{
  4325   match(Bool);
  4326   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4327             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4329   format %{ "u" %}
  4330   interface(COND_INTER) %{
  4331     equal(0x1);
  4332     not_equal(0x9);
  4333     less(0x5);
  4334     greater_equal(0xD);
  4335     less_equal(0x4);
  4336     greater(0xC);
  4337     overflow(0x7);
  4338     no_overflow(0xF);
  4339   %}
  4340 %}
  4342 // Comparison Op, pointer (same as unsigned)
  4343 operand cmpOpP() %{
  4344   match(Bool);
  4345   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4346             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4348   format %{ "p" %}
  4349   interface(COND_INTER) %{
  4350     equal(0x1);
  4351     not_equal(0x9);
  4352     less(0x5);
  4353     greater_equal(0xD);
  4354     less_equal(0x4);
  4355     greater(0xC);
  4356     overflow(0x7);
  4357     no_overflow(0xF);
  4358   %}
  4359 %}
  4361 // Comparison Op, branch-register encoding
  4362 operand cmpOp_reg() %{
  4363   match(Bool);
  4364   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4365             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4367   format %{ "" %}
  4368   interface(COND_INTER) %{
  4369     equal        (0x1);
  4370     not_equal    (0x5);
  4371     less         (0x3);
  4372     greater_equal(0x7);
  4373     less_equal   (0x2);
  4374     greater      (0x6);
  4375     overflow(0x7); // not supported
  4376     no_overflow(0xF); // not supported
  4377   %}
  4378 %}
  4380 // Comparison Code, floating, unordered same as less
  4381 operand cmpOpF() %{
  4382   match(Bool);
  4383   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4384             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4386   format %{ "fl" %}
  4387   interface(COND_INTER) %{
  4388     equal(0x9);
  4389     not_equal(0x1);
  4390     less(0x3);
  4391     greater_equal(0xB);
  4392     less_equal(0xE);
  4393     greater(0x6);
  4395     overflow(0x7); // not supported
  4396     no_overflow(0xF); // not supported
  4397   %}
  4398 %}
  4400 // Used by long compare
  4401 operand cmpOp_commute() %{
  4402   match(Bool);
  4403   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4404             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4406   format %{ "" %}
  4407   interface(COND_INTER) %{
  4408     equal(0x1);
  4409     not_equal(0x9);
  4410     less(0xA);
  4411     greater_equal(0x2);
  4412     less_equal(0xB);
  4413     greater(0x3);
  4414     overflow(0x7);
  4415     no_overflow(0xF);
  4416   %}
  4417 %}
  4419 //----------OPERAND CLASSES----------------------------------------------------
  4420 // Operand Classes are groups of operands that are used to simplify
  4421 // instruction definitions by not requiring the AD writer to specify separate
  4422 // instructions for every form of operand when the instruction accepts
  4423 // multiple operand types with the same basic encoding and format.  The classic
  4424 // case of this is memory operands.
  4425 opclass memory( indirect, indOffset13, indIndex );
  4426 opclass indIndexMemory( indIndex );
  4428 //----------PIPELINE-----------------------------------------------------------
  4429 pipeline %{
  4431 //----------ATTRIBUTES---------------------------------------------------------
  4432 attributes %{
  4433   fixed_size_instructions;           // Fixed size instructions
  4434   branch_has_delay_slot;             // Branch has delay slot following
  4435   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4436   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4437   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4438   instruction_fetch_units = 1;       // of 16 bytes
  4440   // List of nop instructions
  4441   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4442 %}
  4444 //----------RESOURCES----------------------------------------------------------
  4445 // Resources are the functional units available to the machine
  4446 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4448 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4449 // Pipeline Description specifies the stages in the machine's pipeline
  4451 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4453 //----------PIPELINE CLASSES---------------------------------------------------
  4454 // Pipeline Classes describe the stages in which input and output are
  4455 // referenced by the hardware pipeline.
  4457 // Integer ALU reg-reg operation
  4458 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4459     single_instruction;
  4460     dst   : E(write);
  4461     src1  : R(read);
  4462     src2  : R(read);
  4463     IALU  : R;
  4464 %}
  4466 // Integer ALU reg-reg long operation
  4467 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4468     instruction_count(2);
  4469     dst   : E(write);
  4470     src1  : R(read);
  4471     src2  : R(read);
  4472     IALU  : R;
  4473     IALU  : R;
  4474 %}
  4476 // Integer ALU reg-reg long dependent operation
  4477 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4478     instruction_count(1); multiple_bundles;
  4479     dst   : E(write);
  4480     src1  : R(read);
  4481     src2  : R(read);
  4482     cr    : E(write);
  4483     IALU  : R(2);
  4484 %}
  4486 // Integer ALU reg-imm operaion
  4487 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4488     single_instruction;
  4489     dst   : E(write);
  4490     src1  : R(read);
  4491     IALU  : R;
  4492 %}
  4494 // Integer ALU reg-reg operation with condition code
  4495 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4496     single_instruction;
  4497     dst   : E(write);
  4498     cr    : E(write);
  4499     src1  : R(read);
  4500     src2  : R(read);
  4501     IALU  : R;
  4502 %}
  4504 // Integer ALU reg-imm operation with condition code
  4505 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4506     single_instruction;
  4507     dst   : E(write);
  4508     cr    : E(write);
  4509     src1  : R(read);
  4510     IALU  : R;
  4511 %}
  4513 // Integer ALU zero-reg operation
  4514 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4515     single_instruction;
  4516     dst   : E(write);
  4517     src2  : R(read);
  4518     IALU  : R;
  4519 %}
  4521 // Integer ALU zero-reg operation with condition code only
  4522 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4523     single_instruction;
  4524     cr    : E(write);
  4525     src   : R(read);
  4526     IALU  : R;
  4527 %}
  4529 // Integer ALU reg-reg operation with condition code only
  4530 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4531     single_instruction;
  4532     cr    : E(write);
  4533     src1  : R(read);
  4534     src2  : R(read);
  4535     IALU  : R;
  4536 %}
  4538 // Integer ALU reg-imm operation with condition code only
  4539 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4540     single_instruction;
  4541     cr    : E(write);
  4542     src1  : R(read);
  4543     IALU  : R;
  4544 %}
  4546 // Integer ALU reg-reg-zero operation with condition code only
  4547 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4548     single_instruction;
  4549     cr    : E(write);
  4550     src1  : R(read);
  4551     src2  : R(read);
  4552     IALU  : R;
  4553 %}
  4555 // Integer ALU reg-imm-zero operation with condition code only
  4556 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4557     single_instruction;
  4558     cr    : E(write);
  4559     src1  : R(read);
  4560     IALU  : R;
  4561 %}
  4563 // Integer ALU reg-reg operation with condition code, src1 modified
  4564 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4565     single_instruction;
  4566     cr    : E(write);
  4567     src1  : E(write);
  4568     src1  : R(read);
  4569     src2  : R(read);
  4570     IALU  : R;
  4571 %}
  4573 // Integer ALU reg-imm operation with condition code, src1 modified
  4574 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4575     single_instruction;
  4576     cr    : E(write);
  4577     src1  : E(write);
  4578     src1  : R(read);
  4579     IALU  : R;
  4580 %}
  4582 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4583     multiple_bundles;
  4584     dst   : E(write)+4;
  4585     cr    : E(write);
  4586     src1  : R(read);
  4587     src2  : R(read);
  4588     IALU  : R(3);
  4589     BR    : R(2);
  4590 %}
  4592 // Integer ALU operation
  4593 pipe_class ialu_none(iRegI dst) %{
  4594     single_instruction;
  4595     dst   : E(write);
  4596     IALU  : R;
  4597 %}
  4599 // Integer ALU reg operation
  4600 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4601     single_instruction; may_have_no_code;
  4602     dst   : E(write);
  4603     src   : R(read);
  4604     IALU  : R;
  4605 %}
  4607 // Integer ALU reg conditional operation
  4608 // This instruction has a 1 cycle stall, and cannot execute
  4609 // in the same cycle as the instruction setting the condition
  4610 // code. We kludge this by pretending to read the condition code
  4611 // 1 cycle earlier, and by marking the functional units as busy
  4612 // for 2 cycles with the result available 1 cycle later than
  4613 // is really the case.
  4614 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4615     single_instruction;
  4616     op2_out : C(write);
  4617     op1     : R(read);
  4618     cr      : R(read);       // This is really E, with a 1 cycle stall
  4619     BR      : R(2);
  4620     MS      : R(2);
  4621 %}
  4623 #ifdef _LP64
  4624 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4625     instruction_count(1); multiple_bundles;
  4626     dst     : C(write)+1;
  4627     src     : R(read)+1;
  4628     IALU    : R(1);
  4629     BR      : E(2);
  4630     MS      : E(2);
  4631 %}
  4632 #endif
  4634 // Integer ALU reg operation
  4635 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4636     single_instruction; may_have_no_code;
  4637     dst   : E(write);
  4638     src   : R(read);
  4639     IALU  : R;
  4640 %}
  4641 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4642     single_instruction; may_have_no_code;
  4643     dst   : E(write);
  4644     src   : R(read);
  4645     IALU  : R;
  4646 %}
  4648 // Two integer ALU reg operations
  4649 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4650     instruction_count(2);
  4651     dst   : E(write);
  4652     src   : R(read);
  4653     A0    : R;
  4654     A1    : R;
  4655 %}
  4657 // Two integer ALU reg operations
  4658 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4659     instruction_count(2); may_have_no_code;
  4660     dst   : E(write);
  4661     src   : R(read);
  4662     A0    : R;
  4663     A1    : R;
  4664 %}
  4666 // Integer ALU imm operation
  4667 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4668     single_instruction;
  4669     dst   : E(write);
  4670     IALU  : R;
  4671 %}
  4673 // Integer ALU reg-reg with carry operation
  4674 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4675     single_instruction;
  4676     dst   : E(write);
  4677     src1  : R(read);
  4678     src2  : R(read);
  4679     IALU  : R;
  4680 %}
  4682 // Integer ALU cc operation
  4683 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4684     single_instruction;
  4685     dst   : E(write);
  4686     cc    : R(read);
  4687     IALU  : R;
  4688 %}
  4690 // Integer ALU cc / second IALU operation
  4691 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4692     instruction_count(1); multiple_bundles;
  4693     dst   : E(write)+1;
  4694     src   : R(read);
  4695     IALU  : R;
  4696 %}
  4698 // Integer ALU cc / second IALU operation
  4699 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4700     instruction_count(1); multiple_bundles;
  4701     dst   : E(write)+1;
  4702     p     : R(read);
  4703     q     : R(read);
  4704     IALU  : R;
  4705 %}
  4707 // Integer ALU hi-lo-reg operation
  4708 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4709     instruction_count(1); multiple_bundles;
  4710     dst   : E(write)+1;
  4711     IALU  : R(2);
  4712 %}
  4714 // Float ALU hi-lo-reg operation (with temp)
  4715 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4716     instruction_count(1); multiple_bundles;
  4717     dst   : E(write)+1;
  4718     IALU  : R(2);
  4719 %}
  4721 // Long Constant
  4722 pipe_class loadConL( iRegL dst, immL src ) %{
  4723     instruction_count(2); multiple_bundles;
  4724     dst   : E(write)+1;
  4725     IALU  : R(2);
  4726     IALU  : R(2);
  4727 %}
  4729 // Pointer Constant
  4730 pipe_class loadConP( iRegP dst, immP src ) %{
  4731     instruction_count(0); multiple_bundles;
  4732     fixed_latency(6);
  4733 %}
  4735 // Polling Address
  4736 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4737 #ifdef _LP64
  4738     instruction_count(0); multiple_bundles;
  4739     fixed_latency(6);
  4740 #else
  4741     dst   : E(write);
  4742     IALU  : R;
  4743 #endif
  4744 %}
  4746 // Long Constant small
  4747 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4748     instruction_count(2);
  4749     dst   : E(write);
  4750     IALU  : R;
  4751     IALU  : R;
  4752 %}
  4754 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4755 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4756     instruction_count(1); multiple_bundles;
  4757     src   : R(read);
  4758     dst   : M(write)+1;
  4759     IALU  : R;
  4760     MS    : E;
  4761 %}
  4763 // Integer ALU nop operation
  4764 pipe_class ialu_nop() %{
  4765     single_instruction;
  4766     IALU  : R;
  4767 %}
  4769 // Integer ALU nop operation
  4770 pipe_class ialu_nop_A0() %{
  4771     single_instruction;
  4772     A0    : R;
  4773 %}
  4775 // Integer ALU nop operation
  4776 pipe_class ialu_nop_A1() %{
  4777     single_instruction;
  4778     A1    : R;
  4779 %}
  4781 // Integer Multiply reg-reg operation
  4782 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4783     single_instruction;
  4784     dst   : E(write);
  4785     src1  : R(read);
  4786     src2  : R(read);
  4787     MS    : R(5);
  4788 %}
  4790 // Integer Multiply reg-imm operation
  4791 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4792     single_instruction;
  4793     dst   : E(write);
  4794     src1  : R(read);
  4795     MS    : R(5);
  4796 %}
  4798 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4799     single_instruction;
  4800     dst   : E(write)+4;
  4801     src1  : R(read);
  4802     src2  : R(read);
  4803     MS    : R(6);
  4804 %}
  4806 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4807     single_instruction;
  4808     dst   : E(write)+4;
  4809     src1  : R(read);
  4810     MS    : R(6);
  4811 %}
  4813 // Integer Divide reg-reg
  4814 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4815     instruction_count(1); multiple_bundles;
  4816     dst   : E(write);
  4817     temp  : E(write);
  4818     src1  : R(read);
  4819     src2  : R(read);
  4820     temp  : R(read);
  4821     MS    : R(38);
  4822 %}
  4824 // Integer Divide reg-imm
  4825 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4826     instruction_count(1); multiple_bundles;
  4827     dst   : E(write);
  4828     temp  : E(write);
  4829     src1  : R(read);
  4830     temp  : R(read);
  4831     MS    : R(38);
  4832 %}
  4834 // Long Divide
  4835 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4836     dst  : E(write)+71;
  4837     src1 : R(read);
  4838     src2 : R(read)+1;
  4839     MS   : R(70);
  4840 %}
  4842 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4843     dst  : E(write)+71;
  4844     src1 : R(read);
  4845     MS   : R(70);
  4846 %}
  4848 // Floating Point Add Float
  4849 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4850     single_instruction;
  4851     dst   : X(write);
  4852     src1  : E(read);
  4853     src2  : E(read);
  4854     FA    : R;
  4855 %}
  4857 // Floating Point Add Double
  4858 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4859     single_instruction;
  4860     dst   : X(write);
  4861     src1  : E(read);
  4862     src2  : E(read);
  4863     FA    : R;
  4864 %}
  4866 // Floating Point Conditional Move based on integer flags
  4867 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4868     single_instruction;
  4869     dst   : X(write);
  4870     src   : E(read);
  4871     cr    : R(read);
  4872     FA    : R(2);
  4873     BR    : R(2);
  4874 %}
  4876 // Floating Point Conditional Move based on integer flags
  4877 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4878     single_instruction;
  4879     dst   : X(write);
  4880     src   : E(read);
  4881     cr    : R(read);
  4882     FA    : R(2);
  4883     BR    : R(2);
  4884 %}
  4886 // Floating Point Multiply Float
  4887 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4888     single_instruction;
  4889     dst   : X(write);
  4890     src1  : E(read);
  4891     src2  : E(read);
  4892     FM    : R;
  4893 %}
  4895 // Floating Point Multiply Double
  4896 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src1  : E(read);
  4900     src2  : E(read);
  4901     FM    : R;
  4902 %}
  4904 // Floating Point Divide Float
  4905 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4906     single_instruction;
  4907     dst   : X(write);
  4908     src1  : E(read);
  4909     src2  : E(read);
  4910     FM    : R;
  4911     FDIV  : C(14);
  4912 %}
  4914 // Floating Point Divide Double
  4915 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4916     single_instruction;
  4917     dst   : X(write);
  4918     src1  : E(read);
  4919     src2  : E(read);
  4920     FM    : R;
  4921     FDIV  : C(17);
  4922 %}
  4924 // Floating Point Move/Negate/Abs Float
  4925 pipe_class faddF_reg(regF dst, regF src) %{
  4926     single_instruction;
  4927     dst   : W(write);
  4928     src   : E(read);
  4929     FA    : R(1);
  4930 %}
  4932 // Floating Point Move/Negate/Abs Double
  4933 pipe_class faddD_reg(regD dst, regD src) %{
  4934     single_instruction;
  4935     dst   : W(write);
  4936     src   : E(read);
  4937     FA    : R;
  4938 %}
  4940 // Floating Point Convert F->D
  4941 pipe_class fcvtF2D(regD dst, regF src) %{
  4942     single_instruction;
  4943     dst   : X(write);
  4944     src   : E(read);
  4945     FA    : R;
  4946 %}
  4948 // Floating Point Convert I->D
  4949 pipe_class fcvtI2D(regD dst, regF src) %{
  4950     single_instruction;
  4951     dst   : X(write);
  4952     src   : E(read);
  4953     FA    : R;
  4954 %}
  4956 // Floating Point Convert LHi->D
  4957 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4958     single_instruction;
  4959     dst   : X(write);
  4960     src   : E(read);
  4961     FA    : R;
  4962 %}
  4964 // Floating Point Convert L->D
  4965 pipe_class fcvtL2D(regD dst, regF src) %{
  4966     single_instruction;
  4967     dst   : X(write);
  4968     src   : E(read);
  4969     FA    : R;
  4970 %}
  4972 // Floating Point Convert L->F
  4973 pipe_class fcvtL2F(regD dst, regF src) %{
  4974     single_instruction;
  4975     dst   : X(write);
  4976     src   : E(read);
  4977     FA    : R;
  4978 %}
  4980 // Floating Point Convert D->F
  4981 pipe_class fcvtD2F(regD dst, regF src) %{
  4982     single_instruction;
  4983     dst   : X(write);
  4984     src   : E(read);
  4985     FA    : R;
  4986 %}
  4988 // Floating Point Convert I->L
  4989 pipe_class fcvtI2L(regD dst, regF src) %{
  4990     single_instruction;
  4991     dst   : X(write);
  4992     src   : E(read);
  4993     FA    : R;
  4994 %}
  4996 // Floating Point Convert D->F
  4997 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4998     instruction_count(1); multiple_bundles;
  4999     dst   : X(write)+6;
  5000     src   : E(read);
  5001     FA    : R;
  5002 %}
  5004 // Floating Point Convert D->L
  5005 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  5006     instruction_count(1); multiple_bundles;
  5007     dst   : X(write)+6;
  5008     src   : E(read);
  5009     FA    : R;
  5010 %}
  5012 // Floating Point Convert F->I
  5013 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  5014     instruction_count(1); multiple_bundles;
  5015     dst   : X(write)+6;
  5016     src   : E(read);
  5017     FA    : R;
  5018 %}
  5020 // Floating Point Convert F->L
  5021 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  5022     instruction_count(1); multiple_bundles;
  5023     dst   : X(write)+6;
  5024     src   : E(read);
  5025     FA    : R;
  5026 %}
  5028 // Floating Point Convert I->F
  5029 pipe_class fcvtI2F(regF dst, regF src) %{
  5030     single_instruction;
  5031     dst   : X(write);
  5032     src   : E(read);
  5033     FA    : R;
  5034 %}
  5036 // Floating Point Compare
  5037 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5038     single_instruction;
  5039     cr    : X(write);
  5040     src1  : E(read);
  5041     src2  : E(read);
  5042     FA    : R;
  5043 %}
  5045 // Floating Point Compare
  5046 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5047     single_instruction;
  5048     cr    : X(write);
  5049     src1  : E(read);
  5050     src2  : E(read);
  5051     FA    : R;
  5052 %}
  5054 // Floating Add Nop
  5055 pipe_class fadd_nop() %{
  5056     single_instruction;
  5057     FA  : R;
  5058 %}
  5060 // Integer Store to Memory
  5061 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5062     single_instruction;
  5063     mem   : R(read);
  5064     src   : C(read);
  5065     MS    : R;
  5066 %}
  5068 // Integer Store to Memory
  5069 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5070     single_instruction;
  5071     mem   : R(read);
  5072     src   : C(read);
  5073     MS    : R;
  5074 %}
  5076 // Integer Store Zero to Memory
  5077 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5078     single_instruction;
  5079     mem   : R(read);
  5080     MS    : R;
  5081 %}
  5083 // Special Stack Slot Store
  5084 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5085     single_instruction;
  5086     stkSlot : R(read);
  5087     src     : C(read);
  5088     MS      : R;
  5089 %}
  5091 // Special Stack Slot Store
  5092 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5093     instruction_count(2); multiple_bundles;
  5094     stkSlot : R(read);
  5095     src     : C(read);
  5096     MS      : R(2);
  5097 %}
  5099 // Float Store
  5100 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5101     single_instruction;
  5102     mem : R(read);
  5103     src : C(read);
  5104     MS  : R;
  5105 %}
  5107 // Float Store
  5108 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5109     single_instruction;
  5110     mem : R(read);
  5111     MS  : R;
  5112 %}
  5114 // Double Store
  5115 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5116     instruction_count(1);
  5117     mem : R(read);
  5118     src : C(read);
  5119     MS  : R;
  5120 %}
  5122 // Double Store
  5123 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5124     single_instruction;
  5125     mem : R(read);
  5126     MS  : R;
  5127 %}
  5129 // Special Stack Slot Float Store
  5130 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5131     single_instruction;
  5132     stkSlot : R(read);
  5133     src     : C(read);
  5134     MS      : R;
  5135 %}
  5137 // Special Stack Slot Double Store
  5138 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5139     single_instruction;
  5140     stkSlot : R(read);
  5141     src     : C(read);
  5142     MS      : R;
  5143 %}
  5145 // Integer Load (when sign bit propagation not needed)
  5146 pipe_class iload_mem(iRegI dst, memory mem) %{
  5147     single_instruction;
  5148     mem : R(read);
  5149     dst : C(write);
  5150     MS  : R;
  5151 %}
  5153 // Integer Load from stack operand
  5154 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5155     single_instruction;
  5156     mem : R(read);
  5157     dst : C(write);
  5158     MS  : R;
  5159 %}
  5161 // Integer Load (when sign bit propagation or masking is needed)
  5162 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5163     single_instruction;
  5164     mem : R(read);
  5165     dst : M(write);
  5166     MS  : R;
  5167 %}
  5169 // Float Load
  5170 pipe_class floadF_mem(regF dst, memory mem) %{
  5171     single_instruction;
  5172     mem : R(read);
  5173     dst : M(write);
  5174     MS  : R;
  5175 %}
  5177 // Float Load
  5178 pipe_class floadD_mem(regD dst, memory mem) %{
  5179     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5180     mem : R(read);
  5181     dst : M(write);
  5182     MS  : R;
  5183 %}
  5185 // Float Load
  5186 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5187     single_instruction;
  5188     stkSlot : R(read);
  5189     dst : M(write);
  5190     MS  : R;
  5191 %}
  5193 // Float Load
  5194 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5195     single_instruction;
  5196     stkSlot : R(read);
  5197     dst : M(write);
  5198     MS  : R;
  5199 %}
  5201 // Memory Nop
  5202 pipe_class mem_nop() %{
  5203     single_instruction;
  5204     MS  : R;
  5205 %}
  5207 pipe_class sethi(iRegP dst, immI src) %{
  5208     single_instruction;
  5209     dst  : E(write);
  5210     IALU : R;
  5211 %}
  5213 pipe_class loadPollP(iRegP poll) %{
  5214     single_instruction;
  5215     poll : R(read);
  5216     MS   : R;
  5217 %}
  5219 pipe_class br(Universe br, label labl) %{
  5220     single_instruction_with_delay_slot;
  5221     BR  : R;
  5222 %}
  5224 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5225     single_instruction_with_delay_slot;
  5226     cr    : E(read);
  5227     BR    : R;
  5228 %}
  5230 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5231     single_instruction_with_delay_slot;
  5232     op1 : E(read);
  5233     BR  : R;
  5234     MS  : R;
  5235 %}
  5237 // Compare and branch
  5238 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5239     instruction_count(2); has_delay_slot;
  5240     cr    : E(write);
  5241     src1  : R(read);
  5242     src2  : R(read);
  5243     IALU  : R;
  5244     BR    : R;
  5245 %}
  5247 // Compare and branch
  5248 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5249     instruction_count(2); has_delay_slot;
  5250     cr    : E(write);
  5251     src1  : R(read);
  5252     IALU  : R;
  5253     BR    : R;
  5254 %}
  5256 // Compare and branch using cbcond
  5257 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5258     single_instruction;
  5259     src1  : E(read);
  5260     src2  : E(read);
  5261     IALU  : R;
  5262     BR    : R;
  5263 %}
  5265 // Compare and branch using cbcond
  5266 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5267     single_instruction;
  5268     src1  : E(read);
  5269     IALU  : R;
  5270     BR    : R;
  5271 %}
  5273 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5274     single_instruction_with_delay_slot;
  5275     cr    : E(read);
  5276     BR    : R;
  5277 %}
  5279 pipe_class br_nop() %{
  5280     single_instruction;
  5281     BR  : R;
  5282 %}
  5284 pipe_class simple_call(method meth) %{
  5285     instruction_count(2); multiple_bundles; force_serialization;
  5286     fixed_latency(100);
  5287     BR  : R(1);
  5288     MS  : R(1);
  5289     A0  : R(1);
  5290 %}
  5292 pipe_class compiled_call(method meth) %{
  5293     instruction_count(1); multiple_bundles; force_serialization;
  5294     fixed_latency(100);
  5295     MS  : R(1);
  5296 %}
  5298 pipe_class call(method meth) %{
  5299     instruction_count(0); multiple_bundles; force_serialization;
  5300     fixed_latency(100);
  5301 %}
  5303 pipe_class tail_call(Universe ignore, label labl) %{
  5304     single_instruction; has_delay_slot;
  5305     fixed_latency(100);
  5306     BR  : R(1);
  5307     MS  : R(1);
  5308 %}
  5310 pipe_class ret(Universe ignore) %{
  5311     single_instruction; has_delay_slot;
  5312     BR  : R(1);
  5313     MS  : R(1);
  5314 %}
  5316 pipe_class ret_poll(g3RegP poll) %{
  5317     instruction_count(3); has_delay_slot;
  5318     poll : E(read);
  5319     MS   : R;
  5320 %}
  5322 // The real do-nothing guy
  5323 pipe_class empty( ) %{
  5324     instruction_count(0);
  5325 %}
  5327 pipe_class long_memory_op() %{
  5328     instruction_count(0); multiple_bundles; force_serialization;
  5329     fixed_latency(25);
  5330     MS  : R(1);
  5331 %}
  5333 // Check-cast
  5334 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5335     array : R(read);
  5336     match  : R(read);
  5337     IALU   : R(2);
  5338     BR     : R(2);
  5339     MS     : R;
  5340 %}
  5342 // Convert FPU flags into +1,0,-1
  5343 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5344     src1  : E(read);
  5345     src2  : E(read);
  5346     dst   : E(write);
  5347     FA    : R;
  5348     MS    : R(2);
  5349     BR    : R(2);
  5350 %}
  5352 // Compare for p < q, and conditionally add y
  5353 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5354     p     : E(read);
  5355     q     : E(read);
  5356     y     : E(read);
  5357     IALU  : R(3)
  5358 %}
  5360 // Perform a compare, then move conditionally in a branch delay slot.
