src/cpu/sparc/vm/sparc.ad

Tue, 25 Feb 2014 15:11:18 -0800

author
kvn
date
Tue, 25 Feb 2014 15:11:18 -0800
changeset 6507
752ba2e5f6d0
parent 6506
f040cf9fc9c0
parent 6319
51e1bb81df86
child 6517
a433eb716ce1
permissions
-rw-r--r--

Merge

     1 //
     2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedClassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
   563     } else {
   564       klass_load_size = 1*BytesPerInstWord;
   565     }
   566     if (Assembler::is_simm13(v_off)) {
   567       return klass_load_size +
   568              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   569              NativeCall::instruction_size);  // call; delay slot
   570     } else {
   571       return klass_load_size +
   572              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   573              NativeCall::instruction_size);  // call; delay slot
   574     }
   575   }
   576 }
   578 int MachCallRuntimeNode::ret_addr_offset() {
   579 #ifdef _LP64
   580   if (MacroAssembler::is_far_target(entry_point())) {
   581     return NativeFarCall::instruction_size;
   582   } else {
   583     return NativeCall::instruction_size;
   584   }
   585 #else
   586   return NativeCall::instruction_size;  // call; delay slot
   587 #endif
   588 }
   590 // Indicate if the safepoint node needs the polling page as an input.
   591 // Since Sparc does not have absolute addressing, it does.
   592 bool SafePointNode::needs_polling_address_input() {
   593   return true;
   594 }
   596 // emit an interrupt that is caught by the debugger (for debugging compiler)
   597 void emit_break(CodeBuffer &cbuf) {
   598   MacroAssembler _masm(&cbuf);
   599   __ breakpoint_trap();
   600 }
   602 #ifndef PRODUCT
   603 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   604   st->print("TA");
   605 }
   606 #endif
   608 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   609   emit_break(cbuf);
   610 }
   612 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   613   return MachNode::size(ra_);
   614 }
   616 // Traceable jump
   617 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   618   MacroAssembler _masm(&cbuf);
   619   Register rdest = reg_to_register_object(jump_target);
   620   __ JMP(rdest, 0);
   621   __ delayed()->nop();
   622 }
   624 // Traceable jump and set exception pc
   625 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   626   MacroAssembler _masm(&cbuf);
   627   Register rdest = reg_to_register_object(jump_target);
   628   __ JMP(rdest, 0);
   629   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   630 }
   632 void emit_nop(CodeBuffer &cbuf) {
   633   MacroAssembler _masm(&cbuf);
   634   __ nop();
   635 }
   637 void emit_illtrap(CodeBuffer &cbuf) {
   638   MacroAssembler _masm(&cbuf);
   639   __ illtrap(0);
   640 }
   643 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   644   assert(n->rule() != loadUB_rule, "");
   646   intptr_t offset = 0;
   647   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   648   const Node* addr = n->get_base_and_disp(offset, adr_type);
   649   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   650   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   652   atype = atype->add_offset(offset);
   653   assert(disp32 == offset, "wrong disp32");
   654   return atype->_offset;
   655 }
   658 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   659   assert(n->rule() != loadUB_rule, "");
   661   intptr_t offset = 0;
   662   Node* addr = n->in(2);
   663   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   664   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   665     Node* a = addr->in(2/*AddPNode::Address*/);
   666     Node* o = addr->in(3/*AddPNode::Offset*/);
   667     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   668     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   669     assert(atype->isa_oop_ptr(), "still an oop");
   670   }
   671   offset = atype->is_ptr()->_offset;
   672   if (offset != Type::OffsetBot)  offset += disp32;
   673   return offset;
   674 }
   676 static inline jdouble replicate_immI(int con, int count, int width) {
   677   // Load a constant replicated "count" times with width "width"
   678   assert(count*width == 8 && width <= 4, "sanity");
   679   int bit_width = width * 8;
   680   jlong val = con;
   681   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   682   for (int i = 0; i < count - 1; i++) {
   683     val |= (val << bit_width);
   684   }
   685   jdouble dval = *((jdouble*) &val);  // coerce to double type
   686   return dval;
   687 }
   689 static inline jdouble replicate_immF(float con) {
   690   // Replicate float con 2 times and pack into vector.
   691   int val = *((int*)&con);
   692   jlong lval = val;
   693   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   694   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   695   return dval;
   696 }
   698 // Standard Sparc opcode form2 field breakdown
   699 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   700   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   701   int op = (f30 << 30) |
   702            (f29 << 29) |
   703            (f25 << 25) |
   704            (f22 << 22) |
   705            (f20 << 20) |
   706            (f19 << 19) |
   707            (f0  <<  0);
   708   cbuf.insts()->emit_int32(op);
   709 }
   711 // Standard Sparc opcode form2 field breakdown
   712 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   713   f0 >>= 10;           // Drop 10 bits
   714   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   715   int op = (f30 << 30) |
   716            (f25 << 25) |
   717            (f22 << 22) |
   718            (f0  <<  0);
   719   cbuf.insts()->emit_int32(op);
   720 }
   722 // Standard Sparc opcode form3 field breakdown
   723 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   724   int op = (f30 << 30) |
   725            (f25 << 25) |
   726            (f19 << 19) |
   727            (f14 << 14) |
   728            (f5  <<  5) |
   729            (f0  <<  0);
   730   cbuf.insts()->emit_int32(op);
   731 }
   733 // Standard Sparc opcode form3 field breakdown
   734 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   735   simm13 &= (1<<13)-1; // Mask to 13 bits
   736   int op = (f30 << 30) |
   737            (f25 << 25) |
   738            (f19 << 19) |
   739            (f14 << 14) |
   740            (1   << 13) | // bit to indicate immediate-mode
   741            (simm13<<0);
   742   cbuf.insts()->emit_int32(op);
   743 }
   745 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   746   simm10 &= (1<<10)-1; // Mask to 10 bits
   747   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   748 }
   750 #ifdef ASSERT
   751 // Helper function for VerifyOops in emit_form3_mem_reg
   752 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   753   warning("VerifyOops encountered unexpected instruction:");
   754   n->dump(2);
   755   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   756 }
   757 #endif
   760 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
   761                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   763 #ifdef ASSERT
   764   // The following code implements the +VerifyOops feature.
   765   // It verifies oop values which are loaded into or stored out of
   766   // the current method activation.  +VerifyOops complements techniques
   767   // like ScavengeALot, because it eagerly inspects oops in transit,
   768   // as they enter or leave the stack, as opposed to ScavengeALot,
   769   // which inspects oops "at rest", in the stack or heap, at safepoints.
   770   // For this reason, +VerifyOops can sometimes detect bugs very close
   771   // to their point of creation.  It can also serve as a cross-check
   772   // on the validity of oop maps, when used toegether with ScavengeALot.
   774   // It would be good to verify oops at other points, especially
   775   // when an oop is used as a base pointer for a load or store.
   776   // This is presently difficult, because it is hard to know when
   777   // a base address is biased or not.  (If we had such information,
   778   // it would be easy and useful to make a two-argument version of
   779   // verify_oop which unbiases the base, and performs verification.)
   781   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   782   bool is_verified_oop_base  = false;
   783   bool is_verified_oop_load  = false;
   784   bool is_verified_oop_store = false;
   785   int tmp_enc = -1;
   786   if (VerifyOops && src1_enc != R_SP_enc) {
   787     // classify the op, mainly for an assert check
   788     int st_op = 0, ld_op = 0;
   789     switch (primary) {
   790     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   791     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   792     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   793     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   794     case Assembler::std_op3:  st_op = Op_StoreL; break;
   795     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   796     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   798     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   799     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   800     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   801     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   802     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   803     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   804     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   805     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   806     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   807     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   808     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   810     default: ShouldNotReachHere();
   811     }
   812     if (tertiary == REGP_OP) {
   813       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   814       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   815       else                          ShouldNotReachHere();
   816       if (st_op) {
   817         // a store
   818         // inputs are (0:control, 1:memory, 2:address, 3:value)
   819         Node* n2 = n->in(3);
   820         if (n2 != NULL) {
   821           const Type* t = n2->bottom_type();
   822           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   823         }
   824       } else {
   825         // a load
   826         const Type* t = n->bottom_type();
   827         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   828       }
   829     }
   831     if (ld_op) {
   832       // a Load
   833       // inputs are (0:control, 1:memory, 2:address)
   834       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   835           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   836           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   837           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   839           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   840           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   843           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   844           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   845           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   846           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   847           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   848           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   849           !(n->rule() == loadUB_rule)) {
   850         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   851       }
   852     } else if (st_op) {
   853       // a Store
   854       // inputs are (0:control, 1:memory, 2:address, 3:value)
   855       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   856           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   857           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   858           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   859           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   860           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   861           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   862         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   863       }
   864     }
   866     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   867       Node* addr = n->in(2);
   868       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   869         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   870         if (atype != NULL) {
   871           intptr_t offset = get_offset_from_base(n, atype, disp32);
   872           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   873           if (offset != offset_2) {
   874             get_offset_from_base(n, atype, disp32);
   875             get_offset_from_base_2(n, atype, disp32);
   876           }
   877           assert(offset == offset_2, "different offsets");
   878           if (offset == disp32) {
   879             // we now know that src1 is a true oop pointer
   880             is_verified_oop_base = true;
   881             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   882               if( primary == Assembler::ldd_op3 ) {
   883                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   884               } else {
   885                 tmp_enc = dst_enc;
   886                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   887                 assert(src1_enc != dst_enc, "");
   888               }
   889             }
   890           }
   891           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   892                        || offset == oopDesc::mark_offset_in_bytes())) {
   893                       // loading the mark should not be allowed either, but
   894                       // we don't check this since it conflicts with InlineObjectHash
   895                       // usage of LoadINode to get the mark. We could keep the
   896                       // check if we create a new LoadMarkNode
   897             // but do not verify the object before its header is initialized
   898             ShouldNotReachHere();
   899           }
   900         }
   901       }
   902     }
   903   }
   904 #endif
   906   uint instr;
   907   instr = (Assembler::ldst_op << 30)
   908         | (dst_enc        << 25)
   909         | (primary        << 19)
   910         | (src1_enc       << 14);
   912   uint index = src2_enc;
   913   int disp = disp32;
   915   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
   916     disp += STACK_BIAS;
   917     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
   918     if (!Assembler::is_simm13(disp)) {
   919       ra->C->record_method_not_compilable("unable to handle large constant offsets");
   920       return;
   921     }
   922   }
   924   // We should have a compiler bailout here rather than a guarantee.
   925   // Better yet would be some mechanism to handle variable-size matches correctly.
   926   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   928   if( disp == 0 ) {
   929     // use reg-reg form
   930     // bit 13 is already zero
   931     instr |= index;
   932   } else {
   933     // use reg-imm form
   934     instr |= 0x00002000;          // set bit 13 to one
   935     instr |= disp & 0x1FFF;
   936   }
   938   cbuf.insts()->emit_int32(instr);
   940 #ifdef ASSERT
   941   {
   942     MacroAssembler _masm(&cbuf);
   943     if (is_verified_oop_base) {
   944       __ verify_oop(reg_to_register_object(src1_enc));
   945     }
   946     if (is_verified_oop_store) {
   947       __ verify_oop(reg_to_register_object(dst_enc));
   948     }
   949     if (tmp_enc != -1) {
   950       __ mov(O7, reg_to_register_object(tmp_enc));
   951     }
   952     if (is_verified_oop_load) {
   953       __ verify_oop(reg_to_register_object(dst_enc));
   954     }
   955   }
   956 #endif
   957 }
   959 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   960   // The method which records debug information at every safepoint
   961   // expects the call to be the first instruction in the snippet as
   962   // it creates a PcDesc structure which tracks the offset of a call
   963   // from the start of the codeBlob. This offset is computed as
   964   // code_end() - code_begin() of the code which has been emitted
   965   // so far.
   966   // In this particular case we have skirted around the problem by
   967   // putting the "mov" instruction in the delay slot but the problem
   968   // may bite us again at some other point and a cleaner/generic
   969   // solution using relocations would be needed.
   970   MacroAssembler _masm(&cbuf);
   971   __ set_inst_mark();
   973   // We flush the current window just so that there is a valid stack copy
   974   // the fact that the current window becomes active again instantly is
   975   // not a problem there is nothing live in it.
   977 #ifdef ASSERT
   978   int startpos = __ offset();
   979 #endif /* ASSERT */
   981   __ call((address)entry_point, rtype);
   983   if (preserve_g2)   __ delayed()->mov(G2, L7);
   984   else __ delayed()->nop();
   986   if (preserve_g2)   __ mov(L7, G2);
   988 #ifdef ASSERT
   989   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   990 #ifdef _LP64
   991     // Trash argument dump slots.
   992     __ set(0xb0b8ac0db0b8ac0d, G1);
   993     __ mov(G1, G5);
   994     __ stx(G1, SP, STACK_BIAS + 0x80);
   995     __ stx(G1, SP, STACK_BIAS + 0x88);
   996     __ stx(G1, SP, STACK_BIAS + 0x90);
   997     __ stx(G1, SP, STACK_BIAS + 0x98);
   998     __ stx(G1, SP, STACK_BIAS + 0xA0);
   999     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1000 #else // _LP64
  1001     // this is also a native call, so smash the first 7 stack locations,
  1002     // and the various registers
  1004     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1005     // while [SP+0x44..0x58] are the argument dump slots.
  1006     __ set((intptr_t)0xbaadf00d, G1);
  1007     __ mov(G1, G5);
  1008     __ sllx(G1, 32, G1);
  1009     __ or3(G1, G5, G1);
  1010     __ mov(G1, G5);
  1011     __ stx(G1, SP, 0x40);
  1012     __ stx(G1, SP, 0x48);
  1013     __ stx(G1, SP, 0x50);
  1014     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1015 #endif // _LP64
  1017 #endif /*ASSERT*/
  1020 //=============================================================================
  1021 // REQUIRED FUNCTIONALITY for encoding
  1022 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1023 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1026 //=============================================================================
  1027 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1029 int Compile::ConstantTable::calculate_table_base_offset() const {
  1030   if (UseRDPCForConstantTableBase) {
  1031     // The table base offset might be less but then it fits into
  1032     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1033     return Assembler::min_simm13();
  1034   } else {
  1035     int offset = -(size() / 2);
  1036     if (!Assembler::is_simm13(offset)) {
  1037       offset = Assembler::min_simm13();
  1039     return offset;
  1043 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1044 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1045   ShouldNotReachHere();
  1048 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1049   Compile* C = ra_->C;
  1050   Compile::ConstantTable& constant_table = C->constant_table();
  1051   MacroAssembler _masm(&cbuf);
  1053   Register r = as_Register(ra_->get_encode(this));
  1054   CodeSection* consts_section = __ code()->consts();
  1055   int consts_size = consts_section->align_at_start(consts_section->size());
  1056   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1058   if (UseRDPCForConstantTableBase) {
  1059     // For the following RDPC logic to work correctly the consts
  1060     // section must be allocated right before the insts section.  This
  1061     // assert checks for that.  The layout and the SECT_* constants
  1062     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1063     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1064     int insts_offset = __ offset();
  1066     // Layout:
  1067     //
  1068     // |----------- consts section ------------|----------- insts section -----------...
  1069     // |------ constant table -----|- padding -|------------------x----
  1070     //                                                            \ current PC (RDPC instruction)
  1071     // |<------------- consts_size ----------->|<- insts_offset ->|
  1072     //                                                            \ table base
  1073     // The table base offset is later added to the load displacement
  1074     // so it has to be negative.
  1075     int table_base_offset = -(consts_size + insts_offset);
  1076     int disp;
  1078     // If the displacement from the current PC to the constant table
  1079     // base fits into simm13 we set the constant table base to the
  1080     // current PC.
  1081     if (Assembler::is_simm13(table_base_offset)) {
  1082       constant_table.set_table_base_offset(table_base_offset);
  1083       disp = 0;
  1084     } else {
  1085       // Otherwise we set the constant table base offset to the
  1086       // maximum negative displacement of load instructions to keep
  1087       // the disp as small as possible:
  1088       //
  1089       // |<------------- consts_size ----------->|<- insts_offset ->|
  1090       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1091       //                                  \ table base
  1092       table_base_offset = Assembler::min_simm13();
  1093       constant_table.set_table_base_offset(table_base_offset);
  1094       disp = (consts_size + insts_offset) + table_base_offset;
  1097     __ rdpc(r);
  1099     if (disp != 0) {
  1100       assert(r != O7, "need temporary");
  1101       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1104   else {
  1105     // Materialize the constant table base.
  1106     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1107     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1108     AddressLiteral base(baseaddr, rspec);
  1109     __ set(base, r);
  1113 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1114   if (UseRDPCForConstantTableBase) {
  1115     // This is really the worst case but generally it's only 1 instruction.
  1116     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1117   } else {
  1118     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1122 #ifndef PRODUCT
  1123 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1124   char reg[128];
  1125   ra_->dump_register(this, reg);
  1126   if (UseRDPCForConstantTableBase) {
  1127     st->print("RDPC   %s\t! constant table base", reg);
  1128   } else {
  1129     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1132 #endif
  1135 //=============================================================================
  1137 #ifndef PRODUCT
  1138 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1139   Compile* C = ra_->C;
  1141   for (int i = 0; i < OptoPrologueNops; i++) {
  1142     st->print_cr("NOP"); st->print("\t");
  1145   if( VerifyThread ) {
  1146     st->print_cr("Verify_Thread"); st->print("\t");
  1149   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1151   // Calls to C2R adapters often do not accept exceptional returns.
  1152   // We require that their callers must bang for them.  But be careful, because
  1153   // some VM calls (such as call site linkage) can use several kilobytes of
  1154   // stack.  But the stack safety zone should account for that.
  1155   // See bugs 4446381, 4468289, 4497237.
  1156   if (C->need_stack_bang(framesize)) {
  1157     st->print_cr("! stack bang"); st->print("\t");
  1160   if (Assembler::is_simm13(-framesize)) {
  1161     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1162   } else {
  1163     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1164     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1165     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1169 #endif
  1171 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1172   Compile* C = ra_->C;
  1173   MacroAssembler _masm(&cbuf);
  1175   for (int i = 0; i < OptoPrologueNops; i++) {
  1176     __ nop();
  1179   __ verify_thread();
  1181   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1182   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1183   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1185   // Calls to C2R adapters often do not accept exceptional returns.
  1186   // We require that their callers must bang for them.  But be careful, because
  1187   // some VM calls (such as call site linkage) can use several kilobytes of
  1188   // stack.  But the stack safety zone should account for that.
  1189   // See bugs 4446381, 4468289, 4497237.
  1190   if (C->need_stack_bang(framesize)) {
  1191     __ generate_stack_overflow_check(framesize);
  1194   if (Assembler::is_simm13(-framesize)) {
  1195     __ save(SP, -framesize, SP);
  1196   } else {
  1197     __ sethi(-framesize & ~0x3ff, G3);
  1198     __ add(G3, -framesize & 0x3ff, G3);
  1199     __ save(SP, G3, SP);
  1201   C->set_frame_complete( __ offset() );
  1203   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1204     // NOTE: We set the table base offset here because users might be
  1205     // emitted before MachConstantBaseNode.
  1206     Compile::ConstantTable& constant_table = C->constant_table();
  1207     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1211 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1212   return MachNode::size(ra_);
  1215 int MachPrologNode::reloc() const {
  1216   return 10; // a large enough number
  1219 //=============================================================================
  1220 #ifndef PRODUCT
  1221 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1222   Compile* C = ra_->C;
  1224   if( do_polling() && ra_->C->is_method_compilation() ) {
  1225     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1226 #ifdef _LP64
  1227     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1228 #else
  1229     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1230 #endif
  1233   if( do_polling() )
  1234     st->print("RET\n\t");
  1236   st->print("RESTORE");
  1238 #endif
  1240 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1241   MacroAssembler _masm(&cbuf);
  1242   Compile* C = ra_->C;
  1244   __ verify_thread();
  1246   // If this does safepoint polling, then do it here
  1247   if( do_polling() && ra_->C->is_method_compilation() ) {
  1248     AddressLiteral polling_page(os::get_polling_page());
  1249     __ sethi(polling_page, L0);
  1250     __ relocate(relocInfo::poll_return_type);
  1251     __ ld_ptr( L0, 0, G0 );
  1254   // If this is a return, then stuff the restore in the delay slot
  1255   if( do_polling() ) {
  1256     __ ret();
  1257     __ delayed()->restore();
  1258   } else {
  1259     __ restore();
  1263 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1264   return MachNode::size(ra_);
  1267 int MachEpilogNode::reloc() const {
  1268   return 16; // a large enough number
  1271 const Pipeline * MachEpilogNode::pipeline() const {
  1272   return MachNode::pipeline_class();
  1275 int MachEpilogNode::safepoint_offset() const {
  1276   assert( do_polling(), "no return for this epilog node");
  1277   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1280 //=============================================================================
  1282 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1283 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1284 static enum RC rc_class( OptoReg::Name reg ) {
  1285   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1286   if (OptoReg::is_stack(reg)) return rc_stack;
  1287   VMReg r = OptoReg::as_VMReg(reg);
  1288   if (r->is_Register()) return rc_int;
  1289   assert(r->is_FloatRegister(), "must be");
  1290   return rc_float;
  1293 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1294   if (cbuf) {
  1295     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1297 #ifndef PRODUCT
  1298   else if (!do_size) {
  1299     if (size != 0) st->print("\n\t");
  1300     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1301     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1303 #endif
  1304   return size+4;
  1307 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1308   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1309 #ifndef PRODUCT
  1310   else if( !do_size ) {
  1311     if( size != 0 ) st->print("\n\t");
  1312     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1314 #endif
  1315   return size+4;
  1318 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1319                                         PhaseRegAlloc *ra_,
  1320                                         bool do_size,
  1321                                         outputStream* st ) const {
  1322   // Get registers to move
  1323   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1324   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1325   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1326   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1328   enum RC src_second_rc = rc_class(src_second);
  1329   enum RC src_first_rc = rc_class(src_first);
  1330   enum RC dst_second_rc = rc_class(dst_second);
  1331   enum RC dst_first_rc = rc_class(dst_first);
  1333   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1335   // Generate spill code!
  1336   int size = 0;
  1338   if( src_first == dst_first && src_second == dst_second )
  1339     return size;            // Self copy, no move
  1341   // --------------------------------------
  1342   // Check for mem-mem move.  Load into unused float registers and fall into
  1343   // the float-store case.
  1344   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1345     int offset = ra_->reg2offset(src_first);
  1346     // Further check for aligned-adjacent pair, so we can use a double load
  1347     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1348       src_second    = OptoReg::Name(R_F31_num);
  1349       src_second_rc = rc_float;
  1350       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1351     } else {
  1352       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1354     src_first    = OptoReg::Name(R_F30_num);
  1355     src_first_rc = rc_float;
  1358   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1359     int offset = ra_->reg2offset(src_second);
  1360     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1361     src_second    = OptoReg::Name(R_F31_num);
  1362     src_second_rc = rc_float;
  1365   // --------------------------------------
  1366   // Check for float->int copy; requires a trip through memory
  1367   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1368     int offset = frame::register_save_words*wordSize;
  1369     if (cbuf) {
  1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1371       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1372       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1373       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1375 #ifndef PRODUCT
  1376     else if (!do_size) {
  1377       if (size != 0) st->print("\n\t");
  1378       st->print(  "SUB    R_SP,16,R_SP\n");
  1379       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1380       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1381       st->print("\tADD    R_SP,16,R_SP\n");
  1383 #endif
  1384     size += 16;
  1387   // Check for float->int copy on T4
  1388   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1389     // Further check for aligned-adjacent pair, so we can use a double move
  1390     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1391       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1392     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1394   // Check for int->float copy on T4
  1395   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1396     // Further check for aligned-adjacent pair, so we can use a double move
  1397     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1398       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1399     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1402   // --------------------------------------
  1403   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1404   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1405   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1406   // there.  Misaligned sources only come from native-long-returns (handled
  1407   // special below).