  5361 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5362     src2   : E(read);
  5363     srcdst : E(read);
  5364     IALU   : R;
  5365     BR     : R;
  5366 %}
  5368 // Define the class for the Nop node
  5369 define %{
  5370    MachNop = ialu_nop;
  5371 %}
  5373 %}
  5375 //----------INSTRUCTIONS-------------------------------------------------------
  5377 //------------Special Stack Slot instructions - no match rules-----------------
  5378 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5379   // No match rule to avoid chain rule match.
  5380   effect(DEF dst, USE src);
  5381   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5383   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5384   opcode(Assembler::ldf_op3);
  5385   ins_encode(simple_form3_mem_reg(src, dst));
  5386   ins_pipe(floadF_stk);
  5387 %}
  5389 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5390   // No match rule to avoid chain rule match.
  5391   effect(DEF dst, USE src);
  5392   ins_cost(MEMORY_REF_COST);
  5393   size(4);
  5394   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5395   opcode(Assembler::lddf_op3);
  5396   ins_encode(simple_form3_mem_reg(src, dst));
  5397   ins_pipe(floadD_stk);
  5398 %}
  5400 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5401   // No match rule to avoid chain rule match.
  5402   effect(DEF dst, USE src);
  5403   ins_cost(MEMORY_REF_COST);
  5404   size(4);
  5405   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5406   opcode(Assembler::stf_op3);
  5407   ins_encode(simple_form3_mem_reg(dst, src));
  5408   ins_pipe(fstoreF_stk_reg);
  5409 %}
  5411 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5412   // No match rule to avoid chain rule match.
  5413   effect(DEF dst, USE src);
  5414   ins_cost(MEMORY_REF_COST);
  5415   size(4);
  5416   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5417   opcode(Assembler::stdf_op3);
  5418   ins_encode(simple_form3_mem_reg(dst, src));
  5419   ins_pipe(fstoreD_stk_reg);
  5420 %}
  5422 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5423   effect(DEF dst, USE src);
  5424   ins_cost(MEMORY_REF_COST*2);
  5425   size(8);
  5426   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5427             "STW    R_G0,$dst.lo" %}
  5428   opcode(Assembler::stw_op3);
  5429   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5430   ins_pipe(lstoreI_stk_reg);
  5431 %}
  5433 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5434   // No match rule to avoid chain rule match.
  5435   effect(DEF dst, USE src);
  5436   ins_cost(MEMORY_REF_COST);
  5437   size(4);
  5438   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5439   opcode(Assembler::stx_op3);
  5440   ins_encode(simple_form3_mem_reg( dst, src ) );
  5441   ins_pipe(istore_stk_reg);
  5442 %}
  5444 //---------- Chain stack slots between similar types --------
  5446 // Load integer from stack slot
  5447 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5448   match(Set dst src);
  5449   ins_cost(MEMORY_REF_COST);
  5451   size(4);
  5452   format %{ "LDUW   $src,$dst\t!stk" %}
  5453   opcode(Assembler::lduw_op3);
  5454   ins_encode(simple_form3_mem_reg( src, dst ) );
  5455   ins_pipe(iload_mem);
  5456 %}
  5458 // Store integer to stack slot
  5459 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5460   match(Set dst src);
  5461   ins_cost(MEMORY_REF_COST);
  5463   size(4);
  5464   format %{ "STW    $src,$dst\t!stk" %}
  5465   opcode(Assembler::stw_op3);
  5466   ins_encode(simple_form3_mem_reg( dst, src ) );
  5467   ins_pipe(istore_mem_reg);
  5468 %}
  5470 // Load long from stack slot
  5471 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5472   match(Set dst src);
  5474   ins_cost(MEMORY_REF_COST);
  5475   size(4);
  5476   format %{ "LDX    $src,$dst\t! long" %}
  5477   opcode(Assembler::ldx_op3);
  5478   ins_encode(simple_form3_mem_reg( src, dst ) );
  5479   ins_pipe(iload_mem);
  5480 %}
  5482 // Store long to stack slot
  5483 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5484   match(Set dst src);
  5486   ins_cost(MEMORY_REF_COST);
  5487   size(4);
  5488   format %{ "STX    $src,$dst\t! long" %}
  5489   opcode(Assembler::stx_op3);
  5490   ins_encode(simple_form3_mem_reg( dst, src ) );
  5491   ins_pipe(istore_mem_reg);
  5492 %}
  5494 #ifdef _LP64
  5495 // Load pointer from stack slot, 64-bit encoding
  5496 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5497   match(Set dst src);
  5498   ins_cost(MEMORY_REF_COST);
  5499   size(4);
  5500   format %{ "LDX    $src,$dst\t!ptr" %}
  5501   opcode(Assembler::ldx_op3);
  5502   ins_encode(simple_form3_mem_reg( src, dst ) );
  5503   ins_pipe(iload_mem);
  5504 %}
  5506 // Store pointer to stack slot
  5507 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5508   match(Set dst src);
  5509   ins_cost(MEMORY_REF_COST);
  5510   size(4);
  5511   format %{ "STX    $src,$dst\t!ptr" %}
  5512   opcode(Assembler::stx_op3);
  5513   ins_encode(simple_form3_mem_reg( dst, src ) );
  5514   ins_pipe(istore_mem_reg);
  5515 %}
  5516 #else // _LP64
  5517 // Load pointer from stack slot, 32-bit encoding
  5518 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5519   match(Set dst src);
  5520   ins_cost(MEMORY_REF_COST);
  5521   format %{ "LDUW   $src,$dst\t!ptr" %}
  5522   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5523   ins_encode(simple_form3_mem_reg( src, dst ) );
  5524   ins_pipe(iload_mem);
  5525 %}
  5527 // Store pointer to stack slot
  5528 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5529   match(Set dst src);
  5530   ins_cost(MEMORY_REF_COST);
  5531   format %{ "STW    $src,$dst\t!ptr" %}
  5532   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5533   ins_encode(simple_form3_mem_reg( dst, src ) );
  5534   ins_pipe(istore_mem_reg);
  5535 %}
  5536 #endif // _LP64
  5538 //------------Special Nop instructions for bundling - no match rules-----------
  5539 // Nop using the A0 functional unit
  5540 instruct Nop_A0() %{
  5541   ins_cost(0);
  5543   format %{ "NOP    ! Alu Pipeline" %}
  5544   opcode(Assembler::or_op3, Assembler::arith_op);
  5545   ins_encode( form2_nop() );
  5546   ins_pipe(ialu_nop_A0);
  5547 %}
  5549 // Nop using the A1 functional unit
  5550 instruct Nop_A1( ) %{
  5551   ins_cost(0);
  5553   format %{ "NOP    ! Alu Pipeline" %}
  5554   opcode(Assembler::or_op3, Assembler::arith_op);
  5555   ins_encode( form2_nop() );
  5556   ins_pipe(ialu_nop_A1);
  5557 %}
  5559 // Nop using the memory functional unit
  5560 instruct Nop_MS( ) %{
  5561   ins_cost(0);
  5563   format %{ "NOP    ! Memory Pipeline" %}
  5564   ins_encode( emit_mem_nop );
  5565   ins_pipe(mem_nop);
  5566 %}
  5568 // Nop using the floating add functional unit
  5569 instruct Nop_FA( ) %{
  5570   ins_cost(0);
  5572   format %{ "NOP    ! Floating Add Pipeline" %}
  5573   ins_encode( emit_fadd_nop );
  5574   ins_pipe(fadd_nop);
  5575 %}
  5577 // Nop using the branch functional unit
  5578 instruct Nop_BR( ) %{
  5579   ins_cost(0);
  5581   format %{ "NOP    ! Branch Pipeline" %}
  5582   ins_encode( emit_br_nop );
  5583   ins_pipe(br_nop);
  5584 %}
  5586 //----------Load/Store/Move Instructions---------------------------------------
  5587 //----------Load Instructions--------------------------------------------------
  5588 // Load Byte (8bit signed)
  5589 instruct loadB(iRegI dst, memory mem) %{
  5590   match(Set dst (LoadB mem));
  5591   ins_cost(MEMORY_REF_COST);
  5593   size(4);
  5594   format %{ "LDSB   $mem,$dst\t! byte" %}
  5595   ins_encode %{
  5596     __ ldsb($mem$$Address, $dst$$Register);
  5597   %}
  5598   ins_pipe(iload_mask_mem);
  5599 %}
  5601 // Load Byte (8bit signed) into a Long Register
  5602 instruct loadB2L(iRegL dst, memory mem) %{
  5603   match(Set dst (ConvI2L (LoadB mem)));
  5604   ins_cost(MEMORY_REF_COST);
  5606   size(4);
  5607   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5608   ins_encode %{
  5609     __ ldsb($mem$$Address, $dst$$Register);
  5610   %}
  5611   ins_pipe(iload_mask_mem);
  5612 %}
  5614 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5615 instruct loadUB(iRegI dst, memory mem) %{
  5616   match(Set dst (LoadUB mem));
  5617   ins_cost(MEMORY_REF_COST);
  5619   size(4);
  5620   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5621   ins_encode %{
  5622     __ ldub($mem$$Address, $dst$$Register);
  5623   %}
  5624   ins_pipe(iload_mem);
  5625 %}
  5627 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5628 instruct loadUB2L(iRegL dst, memory mem) %{
  5629   match(Set dst (ConvI2L (LoadUB mem)));
  5630   ins_cost(MEMORY_REF_COST);
  5632   size(4);
  5633   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5634   ins_encode %{
  5635     __ ldub($mem$$Address, $dst$$Register);
  5636   %}
  5637   ins_pipe(iload_mem);
  5638 %}
  5640 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5641 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5642   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5643   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5645   size(2*4);
  5646   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5647             "AND    $dst,$mask,$dst" %}
  5648   ins_encode %{
  5649     __ ldub($mem$$Address, $dst$$Register);
  5650     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5651   %}
  5652   ins_pipe(iload_mem);
  5653 %}
  5655 // Load Short (16bit signed)
  5656 instruct loadS(iRegI dst, memory mem) %{
  5657   match(Set dst (LoadS mem));
  5658   ins_cost(MEMORY_REF_COST);
  5660   size(4);
  5661   format %{ "LDSH   $mem,$dst\t! short" %}
  5662   ins_encode %{
  5663     __ ldsh($mem$$Address, $dst$$Register);
  5664   %}
  5665   ins_pipe(iload_mask_mem);
  5666 %}
  5668 // Load Short (16 bit signed) to Byte (8 bit signed)
  5669 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5670   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5671   ins_cost(MEMORY_REF_COST);
  5673   size(4);
  5675   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5676   ins_encode %{
  5677     __ ldsb($mem$$Address, $dst$$Register, 1);
  5678   %}
  5679   ins_pipe(iload_mask_mem);
  5680 %}
  5682 // Load Short (16bit signed) into a Long Register
  5683 instruct loadS2L(iRegL dst, memory mem) %{
  5684   match(Set dst (ConvI2L (LoadS mem)));
  5685   ins_cost(MEMORY_REF_COST);
  5687   size(4);
  5688   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5689   ins_encode %{
  5690     __ ldsh($mem$$Address, $dst$$Register);
  5691   %}
  5692   ins_pipe(iload_mask_mem);
  5693 %}
  5695 // Load Unsigned Short/Char (16bit UNsigned)
  5696 instruct loadUS(iRegI dst, memory mem) %{
  5697   match(Set dst (LoadUS mem));
  5698   ins_cost(MEMORY_REF_COST);
  5700   size(4);
  5701   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5702   ins_encode %{
  5703     __ lduh($mem$$Address, $dst$$Register);
  5704   %}
  5705   ins_pipe(iload_mem);
  5706 %}
  5708 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5709 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5710   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5711   ins_cost(MEMORY_REF_COST);
  5713   size(4);
  5714   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5715   ins_encode %{
  5716     __ ldsb($mem$$Address, $dst$$Register, 1);
  5717   %}
  5718   ins_pipe(iload_mask_mem);
  5719 %}
  5721 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5722 instruct loadUS2L(iRegL dst, memory mem) %{
  5723   match(Set dst (ConvI2L (LoadUS mem)));
  5724   ins_cost(MEMORY_REF_COST);
  5726   size(4);
  5727   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5728   ins_encode %{
  5729     __ lduh($mem$$Address, $dst$$Register);
  5730   %}
  5731   ins_pipe(iload_mem);
  5732 %}
  5734 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5735 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5736   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5737   ins_cost(MEMORY_REF_COST);
  5739   size(4);
  5740   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5741   ins_encode %{
  5742     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5743   %}
  5744   ins_pipe(iload_mem);
  5745 %}
  5747 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5748 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5749   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5750   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5752   size(2*4);
  5753   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5754             "AND    $dst,$mask,$dst" %}
  5755   ins_encode %{
  5756     Register Rdst = $dst$$Register;
  5757     __ lduh($mem$$Address, Rdst);
  5758     __ and3(Rdst, $mask$$constant, Rdst);
  5759   %}
  5760   ins_pipe(iload_mem);
  5761 %}
  5763 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5764 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5765   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5766   effect(TEMP dst, TEMP tmp);
  5767   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5769   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5770             "SET    $mask,$tmp\n\t"
  5771             "AND    $dst,$tmp,$dst" %}
  5772   ins_encode %{
  5773     Register Rdst = $dst$$Register;
  5774     Register Rtmp = $tmp$$Register;
  5775     __ lduh($mem$$Address, Rdst);
  5776     __ set($mask$$constant, Rtmp);
  5777     __ and3(Rdst, Rtmp, Rdst);
  5778   %}
  5779   ins_pipe(iload_mem);
  5780 %}
  5782 // Load Integer
  5783 instruct loadI(iRegI dst, memory mem) %{
  5784   match(Set dst (LoadI mem));
  5785   ins_cost(MEMORY_REF_COST);
  5787   size(4);
  5788   format %{ "LDUW   $mem,$dst\t! int" %}
  5789   ins_encode %{
  5790     __ lduw($mem$$Address, $dst$$Register);
  5791   %}
  5792   ins_pipe(iload_mem);
  5793 %}
  5795 // Load Integer to Byte (8 bit signed)
  5796 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5797   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5798   ins_cost(MEMORY_REF_COST);
  5800   size(4);
  5802   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5803   ins_encode %{
  5804     __ ldsb($mem$$Address, $dst$$Register, 3);
  5805   %}
  5806   ins_pipe(iload_mask_mem);
  5807 %}
  5809 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5810 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5811   match(Set dst (AndI (LoadI mem) mask));
  5812   ins_cost(MEMORY_REF_COST);
  5814   size(4);
  5816   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5817   ins_encode %{
  5818     __ ldub($mem$$Address, $dst$$Register, 3);
  5819   %}
  5820   ins_pipe(iload_mask_mem);
  5821 %}
  5823 // Load Integer to Short (16 bit signed)
  5824 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5825   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5826   ins_cost(MEMORY_REF_COST);
  5828   size(4);
  5830   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5831   ins_encode %{
  5832     __ ldsh($mem$$Address, $dst$$Register, 2);
  5833   %}
  5834   ins_pipe(iload_mask_mem);
  5835 %}
  5837 // Load Integer to Unsigned Short (16 bit UNsigned)
  5838 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5839   match(Set dst (AndI (LoadI mem) mask));
  5840   ins_cost(MEMORY_REF_COST);
  5842   size(4);
  5844   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5845   ins_encode %{
  5846     __ lduh($mem$$Address, $dst$$Register, 2);
  5847   %}
  5848   ins_pipe(iload_mask_mem);
  5849 %}
  5851 // Load Integer into a Long Register
  5852 instruct loadI2L(iRegL dst, memory mem) %{
  5853   match(Set dst (ConvI2L (LoadI mem)));
  5854   ins_cost(MEMORY_REF_COST);
  5856   size(4);
  5857   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5858   ins_encode %{
  5859     __ ldsw($mem$$Address, $dst$$Register);
  5860   %}
  5861   ins_pipe(iload_mask_mem);
  5862 %}
  5864 // Load Integer with mask 0xFF into a Long Register
  5865 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5866   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5867   ins_cost(MEMORY_REF_COST);
  5869   size(4);
  5870   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5871   ins_encode %{
  5872     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5873   %}
  5874   ins_pipe(iload_mem);
  5875 %}
  5877 // Load Integer with mask 0xFFFF into a Long Register
  5878 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5879   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5880   ins_cost(MEMORY_REF_COST);
  5882   size(4);
  5883   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5884   ins_encode %{
  5885     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5886   %}
  5887   ins_pipe(iload_mem);
  5888 %}
  5890 // Load Integer with a 12-bit mask into a Long Register
  5891 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
  5892   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5893   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5895   size(2*4);
  5896   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
  5897             "AND    $dst,$mask,$dst" %}
  5898   ins_encode %{
  5899     Register Rdst = $dst$$Register;
  5900     __ lduw($mem$$Address, Rdst);
  5901     __ and3(Rdst, $mask$$constant, Rdst);
  5902   %}
  5903   ins_pipe(iload_mem);
  5904 %}
  5906 // Load Integer with a 31-bit mask into a Long Register
  5907 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
  5908   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5909   effect(TEMP dst, TEMP tmp);
  5910   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5912   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
  5913             "SET    $mask,$tmp\n\t"
  5914             "AND    $dst,$tmp,$dst" %}
  5915   ins_encode %{
  5916     Register Rdst = $dst$$Register;
  5917     Register Rtmp = $tmp$$Register;
  5918     __ lduw($mem$$Address, Rdst);
  5919     __ set($mask$$constant, Rtmp);
  5920     __ and3(Rdst, Rtmp, Rdst);
  5921   %}
  5922   ins_pipe(iload_mem);
  5923 %}
  5925 // Load Unsigned Integer into a Long Register
  5926 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5927   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5928   ins_cost(MEMORY_REF_COST);
  5930   size(4);
  5931   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5932   ins_encode %{
  5933     __ lduw($mem$$Address, $dst$$Register);
  5934   %}
  5935   ins_pipe(iload_mem);
  5936 %}
  5938 // Load Long - aligned
  5939 instruct loadL(iRegL dst, memory mem ) %{
  5940   match(Set dst (LoadL mem));
  5941   ins_cost(MEMORY_REF_COST);
  5943   size(4);
  5944   format %{ "LDX    $mem,$dst\t! long" %}
  5945   ins_encode %{
  5946     __ ldx($mem$$Address, $dst$$Register);
  5947   %}
  5948   ins_pipe(iload_mem);
  5949 %}
  5951 // Load Long - UNaligned
  5952 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5953   match(Set dst (LoadL_unaligned mem));
  5954   effect(KILL tmp);
  5955   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5956   size(16);
  5957   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5958           "\tLDUW   $mem  ,$dst\n"
  5959           "\tSLLX   #32, $dst, $dst\n"
  5960           "\tOR     $dst, R_O7, $dst" %}
  5961   opcode(Assembler::lduw_op3);
  5962   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5963   ins_pipe(iload_mem);
  5964 %}
  5966 // Load Range
  5967 instruct loadRange(iRegI dst, memory mem) %{
  5968   match(Set dst (LoadRange mem));
  5969   ins_cost(MEMORY_REF_COST);
  5971   size(4);
  5972   format %{ "LDUW   $mem,$dst\t! range" %}
  5973   opcode(Assembler::lduw_op3);
  5974   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5975   ins_pipe(iload_mem);
  5976 %}
  5978 // Load Integer into %f register (for fitos/fitod)
  5979 instruct loadI_freg(regF dst, memory mem) %{
  5980   match(Set dst (LoadI mem));
  5981   ins_cost(MEMORY_REF_COST);
  5982   size(4);
  5984   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5985   opcode(Assembler::ldf_op3);
  5986   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5987   ins_pipe(floadF_mem);
  5988 %}
  5990 // Load Pointer
  5991 instruct loadP(iRegP dst, memory mem) %{
  5992   match(Set dst (LoadP mem));
  5993   ins_cost(MEMORY_REF_COST);
  5994   size(4);
  5996 #ifndef _LP64
  5997   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5998   ins_encode %{
  5999     __ lduw($mem$$Address, $dst$$Register);
  6000   %}
  6001 #else
  6002   format %{ "LDX    $mem,$dst\t! ptr" %}
  6003   ins_encode %{
  6004     __ ldx($mem$$Address, $dst$$Register);
  6005   %}
  6006 #endif
  6007   ins_pipe(iload_mem);
  6008 %}
  6010 // Load Compressed Pointer
  6011 instruct loadN(iRegN dst, memory mem) %{
  6012   match(Set dst (LoadN mem));
  6013   ins_cost(MEMORY_REF_COST);
  6014   size(4);
  6016   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  6017   ins_encode %{
  6018     __ lduw($mem$$Address, $dst$$Register);
  6019   %}
  6020   ins_pipe(iload_mem);
  6021 %}
  6023 // Load Klass Pointer
  6024 instruct loadKlass(iRegP dst, memory mem) %{
  6025   match(Set dst (LoadKlass mem));
  6026   ins_cost(MEMORY_REF_COST);
  6027   size(4);
  6029 #ifndef _LP64
  6030   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6031   ins_encode %{
  6032     __ lduw($mem$$Address, $dst$$Register);
  6033   %}
  6034 #else
  6035   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6036   ins_encode %{
  6037     __ ldx($mem$$Address, $dst$$Register);
  6038   %}
  6039 #endif
  6040   ins_pipe(iload_mem);
  6041 %}
  6043 // Load narrow Klass Pointer
  6044 instruct loadNKlass(iRegN dst, memory mem) %{
  6045   match(Set dst (LoadNKlass mem));
  6046   ins_cost(MEMORY_REF_COST);
  6047   size(4);
  6049   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6050   ins_encode %{
  6051     __ lduw($mem$$Address, $dst$$Register);
  6052   %}
  6053   ins_pipe(iload_mem);
  6054 %}
  6056 // Load Double
  6057 instruct loadD(regD dst, memory mem) %{
  6058   match(Set dst (LoadD mem));
  6059   ins_cost(MEMORY_REF_COST);
  6061   size(4);
  6062   format %{ "LDDF   $mem,$dst" %}
  6063   opcode(Assembler::lddf_op3);
  6064   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6065   ins_pipe(floadD_mem);
  6066 %}
  6068 // Load Double - UNaligned
  6069 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6070   match(Set dst (LoadD_unaligned mem));
  6071   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6072   size(8);
  6073   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6074           "\tLDF    $mem+4,$dst.lo\t!" %}
  6075   opcode(Assembler::ldf_op3);
  6076   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6077   ins_pipe(iload_mem);
  6078 %}
  6080 // Load Float
  6081 instruct loadF(regF dst, memory mem) %{
  6082   match(Set dst (LoadF mem));
  6083   ins_cost(MEMORY_REF_COST);
  6085   size(4);
  6086   format %{ "LDF    $mem,$dst" %}
  6087   opcode(Assembler::ldf_op3);
  6088   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6089   ins_pipe(floadF_mem);
  6090 %}
  6092 // Load Constant
  6093 instruct loadConI( iRegI dst, immI src ) %{
  6094   match(Set dst src);
  6095   ins_cost(DEFAULT_COST * 3/2);
  6096   format %{ "SET    $src,$dst" %}
  6097   ins_encode( Set32(src, dst) );
  6098   ins_pipe(ialu_hi_lo_reg);
  6099 %}
  6101 instruct loadConI13( iRegI dst, immI13 src ) %{
  6102   match(Set dst src);
  6104   size(4);
  6105   format %{ "MOV    $src,$dst" %}
  6106   ins_encode( Set13( src, dst ) );
  6107   ins_pipe(ialu_imm);
  6108 %}
  6110 #ifndef _LP64
  6111 instruct loadConP(iRegP dst, immP con) %{
  6112   match(Set dst con);
  6113   ins_cost(DEFAULT_COST * 3/2);
  6114   format %{ "SET    $con,$dst\t!ptr" %}
  6115   ins_encode %{
  6116     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6117       intptr_t val = $con$$constant;
  6118     if (constant_reloc == relocInfo::oop_type) {
  6119       __ set_oop_constant((jobject) val, $dst$$Register);
  6120     } else if (constant_reloc == relocInfo::metadata_type) {
  6121       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6122     } else {          // non-oop pointers, e.g. card mark base, heap top
  6123       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6124       __ set(val, $dst$$Register);
  6126   %}
  6127   ins_pipe(loadConP);
  6128 %}
  6129 #else
  6130 instruct loadConP_set(iRegP dst, immP_set con) %{
  6131   match(Set dst con);
  6132   ins_cost(DEFAULT_COST * 3/2);
  6133   format %{ "SET    $con,$dst\t! ptr" %}
  6134   ins_encode %{
  6135     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6136       intptr_t val = $con$$constant;
  6137     if (constant_reloc == relocInfo::oop_type) {
  6138       __ set_oop_constant((jobject) val, $dst$$Register);
  6139     } else if (constant_reloc == relocInfo::metadata_type) {
  6140       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6141     } else {          // non-oop pointers, e.g. card mark base, heap top
  6142       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6143       __ set(val, $dst$$Register);
  6145   %}
  6146   ins_pipe(loadConP);
  6147 %}
  6149 instruct loadConP_load(iRegP dst, immP_load con) %{
  6150   match(Set dst con);
  6151   ins_cost(MEMORY_REF_COST);
  6152   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6153   ins_encode %{
  6154     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6155     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6156   %}
  6157   ins_pipe(loadConP);
  6158 %}
  6160 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6161   match(Set dst con);
  6162   ins_cost(DEFAULT_COST * 3/2);
  6163   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6164   ins_encode %{
  6165     __ set($con$$constant, $dst$$Register);
  6166   %}
  6167   ins_pipe(loadConP);
  6168 %}
  6169 #endif // _LP64
  6171 instruct loadConP0(iRegP dst, immP0 src) %{
  6172   match(Set dst src);
  6174   size(4);
  6175   format %{ "CLR    $dst\t!ptr" %}
  6176   ins_encode %{
  6177     __ clr($dst$$Register);
  6178   %}
  6179   ins_pipe(ialu_imm);
  6180 %}
  6182 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6183   match(Set dst src);
  6184   ins_cost(DEFAULT_COST);
  6185   format %{ "SET    $src,$dst\t!ptr" %}
  6186   ins_encode %{
  6187     AddressLiteral polling_page(os::get_polling_page());
  6188     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6189   %}
  6190   ins_pipe(loadConP_poll);
  6191 %}
  6193 instruct loadConN0(iRegN dst, immN0 src) %{
  6194   match(Set dst src);
  6196   size(4);
  6197   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6198   ins_encode %{
  6199     __ clr($dst$$Register);
  6200   %}
  6201   ins_pipe(ialu_imm);
  6202 %}
  6204 instruct loadConN(iRegN dst, immN src) %{
  6205   match(Set dst src);
  6206   ins_cost(DEFAULT_COST * 3/2);
  6207   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6208   ins_encode %{
  6209     Register dst = $dst$$Register;
  6210     __ set_narrow_oop((jobject)$src$$constant, dst);
  6211   %}
  6212   ins_pipe(ialu_hi_lo_reg);
  6213 %}
  6215 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6216   match(Set dst src);
  6217   ins_cost(DEFAULT_COST * 3/2);
  6218   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6219   ins_encode %{
  6220     Register dst = $dst$$Register;
  6221     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6222   %}
  6223   ins_pipe(ialu_hi_lo_reg);
  6224 %}
  6226 // Materialize long value (predicated by immL_cheap).
  6227 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6228   match(Set dst con);
  6229   effect(KILL tmp);
  6230   ins_cost(DEFAULT_COST * 3);
  6231   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6232   ins_encode %{
  6233     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6234   %}
  6235   ins_pipe(loadConL);
  6236 %}
  6238 // Load long value from constant table (predicated by immL_expensive).
  6239 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6240   match(Set dst con);
  6241   ins_cost(MEMORY_REF_COST);
  6242   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6243   ins_encode %{
  6244       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6245     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6246   %}
  6247   ins_pipe(loadConL);
  6248 %}
  6250 instruct loadConL0( iRegL dst, immL0 src ) %{
  6251   match(Set dst src);
  6252   ins_cost(DEFAULT_COST);
  6253   size(4);
  6254   format %{ "CLR    $dst\t! long" %}
  6255   ins_encode( Set13( src, dst ) );
  6256   ins_pipe(ialu_imm);
  6257 %}
  6259 instruct loadConL13( iRegL dst, immL13 src ) %{
  6260   match(Set dst src);
  6261   ins_cost(DEFAULT_COST * 2);
  6263   size(4);
  6264   format %{ "MOV    $src,$dst\t! long" %}
  6265   ins_encode( Set13( src, dst ) );
  6266   ins_pipe(ialu_imm);
  6267 %}
  6269 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6270   match(Set dst con);
  6271   effect(KILL tmp);
  6272   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6273   ins_encode %{
  6274       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6275     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6276   %}
  6277   ins_pipe(loadConFD);
  6278 %}
  6280 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6281   match(Set dst con);
  6282   effect(KILL tmp);
  6283   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6284   ins_encode %{
  6285     // XXX This is a quick fix for 6833573.
  6286     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6287     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6288     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6289   %}
  6290   ins_pipe(loadConFD);
  6291 %}
  6293 // Prefetch instructions.
  6294 // Must be safe to execute with invalid address (cannot fault).
  6296 instruct prefetchr( memory mem ) %{
  6297   match( PrefetchRead mem );
  6298   ins_cost(MEMORY_REF_COST);
  6299   size(4);
  6301   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6302   opcode(Assembler::prefetch_op3);
  6303   ins_encode( form3_mem_prefetch_read( mem ) );
  6304   ins_pipe(iload_mem);
  6305 %}
  6307 instruct prefetchw( memory mem ) %{
  6308   match( PrefetchWrite mem );
  6309   ins_cost(MEMORY_REF_COST);
  6310   size(4);
  6312   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6313   opcode(Assembler::prefetch_op3);
  6314   ins_encode( form3_mem_prefetch_write( mem ) );
  6315   ins_pipe(iload_mem);
  6316 %}
  6318 // Prefetch instructions for allocation.
  6320 instruct prefetchAlloc( memory mem ) %{
  6321   predicate(AllocatePrefetchInstr == 0);
  6322   match( PrefetchAllocation mem );
  6323   ins_cost(MEMORY_REF_COST);
  6324   size(4);
  6326   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6327   opcode(Assembler::prefetch_op3);
  6328   ins_encode( form3_mem_prefetch_write( mem ) );
  6329   ins_pipe(iload_mem);
  6330 %}
  6332 // Use BIS instruction to prefetch for allocation.
  6333 // Could fault, need space at the end of TLAB.
  6334 instruct prefetchAlloc_bis( iRegP dst ) %{
  6335   predicate(AllocatePrefetchInstr == 1);
  6336   match( PrefetchAllocation dst );
  6337   ins_cost(MEMORY_REF_COST);
  6338   size(4);
  6340   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6341   ins_encode %{
  6342     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6343   %}
  6344   ins_pipe(istore_mem_reg);
  6345 %}
  6347 // Next code is used for finding next cache line address to prefetch.
  6348 #ifndef _LP64
  6349 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6350   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6351   ins_cost(DEFAULT_COST);
  6352   size(4);
  6354   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6355   ins_encode %{
  6356     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6357   %}
  6358   ins_pipe(ialu_reg_imm);
  6359 %}
  6360 #else
  6361 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6362   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6363   ins_cost(DEFAULT_COST);
  6364   size(4);
  6366   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6367   ins_encode %{
  6368     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6369   %}
  6370   ins_pipe(ialu_reg_imm);
  6371 %}
  6372 #endif
  6374 //----------Store Instructions-------------------------------------------------
  6375 // Store Byte
  6376 instruct storeB(memory mem, iRegI src) %{
  6377   match(Set mem (StoreB mem src));
  6378   ins_cost(MEMORY_REF_COST);
  6380   size(4);
  6381   format %{ "STB    $src,$mem\t! byte" %}
  6382   opcode(Assembler::stb_op3);
  6383   ins_encode(simple_form3_mem_reg( mem, src ) );
  6384   ins_pipe(istore_mem_reg);
  6385 %}
  6387 instruct storeB0(memory mem, immI0 src) %{
  6388   match(Set mem (StoreB mem src));
  6389   ins_cost(MEMORY_REF_COST);
  6391   size(4);
  6392   format %{ "STB    $src,$mem\t! byte" %}
  6393   opcode(Assembler::stb_op3);
  6394   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6395   ins_pipe(istore_mem_zero);
  6396 %}
  6398 instruct storeCM0(memory mem, immI0 src) %{
  6399   match(Set mem (StoreCM mem src));
  6400   ins_cost(MEMORY_REF_COST);
  6402   size(4);
  6403   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6404   opcode(Assembler::stb_op3);
  6405   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6406   ins_pipe(istore_mem_zero);
  6407 %}
  6409 // Store Char/Short
  6410 instruct storeC(memory mem, iRegI src) %{
  6411   match(Set mem (StoreC mem src));
  6412   ins_cost(MEMORY_REF_COST);
  6414   size(4);
  6415   format %{ "STH    $src,$mem\t! short" %}
  6416   opcode(Assembler::sth_op3);
  6417   ins_encode(simple_form3_mem_reg( mem, src ) );
  6418   ins_pipe(istore_mem_reg);
  6419 %}
  6421 instruct storeC0(memory mem, immI0 src) %{
  6422   match(Set mem (StoreC mem src));
  6423   ins_cost(MEMORY_REF_COST);
  6425   size(4);
  6426   format %{ "STH    $src,$mem\t! short" %}
  6427   opcode(Assembler::sth_op3);
  6428   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6429   ins_pipe(istore_mem_zero);
  6430 %}
  6432 // Store Integer
  6433 instruct storeI(memory mem, iRegI src) %{
  6434   match(Set mem (StoreI mem src));
  6435   ins_cost(MEMORY_REF_COST);
  6437   size(4);
  6438   format %{ "STW    $src,$mem" %}
  6439   opcode(Assembler::stw_op3);
  6440   ins_encode(simple_form3_mem_reg( mem, src ) );
  6441   ins_pipe(istore_mem_reg);
  6442 %}
  6444 // Store Long
  6445 instruct storeL(memory mem, iRegL src) %{
  6446   match(Set mem (StoreL mem src));
  6447   ins_cost(MEMORY_REF_COST);
  6448   size(4);
  6449   format %{ "STX    $src,$mem\t! long" %}
  6450   opcode(Assembler::stx_op3);
  6451   ins_encode(simple_form3_mem_reg( mem, src ) );
  6452   ins_pipe(istore_mem_reg);
  6453 %}
  6455 instruct storeI0(memory mem, immI0 src) %{
  6456   match(Set mem (StoreI mem src));
  6457   ins_cost(MEMORY_REF_COST);
  6459   size(4);
  6460   format %{ "STW    $src,$mem" %}
  6461   opcode(Assembler::stw_op3);
  6462   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6463   ins_pipe(istore_mem_zero);
  6464 %}
  6466 instruct storeL0(memory mem, immL0 src) %{
  6467   match(Set mem (StoreL mem src));
  6468   ins_cost(MEMORY_REF_COST);
  6470   size(4);
  6471   format %{ "STX    $src,$mem" %}
  6472   opcode(Assembler::stx_op3);
  6473   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6474   ins_pipe(istore_mem_zero);
  6475 %}
  6477 // Store Integer from float register (used after fstoi)
  6478 instruct storeI_Freg(memory mem, regF src) %{
  6479   match(Set mem (StoreI mem src));
  6480   ins_cost(MEMORY_REF_COST);
  6482   size(4);
  6483   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6484   opcode(Assembler::stf_op3);
  6485   ins_encode(simple_form3_mem_reg( mem, src ) );
  6486   ins_pipe(fstoreF_mem_reg);
  6487 %}
  6489 // Store Pointer
  6490 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6491   match(Set dst (StoreP dst src));
  6492   ins_cost(MEMORY_REF_COST);
  6493   size(4);
  6495 #ifndef _LP64
  6496   format %{ "STW    $src,$dst\t! ptr" %}
  6497   opcode(Assembler::stw_op3, 0, REGP_OP);
  6498 #else
  6499   format %{ "STX    $src,$dst\t! ptr" %}
  6500   opcode(Assembler::stx_op3, 0, REGP_OP);
  6501 #endif
  6502   ins_encode( form3_mem_reg( dst, src ) );
  6503   ins_pipe(istore_mem_spORreg);
  6504 %}
  6506 instruct storeP0(memory dst, immP0 src) %{
  6507   match(Set dst (StoreP dst src));
  6508   ins_cost(MEMORY_REF_COST);
  6509   size(4);
  6511 #ifndef _LP64
  6512   format %{ "STW    $src,$dst\t! ptr" %}
  6513   opcode(Assembler::stw_op3, 0, REGP_OP);
  6514 #else
  6515   format %{ "STX    $src,$dst\t! ptr" %}
  6516   opcode(Assembler::stx_op3, 0, REGP_OP);
  6517 #endif
  6518   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6519   ins_pipe(istore_mem_zero);
  6520 %}
  6522 // Store Compressed Pointer
  6523 instruct storeN(memory dst, iRegN src) %{
  6524    match(Set dst (StoreN dst src));
  6525    ins_cost(MEMORY_REF_COST);
  6526    size(4);
  6528    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6529    ins_encode %{
  6530      Register base = as_Register($dst$$base);
  6531      Register index = as_Register($dst$$index);
  6532      Register src = $src$$Register;
  6533      if (index != G0) {
  6534        __ stw(src, base, index);
  6535      } else {
  6536        __ stw(src, base, $dst$$disp);
  6538    %}
  6539    ins_pipe(istore_mem_spORreg);
  6540 %}
  6542 instruct storeNKlass(memory dst, iRegN src) %{
  6543    match(Set dst (StoreNKlass dst src));
  6544    ins_cost(MEMORY_REF_COST);
  6545    size(4);
  6547    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6548    ins_encode %{
  6549      Register base = as_Register($dst$$base);
  6550      Register index = as_Register($dst$$index);
  6551      Register src = $src$$Register;
  6552      if (index != G0) {
  6553        __ stw(src, base, index);
  6554      } else {
  6555        __ stw(src, base, $dst$$disp);
  6557    %}
  6558    ins_pipe(istore_mem_spORreg);
  6559 %}
  6561 instruct storeN0(memory dst, immN0 src) %{
  6562    match(Set dst (StoreN dst src));
  6563    ins_cost(MEMORY_REF_COST);
  6564    size(4);
  6566    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6567    ins_encode %{
  6568      Register base = as_Register($dst$$base);
  6569      Register index = as_Register($dst$$index);
  6570      if (index != G0) {
  6571        __ stw(0, base, index);
  6572      } else {
  6573        __ stw(0, base, $dst$$disp);
  6575    %}
  6576    ins_pipe(istore_mem_zero);
  6577 %}
  6579 // Store Double
  6580 instruct storeD( memory mem, regD src) %{
  6581   match(Set mem (StoreD mem src));
  6582   ins_cost(MEMORY_REF_COST);
  6584   size(4);
  6585   format %{ "STDF   $src,$mem" %}
  6586   opcode(Assembler::stdf_op3);
  6587   ins_encode(simple_form3_mem_reg( mem, src ) );
  6588   ins_pipe(fstoreD_mem_reg);
  6589 %}
  6591 instruct storeD0( memory mem, immD0 src) %{
  6592   match(Set mem (StoreD mem src));
  6593   ins_cost(MEMORY_REF_COST);
  6595   size(4);
  6596   format %{ "STX    $src,$mem" %}
  6597   opcode(Assembler::stx_op3);
  6598   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6599   ins_pipe(fstoreD_mem_zero);
  6600 %}
  6602 // Store Float
  6603 instruct storeF( memory mem, regF src) %{
  6604   match(Set mem (StoreF mem src));
  6605   ins_cost(MEMORY_REF_COST);
  6607   size(4);
  6608   format %{ "STF    $src,$mem" %}
  6609   opcode(Assembler::stf_op3);
  6610   ins_encode(simple_form3_mem_reg( mem, src ) );
  6611   ins_pipe(fstoreF_mem_reg);
  6612 %}
  6614 instruct storeF0( memory mem, immF0 src) %{
  6615   match(Set mem (StoreF mem src));
  6616   ins_cost(MEMORY_REF_COST);
  6618   size(4);
  6619   format %{ "STW    $src,$mem\t! storeF0" %}
  6620   opcode(Assembler::stw_op3);
  6621   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6622   ins_pipe(fstoreF_mem_zero);
  6623 %}
  6625 // Convert oop pointer into compressed form
  6626 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6627   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6628   match(Set dst (EncodeP src));
  6629   format %{ "encode_heap_oop $src, $dst" %}
  6630   ins_encode %{
  6631     __ encode_heap_oop($src$$Register, $dst$$Register);
  6632   %}
  6633   ins_pipe(ialu_reg);
  6634 %}
  6636 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6637   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6638   match(Set dst (EncodeP src));
  6639   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6640   ins_encode %{
  6641     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6642   %}
  6643   ins_pipe(ialu_reg);
  6644 %}
  6646 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6647   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6648             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6649   match(Set dst (DecodeN src));
  6650   format %{ "decode_heap_oop $src, $dst" %}
  6651   ins_encode %{
  6652     __ decode_heap_oop($src$$Register, $dst$$Register);
  6653   %}
  6654   ins_pipe(ialu_reg);
  6655 %}
  6657 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6658   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6659             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6660   match(Set dst (DecodeN src));
  6661   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6662   ins_encode %{
  6663     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6664   %}
  6665   ins_pipe(ialu_reg);
  6666 %}
  6668 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6669   match(Set dst (EncodePKlass src));
  6670   format %{ "encode_klass_not_null $src, $dst" %}
  6671   ins_encode %{
  6672     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6673   %}
  6674   ins_pipe(ialu_reg);
  6675 %}
  6677 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6678   match(Set dst (DecodeNKlass src));
  6679   format %{ "decode_klass_not_null $src, $dst" %}
  6680   ins_encode %{
  6681     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6682   %}
  6683   ins_pipe(ialu_reg);
  6684 %}
  6686 //----------MemBar Instructions-----------------------------------------------
  6687 // Memory barrier flavors
  6689 instruct membar_acquire() %{
  6690   match(MemBarAcquire);
  6691   match(LoadFence);
  6692   ins_cost(4*MEMORY_REF_COST);
  6694   size(0);
  6695   format %{ "MEMBAR-acquire" %}
  6696   ins_encode( enc_membar_acquire );
  6697   ins_pipe(long_memory_op);
  6698 %}
  6700 instruct membar_acquire_lock() %{
  6701   match(MemBarAcquireLock);
  6702   ins_cost(0);
  6704   size(0);
  6705   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6706   ins_encode( );
  6707   ins_pipe(empty);
  6708 %}
  6710 instruct membar_release() %{
  6711   match(MemBarRelease);
  6712   match(StoreFence);
  6713   ins_cost(4*MEMORY_REF_COST);
  6715   size(0);
  6716   format %{ "MEMBAR-release" %}
  6717   ins_encode( enc_membar_release );
  6718   ins_pipe(long_memory_op);
  6719 %}
  6721 instruct membar_release_lock() %{
  6722   match(MemBarReleaseLock);
  6723   ins_cost(0);
  6725   size(0);
  6726   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6727   ins_encode( );
  6728   ins_pipe(empty);
  6729 %}
  6731 instruct membar_volatile() %{
  6732   match(MemBarVolatile);
  6733   ins_cost(4*MEMORY_REF_COST);
  6735   size(4);
  6736   format %{ "MEMBAR-volatile" %}
  6737   ins_encode( enc_membar_volatile );
  6738   ins_pipe(long_memory_op);
  6739 %}
  6741 instruct unnecessary_membar_volatile() %{
  6742   match(MemBarVolatile);
  6743   predicate(Matcher::post_store_load_barrier(n));
  6744   ins_cost(0);
  6746   size(0);
  6747   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6748   ins_encode( );
  6749   ins_pipe(empty);
  6750 %}
  6752 instruct membar_storestore() %{
  6753   match(MemBarStoreStore);
  6754   ins_cost(0);
  6756   size(0);
  6757   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6758   ins_encode( );
  6759   ins_pipe(empty);
  6760 %}
  6762 //----------Register Move Instructions-----------------------------------------
  6763 instruct roundDouble_nop(regD dst) %{
  6764   match(Set dst (RoundDouble dst));
  6765   ins_cost(0);
  6766   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6767   ins_encode( );
  6768   ins_pipe(empty);
  6769 %}
  6772 instruct roundFloat_nop(regF dst) %{
  6773   match(Set dst (RoundFloat dst));
  6774   ins_cost(0);
  6775   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6776   ins_encode( );
  6777   ins_pipe(empty);
  6778 %}
  6781 // Cast Index to Pointer for unsafe natives
  6782 instruct castX2P(iRegX src, iRegP dst) %{
  6783   match(Set dst (CastX2P src));
  6785   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6786   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6787   ins_pipe(ialu_reg);
  6788 %}
  6790 // Cast Pointer to Index for unsafe natives
  6791 instruct castP2X(iRegP src, iRegX dst) %{
  6792   match(Set dst (CastP2X src));
  6794   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6795   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6796   ins_pipe(ialu_reg);
  6797 %}
  6799 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6800   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6801   match(Set stkSlot src);   // chain rule
  6802   ins_cost(MEMORY_REF_COST);
  6803   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6804   opcode(Assembler::stdf_op3);
  6805   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6806   ins_pipe(fstoreD_stk_reg);
  6807 %}
  6809 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6810   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6811   match(Set dst stkSlot);   // chain rule
  6812   ins_cost(MEMORY_REF_COST);
  6813   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6814   opcode(Assembler::lddf_op3);
  6815   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6816   ins_pipe(floadD_stk);
  6817 %}
  6819 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6820   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6821   match(Set stkSlot src);   // chain rule
  6822   ins_cost(MEMORY_REF_COST);
  6823   format %{ "STF   $src,$stkSlot\t!stk" %}
  6824   opcode(Assembler::stf_op3);
  6825   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6826   ins_pipe(fstoreF_stk_reg);
  6827 %}
  6829 //----------Conditional Move---------------------------------------------------
  6830 // Conditional move
  6831 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6832   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6833   ins_cost(150);
  6834   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6835   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6836   ins_pipe(ialu_reg);
  6837 %}
  6839 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6840   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6841   ins_cost(140);
  6842   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6843   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6844   ins_pipe(ialu_imm);
  6845 %}
  6847 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6848   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6849   ins_cost(150);
  6850   size(4);
  6851   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6852   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6853   ins_pipe(ialu_reg);
  6854 %}
  6856 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6857   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6858   ins_cost(140);
  6859   size(4);
  6860   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6861   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6862   ins_pipe(ialu_imm);
  6863 %}
  6865 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6866   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6867   ins_cost(150);
  6868   size(4);
  6869   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6871   ins_pipe(ialu_reg);
  6872 %}
  6874 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6875   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6876   ins_cost(140);
  6877   size(4);
  6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6879   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6880   ins_pipe(ialu_imm);
  6881 %}
  6883 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6884   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6885   ins_cost(150);
  6886   size(4);
  6887   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6888   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6889   ins_pipe(ialu_reg);
  6890 %}
  6892 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6893   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6894   ins_cost(140);
  6895   size(4);
  6896   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6897   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6898   ins_pipe(ialu_imm);
  6899 %}
  6901 // Conditional move for RegN. Only cmov(reg,reg).