  1408 #ifndef _LP64
  1409   if( src_first_rc == rc_int &&     // source is already big-endian
  1410       src_second_rc != rc_bad &&    // 64-bit move
  1411       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1412     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1413     // Do the big-endian flop.
  1414     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1415     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1417 #endif
  1419   // --------------------------------------
  1420   // Check for integer reg-reg copy
  1421   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1422 #ifndef _LP64
  1423     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1424       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1425       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1426       //       operand contains the least significant word of the 64-bit value and vice versa.
  1427       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1428       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1429       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1430       if( cbuf ) {
  1431         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1432         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1433         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1434 #ifndef PRODUCT
  1435       } else if( !do_size ) {
  1436         if( size != 0 ) st->print("\n\t");
  1437         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1438         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1439         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1440 #endif
  1442       return size+12;
  1444     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1445       // returning a long value in I0/I1
  1446       // a SpillCopy must be able to target a return instruction's reg_class
  1447       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1448       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1449       //       operand contains the least significant word of the 64-bit value and vice versa.
  1450       OptoReg::Name tdest = dst_first;
  1452       if (src_first == dst_first) {
  1453         tdest = OptoReg::Name(R_O7_num);
  1454         size += 4;
  1457       if( cbuf ) {
  1458         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1459         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1460         // ShrL_reg_imm6
  1461         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1462         // ShrR_reg_imm6  src, 0, dst
  1463         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1464         if (tdest != dst_first) {
  1465           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1468 #ifndef PRODUCT
  1469       else if( !do_size ) {
  1470         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1471         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1472         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1473         if (tdest != dst_first) {
  1474           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1477 #endif // PRODUCT
  1478       return size+8;
  1480 #endif // !_LP64
  1481     // Else normal reg-reg copy
  1482     assert( src_second != dst_first, "smashed second before evacuating it" );
  1483     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1484     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1485     // This moves an aligned adjacent pair.
  1486     // See if we are done.
  1487     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1488       return size;
  1491   // Check for integer store
  1492   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1493     int offset = ra_->reg2offset(dst_first);
  1494     // Further check for aligned-adjacent pair, so we can use a double store
  1495     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1496       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1497     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1500   // Check for integer load
  1501   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1502     int offset = ra_->reg2offset(src_first);
  1503     // Further check for aligned-adjacent pair, so we can use a double load
  1504     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1505       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1506     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1509   // Check for float reg-reg copy
  1510   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1511     // Further check for aligned-adjacent pair, so we can use a double move
  1512     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1513       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1514     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1517   // Check for float store
  1518   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1519     int offset = ra_->reg2offset(dst_first);
  1520     // Further check for aligned-adjacent pair, so we can use a double store
  1521     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1522       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1523     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1526   // Check for float load
  1527   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1528     int offset = ra_->reg2offset(src_first);
  1529     // Further check for aligned-adjacent pair, so we can use a double load
  1530     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1531       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1532     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1535   // --------------------------------------------------------------------
  1536   // Check for hi bits still needing moving.  Only happens for misaligned
  1537   // arguments to native calls.
  1538   if( src_second == dst_second )
  1539     return size;               // Self copy; no move
  1540   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1542 #ifndef _LP64
  1543   // In the LP64 build, all registers can be moved as aligned/adjacent
  1544   // pairs, so there's never any need to move the high bits separately.
  1545   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1546   // all sorts of silly alignment problems.
  1548   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1549   // 32-bits of a 64-bit register, but are needed in low bits of another
  1550   // register (else it's a hi-bits-to-hi-bits copy which should have
  1551   // happened already as part of a 64-bit move)
  1552   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1553     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1554     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1555     // Shift src_second down to dst_second's low bits.
  1556     if( cbuf ) {
  1557       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1558 #ifndef PRODUCT
  1559     } else if( !do_size ) {
  1560       if( size != 0 ) st->print("\n\t");
  1561       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1562 #endif
  1564     return size+4;
  1567   // Check for high word integer store.  Must down-shift the hi bits
  1568   // into a temp register, then fall into the case of storing int bits.
  1569   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1570     // Shift src_second down to dst_second's low bits.
  1571     if( cbuf ) {
  1572       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1573 #ifndef PRODUCT
  1574     } else if( !do_size ) {
  1575       if( size != 0 ) st->print("\n\t");
  1576       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1577 #endif
  1579     size+=4;
  1580     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1583   // Check for high word integer load
  1584   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1585     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1587   // Check for high word integer store
  1588   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1589     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1591   // Check for high word float store
  1592   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1593     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1595 #endif // !_LP64
  1597   Unimplemented();
  1600 #ifndef PRODUCT
  1601 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1602   implementation( NULL, ra_, false, st );
  1604 #endif
  1606 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1607   implementation( &cbuf, ra_, false, NULL );
  1610 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1611   return implementation( NULL, ra_, true, NULL );
  1614 //=============================================================================
  1615 #ifndef PRODUCT
  1616 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1617   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1619 #endif
  1621 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1622   MacroAssembler _masm(&cbuf);
  1623   for(int i = 0; i < _count; i += 1) {
  1624     __ nop();
  1628 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1629   return 4 * _count;
  1633 //=============================================================================
  1634 #ifndef PRODUCT
  1635 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1636   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1637   int reg = ra_->get_reg_first(this);
  1638   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1640 #endif
  1642 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1643   MacroAssembler _masm(&cbuf);
  1644   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1645   int reg = ra_->get_encode(this);
  1647   if (Assembler::is_simm13(offset)) {
  1648      __ add(SP, offset, reg_to_register_object(reg));
  1649   } else {
  1650      __ set(offset, O7);
  1651      __ add(SP, O7, reg_to_register_object(reg));
  1655 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1656   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1657   assert(ra_ == ra_->C->regalloc(), "sanity");
  1658   return ra_->C->scratch_emit_size(this);
  1661 //=============================================================================
  1662 #ifndef PRODUCT
  1663 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1664   st->print_cr("\nUEP:");
  1665 #ifdef    _LP64
  1666   if (UseCompressedClassPointers) {
  1667     assert(Universe::heap() != NULL, "java heap should be initialized");
  1668     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1669     if (Universe::narrow_klass_base() != 0) {
  1670       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
  1671       if (Universe::narrow_klass_shift() != 0) {
  1672         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1674       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1675       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
  1676     } else {
  1677       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
  1679   } else {
  1680     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1682   st->print_cr("\tCMP    R_G5,R_G3" );
  1683   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1684 #else  // _LP64
  1685   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1686   st->print_cr("\tCMP    R_G5,R_G3" );
  1687   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1688 #endif // _LP64
  1690 #endif
  1692 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1693   MacroAssembler _masm(&cbuf);
  1694   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1695   Register temp_reg   = G3;
  1696   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1698   // Load klass from receiver
  1699   __ load_klass(O0, temp_reg);
  1700   // Compare against expected klass
  1701   __ cmp(temp_reg, G5_ic_reg);
  1702   // Branch to miss code, checks xcc or icc depending
  1703   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1706 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1707   return MachNode::size(ra_);
  1711 //=============================================================================
  1713 uint size_exception_handler() {
  1714   if (TraceJumps) {
  1715     return (400); // just a guess
  1717   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1720 uint size_deopt_handler() {
  1721   if (TraceJumps) {
  1722     return (400); // just a guess
  1724   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1727 // Emit exception handler code.
  1728 int emit_exception_handler(CodeBuffer& cbuf) {
  1729   Register temp_reg = G3;
  1730   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1731   MacroAssembler _masm(&cbuf);
  1733   address base =
  1734   __ start_a_stub(size_exception_handler());
  1735   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1737   int offset = __ offset();
  1739   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1740   __ delayed()->nop();
  1742   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1744   __ end_a_stub();
  1746   return offset;
  1749 int emit_deopt_handler(CodeBuffer& cbuf) {
  1750   // Can't use any of the current frame's registers as we may have deopted
  1751   // at a poll and everything (including G3) can be live.
  1752   Register temp_reg = L0;
  1753   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1754   MacroAssembler _masm(&cbuf);
  1756   address base =
  1757   __ start_a_stub(size_deopt_handler());
  1758   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1760   int offset = __ offset();
  1761   __ save_frame(0);
  1762   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1763   __ delayed()->restore();
  1765   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1767   __ end_a_stub();
  1768   return offset;
  1772 // Given a register encoding, produce a Integer Register object
  1773 static Register reg_to_register_object(int register_encoding) {
  1774   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1775   return as_Register(register_encoding);
  1778 // Given a register encoding, produce a single-precision Float Register object
  1779 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1780   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1781   return as_SingleFloatRegister(register_encoding);
  1784 // Given a register encoding, produce a double-precision Float Register object
  1785 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1786   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1787   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1788   return as_DoubleFloatRegister(register_encoding);
  1791 const bool Matcher::match_rule_supported(int opcode) {
  1792   if (!has_match_rule(opcode))
  1793     return false;
  1795   switch (opcode) {
  1796   case Op_CountLeadingZerosI:
  1797   case Op_CountLeadingZerosL:
  1798   case Op_CountTrailingZerosI:
  1799   case Op_CountTrailingZerosL:
  1800   case Op_PopCountI:
  1801   case Op_PopCountL:
  1802     if (!UsePopCountInstruction)
  1803       return false;
  1804   case Op_CompareAndSwapL:
  1805 #ifdef _LP64
  1806   case Op_CompareAndSwapP:
  1807 #endif
  1808     if (!VM_Version::supports_cx8())
  1809       return false;
  1810     break;
  1813   return true;  // Per default match rules are supported.
  1816 int Matcher::regnum_to_fpu_offset(int regnum) {
  1817   return regnum - 32; // The FP registers are in the second chunk
  1820 #ifdef ASSERT
  1821 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1822 #endif
  1824 // Vector width in bytes
  1825 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1826   assert(MaxVectorSize == 8, "");
  1827   return 8;
  1830 // Vector ideal reg
  1831 const int Matcher::vector_ideal_reg(int size) {
  1832   assert(MaxVectorSize == 8, "");
  1833   return Op_RegD;
  1836 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1837   fatal("vector shift is not supported");
  1838   return Node::NotAMachineReg;
  1841 // Limits on vector size (number of elements) loaded into vector.
  1842 const int Matcher::max_vector_size(const BasicType bt) {
  1843   assert(is_java_primitive(bt), "only primitive type vectors");
  1844   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1847 const int Matcher::min_vector_size(const BasicType bt) {
  1848   return max_vector_size(bt); // Same as max.
  1851 // SPARC doesn't support misaligned vectors store/load.
  1852 const bool Matcher::misaligned_vectors_ok() {
  1853   return false;
  1856 // Current (2013) SPARC platforms need to read original key
  1857 // to construct decryption expanded key 
  1858 const bool Matcher::pass_original_key_for_aes() {
  1859   return true;
  1862 // USII supports fxtof through the whole range of number, USIII doesn't
  1863 const bool Matcher::convL2FSupported(void) {
  1864   return VM_Version::has_fast_fxtof();
  1867 // Is this branch offset short enough that a short branch can be used?
  1868 //
  1869 // NOTE: If the platform does not provide any short branch variants, then
  1870 //       this method should return false for offset 0.
  1871 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1872   // The passed offset is relative to address of the branch.
  1873   // Don't need to adjust the offset.
  1874   return UseCBCond && Assembler::is_simm12(offset);
  1877 const bool Matcher::isSimpleConstant64(jlong value) {
  1878   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1879   // Depends on optimizations in MacroAssembler::setx.
  1880   int hi = (int)(value >> 32);
  1881   int lo = (int)(value & ~0);
  1882   return (hi == 0) || (hi == -1) || (lo == 0);
  1885 // No scaling for the parameter the ClearArray node.
  1886 const bool Matcher::init_array_count_is_in_bytes = true;
  1888 // Threshold size for cleararray.
  1889 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1891 // No additional cost for CMOVL.
  1892 const int Matcher::long_cmove_cost() { return 0; }
  1894 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1895 const int Matcher::float_cmove_cost() {
  1896   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1899 // Does the CPU require late expand (see block.cpp for description of late expand)?
  1900 const bool Matcher::require_postalloc_expand = false;
  1902 // Should the Matcher clone shifts on addressing modes, expecting them to
  1903 // be subsumed into complex addressing expressions or compute them into
  1904 // registers?  True for Intel but false for most RISCs
  1905 const bool Matcher::clone_shift_expressions = false;
  1907 // Do we need to mask the count passed to shift instructions or does
  1908 // the cpu only look at the lower 5/6 bits anyway?
  1909 const bool Matcher::need_masked_shift_count = false;
  1911 bool Matcher::narrow_oop_use_complex_address() {
  1912   NOT_LP64(ShouldNotCallThis());
  1913   assert(UseCompressedOops, "only for compressed oops code");
  1914   return false;
  1917 bool Matcher::narrow_klass_use_complex_address() {
  1918   NOT_LP64(ShouldNotCallThis());
  1919   assert(UseCompressedClassPointers, "only for compressed klass code");
  1920   return false;
  1923 // Is it better to copy float constants, or load them directly from memory?
  1924 // Intel can load a float constant from a direct address, requiring no
  1925 // extra registers.  Most RISCs will have to materialize an address into a
  1926 // register first, so they would do better to copy the constant from stack.
  1927 const bool Matcher::rematerialize_float_constants = false;
  1929 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1930 // needed.  Else we split the double into 2 integer pieces and move it
  1931 // piece-by-piece.  Only happens when passing doubles into C code as the
  1932 // Java calling convention forces doubles to be aligned.
  1933 #ifdef _LP64
  1934 const bool Matcher::misaligned_doubles_ok = true;
  1935 #else
  1936 const bool Matcher::misaligned_doubles_ok = false;
  1937 #endif
  1939 // No-op on SPARC.
  1940 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1943 // Advertise here if the CPU requires explicit rounding operations
  1944 // to implement the UseStrictFP mode.
  1945 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1947 // Are floats conerted to double when stored to stack during deoptimization?
  1948 // Sparc does not handle callee-save floats.
  1949 bool Matcher::float_in_double() { return false; }
  1951 // Do ints take an entire long register or just half?
  1952 // Note that we if-def off of _LP64.
  1953 // The relevant question is how the int is callee-saved.  In _LP64
  1954 // the whole long is written but de-opt'ing will have to extract
  1955 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1956 #ifdef _LP64
  1957 const bool Matcher::int_in_long = true;
  1958 #else
  1959 const bool Matcher::int_in_long = false;
  1960 #endif
  1962 // Return whether or not this register is ever used as an argument.  This
  1963 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1964 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1965 // arguments in those registers not be available to the callee.
  1966 bool Matcher::can_be_java_arg( int reg ) {
  1967   // Standard sparc 6 args in registers
  1968   if( reg == R_I0_num ||
  1969       reg == R_I1_num ||
  1970       reg == R_I2_num ||
  1971       reg == R_I3_num ||
  1972       reg == R_I4_num ||
  1973       reg == R_I5_num ) return true;
  1974 #ifdef _LP64
  1975   // 64-bit builds can pass 64-bit pointers and longs in
  1976   // the high I registers
  1977   if( reg == R_I0H_num ||
  1978       reg == R_I1H_num ||
  1979       reg == R_I2H_num ||
  1980       reg == R_I3H_num ||
  1981       reg == R_I4H_num ||
  1982       reg == R_I5H_num ) return true;
  1984   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1985     return true;
  1988 #else
  1989   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1990   // Longs cannot be passed in O regs, because O regs become I regs
  1991   // after a 'save' and I regs get their high bits chopped off on
  1992   // interrupt.
  1993   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1994   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1995 #endif
  1996   // A few float args in registers
  1997   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1999   return false;
  2002 bool Matcher::is_spillable_arg( int reg ) {
  2003   return can_be_java_arg(reg);
  2006 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2007   // Use hardware SDIVX instruction when it is
  2008   // faster than a code which use multiply.
  2009   return VM_Version::has_fast_idiv();
  2012 // Register for DIVI projection of divmodI
  2013 RegMask Matcher::divI_proj_mask() {
  2014   ShouldNotReachHere();
  2015   return RegMask();
  2018 // Register for MODI projection of divmodI
  2019 RegMask Matcher::modI_proj_mask() {
  2020   ShouldNotReachHere();
  2021   return RegMask();
  2024 // Register for DIVL projection of divmodL
  2025 RegMask Matcher::divL_proj_mask() {
  2026   ShouldNotReachHere();
  2027   return RegMask();
  2030 // Register for MODL projection of divmodL
  2031 RegMask Matcher::modL_proj_mask() {
  2032   ShouldNotReachHere();
  2033   return RegMask();
  2036 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2037   return L7_REGP_mask();
  2040 const RegMask Matcher::mathExactI_result_proj_mask() {
  2041   return G1_REGI_mask();
  2044 const RegMask Matcher::mathExactL_result_proj_mask() {
  2045   return G1_REGL_mask();
  2048 const RegMask Matcher::mathExactI_flags_proj_mask() {
  2049   return INT_FLAGS_mask();
  2053 %}
  2056 // The intptr_t operand types, defined by textual substitution.
  2057 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2058 #ifdef _LP64
  2059 #define immX      immL
  2060 #define immX13    immL13
  2061 #define immX13m7  immL13m7
  2062 #define iRegX     iRegL
  2063 #define g1RegX    g1RegL
  2064 #else
  2065 #define immX      immI
  2066 #define immX13    immI13
  2067 #define immX13m7  immI13m7
  2068 #define iRegX     iRegI
  2069 #define g1RegX    g1RegI
  2070 #endif
  2072 //----------ENCODING BLOCK-----------------------------------------------------
  2073 // This block specifies the encoding classes used by the compiler to output
  2074 // byte streams.  Encoding classes are parameterized macros used by
  2075 // Machine Instruction Nodes in order to generate the bit encoding of the
  2076 // instruction.  Operands specify their base encoding interface with the
  2077 // interface keyword.  There are currently supported four interfaces,
  2078 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2079 // operand to generate a function which returns its register number when
  2080 // queried.   CONST_INTER causes an operand to generate a function which
  2081 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2082 // operand to generate four functions which return the Base Register, the
  2083 // Index Register, the Scale Value, and the Offset Value of the operand when
  2084 // queried.  COND_INTER causes an operand to generate six functions which
  2085 // return the encoding code (ie - encoding bits for the instruction)
  2086 // associated with each basic boolean condition for a conditional instruction.
  2087 //
  2088 // Instructions specify two basic values for encoding.  Again, a function
  2089 // is available to check if the constant displacement is an oop. They use the
  2090 // ins_encode keyword to specify their encoding classes (which must be
  2091 // a sequence of enc_class names, and their parameters, specified in
  2092 // the encoding block), and they use the
  2093 // opcode keyword to specify, in order, their primary, secondary, and
  2094 // tertiary opcode.  Only the opcode sections which a particular instruction
  2095 // needs for encoding need to be specified.
  2096 encode %{
  2097   enc_class enc_untested %{
  2098 #ifdef ASSERT
  2099     MacroAssembler _masm(&cbuf);
  2100     __ untested("encoding");
  2101 #endif
  2102   %}
  2104   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2105     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
  2106                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2107   %}
  2109   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2110     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2111                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2112   %}
  2114   enc_class form3_mem_prefetch_read( memory mem ) %{
  2115     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2116                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2117   %}
  2119   enc_class form3_mem_prefetch_write( memory mem ) %{
  2120     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
  2121                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2122   %}
  2124   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2125     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2126     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2127     guarantee($mem$$index == R_G0_enc, "double index?");
  2128     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2129     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2130     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2131     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2132   %}
  2134   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2135     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2136     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2137     guarantee($mem$$index == R_G0_enc, "double index?");
  2138     // Load long with 2 instructions
  2139     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2140     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2141   %}
  2143   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2144   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2145     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2146     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2147   %}
  2149   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2150     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2151     if( $rs2$$reg != $rd$$reg )
  2152       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2153   %}
  2155   // Target lo half of long
  2156   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2157     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2158     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2159       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2160   %}
  2162   // Source lo half of long
  2163   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2164     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2165     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2166       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2167   %}
  2169   // Target hi half of long
  2170   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2171     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2172   %}
  2174   // Source lo half of long, and leave it sign extended.
  2175   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2176     // Sign extend low half
  2177     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2178   %}
  2180   // Source hi half of long, and leave it sign extended.
  2181   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2182     // Shift high half to low half
  2183     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2184   %}
  2186   // Source hi half of long
  2187   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2188     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2189     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2190       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2191   %}
  2193   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2194     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2195   %}
  2197   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2198     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2199     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2200   %}
  2202   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2203     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2204     // clear if nothing else is happening
  2205     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2206     // blt,a,pn done
  2207     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2208     // mov dst,-1 in delay slot
  2209     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2210   %}
  2212   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2213     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2214   %}
  2216   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2217     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2218   %}
  2220   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2221     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2222   %}
  2224   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2225     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2226   %}
  2228   enc_class move_return_pc_to_o1() %{
  2229     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2230   %}
  2232 #ifdef _LP64
  2233   /* %%% merge with enc_to_bool */
  2234   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2235     MacroAssembler _masm(&cbuf);
  2237     Register   src_reg = reg_to_register_object($src$$reg);
  2238     Register   dst_reg = reg_to_register_object($dst$$reg);
  2239     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2240   %}
  2241 #endif
  2243   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2244     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2245     MacroAssembler _masm(&cbuf);
  2247     Register   p_reg = reg_to_register_object($p$$reg);
  2248     Register   q_reg = reg_to_register_object($q$$reg);
  2249     Register   y_reg = reg_to_register_object($y$$reg);
  2250     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2252     __ subcc( p_reg, q_reg,   p_reg );
  2253     __ add  ( p_reg, y_reg, tmp_reg );
  2254     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2255   %}
  2257   enc_class form_d2i_helper(regD src, regF dst) %{
  2258     // fcmp %fcc0,$src,$src
  2259     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2260     // branch %fcc0 not-nan, predict taken
  2261     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2262     // fdtoi $src,$dst
  2263     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2264     // fitos $dst,$dst (if nan)
  2265     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2266     // clear $dst (if nan)
  2267     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2268     // carry on here...
  2269   %}
  2271   enc_class form_d2l_helper(regD src, regD dst) %{
  2272     // fcmp %fcc0,$src,$src  check for NAN
  2273     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2274     // branch %fcc0 not-nan, predict taken
  2275     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2276     // fdtox $src,$dst   convert in delay slot
  2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2278     // fxtod $dst,$dst  (if nan)
  2279     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2280     // clear $dst (if nan)
  2281     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2282     // carry on here...