  6902 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6903   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6904   ins_cost(150);
  6905   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6906   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6907   ins_pipe(ialu_reg);
  6908 %}
  6910 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6911 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6912   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6913   ins_cost(150);
  6914   size(4);
  6915   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6916   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6917   ins_pipe(ialu_reg);
  6918 %}
  6920 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6921 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6922   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6923   ins_cost(150);
  6924   size(4);
  6925   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6926   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6927   ins_pipe(ialu_reg);
  6928 %}
  6930 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6931   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6932   ins_cost(150);
  6933   size(4);
  6934   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6935   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6936   ins_pipe(ialu_reg);
  6937 %}
  6939 // Conditional move
  6940 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6941   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6942   ins_cost(150);
  6943   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6944   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6945   ins_pipe(ialu_reg);
  6946 %}
  6948 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6949   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6950   ins_cost(140);
  6951   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6952   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6953   ins_pipe(ialu_imm);
  6954 %}
  6956 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6957 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6958   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6959   ins_cost(150);
  6961   size(4);
  6962   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6963   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6964   ins_pipe(ialu_reg);
  6965 %}
  6967 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6968   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6969   ins_cost(150);
  6971   size(4);
  6972   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6973   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6974   ins_pipe(ialu_reg);
  6975 %}
  6977 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6978   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6979   ins_cost(140);
  6981   size(4);
  6982   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6983   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6984   ins_pipe(ialu_imm);
  6985 %}
  6987 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6988   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6989   ins_cost(140);
  6991   size(4);
  6992   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6993   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6994   ins_pipe(ialu_imm);
  6995 %}
  6997 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6998   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6999   ins_cost(150);
  7000   size(4);
  7001   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7002   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7003   ins_pipe(ialu_imm);
  7004 %}
  7006 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  7007   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  7008   ins_cost(140);
  7009   size(4);
  7010   format %{ "MOV$cmp $fcc,$src,$dst" %}
  7011   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  7012   ins_pipe(ialu_imm);
  7013 %}
  7015 // Conditional move
  7016 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  7017   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  7018   ins_cost(150);
  7019   opcode(0x101);
  7020   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7021   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7022   ins_pipe(int_conditional_float_move);
  7023 %}
  7025 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7026   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7027   ins_cost(150);
  7029   size(4);
  7030   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7031   opcode(0x101);
  7032   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7033   ins_pipe(int_conditional_float_move);
  7034 %}
  7036 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7037   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7038   ins_cost(150);
  7040   size(4);
  7041   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7042   opcode(0x101);
  7043   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7044   ins_pipe(int_conditional_float_move);
  7045 %}
  7047 // Conditional move,
  7048 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7049   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7050   ins_cost(150);
  7051   size(4);
  7052   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7053   opcode(0x1);
  7054   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7055   ins_pipe(int_conditional_double_move);
  7056 %}
  7058 // Conditional move
  7059 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7060   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7061   ins_cost(150);
  7062   size(4);
  7063   opcode(0x102);
  7064   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7065   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7066   ins_pipe(int_conditional_double_move);
  7067 %}
  7069 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7070   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7071   ins_cost(150);
  7073   size(4);
  7074   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7075   opcode(0x102);
  7076   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7077   ins_pipe(int_conditional_double_move);
  7078 %}
  7080 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7081   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7082   ins_cost(150);
  7084   size(4);
  7085   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7086   opcode(0x102);
  7087   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7088   ins_pipe(int_conditional_double_move);
  7089 %}
  7091 // Conditional move,
  7092 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7093   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7094   ins_cost(150);
  7095   size(4);
  7096   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7097   opcode(0x2);
  7098   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7099   ins_pipe(int_conditional_double_move);
  7100 %}
  7102 // Conditional move
  7103 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7104   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7105   ins_cost(150);
  7106   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7107   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7108   ins_pipe(ialu_reg);
  7109 %}
  7111 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7112   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7113   ins_cost(140);
  7114   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7115   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7116   ins_pipe(ialu_imm);
  7117 %}
  7119 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7120   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7121   ins_cost(150);
  7123   size(4);
  7124   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7125   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7126   ins_pipe(ialu_reg);
  7127 %}
  7130 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7131   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7132   ins_cost(150);
  7134   size(4);
  7135   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7136   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7137   ins_pipe(ialu_reg);
  7138 %}
  7141 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7142   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7143   ins_cost(150);
  7145   size(4);
  7146   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7147   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7148   ins_pipe(ialu_reg);
  7149 %}
  7153 //----------OS and Locking Instructions----------------------------------------
  7155 // This name is KNOWN by the ADLC and cannot be changed.
  7156 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7157 // for this guy.
  7158 instruct tlsLoadP(g2RegP dst) %{
  7159   match(Set dst (ThreadLocal));
  7161   size(0);
  7162   ins_cost(0);
  7163   format %{ "# TLS is in G2" %}
  7164   ins_encode( /*empty encoding*/ );
  7165   ins_pipe(ialu_none);
  7166 %}
  7168 instruct checkCastPP( iRegP dst ) %{
  7169   match(Set dst (CheckCastPP dst));
  7171   size(0);
  7172   format %{ "# checkcastPP of $dst" %}
  7173   ins_encode( /*empty encoding*/ );
  7174   ins_pipe(empty);
  7175 %}
  7178 instruct castPP( iRegP dst ) %{
  7179   match(Set dst (CastPP dst));
  7180   format %{ "# castPP of $dst" %}
  7181   ins_encode( /*empty encoding*/ );
  7182   ins_pipe(empty);
  7183 %}
  7185 instruct castII( iRegI dst ) %{
  7186   match(Set dst (CastII dst));
  7187   format %{ "# castII of $dst" %}
  7188   ins_encode( /*empty encoding*/ );
  7189   ins_cost(0);
  7190   ins_pipe(empty);
  7191 %}
  7193 //----------Arithmetic Instructions--------------------------------------------
  7194 // Addition Instructions
  7195 // Register Addition
  7196 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7197   match(Set dst (AddI src1 src2));
  7199   size(4);
  7200   format %{ "ADD    $src1,$src2,$dst" %}
  7201   ins_encode %{
  7202     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7203   %}
  7204   ins_pipe(ialu_reg_reg);
  7205 %}
  7207 // Immediate Addition
  7208 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7209   match(Set dst (AddI src1 src2));
  7211   size(4);
  7212   format %{ "ADD    $src1,$src2,$dst" %}
  7213   opcode(Assembler::add_op3, Assembler::arith_op);
  7214   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7215   ins_pipe(ialu_reg_imm);
  7216 %}
  7218 // Pointer Register Addition
  7219 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7220   match(Set dst (AddP src1 src2));
  7222   size(4);
  7223   format %{ "ADD    $src1,$src2,$dst" %}
  7224   opcode(Assembler::add_op3, Assembler::arith_op);
  7225   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7226   ins_pipe(ialu_reg_reg);
  7227 %}
  7229 // Pointer Immediate Addition
  7230 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7231   match(Set dst (AddP src1 src2));
  7233   size(4);
  7234   format %{ "ADD    $src1,$src2,$dst" %}
  7235   opcode(Assembler::add_op3, Assembler::arith_op);
  7236   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7237   ins_pipe(ialu_reg_imm);
  7238 %}
  7240 // Long Addition
  7241 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7242   match(Set dst (AddL src1 src2));
  7244   size(4);
  7245   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7246   opcode(Assembler::add_op3, Assembler::arith_op);
  7247   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7248   ins_pipe(ialu_reg_reg);
  7249 %}
  7251 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7252   match(Set dst (AddL src1 con));
  7254   size(4);
  7255   format %{ "ADD    $src1,$con,$dst" %}
  7256   opcode(Assembler::add_op3, Assembler::arith_op);
  7257   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7258   ins_pipe(ialu_reg_imm);
  7259 %}
  7261 //----------Conditional_store--------------------------------------------------
  7262 // Conditional-store of the updated heap-top.
  7263 // Used during allocation of the shared heap.
  7264 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7266 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7267 instruct loadPLocked(iRegP dst, memory mem) %{
  7268   match(Set dst (LoadPLocked mem));
  7269   ins_cost(MEMORY_REF_COST);
  7271 #ifndef _LP64
  7272   size(4);
  7273   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7274   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7275 #else
  7276   format %{ "LDX    $mem,$dst\t! ptr" %}
  7277   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7278 #endif
  7279   ins_encode( form3_mem_reg( mem, dst ) );
  7280   ins_pipe(iload_mem);
  7281 %}
  7283 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7284   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7285   effect( KILL newval );
  7286   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7287             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7288   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7289   ins_pipe( long_memory_op );
  7290 %}
  7292 // Conditional-store of an int value.
  7293 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7294   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7295   effect( KILL newval );
  7296   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7297             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7298   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7299   ins_pipe( long_memory_op );
  7300 %}
  7302 // Conditional-store of a long value.
  7303 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7304   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7305   effect( KILL newval );
  7306   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7307             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7308   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7309   ins_pipe( long_memory_op );
  7310 %}
  7312 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7314 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7315   predicate(VM_Version::supports_cx8());
  7316   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7317   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7318   format %{
  7319             "MOV    $newval,O7\n\t"
  7320             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7321             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7322             "MOV    1,$res\n\t"
  7323             "MOVne  xcc,R_G0,$res"
  7324   %}
  7325   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7326               enc_lflags_ne_to_boolean(res) );
  7327   ins_pipe( long_memory_op );
  7328 %}
  7331 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7332   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7333   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7334   format %{
  7335             "MOV    $newval,O7\n\t"
  7336             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7337             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7338             "MOV    1,$res\n\t"
  7339             "MOVne  icc,R_G0,$res"
  7340   %}
  7341   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7342               enc_iflags_ne_to_boolean(res) );
  7343   ins_pipe( long_memory_op );
  7344 %}
  7346 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7347 #ifdef _LP64
  7348   predicate(VM_Version::supports_cx8());
  7349 #endif
  7350   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7351   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7352   format %{
  7353             "MOV    $newval,O7\n\t"
  7354             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7355             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7356             "MOV    1,$res\n\t"
  7357             "MOVne  xcc,R_G0,$res"
  7358   %}
  7359 #ifdef _LP64
  7360   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7361               enc_lflags_ne_to_boolean(res) );
  7362 #else
  7363   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7364               enc_iflags_ne_to_boolean(res) );
  7365 #endif
  7366   ins_pipe( long_memory_op );
  7367 %}
  7369 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7370   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7371   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7372   format %{
  7373             "MOV    $newval,O7\n\t"
  7374             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7375             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7376             "MOV    1,$res\n\t"
  7377             "MOVne  icc,R_G0,$res"
  7378   %}
  7379   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7380               enc_iflags_ne_to_boolean(res) );
  7381   ins_pipe( long_memory_op );
  7382 %}
  7384 instruct xchgI( memory mem, iRegI newval) %{
  7385   match(Set newval (GetAndSetI mem newval));
  7386   format %{ "SWAP  [$mem],$newval" %}
  7387   size(4);
  7388   ins_encode %{
  7389     __ swap($mem$$Address, $newval$$Register);
  7390   %}
  7391   ins_pipe( long_memory_op );
  7392 %}
  7394 #ifndef _LP64
  7395 instruct xchgP( memory mem, iRegP newval) %{
  7396   match(Set newval (GetAndSetP mem newval));
  7397   format %{ "SWAP  [$mem],$newval" %}
  7398   size(4);
  7399   ins_encode %{
  7400     __ swap($mem$$Address, $newval$$Register);
  7401   %}
  7402   ins_pipe( long_memory_op );
  7403 %}
  7404 #endif
  7406 instruct xchgN( memory mem, iRegN newval) %{
  7407   match(Set newval (GetAndSetN mem newval));
  7408   format %{ "SWAP  [$mem],$newval" %}
  7409   size(4);
  7410   ins_encode %{
  7411     __ swap($mem$$Address, $newval$$Register);
  7412   %}
  7413   ins_pipe( long_memory_op );
  7414 %}
  7416 //---------------------
  7417 // Subtraction Instructions
  7418 // Register Subtraction
  7419 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7420   match(Set dst (SubI src1 src2));
  7422   size(4);
  7423   format %{ "SUB    $src1,$src2,$dst" %}
  7424   opcode(Assembler::sub_op3, Assembler::arith_op);
  7425   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7426   ins_pipe(ialu_reg_reg);
  7427 %}
  7429 // Immediate Subtraction
  7430 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7431   match(Set dst (SubI src1 src2));
  7433   size(4);
  7434   format %{ "SUB    $src1,$src2,$dst" %}
  7435   opcode(Assembler::sub_op3, Assembler::arith_op);
  7436   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7437   ins_pipe(ialu_reg_imm);
  7438 %}
  7440 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7441   match(Set dst (SubI zero src2));
  7443   size(4);
  7444   format %{ "NEG    $src2,$dst" %}
  7445   opcode(Assembler::sub_op3, Assembler::arith_op);
  7446   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7447   ins_pipe(ialu_zero_reg);
  7448 %}
  7450 // Long subtraction
  7451 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7452   match(Set dst (SubL src1 src2));
  7454   size(4);
  7455   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7456   opcode(Assembler::sub_op3, Assembler::arith_op);
  7457   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7458   ins_pipe(ialu_reg_reg);
  7459 %}
  7461 // Immediate Subtraction
  7462 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7463   match(Set dst (SubL src1 con));
  7465   size(4);
  7466   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7467   opcode(Assembler::sub_op3, Assembler::arith_op);
  7468   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7469   ins_pipe(ialu_reg_imm);
  7470 %}
  7472 // Long negation
  7473 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7474   match(Set dst (SubL zero src2));
  7476   size(4);
  7477   format %{ "NEG    $src2,$dst\t! long" %}
  7478   opcode(Assembler::sub_op3, Assembler::arith_op);
  7479   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7480   ins_pipe(ialu_zero_reg);
  7481 %}
  7483 // Multiplication Instructions
  7484 // Integer Multiplication
  7485 // Register Multiplication
  7486 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7487   match(Set dst (MulI src1 src2));
  7489   size(4);
  7490   format %{ "MULX   $src1,$src2,$dst" %}
  7491   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7492   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7493   ins_pipe(imul_reg_reg);
  7494 %}
  7496 // Immediate Multiplication
  7497 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7498   match(Set dst (MulI src1 src2));
  7500   size(4);
  7501   format %{ "MULX   $src1,$src2,$dst" %}
  7502   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7503   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7504   ins_pipe(imul_reg_imm);
  7505 %}
  7507 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7508   match(Set dst (MulL src1 src2));
  7509   ins_cost(DEFAULT_COST * 5);
  7510   size(4);
  7511   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7512   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7513   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7514   ins_pipe(mulL_reg_reg);
  7515 %}
  7517 // Immediate Multiplication
  7518 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7519   match(Set dst (MulL src1 src2));
  7520   ins_cost(DEFAULT_COST * 5);
  7521   size(4);
  7522   format %{ "MULX   $src1,$src2,$dst" %}
  7523   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7524   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7525   ins_pipe(mulL_reg_imm);
  7526 %}
  7528 // Integer Division
  7529 // Register Division
  7530 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7531   match(Set dst (DivI src1 src2));
  7532   ins_cost((2+71)*DEFAULT_COST);
  7534   format %{ "SRA     $src2,0,$src2\n\t"
  7535             "SRA     $src1,0,$src1\n\t"
  7536             "SDIVX   $src1,$src2,$dst" %}
  7537   ins_encode( idiv_reg( src1, src2, dst ) );
  7538   ins_pipe(sdiv_reg_reg);
  7539 %}
  7541 // Immediate Division
  7542 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7543   match(Set dst (DivI src1 src2));
  7544   ins_cost((2+71)*DEFAULT_COST);
  7546   format %{ "SRA     $src1,0,$src1\n\t"
  7547             "SDIVX   $src1,$src2,$dst" %}
  7548   ins_encode( idiv_imm( src1, src2, dst ) );
  7549   ins_pipe(sdiv_reg_imm);
  7550 %}
  7552 //----------Div-By-10-Expansion------------------------------------------------
  7553 // Extract hi bits of a 32x32->64 bit multiply.
  7554 // Expand rule only, not matched
  7555 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7556   effect( DEF dst, USE src1, USE src2 );
  7557   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7558             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7559   ins_encode( enc_mul_hi(dst,src1,src2));
  7560   ins_pipe(sdiv_reg_reg);
  7561 %}
  7563 // Magic constant, reciprocal of 10
  7564 instruct loadConI_x66666667(iRegIsafe dst) %{
  7565   effect( DEF dst );
  7567   size(8);
  7568   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7569   ins_encode( Set32(0x66666667, dst) );
  7570   ins_pipe(ialu_hi_lo_reg);
  7571 %}
  7573 // Register Shift Right Arithmetic Long by 32-63
  7574 instruct sra_31( iRegI dst, iRegI src ) %{
  7575   effect( DEF dst, USE src );
  7576   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7577   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7578   ins_pipe(ialu_reg_reg);
  7579 %}
  7581 // Arithmetic Shift Right by 8-bit immediate
  7582 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7583   effect( DEF dst, USE src );
  7584   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7585   opcode(Assembler::sra_op3, Assembler::arith_op);
  7586   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7587   ins_pipe(ialu_reg_imm);
  7588 %}
  7590 // Integer DIV with 10
  7591 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7592   match(Set dst (DivI src div));
  7593   ins_cost((6+6)*DEFAULT_COST);
  7594   expand %{
  7595     iRegIsafe tmp1;               // Killed temps;
  7596     iRegIsafe tmp2;               // Killed temps;
  7597     iRegI tmp3;                   // Killed temps;
  7598     iRegI tmp4;                   // Killed temps;
  7599     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7600     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7601     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7602     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7603     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7604   %}
  7605 %}
  7607 // Register Long Division
  7608 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7609   match(Set dst (DivL src1 src2));
  7610   ins_cost(DEFAULT_COST*71);
  7611   size(4);
  7612   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7613   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7614   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7615   ins_pipe(divL_reg_reg);
  7616 %}
  7618 // Register Long Division
  7619 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7620   match(Set dst (DivL src1 src2));
  7621   ins_cost(DEFAULT_COST*71);
  7622   size(4);
  7623   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7624   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7625   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7626   ins_pipe(divL_reg_imm);
  7627 %}
  7629 // Integer Remainder
  7630 // Register Remainder
  7631 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7632   match(Set dst (ModI src1 src2));
  7633   effect( KILL ccr, KILL temp);
  7635   format %{ "SREM   $src1,$src2,$dst" %}
  7636   ins_encode( irem_reg(src1, src2, dst, temp) );
  7637   ins_pipe(sdiv_reg_reg);
  7638 %}
  7640 // Immediate Remainder
  7641 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7642   match(Set dst (ModI src1 src2));
  7643   effect( KILL ccr, KILL temp);
  7645   format %{ "SREM   $src1,$src2,$dst" %}
  7646   ins_encode( irem_imm(src1, src2, dst, temp) );
  7647   ins_pipe(sdiv_reg_imm);
  7648 %}
  7650 // Register Long Remainder
  7651 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7652   effect(DEF dst, USE src1, USE src2);
  7653   size(4);
  7654   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7655   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7656   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7657   ins_pipe(divL_reg_reg);
  7658 %}
  7660 // Register Long Division
  7661 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7662   effect(DEF dst, USE src1, USE src2);
  7663   size(4);
  7664   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7665   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7666   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7667   ins_pipe(divL_reg_imm);
  7668 %}
  7670 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7671   effect(DEF dst, USE src1, USE src2);
  7672   size(4);
  7673   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7674   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7675   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7676   ins_pipe(mulL_reg_reg);
  7677 %}
  7679 // Immediate Multiplication
  7680 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7681   effect(DEF dst, USE src1, USE src2);
  7682   size(4);
  7683   format %{ "MULX   $src1,$src2,$dst" %}
  7684   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7685   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7686   ins_pipe(mulL_reg_imm);
  7687 %}
  7689 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7690   effect(DEF dst, USE src1, USE src2);
  7691   size(4);
  7692   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7693   opcode(Assembler::sub_op3, Assembler::arith_op);
  7694   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7695   ins_pipe(ialu_reg_reg);
  7696 %}
  7698 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7699   effect(DEF dst, USE src1, USE src2);
  7700   size(4);
  7701   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7702   opcode(Assembler::sub_op3, Assembler::arith_op);
  7703   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7704   ins_pipe(ialu_reg_reg);
  7705 %}
  7707 // Register Long Remainder
  7708 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7709   match(Set dst (ModL src1 src2));
  7710   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7711   expand %{
  7712     iRegL tmp1;
  7713     iRegL tmp2;
  7714     divL_reg_reg_1(tmp1, src1, src2);
  7715     mulL_reg_reg_1(tmp2, tmp1, src2);
  7716     subL_reg_reg_1(dst,  src1, tmp2);
  7717   %}
  7718 %}
  7720 // Register Long Remainder
  7721 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7722   match(Set dst (ModL src1 src2));
  7723   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7724   expand %{
  7725     iRegL tmp1;
  7726     iRegL tmp2;
  7727     divL_reg_imm13_1(tmp1, src1, src2);
  7728     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7729     subL_reg_reg_2  (dst,  src1, tmp2);
  7730   %}
  7731 %}
  7733 // Integer Shift Instructions
  7734 // Register Shift Left
  7735 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7736   match(Set dst (LShiftI src1 src2));
  7738   size(4);
  7739   format %{ "SLL    $src1,$src2,$dst" %}
  7740   opcode(Assembler::sll_op3, Assembler::arith_op);
  7741   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7742   ins_pipe(ialu_reg_reg);
  7743 %}
  7745 // Register Shift Left Immediate
  7746 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7747   match(Set dst (LShiftI src1 src2));
  7749   size(4);
  7750   format %{ "SLL    $src1,$src2,$dst" %}
  7751   opcode(Assembler::sll_op3, Assembler::arith_op);
  7752   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7753   ins_pipe(ialu_reg_imm);
  7754 %}
  7756 // Register Shift Left
  7757 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7758   match(Set dst (LShiftL src1 src2));
  7760   size(4);
  7761   format %{ "SLLX   $src1,$src2,$dst" %}
  7762   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7763   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7764   ins_pipe(ialu_reg_reg);
  7765 %}
  7767 // Register Shift Left Immediate
  7768 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7769   match(Set dst (LShiftL src1 src2));
  7771   size(4);
  7772   format %{ "SLLX   $src1,$src2,$dst" %}
  7773   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7774   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7775   ins_pipe(ialu_reg_imm);
  7776 %}
  7778 // Register Arithmetic Shift Right
  7779 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7780   match(Set dst (RShiftI src1 src2));
  7781   size(4);
  7782   format %{ "SRA    $src1,$src2,$dst" %}
  7783   opcode(Assembler::sra_op3, Assembler::arith_op);
  7784   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7785   ins_pipe(ialu_reg_reg);
  7786 %}
  7788 // Register Arithmetic Shift Right Immediate
  7789 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7790   match(Set dst (RShiftI src1 src2));
  7792   size(4);
  7793   format %{ "SRA    $src1,$src2,$dst" %}
  7794   opcode(Assembler::sra_op3, Assembler::arith_op);
  7795   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7796   ins_pipe(ialu_reg_imm);
  7797 %}
  7799 // Register Shift Right Arithmatic Long
  7800 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7801   match(Set dst (RShiftL src1 src2));
  7803   size(4);
  7804   format %{ "SRAX   $src1,$src2,$dst" %}
  7805   opcode(Assembler::srax_op3, Assembler::arith_op);
  7806   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7807   ins_pipe(ialu_reg_reg);
  7808 %}
  7810 // Register Shift Left Immediate
  7811 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7812   match(Set dst (RShiftL src1 src2));
  7814   size(4);
  7815   format %{ "SRAX   $src1,$src2,$dst" %}
  7816   opcode(Assembler::srax_op3, Assembler::arith_op);
  7817   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7818   ins_pipe(ialu_reg_imm);
  7819 %}
  7821 // Register Shift Right
  7822 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7823   match(Set dst (URShiftI src1 src2));
  7825   size(4);
  7826   format %{ "SRL    $src1,$src2,$dst" %}
  7827   opcode(Assembler::srl_op3, Assembler::arith_op);
  7828   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7829   ins_pipe(ialu_reg_reg);
  7830 %}
  7832 // Register Shift Right Immediate
  7833 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7834   match(Set dst (URShiftI src1 src2));
  7836   size(4);
  7837   format %{ "SRL    $src1,$src2,$dst" %}
  7838   opcode(Assembler::srl_op3, Assembler::arith_op);
  7839   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7840   ins_pipe(ialu_reg_imm);
  7841 %}
  7843 // Register Shift Right
  7844 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7845   match(Set dst (URShiftL src1 src2));
  7847   size(4);
  7848   format %{ "SRLX   $src1,$src2,$dst" %}
  7849   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7850   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7851   ins_pipe(ialu_reg_reg);
  7852 %}
  7854 // Register Shift Right Immediate
  7855 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7856   match(Set dst (URShiftL src1 src2));
  7858   size(4);
  7859   format %{ "SRLX   $src1,$src2,$dst" %}
  7860   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7861   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7862   ins_pipe(ialu_reg_imm);
  7863 %}
  7865 // Register Shift Right Immediate with a CastP2X
  7866 #ifdef _LP64
  7867 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7868   match(Set dst (URShiftL (CastP2X src1) src2));
  7869   size(4);
  7870   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7871   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7872   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7873   ins_pipe(ialu_reg_imm);
  7874 %}
  7875 #else
  7876 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7877   match(Set dst (URShiftI (CastP2X src1) src2));
  7878   size(4);
  7879   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7880   opcode(Assembler::srl_op3, Assembler::arith_op);
  7881   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7882   ins_pipe(ialu_reg_imm);
  7883 %}
  7884 #endif
  7887 //----------Floating Point Arithmetic Instructions-----------------------------
  7889 //  Add float single precision
  7890 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7891   match(Set dst (AddF src1 src2));
  7893   size(4);
  7894   format %{ "FADDS  $src1,$src2,$dst" %}
  7895   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7896   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7897   ins_pipe(faddF_reg_reg);
  7898 %}
  7900 //  Add float double precision
  7901 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7902   match(Set dst (AddD src1 src2));
  7904   size(4);
  7905   format %{ "FADDD  $src1,$src2,$dst" %}
  7906   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7907   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7908   ins_pipe(faddD_reg_reg);
  7909 %}
  7911 //  Sub float single precision
  7912 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7913   match(Set dst (SubF src1 src2));
  7915   size(4);
  7916   format %{ "FSUBS  $src1,$src2,$dst" %}
  7917   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7918   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7919   ins_pipe(faddF_reg_reg);
  7920 %}
  7922 //  Sub float double precision
  7923 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7924   match(Set dst (SubD src1 src2));
  7926   size(4);
  7927   format %{ "FSUBD  $src1,$src2,$dst" %}
  7928   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7929   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7930   ins_pipe(faddD_reg_reg);
  7931 %}
  7933 //  Mul float single precision
  7934 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7935   match(Set dst (MulF src1 src2));
  7937   size(4);
  7938   format %{ "FMULS  $src1,$src2,$dst" %}
  7939   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7940   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7941   ins_pipe(fmulF_reg_reg);
  7942 %}
  7944 //  Mul float double precision
  7945 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7946   match(Set dst (MulD src1 src2));
  7948   size(4);
  7949   format %{ "FMULD  $src1,$src2,$dst" %}
  7950   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7951   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7952   ins_pipe(fmulD_reg_reg);
  7953 %}
  7955 //  Div float single precision
  7956 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7957   match(Set dst (DivF src1 src2));
  7959   size(4);
  7960   format %{ "FDIVS  $src1,$src2,$dst" %}
  7961   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7962   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7963   ins_pipe(fdivF_reg_reg);
  7964 %}
  7966 //  Div float double precision
  7967 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7968   match(Set dst (DivD src1 src2));
  7970   size(4);
  7971   format %{ "FDIVD  $src1,$src2,$dst" %}
  7972   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7973   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7974   ins_pipe(fdivD_reg_reg);
  7975 %}
  7977 //  Absolute float double precision
  7978 instruct absD_reg(regD dst, regD src) %{
  7979   match(Set dst (AbsD src));
  7981   format %{ "FABSd  $src,$dst" %}
  7982   ins_encode(fabsd(dst, src));
  7983   ins_pipe(faddD_reg);
  7984 %}
  7986 //  Absolute float single precision
  7987 instruct absF_reg(regF dst, regF src) %{
  7988   match(Set dst (AbsF src));
  7990   format %{ "FABSs  $src,$dst" %}
  7991   ins_encode(fabss(dst, src));
  7992   ins_pipe(faddF_reg);
  7993 %}
  7995 instruct negF_reg(regF dst, regF src) %{
  7996   match(Set dst (NegF src));
  7998   size(4);
  7999   format %{ "FNEGs  $src,$dst" %}
  8000   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  8001   ins_encode(form3_opf_rs2F_rdF(src, dst));
  8002   ins_pipe(faddF_reg);
  8003 %}
  8005 instruct negD_reg(regD dst, regD src) %{
  8006   match(Set dst (NegD src));
  8008   format %{ "FNEGd  $src,$dst" %}
  8009   ins_encode(fnegd(dst, src));
  8010   ins_pipe(faddD_reg);
  8011 %}
  8013 //  Sqrt float double precision
  8014 instruct sqrtF_reg_reg(regF dst, regF src) %{
  8015   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8017   size(4);
  8018   format %{ "FSQRTS $src,$dst" %}
  8019   ins_encode(fsqrts(dst, src));
  8020   ins_pipe(fdivF_reg_reg);
  8021 %}
  8023 //  Sqrt float double precision
  8024 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8025   match(Set dst (SqrtD src));
  8027   size(4);
  8028   format %{ "FSQRTD $src,$dst" %}
  8029   ins_encode(fsqrtd(dst, src));
  8030   ins_pipe(fdivD_reg_reg);
  8031 %}
  8033 //----------Logical Instructions-----------------------------------------------
  8034 // And Instructions
  8035 // Register And
  8036 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8037   match(Set dst (AndI src1 src2));
  8039   size(4);
  8040   format %{ "AND    $src1,$src2,$dst" %}
  8041   opcode(Assembler::and_op3, Assembler::arith_op);
  8042   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8043   ins_pipe(ialu_reg_reg);
  8044 %}
  8046 // Immediate And
  8047 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8048   match(Set dst (AndI src1 src2));
  8050   size(4);
  8051   format %{ "AND    $src1,$src2,$dst" %}
  8052   opcode(Assembler::and_op3, Assembler::arith_op);
  8053   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8054   ins_pipe(ialu_reg_imm);
  8055 %}
  8057 // Register And Long
  8058 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8059   match(Set dst (AndL src1 src2));
  8061   ins_cost(DEFAULT_COST);
  8062   size(4);
  8063   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8064   opcode(Assembler::and_op3, Assembler::arith_op);
  8065   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8066   ins_pipe(ialu_reg_reg);
  8067 %}
  8069 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8070   match(Set dst (AndL src1 con));
  8072   ins_cost(DEFAULT_COST);
  8073   size(4);
  8074   format %{ "AND    $src1,$con,$dst\t! long" %}
  8075   opcode(Assembler::and_op3, Assembler::arith_op);
  8076   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8077   ins_pipe(ialu_reg_imm);
  8078 %}
  8080 // Or Instructions
  8081 // Register Or
  8082 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8083   match(Set dst (OrI src1 src2));
  8085   size(4);
  8086   format %{ "OR     $src1,$src2,$dst" %}
  8087   opcode(Assembler::or_op3, Assembler::arith_op);
  8088   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8089   ins_pipe(ialu_reg_reg);
  8090 %}
  8092 // Immediate Or
  8093 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8094   match(Set dst (OrI src1 src2));
  8096   size(4);
  8097   format %{ "OR     $src1,$src2,$dst" %}
  8098   opcode(Assembler::or_op3, Assembler::arith_op);
  8099   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8100   ins_pipe(ialu_reg_imm);
  8101 %}
  8103 // Register Or Long
  8104 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8105   match(Set dst (OrL src1 src2));
  8107   ins_cost(DEFAULT_COST);
  8108   size(4);
  8109   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8110   opcode(Assembler::or_op3, Assembler::arith_op);
  8111   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8112   ins_pipe(ialu_reg_reg);
  8113 %}
  8115 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8116   match(Set dst (OrL src1 con));
  8117   ins_cost(DEFAULT_COST*2);
  8119   ins_cost(DEFAULT_COST);
  8120   size(4);
  8121   format %{ "OR     $src1,$con,$dst\t! long" %}
  8122   opcode(Assembler::or_op3, Assembler::arith_op);
  8123   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8124   ins_pipe(ialu_reg_imm);
  8125 %}
  8127 #ifndef _LP64
  8129 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8130 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8131   match(Set dst (OrI src1 (CastP2X src2)));
  8133   size(4);
  8134   format %{ "OR     $src1,$src2,$dst" %}
  8135   opcode(Assembler::or_op3, Assembler::arith_op);
  8136   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8137   ins_pipe(ialu_reg_reg);
  8138 %}
  8140 #else
  8142 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8143   match(Set dst (OrL src1 (CastP2X src2)));
  8145   ins_cost(DEFAULT_COST);
  8146   size(4);
  8147   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8148   opcode(Assembler::or_op3, Assembler::arith_op);
  8149   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8150   ins_pipe(ialu_reg_reg);
  8151 %}
  8153 #endif
  8155 // Xor Instructions
  8156 // Register Xor
  8157 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8158   match(Set dst (XorI src1 src2));
  8160   size(4);
  8161   format %{ "XOR    $src1,$src2,$dst" %}
  8162   opcode(Assembler::xor_op3, Assembler::arith_op);
  8163   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8164   ins_pipe(ialu_reg_reg);
  8165 %}
  8167 // Immediate Xor
  8168 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8169   match(Set dst (XorI src1 src2));
  8171   size(4);
  8172   format %{ "XOR    $src1,$src2,$dst" %}
  8173   opcode(Assembler::xor_op3, Assembler::arith_op);
  8174   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8175   ins_pipe(ialu_reg_imm);
  8176 %}
  8178 // Register Xor Long
  8179 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8180   match(Set dst (XorL src1 src2));
  8182   ins_cost(DEFAULT_COST);
  8183   size(4);
  8184   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8185   opcode(Assembler::xor_op3, Assembler::arith_op);
  8186   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8187   ins_pipe(ialu_reg_reg);
  8188 %}
  8190 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8191   match(Set dst (XorL src1 con));
  8193   ins_cost(DEFAULT_COST);
  8194   size(4);
  8195   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8196   opcode(Assembler::xor_op3, Assembler::arith_op);
  8197   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8198   ins_pipe(ialu_reg_imm);
  8199 %}
  8201 //----------Convert to Boolean-------------------------------------------------
  8202 // Nice hack for 32-bit tests but doesn't work for
  8203 // 64-bit pointers.
  8204 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8205   match(Set dst (Conv2B src));
  8206   effect( KILL ccr );
  8207   ins_cost(DEFAULT_COST*2);
  8208   format %{ "CMP    R_G0,$src\n\t"
  8209             "ADDX   R_G0,0,$dst" %}
  8210   ins_encode( enc_to_bool( src, dst ) );
  8211   ins_pipe(ialu_reg_ialu);
  8212 %}
  8214 #ifndef _LP64
  8215 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8216   match(Set dst (Conv2B src));
  8217   effect( KILL ccr );
  8218   ins_cost(DEFAULT_COST*2);
  8219   format %{ "CMP    R_G0,$src\n\t"
  8220             "ADDX   R_G0,0,$dst" %}
  8221   ins_encode( enc_to_bool( src, dst ) );
  8222   ins_pipe(ialu_reg_ialu);
  8223 %}
  8224 #else
  8225 instruct convP2B( iRegI dst, iRegP src ) %{
  8226   match(Set dst (Conv2B src));
  8227   ins_cost(DEFAULT_COST*2);
  8228   format %{ "MOV    $src,$dst\n\t"
  8229             "MOVRNZ $src,1,$dst" %}
  8230   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8231   ins_pipe(ialu_clr_and_mover);
  8232 %}
  8233 #endif
  8235 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8236   match(Set dst (CmpLTMask src zero));
  8237   effect(KILL ccr);
  8238   size(4);
  8239   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8240   ins_encode %{
  8241     __ sra($src$$Register, 31, $dst$$Register);
  8242   %}
  8243   ins_pipe(ialu_reg_imm);
  8244 %}
  8246 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8247   match(Set dst (CmpLTMask p q));
  8248   effect( KILL ccr );
  8249   ins_cost(DEFAULT_COST*4);
  8250   format %{ "CMP    $p,$q\n\t"
  8251             "MOV    #0,$dst\n\t"
  8252             "BLT,a  .+8\n\t"
  8253             "MOV    #-1,$dst" %}
  8254   ins_encode( enc_ltmask(p,q,dst) );
  8255   ins_pipe(ialu_reg_reg_ialu);
  8256 %}
  8258 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8259   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8260   effect(KILL ccr, TEMP tmp);
  8261   ins_cost(DEFAULT_COST*3);
  8263   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8264             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8265             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8266   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8267   ins_pipe(cadd_cmpltmask);
  8268 %}
  8270 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8271   match(Set p (AndI (CmpLTMask p q) y));
  8272   effect(KILL ccr);
  8273   ins_cost(DEFAULT_COST*3);
  8275   format %{ "CMP  $p,$q\n\t"
  8276             "MOV  $y,$p\n\t"
  8277             "MOVge G0,$p" %}
  8278   ins_encode %{
  8279     __ cmp($p$$Register, $q$$Register);
  8280     __ mov($y$$Register, $p$$Register);
  8281     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8282   %}
  8283   ins_pipe(ialu_reg_reg_ialu);
  8284 %}
  8286 //-----------------------------------------------------------------
  8287 // Direct raw moves between float and general registers using VIS3.
  8289 //  ins_pipe(faddF_reg);
  8290 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8291   predicate(UseVIS >= 3);
  8292   match(Set dst (MoveF2I src));
  8294   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8295   ins_encode %{
  8296     __ movstouw($src$$FloatRegister, $dst$$Register);
  8297   %}
  8298   ins_pipe(ialu_reg_reg);
  8299 %}
  8301 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8302   predicate(UseVIS >= 3);
  8303   match(Set dst (MoveI2F src));
  8305   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8306   ins_encode %{
  8307     __ movwtos($src$$Register, $dst$$FloatRegister);
  8308   %}
  8309   ins_pipe(ialu_reg_reg);
  8310 %}
  8312 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8313   predicate(UseVIS >= 3);
  8314   match(Set dst (MoveD2L src));
  8316   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8317   ins_encode %{
  8318     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8319   %}
  8320   ins_pipe(ialu_reg_reg);
  8321 %}
  8323 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8324   predicate(UseVIS >= 3);
  8325   match(Set dst (MoveL2D src));
  8327   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8328   ins_encode %{
  8329     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8330   %}
  8331   ins_pipe(ialu_reg_reg);
  8332 %}
  8335 // Raw moves between float and general registers using stack.
  8337 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8338   match(Set dst (MoveF2I src));
  8339   effect(DEF dst, USE src);
  8340   ins_cost(MEMORY_REF_COST);
  8342   size(4);
  8343   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8344   opcode(Assembler::lduw_op3);
  8345   ins_encode(simple_form3_mem_reg( src, dst ) );
  8346   ins_pipe(iload_mem);
  8347 %}
  8349 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8350   match(Set dst (MoveI2F src));
  8351   effect(DEF dst, USE src);
  8352   ins_cost(MEMORY_REF_COST);
  8354   size(4);
  8355   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8356   opcode(Assembler::ldf_op3);
  8357   ins_encode(simple_form3_mem_reg(src, dst));
  8358   ins_pipe(floadF_stk);
  8359 %}
  8361 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8362   match(Set dst (MoveD2L src));
  8363   effect(DEF dst, USE src);
  8364   ins_cost(MEMORY_REF_COST);
  8366   size(4);
  8367   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8368   opcode(Assembler::ldx_op3);
  8369   ins_encode(simple_form3_mem_reg( src, dst ) );
  8370   ins_pipe(iload_mem);
  8371 %}
  8373 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8374   match(Set dst (MoveL2D src));
  8375   effect(DEF dst, USE src);
  8376   ins_cost(MEMORY_REF_COST);
  8378   size(4);
  8379   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8380   opcode(Assembler::lddf_op3);
  8381   ins_encode(simple_form3_mem_reg(src, dst));
  8382   ins_pipe(floadD_stk);
  8383 %}
  8385 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8386   match(Set dst (MoveF2I src));
  8387   effect(DEF dst, USE src);
  8388   ins_cost(MEMORY_REF_COST);
  8390   size(4);
  8391   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8392   opcode(Assembler::stf_op3);
  8393   ins_encode(simple_form3_mem_reg(dst, src));
  8394   ins_pipe(fstoreF_stk_reg);
  8395 %}
  8397 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8398   match(Set dst (MoveI2F src));
  8399   effect(DEF dst, USE src);
  8400   ins_cost(MEMORY_REF_COST);
  8402   size(4);
  8403   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8404   opcode(Assembler::stw_op3);
  8405   ins_encode(simple_form3_mem_reg( dst, src ) );
  8406   ins_pipe(istore_mem_reg);
  8407 %}
  8409 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8410   match(Set dst (MoveD2L src));
  8411   effect(DEF dst, USE src);
  8412   ins_cost(MEMORY_REF_COST);
  8414   size(4);
  8415   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8416   opcode(Assembler::stdf_op3);
  8417   ins_encode(simple_form3_mem_reg(dst, src));
  8418   ins_pipe(fstoreD_stk_reg);
  8419 %}
  8421 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8422   match(Set dst (MoveL2D src));
  8423   effect(DEF dst, USE src);
  8424   ins_cost(MEMORY_REF_COST);
  8426   size(4);
  8427   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8428   opcode(Assembler::stx_op3);
  8429   ins_encode(simple_form3_mem_reg( dst, src ) );
  8430   ins_pipe(istore_mem_reg);
  8431 %}
  8434 //----------Arithmetic Conversion Instructions---------------------------------
  8435 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8437 instruct convD2F_reg(regF dst, regD src) %{
  8438   match(Set dst (ConvD2F src));
  8439   size(4);
  8440   format %{ "FDTOS  $src,$dst" %}
  8441   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8442   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8443   ins_pipe(fcvtD2F);
  8444 %}
  8447 // Convert a double to an int in a float register.
  8448 // If the double is a NAN, stuff a zero in instead.
  8449 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8450   effect(DEF dst, USE src, KILL fcc0);
  8451   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8452             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8453             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8454             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8455             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8456       "skip:" %}
  8457   ins_encode(form_d2i_helper(src,dst));
  8458   ins_pipe(fcvtD2I);
  8459 %}
  8461 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8462   match(Set dst (ConvD2I src));
  8463   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8464   expand %{
  8465     regF tmp;
  8466     convD2I_helper(tmp, src);
  8467     regF_to_stkI(dst, tmp);
  8468   %}
  8469 %}
  8471 instruct convD2I_reg(iRegI dst, regD src) %{
  8472   predicate(UseVIS >= 3);
  8473   match(Set dst (ConvD2I src));
  8474   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8475   expand %{
  8476     regF tmp;
  8477     convD2I_helper(tmp, src);
  8478     MoveF2I_reg_reg(dst, tmp);
  8479   %}
  8480 %}
  8483 // Convert a double to a long in a double register.
  8484 // If the double is a NAN, stuff a zero in instead.
  8485 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8486   effect(DEF dst, USE src, KILL fcc0);
  8487   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8488             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8489             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8490             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8491             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8492       "skip:" %}
  8493   ins_encode(form_d2l_helper(src,dst));
  8494   ins_pipe(fcvtD2L);
  8495 %}
  8497 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8498   match(Set dst (ConvD2L src));
  8499   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8500   expand %{
  8501     regD tmp;
  8502     convD2L_helper(tmp, src);
  8503     regD_to_stkL(dst, tmp);
  8504   %}
  8505 %}
  8507 instruct convD2L_reg(iRegL dst, regD src) %{
  8508   predicate(UseVIS >= 3);
  8509   match(Set dst (ConvD2L src));
  8510   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8511   expand %{
  8512     regD tmp;
  8513     convD2L_helper(tmp, src);
  8514     MoveD2L_reg_reg(dst, tmp);
  8515   %}
  8516 %}
  8519 instruct convF2D_reg(regD dst, regF src) %{
  8520   match(Set dst (ConvF2D src));
  8521   format %{ "FSTOD  $src,$dst" %}
  8522   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8523   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8524   ins_pipe(fcvtF2D);
  8525 %}
  8528 // Convert a float to an int in a float register.
  8529 // If the float is a NAN, stuff a zero in instead.
  8530 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8531   effect(DEF dst, USE src, KILL fcc0);
  8532   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8533             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8534             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8535             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8536             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8537       "skip:" %}
  8538   ins_encode(form_f2i_helper(src,dst));
  8539   ins_pipe(fcvtF2I);
  8540 %}
  8542 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8543   match(Set dst (ConvF2I src));
  8544   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8545   expand %{
  8546     regF tmp;
  8547     convF2I_helper(tmp, src);
  8548     regF_to_stkI(dst, tmp);
  8549   %}
  8550 %}
  8552 instruct convF2I_reg(iRegI dst, regF src) %{
  8553   predicate(UseVIS >= 3);
  8554   match(Set dst (ConvF2I src));
  8555   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8556   expand %{
  8557     regF tmp;
  8558     convF2I_helper(tmp, src);
  8559     MoveF2I_reg_reg(dst, tmp);
  8560   %}
  8561 %}
  8564 // Convert a float to a long in a float register.
  8565 // If the float is a NAN, stuff a zero in instead.