  2283   %}
  2285   enc_class form_f2i_helper(regF src, regF dst) %{
  2286     // fcmps %fcc0,$src,$src
  2287     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2288     // branch %fcc0 not-nan, predict taken
  2289     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2290     // fstoi $src,$dst
  2291     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2292     // fitos $dst,$dst (if nan)
  2293     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2294     // clear $dst (if nan)
  2295     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2296     // carry on here...
  2297   %}
  2299   enc_class form_f2l_helper(regF src, regD dst) %{
  2300     // fcmps %fcc0,$src,$src
  2301     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2302     // branch %fcc0 not-nan, predict taken
  2303     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2304     // fstox $src,$dst
  2305     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2306     // fxtod $dst,$dst (if nan)
  2307     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2308     // clear $dst (if nan)
  2309     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2310     // carry on here...
  2311   %}
  2313   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2314   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2315   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2316   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2318   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2320   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2321   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2323   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2324     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2325   %}
  2327   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2328     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2329   %}
  2331   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2332     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2333   %}
  2335   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2336     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2337   %}
  2339   enc_class form3_convI2F(regF rs2, regF rd) %{
  2340     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2341   %}
  2343   // Encloding class for traceable jumps
  2344   enc_class form_jmpl(g3RegP dest) %{
  2345     emit_jmpl(cbuf, $dest$$reg);
  2346   %}
  2348   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2349     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2350   %}
  2352   enc_class form2_nop() %{
  2353     emit_nop(cbuf);
  2354   %}
  2356   enc_class form2_illtrap() %{
  2357     emit_illtrap(cbuf);
  2358   %}
  2361   // Compare longs and convert into -1, 0, 1.
  2362   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2363     // CMP $src1,$src2
  2364     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2365     // blt,a,pn done
  2366     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2367     // mov dst,-1 in delay slot
  2368     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2369     // bgt,a,pn done
  2370     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2371     // mov dst,1 in delay slot
  2372     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2373     // CLR    $dst
  2374     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2375   %}
  2377   enc_class enc_PartialSubtypeCheck() %{
  2378     MacroAssembler _masm(&cbuf);
  2379     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2380     __ delayed()->nop();
  2381   %}
  2383   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2384     MacroAssembler _masm(&cbuf);
  2385     Label* L = $labl$$label;
  2386     Assembler::Predict predict_taken =
  2387       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2389     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2390     __ delayed()->nop();
  2391   %}
  2393   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2394     MacroAssembler _masm(&cbuf);
  2395     Label* L = $labl$$label;
  2396     Assembler::Predict predict_taken =
  2397       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2399     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2400     __ delayed()->nop();
  2401   %}
  2403   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2404     int op = (Assembler::arith_op << 30) |
  2405              ($dst$$reg << 25) |
  2406              (Assembler::movcc_op3 << 19) |
  2407              (1 << 18) |                    // cc2 bit for 'icc'
  2408              ($cmp$$cmpcode << 14) |
  2409              (0 << 13) |                    // select register move
  2410              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2411              ($src$$reg << 0);
  2412     cbuf.insts()->emit_int32(op);
  2413   %}
  2415   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2416     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2417     int op = (Assembler::arith_op << 30) |
  2418              ($dst$$reg << 25) |
  2419              (Assembler::movcc_op3 << 19) |
  2420              (1 << 18) |                    // cc2 bit for 'icc'
  2421              ($cmp$$cmpcode << 14) |
  2422              (1 << 13) |                    // select immediate move
  2423              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2424              (simm11 << 0);
  2425     cbuf.insts()->emit_int32(op);
  2426   %}
  2428   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2429     int op = (Assembler::arith_op << 30) |
  2430              ($dst$$reg << 25) |
  2431              (Assembler::movcc_op3 << 19) |
  2432              (0 << 18) |                    // cc2 bit for 'fccX'
  2433              ($cmp$$cmpcode << 14) |
  2434              (0 << 13) |                    // select register move
  2435              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2436              ($src$$reg << 0);
  2437     cbuf.insts()->emit_int32(op);
  2438   %}
  2440   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2441     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2442     int op = (Assembler::arith_op << 30) |
  2443              ($dst$$reg << 25) |
  2444              (Assembler::movcc_op3 << 19) |
  2445              (0 << 18) |                    // cc2 bit for 'fccX'
  2446              ($cmp$$cmpcode << 14) |
  2447              (1 << 13) |                    // select immediate move
  2448              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2449              (simm11 << 0);
  2450     cbuf.insts()->emit_int32(op);
  2451   %}
  2453   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2454     int op = (Assembler::arith_op << 30) |
  2455              ($dst$$reg << 25) |
  2456              (Assembler::fpop2_op3 << 19) |
  2457              (0 << 18) |
  2458              ($cmp$$cmpcode << 14) |
  2459              (1 << 13) |                    // select register move
  2460              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2461              ($primary << 5) |              // select single, double or quad
  2462              ($src$$reg << 0);
  2463     cbuf.insts()->emit_int32(op);
  2464   %}
  2466   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2467     int op = (Assembler::arith_op << 30) |
  2468              ($dst$$reg << 25) |
  2469              (Assembler::fpop2_op3 << 19) |
  2470              (0 << 18) |
  2471              ($cmp$$cmpcode << 14) |
  2472              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2473              ($primary << 5) |              // select single, double or quad
  2474              ($src$$reg << 0);
  2475     cbuf.insts()->emit_int32(op);
  2476   %}
  2478   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2479   // the condition comes from opcode-field instead of an argument.
  2480   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2481     int op = (Assembler::arith_op << 30) |
  2482              ($dst$$reg << 25) |
  2483              (Assembler::movcc_op3 << 19) |
  2484              (1 << 18) |                    // cc2 bit for 'icc'
  2485              ($primary << 14) |
  2486              (0 << 13) |                    // select register move
  2487              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2488              ($src$$reg << 0);
  2489     cbuf.insts()->emit_int32(op);
  2490   %}
  2492   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2493     int op = (Assembler::arith_op << 30) |
  2494              ($dst$$reg << 25) |
  2495              (Assembler::movcc_op3 << 19) |
  2496              (6 << 16) |                    // cc2 bit for 'xcc'
  2497              ($primary << 14) |
  2498              (0 << 13) |                    // select register move
  2499              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2500              ($src$$reg << 0);
  2501     cbuf.insts()->emit_int32(op);
  2502   %}
  2504   enc_class Set13( immI13 src, iRegI rd ) %{
  2505     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2506   %}
  2508   enc_class SetHi22( immI src, iRegI rd ) %{
  2509     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2510   %}
  2512   enc_class Set32( immI src, iRegI rd ) %{
  2513     MacroAssembler _masm(&cbuf);
  2514     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2515   %}
  2517   enc_class call_epilog %{
  2518     if( VerifyStackAtCalls ) {
  2519       MacroAssembler _masm(&cbuf);
  2520       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2521       Register temp_reg = G3;
  2522       __ add(SP, framesize, temp_reg);
  2523       __ cmp(temp_reg, FP);
  2524       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2526   %}
  2528   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2529   // to G1 so the register allocator will not have to deal with the misaligned register
  2530   // pair.
  2531   enc_class adjust_long_from_native_call %{
  2532 #ifndef _LP64
  2533     if (returns_long()) {
  2534       //    sllx  O0,32,O0
  2535       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2536       //    srl   O1,0,O1
  2537       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2538       //    or    O0,O1,G1
  2539       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2541 #endif
  2542   %}
  2544   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2545     // CALL directly to the runtime
  2546     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2547     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2548                     /*preserve_g2=*/true);
  2549   %}
  2551   enc_class preserve_SP %{
  2552     MacroAssembler _masm(&cbuf);
  2553     __ mov(SP, L7_mh_SP_save);
  2554   %}
  2556   enc_class restore_SP %{
  2557     MacroAssembler _masm(&cbuf);
  2558     __ mov(L7_mh_SP_save, SP);
  2559   %}
  2561   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2562     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2563     // who we intended to call.
  2564     if (!_method) {
  2565       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2566     } else if (_optimized_virtual) {
  2567       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2568     } else {
  2569       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2571     if (_method) {  // Emit stub for static call.
  2572       CompiledStaticCall::emit_to_interp_stub(cbuf);
  2574   %}
  2576   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2577     MacroAssembler _masm(&cbuf);
  2578     __ set_inst_mark();
  2579     int vtable_index = this->_vtable_index;
  2580     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2581     if (vtable_index < 0) {
  2582       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2583       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2584       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2585       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2586       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2587       __ ic_call((address)$meth$$method);
  2588     } else {
  2589       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2590       // Just go thru the vtable
  2591       // get receiver klass (receiver already checked for non-null)
  2592       // If we end up going thru a c2i adapter interpreter expects method in G5
  2593       int off = __ offset();
  2594       __ load_klass(O0, G3_scratch);
  2595       int klass_load_size;
  2596       if (UseCompressedClassPointers) {
  2597         assert(Universe::heap() != NULL, "java heap should be initialized");
  2598         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
  2599       } else {
  2600         klass_load_size = 1*BytesPerInstWord;
  2602       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2603       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2604       if (Assembler::is_simm13(v_off)) {
  2605         __ ld_ptr(G3, v_off, G5_method);
  2606       } else {
  2607         // Generate 2 instructions
  2608         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2609         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2610         // ld_ptr, set_hi, set
  2611         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2612                "Unexpected instruction size(s)");
  2613         __ ld_ptr(G3, G5_method, G5_method);
  2615       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2616       // However it may very well end up in handle_wrong_method if the
  2617       // method is abstract for the particular class.
  2618       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2619       // jump to target (either compiled code or c2iadapter)
  2620       __ jmpl(G3_scratch, G0, O7);
  2621       __ delayed()->nop();
  2623   %}
  2625   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2626     MacroAssembler _masm(&cbuf);
  2628     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2629     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2630                               // we might be calling a C2I adapter which needs it.
  2632     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2633     // Load nmethod
  2634     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2636     // CALL to compiled java, indirect the contents of G3
  2637     __ set_inst_mark();
  2638     __ callr(temp_reg, G0);
  2639     __ delayed()->nop();
  2640   %}
  2642 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2643     MacroAssembler _masm(&cbuf);
  2644     Register Rdividend = reg_to_register_object($src1$$reg);
  2645     Register Rdivisor = reg_to_register_object($src2$$reg);
  2646     Register Rresult = reg_to_register_object($dst$$reg);
  2648     __ sra(Rdivisor, 0, Rdivisor);
  2649     __ sra(Rdividend, 0, Rdividend);
  2650     __ sdivx(Rdividend, Rdivisor, Rresult);
  2651 %}
  2653 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2654     MacroAssembler _masm(&cbuf);
  2656     Register Rdividend = reg_to_register_object($src1$$reg);
  2657     int divisor = $imm$$constant;
  2658     Register Rresult = reg_to_register_object($dst$$reg);
  2660     __ sra(Rdividend, 0, Rdividend);
  2661     __ sdivx(Rdividend, divisor, Rresult);
  2662 %}
  2664 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2665     MacroAssembler _masm(&cbuf);
  2666     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2667     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2668     Register Rdst  = reg_to_register_object($dst$$reg);
  2670     __ sra( Rsrc1, 0, Rsrc1 );
  2671     __ sra( Rsrc2, 0, Rsrc2 );
  2672     __ mulx( Rsrc1, Rsrc2, Rdst );
  2673     __ srlx( Rdst, 32, Rdst );
  2674 %}
  2676 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2677     MacroAssembler _masm(&cbuf);
  2678     Register Rdividend = reg_to_register_object($src1$$reg);
  2679     Register Rdivisor = reg_to_register_object($src2$$reg);
  2680     Register Rresult = reg_to_register_object($dst$$reg);
  2681     Register Rscratch = reg_to_register_object($scratch$$reg);
  2683     assert(Rdividend != Rscratch, "");
  2684     assert(Rdivisor  != Rscratch, "");
  2686     __ sra(Rdividend, 0, Rdividend);
  2687     __ sra(Rdivisor, 0, Rdivisor);
  2688     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2689     __ mulx(Rscratch, Rdivisor, Rscratch);
  2690     __ sub(Rdividend, Rscratch, Rresult);
  2691 %}
  2693 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2694     MacroAssembler _masm(&cbuf);
  2696     Register Rdividend = reg_to_register_object($src1$$reg);
  2697     int divisor = $imm$$constant;
  2698     Register Rresult = reg_to_register_object($dst$$reg);
  2699     Register Rscratch = reg_to_register_object($scratch$$reg);
  2701     assert(Rdividend != Rscratch, "");
  2703     __ sra(Rdividend, 0, Rdividend);
  2704     __ sdivx(Rdividend, divisor, Rscratch);
  2705     __ mulx(Rscratch, divisor, Rscratch);
  2706     __ sub(Rdividend, Rscratch, Rresult);
  2707 %}
  2709 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2710     MacroAssembler _masm(&cbuf);
  2712     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2713     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2715     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2716 %}
  2718 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2719     MacroAssembler _masm(&cbuf);
  2721     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2722     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2724     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2725 %}
  2727 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2728     MacroAssembler _masm(&cbuf);
  2730     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2731     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2733     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2734 %}
  2736 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2737     MacroAssembler _masm(&cbuf);
  2739     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2740     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2742     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2743 %}
  2745 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2746     MacroAssembler _masm(&cbuf);
  2748     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2749     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2751     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2752 %}
  2754 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2755     MacroAssembler _masm(&cbuf);
  2757     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2758     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2760     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2761 %}
  2763 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2764     MacroAssembler _masm(&cbuf);
  2766     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2767     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2769     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2770 %}
  2772 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2773     MacroAssembler _masm(&cbuf);
  2775     Register Roop  = reg_to_register_object($oop$$reg);
  2776     Register Rbox  = reg_to_register_object($box$$reg);
  2777     Register Rscratch = reg_to_register_object($scratch$$reg);
  2778     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2780     assert(Roop  != Rscratch, "");
  2781     assert(Roop  != Rmark, "");
  2782     assert(Rbox  != Rscratch, "");
  2783     assert(Rbox  != Rmark, "");
  2785     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2786 %}
  2788 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2789     MacroAssembler _masm(&cbuf);
  2791     Register Roop  = reg_to_register_object($oop$$reg);
  2792     Register Rbox  = reg_to_register_object($box$$reg);
  2793     Register Rscratch = reg_to_register_object($scratch$$reg);
  2794     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2796     assert(Roop  != Rscratch, "");
  2797     assert(Roop  != Rmark, "");
  2798     assert(Rbox  != Rscratch, "");
  2799     assert(Rbox  != Rmark, "");
  2801     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2802   %}
  2804   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2805     MacroAssembler _masm(&cbuf);
  2806     Register Rmem = reg_to_register_object($mem$$reg);
  2807     Register Rold = reg_to_register_object($old$$reg);
  2808     Register Rnew = reg_to_register_object($new$$reg);
  2810     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2811     __ cmp( Rold, Rnew );
  2812   %}
  2814   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2815     Register Rmem = reg_to_register_object($mem$$reg);
  2816     Register Rold = reg_to_register_object($old$$reg);
  2817     Register Rnew = reg_to_register_object($new$$reg);
  2819     MacroAssembler _masm(&cbuf);
  2820     __ mov(Rnew, O7);
  2821     __ casx(Rmem, Rold, O7);
  2822     __ cmp( Rold, O7 );
  2823   %}
  2825   // raw int cas, used for compareAndSwap
  2826   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2827     Register Rmem = reg_to_register_object($mem$$reg);
  2828     Register Rold = reg_to_register_object($old$$reg);
  2829     Register Rnew = reg_to_register_object($new$$reg);
  2831     MacroAssembler _masm(&cbuf);
  2832     __ mov(Rnew, O7);
  2833     __ cas(Rmem, Rold, O7);
  2834     __ cmp( Rold, O7 );
  2835   %}
  2837   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2838     Register Rres = reg_to_register_object($res$$reg);
  2840     MacroAssembler _masm(&cbuf);
  2841     __ mov(1, Rres);
  2842     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2843   %}
  2845   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2846     Register Rres = reg_to_register_object($res$$reg);
  2848     MacroAssembler _masm(&cbuf);
  2849     __ mov(1, Rres);
  2850     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2851   %}
  2853   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2854     MacroAssembler _masm(&cbuf);
  2855     Register Rdst = reg_to_register_object($dst$$reg);
  2856     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2857                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2858     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2859                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2861     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2862     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2863   %}
  2866   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2867     Label Ldone, Lloop;
  2868     MacroAssembler _masm(&cbuf);
  2870     Register   str1_reg = reg_to_register_object($str1$$reg);
  2871     Register   str2_reg = reg_to_register_object($str2$$reg);
  2872     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2873     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2874     Register result_reg = reg_to_register_object($result$$reg);
  2876     assert(result_reg != str1_reg &&
  2877            result_reg != str2_reg &&
  2878            result_reg != cnt1_reg &&
  2879            result_reg != cnt2_reg ,
  2880            "need different registers");
  2882     // Compute the minimum of the string lengths(str1_reg) and the
  2883     // difference of the string lengths (stack)
  2885     // See if the lengths are different, and calculate min in str1_reg.
  2886     // Stash diff in O7 in case we need it for a tie-breaker.
  2887     Label Lskip;
  2888     __ subcc(cnt1_reg, cnt2_reg, O7);
  2889     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2890     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2891     // cnt2 is shorter, so use its count:
  2892     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2893     __ bind(Lskip);
  2895     // reallocate cnt1_reg, cnt2_reg, result_reg
  2896     // Note:  limit_reg holds the string length pre-scaled by 2
  2897     Register limit_reg =   cnt1_reg;
  2898     Register  chr2_reg =   cnt2_reg;
  2899     Register  chr1_reg = result_reg;
  2900     // str{12} are the base pointers
  2902     // Is the minimum length zero?
  2903     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2904     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2905     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2907     // Load first characters
  2908     __ lduh(str1_reg, 0, chr1_reg);
  2909     __ lduh(str2_reg, 0, chr2_reg);
  2911     // Compare first characters
  2912     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2913     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2914     assert(chr1_reg == result_reg, "result must be pre-placed");
  2915     __ delayed()->nop();
  2918       // Check after comparing first character to see if strings are equivalent
  2919       Label LSkip2;
  2920       // Check if the strings start at same location
  2921       __ cmp(str1_reg, str2_reg);
  2922       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2923       __ delayed()->nop();
  2925       // Check if the length difference is zero (in O7)
  2926       __ cmp(G0, O7);
  2927       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2928       __ delayed()->mov(G0, result_reg);  // result is zero
  2930       // Strings might not be equal
  2931       __ bind(LSkip2);
  2934     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2935     __ signx(limit_reg);
  2937     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2938     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2939     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2941     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2942     __ add(str1_reg, limit_reg, str1_reg);
  2943     __ add(str2_reg, limit_reg, str2_reg);
  2944     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2946     // Compare the rest of the characters
  2947     __ lduh(str1_reg, limit_reg, chr1_reg);
  2948     __ bind(Lloop);
  2949     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2950     __ lduh(str2_reg, limit_reg, chr2_reg);
  2951     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2952     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2953     assert(chr1_reg == result_reg, "result must be pre-placed");
  2954     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2955     // annul LDUH if branch is not taken to prevent access past end of string
  2956     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2957     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2959     // If strings are equal up to min length, return the length difference.
  2960     __ mov(O7, result_reg);
  2962     // Otherwise, return the difference between the first mismatched chars.
  2963     __ bind(Ldone);
  2964   %}
  2966 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2967     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2968     MacroAssembler _masm(&cbuf);
  2970     Register   str1_reg = reg_to_register_object($str1$$reg);
  2971     Register   str2_reg = reg_to_register_object($str2$$reg);
  2972     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2973     Register   tmp1_reg = O7;
  2974     Register result_reg = reg_to_register_object($result$$reg);
  2976     assert(result_reg != str1_reg &&
  2977            result_reg != str2_reg &&
  2978            result_reg !=  cnt_reg &&
  2979            result_reg != tmp1_reg ,
  2980            "need different registers");
  2982     __ cmp(str1_reg, str2_reg); //same char[] ?
  2983     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2984     __ delayed()->add(G0, 1, result_reg);
  2986     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2987     __ delayed()->add(G0, 1, result_reg); // count == 0
  2989     //rename registers
  2990     Register limit_reg =    cnt_reg;
  2991     Register  chr1_reg = result_reg;
  2992     Register  chr2_reg =   tmp1_reg;
  2994     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
  2995     __ signx(limit_reg);
  2997     //check for alignment and position the pointers to the ends
  2998     __ or3(str1_reg, str2_reg, chr1_reg);
  2999     __ andcc(chr1_reg, 0x3, chr1_reg);
  3000     // notZero means at least one not 4-byte aligned.
  3001     // We could optimize the case when both arrays are not aligned
  3002     // but it is not frequent case and it requires additional checks.
  3003     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3004     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3006     // Compare char[] arrays aligned to 4 bytes.
  3007     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3008                           chr1_reg, chr2_reg, Ldone);
  3009     __ ba(Ldone);
  3010     __ delayed()->add(G0, 1, result_reg);
  3012     // char by char compare
  3013     __ bind(Lchar);
  3014     __ add(str1_reg, limit_reg, str1_reg);
  3015     __ add(str2_reg, limit_reg, str2_reg);
  3016     __ neg(limit_reg); //negate count
  3018     __ lduh(str1_reg, limit_reg, chr1_reg);
  3019     // Lchar_loop
  3020     __ bind(Lchar_loop);
  3021     __ lduh(str2_reg, limit_reg, chr2_reg);
  3022     __ cmp(chr1_reg, chr2_reg);
  3023     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3024     __ delayed()->mov(G0, result_reg); //not equal
  3025     __ inccc(limit_reg, sizeof(jchar));
  3026     // annul LDUH if branch is not taken to prevent access past end of string
  3027     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3028     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3030     __ add(G0, 1, result_reg);  //equal
  3032     __ bind(Ldone);
  3033   %}
  3035 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3036     Label Lvector, Ldone, Lloop;
  3037     MacroAssembler _masm(&cbuf);
  3039     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3040     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3041     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3042     Register   tmp2_reg = O7;
  3043     Register result_reg = reg_to_register_object($result$$reg);
  3045     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3046     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3048     // return true if the same array
  3049     __ cmp(ary1_reg, ary2_reg);
  3050     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3051     __ delayed()->add(G0, 1, result_reg); // equal
  3053     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3054     __ delayed()->mov(G0, result_reg);    // not equal
  3056     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3057     __ delayed()->mov(G0, result_reg);    // not equal
  3059     //load the lengths of arrays
  3060     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3061     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3063     // return false if the two arrays are not equal length
  3064     __ cmp(tmp1_reg, tmp2_reg);
  3065     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3066     __ delayed()->mov(G0, result_reg);     // not equal
  3068     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3069     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3071     // load array addresses
  3072     __ add(ary1_reg, base_offset, ary1_reg);
  3073     __ add(ary2_reg, base_offset, ary2_reg);
  3075     // renaming registers
  3076     Register chr1_reg  =  result_reg; // for characters in ary1
  3077     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3078     Register limit_reg =  tmp1_reg;   // length
  3080     // set byte count
  3081     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3083     // Compare char[] arrays aligned to 4 bytes.