  8566 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8567   effect(DEF dst, USE src, KILL fcc0);
  8568   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8569             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8570             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8571             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8572             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8573       "skip:" %}
  8574   ins_encode(form_f2l_helper(src,dst));
  8575   ins_pipe(fcvtF2L);
  8576 %}
  8578 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8579   match(Set dst (ConvF2L src));
  8580   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8581   expand %{
  8582     regD tmp;
  8583     convF2L_helper(tmp, src);
  8584     regD_to_stkL(dst, tmp);
  8585   %}
  8586 %}
  8588 instruct convF2L_reg(iRegL dst, regF src) %{
  8589   predicate(UseVIS >= 3);
  8590   match(Set dst (ConvF2L src));
  8591   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8592   expand %{
  8593     regD tmp;
  8594     convF2L_helper(tmp, src);
  8595     MoveD2L_reg_reg(dst, tmp);
  8596   %}
  8597 %}
  8600 instruct convI2D_helper(regD dst, regF tmp) %{
  8601   effect(USE tmp, DEF dst);
  8602   format %{ "FITOD  $tmp,$dst" %}
  8603   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8604   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8605   ins_pipe(fcvtI2D);
  8606 %}
  8608 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8609   match(Set dst (ConvI2D src));
  8610   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8611   expand %{
  8612     regF tmp;
  8613     stkI_to_regF(tmp, src);
  8614     convI2D_helper(dst, tmp);
  8615   %}
  8616 %}
  8618 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8619   predicate(UseVIS >= 3);
  8620   match(Set dst (ConvI2D src));
  8621   expand %{
  8622     regF tmp;
  8623     MoveI2F_reg_reg(tmp, src);
  8624     convI2D_helper(dst, tmp);
  8625   %}
  8626 %}
  8628 instruct convI2D_mem(regD_low dst, memory mem) %{
  8629   match(Set dst (ConvI2D (LoadI mem)));
  8630   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8631   size(8);
  8632   format %{ "LDF    $mem,$dst\n\t"
  8633             "FITOD  $dst,$dst" %}
  8634   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8635   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8636   ins_pipe(floadF_mem);
  8637 %}
  8640 instruct convI2F_helper(regF dst, regF tmp) %{
  8641   effect(DEF dst, USE tmp);
  8642   format %{ "FITOS  $tmp,$dst" %}
  8643   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8644   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8645   ins_pipe(fcvtI2F);
  8646 %}
  8648 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8649   match(Set dst (ConvI2F src));
  8650   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8651   expand %{
  8652     regF tmp;
  8653     stkI_to_regF(tmp,src);
  8654     convI2F_helper(dst, tmp);
  8655   %}
  8656 %}
  8658 instruct convI2F_reg(regF dst, iRegI src) %{
  8659   predicate(UseVIS >= 3);
  8660   match(Set dst (ConvI2F src));
  8661   ins_cost(DEFAULT_COST);
  8662   expand %{
  8663     regF tmp;
  8664     MoveI2F_reg_reg(tmp, src);
  8665     convI2F_helper(dst, tmp);
  8666   %}
  8667 %}
  8669 instruct convI2F_mem( regF dst, memory mem ) %{
  8670   match(Set dst (ConvI2F (LoadI mem)));
  8671   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8672   size(8);
  8673   format %{ "LDF    $mem,$dst\n\t"
  8674             "FITOS  $dst,$dst" %}
  8675   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8676   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8677   ins_pipe(floadF_mem);
  8678 %}
  8681 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8682   match(Set dst (ConvI2L src));
  8683   size(4);
  8684   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8685   opcode(Assembler::sra_op3, Assembler::arith_op);
  8686   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8687   ins_pipe(ialu_reg_reg);
  8688 %}
  8690 // Zero-extend convert int to long
  8691 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8692   match(Set dst (AndL (ConvI2L src) mask) );
  8693   size(4);
  8694   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8695   opcode(Assembler::srl_op3, Assembler::arith_op);
  8696   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8697   ins_pipe(ialu_reg_reg);
  8698 %}
  8700 // Zero-extend long
  8701 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8702   match(Set dst (AndL src mask) );
  8703   size(4);
  8704   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8705   opcode(Assembler::srl_op3, Assembler::arith_op);
  8706   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8707   ins_pipe(ialu_reg_reg);
  8708 %}
  8711 //-----------
  8712 // Long to Double conversion using V8 opcodes.
  8713 // Still useful because cheetah traps and becomes
  8714 // amazingly slow for some common numbers.
  8716 // Magic constant, 0x43300000
  8717 instruct loadConI_x43300000(iRegI dst) %{
  8718   effect(DEF dst);
  8719   size(4);
  8720   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8721   ins_encode(SetHi22(0x43300000, dst));
  8722   ins_pipe(ialu_none);
  8723 %}
  8725 // Magic constant, 0x41f00000
  8726 instruct loadConI_x41f00000(iRegI dst) %{
  8727   effect(DEF dst);
  8728   size(4);
  8729   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8730   ins_encode(SetHi22(0x41f00000, dst));
  8731   ins_pipe(ialu_none);
  8732 %}
  8734 // Construct a double from two float halves
  8735 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8736   effect(DEF dst, USE src1, USE src2);
  8737   size(8);
  8738   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8739             "FMOVS  $src2.lo,$dst.lo" %}
  8740   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8741   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8742   ins_pipe(faddD_reg_reg);
  8743 %}
  8745 // Convert integer in high half of a double register (in the lower half of
  8746 // the double register file) to double
  8747 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8748   effect(DEF dst, USE src);
  8749   size(4);
  8750   format %{ "FITOD  $src,$dst" %}
  8751   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8752   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8753   ins_pipe(fcvtLHi2D);
  8754 %}
  8756 // Add float double precision
  8757 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8758   effect(DEF dst, USE src1, USE src2);
  8759   size(4);
  8760   format %{ "FADDD  $src1,$src2,$dst" %}
  8761   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8762   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8763   ins_pipe(faddD_reg_reg);
  8764 %}
  8766 // Sub float double precision
  8767 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8768   effect(DEF dst, USE src1, USE src2);
  8769   size(4);
  8770   format %{ "FSUBD  $src1,$src2,$dst" %}
  8771   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8772   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8773   ins_pipe(faddD_reg_reg);
  8774 %}
  8776 // Mul float double precision
  8777 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8778   effect(DEF dst, USE src1, USE src2);
  8779   size(4);
  8780   format %{ "FMULD  $src1,$src2,$dst" %}
  8781   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8782   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8783   ins_pipe(fmulD_reg_reg);
  8784 %}
  8786 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8787   match(Set dst (ConvL2D src));
  8788   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8790   expand %{
  8791     regD_low   tmpsrc;
  8792     iRegI      ix43300000;
  8793     iRegI      ix41f00000;
  8794     stackSlotL lx43300000;
  8795     stackSlotL lx41f00000;
  8796     regD_low   dx43300000;
  8797     regD       dx41f00000;
  8798     regD       tmp1;
  8799     regD_low   tmp2;
  8800     regD       tmp3;
  8801     regD       tmp4;
  8803     stkL_to_regD(tmpsrc, src);
  8805     loadConI_x43300000(ix43300000);
  8806     loadConI_x41f00000(ix41f00000);
  8807     regI_to_stkLHi(lx43300000, ix43300000);
  8808     regI_to_stkLHi(lx41f00000, ix41f00000);
  8809     stkL_to_regD(dx43300000, lx43300000);
  8810     stkL_to_regD(dx41f00000, lx41f00000);
  8812     convI2D_regDHi_regD(tmp1, tmpsrc);
  8813     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8814     subD_regD_regD(tmp3, tmp2, dx43300000);
  8815     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8816     addD_regD_regD(dst, tmp3, tmp4);
  8817   %}
  8818 %}
  8820 // Long to Double conversion using fast fxtof
  8821 instruct convL2D_helper(regD dst, regD tmp) %{
  8822   effect(DEF dst, USE tmp);
  8823   size(4);
  8824   format %{ "FXTOD  $tmp,$dst" %}
  8825   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8826   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8827   ins_pipe(fcvtL2D);
  8828 %}
  8830 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8831   predicate(VM_Version::has_fast_fxtof());
  8832   match(Set dst (ConvL2D src));
  8833   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8834   expand %{
  8835     regD tmp;
  8836     stkL_to_regD(tmp, src);
  8837     convL2D_helper(dst, tmp);
  8838   %}
  8839 %}
  8841 instruct convL2D_reg(regD dst, iRegL src) %{
  8842   predicate(UseVIS >= 3);
  8843   match(Set dst (ConvL2D src));
  8844   expand %{
  8845     regD tmp;
  8846     MoveL2D_reg_reg(tmp, src);
  8847     convL2D_helper(dst, tmp);
  8848   %}
  8849 %}
  8851 // Long to Float conversion using fast fxtof
  8852 instruct convL2F_helper(regF dst, regD tmp) %{
  8853   effect(DEF dst, USE tmp);
  8854   size(4);
  8855   format %{ "FXTOS  $tmp,$dst" %}
  8856   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8857   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8858   ins_pipe(fcvtL2F);
  8859 %}
  8861 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8862   match(Set dst (ConvL2F src));
  8863   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8864   expand %{
  8865     regD tmp;
  8866     stkL_to_regD(tmp, src);
  8867     convL2F_helper(dst, tmp);
  8868   %}
  8869 %}
  8871 instruct convL2F_reg(regF dst, iRegL src) %{
  8872   predicate(UseVIS >= 3);
  8873   match(Set dst (ConvL2F src));
  8874   ins_cost(DEFAULT_COST);
  8875   expand %{
  8876     regD tmp;
  8877     MoveL2D_reg_reg(tmp, src);
  8878     convL2F_helper(dst, tmp);
  8879   %}
  8880 %}
  8882 //-----------
  8884 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8885   match(Set dst (ConvL2I src));
  8886 #ifndef _LP64
  8887   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8888   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8889   ins_pipe(ialu_move_reg_I_to_L);
  8890 #else
  8891   size(4);
  8892   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8893   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8894   ins_pipe(ialu_reg);
  8895 #endif
  8896 %}
  8898 // Register Shift Right Immediate
  8899 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8900   match(Set dst (ConvL2I (RShiftL src cnt)));
  8902   size(4);
  8903   format %{ "SRAX   $src,$cnt,$dst" %}
  8904   opcode(Assembler::srax_op3, Assembler::arith_op);
  8905   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8906   ins_pipe(ialu_reg_imm);
  8907 %}
  8909 //----------Control Flow Instructions------------------------------------------
  8910 // Compare Instructions
  8911 // Compare Integers
  8912 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8913   match(Set icc (CmpI op1 op2));
  8914   effect( DEF icc, USE op1, USE op2 );
  8916   size(4);
  8917   format %{ "CMP    $op1,$op2" %}
  8918   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8919   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8920   ins_pipe(ialu_cconly_reg_reg);
  8921 %}
  8923 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8924   match(Set icc (CmpU op1 op2));
  8926   size(4);
  8927   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8928   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8929   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8930   ins_pipe(ialu_cconly_reg_reg);
  8931 %}
  8933 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8934   match(Set icc (CmpI op1 op2));
  8935   effect( DEF icc, USE op1 );
  8937   size(4);
  8938   format %{ "CMP    $op1,$op2" %}
  8939   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8940   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8941   ins_pipe(ialu_cconly_reg_imm);
  8942 %}
  8944 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8945   match(Set icc (CmpI (AndI op1 op2) zero));
  8947   size(4);
  8948   format %{ "BTST   $op2,$op1" %}
  8949   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8950   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8951   ins_pipe(ialu_cconly_reg_reg_zero);
  8952 %}
  8954 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8955   match(Set icc (CmpI (AndI op1 op2) zero));
  8957   size(4);
  8958   format %{ "BTST   $op2,$op1" %}
  8959   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8960   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8961   ins_pipe(ialu_cconly_reg_imm_zero);
  8962 %}
  8964 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8965   match(Set xcc (CmpL op1 op2));
  8966   effect( DEF xcc, USE op1, USE op2 );
  8968   size(4);
  8969   format %{ "CMP    $op1,$op2\t\t! long" %}
  8970   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8971   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8972   ins_pipe(ialu_cconly_reg_reg);
  8973 %}
  8975 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8976   match(Set xcc (CmpL op1 con));
  8977   effect( DEF xcc, USE op1, USE con );
  8979   size(4);
  8980   format %{ "CMP    $op1,$con\t\t! long" %}
  8981   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8982   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8983   ins_pipe(ialu_cconly_reg_reg);
  8984 %}
  8986 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8987   match(Set xcc (CmpL (AndL op1 op2) zero));
  8988   effect( DEF xcc, USE op1, USE op2 );
  8990   size(4);
  8991   format %{ "BTST   $op1,$op2\t\t! long" %}
  8992   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8993   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8994   ins_pipe(ialu_cconly_reg_reg);
  8995 %}
  8997 // useful for checking the alignment of a pointer:
  8998 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8999   match(Set xcc (CmpL (AndL op1 con) zero));
  9000   effect( DEF xcc, USE op1, USE con );
  9002   size(4);
  9003   format %{ "BTST   $op1,$con\t\t! long" %}
  9004   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9005   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9006   ins_pipe(ialu_cconly_reg_reg);
  9007 %}
  9009 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
  9010   match(Set icc (CmpU op1 op2));
  9012   size(4);
  9013   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9014   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9015   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9016   ins_pipe(ialu_cconly_reg_imm);
  9017 %}
  9019 // Compare Pointers
  9020 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9021   match(Set pcc (CmpP op1 op2));
  9023   size(4);
  9024   format %{ "CMP    $op1,$op2\t! ptr" %}
  9025   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9026   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9027   ins_pipe(ialu_cconly_reg_reg);
  9028 %}
  9030 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9031   match(Set pcc (CmpP op1 op2));
  9033   size(4);
  9034   format %{ "CMP    $op1,$op2\t! ptr" %}
  9035   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9036   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9037   ins_pipe(ialu_cconly_reg_imm);
  9038 %}
  9040 // Compare Narrow oops
  9041 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9042   match(Set icc (CmpN op1 op2));
  9044   size(4);
  9045   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9046   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9047   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9048   ins_pipe(ialu_cconly_reg_reg);
  9049 %}
  9051 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9052   match(Set icc (CmpN op1 op2));
  9054   size(4);
  9055   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9056   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9057   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9058   ins_pipe(ialu_cconly_reg_imm);
  9059 %}
  9061 //----------Max and Min--------------------------------------------------------
  9062 // Min Instructions
  9063 // Conditional move for min
  9064 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9065   effect( USE_DEF op2, USE op1, USE icc );
  9067   size(4);
  9068   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9069   opcode(Assembler::less);
  9070   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9071   ins_pipe(ialu_reg_flags);
  9072 %}
  9074 // Min Register with Register.
  9075 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9076   match(Set op2 (MinI op1 op2));
  9077   ins_cost(DEFAULT_COST*2);
  9078   expand %{
  9079     flagsReg icc;
  9080     compI_iReg(icc,op1,op2);
  9081     cmovI_reg_lt(op2,op1,icc);
  9082   %}
  9083 %}
  9085 // Max Instructions
  9086 // Conditional move for max
  9087 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9088   effect( USE_DEF op2, USE op1, USE icc );
  9089   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9090   opcode(Assembler::greater);
  9091   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9092   ins_pipe(ialu_reg_flags);
  9093 %}
  9095 // Max Register with Register
  9096 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9097   match(Set op2 (MaxI op1 op2));
  9098   ins_cost(DEFAULT_COST*2);
  9099   expand %{
  9100     flagsReg icc;
  9101     compI_iReg(icc,op1,op2);
  9102     cmovI_reg_gt(op2,op1,icc);
  9103   %}
  9104 %}
  9107 //----------Float Compares----------------------------------------------------
  9108 // Compare floating, generate condition code
  9109 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9110   match(Set fcc (CmpF src1 src2));
  9112   size(4);
  9113   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9114   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9115   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9116   ins_pipe(faddF_fcc_reg_reg_zero);
  9117 %}
  9119 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9120   match(Set fcc (CmpD src1 src2));
  9122   size(4);
  9123   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9124   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9125   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9126   ins_pipe(faddD_fcc_reg_reg_zero);
  9127 %}
  9130 // Compare floating, generate -1,0,1
  9131 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9132   match(Set dst (CmpF3 src1 src2));
  9133   effect(KILL fcc0);
  9134   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9135   format %{ "fcmpl  $dst,$src1,$src2" %}
  9136   // Primary = float
  9137   opcode( true );
  9138   ins_encode( floating_cmp( dst, src1, src2 ) );
  9139   ins_pipe( floating_cmp );
  9140 %}
  9142 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9143   match(Set dst (CmpD3 src1 src2));
  9144   effect(KILL fcc0);
  9145   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9146   format %{ "dcmpl  $dst,$src1,$src2" %}
  9147   // Primary = double (not float)
  9148   opcode( false );
  9149   ins_encode( floating_cmp( dst, src1, src2 ) );
  9150   ins_pipe( floating_cmp );
  9151 %}
  9153 //----------Branches---------------------------------------------------------
  9154 // Jump
  9155 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9156 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9157   match(Jump switch_val);
  9158   effect(TEMP table);
  9160   ins_cost(350);
  9162   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9163              "LD     [O7 + $switch_val], O7\n\t"
  9164              "JUMP   O7" %}
  9165   ins_encode %{
  9166     // Calculate table address into a register.
  9167     Register table_reg;
  9168     Register label_reg = O7;
  9169     // If we are calculating the size of this instruction don't trust
  9170     // zero offsets because they might change when
  9171     // MachConstantBaseNode decides to optimize the constant table
  9172     // base.
  9173     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9174       table_reg = $constanttablebase;
  9175     } else {
  9176       table_reg = O7;
  9177       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9178       __ add($constanttablebase, con_offset, table_reg);
  9181     // Jump to base address + switch value
  9182     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9183     __ jmp(label_reg, G0);
  9184     __ delayed()->nop();
  9185   %}
  9186   ins_pipe(ialu_reg_reg);
  9187 %}
  9189 // Direct Branch.  Use V8 version with longer range.
  9190 instruct branch(label labl) %{
  9191   match(Goto);
  9192   effect(USE labl);
  9194   size(8);
  9195   ins_cost(BRANCH_COST);
  9196   format %{ "BA     $labl" %}
  9197   ins_encode %{
  9198     Label* L = $labl$$label;
  9199     __ ba(*L);
  9200     __ delayed()->nop();
  9201   %}
  9202   ins_pipe(br);
  9203 %}
  9205 // Direct Branch, short with no delay slot
  9206 instruct branch_short(label labl) %{
  9207   match(Goto);
  9208   predicate(UseCBCond);
  9209   effect(USE labl);
  9211   size(4);
  9212   ins_cost(BRANCH_COST);
  9213   format %{ "BA     $labl\t! short branch" %}
  9214   ins_encode %{
  9215     Label* L = $labl$$label;
  9216     assert(__ use_cbcond(*L), "back to back cbcond");
  9217     __ ba_short(*L);
  9218   %}
  9219   ins_short_branch(1);
  9220   ins_avoid_back_to_back(1);
  9221   ins_pipe(cbcond_reg_imm);
  9222 %}
  9224 // Conditional Direct Branch
  9225 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9226   match(If cmp icc);
  9227   effect(USE labl);
  9229   size(8);
  9230   ins_cost(BRANCH_COST);
  9231   format %{ "BP$cmp   $icc,$labl" %}
  9232   // Prim = bits 24-22, Secnd = bits 31-30
  9233   ins_encode( enc_bp( labl, cmp, icc ) );
  9234   ins_pipe(br_cc);
  9235 %}
  9237 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9238   match(If cmp icc);
  9239   effect(USE labl);
  9241   ins_cost(BRANCH_COST);
  9242   format %{ "BP$cmp  $icc,$labl" %}
  9243   // Prim = bits 24-22, Secnd = bits 31-30
  9244   ins_encode( enc_bp( labl, cmp, icc ) );
  9245   ins_pipe(br_cc);
  9246 %}
  9248 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9249   match(If cmp pcc);
  9250   effect(USE labl);
  9252   size(8);
  9253   ins_cost(BRANCH_COST);
  9254   format %{ "BP$cmp  $pcc,$labl" %}
  9255   ins_encode %{
  9256     Label* L = $labl$$label;
  9257     Assembler::Predict predict_taken =
  9258       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9260     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9261     __ delayed()->nop();
  9262   %}
  9263   ins_pipe(br_cc);
  9264 %}
  9266 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9267   match(If cmp fcc);
  9268   effect(USE labl);
  9270   size(8);
  9271   ins_cost(BRANCH_COST);
  9272   format %{ "FBP$cmp $fcc,$labl" %}
  9273   ins_encode %{
  9274     Label* L = $labl$$label;
  9275     Assembler::Predict predict_taken =
  9276       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9278     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9279     __ delayed()->nop();
  9280   %}
  9281   ins_pipe(br_fcc);
  9282 %}
  9284 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9285   match(CountedLoopEnd cmp icc);
  9286   effect(USE labl);
  9288   size(8);
  9289   ins_cost(BRANCH_COST);
  9290   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9291   // Prim = bits 24-22, Secnd = bits 31-30
  9292   ins_encode( enc_bp( labl, cmp, icc ) );
  9293   ins_pipe(br_cc);
  9294 %}
  9296 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9297   match(CountedLoopEnd cmp icc);
  9298   effect(USE labl);
  9300   size(8);
  9301   ins_cost(BRANCH_COST);
  9302   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9303   // Prim = bits 24-22, Secnd = bits 31-30
  9304   ins_encode( enc_bp( labl, cmp, icc ) );
  9305   ins_pipe(br_cc);
  9306 %}
  9308 // Compare and branch instructions
  9309 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9310   match(If cmp (CmpI op1 op2));
  9311   effect(USE labl, KILL icc);
  9313   size(12);
  9314   ins_cost(BRANCH_COST);
  9315   format %{ "CMP    $op1,$op2\t! int\n\t"
  9316             "BP$cmp   $labl" %}
  9317   ins_encode %{
  9318     Label* L = $labl$$label;
  9319     Assembler::Predict predict_taken =
  9320       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9321     __ cmp($op1$$Register, $op2$$Register);
  9322     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9323     __ delayed()->nop();
  9324   %}
  9325   ins_pipe(cmp_br_reg_reg);
  9326 %}
  9328 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9329   match(If cmp (CmpI op1 op2));
  9330   effect(USE labl, KILL icc);
  9332   size(12);
  9333   ins_cost(BRANCH_COST);
  9334   format %{ "CMP    $op1,$op2\t! int\n\t"
  9335             "BP$cmp   $labl" %}
  9336   ins_encode %{
  9337     Label* L = $labl$$label;
  9338     Assembler::Predict predict_taken =
  9339       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9340     __ cmp($op1$$Register, $op2$$constant);
  9341     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9342     __ delayed()->nop();
  9343   %}
  9344   ins_pipe(cmp_br_reg_imm);
  9345 %}
  9347 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9348   match(If cmp (CmpU op1 op2));
  9349   effect(USE labl, KILL icc);
  9351   size(12);
  9352   ins_cost(BRANCH_COST);
  9353   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9354             "BP$cmp  $labl" %}
  9355   ins_encode %{
  9356     Label* L = $labl$$label;
  9357     Assembler::Predict predict_taken =
  9358       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9359     __ cmp($op1$$Register, $op2$$Register);
  9360     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9361     __ delayed()->nop();
  9362   %}
  9363   ins_pipe(cmp_br_reg_reg);
  9364 %}
  9366 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9367   match(If cmp (CmpU op1 op2));
  9368   effect(USE labl, KILL icc);
  9370   size(12);
  9371   ins_cost(BRANCH_COST);
  9372   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9373             "BP$cmp  $labl" %}
  9374   ins_encode %{
  9375     Label* L = $labl$$label;
  9376     Assembler::Predict predict_taken =
  9377       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9378     __ cmp($op1$$Register, $op2$$constant);
  9379     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9380     __ delayed()->nop();
  9381   %}
  9382   ins_pipe(cmp_br_reg_imm);
  9383 %}
  9385 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9386   match(If cmp (CmpL op1 op2));
  9387   effect(USE labl, KILL xcc);
  9389   size(12);
  9390   ins_cost(BRANCH_COST);
  9391   format %{ "CMP    $op1,$op2\t! long\n\t"
  9392             "BP$cmp   $labl" %}
  9393   ins_encode %{
  9394     Label* L = $labl$$label;
  9395     Assembler::Predict predict_taken =
  9396       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9397     __ cmp($op1$$Register, $op2$$Register);
  9398     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9399     __ delayed()->nop();
  9400   %}
  9401   ins_pipe(cmp_br_reg_reg);
  9402 %}
  9404 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9405   match(If cmp (CmpL op1 op2));
  9406   effect(USE labl, KILL xcc);
  9408   size(12);
  9409   ins_cost(BRANCH_COST);
  9410   format %{ "CMP    $op1,$op2\t! long\n\t"
  9411             "BP$cmp   $labl" %}
  9412   ins_encode %{
  9413     Label* L = $labl$$label;
  9414     Assembler::Predict predict_taken =
  9415       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9416     __ cmp($op1$$Register, $op2$$constant);
  9417     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9418     __ delayed()->nop();
  9419   %}
  9420   ins_pipe(cmp_br_reg_imm);
  9421 %}
  9423 // Compare Pointers and branch
  9424 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9425   match(If cmp (CmpP op1 op2));
  9426   effect(USE labl, KILL pcc);
  9428   size(12);
  9429   ins_cost(BRANCH_COST);
  9430   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9431             "B$cmp   $labl" %}
  9432   ins_encode %{
  9433     Label* L = $labl$$label;
  9434     Assembler::Predict predict_taken =
  9435       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9436     __ cmp($op1$$Register, $op2$$Register);
  9437     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9438     __ delayed()->nop();
  9439   %}
  9440   ins_pipe(cmp_br_reg_reg);
  9441 %}
  9443 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9444   match(If cmp (CmpP op1 null));
  9445   effect(USE labl, KILL pcc);
  9447   size(12);
  9448   ins_cost(BRANCH_COST);
  9449   format %{ "CMP    $op1,0\t! ptr\n\t"
  9450             "B$cmp   $labl" %}
  9451   ins_encode %{
  9452     Label* L = $labl$$label;
  9453     Assembler::Predict predict_taken =
  9454       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9455     __ cmp($op1$$Register, G0);
  9456     // bpr() is not used here since it has shorter distance.
  9457     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9458     __ delayed()->nop();
  9459   %}
  9460   ins_pipe(cmp_br_reg_reg);
  9461 %}
  9463 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9464   match(If cmp (CmpN op1 op2));
  9465   effect(USE labl, KILL icc);
  9467   size(12);
  9468   ins_cost(BRANCH_COST);
  9469   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9470             "BP$cmp   $labl" %}
  9471   ins_encode %{
  9472     Label* L = $labl$$label;
  9473     Assembler::Predict predict_taken =
  9474       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9475     __ cmp($op1$$Register, $op2$$Register);
  9476     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9477     __ delayed()->nop();
  9478   %}
  9479   ins_pipe(cmp_br_reg_reg);
  9480 %}
  9482 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9483   match(If cmp (CmpN op1 null));
  9484   effect(USE labl, KILL icc);
  9486   size(12);
  9487   ins_cost(BRANCH_COST);
  9488   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9489             "BP$cmp   $labl" %}
  9490   ins_encode %{
  9491     Label* L = $labl$$label;
  9492     Assembler::Predict predict_taken =
  9493       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9494     __ cmp($op1$$Register, G0);
  9495     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9496     __ delayed()->nop();
  9497   %}
  9498   ins_pipe(cmp_br_reg_reg);
  9499 %}
  9501 // Loop back branch
  9502 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9503   match(CountedLoopEnd cmp (CmpI op1 op2));
  9504   effect(USE labl, KILL icc);
  9506   size(12);
  9507   ins_cost(BRANCH_COST);
  9508   format %{ "CMP    $op1,$op2\t! int\n\t"
  9509             "BP$cmp   $labl\t! Loop end" %}
  9510   ins_encode %{
  9511     Label* L = $labl$$label;
  9512     Assembler::Predict predict_taken =
  9513       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9514     __ cmp($op1$$Register, $op2$$Register);
  9515     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9516     __ delayed()->nop();
  9517   %}
  9518   ins_pipe(cmp_br_reg_reg);
  9519 %}
  9521 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9522   match(CountedLoopEnd cmp (CmpI op1 op2));
  9523   effect(USE labl, KILL icc);
  9525   size(12);
  9526   ins_cost(BRANCH_COST);
  9527   format %{ "CMP    $op1,$op2\t! int\n\t"
  9528             "BP$cmp   $labl\t! Loop end" %}
  9529   ins_encode %{
  9530     Label* L = $labl$$label;
  9531     Assembler::Predict predict_taken =
  9532       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9533     __ cmp($op1$$Register, $op2$$constant);
  9534     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9535     __ delayed()->nop();
  9536   %}
  9537   ins_pipe(cmp_br_reg_imm);
  9538 %}
  9540 // Short compare and branch instructions
  9541 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9542   match(If cmp (CmpI op1 op2));
  9543   predicate(UseCBCond);
  9544   effect(USE labl, KILL icc);
  9546   size(4);
  9547   ins_cost(BRANCH_COST);
  9548   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9549   ins_encode %{
  9550     Label* L = $labl$$label;
  9551     assert(__ use_cbcond(*L), "back to back cbcond");
  9552     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9553   %}
  9554   ins_short_branch(1);
  9555   ins_avoid_back_to_back(1);
  9556   ins_pipe(cbcond_reg_reg);
  9557 %}
  9559 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9560   match(If cmp (CmpI op1 op2));
  9561   predicate(UseCBCond);
  9562   effect(USE labl, KILL icc);
  9564   size(4);
  9565   ins_cost(BRANCH_COST);
  9566   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9567   ins_encode %{
  9568     Label* L = $labl$$label;
  9569     assert(__ use_cbcond(*L), "back to back cbcond");
  9570     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9571   %}
  9572   ins_short_branch(1);
  9573   ins_avoid_back_to_back(1);
  9574   ins_pipe(cbcond_reg_imm);
  9575 %}
  9577 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9578   match(If cmp (CmpU op1 op2));
  9579   predicate(UseCBCond);
  9580   effect(USE labl, KILL icc);
  9582   size(4);
  9583   ins_cost(BRANCH_COST);
  9584   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9585   ins_encode %{
  9586     Label* L = $labl$$label;
  9587     assert(__ use_cbcond(*L), "back to back cbcond");
  9588     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9589   %}
  9590   ins_short_branch(1);
  9591   ins_avoid_back_to_back(1);
  9592   ins_pipe(cbcond_reg_reg);
  9593 %}
  9595 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9596   match(If cmp (CmpU op1 op2));
  9597   predicate(UseCBCond);
  9598   effect(USE labl, KILL icc);
  9600   size(4);
  9601   ins_cost(BRANCH_COST);
  9602   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9603   ins_encode %{
  9604     Label* L = $labl$$label;
  9605     assert(__ use_cbcond(*L), "back to back cbcond");
  9606     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9607   %}
  9608   ins_short_branch(1);
  9609   ins_avoid_back_to_back(1);
  9610   ins_pipe(cbcond_reg_imm);
  9611 %}
  9613 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9614   match(If cmp (CmpL op1 op2));
  9615   predicate(UseCBCond);
  9616   effect(USE labl, KILL xcc);
  9618   size(4);
  9619   ins_cost(BRANCH_COST);
  9620   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9621   ins_encode %{
  9622     Label* L = $labl$$label;
  9623     assert(__ use_cbcond(*L), "back to back cbcond");
  9624     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9625   %}
  9626   ins_short_branch(1);
  9627   ins_avoid_back_to_back(1);
  9628   ins_pipe(cbcond_reg_reg);
  9629 %}
  9631 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9632   match(If cmp (CmpL op1 op2));
  9633   predicate(UseCBCond);
  9634   effect(USE labl, KILL xcc);
  9636   size(4);
  9637   ins_cost(BRANCH_COST);
  9638   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9639   ins_encode %{
  9640     Label* L = $labl$$label;
  9641     assert(__ use_cbcond(*L), "back to back cbcond");
  9642     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9643   %}
  9644   ins_short_branch(1);
  9645   ins_avoid_back_to_back(1);
  9646   ins_pipe(cbcond_reg_imm);
  9647 %}
  9649 // Compare Pointers and branch
  9650 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9651   match(If cmp (CmpP op1 op2));
  9652   predicate(UseCBCond);
  9653   effect(USE labl, KILL pcc);
  9655   size(4);
  9656   ins_cost(BRANCH_COST);
  9657 #ifdef _LP64
  9658   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9659 #else
  9660   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9661 #endif
  9662   ins_encode %{
  9663     Label* L = $labl$$label;
  9664     assert(__ use_cbcond(*L), "back to back cbcond");
  9665     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9666   %}
  9667   ins_short_branch(1);
  9668   ins_avoid_back_to_back(1);
  9669   ins_pipe(cbcond_reg_reg);
  9670 %}
  9672 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9673   match(If cmp (CmpP op1 null));
  9674   predicate(UseCBCond);
  9675   effect(USE labl, KILL pcc);
  9677   size(4);
  9678   ins_cost(BRANCH_COST);
  9679 #ifdef _LP64
  9680   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9681 #else
  9682   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9683 #endif
  9684   ins_encode %{
  9685     Label* L = $labl$$label;
  9686     assert(__ use_cbcond(*L), "back to back cbcond");
  9687     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9688   %}
  9689   ins_short_branch(1);
  9690   ins_avoid_back_to_back(1);
  9691   ins_pipe(cbcond_reg_reg);
  9692 %}
  9694 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9695   match(If cmp (CmpN op1 op2));
  9696   predicate(UseCBCond);
  9697   effect(USE labl, KILL icc);
  9699   size(4);
  9700   ins_cost(BRANCH_COST);
  9701   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9702   ins_encode %{
  9703     Label* L = $labl$$label;
  9704     assert(__ use_cbcond(*L), "back to back cbcond");
  9705     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9706   %}
  9707   ins_short_branch(1);
  9708   ins_avoid_back_to_back(1);
  9709   ins_pipe(cbcond_reg_reg);
  9710 %}
  9712 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9713   match(If cmp (CmpN op1 null));
  9714   predicate(UseCBCond);
  9715   effect(USE labl, KILL icc);
  9717   size(4);
  9718   ins_cost(BRANCH_COST);
  9719   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9720   ins_encode %{
  9721     Label* L = $labl$$label;
  9722     assert(__ use_cbcond(*L), "back to back cbcond");
  9723     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9724   %}
  9725   ins_short_branch(1);
  9726   ins_avoid_back_to_back(1);
  9727   ins_pipe(cbcond_reg_reg);
  9728 %}
  9730 // Loop back branch
  9731 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9732   match(CountedLoopEnd cmp (CmpI op1 op2));
  9733   predicate(UseCBCond);
  9734   effect(USE labl, KILL icc);
  9736   size(4);
  9737   ins_cost(BRANCH_COST);
  9738   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9739   ins_encode %{
  9740     Label* L = $labl$$label;
  9741     assert(__ use_cbcond(*L), "back to back cbcond");
  9742     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9743   %}
  9744   ins_short_branch(1);
  9745   ins_avoid_back_to_back(1);
  9746   ins_pipe(cbcond_reg_reg);
  9747 %}
  9749 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9750   match(CountedLoopEnd cmp (CmpI op1 op2));
  9751   predicate(UseCBCond);
  9752   effect(USE labl, KILL icc);
  9754   size(4);
  9755   ins_cost(BRANCH_COST);
  9756   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9757   ins_encode %{
  9758     Label* L = $labl$$label;
  9759     assert(__ use_cbcond(*L), "back to back cbcond");
  9760     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9761   %}
  9762   ins_short_branch(1);
  9763   ins_avoid_back_to_back(1);
  9764   ins_pipe(cbcond_reg_imm);
  9765 %}
  9767 // Branch-on-register tests all 64 bits.  We assume that values
  9768 // in 64-bit registers always remains zero or sign extended
  9769 // unless our code munges the high bits.  Interrupts can chop
  9770 // the high order bits to zero or sign at any time.
  9771 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9772   match(If cmp (CmpI op1 zero));
  9773   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9774   effect(USE labl);
  9776   size(8);
  9777   ins_cost(BRANCH_COST);
  9778   format %{ "BR$cmp   $op1,$labl" %}
  9779   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9780   ins_pipe(br_reg);
  9781 %}
  9783 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9784   match(If cmp (CmpP op1 null));
  9785   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9786   effect(USE labl);
  9788   size(8);
  9789   ins_cost(BRANCH_COST);
  9790   format %{ "BR$cmp   $op1,$labl" %}
  9791   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9792   ins_pipe(br_reg);
  9793 %}
  9795 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9796   match(If cmp (CmpL op1 zero));
  9797   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9798   effect(USE labl);
  9800   size(8);
  9801   ins_cost(BRANCH_COST);
  9802   format %{ "BR$cmp   $op1,$labl" %}
  9803   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9804   ins_pipe(br_reg);
  9805 %}
  9808 // ============================================================================
  9809 // Long Compare
  9810 //
  9811 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9812 // is tricky.  The flavor of compare used depends on whether we are testing
  9813 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9814 // The GE test is the negated LT test.  The LE test can be had by commuting
  9815 // the operands (yielding a GE test) and then negating; negate again for the
  9816 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9817 // NE test is negated from that.
  9819 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9820 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9821 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9822 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9823 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9824 // foo match ends up with the wrong leaf.  One fix is to not match both
  9825 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9826 // both forms beat the trinary form of long-compare and both are very useful
  9827 // on Intel which has so few registers.
  9829 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9830   match(If cmp xcc);
  9831   effect(USE labl);
  9833   size(8);
  9834   ins_cost(BRANCH_COST);
  9835   format %{ "BP$cmp   $xcc,$labl" %}
  9836   ins_encode %{
  9837     Label* L = $labl$$label;
  9838     Assembler::Predict predict_taken =
  9839       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9841     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9842     __ delayed()->nop();
  9843   %}
  9844   ins_pipe(br_cc);
  9845 %}
  9847 // Manifest a CmpL3 result in an integer register.  Very painful.
  9848 // This is the test to avoid.
  9849 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9850   match(Set dst (CmpL3 src1 src2) );
  9851   effect( KILL ccr );
  9852   ins_cost(6*DEFAULT_COST);
  9853   size(24);
  9854   format %{ "CMP    $src1,$src2\t\t! long\n"
  9855           "\tBLT,a,pn done\n"
  9856           "\tMOV    -1,$dst\t! delay slot\n"
  9857           "\tBGT,a,pn done\n"
  9858           "\tMOV    1,$dst\t! delay slot\n"
  9859           "\tCLR    $dst\n"
  9860     "done:"     %}
  9861   ins_encode( cmpl_flag(src1,src2,dst) );
  9862   ins_pipe(cmpL_reg);
  9863 %}
  9865 // Conditional move
  9866 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9867   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9868   ins_cost(150);
  9869   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9871   ins_pipe(ialu_reg);
  9872 %}
  9874 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9875   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9876   ins_cost(140);
  9877   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9878   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9879   ins_pipe(ialu_imm);
  9880 %}
  9882 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9883   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9884   ins_cost(150);
  9885   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9886   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9887   ins_pipe(ialu_reg);
  9888 %}
  9890 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9891   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9892   ins_cost(140);
  9893   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9894   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9895   ins_pipe(ialu_imm);
  9896 %}
  9898 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9899   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9900   ins_cost(150);
  9901   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9902   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9903   ins_pipe(ialu_reg);
  9904 %}
  9906 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9907   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9908   ins_cost(150);
  9909   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9910   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9911   ins_pipe(ialu_reg);
  9912 %}
  9914 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9915   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9916   ins_cost(140);
  9917   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9918   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9919   ins_pipe(ialu_imm);
  9920 %}
  9922 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9923   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9924   ins_cost(150);
  9925   opcode(0x101);
  9926   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9927   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9928   ins_pipe(int_conditional_float_move);
  9929 %}
  9931 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9932   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9933   ins_cost(150);
  9934   opcode(0x102);
  9935   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9936   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9937   ins_pipe(int_conditional_float_move);
  9938 %}
  9940 // ============================================================================
  9941 // Safepoint Instruction
  9942 instruct safePoint_poll(iRegP poll) %{
  9943   match(SafePoint poll);
  9944   effect(USE poll);
  9946   size(4);
  9947 #ifdef _LP64
  9948   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9949 #else
  9950   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9951 #endif
  9952   ins_encode %{
  9953     __ relocate(relocInfo::poll_type);
  9954     __ ld_ptr($poll$$Register, 0, G0);
  9955   %}
  9956   ins_pipe(loadPollP);
  9957 %}
  9959 // ============================================================================
  9960 // Call Instructions
  9961 // Call Java Static Instruction
  9962 instruct CallStaticJavaDirect( method meth ) %{
  9963   match(CallStaticJava);
  9964   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9965   effect(USE meth);
  9967   size(8);
  9968   ins_cost(CALL_COST);
  9969   format %{ "CALL,static  ; NOP ==> " %}
  9970   ins_encode( Java_Static_Call( meth ), call_epilog );
  9971   ins_pipe(simple_call);
  9972 %}
  9974 // Call Java Static Instruction (method handle version)
  9975 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9976   match(CallStaticJava);
  9977   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9978   effect(USE meth, KILL l7_mh_SP_save);
  9980   size(16);
  9981   ins_cost(CALL_COST);
  9982   format %{ "CALL,static/MethodHandle" %}
  9983   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9984   ins_pipe(simple_call);
  9985 %}
  9987 // Call Java Dynamic Instruction
  9988 instruct CallDynamicJavaDirect( method meth ) %{
  9989   match(CallDynamicJava);
  9990   effect(USE meth);
  9992   ins_cost(CALL_COST);
  9993   format %{ "SET    (empty),R_G5\n\t"
  9994             "CALL,dynamic  ; NOP ==> " %}
  9995   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9996   ins_pipe(call);
  9997 %}
  9999 // Call Runtime Instruction
 10000 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
 10001   match(CallRuntime);
 10002   effect(USE meth, KILL l7);
 10003   ins_cost(CALL_COST);
 10004   format %{ "CALL,runtime" %}
 10005   ins_encode( Java_To_Runtime( meth ),
 10006               call_epilog, adjust_long_from_native_call );
 10007   ins_pipe(simple_call);
 10008 %}
 10010 // Call runtime without safepoint - same as CallRuntime
 10011 instruct CallLeafDirect(method meth, l7RegP l7) %{
 10012   match(CallLeaf);
 10013   effect(USE meth, KILL l7);
 10014   ins_cost(CALL_COST);
 10015   format %{ "CALL,runtime leaf" %}
 10016   ins_encode( Java_To_Runtime( meth ),
 10017               call_epilog,
 10018               adjust_long_from_native_call );
 10019   ins_pipe(simple_call);
 10020 %}
 10022 // Call runtime without safepoint - same as CallLeaf
 10023 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10024   match(CallLeafNoFP);
 10025   effect(USE meth, KILL l7);
 10026   ins_cost(CALL_COST);
 10027   format %{ "CALL,runtime leaf nofp" %}
 10028   ins_encode( Java_To_Runtime( meth ),
 10029               call_epilog,
 10030               adjust_long_from_native_call );
 10031   ins_pipe(simple_call);
 10032 %}
 10034 // Tail Call; Jump from runtime stub to Java code.
 10035 // Also known as an 'interprocedural jump'.
 10036 // Target of jump will eventually return to caller.
 10037 // TailJump below removes the return address.
 10038 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10039   match(TailCall jump_target method_oop );
 10041   ins_cost(CALL_COST);
 10042   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10043   ins_encode(form_jmpl(jump_target));
 10044   ins_pipe(tail_call);
 10045 %}
 10048 // Return Instruction
 10049 instruct Ret() %{
 10050   match(Return);
 10052   // The epilogue node did the ret already.
 10053   size(0);
 10054   format %{ "! return" %}
 10055   ins_encode();
 10056   ins_pipe(empty);
 10057 %}
 10060 // Tail Jump; remove the return address; jump to target.
 10061 // TailCall above leaves the return address around.
 10062 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10063 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10064 // "restore" before this instruction (in Epilogue), we need to materialize it
 10065 // in %i0.
 10066 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10067   match( TailJump jump_target ex_oop );
 10068   ins_cost(CALL_COST);
 10069   format %{ "! discard R_O7\n\t"
 10070             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10071   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10072   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10073   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10074   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10075   ins_pipe(tail_call);
 10076 %}
 10078 // Create exception oop: created by stack-crawling runtime code.
 10079 // Created exception is now available to this handler, and is setup
 10080 // just prior to jumping to this handler.  No code emitted.
 10081 instruct CreateException( o0RegP ex_oop )
 10082 %{
 10083   match(Set ex_oop (CreateEx));
 10084   ins_cost(0);
 10086   size(0);
 10087   // use the following format syntax
 10088   format %{ "! exception oop is in R_O0; no code emitted" %}
 10089   ins_encode();
 10090   ins_pipe(empty);
 10091 %}
 10094 // Rethrow exception:
 10095 // The exception oop will come in the first argument position.
 10096 // Then JUMP (not call) to the rethrow stub code.
 10097 instruct RethrowException()
 10098 %{
 10099   match(Rethrow);
 10100   ins_cost(CALL_COST);
 10102   // use the following format syntax
 10103   format %{ "Jmp    rethrow_stub" %}
 10104   ins_encode(enc_rethrow);
 10105   ins_pipe(tail_call);
 10106 %}
 10109 // Die now
 10110 instruct ShouldNotReachHere( )
 10111 %{
 10112   match(Halt);
 10113   ins_cost(CALL_COST);
 10115   size(4);
 10116   // Use the following format syntax
 10117   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10118   ins_encode( form2_illtrap() );
 10119   ins_pipe(tail_call);
 10120 %}
 10122 // ============================================================================
 10123 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10124 // array for an instance of the superklass.  Set a hidden internal cache on a
 10125 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10126 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10127 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10128   match(Set index (PartialSubtypeCheck sub super));
 10129   effect( KILL pcc, KILL o7 );
 10130   ins_cost(DEFAULT_COST*10);
 10131   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10132   ins_encode( enc_PartialSubtypeCheck() );
 10133   ins_pipe(partial_subtype_check_pipe);
 10134 %}
 10136 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10137   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10138   effect( KILL idx, KILL o7 );
 10139   ins_cost(DEFAULT_COST*10);
 10140   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10141   ins_encode( enc_PartialSubtypeCheck() );
 10142   ins_pipe(partial_subtype_check_pipe);
 10143 %}
 10146 // ============================================================================
 10147 // inlined locking and unlocking
 10149 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10150   match(Set pcc (FastLock object box));
 10152   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10153   ins_cost(100);
 10155   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10156   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10157   ins_pipe(long_memory_op);
 10158 %}
 10161 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10162   match(Set pcc (FastUnlock object box));
 10163   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10164   ins_cost(100);
 10166   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10167   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10168   ins_pipe(long_memory_op);
 10169 %}
 10171 // The encodings are generic.
 10172 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10173   predicate(!use_block_zeroing(n->in(2)) );
 10174   match(Set dummy (ClearArray cnt base));
 10175   effect(TEMP temp, KILL ccr);
 10176   ins_cost(300);
 10177   format %{ "MOV    $cnt,$temp\n"
 10178     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10179     "        BRge   loop\t\t! Clearing loop\n"
 10180     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10182   ins_encode %{
 10183     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10184     Register nof_bytes_arg    = $cnt$$Register;
 10185     Register nof_bytes_tmp    = $temp$$Register;
 10186     Register base_pointer_arg = $base$$Register;
 10188     Label loop;
 10189     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10191     // Loop and clear, walking backwards through the array.
 10192     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10193     __ bind(loop);
 10194     __ deccc(nof_bytes_tmp, 8);
 10195     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10196     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10197     // %%%% this mini-loop must not cross a cache boundary!
 10198   %}
 10199   ins_pipe(long_memory_op);
 10200 %}
 10202 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10203   predicate(use_block_zeroing(n->in(2)));
 10204   match(Set dummy (ClearArray cnt base));
 10205   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10206   ins_cost(300);
 10207   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10209   ins_encode %{
 10211     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10212     Register to    = $base$$Register;
 10213     Register count = $cnt$$Register;
 10215     Label Ldone;
 10216     __ nop(); // Separate short branches
 10217     // Use BIS for zeroing (temp is not used).