  3084     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3085                           chr1_reg, chr2_reg, Ldone);
  3086     __ add(G0, 1, result_reg); // equals
  3088     __ bind(Ldone);
  3089   %}
  3091   enc_class enc_rethrow() %{
  3092     cbuf.set_insts_mark();
  3093     Register temp_reg = G3;
  3094     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3095     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3096     MacroAssembler _masm(&cbuf);
  3097 #ifdef ASSERT
  3098     __ save_frame(0);
  3099     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3100     __ sethi(last_rethrow_addrlit, L1);
  3101     Address addr(L1, last_rethrow_addrlit.low10());
  3102     __ rdpc(L2);
  3103     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3104     __ st_ptr(L2, addr);
  3105     __ restore();
  3106 #endif
  3107     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3108     __ delayed()->nop();
  3109   %}
  3111   enc_class emit_mem_nop() %{
  3112     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3113     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3114   %}
  3116   enc_class emit_fadd_nop() %{
  3117     // Generates the instruction FMOVS f31,f31
  3118     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3119   %}
  3121   enc_class emit_br_nop() %{
  3122     // Generates the instruction BPN,PN .
  3123     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3124   %}
  3126   enc_class enc_membar_acquire %{
  3127     MacroAssembler _masm(&cbuf);
  3128     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3129   %}
  3131   enc_class enc_membar_release %{
  3132     MacroAssembler _masm(&cbuf);
  3133     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3134   %}
  3136   enc_class enc_membar_volatile %{
  3137     MacroAssembler _masm(&cbuf);
  3138     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3139   %}
  3141 %}
  3143 //----------FRAME--------------------------------------------------------------
  3144 // Definition of frame structure and management information.
  3145 //
  3146 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3147 //                             |   (to get allocators register number
  3148 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3149 //  r   CALLER     |        |
  3150 //  o     |        +--------+      pad to even-align allocators stack-slot
  3151 //  w     V        |  pad0  |        numbers; owned by CALLER
  3152 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3153 //  h     ^        |   in   |  5
  3154 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3155 //  |     |        |        |  3
  3156 //  |     |        +--------+
  3157 //  V     |        | old out|      Empty on Intel, window on Sparc
  3158 //        |    old |preserve|      Must be even aligned.
  3159 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3160 //        |        |   in   |  3   area for Intel ret address
  3161 //     Owned by    |preserve|      Empty on Sparc.
  3162 //       SELF      +--------+
  3163 //        |        |  pad2  |  2   pad to align old SP
  3164 //        |        +--------+  1
  3165 //        |        | locks  |  0
  3166 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3167 //        |        |  pad1  | 11   pad to align new SP
  3168 //        |        +--------+
  3169 //        |        |        | 10
  3170 //        |        | spills |  9   spills
  3171 //        V        |        |  8   (pad0 slot for callee)
  3172 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3173 //        ^        |  out   |  7
  3174 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3175 //     Owned by    +--------+
  3176 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3177 //        |    new |preserve|      Must be even-aligned.
  3178 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3179 //        |        |        |
  3180 //
  3181 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3182 //         known from SELF's arguments and the Java calling convention.
  3183 //         Region 6-7 is determined per call site.
  3184 // Note 2: If the calling convention leaves holes in the incoming argument
  3185 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3186 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3187 //         incoming area, as the Java calling convention is completely under
  3188 //         the control of the AD file.  Doubles can be sorted and packed to
  3189 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3190 //         varargs C calling conventions.
  3191 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3192 //         even aligned with pad0 as needed.
  3193 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3194 //         region 6-11 is even aligned; it may be padded out more so that
  3195 //         the region from SP to FP meets the minimum stack alignment.
  3197 frame %{
  3198   // What direction does stack grow in (assumed to be same for native & Java)
  3199   stack_direction(TOWARDS_LOW);
  3201   // These two registers define part of the calling convention
  3202   // between compiled code and the interpreter.
  3203   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3204   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3206   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3207   cisc_spilling_operand_name(indOffset);
  3209   // Number of stack slots consumed by a Monitor enter
  3210 #ifdef _LP64
  3211   sync_stack_slots(2);
  3212 #else
  3213   sync_stack_slots(1);
  3214 #endif
  3216   // Compiled code's Frame Pointer
  3217   frame_pointer(R_SP);
  3219   // Stack alignment requirement
  3220   stack_alignment(StackAlignmentInBytes);
  3221   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3222   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3224   // Number of stack slots between incoming argument block and the start of
  3225   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3226   // EPILOG must remove this many slots.
  3227   in_preserve_stack_slots(0);
  3229   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3230   // for calls to C.  Supports the var-args backing area for register parms.
  3231   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3232 #ifdef _LP64
  3233   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3234   varargs_C_out_slots_killed(12);
  3235 #else
  3236   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3237   varargs_C_out_slots_killed( 7);
  3238 #endif
  3240   // The after-PROLOG location of the return address.  Location of
  3241   // return address specifies a type (REG or STACK) and a number
  3242   // representing the register number (i.e. - use a register name) or
  3243   // stack slot.
  3244   return_addr(REG R_I7);          // Ret Addr is in register I7
  3246   // Body of function which returns an OptoRegs array locating
  3247   // arguments either in registers or in stack slots for calling
  3248   // java
  3249   calling_convention %{
  3250     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3252   %}
  3254   // Body of function which returns an OptoRegs array locating
  3255   // arguments either in registers or in stack slots for callin
  3256   // C.
  3257   c_calling_convention %{
  3258     // This is obviously always outgoing
  3259     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3260   %}
  3262   // Location of native (C/C++) and interpreter return values.  This is specified to
  3263   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3264   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3265   // to and from the register pairs is done by the appropriate call and epilog
  3266   // opcodes.  This simplifies the register allocator.
  3267   c_return_value %{
  3268     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3269 #ifdef     _LP64
  3270     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3271     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3272     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3273     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3274 #else  // !_LP64
  3275     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3276     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3277     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3278     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3279 #endif
  3280     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3281                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3282   %}
  3284   // Location of compiled Java return values.  Same as C
  3285   return_value %{
  3286     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3287 #ifdef     _LP64
  3288     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3289     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3290     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3291     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3292 #else  // !_LP64
  3293     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3294     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3295     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3296     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3297 #endif
  3298     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3299                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3300   %}
  3302 %}
  3305 //----------ATTRIBUTES---------------------------------------------------------
  3306 //----------Operand Attributes-------------------------------------------------
  3307 op_attrib op_cost(1);          // Required cost attribute
  3309 //----------Instruction Attributes---------------------------------------------
  3310 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3311 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3312 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3313 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3314                                    // non-matching short branch variant of some
  3315                                                             // long branch?
  3317 //----------OPERANDS-----------------------------------------------------------
  3318 // Operand definitions must precede instruction definitions for correct parsing
  3319 // in the ADLC because operands constitute user defined types which are used in
  3320 // instruction definitions.
  3322 //----------Simple Operands----------------------------------------------------
  3323 // Immediate Operands
  3324 // Integer Immediate: 32-bit
  3325 operand immI() %{
  3326   match(ConI);
  3328   op_cost(0);
  3329   // formats are generated automatically for constants and base registers
  3330   format %{ %}
  3331   interface(CONST_INTER);
  3332 %}
  3334 // Integer Immediate: 8-bit
  3335 operand immI8() %{
  3336   predicate(Assembler::is_simm8(n->get_int()));
  3337   match(ConI);
  3338   op_cost(0);
  3339   format %{ %}
  3340   interface(CONST_INTER);
  3341 %}
  3343 // Integer Immediate: 13-bit
  3344 operand immI13() %{
  3345   predicate(Assembler::is_simm13(n->get_int()));
  3346   match(ConI);
  3347   op_cost(0);
  3349   format %{ %}
  3350   interface(CONST_INTER);
  3351 %}
  3353 // Integer Immediate: 13-bit minus 7
  3354 operand immI13m7() %{
  3355   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3356   match(ConI);
  3357   op_cost(0);
  3359   format %{ %}
  3360   interface(CONST_INTER);
  3361 %}
  3363 // Integer Immediate: 16-bit
  3364 operand immI16() %{
  3365   predicate(Assembler::is_simm16(n->get_int()));
  3366   match(ConI);
  3367   op_cost(0);
  3368   format %{ %}
  3369   interface(CONST_INTER);
  3370 %}
  3372 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
  3373 operand immU12() %{
  3374   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3375   match(ConI);
  3376   op_cost(0);
  3378   format %{ %}
  3379   interface(CONST_INTER);
  3380 %}
  3382 // Integer Immediate: 6-bit
  3383 operand immU6() %{
  3384   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3385   match(ConI);
  3386   op_cost(0);
  3387   format %{ %}
  3388   interface(CONST_INTER);
  3389 %}
  3391 // Integer Immediate: 11-bit
  3392 operand immI11() %{
  3393   predicate(Assembler::is_simm11(n->get_int()));
  3394   match(ConI);
  3395   op_cost(0);
  3396   format %{ %}
  3397   interface(CONST_INTER);
  3398 %}
  3400 // Integer Immediate: 5-bit
  3401 operand immI5() %{
  3402   predicate(Assembler::is_simm5(n->get_int()));
  3403   match(ConI);
  3404   op_cost(0);
  3405   format %{ %}
  3406   interface(CONST_INTER);
  3407 %}
  3409 // Int Immediate non-negative
  3410 operand immU31()
  3411 %{
  3412   predicate(n->get_int() >= 0);
  3413   match(ConI);
  3415   op_cost(0);
  3416   format %{ %}
  3417   interface(CONST_INTER);
  3418 %}
  3420 // Integer Immediate: 0-bit
  3421 operand immI0() %{
  3422   predicate(n->get_int() == 0);
  3423   match(ConI);
  3424   op_cost(0);
  3426   format %{ %}
  3427   interface(CONST_INTER);
  3428 %}
  3430 // Integer Immediate: the value 10
  3431 operand immI10() %{
  3432   predicate(n->get_int() == 10);
  3433   match(ConI);
  3434   op_cost(0);
  3436   format %{ %}
  3437   interface(CONST_INTER);
  3438 %}
  3440 // Integer Immediate: the values 0-31
  3441 operand immU5() %{
  3442   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3443   match(ConI);
  3444   op_cost(0);
  3446   format %{ %}
  3447   interface(CONST_INTER);
  3448 %}
  3450 // Integer Immediate: the values 1-31
  3451 operand immI_1_31() %{
  3452   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3453   match(ConI);
  3454   op_cost(0);
  3456   format %{ %}
  3457   interface(CONST_INTER);
  3458 %}
  3460 // Integer Immediate: the values 32-63
  3461 operand immI_32_63() %{
  3462   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3463   match(ConI);
  3464   op_cost(0);
  3466   format %{ %}
  3467   interface(CONST_INTER);
  3468 %}
  3470 // Immediates for special shifts (sign extend)
  3472 // Integer Immediate: the value 16
  3473 operand immI_16() %{
  3474   predicate(n->get_int() == 16);
  3475   match(ConI);
  3476   op_cost(0);
  3478   format %{ %}
  3479   interface(CONST_INTER);
  3480 %}
  3482 // Integer Immediate: the value 24
  3483 operand immI_24() %{
  3484   predicate(n->get_int() == 24);
  3485   match(ConI);
  3486   op_cost(0);
  3488   format %{ %}
  3489   interface(CONST_INTER);
  3490 %}
  3492 // Integer Immediate: the value 255
  3493 operand immI_255() %{
  3494   predicate( n->get_int() == 255 );
  3495   match(ConI);
  3496   op_cost(0);
  3498   format %{ %}
  3499   interface(CONST_INTER);
  3500 %}
  3502 // Integer Immediate: the value 65535
  3503 operand immI_65535() %{
  3504   predicate(n->get_int() == 65535);
  3505   match(ConI);
  3506   op_cost(0);
  3508   format %{ %}
  3509   interface(CONST_INTER);
  3510 %}
  3512 // Long Immediate: the value FF
  3513 operand immL_FF() %{
  3514   predicate( n->get_long() == 0xFFL );
  3515   match(ConL);
  3516   op_cost(0);
  3518   format %{ %}
  3519   interface(CONST_INTER);
  3520 %}
  3522 // Long Immediate: the value FFFF
  3523 operand immL_FFFF() %{
  3524   predicate( n->get_long() == 0xFFFFL );
  3525   match(ConL);
  3526   op_cost(0);
  3528   format %{ %}
  3529   interface(CONST_INTER);
  3530 %}
  3532 // Pointer Immediate: 32 or 64-bit
  3533 operand immP() %{
  3534   match(ConP);
  3536   op_cost(5);
  3537   // formats are generated automatically for constants and base registers
  3538   format %{ %}
  3539   interface(CONST_INTER);
  3540 %}
  3542 #ifdef _LP64
  3543 // Pointer Immediate: 64-bit
  3544 operand immP_set() %{
  3545   predicate(!VM_Version::is_niagara_plus());
  3546   match(ConP);
  3548   op_cost(5);
  3549   // formats are generated automatically for constants and base registers
  3550   format %{ %}
  3551   interface(CONST_INTER);
  3552 %}
  3554 // Pointer Immediate: 64-bit
  3555 // From Niagara2 processors on a load should be better than materializing.
  3556 operand immP_load() %{
  3557   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3558   match(ConP);
  3560   op_cost(5);
  3561   // formats are generated automatically for constants and base registers
  3562   format %{ %}
  3563   interface(CONST_INTER);
  3564 %}
  3566 // Pointer Immediate: 64-bit
  3567 operand immP_no_oop_cheap() %{
  3568   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3569   match(ConP);
  3571   op_cost(5);
  3572   // formats are generated automatically for constants and base registers
  3573   format %{ %}
  3574   interface(CONST_INTER);
  3575 %}
  3576 #endif
  3578 operand immP13() %{
  3579   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3580   match(ConP);
  3581   op_cost(0);
  3583   format %{ %}
  3584   interface(CONST_INTER);
  3585 %}
  3587 operand immP0() %{
  3588   predicate(n->get_ptr() == 0);
  3589   match(ConP);
  3590   op_cost(0);
  3592   format %{ %}
  3593   interface(CONST_INTER);
  3594 %}
  3596 operand immP_poll() %{
  3597   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3598   match(ConP);
  3600   // formats are generated automatically for constants and base registers
  3601   format %{ %}
  3602   interface(CONST_INTER);
  3603 %}
  3605 // Pointer Immediate
  3606 operand immN()
  3607 %{
  3608   match(ConN);
  3610   op_cost(10);
  3611   format %{ %}
  3612   interface(CONST_INTER);
  3613 %}
  3615 operand immNKlass()
  3616 %{
  3617   match(ConNKlass);
  3619   op_cost(10);
  3620   format %{ %}
  3621   interface(CONST_INTER);
  3622 %}
  3624 // NULL Pointer Immediate
  3625 operand immN0()
  3626 %{
  3627   predicate(n->get_narrowcon() == 0);
  3628   match(ConN);
  3630   op_cost(0);
  3631   format %{ %}
  3632   interface(CONST_INTER);
  3633 %}
  3635 operand immL() %{
  3636   match(ConL);
  3637   op_cost(40);
  3638   // formats are generated automatically for constants and base registers
  3639   format %{ %}
  3640   interface(CONST_INTER);
  3641 %}
  3643 operand immL0() %{
  3644   predicate(n->get_long() == 0L);
  3645   match(ConL);
  3646   op_cost(0);
  3647   // formats are generated automatically for constants and base registers
  3648   format %{ %}
  3649   interface(CONST_INTER);
  3650 %}
  3652 // Integer Immediate: 5-bit
  3653 operand immL5() %{
  3654   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3655   match(ConL);
  3656   op_cost(0);
  3657   format %{ %}
  3658   interface(CONST_INTER);
  3659 %}
  3661 // Long Immediate: 13-bit
  3662 operand immL13() %{
  3663   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3664   match(ConL);
  3665   op_cost(0);
  3667   format %{ %}
  3668   interface(CONST_INTER);
  3669 %}
  3671 // Long Immediate: 13-bit minus 7
  3672 operand immL13m7() %{
  3673   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3674   match(ConL);
  3675   op_cost(0);
  3677   format %{ %}
  3678   interface(CONST_INTER);
  3679 %}
  3681 // Long Immediate: low 32-bit mask
  3682 operand immL_32bits() %{
  3683   predicate(n->get_long() == 0xFFFFFFFFL);
  3684   match(ConL);
  3685   op_cost(0);
  3687   format %{ %}
  3688   interface(CONST_INTER);
  3689 %}
  3691 // Long Immediate: cheap (materialize in <= 3 instructions)
  3692 operand immL_cheap() %{
  3693   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3694   match(ConL);
  3695   op_cost(0);
  3697   format %{ %}
  3698   interface(CONST_INTER);
  3699 %}
  3701 // Long Immediate: expensive (materialize in > 3 instructions)
  3702 operand immL_expensive() %{
  3703   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3704   match(ConL);
  3705   op_cost(0);
  3707   format %{ %}
  3708   interface(CONST_INTER);
  3709 %}
  3711 // Double Immediate
  3712 operand immD() %{
  3713   match(ConD);
  3715   op_cost(40);
  3716   format %{ %}
  3717   interface(CONST_INTER);
  3718 %}
  3720 operand immD0() %{
  3721 #ifdef _LP64
  3722   // on 64-bit architectures this comparision is faster
  3723   predicate(jlong_cast(n->getd()) == 0);
  3724 #else
  3725   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3726 #endif
  3727   match(ConD);
  3729   op_cost(0);
  3730   format %{ %}
  3731   interface(CONST_INTER);
  3732 %}
  3734 // Float Immediate
  3735 operand immF() %{
  3736   match(ConF);
  3738   op_cost(20);
  3739   format %{ %}
  3740   interface(CONST_INTER);
  3741 %}
  3743 // Float Immediate: 0
  3744 operand immF0() %{
  3745   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3746   match(ConF);
  3748   op_cost(0);
  3749   format %{ %}
  3750   interface(CONST_INTER);
  3751 %}
  3753 // Integer Register Operands
  3754 // Integer Register
  3755 operand iRegI() %{
  3756   constraint(ALLOC_IN_RC(int_reg));
  3757   match(RegI);
  3759   match(notemp_iRegI);
  3760   match(g1RegI);
  3761   match(o0RegI);
  3762   match(iRegIsafe);
  3764   format %{ %}
  3765   interface(REG_INTER);
  3766 %}
  3768 operand notemp_iRegI() %{
  3769   constraint(ALLOC_IN_RC(notemp_int_reg));
  3770   match(RegI);
  3772   match(o0RegI);
  3774   format %{ %}
  3775   interface(REG_INTER);
  3776 %}
  3778 operand o0RegI() %{
  3779   constraint(ALLOC_IN_RC(o0_regI));
  3780   match(iRegI);
  3782   format %{ %}
  3783   interface(REG_INTER);
  3784 %}
  3786 // Pointer Register
  3787 operand iRegP() %{
  3788   constraint(ALLOC_IN_RC(ptr_reg));
  3789   match(RegP);
  3791   match(lock_ptr_RegP);
  3792   match(g1RegP);
  3793   match(g2RegP);
  3794   match(g3RegP);
  3795   match(g4RegP);
  3796   match(i0RegP);
  3797   match(o0RegP);
  3798   match(o1RegP);
  3799   match(l7RegP);
  3801   format %{ %}
  3802   interface(REG_INTER);
  3803 %}
  3805 operand sp_ptr_RegP() %{
  3806   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3807   match(RegP);
  3808   match(iRegP);
  3810   format %{ %}
  3811   interface(REG_INTER);
  3812 %}
  3814 operand lock_ptr_RegP() %{
  3815   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3816   match(RegP);
  3817   match(i0RegP);
  3818   match(o0RegP);
  3819   match(o1RegP);
  3820   match(l7RegP);
  3822   format %{ %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand g1RegP() %{
  3827   constraint(ALLOC_IN_RC(g1_regP));
  3828   match(iRegP);
  3830   format %{ %}
  3831   interface(REG_INTER);
  3832 %}
  3834 operand g2RegP() %{
  3835   constraint(ALLOC_IN_RC(g2_regP));
  3836   match(iRegP);
  3838   format %{ %}
  3839   interface(REG_INTER);
  3840 %}
  3842 operand g3RegP() %{
  3843   constraint(ALLOC_IN_RC(g3_regP));
  3844   match(iRegP);
  3846   format %{ %}
  3847   interface(REG_INTER);
  3848 %}
  3850 operand g1RegI() %{
  3851   constraint(ALLOC_IN_RC(g1_regI));
  3852   match(iRegI);
  3854   format %{ %}
  3855   interface(REG_INTER);
  3856 %}
  3858 operand g3RegI() %{
  3859   constraint(ALLOC_IN_RC(g3_regI));
  3860   match(iRegI);
  3862   format %{ %}
  3863   interface(REG_INTER);
  3864 %}
  3866 operand g4RegI() %{
  3867   constraint(ALLOC_IN_RC(g4_regI));
  3868   match(iRegI);
  3870   format %{ %}
  3871   interface(REG_INTER);
  3872 %}
  3874 operand g4RegP() %{
  3875   constraint(ALLOC_IN_RC(g4_regP));
  3876   match(iRegP);
  3878   format %{ %}
  3879   interface(REG_INTER);
  3880 %}
  3882 operand i0RegP() %{
  3883   constraint(ALLOC_IN_RC(i0_regP));
  3884   match(iRegP);
  3886   format %{ %}
  3887   interface(REG_INTER);
  3888 %}
  3890 operand o0RegP() %{
  3891   constraint(ALLOC_IN_RC(o0_regP));
  3892   match(iRegP);
  3894   format %{ %}
  3895   interface(REG_INTER);
  3896 %}
  3898 operand o1RegP() %{
  3899   constraint(ALLOC_IN_RC(o1_regP));
  3900   match(iRegP);
  3902   format %{ %}
  3903   interface(REG_INTER);
  3904 %}
  3906 operand o2RegP() %{
  3907   constraint(ALLOC_IN_RC(o2_regP));
  3908   match(iRegP);
  3910   format %{ %}
  3911   interface(REG_INTER);
  3912 %}
  3914 operand o7RegP() %{
  3915   constraint(ALLOC_IN_RC(o7_regP));
  3916   match(iRegP);
  3918   format %{ %}
  3919   interface(REG_INTER);
  3920 %}
  3922 operand l7RegP() %{
  3923   constraint(ALLOC_IN_RC(l7_regP));
  3924   match(iRegP);
  3926   format %{ %}
  3927   interface(REG_INTER);
  3928 %}
  3930 operand o7RegI() %{
  3931   constraint(ALLOC_IN_RC(o7_regI));
  3932   match(iRegI);
  3934   format %{ %}
  3935   interface(REG_INTER);
  3936 %}
  3938 operand iRegN() %{
  3939   constraint(ALLOC_IN_RC(int_reg));
  3940   match(RegN);
  3942   format %{ %}
  3943   interface(REG_INTER);
  3944 %}
  3946 // Long Register
  3947 operand iRegL() %{
  3948   constraint(ALLOC_IN_RC(long_reg));
  3949   match(RegL);
  3951   format %{ %}
  3952   interface(REG_INTER);
  3953 %}
  3955 operand o2RegL() %{
  3956   constraint(ALLOC_IN_RC(o2_regL));
  3957   match(iRegL);
  3959   format %{ %}
  3960   interface(REG_INTER);
  3961 %}
  3963 operand o7RegL() %{
  3964   constraint(ALLOC_IN_RC(o7_regL));
  3965   match(iRegL);
  3967   format %{ %}
  3968   interface(REG_INTER);
  3969 %}
  3971 operand g1RegL() %{
  3972   constraint(ALLOC_IN_RC(g1_regL));
  3973   match(iRegL);
  3975   format %{ %}
  3976   interface(REG_INTER);
  3977 %}
  3979 operand g3RegL() %{
  3980   constraint(ALLOC_IN_RC(g3_regL));
  3981   match(iRegL);
  3983   format %{ %}
  3984   interface(REG_INTER);
  3985 %}
  3987 // Int Register safe
  3988 // This is 64bit safe
  3989 operand iRegIsafe() %{
  3990   constraint(ALLOC_IN_RC(long_reg));
  3992   match(iRegI);
  3994   format %{ %}
  3995   interface(REG_INTER);
  3996 %}
  3998 // Condition Code Flag Register
  3999 operand flagsReg() %{
  4000   constraint(ALLOC_IN_RC(int_flags));
  4001   match(RegFlags);
  4003   format %{ "ccr" %} // both ICC and XCC
  4004   interface(REG_INTER);
  4005 %}
  4007 // Condition Code Register, unsigned comparisons.
  4008 operand flagsRegU() %{
  4009   constraint(ALLOC_IN_RC(int_flags));
  4010   match(RegFlags);
  4012   format %{ "icc_U" %}
  4013   interface(REG_INTER);
  4014 %}
  4016 // Condition Code Register, pointer comparisons.
  4017 operand flagsRegP() %{
  4018   constraint(ALLOC_IN_RC(int_flags));
  4019   match(RegFlags);
  4021 #ifdef _LP64
  4022   format %{ "xcc_P" %}
  4023 #else
  4024   format %{ "icc_P" %}
  4025 #endif
  4026   interface(REG_INTER);
  4027 %}
  4029 // Condition Code Register, long comparisons.
  4030 operand flagsRegL() %{
  4031   constraint(ALLOC_IN_RC(int_flags));
  4032   match(RegFlags);
  4034   format %{ "xcc_L" %}
  4035   interface(REG_INTER);
  4036 %}
  4038 // Condition Code Register, floating comparisons, unordered same as "less".
  4039 operand flagsRegF() %{
  4040   constraint(ALLOC_IN_RC(float_flags));
  4041   match(RegFlags);
  4042   match(flagsRegF0);
  4044   format %{ %}
  4045   interface(REG_INTER);
  4046 %}
  4048 operand flagsRegF0() %{
  4049   constraint(ALLOC_IN_RC(float_flag0));
  4050   match(RegFlags);
  4052   format %{ %}
  4053   interface(REG_INTER);
  4054 %}
  4057 // Condition Code Flag Register used by long compare
  4058 operand flagsReg_long_LTGE() %{
  4059   constraint(ALLOC_IN_RC(int_flags));
  4060   match(RegFlags);
  4061   format %{ "icc_LTGE" %}
  4062   interface(REG_INTER);
  4063 %}
  4064 operand flagsReg_long_EQNE() %{
  4065   constraint(ALLOC_IN_RC(int_flags));
  4066   match(RegFlags);
  4067   format %{ "icc_EQNE" %}
  4068   interface(REG_INTER);
  4069 %}
  4070 operand flagsReg_long_LEGT() %{
  4071   constraint(ALLOC_IN_RC(int_flags));
  4072   match(RegFlags);
  4073   format %{ "icc_LEGT" %}
  4074   interface(REG_INTER);
  4075 %}
  4078 operand regD() %{
  4079   constraint(ALLOC_IN_RC(dflt_reg));
  4080   match(RegD);
  4082   match(regD_low);
  4084   format %{ %}
  4085   interface(REG_INTER);
  4086 %}
  4088 operand regF() %{
  4089   constraint(ALLOC_IN_RC(sflt_reg));
  4090   match(RegF);
  4092   format %{ %}
  4093   interface(REG_INTER);
  4094 %}
  4096 operand regD_low() %{
  4097   constraint(ALLOC_IN_RC(dflt_low_reg));
  4098   match(regD);
  4100   format %{ %}
  4101   interface(REG_INTER);
  4102 %}
  4104 // Special Registers
  4106 // Method Register
  4107 operand inline_cache_regP(iRegP reg) %{
  4108   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4109   match(reg);
  4110   format %{ %}
  4111   interface(REG_INTER);
  4112 %}
  4114 operand interpreter_method_oop_regP(iRegP reg) %{
  4115   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4116   match(reg);
  4117   format %{ %}
  4118   interface(REG_INTER);
  4119 %}
  4122 //----------Complex Operands---------------------------------------------------
  4123 // Indirect Memory Reference
  4124 operand indirect(sp_ptr_RegP reg) %{
  4125   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4126   match(reg);
  4128   op_cost(100);
  4129   format %{ "[$reg]" %}
  4130   interface(MEMORY_INTER) %{
  4131     base($reg);
  4132     index(0x0);
  4133     scale(0x0);
  4134     disp(0x0);
  4135   %}
  4136 %}
  4138 // Indirect with simm13 Offset
  4139 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4140   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4141   match(AddP reg offset);
  4143   op_cost(100);
  4144   format %{ "[$reg + $offset]" %}
  4145   interface(MEMORY_INTER) %{
  4146     base($reg);
  4147     index(0x0);
  4148     scale(0x0);
  4149     disp($offset);
  4150   %}
  4151 %}
  4153 // Indirect with simm13 Offset minus 7
  4154 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4155   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4156   match(AddP reg offset);
  4158   op_cost(100);
  4159   format %{ "[$reg + $offset]" %}
  4160   interface(MEMORY_INTER) %{
  4161     base($reg);
  4162     index(0x0);
  4163     scale(0x0);
  4164     disp($offset);
  4165   %}
  4166 %}
  4168 // Note:  Intel has a swapped version also, like this:
  4169 //operand indOffsetX(iRegI reg, immP offset) %{
  4170 //  constraint(ALLOC_IN_RC(int_reg));
  4171 //  match(AddP offset reg);
  4172 //
  4173 //  op_cost(100);
  4174 //  format %{ "[$reg + $offset]" %}
  4175 //  interface(MEMORY_INTER) %{
  4176 //    base($reg);
  4177 //    index(0x0);
  4178 //    scale(0x0);
  4179 //    disp($offset);
  4180 //  %}
  4181 //%}
  4182 //// However, it doesn't make sense for SPARC, since
  4183 // we have no particularly good way to embed oops in
  4184 // single instructions.
  4186 // Indirect with Register Index
  4187 operand indIndex(iRegP addr, iRegX index) %{
  4188   constraint(ALLOC_IN_RC(ptr_reg));
  4189   match(AddP addr index);
  4191   op_cost(100);
  4192   format %{ "[$addr + $index]" %}
  4193   interface(MEMORY_INTER) %{
  4194     base($addr);
  4195     index($index);
  4196     scale(0x0);
  4197     disp(0x0);
  4198   %}
  4199 %}
  4201 //----------Special Memory Operands--------------------------------------------
  4202 // Stack Slot Operand - This operand is used for loading and storing temporary
  4203 //                      values on the stack where a match requires a value to
  4204 //                      flow through memory.
  4205 operand stackSlotI(sRegI reg) %{
  4206   constraint(ALLOC_IN_RC(stack_slots));
  4207   op_cost(100);
  4208   //match(RegI);
  4209   format %{ "[$reg]" %}
  4210   interface(MEMORY_INTER) %{
  4211     base(0xE);   // R_SP
  4212     index(0x0);
  4213     scale(0x0);
  4214     disp($reg);  // Stack Offset
  4215   %}
  4216 %}
  4218 operand stackSlotP(sRegP reg) %{
  4219   constraint(ALLOC_IN_RC(stack_slots));
  4220   op_cost(100);
  4221   //match(RegP);
  4222   format %{ "[$reg]" %}
  4223   interface(MEMORY_INTER) %{
  4224     base(0xE);   // R_SP
  4225     index(0x0);
  4226     scale(0x0);
  4227     disp($reg);  // Stack Offset
  4228   %}
  4229 %}
  4231 operand stackSlotF(sRegF reg) %{
  4232   constraint(ALLOC_IN_RC(stack_slots));
  4233   op_cost(100);
  4234   //match(RegF);
  4235   format %{ "[$reg]" %}
  4236   interface(MEMORY_INTER) %{
  4237     base(0xE);   // R_SP
  4238     index(0x0);
  4239     scale(0x0);
  4240     disp($reg);  // Stack Offset
  4241   %}
  4242 %}
  4243 operand stackSlotD(sRegD reg) %{
  4244   constraint(ALLOC_IN_RC(stack_slots));
  4245   op_cost(100);
  4246   //match(RegD);
  4247   format %{ "[$reg]" %}
  4248   interface(MEMORY_INTER) %{
  4249     base(0xE);   // R_SP
  4250     index(0x0);
  4251     scale(0x0);
  4252     disp($reg);  // Stack Offset
  4253   %}
  4254 %}
  4255 operand stackSlotL(sRegL reg) %{
  4256   constraint(ALLOC_IN_RC(stack_slots));
  4257   op_cost(100);
  4258   //match(RegL);
  4259   format %{ "[$reg]" %}
  4260   interface(MEMORY_INTER) %{
  4261     base(0xE);   // R_SP
  4262     index(0x0);
  4263     scale(0x0);
  4264     disp($reg);  // Stack Offset
  4265   %}
  4266 %}
  4268 // Operands for expressing Control Flow
  4269 // NOTE:  Label is a predefined operand which should not be redefined in
  4270 //        the AD file.  It is generically handled within the ADLC.
  4272 //----------Conditional Branch Operands----------------------------------------
  4273 // Comparison Op  - This is the operation of the comparison, and is limited to
  4274 //                  the following set of codes:
  4275 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4276 //
  4277 // Other attributes of the comparison, such as unsignedness, are specified
  4278 // by the comparison instruction that sets a condition code flags register.
  4279 // That result is represented by a flags operand whose subtype is appropriate
  4280 // to the unsignedness (etc.) of the comparison.
  4281 //
  4282 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4283 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4284 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4286 operand cmpOp() %{
  4287   match(Bool);
  4289   format %{ "" %}
  4290   interface(COND_INTER) %{
  4291     equal(0x1);
  4292     not_equal(0x9);
  4293     less(0x3);
  4294     greater_equal(0xB);
  4295     less_equal(0x2);
  4296     greater(0xA);
  4297     overflow(0x7);
  4298     no_overflow(0xF);
  4299   %}
  4300 %}
  4302 // Comparison Op, unsigned
  4303 operand cmpOpU() %{
  4304   match(Bool);
  4305   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4306             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4308   format %{ "u" %}
  4309   interface(COND_INTER) %{
  4310     equal(0x1);
  4311     not_equal(0x9);
  4312     less(0x5);
  4313     greater_equal(0xD);
  4314     less_equal(0x4);
  4315     greater(0xC);
  4316     overflow(0x7);
  4317     no_overflow(0xF);
  4318   %}
  4319 %}
  4321 // Comparison Op, pointer (same as unsigned)
  4322 operand cmpOpP() %{
  4323   match(Bool);
  4324   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4325             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4327   format %{ "p" %}
  4328   interface(COND_INTER) %{
  4329     equal(0x1);
  4330     not_equal(0x9);
  4331     less(0x5);
  4332     greater_equal(0xD);
  4333     less_equal(0x4);
  4334     greater(0xC);
  4335     overflow(0x7);
  4336     no_overflow(0xF);
  4337   %}
  4338 %}
  4340 // Comparison Op, branch-register encoding
  4341 operand cmpOp_reg() %{
  4342   match(Bool);
  4343   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4344             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4346   format %{ "" %}
  4347   interface(COND_INTER) %{
  4348     equal        (0x1);
  4349     not_equal    (0x5);
  4350     less         (0x3);
  4351     greater_equal(0x7);
  4352     less_equal   (0x2);
  4353     greater      (0x6);
  4354     overflow(0x7); // not supported
  4355     no_overflow(0xF); // not supported
  4356   %}
  4357 %}
  4359 // Comparison Code, floating, unordered same as less
  4360 operand cmpOpF() %{
  4361   match(Bool);
  4362   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4363             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4365   format %{ "fl" %}
  4366   interface(COND_INTER) %{
  4367     equal(0x9);
  4368     not_equal(0x1);
  4369     less(0x3);
  4370     greater_equal(0xB);
  4371     less_equal(0xE);
  4372     greater(0x6);
  4374     overflow(0x7); // not supported
  4375     no_overflow(0xF); // not supported
  4376   %}
  4377 %}
  4379 // Used by long compare
  4380 operand cmpOp_commute() %{
  4381   match(Bool);
  4382   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4383             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4385   format %{ "" %}
  4386   interface(COND_INTER) %{
  4387     equal(0x1);
  4388     not_equal(0x9);
  4389     less(0xA);
  4390     greater_equal(0x2);
  4391     less_equal(0xB);
  4392     greater(0x3);
  4393     overflow(0x7);
  4394     no_overflow(0xF);
  4395   %}
  4396 %}
  4398 //----------OPERAND CLASSES----------------------------------------------------
  4399 // Operand Classes are groups of operands that are used to simplify
  4400 // instruction definitions by not requiring the AD writer to specify separate
  4401 // instructions for every form of operand when the instruction accepts
  4402 // multiple operand types with the same basic encoding and format.  The classic
  4403 // case of this is memory operands.
  4404 opclass memory( indirect, indOffset13, indIndex );
  4405 opclass indIndexMemory( indIndex );
  4407 //----------PIPELINE-----------------------------------------------------------
  4408 pipeline %{
  4410 //----------ATTRIBUTES---------------------------------------------------------
  4411 attributes %{
  4412   fixed_size_instructions;           // Fixed size instructions
  4413   branch_has_delay_slot;             // Branch has delay slot following
  4414   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4415   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4416   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4417   instruction_fetch_units = 1;       // of 16 bytes
  4419   // List of nop instructions
  4420   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4421 %}
  4423 //----------RESOURCES----------------------------------------------------------
  4424 // Resources are the functional units available to the machine
  4425 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4427 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4428 // Pipeline Description specifies the stages in the machine's pipeline
  4430 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4432 //----------PIPELINE CLASSES---------------------------------------------------
  4433 // Pipeline Classes describe the stages in which input and output are
  4434 // referenced by the hardware pipeline.
  4436 // Integer ALU reg-reg operation
  4437 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4438     single_instruction;
  4439     dst   : E(write);
  4440     src1  : R(read);
  4441     src2  : R(read);
  4442     IALU  : R;
  4443 %}
  4445 // Integer ALU reg-reg long operation
  4446 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4447     instruction_count(2);
  4448     dst   : E(write);
  4449     src1  : R(read);
  4450     src2  : R(read);
  4451     IALU  : R;
  4452     IALU  : R;
  4453 %}
  4455 // Integer ALU reg-reg long dependent operation
  4456 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4457     instruction_count(1); multiple_bundles;
  4458     dst   : E(write);
  4459     src1  : R(read);
  4460     src2  : R(read);
  4461     cr    : E(write);
  4462     IALU  : R(2);
  4463 %}
  4465 // Integer ALU reg-imm operaion
  4466 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4467     single_instruction;
  4468     dst   : E(write);
  4469     src1  : R(read);
  4470     IALU  : R;
  4471 %}
  4473 // Integer ALU reg-reg operation with condition code
  4474 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4475     single_instruction;
  4476     dst   : E(write);
  4477     cr    : E(write);
  4478     src1  : R(read);
  4479     src2  : R(read);
  4480     IALU  : R;
  4481 %}
  4483 // Integer ALU reg-imm operation with condition code
  4484 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4485     single_instruction;
  4486     dst   : E(write);
  4487     cr    : E(write);
  4488     src1  : R(read);
  4489     IALU  : R;
  4490 %}
  4492 // Integer ALU zero-reg operation
  4493 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4494     single_instruction;
  4495     dst   : E(write);
  4496     src2  : R(read);
  4497     IALU  : R;
  4498 %}
  4500 // Integer ALU zero-reg operation with condition code only
  4501 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4502     single_instruction;
  4503     cr    : E(write);
  4504     src   : R(read);
  4505     IALU  : R;
  4506 %}
  4508 // Integer ALU reg-reg operation with condition code only
  4509 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4510     single_instruction;
  4511     cr    : E(write);
  4512     src1  : R(read);
  4513     src2  : R(read);
  4514     IALU  : R;
  4515 %}
  4517 // Integer ALU reg-imm operation with condition code only
  4518 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4519     single_instruction;
  4520     cr    : E(write);
  4521     src1  : R(read);
  4522     IALU  : R;
  4523 %}
  4525 // Integer ALU reg-reg-zero operation with condition code only
  4526 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4527     single_instruction;
  4528     cr    : E(write);
  4529     src1  : R(read);
  4530     src2  : R(read);
  4531     IALU  : R;
  4532 %}
  4534 // Integer ALU reg-imm-zero operation with condition code only
  4535 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4536     single_instruction;
  4537     cr    : E(write);
  4538     src1  : R(read);
  4539     IALU  : R;
  4540 %}
  4542 // Integer ALU reg-reg operation with condition code, src1 modified
  4543 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4544     single_instruction;
  4545     cr    : E(write);
  4546     src1  : E(write);
  4547     src1  : R(read);
  4548     src2  : R(read);
  4549     IALU  : R;
  4550 %}
  4552 // Integer ALU reg-imm operation with condition code, src1 modified
  4553 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4554     single_instruction;
  4555     cr    : E(write);
  4556     src1  : E(write);
  4557     src1  : R(read);
  4558     IALU  : R;
  4559 %}
  4561 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4562     multiple_bundles;
  4563     dst   : E(write)+4;
  4564     cr    : E(write);
  4565     src1  : R(read);
  4566     src2  : R(read);
  4567     IALU  : R(3);
  4568     BR    : R(2);
  4569 %}
  4571 // Integer ALU operation
  4572 pipe_class ialu_none(iRegI dst) %{
  4573     single_instruction;
  4574     dst   : E(write);
  4575     IALU  : R;
  4576 %}
  4578 // Integer ALU reg operation
  4579 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4580     single_instruction; may_have_no_code;
  4581     dst   : E(write);
  4582     src   : R(read);
  4583     IALU  : R;
  4584 %}
  4586 // Integer ALU reg conditional operation
  4587 // This instruction has a 1 cycle stall, and cannot execute
  4588 // in the same cycle as the instruction setting the condition
  4589 // code. We kludge this by pretending to read the condition code
  4590 // 1 cycle earlier, and by marking the functional units as busy
  4591 // for 2 cycles with the result available 1 cycle later than
  4592 // is really the case.