 10218     __ bis_zeroing(to, count, G0, Ldone);
 10219     __ bind(Ldone);
 10221   %}
 10222   ins_pipe(long_memory_op);
 10223 %}
 10225 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10226   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10227   match(Set dummy (ClearArray cnt base));
 10228   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10229   ins_cost(300);
 10230   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10232   ins_encode %{
 10234     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10235     Register to    = $base$$Register;
 10236     Register count = $cnt$$Register;
 10237     Register temp  = $tmp$$Register;
 10239     Label Ldone;
 10240     __ nop(); // Separate short branches
 10241     // Use BIS for zeroing
 10242     __ bis_zeroing(to, count, temp, Ldone);
 10243     __ bind(Ldone);
 10245   %}
 10246   ins_pipe(long_memory_op);
 10247 %}
 10249 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10250                         o7RegI tmp, flagsReg ccr) %{
 10251   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10252   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10253   ins_cost(300);
 10254   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10255   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10256   ins_pipe(long_memory_op);
 10257 %}
 10259 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10260                        o7RegI tmp, flagsReg ccr) %{
 10261   match(Set result (StrEquals (Binary str1 str2) cnt));
 10262   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10263   ins_cost(300);
 10264   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10265   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10266   ins_pipe(long_memory_op);
 10267 %}
 10269 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10270                       o7RegI tmp2, flagsReg ccr) %{
 10271   match(Set result (AryEq ary1 ary2));
 10272   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10273   ins_cost(300);
 10274   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10275   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10276   ins_pipe(long_memory_op);
 10277 %}
 10280 //---------- Zeros Count Instructions ------------------------------------------
 10282 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10283   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10284   match(Set dst (CountLeadingZerosI src));
 10285   effect(TEMP dst, TEMP tmp, KILL cr);
 10287   // x |= (x >> 1);
 10288   // x |= (x >> 2);
 10289   // x |= (x >> 4);
 10290   // x |= (x >> 8);
 10291   // x |= (x >> 16);
 10292   // return (WORDBITS - popc(x));
 10293   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10294             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10295             "OR      $dst,$tmp,$dst\n\t"
 10296             "SRL     $dst,2,$tmp\n\t"
 10297             "OR      $dst,$tmp,$dst\n\t"
 10298             "SRL     $dst,4,$tmp\n\t"
 10299             "OR      $dst,$tmp,$dst\n\t"
 10300             "SRL     $dst,8,$tmp\n\t"
 10301             "OR      $dst,$tmp,$dst\n\t"
 10302             "SRL     $dst,16,$tmp\n\t"
 10303             "OR      $dst,$tmp,$dst\n\t"
 10304             "POPC    $dst,$dst\n\t"
 10305             "MOV     32,$tmp\n\t"
 10306             "SUB     $tmp,$dst,$dst" %}
 10307   ins_encode %{
 10308     Register Rdst = $dst$$Register;
 10309     Register Rsrc = $src$$Register;
 10310     Register Rtmp = $tmp$$Register;
 10311     __ srl(Rsrc, 1,    Rtmp);
 10312     __ srl(Rsrc, 0,    Rdst);
 10313     __ or3(Rdst, Rtmp, Rdst);
 10314     __ srl(Rdst, 2,    Rtmp);
 10315     __ or3(Rdst, Rtmp, Rdst);
 10316     __ srl(Rdst, 4,    Rtmp);
 10317     __ or3(Rdst, Rtmp, Rdst);
 10318     __ srl(Rdst, 8,    Rtmp);
 10319     __ or3(Rdst, Rtmp, Rdst);
 10320     __ srl(Rdst, 16,   Rtmp);
 10321     __ or3(Rdst, Rtmp, Rdst);
 10322     __ popc(Rdst, Rdst);
 10323     __ mov(BitsPerInt, Rtmp);
 10324     __ sub(Rtmp, Rdst, Rdst);
 10325   %}
 10326   ins_pipe(ialu_reg);
 10327 %}
 10329 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10330   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10331   match(Set dst (CountLeadingZerosL src));
 10332   effect(TEMP dst, TEMP tmp, KILL cr);
 10334   // x |= (x >> 1);
 10335   // x |= (x >> 2);
 10336   // x |= (x >> 4);
 10337   // x |= (x >> 8);
 10338   // x |= (x >> 16);
 10339   // x |= (x >> 32);
 10340   // return (WORDBITS - popc(x));
 10341   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10342             "OR      $src,$tmp,$dst\n\t"
 10343             "SRLX    $dst,2,$tmp\n\t"
 10344             "OR      $dst,$tmp,$dst\n\t"
 10345             "SRLX    $dst,4,$tmp\n\t"
 10346             "OR      $dst,$tmp,$dst\n\t"
 10347             "SRLX    $dst,8,$tmp\n\t"
 10348             "OR      $dst,$tmp,$dst\n\t"
 10349             "SRLX    $dst,16,$tmp\n\t"
 10350             "OR      $dst,$tmp,$dst\n\t"
 10351             "SRLX    $dst,32,$tmp\n\t"
 10352             "OR      $dst,$tmp,$dst\n\t"
 10353             "POPC    $dst,$dst\n\t"
 10354             "MOV     64,$tmp\n\t"
 10355             "SUB     $tmp,$dst,$dst" %}
 10356   ins_encode %{
 10357     Register Rdst = $dst$$Register;
 10358     Register Rsrc = $src$$Register;
 10359     Register Rtmp = $tmp$$Register;
 10360     __ srlx(Rsrc, 1,    Rtmp);
 10361     __ or3( Rsrc, Rtmp, Rdst);
 10362     __ srlx(Rdst, 2,    Rtmp);
 10363     __ or3( Rdst, Rtmp, Rdst);
 10364     __ srlx(Rdst, 4,    Rtmp);
 10365     __ or3( Rdst, Rtmp, Rdst);
 10366     __ srlx(Rdst, 8,    Rtmp);
 10367     __ or3( Rdst, Rtmp, Rdst);
 10368     __ srlx(Rdst, 16,   Rtmp);
 10369     __ or3( Rdst, Rtmp, Rdst);
 10370     __ srlx(Rdst, 32,   Rtmp);
 10371     __ or3( Rdst, Rtmp, Rdst);
 10372     __ popc(Rdst, Rdst);
 10373     __ mov(BitsPerLong, Rtmp);
 10374     __ sub(Rtmp, Rdst, Rdst);
 10375   %}
 10376   ins_pipe(ialu_reg);
 10377 %}
 10379 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10380   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10381   match(Set dst (CountTrailingZerosI src));
 10382   effect(TEMP dst, KILL cr);
 10384   // return popc(~x & (x - 1));
 10385   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10386             "ANDN    $dst,$src,$dst\n\t"
 10387             "SRL     $dst,R_G0,$dst\n\t"
 10388             "POPC    $dst,$dst" %}
 10389   ins_encode %{
 10390     Register Rdst = $dst$$Register;
 10391     Register Rsrc = $src$$Register;
 10392     __ sub(Rsrc, 1, Rdst);
 10393     __ andn(Rdst, Rsrc, Rdst);
 10394     __ srl(Rdst, G0, Rdst);
 10395     __ popc(Rdst, Rdst);
 10396   %}
 10397   ins_pipe(ialu_reg);
 10398 %}
 10400 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10401   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10402   match(Set dst (CountTrailingZerosL src));
 10403   effect(TEMP dst, KILL cr);
 10405   // return popc(~x & (x - 1));
 10406   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10407             "ANDN    $dst,$src,$dst\n\t"
 10408             "POPC    $dst,$dst" %}
 10409   ins_encode %{
 10410     Register Rdst = $dst$$Register;
 10411     Register Rsrc = $src$$Register;
 10412     __ sub(Rsrc, 1, Rdst);
 10413     __ andn(Rdst, Rsrc, Rdst);
 10414     __ popc(Rdst, Rdst);
 10415   %}
 10416   ins_pipe(ialu_reg);
 10417 %}
 10420 //---------- Population Count Instructions -------------------------------------
 10422 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10423   predicate(UsePopCountInstruction);
 10424   match(Set dst (PopCountI src));
 10426   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10427             "POPC   $dst, $dst" %}
 10428   ins_encode %{
 10429     __ srl($src$$Register, G0, $dst$$Register);
 10430     __ popc($dst$$Register, $dst$$Register);
 10431   %}
 10432   ins_pipe(ialu_reg);
 10433 %}
 10435 // Note: Long.bitCount(long) returns an int.
 10436 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10437   predicate(UsePopCountInstruction);
 10438   match(Set dst (PopCountL src));
 10440   format %{ "POPC   $src, $dst" %}
 10441   ins_encode %{
 10442     __ popc($src$$Register, $dst$$Register);
 10443   %}
 10444   ins_pipe(ialu_reg);
 10445 %}
 10448 // ============================================================================
 10449 //------------Bytes reverse--------------------------------------------------
 10451 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10452   match(Set dst (ReverseBytesI src));
 10454   // Op cost is artificially doubled to make sure that load or store
 10455   // instructions are preferred over this one which requires a spill
 10456   // onto a stack slot.
 10457   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10458   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10460   ins_encode %{
 10461     __ set($src$$disp + STACK_BIAS, O7);
 10462     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10463   %}
 10464   ins_pipe( iload_mem );
 10465 %}
 10467 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10468   match(Set dst (ReverseBytesL src));
 10470   // Op cost is artificially doubled to make sure that load or store
 10471   // instructions are preferred over this one which requires a spill
 10472   // onto a stack slot.
 10473   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10474   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10476   ins_encode %{
 10477     __ set($src$$disp + STACK_BIAS, O7);
 10478     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10479   %}
 10480   ins_pipe( iload_mem );
 10481 %}
 10483 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10484   match(Set dst (ReverseBytesUS src));
 10486   // Op cost is artificially doubled to make sure that load or store
 10487   // instructions are preferred over this one which requires a spill
 10488   // onto a stack slot.
 10489   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10490   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10492   ins_encode %{
 10493     // the value was spilled as an int so bias the load
 10494     __ set($src$$disp + STACK_BIAS + 2, O7);
 10495     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10496   %}
 10497   ins_pipe( iload_mem );
 10498 %}
 10500 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10501   match(Set dst (ReverseBytesS src));
 10503   // Op cost is artificially doubled to make sure that load or store
 10504   // instructions are preferred over this one which requires a spill
 10505   // onto a stack slot.
 10506   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10507   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10509   ins_encode %{
 10510     // the value was spilled as an int so bias the load
 10511     __ set($src$$disp + STACK_BIAS + 2, O7);
 10512     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10513   %}
 10514   ins_pipe( iload_mem );
 10515 %}
 10517 // Load Integer reversed byte order
 10518 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10519   match(Set dst (ReverseBytesI (LoadI src)));
 10521   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10522   size(4);
 10523   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10525   ins_encode %{
 10526     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10527   %}
 10528   ins_pipe(iload_mem);
 10529 %}
 10531 // Load Long - aligned and reversed
 10532 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10533   match(Set dst (ReverseBytesL (LoadL src)));
 10535   ins_cost(MEMORY_REF_COST);
 10536   size(4);
 10537   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10539   ins_encode %{
 10540     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10541   %}
 10542   ins_pipe(iload_mem);
 10543 %}
 10545 // Load unsigned short / char reversed byte order
 10546 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10547   match(Set dst (ReverseBytesUS (LoadUS src)));
 10549   ins_cost(MEMORY_REF_COST);
 10550   size(4);
 10551   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10553   ins_encode %{
 10554     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10555   %}
 10556   ins_pipe(iload_mem);
 10557 %}
 10559 // Load short reversed byte order
 10560 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10561   match(Set dst (ReverseBytesS (LoadS src)));
 10563   ins_cost(MEMORY_REF_COST);
 10564   size(4);
 10565   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10567   ins_encode %{
 10568     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10569   %}
 10570   ins_pipe(iload_mem);
 10571 %}
 10573 // Store Integer reversed byte order
 10574 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10575   match(Set dst (StoreI dst (ReverseBytesI src)));
 10577   ins_cost(MEMORY_REF_COST);
 10578   size(4);
 10579   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10581   ins_encode %{
 10582     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10583   %}
 10584   ins_pipe(istore_mem_reg);
 10585 %}
 10587 // Store Long reversed byte order
 10588 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10589   match(Set dst (StoreL dst (ReverseBytesL src)));
 10591   ins_cost(MEMORY_REF_COST);
 10592   size(4);
 10593   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10595   ins_encode %{
 10596     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10597   %}
 10598   ins_pipe(istore_mem_reg);
 10599 %}
 10601 // Store unsighed short/char reversed byte order
 10602 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10603   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10605   ins_cost(MEMORY_REF_COST);
 10606   size(4);
 10607   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10609   ins_encode %{
 10610     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10611   %}
 10612   ins_pipe(istore_mem_reg);
 10613 %}
 10615 // Store short reversed byte order
 10616 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10617   match(Set dst (StoreC dst (ReverseBytesS src)));
 10619   ins_cost(MEMORY_REF_COST);
 10620   size(4);
 10621   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10623   ins_encode %{
 10624     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10625   %}
 10626   ins_pipe(istore_mem_reg);
 10627 %}
 10629 // ====================VECTOR INSTRUCTIONS=====================================
 10631 // Load Aligned Packed values into a Double Register
 10632 instruct loadV8(regD dst, memory mem) %{
 10633   predicate(n->as_LoadVector()->memory_size() == 8);
 10634   match(Set dst (LoadVector mem));
 10635   ins_cost(MEMORY_REF_COST);
 10636   size(4);
 10637   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10638   ins_encode %{
 10639     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10640   %}
 10641   ins_pipe(floadD_mem);
 10642 %}
 10644 // Store Vector in Double register to memory
 10645 instruct storeV8(memory mem, regD src) %{
 10646   predicate(n->as_StoreVector()->memory_size() == 8);
 10647   match(Set mem (StoreVector mem src));
 10648   ins_cost(MEMORY_REF_COST);
 10649   size(4);
 10650   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10651   ins_encode %{
 10652     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10653   %}
 10654   ins_pipe(fstoreD_mem_reg);
 10655 %}
 10657 // Store Zero into vector in memory
 10658 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10659   predicate(n->as_StoreVector()->memory_size() == 8);
 10660   match(Set mem (StoreVector mem (ReplicateB zero)));
 10661   ins_cost(MEMORY_REF_COST);
 10662   size(4);
 10663   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10664   ins_encode %{
 10665     __ stx(G0, $mem$$Address);
 10666   %}
 10667   ins_pipe(fstoreD_mem_zero);
 10668 %}
 10670 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10671   predicate(n->as_StoreVector()->memory_size() == 8);
 10672   match(Set mem (StoreVector mem (ReplicateS zero)));
 10673   ins_cost(MEMORY_REF_COST);
 10674   size(4);
 10675   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10676   ins_encode %{
 10677     __ stx(G0, $mem$$Address);
 10678   %}
 10679   ins_pipe(fstoreD_mem_zero);
 10680 %}
 10682 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10683   predicate(n->as_StoreVector()->memory_size() == 8);
 10684   match(Set mem (StoreVector mem (ReplicateI zero)));
 10685   ins_cost(MEMORY_REF_COST);
 10686   size(4);
 10687   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10688   ins_encode %{
 10689     __ stx(G0, $mem$$Address);
 10690   %}
 10691   ins_pipe(fstoreD_mem_zero);
 10692 %}
 10694 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10695   predicate(n->as_StoreVector()->memory_size() == 8);
 10696   match(Set mem (StoreVector mem (ReplicateF zero)));
 10697   ins_cost(MEMORY_REF_COST);
 10698   size(4);
 10699   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10700   ins_encode %{
 10701     __ stx(G0, $mem$$Address);
 10702   %}
 10703   ins_pipe(fstoreD_mem_zero);
 10704 %}
 10706 // Replicate scalar to packed byte values into Double register
 10707 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10708   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10709   match(Set dst (ReplicateB src));
 10710   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10711   format %{ "SLLX  $src,56,$tmp\n\t"
 10712             "SRLX  $tmp, 8,$tmp2\n\t"
 10713             "OR    $tmp,$tmp2,$tmp\n\t"
 10714             "SRLX  $tmp,16,$tmp2\n\t"
 10715             "OR    $tmp,$tmp2,$tmp\n\t"
 10716             "SRLX  $tmp,32,$tmp2\n\t"
 10717             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10718             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10719   ins_encode %{
 10720     Register Rsrc = $src$$Register;
 10721     Register Rtmp = $tmp$$Register;
 10722     Register Rtmp2 = $tmp2$$Register;
 10723     __ sllx(Rsrc,    56, Rtmp);
 10724     __ srlx(Rtmp,     8, Rtmp2);
 10725     __ or3 (Rtmp, Rtmp2, Rtmp);
 10726     __ srlx(Rtmp,    16, Rtmp2);
 10727     __ or3 (Rtmp, Rtmp2, Rtmp);
 10728     __ srlx(Rtmp,    32, Rtmp2);
 10729     __ or3 (Rtmp, Rtmp2, Rtmp);
 10730     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10731   %}
 10732   ins_pipe(ialu_reg);
 10733 %}
 10735 // Replicate scalar to packed byte values into Double stack
 10736 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10737   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10738   match(Set dst (ReplicateB src));
 10739   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10740   format %{ "SLLX  $src,56,$tmp\n\t"
 10741             "SRLX  $tmp, 8,$tmp2\n\t"
 10742             "OR    $tmp,$tmp2,$tmp\n\t"
 10743             "SRLX  $tmp,16,$tmp2\n\t"
 10744             "OR    $tmp,$tmp2,$tmp\n\t"
 10745             "SRLX  $tmp,32,$tmp2\n\t"
 10746             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10747             "STX   $tmp,$dst\t! regL to stkD" %}
 10748   ins_encode %{
 10749     Register Rsrc = $src$$Register;
 10750     Register Rtmp = $tmp$$Register;
 10751     Register Rtmp2 = $tmp2$$Register;
 10752     __ sllx(Rsrc,    56, Rtmp);
 10753     __ srlx(Rtmp,     8, Rtmp2);
 10754     __ or3 (Rtmp, Rtmp2, Rtmp);
 10755     __ srlx(Rtmp,    16, Rtmp2);
 10756     __ or3 (Rtmp, Rtmp2, Rtmp);
 10757     __ srlx(Rtmp,    32, Rtmp2);
 10758     __ or3 (Rtmp, Rtmp2, Rtmp);
 10759     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10760     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10761   %}
 10762   ins_pipe(ialu_reg);
 10763 %}
 10765 // Replicate scalar constant to packed byte values in Double register
 10766 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10767   predicate(n->as_Vector()->length() == 8);
 10768   match(Set dst (ReplicateB con));
 10769   effect(KILL tmp);
 10770   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10771   ins_encode %{
 10772     // XXX This is a quick fix for 6833573.
 10773     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10774     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10775     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10776   %}
 10777   ins_pipe(loadConFD);
 10778 %}
 10780 // Replicate scalar to packed char/short values into Double register
 10781 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10782   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10783   match(Set dst (ReplicateS src));
 10784   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10785   format %{ "SLLX  $src,48,$tmp\n\t"
 10786             "SRLX  $tmp,16,$tmp2\n\t"
 10787             "OR    $tmp,$tmp2,$tmp\n\t"
 10788             "SRLX  $tmp,32,$tmp2\n\t"
 10789             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10790             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10791   ins_encode %{
 10792     Register Rsrc = $src$$Register;
 10793     Register Rtmp = $tmp$$Register;
 10794     Register Rtmp2 = $tmp2$$Register;
 10795     __ sllx(Rsrc,    48, Rtmp);
 10796     __ srlx(Rtmp,    16, Rtmp2);
 10797     __ or3 (Rtmp, Rtmp2, Rtmp);
 10798     __ srlx(Rtmp,    32, Rtmp2);
 10799     __ or3 (Rtmp, Rtmp2, Rtmp);
 10800     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10801   %}
 10802   ins_pipe(ialu_reg);
 10803 %}
 10805 // Replicate scalar to packed char/short values into Double stack
 10806 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10807   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10808   match(Set dst (ReplicateS src));
 10809   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10810   format %{ "SLLX  $src,48,$tmp\n\t"
 10811             "SRLX  $tmp,16,$tmp2\n\t"
 10812             "OR    $tmp,$tmp2,$tmp\n\t"
 10813             "SRLX  $tmp,32,$tmp2\n\t"
 10814             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10815             "STX   $tmp,$dst\t! regL to stkD" %}
 10816   ins_encode %{
 10817     Register Rsrc = $src$$Register;
 10818     Register Rtmp = $tmp$$Register;
 10819     Register Rtmp2 = $tmp2$$Register;
 10820     __ sllx(Rsrc,    48, Rtmp);
 10821     __ srlx(Rtmp,    16, Rtmp2);
 10822     __ or3 (Rtmp, Rtmp2, Rtmp);
 10823     __ srlx(Rtmp,    32, Rtmp2);
 10824     __ or3 (Rtmp, Rtmp2, Rtmp);
 10825     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10826     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10827   %}
 10828   ins_pipe(ialu_reg);
 10829 %}
 10831 // Replicate scalar constant to packed char/short values in Double register
 10832 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10833   predicate(n->as_Vector()->length() == 4);
 10834   match(Set dst (ReplicateS con));
 10835   effect(KILL tmp);
 10836   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10837   ins_encode %{
 10838     // XXX This is a quick fix for 6833573.
 10839     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10840     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10841     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10842   %}
 10843   ins_pipe(loadConFD);
 10844 %}
 10846 // Replicate scalar to packed int values into Double register
 10847 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10848   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10849   match(Set dst (ReplicateI src));
 10850   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10851   format %{ "SLLX  $src,32,$tmp\n\t"
 10852             "SRLX  $tmp,32,$tmp2\n\t"
 10853             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10854             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10855   ins_encode %{
 10856     Register Rsrc = $src$$Register;
 10857     Register Rtmp = $tmp$$Register;
 10858     Register Rtmp2 = $tmp2$$Register;
 10859     __ sllx(Rsrc,    32, Rtmp);
 10860     __ srlx(Rtmp,    32, Rtmp2);
 10861     __ or3 (Rtmp, Rtmp2, Rtmp);
 10862     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10863   %}
 10864   ins_pipe(ialu_reg);
 10865 %}
 10867 // Replicate scalar to packed int values into Double stack
 10868 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10869   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10870   match(Set dst (ReplicateI src));
 10871   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10872   format %{ "SLLX  $src,32,$tmp\n\t"
 10873             "SRLX  $tmp,32,$tmp2\n\t"
 10874             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10875             "STX   $tmp,$dst\t! regL to stkD" %}
 10876   ins_encode %{
 10877     Register Rsrc = $src$$Register;
 10878     Register Rtmp = $tmp$$Register;
 10879     Register Rtmp2 = $tmp2$$Register;
 10880     __ sllx(Rsrc,    32, Rtmp);
 10881     __ srlx(Rtmp,    32, Rtmp2);
 10882     __ or3 (Rtmp, Rtmp2, Rtmp);
 10883     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10884     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10885   %}
 10886   ins_pipe(ialu_reg);
 10887 %}
 10889 // Replicate scalar zero constant to packed int values in Double register
 10890 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10891   predicate(n->as_Vector()->length() == 2);
 10892   match(Set dst (ReplicateI con));
 10893   effect(KILL tmp);
 10894   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10895   ins_encode %{
 10896     // XXX This is a quick fix for 6833573.
 10897     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10898     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10899     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10900   %}
 10901   ins_pipe(loadConFD);
 10902 %}
 10904 // Replicate scalar to packed float values into Double stack
 10905 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10906   predicate(n->as_Vector()->length() == 2);
 10907   match(Set dst (ReplicateF src));
 10908   ins_cost(MEMORY_REF_COST*2);
 10909   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10910             "STF    $src,$dst.lo" %}
 10911   opcode(Assembler::stf_op3);
 10912   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10913   ins_pipe(fstoreF_stk_reg);
 10914 %}
 10916 // Replicate scalar zero constant to packed float values in Double register
 10917 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10918   predicate(n->as_Vector()->length() == 2);
 10919   match(Set dst (ReplicateF con));
 10920   effect(KILL tmp);
 10921   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10922   ins_encode %{
 10923     // XXX This is a quick fix for 6833573.
 10924     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10925     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10926     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10927   %}
 10928   ins_pipe(loadConFD);
 10929 %}
 10931 //----------PEEPHOLE RULES-----------------------------------------------------
 10932 // These must follow all instruction definitions as they use the names
 10933 // defined in the instructions definitions.
 10934 //
 10935 // peepmatch ( root_instr_name [preceding_instruction]* );
 10936 //
 10937 // peepconstraint %{
 10938 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10939 //  [, ...] );
 10940 // // instruction numbers are zero-based using left to right order in peepmatch
 10941 //
 10942 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10943 // // provide an instruction_number.operand_name for each operand that appears
 10944 // // in the replacement instruction's match rule
 10945 //
 10946 // ---------VM FLAGS---------------------------------------------------------
 10947 //
 10948 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10949 //
 10950 // Each peephole rule is given an identifying number starting with zero and
 10951 // increasing by one in the order seen by the parser.  An individual peephole
 10952 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10953 // on the command-line.
 10954 //
 10955 // ---------CURRENT LIMITATIONS----------------------------------------------
 10956 //
 10957 // Only match adjacent instructions in same basic block
 10958 // Only equality constraints
 10959 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10960 // Only one replacement instruction
 10961 //
 10962 // ---------EXAMPLE----------------------------------------------------------
 10963 //
 10964 // // pertinent parts of existing instructions in architecture description
 10965 // instruct movI(eRegI dst, eRegI src) %{
 10966 //   match(Set dst (CopyI src));
 10967 // %}
 10968 //
 10969 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10970 //   match(Set dst (AddI dst src));
 10971 //   effect(KILL cr);
 10972 // %}
 10973 //
 10974 // // Change (inc mov) to lea
 10975 // peephole %{
 10976 //   // increment preceeded by register-register move
 10977 //   peepmatch ( incI_eReg movI );
 10978 //   // require that the destination register of the increment
 10979 //   // match the destination register of the move
 10980 //   peepconstraint ( 0.dst == 1.dst );
 10981 //   // construct a replacement instruction that sets
 10982 //   // the destination to ( move's source register + one )
 10983 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10984 // %}
 10985 //
 10987 // // Change load of spilled value to only a spill
 10988 // instruct storeI(memory mem, eRegI src) %{
 10989 //   match(Set mem (StoreI mem src));
 10990 // %}
 10991 //
 10992 // instruct loadI(eRegI dst, memory mem) %{
 10993 //   match(Set dst (LoadI mem));
 10994 // %}
 10995 //
 10996 // peephole %{
 10997 //   peepmatch ( loadI storeI );
 10998 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10999 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 11000 // %}
 11002 //----------SMARTSPILL RULES---------------------------------------------------
 11003 // These must follow all instruction definitions as they use the names
 11004 // defined in the instructions definitions.
 11005 //
 11006 // SPARC will probably not have any of these rules due to RISC instruction set.
 11008 //----------PIPELINE-----------------------------------------------------------
 11009 // Rules which define the behavior of the target architectures pipeline.

mercurial