  4593 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4594     single_instruction;
  4595     op2_out : C(write);
  4596     op1     : R(read);
  4597     cr      : R(read);       // This is really E, with a 1 cycle stall
  4598     BR      : R(2);
  4599     MS      : R(2);
  4600 %}
  4602 #ifdef _LP64
  4603 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4604     instruction_count(1); multiple_bundles;
  4605     dst     : C(write)+1;
  4606     src     : R(read)+1;
  4607     IALU    : R(1);
  4608     BR      : E(2);
  4609     MS      : E(2);
  4610 %}
  4611 #endif
  4613 // Integer ALU reg operation
  4614 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4615     single_instruction; may_have_no_code;
  4616     dst   : E(write);
  4617     src   : R(read);
  4618     IALU  : R;
  4619 %}
  4620 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4621     single_instruction; may_have_no_code;
  4622     dst   : E(write);
  4623     src   : R(read);
  4624     IALU  : R;
  4625 %}
  4627 // Two integer ALU reg operations
  4628 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4629     instruction_count(2);
  4630     dst   : E(write);
  4631     src   : R(read);
  4632     A0    : R;
  4633     A1    : R;
  4634 %}
  4636 // Two integer ALU reg operations
  4637 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4638     instruction_count(2); may_have_no_code;
  4639     dst   : E(write);
  4640     src   : R(read);
  4641     A0    : R;
  4642     A1    : R;
  4643 %}
  4645 // Integer ALU imm operation
  4646 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4647     single_instruction;
  4648     dst   : E(write);
  4649     IALU  : R;
  4650 %}
  4652 // Integer ALU reg-reg with carry operation
  4653 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4654     single_instruction;
  4655     dst   : E(write);
  4656     src1  : R(read);
  4657     src2  : R(read);
  4658     IALU  : R;
  4659 %}
  4661 // Integer ALU cc operation
  4662 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4663     single_instruction;
  4664     dst   : E(write);
  4665     cc    : R(read);
  4666     IALU  : R;
  4667 %}
  4669 // Integer ALU cc / second IALU operation
  4670 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4671     instruction_count(1); multiple_bundles;
  4672     dst   : E(write)+1;
  4673     src   : R(read);
  4674     IALU  : R;
  4675 %}
  4677 // Integer ALU cc / second IALU operation
  4678 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4679     instruction_count(1); multiple_bundles;
  4680     dst   : E(write)+1;
  4681     p     : R(read);
  4682     q     : R(read);
  4683     IALU  : R;
  4684 %}
  4686 // Integer ALU hi-lo-reg operation
  4687 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4688     instruction_count(1); multiple_bundles;
  4689     dst   : E(write)+1;
  4690     IALU  : R(2);
  4691 %}
  4693 // Float ALU hi-lo-reg operation (with temp)
  4694 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4695     instruction_count(1); multiple_bundles;
  4696     dst   : E(write)+1;
  4697     IALU  : R(2);
  4698 %}
  4700 // Long Constant
  4701 pipe_class loadConL( iRegL dst, immL src ) %{
  4702     instruction_count(2); multiple_bundles;
  4703     dst   : E(write)+1;
  4704     IALU  : R(2);
  4705     IALU  : R(2);
  4706 %}
  4708 // Pointer Constant
  4709 pipe_class loadConP( iRegP dst, immP src ) %{
  4710     instruction_count(0); multiple_bundles;
  4711     fixed_latency(6);
  4712 %}
  4714 // Polling Address
  4715 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4716 #ifdef _LP64
  4717     instruction_count(0); multiple_bundles;
  4718     fixed_latency(6);
  4719 #else
  4720     dst   : E(write);
  4721     IALU  : R;
  4722 #endif
  4723 %}
  4725 // Long Constant small
  4726 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4727     instruction_count(2);
  4728     dst   : E(write);
  4729     IALU  : R;
  4730     IALU  : R;
  4731 %}
  4733 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4734 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4735     instruction_count(1); multiple_bundles;
  4736     src   : R(read);
  4737     dst   : M(write)+1;
  4738     IALU  : R;
  4739     MS    : E;
  4740 %}
  4742 // Integer ALU nop operation
  4743 pipe_class ialu_nop() %{
  4744     single_instruction;
  4745     IALU  : R;
  4746 %}
  4748 // Integer ALU nop operation
  4749 pipe_class ialu_nop_A0() %{
  4750     single_instruction;
  4751     A0    : R;
  4752 %}
  4754 // Integer ALU nop operation
  4755 pipe_class ialu_nop_A1() %{
  4756     single_instruction;
  4757     A1    : R;
  4758 %}
  4760 // Integer Multiply reg-reg operation
  4761 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4762     single_instruction;
  4763     dst   : E(write);
  4764     src1  : R(read);
  4765     src2  : R(read);
  4766     MS    : R(5);
  4767 %}
  4769 // Integer Multiply reg-imm operation
  4770 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4771     single_instruction;
  4772     dst   : E(write);
  4773     src1  : R(read);
  4774     MS    : R(5);
  4775 %}
  4777 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4778     single_instruction;
  4779     dst   : E(write)+4;
  4780     src1  : R(read);
  4781     src2  : R(read);
  4782     MS    : R(6);
  4783 %}
  4785 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4786     single_instruction;
  4787     dst   : E(write)+4;
  4788     src1  : R(read);
  4789     MS    : R(6);
  4790 %}
  4792 // Integer Divide reg-reg
  4793 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4794     instruction_count(1); multiple_bundles;
  4795     dst   : E(write);
  4796     temp  : E(write);
  4797     src1  : R(read);
  4798     src2  : R(read);
  4799     temp  : R(read);
  4800     MS    : R(38);
  4801 %}
  4803 // Integer Divide reg-imm
  4804 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4805     instruction_count(1); multiple_bundles;
  4806     dst   : E(write);
  4807     temp  : E(write);
  4808     src1  : R(read);
  4809     temp  : R(read);
  4810     MS    : R(38);
  4811 %}
  4813 // Long Divide
  4814 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4815     dst  : E(write)+71;
  4816     src1 : R(read);
  4817     src2 : R(read)+1;
  4818     MS   : R(70);
  4819 %}
  4821 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4822     dst  : E(write)+71;
  4823     src1 : R(read);
  4824     MS   : R(70);
  4825 %}
  4827 // Floating Point Add Float
  4828 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4829     single_instruction;
  4830     dst   : X(write);
  4831     src1  : E(read);
  4832     src2  : E(read);
  4833     FA    : R;
  4834 %}
  4836 // Floating Point Add Double
  4837 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4838     single_instruction;
  4839     dst   : X(write);
  4840     src1  : E(read);
  4841     src2  : E(read);
  4842     FA    : R;
  4843 %}
  4845 // Floating Point Conditional Move based on integer flags
  4846 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4847     single_instruction;
  4848     dst   : X(write);
  4849     src   : E(read);
  4850     cr    : R(read);
  4851     FA    : R(2);
  4852     BR    : R(2);
  4853 %}
  4855 // Floating Point Conditional Move based on integer flags
  4856 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4857     single_instruction;
  4858     dst   : X(write);
  4859     src   : E(read);
  4860     cr    : R(read);
  4861     FA    : R(2);
  4862     BR    : R(2);
  4863 %}
  4865 // Floating Point Multiply Float
  4866 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4867     single_instruction;
  4868     dst   : X(write);
  4869     src1  : E(read);
  4870     src2  : E(read);
  4871     FM    : R;
  4872 %}
  4874 // Floating Point Multiply Double
  4875 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4876     single_instruction;
  4877     dst   : X(write);
  4878     src1  : E(read);
  4879     src2  : E(read);
  4880     FM    : R;
  4881 %}
  4883 // Floating Point Divide Float
  4884 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4885     single_instruction;
  4886     dst   : X(write);
  4887     src1  : E(read);
  4888     src2  : E(read);
  4889     FM    : R;
  4890     FDIV  : C(14);
  4891 %}
  4893 // Floating Point Divide Double
  4894 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4895     single_instruction;
  4896     dst   : X(write);
  4897     src1  : E(read);
  4898     src2  : E(read);
  4899     FM    : R;
  4900     FDIV  : C(17);
  4901 %}
  4903 // Floating Point Move/Negate/Abs Float
  4904 pipe_class faddF_reg(regF dst, regF src) %{
  4905     single_instruction;
  4906     dst   : W(write);
  4907     src   : E(read);
  4908     FA    : R(1);
  4909 %}
  4911 // Floating Point Move/Negate/Abs Double
  4912 pipe_class faddD_reg(regD dst, regD src) %{
  4913     single_instruction;
  4914     dst   : W(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert F->D
  4920 pipe_class fcvtF2D(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert I->D
  4928 pipe_class fcvtI2D(regD dst, regF src) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert LHi->D
  4936 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4937     single_instruction;
  4938     dst   : X(write);
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert L->D
  4944 pipe_class fcvtL2D(regD dst, regF src) %{
  4945     single_instruction;
  4946     dst   : X(write);
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert L->F
  4952 pipe_class fcvtL2F(regD dst, regF src) %{
  4953     single_instruction;
  4954     dst   : X(write);
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert D->F
  4960 pipe_class fcvtD2F(regD dst, regF src) %{
  4961     single_instruction;
  4962     dst   : X(write);
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Convert I->L
  4968 pipe_class fcvtI2L(regD dst, regF src) %{
  4969     single_instruction;
  4970     dst   : X(write);
  4971     src   : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Convert D->F
  4976 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4977     instruction_count(1); multiple_bundles;
  4978     dst   : X(write)+6;
  4979     src   : E(read);
  4980     FA    : R;
  4981 %}
  4983 // Floating Point Convert D->L
  4984 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4985     instruction_count(1); multiple_bundles;
  4986     dst   : X(write)+6;
  4987     src   : E(read);
  4988     FA    : R;
  4989 %}
  4991 // Floating Point Convert F->I
  4992 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4993     instruction_count(1); multiple_bundles;
  4994     dst   : X(write)+6;
  4995     src   : E(read);
  4996     FA    : R;
  4997 %}
  4999 // Floating Point Convert F->L
  5000 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  5001     instruction_count(1); multiple_bundles;
  5002     dst   : X(write)+6;
  5003     src   : E(read);
  5004     FA    : R;
  5005 %}
  5007 // Floating Point Convert I->F
  5008 pipe_class fcvtI2F(regF dst, regF src) %{
  5009     single_instruction;
  5010     dst   : X(write);
  5011     src   : E(read);
  5012     FA    : R;
  5013 %}
  5015 // Floating Point Compare
  5016 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  5017     single_instruction;
  5018     cr    : X(write);
  5019     src1  : E(read);
  5020     src2  : E(read);
  5021     FA    : R;
  5022 %}
  5024 // Floating Point Compare
  5025 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5026     single_instruction;
  5027     cr    : X(write);
  5028     src1  : E(read);
  5029     src2  : E(read);
  5030     FA    : R;
  5031 %}
  5033 // Floating Add Nop
  5034 pipe_class fadd_nop() %{
  5035     single_instruction;
  5036     FA  : R;
  5037 %}
  5039 // Integer Store to Memory
  5040 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5041     single_instruction;
  5042     mem   : R(read);
  5043     src   : C(read);
  5044     MS    : R;
  5045 %}
  5047 // Integer Store to Memory
  5048 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5049     single_instruction;
  5050     mem   : R(read);
  5051     src   : C(read);
  5052     MS    : R;
  5053 %}
  5055 // Integer Store Zero to Memory
  5056 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5057     single_instruction;
  5058     mem   : R(read);
  5059     MS    : R;
  5060 %}
  5062 // Special Stack Slot Store
  5063 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5064     single_instruction;
  5065     stkSlot : R(read);
  5066     src     : C(read);
  5067     MS      : R;
  5068 %}
  5070 // Special Stack Slot Store
  5071 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5072     instruction_count(2); multiple_bundles;
  5073     stkSlot : R(read);
  5074     src     : C(read);
  5075     MS      : R(2);
  5076 %}
  5078 // Float Store
  5079 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5080     single_instruction;
  5081     mem : R(read);
  5082     src : C(read);
  5083     MS  : R;
  5084 %}
  5086 // Float Store
  5087 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5088     single_instruction;
  5089     mem : R(read);
  5090     MS  : R;
  5091 %}
  5093 // Double Store
  5094 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5095     instruction_count(1);
  5096     mem : R(read);
  5097     src : C(read);
  5098     MS  : R;
  5099 %}
  5101 // Double Store
  5102 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5103     single_instruction;
  5104     mem : R(read);
  5105     MS  : R;
  5106 %}
  5108 // Special Stack Slot Float Store
  5109 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5110     single_instruction;
  5111     stkSlot : R(read);
  5112     src     : C(read);
  5113     MS      : R;
  5114 %}
  5116 // Special Stack Slot Double Store
  5117 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5118     single_instruction;
  5119     stkSlot : R(read);
  5120     src     : C(read);
  5121     MS      : R;
  5122 %}
  5124 // Integer Load (when sign bit propagation not needed)
  5125 pipe_class iload_mem(iRegI dst, memory mem) %{
  5126     single_instruction;
  5127     mem : R(read);
  5128     dst : C(write);
  5129     MS  : R;
  5130 %}
  5132 // Integer Load from stack operand
  5133 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5134     single_instruction;
  5135     mem : R(read);
  5136     dst : C(write);
  5137     MS  : R;
  5138 %}
  5140 // Integer Load (when sign bit propagation or masking is needed)
  5141 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5142     single_instruction;
  5143     mem : R(read);
  5144     dst : M(write);
  5145     MS  : R;
  5146 %}
  5148 // Float Load
  5149 pipe_class floadF_mem(regF dst, memory mem) %{
  5150     single_instruction;
  5151     mem : R(read);
  5152     dst : M(write);
  5153     MS  : R;
  5154 %}
  5156 // Float Load
  5157 pipe_class floadD_mem(regD dst, memory mem) %{
  5158     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5159     mem : R(read);
  5160     dst : M(write);
  5161     MS  : R;
  5162 %}
  5164 // Float Load
  5165 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5166     single_instruction;
  5167     stkSlot : R(read);
  5168     dst : M(write);
  5169     MS  : R;
  5170 %}
  5172 // Float Load
  5173 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5174     single_instruction;
  5175     stkSlot : R(read);
  5176     dst : M(write);
  5177     MS  : R;
  5178 %}
  5180 // Memory Nop
  5181 pipe_class mem_nop() %{
  5182     single_instruction;
  5183     MS  : R;
  5184 %}
  5186 pipe_class sethi(iRegP dst, immI src) %{
  5187     single_instruction;
  5188     dst  : E(write);
  5189     IALU : R;
  5190 %}
  5192 pipe_class loadPollP(iRegP poll) %{
  5193     single_instruction;
  5194     poll : R(read);
  5195     MS   : R;
  5196 %}
  5198 pipe_class br(Universe br, label labl) %{
  5199     single_instruction_with_delay_slot;
  5200     BR  : R;
  5201 %}
  5203 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5204     single_instruction_with_delay_slot;
  5205     cr    : E(read);
  5206     BR    : R;
  5207 %}
  5209 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5210     single_instruction_with_delay_slot;
  5211     op1 : E(read);
  5212     BR  : R;
  5213     MS  : R;
  5214 %}
  5216 // Compare and branch
  5217 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5218     instruction_count(2); has_delay_slot;
  5219     cr    : E(write);
  5220     src1  : R(read);
  5221     src2  : R(read);
  5222     IALU  : R;
  5223     BR    : R;
  5224 %}
  5226 // Compare and branch
  5227 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5228     instruction_count(2); has_delay_slot;
  5229     cr    : E(write);
  5230     src1  : R(read);
  5231     IALU  : R;
  5232     BR    : R;
  5233 %}
  5235 // Compare and branch using cbcond
  5236 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5237     single_instruction;
  5238     src1  : E(read);
  5239     src2  : E(read);
  5240     IALU  : R;
  5241     BR    : R;
  5242 %}
  5244 // Compare and branch using cbcond
  5245 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5246     single_instruction;
  5247     src1  : E(read);
  5248     IALU  : R;
  5249     BR    : R;
  5250 %}
  5252 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5253     single_instruction_with_delay_slot;
  5254     cr    : E(read);
  5255     BR    : R;
  5256 %}
  5258 pipe_class br_nop() %{
  5259     single_instruction;
  5260     BR  : R;
  5261 %}
  5263 pipe_class simple_call(method meth) %{
  5264     instruction_count(2); multiple_bundles; force_serialization;
  5265     fixed_latency(100);
  5266     BR  : R(1);
  5267     MS  : R(1);
  5268     A0  : R(1);
  5269 %}
  5271 pipe_class compiled_call(method meth) %{
  5272     instruction_count(1); multiple_bundles; force_serialization;
  5273     fixed_latency(100);
  5274     MS  : R(1);
  5275 %}
  5277 pipe_class call(method meth) %{
  5278     instruction_count(0); multiple_bundles; force_serialization;
  5279     fixed_latency(100);
  5280 %}
  5282 pipe_class tail_call(Universe ignore, label labl) %{
  5283     single_instruction; has_delay_slot;
  5284     fixed_latency(100);
  5285     BR  : R(1);
  5286     MS  : R(1);
  5287 %}
  5289 pipe_class ret(Universe ignore) %{
  5290     single_instruction; has_delay_slot;
  5291     BR  : R(1);
  5292     MS  : R(1);
  5293 %}
  5295 pipe_class ret_poll(g3RegP poll) %{
  5296     instruction_count(3); has_delay_slot;
  5297     poll : E(read);
  5298     MS   : R;
  5299 %}
  5301 // The real do-nothing guy
  5302 pipe_class empty( ) %{
  5303     instruction_count(0);
  5304 %}
  5306 pipe_class long_memory_op() %{
  5307     instruction_count(0); multiple_bundles; force_serialization;
  5308     fixed_latency(25);
  5309     MS  : R(1);
  5310 %}
  5312 // Check-cast
  5313 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5314     array : R(read);
  5315     match  : R(read);
  5316     IALU   : R(2);
  5317     BR     : R(2);
  5318     MS     : R;
  5319 %}
  5321 // Convert FPU flags into +1,0,-1
  5322 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5323     src1  : E(read);
  5324     src2  : E(read);
  5325     dst   : E(write);
  5326     FA    : R;
  5327     MS    : R(2);
  5328     BR    : R(2);
  5329 %}
  5331 // Compare for p < q, and conditionally add y
  5332 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5333     p     : E(read);
  5334     q     : E(read);
  5335     y     : E(read);
  5336     IALU  : R(3)
  5337 %}
  5339 // Perform a compare, then move conditionally in a branch delay slot.
  5340 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5341     src2   : E(read);
  5342     srcdst : E(read);
  5343     IALU   : R;
  5344     BR     : R;
  5345 %}
  5347 // Define the class for the Nop node
  5348 define %{
  5349    MachNop = ialu_nop;
  5350 %}
  5352 %}
  5354 //----------INSTRUCTIONS-------------------------------------------------------
  5356 //------------Special Stack Slot instructions - no match rules-----------------
  5357 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5358   // No match rule to avoid chain rule match.
  5359   effect(DEF dst, USE src);
  5360   ins_cost(MEMORY_REF_COST);
  5361   size(4);
  5362   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5363   opcode(Assembler::ldf_op3);
  5364   ins_encode(simple_form3_mem_reg(src, dst));
  5365   ins_pipe(floadF_stk);
  5366 %}
  5368 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5369   // No match rule to avoid chain rule match.
  5370   effect(DEF dst, USE src);
  5371   ins_cost(MEMORY_REF_COST);
  5372   size(4);
  5373   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5374   opcode(Assembler::lddf_op3);
  5375   ins_encode(simple_form3_mem_reg(src, dst));
  5376   ins_pipe(floadD_stk);
  5377 %}
  5379 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5380   // No match rule to avoid chain rule match.
  5381   effect(DEF dst, USE src);
  5382   ins_cost(MEMORY_REF_COST);
  5383   size(4);
  5384   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5385   opcode(Assembler::stf_op3);
  5386   ins_encode(simple_form3_mem_reg(dst, src));
  5387   ins_pipe(fstoreF_stk_reg);
  5388 %}
  5390 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5391   // No match rule to avoid chain rule match.
  5392   effect(DEF dst, USE src);
  5393   ins_cost(MEMORY_REF_COST);
  5394   size(4);
  5395   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5396   opcode(Assembler::stdf_op3);
  5397   ins_encode(simple_form3_mem_reg(dst, src));
  5398   ins_pipe(fstoreD_stk_reg);
  5399 %}
  5401 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5402   effect(DEF dst, USE src);
  5403   ins_cost(MEMORY_REF_COST*2);
  5404   size(8);
  5405   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5406             "STW    R_G0,$dst.lo" %}
  5407   opcode(Assembler::stw_op3);
  5408   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5409   ins_pipe(lstoreI_stk_reg);
  5410 %}
  5412 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5413   // No match rule to avoid chain rule match.
  5414   effect(DEF dst, USE src);
  5415   ins_cost(MEMORY_REF_COST);
  5416   size(4);
  5417   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5418   opcode(Assembler::stx_op3);
  5419   ins_encode(simple_form3_mem_reg( dst, src ) );
  5420   ins_pipe(istore_stk_reg);
  5421 %}
  5423 //---------- Chain stack slots between similar types --------
  5425 // Load integer from stack slot
  5426 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5427   match(Set dst src);
  5428   ins_cost(MEMORY_REF_COST);
  5430   size(4);
  5431   format %{ "LDUW   $src,$dst\t!stk" %}
  5432   opcode(Assembler::lduw_op3);
  5433   ins_encode(simple_form3_mem_reg( src, dst ) );
  5434   ins_pipe(iload_mem);
  5435 %}
  5437 // Store integer to stack slot
  5438 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5439   match(Set dst src);
  5440   ins_cost(MEMORY_REF_COST);
  5442   size(4);
  5443   format %{ "STW    $src,$dst\t!stk" %}
  5444   opcode(Assembler::stw_op3);
  5445   ins_encode(simple_form3_mem_reg( dst, src ) );
  5446   ins_pipe(istore_mem_reg);
  5447 %}
  5449 // Load long from stack slot
  5450 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5451   match(Set dst src);
  5453   ins_cost(MEMORY_REF_COST);
  5454   size(4);
  5455   format %{ "LDX    $src,$dst\t! long" %}
  5456   opcode(Assembler::ldx_op3);
  5457   ins_encode(simple_form3_mem_reg( src, dst ) );
  5458   ins_pipe(iload_mem);
  5459 %}
  5461 // Store long to stack slot
  5462 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5463   match(Set dst src);
  5465   ins_cost(MEMORY_REF_COST);
  5466   size(4);
  5467   format %{ "STX    $src,$dst\t! long" %}
  5468   opcode(Assembler::stx_op3);
  5469   ins_encode(simple_form3_mem_reg( dst, src ) );
  5470   ins_pipe(istore_mem_reg);
  5471 %}
  5473 #ifdef _LP64
  5474 // Load pointer from stack slot, 64-bit encoding
  5475 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5476   match(Set dst src);
  5477   ins_cost(MEMORY_REF_COST);
  5478   size(4);
  5479   format %{ "LDX    $src,$dst\t!ptr" %}
  5480   opcode(Assembler::ldx_op3);
  5481   ins_encode(simple_form3_mem_reg( src, dst ) );
  5482   ins_pipe(iload_mem);
  5483 %}
  5485 // Store pointer to stack slot
  5486 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5487   match(Set dst src);
  5488   ins_cost(MEMORY_REF_COST);
  5489   size(4);
  5490   format %{ "STX    $src,$dst\t!ptr" %}
  5491   opcode(Assembler::stx_op3);
  5492   ins_encode(simple_form3_mem_reg( dst, src ) );
  5493   ins_pipe(istore_mem_reg);
  5494 %}
  5495 #else // _LP64
  5496 // Load pointer from stack slot, 32-bit encoding
  5497 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5498   match(Set dst src);
  5499   ins_cost(MEMORY_REF_COST);
  5500   format %{ "LDUW   $src,$dst\t!ptr" %}
  5501   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5502   ins_encode(simple_form3_mem_reg( src, dst ) );
  5503   ins_pipe(iload_mem);
  5504 %}
  5506 // Store pointer to stack slot
  5507 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5508   match(Set dst src);
  5509   ins_cost(MEMORY_REF_COST);
  5510   format %{ "STW    $src,$dst\t!ptr" %}
  5511   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5512   ins_encode(simple_form3_mem_reg( dst, src ) );
  5513   ins_pipe(istore_mem_reg);
  5514 %}
  5515 #endif // _LP64
  5517 //------------Special Nop instructions for bundling - no match rules-----------
  5518 // Nop using the A0 functional unit
  5519 instruct Nop_A0() %{
  5520   ins_cost(0);
  5522   format %{ "NOP    ! Alu Pipeline" %}
  5523   opcode(Assembler::or_op3, Assembler::arith_op);
  5524   ins_encode( form2_nop() );
  5525   ins_pipe(ialu_nop_A0);
  5526 %}
  5528 // Nop using the A1 functional unit
  5529 instruct Nop_A1( ) %{
  5530   ins_cost(0);
  5532   format %{ "NOP    ! Alu Pipeline" %}
  5533   opcode(Assembler::or_op3, Assembler::arith_op);
  5534   ins_encode( form2_nop() );
  5535   ins_pipe(ialu_nop_A1);
  5536 %}
  5538 // Nop using the memory functional unit
  5539 instruct Nop_MS( ) %{
  5540   ins_cost(0);
  5542   format %{ "NOP    ! Memory Pipeline" %}
  5543   ins_encode( emit_mem_nop );
  5544   ins_pipe(mem_nop);
  5545 %}
  5547 // Nop using the floating add functional unit
  5548 instruct Nop_FA( ) %{
  5549   ins_cost(0);
  5551   format %{ "NOP    ! Floating Add Pipeline" %}
  5552   ins_encode( emit_fadd_nop );
  5553   ins_pipe(fadd_nop);
  5554 %}
  5556 // Nop using the branch functional unit
  5557 instruct Nop_BR( ) %{
  5558   ins_cost(0);
  5560   format %{ "NOP    ! Branch Pipeline" %}
  5561   ins_encode( emit_br_nop );
  5562   ins_pipe(br_nop);
  5563 %}
  5565 //----------Load/Store/Move Instructions---------------------------------------
  5566 //----------Load Instructions--------------------------------------------------
  5567 // Load Byte (8bit signed)
  5568 instruct loadB(iRegI dst, memory mem) %{
  5569   match(Set dst (LoadB mem));
  5570   ins_cost(MEMORY_REF_COST);
  5572   size(4);
  5573   format %{ "LDSB   $mem,$dst\t! byte" %}
  5574   ins_encode %{
  5575     __ ldsb($mem$$Address, $dst$$Register);
  5576   %}
  5577   ins_pipe(iload_mask_mem);
  5578 %}
  5580 // Load Byte (8bit signed) into a Long Register
  5581 instruct loadB2L(iRegL dst, memory mem) %{
  5582   match(Set dst (ConvI2L (LoadB mem)));
  5583   ins_cost(MEMORY_REF_COST);
  5585   size(4);
  5586   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5587   ins_encode %{
  5588     __ ldsb($mem$$Address, $dst$$Register);
  5589   %}
  5590   ins_pipe(iload_mask_mem);
  5591 %}
  5593 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5594 instruct loadUB(iRegI dst, memory mem) %{
  5595   match(Set dst (LoadUB mem));
  5596   ins_cost(MEMORY_REF_COST);
  5598   size(4);
  5599   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5600   ins_encode %{
  5601     __ ldub($mem$$Address, $dst$$Register);
  5602   %}
  5603   ins_pipe(iload_mem);
  5604 %}
  5606 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5607 instruct loadUB2L(iRegL dst, memory mem) %{
  5608   match(Set dst (ConvI2L (LoadUB mem)));
  5609   ins_cost(MEMORY_REF_COST);
  5611   size(4);
  5612   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5613   ins_encode %{
  5614     __ ldub($mem$$Address, $dst$$Register);
  5615   %}
  5616   ins_pipe(iload_mem);
  5617 %}
  5619 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5620 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5621   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5622   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5624   size(2*4);
  5625   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5626             "AND    $dst,$mask,$dst" %}
  5627   ins_encode %{
  5628     __ ldub($mem$$Address, $dst$$Register);
  5629     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5630   %}
  5631   ins_pipe(iload_mem);
  5632 %}
  5634 // Load Short (16bit signed)
  5635 instruct loadS(iRegI dst, memory mem) %{
  5636   match(Set dst (LoadS mem));
  5637   ins_cost(MEMORY_REF_COST);
  5639   size(4);
  5640   format %{ "LDSH   $mem,$dst\t! short" %}
  5641   ins_encode %{
  5642     __ ldsh($mem$$Address, $dst$$Register);
  5643   %}
  5644   ins_pipe(iload_mask_mem);
  5645 %}
  5647 // Load Short (16 bit signed) to Byte (8 bit signed)
  5648 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5649   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5650   ins_cost(MEMORY_REF_COST);
  5652   size(4);
  5654   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5655   ins_encode %{
  5656     __ ldsb($mem$$Address, $dst$$Register, 1);
  5657   %}
  5658   ins_pipe(iload_mask_mem);
  5659 %}
  5661 // Load Short (16bit signed) into a Long Register
  5662 instruct loadS2L(iRegL dst, memory mem) %{
  5663   match(Set dst (ConvI2L (LoadS mem)));
  5664   ins_cost(MEMORY_REF_COST);
  5666   size(4);
  5667   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5668   ins_encode %{
  5669     __ ldsh($mem$$Address, $dst$$Register);
  5670   %}
  5671   ins_pipe(iload_mask_mem);
  5672 %}
  5674 // Load Unsigned Short/Char (16bit UNsigned)
  5675 instruct loadUS(iRegI dst, memory mem) %{
  5676   match(Set dst (LoadUS mem));
  5677   ins_cost(MEMORY_REF_COST);
  5679   size(4);
  5680   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5681   ins_encode %{
  5682     __ lduh($mem$$Address, $dst$$Register);
  5683   %}
  5684   ins_pipe(iload_mem);
  5685 %}
  5687 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5688 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5689   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5690   ins_cost(MEMORY_REF_COST);
  5692   size(4);
  5693   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5694   ins_encode %{
  5695     __ ldsb($mem$$Address, $dst$$Register, 1);
  5696   %}
  5697   ins_pipe(iload_mask_mem);
  5698 %}
  5700 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5701 instruct loadUS2L(iRegL dst, memory mem) %{
  5702   match(Set dst (ConvI2L (LoadUS mem)));
  5703   ins_cost(MEMORY_REF_COST);
  5705   size(4);
  5706   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5707   ins_encode %{
  5708     __ lduh($mem$$Address, $dst$$Register);
  5709   %}
  5710   ins_pipe(iload_mem);
  5711 %}
  5713 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5714 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5715   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5716   ins_cost(MEMORY_REF_COST);
  5718   size(4);
  5719   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5720   ins_encode %{
  5721     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5722   %}
  5723   ins_pipe(iload_mem);
  5724 %}
  5726 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5727 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5728   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5729   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5731   size(2*4);
  5732   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5733             "AND    $dst,$mask,$dst" %}
  5734   ins_encode %{
  5735     Register Rdst = $dst$$Register;
  5736     __ lduh($mem$$Address, Rdst);
  5737     __ and3(Rdst, $mask$$constant, Rdst);
  5738   %}
  5739   ins_pipe(iload_mem);
  5740 %}
  5742 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5743 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5744   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5745   effect(TEMP dst, TEMP tmp);
  5746   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5748   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5749             "SET    $mask,$tmp\n\t"
  5750             "AND    $dst,$tmp,$dst" %}
  5751   ins_encode %{
  5752     Register Rdst = $dst$$Register;
  5753     Register Rtmp = $tmp$$Register;
  5754     __ lduh($mem$$Address, Rdst);
  5755     __ set($mask$$constant, Rtmp);
  5756     __ and3(Rdst, Rtmp, Rdst);
  5757   %}
  5758   ins_pipe(iload_mem);
  5759 %}
  5761 // Load Integer
  5762 instruct loadI(iRegI dst, memory mem) %{
  5763   match(Set dst (LoadI mem));
  5764   ins_cost(MEMORY_REF_COST);
  5766   size(4);
  5767   format %{ "LDUW   $mem,$dst\t! int" %}
  5768   ins_encode %{
  5769     __ lduw($mem$$Address, $dst$$Register);
  5770   %}
  5771   ins_pipe(iload_mem);
  5772 %}
  5774 // Load Integer to Byte (8 bit signed)
  5775 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5776   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5777   ins_cost(MEMORY_REF_COST);
  5779   size(4);
  5781   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5782   ins_encode %{
  5783     __ ldsb($mem$$Address, $dst$$Register, 3);
  5784   %}
  5785   ins_pipe(iload_mask_mem);
  5786 %}
  5788 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5789 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5790   match(Set dst (AndI (LoadI mem) mask));
  5791   ins_cost(MEMORY_REF_COST);
  5793   size(4);
  5795   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5796   ins_encode %{
  5797     __ ldub($mem$$Address, $dst$$Register, 3);
  5798   %}
  5799   ins_pipe(iload_mask_mem);
  5800 %}
  5802 // Load Integer to Short (16 bit signed)
  5803 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5804   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5805   ins_cost(MEMORY_REF_COST);
  5807   size(4);
  5809   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5810   ins_encode %{
  5811     __ ldsh($mem$$Address, $dst$$Register, 2);
  5812   %}
  5813   ins_pipe(iload_mask_mem);
  5814 %}
  5816 // Load Integer to Unsigned Short (16 bit UNsigned)
  5817 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5818   match(Set dst (AndI (LoadI mem) mask));
  5819   ins_cost(MEMORY_REF_COST);
  5821   size(4);
  5823   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5824   ins_encode %{
  5825     __ lduh($mem$$Address, $dst$$Register, 2);
  5826   %}
  5827   ins_pipe(iload_mask_mem);
  5828 %}
  5830 // Load Integer into a Long Register
  5831 instruct loadI2L(iRegL dst, memory mem) %{
  5832   match(Set dst (ConvI2L (LoadI mem)));
  5833   ins_cost(MEMORY_REF_COST);
  5835   size(4);
  5836   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5837   ins_encode %{
  5838     __ ldsw($mem$$Address, $dst$$Register);
  5839   %}
  5840   ins_pipe(iload_mask_mem);
  5841 %}
  5843 // Load Integer with mask 0xFF into a Long Register
  5844 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5845   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5846   ins_cost(MEMORY_REF_COST);
  5848   size(4);
  5849   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5850   ins_encode %{
  5851     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5852   %}
  5853   ins_pipe(iload_mem);
  5854 %}
  5856 // Load Integer with mask 0xFFFF into a Long Register
  5857 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5858   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5859   ins_cost(MEMORY_REF_COST);
  5861   size(4);
  5862   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5863   ins_encode %{
  5864     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5865   %}
  5866   ins_pipe(iload_mem);
  5867 %}
  5869 // Load Integer with a 12-bit mask into a Long Register
  5870 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
  5871   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5872   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5874   size(2*4);
  5875   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
  5876             "AND    $dst,$mask,$dst" %}
  5877   ins_encode %{
  5878     Register Rdst = $dst$$Register;
  5879     __ lduw($mem$$Address, Rdst);
  5880     __ and3(Rdst, $mask$$constant, Rdst);
  5881   %}
  5882   ins_pipe(iload_mem);
  5883 %}
  5885 // Load Integer with a 31-bit mask into a Long Register
  5886 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
  5887   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5888   effect(TEMP dst, TEMP tmp);
  5889   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5891   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
  5892             "SET    $mask,$tmp\n\t"
  5893             "AND    $dst,$tmp,$dst" %}
  5894   ins_encode %{
  5895     Register Rdst = $dst$$Register;
  5896     Register Rtmp = $tmp$$Register;
  5897     __ lduw($mem$$Address, Rdst);
  5898     __ set($mask$$constant, Rtmp);
  5899     __ and3(Rdst, Rtmp, Rdst);
  5900   %}
  5901   ins_pipe(iload_mem);
  5902 %}
  5904 // Load Unsigned Integer into a Long Register
  5905 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
  5906   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5907   ins_cost(MEMORY_REF_COST);
  5909   size(4);
  5910   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5911   ins_encode %{
  5912     __ lduw($mem$$Address, $dst$$Register);
  5913   %}
  5914   ins_pipe(iload_mem);
  5915 %}
  5917 // Load Long - aligned
  5918 instruct loadL(iRegL dst, memory mem ) %{
  5919   match(Set dst (LoadL mem));
  5920   ins_cost(MEMORY_REF_COST);
  5922   size(4);
  5923   format %{ "LDX    $mem,$dst\t! long" %}
  5924   ins_encode %{
  5925     __ ldx($mem$$Address, $dst$$Register);
  5926   %}
  5927   ins_pipe(iload_mem);
  5928 %}
  5930 // Load Long - UNaligned
  5931 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5932   match(Set dst (LoadL_unaligned mem));
  5933   effect(KILL tmp);
  5934   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5935   size(16);
  5936   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5937           "\tLDUW   $mem  ,$dst\n"
  5938           "\tSLLX   #32, $dst, $dst\n"
  5939           "\tOR     $dst, R_O7, $dst" %}
  5940   opcode(Assembler::lduw_op3);
  5941   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5942   ins_pipe(iload_mem);
  5943 %}
  5945 // Load Range
  5946 instruct loadRange(iRegI dst, memory mem) %{
  5947   match(Set dst (LoadRange mem));
  5948   ins_cost(MEMORY_REF_COST);
  5950   size(4);
  5951   format %{ "LDUW   $mem,$dst\t! range" %}
  5952   opcode(Assembler::lduw_op3);
  5953   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5954   ins_pipe(iload_mem);
  5955 %}
  5957 // Load Integer into %f register (for fitos/fitod)
  5958 instruct loadI_freg(regF dst, memory mem) %{
  5959   match(Set dst (LoadI mem));
  5960   ins_cost(MEMORY_REF_COST);
  5961   size(4);
  5963   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5964   opcode(Assembler::ldf_op3);
  5965   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5966   ins_pipe(floadF_mem);
  5967 %}
  5969 // Load Pointer
  5970 instruct loadP(iRegP dst, memory mem) %{
  5971   match(Set dst (LoadP mem));
  5972   ins_cost(MEMORY_REF_COST);
  5973   size(4);
  5975 #ifndef _LP64
  5976   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5977   ins_encode %{
  5978     __ lduw($mem$$Address, $dst$$Register);
  5979   %}
  5980 #else
  5981   format %{ "LDX    $mem,$dst\t! ptr" %}
  5982   ins_encode %{
  5983     __ ldx($mem$$Address, $dst$$Register);
  5984   %}
  5985 #endif
  5986   ins_pipe(iload_mem);
  5987 %}
  5989 // Load Compressed Pointer
  5990 instruct loadN(iRegN dst, memory mem) %{
  5991   match(Set dst (LoadN mem));
  5992   ins_cost(MEMORY_REF_COST);
  5993   size(4);
  5995   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5996   ins_encode %{
  5997     __ lduw($mem$$Address, $dst$$Register);
  5998   %}
  5999   ins_pipe(iload_mem);
  6000 %}
  6002 // Load Klass Pointer
  6003 instruct loadKlass(iRegP dst, memory mem) %{
  6004   match(Set dst (LoadKlass mem));
  6005   ins_cost(MEMORY_REF_COST);
  6006   size(4);
  6008 #ifndef _LP64
  6009   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  6010   ins_encode %{
  6011     __ lduw($mem$$Address, $dst$$Register);
  6012   %}
  6013 #else
  6014   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  6015   ins_encode %{
  6016     __ ldx($mem$$Address, $dst$$Register);
  6017   %}
  6018 #endif
  6019   ins_pipe(iload_mem);
  6020 %}
  6022 // Load narrow Klass Pointer
  6023 instruct loadNKlass(iRegN dst, memory mem) %{
  6024   match(Set dst (LoadNKlass mem));
  6025   ins_cost(MEMORY_REF_COST);
  6026   size(4);
  6028   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6029   ins_encode %{
  6030     __ lduw($mem$$Address, $dst$$Register);
  6031   %}
  6032   ins_pipe(iload_mem);
  6033 %}
  6035 // Load Double
  6036 instruct loadD(regD dst, memory mem) %{
  6037   match(Set dst (LoadD mem));
  6038   ins_cost(MEMORY_REF_COST);
  6040   size(4);
  6041   format %{ "LDDF   $mem,$dst" %}
  6042   opcode(Assembler::lddf_op3);
  6043   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6044   ins_pipe(floadD_mem);
  6045 %}
  6047 // Load Double - UNaligned
  6048 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6049   match(Set dst (LoadD_unaligned mem));
  6050   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6051   size(8);
  6052   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6053           "\tLDF    $mem+4,$dst.lo\t!" %}
  6054   opcode(Assembler::ldf_op3);
  6055   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6056   ins_pipe(iload_mem);
  6057 %}
  6059 // Load Float
  6060 instruct loadF(regF dst, memory mem) %{
  6061   match(Set dst (LoadF mem));
  6062   ins_cost(MEMORY_REF_COST);
  6064   size(4);
  6065   format %{ "LDF    $mem,$dst" %}
  6066   opcode(Assembler::ldf_op3);
  6067   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6068   ins_pipe(floadF_mem);
  6069 %}
  6071 // Load Constant
  6072 instruct loadConI( iRegI dst, immI src ) %{
  6073   match(Set dst src);
  6074   ins_cost(DEFAULT_COST * 3/2);
  6075   format %{ "SET    $src,$dst" %}
  6076   ins_encode( Set32(src, dst) );
  6077   ins_pipe(ialu_hi_lo_reg);
  6078 %}
  6080 instruct loadConI13( iRegI dst, immI13 src ) %{
  6081   match(Set dst src);
  6083   size(4);
  6084   format %{ "MOV    $src,$dst" %}
  6085   ins_encode( Set13( src, dst ) );
  6086   ins_pipe(ialu_imm);
  6087 %}
  6089 #ifndef _LP64
  6090 instruct loadConP(iRegP dst, immP con) %{
  6091   match(Set dst con);
  6092   ins_cost(DEFAULT_COST * 3/2);
  6093   format %{ "SET    $con,$dst\t!ptr" %}
  6094   ins_encode %{
  6095     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6096       intptr_t val = $con$$constant;
  6097     if (constant_reloc == relocInfo::oop_type) {
  6098       __ set_oop_constant((jobject) val, $dst$$Register);
  6099     } else if (constant_reloc == relocInfo::metadata_type) {
  6100       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6101     } else {          // non-oop pointers, e.g. card mark base, heap top
  6102       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6103       __ set(val, $dst$$Register);
  6105   %}
  6106   ins_pipe(loadConP);
  6107 %}
  6108 #else
  6109 instruct loadConP_set(iRegP dst, immP_set con) %{
  6110   match(Set dst con);
  6111   ins_cost(DEFAULT_COST * 3/2);
  6112   format %{ "SET    $con,$dst\t! ptr" %}
  6113   ins_encode %{
  6114     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6115       intptr_t val = $con$$constant;
  6116     if (constant_reloc == relocInfo::oop_type) {
  6117       __ set_oop_constant((jobject) val, $dst$$Register);
  6118     } else if (constant_reloc == relocInfo::metadata_type) {
  6119       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6120     } else {          // non-oop pointers, e.g. card mark base, heap top
  6121       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6122       __ set(val, $dst$$Register);
  6124   %}
  6125   ins_pipe(loadConP);
  6126 %}
  6128 instruct loadConP_load(iRegP dst, immP_load con) %{
  6129   match(Set dst con);
  6130   ins_cost(MEMORY_REF_COST);
  6131   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6132   ins_encode %{
  6133     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6134     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6135   %}
  6136   ins_pipe(loadConP);
  6137 %}
  6139 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6140   match(Set dst con);
  6141   ins_cost(DEFAULT_COST * 3/2);
  6142   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6143   ins_encode %{
  6144     __ set($con$$constant, $dst$$Register);
  6145   %}
  6146   ins_pipe(loadConP);
  6147 %}
  6148 #endif // _LP64
  6150 instruct loadConP0(iRegP dst, immP0 src) %{
  6151   match(Set dst src);
  6153   size(4);
  6154   format %{ "CLR    $dst\t!ptr" %}
  6155   ins_encode %{
  6156     __ clr($dst$$Register);
  6157   %}
  6158   ins_pipe(ialu_imm);
  6159 %}
  6161 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6162   match(Set dst src);
  6163   ins_cost(DEFAULT_COST);
  6164   format %{ "SET    $src,$dst\t!ptr" %}
  6165   ins_encode %{
  6166     AddressLiteral polling_page(os::get_polling_page());
  6167     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6168   %}
  6169   ins_pipe(loadConP_poll);
  6170 %}
  6172 instruct loadConN0(iRegN dst, immN0 src) %{
  6173   match(Set dst src);
  6175   size(4);
  6176   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6177   ins_encode %{
  6178     __ clr($dst$$Register);
  6179   %}
  6180   ins_pipe(ialu_imm);
  6181 %}
  6183 instruct loadConN(iRegN dst, immN src) %{
  6184   match(Set dst src);
  6185   ins_cost(DEFAULT_COST * 3/2);
  6186   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6187   ins_encode %{
  6188     Register dst = $dst$$Register;
  6189     __ set_narrow_oop((jobject)$src$$constant, dst);
  6190   %}
  6191   ins_pipe(ialu_hi_lo_reg);
  6192 %}
  6194 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6195   match(Set dst src);
  6196   ins_cost(DEFAULT_COST * 3/2);
  6197   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6198   ins_encode %{
  6199     Register dst = $dst$$Register;
  6200     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6201   %}
  6202   ins_pipe(ialu_hi_lo_reg);
  6203 %}
  6205 // Materialize long value (predicated by immL_cheap).
  6206 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6207   match(Set dst con);
  6208   effect(KILL tmp);
  6209   ins_cost(DEFAULT_COST * 3);
  6210   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6211   ins_encode %{
  6212     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6213   %}
  6214   ins_pipe(loadConL);
  6215 %}
  6217 // Load long value from constant table (predicated by immL_expensive).
  6218 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6219   match(Set dst con);
  6220   ins_cost(MEMORY_REF_COST);
  6221   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6222   ins_encode %{
  6223       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6224     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6225   %}
  6226   ins_pipe(loadConL);
  6227 %}
  6229 instruct loadConL0( iRegL dst, immL0 src ) %{
  6230   match(Set dst src);
  6231   ins_cost(DEFAULT_COST);
  6232   size(4);
  6233   format %{ "CLR    $dst\t! long" %}
  6234   ins_encode( Set13( src, dst ) );
  6235   ins_pipe(ialu_imm);
  6236 %}
  6238 instruct loadConL13( iRegL dst, immL13 src ) %{
  6239   match(Set dst src);
  6240   ins_cost(DEFAULT_COST * 2);
  6242   size(4);
  6243   format %{ "MOV    $src,$dst\t! long" %}
  6244   ins_encode( Set13( src, dst ) );
  6245   ins_pipe(ialu_imm);
  6246 %}
  6248 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6249   match(Set dst con);
  6250   effect(KILL tmp);
  6251   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6252   ins_encode %{
  6253       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6254     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6255   %}
  6256   ins_pipe(loadConFD);
  6257 %}
  6259 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6260   match(Set dst con);
  6261   effect(KILL tmp);
  6262   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6263   ins_encode %{
  6264     // XXX This is a quick fix for 6833573.
  6265     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6266     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6267     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6268   %}
  6269   ins_pipe(loadConFD);
  6270 %}
  6272 // Prefetch instructions.
  6273 // Must be safe to execute with invalid address (cannot fault).
  6275 instruct prefetchr( memory mem ) %{
  6276   match( PrefetchRead mem );
  6277   ins_cost(MEMORY_REF_COST);
  6278   size(4);
  6280   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6281   opcode(Assembler::prefetch_op3);
  6282   ins_encode( form3_mem_prefetch_read( mem ) );
  6283   ins_pipe(iload_mem);
  6284 %}
  6286 instruct prefetchw( memory mem ) %{
  6287   match( PrefetchWrite mem );
  6288   ins_cost(MEMORY_REF_COST);
  6289   size(4);
  6291   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6292   opcode(Assembler::prefetch_op3);
  6293   ins_encode( form3_mem_prefetch_write( mem ) );
  6294   ins_pipe(iload_mem);
  6295 %}
  6297 // Prefetch instructions for allocation.
  6299 instruct prefetchAlloc( memory mem ) %{
  6300   predicate(AllocatePrefetchInstr == 0);
  6301   match( PrefetchAllocation mem );
  6302   ins_cost(MEMORY_REF_COST);
  6303   size(4);
  6305   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6306   opcode(Assembler::prefetch_op3);
  6307   ins_encode( form3_mem_prefetch_write( mem ) );
  6308   ins_pipe(iload_mem);
  6309 %}
  6311 // Use BIS instruction to prefetch for allocation.
  6312 // Could fault, need space at the end of TLAB.
  6313 instruct prefetchAlloc_bis( iRegP dst ) %{
  6314   predicate(AllocatePrefetchInstr == 1);
  6315   match( PrefetchAllocation dst );
  6316   ins_cost(MEMORY_REF_COST);
  6317   size(4);
  6319   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6320   ins_encode %{
  6321     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6322   %}
  6323   ins_pipe(istore_mem_reg);
  6324 %}
  6326 // Next code is used for finding next cache line address to prefetch.
  6327 #ifndef _LP64
  6328 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6329   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6330   ins_cost(DEFAULT_COST);
  6331   size(4);
  6333   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6334   ins_encode %{
  6335     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6336   %}
  6337   ins_pipe(ialu_reg_imm);
  6338 %}
  6339 #else
  6340 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6341   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6342   ins_cost(DEFAULT_COST);
  6343   size(4);
  6345   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6346   ins_encode %{
  6347     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6348   %}
  6349   ins_pipe(ialu_reg_imm);
  6350 %}
  6351 #endif
  6353 //----------Store Instructions-------------------------------------------------
  6354 // Store Byte
  6355 instruct storeB(memory mem, iRegI src) %{
  6356   match(Set mem (StoreB mem src));
  6357   ins_cost(MEMORY_REF_COST);
  6359   size(4);
  6360   format %{ "STB    $src,$mem\t! byte" %}
  6361   opcode(Assembler::stb_op3);
  6362   ins_encode(simple_form3_mem_reg( mem, src ) );
  6363   ins_pipe(istore_mem_reg);
  6364 %}
  6366 instruct storeB0(memory mem, immI0 src) %{
  6367   match(Set mem (StoreB mem src));
  6368   ins_cost(MEMORY_REF_COST);
  6370   size(4);
  6371   format %{ "STB    $src,$mem\t! byte" %}
  6372   opcode(Assembler::stb_op3);
  6373   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6374   ins_pipe(istore_mem_zero);
  6375 %}
  6377 instruct storeCM0(memory mem, immI0 src) %{
  6378   match(Set mem (StoreCM mem src));
  6379   ins_cost(MEMORY_REF_COST);
  6381   size(4);
  6382   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6383   opcode(Assembler::stb_op3);
  6384   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6385   ins_pipe(istore_mem_zero);
  6386 %}
  6388 // Store Char/Short
  6389 instruct storeC(memory mem, iRegI src) %{
  6390   match(Set mem (StoreC mem src));
  6391   ins_cost(MEMORY_REF_COST);
  6393   size(4);
  6394   format %{ "STH    $src,$mem\t! short" %}
  6395   opcode(Assembler::sth_op3);
  6396   ins_encode(simple_form3_mem_reg( mem, src ) );
  6397   ins_pipe(istore_mem_reg);
  6398 %}
  6400 instruct storeC0(memory mem, immI0 src) %{
  6401   match(Set mem (StoreC mem src));
  6402   ins_cost(MEMORY_REF_COST);
  6404   size(4);
  6405   format %{ "STH    $src,$mem\t! short" %}
  6406   opcode(Assembler::sth_op3);
  6407   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6408   ins_pipe(istore_mem_zero);
  6409 %}
  6411 // Store Integer
  6412 instruct storeI(memory mem, iRegI src) %{
  6413   match(Set mem (StoreI mem src));
  6414   ins_cost(MEMORY_REF_COST);
  6416   size(4);
  6417   format %{ "STW    $src,$mem" %}
  6418   opcode(Assembler::stw_op3);
  6419   ins_encode(simple_form3_mem_reg( mem, src ) );
  6420   ins_pipe(istore_mem_reg);
  6421 %}
  6423 // Store Long
  6424 instruct storeL(memory mem, iRegL src) %{
  6425   match(Set mem (StoreL mem src));
  6426   ins_cost(MEMORY_REF_COST);
  6427   size(4);
  6428   format %{ "STX    $src,$mem\t! long" %}
  6429   opcode(Assembler::stx_op3);
  6430   ins_encode(simple_form3_mem_reg( mem, src ) );
  6431   ins_pipe(istore_mem_reg);
  6432 %}
  6434 instruct storeI0(memory mem, immI0 src) %{
  6435   match(Set mem (StoreI mem src));
  6436   ins_cost(MEMORY_REF_COST);
  6438   size(4);
  6439   format %{ "STW    $src,$mem" %}
  6440   opcode(Assembler::stw_op3);
  6441   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6442   ins_pipe(istore_mem_zero);
  6443 %}
  6445 instruct storeL0(memory mem, immL0 src) %{
  6446   match(Set mem (StoreL mem src));
  6447   ins_cost(MEMORY_REF_COST);
  6449   size(4);
  6450   format %{ "STX    $src,$mem" %}
  6451   opcode(Assembler::stx_op3);
  6452   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6453   ins_pipe(istore_mem_zero);
  6454 %}
  6456 // Store Integer from float register (used after fstoi)
  6457 instruct storeI_Freg(memory mem, regF src) %{
  6458   match(Set mem (StoreI mem src));
  6459   ins_cost(MEMORY_REF_COST);
  6461   size(4);
  6462   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6463   opcode(Assembler::stf_op3);
  6464   ins_encode(simple_form3_mem_reg( mem, src ) );
  6465   ins_pipe(fstoreF_mem_reg);
  6466 %}
  6468 // Store Pointer
  6469 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6470   match(Set dst (StoreP dst src));
  6471   ins_cost(MEMORY_REF_COST);
  6472   size(4);
  6474 #ifndef _LP64
  6475   format %{ "STW    $src,$dst\t! ptr" %}
  6476   opcode(Assembler::stw_op3, 0, REGP_OP);
  6477 #else
  6478   format %{ "STX    $src,$dst\t! ptr" %}
  6479   opcode(Assembler::stx_op3, 0, REGP_OP);
  6480 #endif
  6481   ins_encode( form3_mem_reg( dst, src ) );
  6482   ins_pipe(istore_mem_spORreg);
  6483 %}
  6485 instruct storeP0(memory dst, immP0 src) %{
  6486   match(Set dst (StoreP dst src));
  6487   ins_cost(MEMORY_REF_COST);
  6488   size(4);
  6490 #ifndef _LP64
  6491   format %{ "STW    $src,$dst\t! ptr" %}
  6492   opcode(Assembler::stw_op3, 0, REGP_OP);
  6493 #else
  6494   format %{ "STX    $src,$dst\t! ptr" %}
  6495   opcode(Assembler::stx_op3, 0, REGP_OP);
  6496 #endif
  6497   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6498   ins_pipe(istore_mem_zero);
  6499 %}
  6501 // Store Compressed Pointer
  6502 instruct storeN(memory dst, iRegN src) %{
  6503    match(Set dst (StoreN dst src));
  6504    ins_cost(MEMORY_REF_COST);
  6505    size(4);
  6507    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6508    ins_encode %{
  6509      Register base = as_Register($dst$$base);
  6510      Register index = as_Register($dst$$index);
  6511      Register src = $src$$Register;
  6512      if (index != G0) {
  6513        __ stw(src, base, index);
  6514      } else {
  6515        __ stw(src, base, $dst$$disp);
  6517    %}
  6518    ins_pipe(istore_mem_spORreg);
  6519 %}
  6521 instruct storeNKlass(memory dst, iRegN src) %{
  6522    match(Set dst (StoreNKlass dst src));
  6523    ins_cost(MEMORY_REF_COST);
  6524    size(4);
  6526    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6527    ins_encode %{
  6528      Register base = as_Register($dst$$base);
  6529      Register index = as_Register($dst$$index);
  6530      Register src = $src$$Register;
  6531      if (index != G0) {
  6532        __ stw(src, base, index);
  6533      } else {
  6534        __ stw(src, base, $dst$$disp);
  6536    %}
  6537    ins_pipe(istore_mem_spORreg);
  6538 %}
  6540 instruct storeN0(memory dst, immN0 src) %{
  6541    match(Set dst (StoreN dst src));
  6542    ins_cost(MEMORY_REF_COST);
  6543    size(4);
  6545    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6546    ins_encode %{
  6547      Register base = as_Register($dst$$base);
  6548      Register index = as_Register($dst$$index);
  6549      if (index != G0) {
  6550        __ stw(0, base, index);
  6551      } else {
  6552        __ stw(0, base, $dst$$disp);
  6554    %}
  6555    ins_pipe(istore_mem_zero);
  6556 %}
  6558 // Store Double
  6559 instruct storeD( memory mem, regD src) %{
  6560   match(Set mem (StoreD mem src));
  6561   ins_cost(MEMORY_REF_COST);
  6563   size(4);
  6564   format %{ "STDF   $src,$mem" %}
  6565   opcode(Assembler::stdf_op3);
  6566   ins_encode(simple_form3_mem_reg( mem, src ) );
  6567   ins_pipe(fstoreD_mem_reg);
  6568 %}
  6570 instruct storeD0( memory mem, immD0 src) %{
  6571   match(Set mem (StoreD mem src));
  6572   ins_cost(MEMORY_REF_COST);
  6574   size(4);
  6575   format %{ "STX    $src,$mem" %}
  6576   opcode(Assembler::stx_op3);
  6577   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6578   ins_pipe(fstoreD_mem_zero);
  6579 %}
  6581 // Store Float
  6582 instruct storeF( memory mem, regF src) %{
  6583   match(Set mem (StoreF mem src));
  6584   ins_cost(MEMORY_REF_COST);
  6586   size(4);
  6587   format %{ "STF    $src,$mem" %}
  6588   opcode(Assembler::stf_op3);
  6589   ins_encode(simple_form3_mem_reg( mem, src ) );
  6590   ins_pipe(fstoreF_mem_reg);
  6591 %}
  6593 instruct storeF0( memory mem, immF0 src) %{
  6594   match(Set mem (StoreF mem src));
  6595   ins_cost(MEMORY_REF_COST);
  6597   size(4);
  6598   format %{ "STW    $src,$mem\t! storeF0" %}
  6599   opcode(Assembler::stw_op3);
  6600   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6601   ins_pipe(fstoreF_mem_zero);
  6602 %}
  6604 // Convert oop pointer into compressed form
  6605 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6606   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6607   match(Set dst (EncodeP src));
  6608   format %{ "encode_heap_oop $src, $dst" %}
  6609   ins_encode %{
  6610     __ encode_heap_oop($src$$Register, $dst$$Register);
  6611   %}
  6612   ins_pipe(ialu_reg);
  6613 %}
  6615 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6616   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6617   match(Set dst (EncodeP src));
  6618   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6619   ins_encode %{
  6620     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6621   %}
  6622   ins_pipe(ialu_reg);
  6623 %}
  6625 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6626   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6627             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6628   match(Set dst (DecodeN src));
  6629   format %{ "decode_heap_oop $src, $dst" %}
  6630   ins_encode %{
  6631     __ decode_heap_oop($src$$Register, $dst$$Register);
  6632   %}
  6633   ins_pipe(ialu_reg);
  6634 %}
  6636 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6637   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6638             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6639   match(Set dst (DecodeN src));
  6640   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6641   ins_encode %{
  6642     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6643   %}
  6644   ins_pipe(ialu_reg);
  6645 %}
  6647 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6648   match(Set dst (EncodePKlass src));
  6649   format %{ "encode_klass_not_null $src, $dst" %}
  6650   ins_encode %{
  6651     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6652   %}
  6653   ins_pipe(ialu_reg);
  6654 %}
  6656 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6657   match(Set dst (DecodeNKlass src));
  6658   format %{ "decode_klass_not_null $src, $dst" %}
  6659   ins_encode %{
  6660     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6661   %}
  6662   ins_pipe(ialu_reg);
  6663 %}
  6665 //----------MemBar Instructions-----------------------------------------------
  6666 // Memory barrier flavors
  6668 instruct membar_acquire() %{
  6669   match(MemBarAcquire);
  6670   match(LoadFence);
  6671   ins_cost(4*MEMORY_REF_COST);
  6673   size(0);
  6674   format %{ "MEMBAR-acquire" %}
  6675   ins_encode( enc_membar_acquire );
  6676   ins_pipe(long_memory_op);
  6677 %}
  6679 instruct membar_acquire_lock() %{
  6680   match(MemBarAcquireLock);
  6681   ins_cost(0);
  6683   size(0);
  6684   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6685   ins_encode( );
  6686   ins_pipe(empty);
  6687 %}
  6689 instruct membar_release() %{
  6690   match(MemBarRelease);
  6691   match(StoreFence);
  6692   ins_cost(4*MEMORY_REF_COST);
  6694   size(0);
  6695   format %{ "MEMBAR-release" %}
  6696   ins_encode( enc_membar_release );
  6697   ins_pipe(long_memory_op);
  6698 %}
  6700 instruct membar_release_lock() %{
  6701   match(MemBarReleaseLock);
  6702   ins_cost(0);
  6704   size(0);
  6705   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6706   ins_encode( );
  6707   ins_pipe(empty);
  6708 %}
  6710 instruct membar_volatile() %{
  6711   match(MemBarVolatile);
  6712   ins_cost(4*MEMORY_REF_COST);
  6714   size(4);
  6715   format %{ "MEMBAR-volatile" %}
  6716   ins_encode( enc_membar_volatile );
  6717   ins_pipe(long_memory_op);
  6718 %}
  6720 instruct unnecessary_membar_volatile() %{
  6721   match(MemBarVolatile);
  6722   predicate(Matcher::post_store_load_barrier(n));
  6723   ins_cost(0);
  6725   size(0);
  6726   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6727   ins_encode( );
  6728   ins_pipe(empty);
  6729 %}
  6731 instruct membar_storestore() %{
  6732   match(MemBarStoreStore);
  6733   ins_cost(0);
  6735   size(0);
  6736   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6737   ins_encode( );
  6738   ins_pipe(empty);
  6739 %}
  6741 //----------Register Move Instructions-----------------------------------------
  6742 instruct roundDouble_nop(regD dst) %{
  6743   match(Set dst (RoundDouble dst));
  6744   ins_cost(0);
  6745   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6746   ins_encode( );
  6747   ins_pipe(empty);
  6748 %}
  6751 instruct roundFloat_nop(regF dst) %{
  6752   match(Set dst (RoundFloat dst));
  6753   ins_cost(0);
  6754   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6755   ins_encode( );
  6756   ins_pipe(empty);
  6757 %}
  6760 // Cast Index to Pointer for unsafe natives
  6761 instruct castX2P(iRegX src, iRegP dst) %{
  6762   match(Set dst (CastX2P src));
  6764   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6765   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6766   ins_pipe(ialu_reg);
  6767 %}
  6769 // Cast Pointer to Index for unsafe natives
  6770 instruct castP2X(iRegP src, iRegX dst) %{
  6771   match(Set dst (CastP2X src));
  6773   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6774   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6775   ins_pipe(ialu_reg);
  6776 %}
  6778 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6779   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6780   match(Set stkSlot src);   // chain rule
  6781   ins_cost(MEMORY_REF_COST);
  6782   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6783   opcode(Assembler::stdf_op3);
  6784   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6785   ins_pipe(fstoreD_stk_reg);
  6786 %}
  6788 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6789   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6790   match(Set dst stkSlot);   // chain rule
  6791   ins_cost(MEMORY_REF_COST);
  6792   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6793   opcode(Assembler::lddf_op3);
  6794   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6795   ins_pipe(floadD_stk);
  6796 %}
  6798 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6799   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6800   match(Set stkSlot src);   // chain rule
  6801   ins_cost(MEMORY_REF_COST);
  6802   format %{ "STF   $src,$stkSlot\t!stk" %}
  6803   opcode(Assembler::stf_op3);
  6804   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6805   ins_pipe(fstoreF_stk_reg);
  6806 %}
  6808 //----------Conditional Move---------------------------------------------------
  6809 // Conditional move
  6810 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6811   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6812   ins_cost(150);
  6813   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6814   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6815   ins_pipe(ialu_reg);
  6816 %}
  6818 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6819   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6820   ins_cost(140);
  6821   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6822   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6823   ins_pipe(ialu_imm);
  6824 %}
  6826 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6827   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6828   ins_cost(150);
  6829   size(4);
  6830   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6831   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6832   ins_pipe(ialu_reg);
  6833 %}
  6835 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6836   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6837   ins_cost(140);
  6838   size(4);
  6839   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6840   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6841   ins_pipe(ialu_imm);
  6842 %}
  6844 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6845   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6846   ins_cost(150);
  6847   size(4);
  6848   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6850   ins_pipe(ialu_reg);
  6851 %}
  6853 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6854   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6855   ins_cost(140);
  6856   size(4);
  6857   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6858   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6859   ins_pipe(ialu_imm);
  6860 %}
  6862 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6863   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6864   ins_cost(150);
  6865   size(4);
  6866   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6867   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6868   ins_pipe(ialu_reg);
  6869 %}
  6871 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6872   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6873   ins_cost(140);
  6874   size(4);
  6875   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6876   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6877   ins_pipe(ialu_imm);
  6878 %}
  6880 // Conditional move for RegN. Only cmov(reg,reg).
  6881 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6882   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6883   ins_cost(150);
  6884   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6885   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6886   ins_pipe(ialu_reg);
  6887 %}
  6889 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6890 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6891   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6892   ins_cost(150);
  6893   size(4);
  6894   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6895   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6896   ins_pipe(ialu_reg);
  6897 %}
  6899 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6900 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6901   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6902   ins_cost(150);
  6903   size(4);
  6904   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6905   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6906   ins_pipe(ialu_reg);
  6907 %}
  6909 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6910   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6911   ins_cost(150);
  6912   size(4);
  6913   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6914   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6915   ins_pipe(ialu_reg);
  6916 %}
  6918 // Conditional move
  6919 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6920   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6921   ins_cost(150);
  6922   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6924   ins_pipe(ialu_reg);
  6925 %}
  6927 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6928   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6929   ins_cost(140);
  6930   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6931   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6932   ins_pipe(ialu_imm);
  6933 %}
  6935 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6936 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6937   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6938   ins_cost(150);
  6940   size(4);
  6941   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6942   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6943   ins_pipe(ialu_reg);
  6944 %}
  6946 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6947   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6948   ins_cost(150);
  6950   size(4);
  6951   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6952   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6953   ins_pipe(ialu_reg);
  6954 %}
  6956 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6957   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6958   ins_cost(140);
  6960   size(4);
  6961   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6962   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6963   ins_pipe(ialu_imm);
  6964 %}
  6966 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6967   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6968   ins_cost(140);
  6970   size(4);
  6971   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6972   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6973   ins_pipe(ialu_imm);
  6974 %}
  6976 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6977   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6978   ins_cost(150);
  6979   size(4);
  6980   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6981   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6982   ins_pipe(ialu_imm);
  6983 %}
  6985 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6986   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6987   ins_cost(140);
  6988   size(4);
  6989   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6990   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6991   ins_pipe(ialu_imm);
  6992 %}
  6994 // Conditional move
  6995 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6996   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6997   ins_cost(150);
  6998   opcode(0x101);
  6999   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7000   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7001   ins_pipe(int_conditional_float_move);
  7002 %}
  7004 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  7005   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7006   ins_cost(150);
  7008   size(4);
  7009   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7010   opcode(0x101);
  7011   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7012   ins_pipe(int_conditional_float_move);
  7013 %}
  7015 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  7016   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  7017   ins_cost(150);
  7019   size(4);
  7020   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7021   opcode(0x101);
  7022   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7023   ins_pipe(int_conditional_float_move);
  7024 %}
  7026 // Conditional move,
  7027 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7028   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7029   ins_cost(150);
  7030   size(4);
  7031   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7032   opcode(0x1);
  7033   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7034   ins_pipe(int_conditional_double_move);
  7035 %}
  7037 // Conditional move
  7038 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7039   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7040   ins_cost(150);
  7041   size(4);
  7042   opcode(0x102);
  7043   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7044   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7045   ins_pipe(int_conditional_double_move);
  7046 %}
  7048 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7049   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7050   ins_cost(150);
  7052   size(4);
  7053   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7054   opcode(0x102);
  7055   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7056   ins_pipe(int_conditional_double_move);
  7057 %}
  7059 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7060   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7061   ins_cost(150);
  7063   size(4);
  7064   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7065   opcode(0x102);
  7066   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7067   ins_pipe(int_conditional_double_move);
  7068 %}
  7070 // Conditional move,
  7071 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7072   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7073   ins_cost(150);
  7074   size(4);
  7075   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7076   opcode(0x2);
  7077   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7078   ins_pipe(int_conditional_double_move);
  7079 %}
  7081 // Conditional move
  7082 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7083   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7084   ins_cost(150);
  7085   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7086   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7087   ins_pipe(ialu_reg);
  7088 %}
  7090 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7091   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7092   ins_cost(140);
  7093   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7094   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7095   ins_pipe(ialu_imm);
  7096 %}
  7098 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7099   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7100   ins_cost(150);
  7102   size(4);
  7103   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7104   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7105   ins_pipe(ialu_reg);
  7106 %}
  7109 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7110   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7111   ins_cost(150);
  7113   size(4);
  7114   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7115   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7116   ins_pipe(ialu_reg);
  7117 %}
  7120 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7121   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7122   ins_cost(150);
  7124   size(4);
  7125   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7126   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7127   ins_pipe(ialu_reg);
  7128 %}
  7132 //----------OS and Locking Instructions----------------------------------------
  7134 // This name is KNOWN by the ADLC and cannot be changed.
  7135 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7136 // for this guy.
  7137 instruct tlsLoadP(g2RegP dst) %{
  7138   match(Set dst (ThreadLocal));
  7140   size(0);
  7141   ins_cost(0);
  7142   format %{ "# TLS is in G2" %}
  7143   ins_encode( /*empty encoding*/ );
  7144   ins_pipe(ialu_none);
  7145 %}
  7147 instruct checkCastPP( iRegP dst ) %{
  7148   match(Set dst (CheckCastPP dst));
  7150   size(0);
  7151   format %{ "# checkcastPP of $dst" %}
  7152   ins_encode( /*empty encoding*/ );
  7153   ins_pipe(empty);
  7154 %}
  7157 instruct castPP( iRegP dst ) %{
  7158   match(Set dst (CastPP dst));
  7159   format %{ "# castPP of $dst" %}
  7160   ins_encode( /*empty encoding*/ );
  7161   ins_pipe(empty);
  7162 %}
  7164 instruct castII( iRegI dst ) %{
  7165   match(Set dst (CastII dst));
  7166   format %{ "# castII of $dst" %}
  7167   ins_encode( /*empty encoding*/ );
  7168   ins_cost(0);
  7169   ins_pipe(empty);
  7170 %}
  7172 //----------Arithmetic Instructions--------------------------------------------
  7173 // Addition Instructions
  7174 // Register Addition
  7175 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7176   match(Set dst (AddI src1 src2));
  7178   size(4);
  7179   format %{ "ADD    $src1,$src2,$dst" %}
  7180   ins_encode %{
  7181     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7182   %}
  7183   ins_pipe(ialu_reg_reg);
  7184 %}
  7186 // Immediate Addition
  7187 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7188   match(Set dst (AddI src1 src2));
  7190   size(4);
  7191   format %{ "ADD    $src1,$src2,$dst" %}
  7192   opcode(Assembler::add_op3, Assembler::arith_op);
  7193   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7194   ins_pipe(ialu_reg_imm);
  7195 %}
  7197 // Pointer Register Addition
  7198 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7199   match(Set dst (AddP src1 src2));
  7201   size(4);
  7202   format %{ "ADD    $src1,$src2,$dst" %}
  7203   opcode(Assembler::add_op3, Assembler::arith_op);
  7204   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7205   ins_pipe(ialu_reg_reg);
  7206 %}
  7208 // Pointer Immediate Addition
  7209 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7210   match(Set dst (AddP src1 src2));
  7212   size(4);
  7213   format %{ "ADD    $src1,$src2,$dst" %}
  7214   opcode(Assembler::add_op3, Assembler::arith_op);
  7215   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7216   ins_pipe(ialu_reg_imm);
  7217 %}
  7219 // Long Addition
  7220 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7221   match(Set dst (AddL src1 src2));
  7223   size(4);
  7224   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7225   opcode(Assembler::add_op3, Assembler::arith_op);
  7226   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7227   ins_pipe(ialu_reg_reg);
  7228 %}
  7230 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7231   match(Set dst (AddL src1 con));
  7233   size(4);
  7234   format %{ "ADD    $src1,$con,$dst" %}
  7235   opcode(Assembler::add_op3, Assembler::arith_op);
  7236   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7237   ins_pipe(ialu_reg_imm);
  7238 %}
  7240 //----------Conditional_store--------------------------------------------------
  7241 // Conditional-store of the updated heap-top.
  7242 // Used during allocation of the shared heap.
  7243 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7245 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7246 instruct loadPLocked(iRegP dst, memory mem) %{
  7247   match(Set dst (LoadPLocked mem));
  7248   ins_cost(MEMORY_REF_COST);
  7250 #ifndef _LP64
  7251   size(4);
  7252   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7253   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7254 #else
  7255   format %{ "LDX    $mem,$dst\t! ptr" %}
  7256   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7257 #endif
  7258   ins_encode( form3_mem_reg( mem, dst ) );
  7259   ins_pipe(iload_mem);
  7260 %}
  7262 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7263   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7264   effect( KILL newval );
  7265   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7266             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7267   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7268   ins_pipe( long_memory_op );
  7269 %}
  7271 // Conditional-store of an int value.
  7272 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7273   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7274   effect( KILL newval );
  7275   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7276             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7277   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7278   ins_pipe( long_memory_op );
  7279 %}
  7281 // Conditional-store of a long value.
  7282 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7283   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7284   effect( KILL newval );
  7285   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7286             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7287   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7288   ins_pipe( long_memory_op );
  7289 %}
  7291 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7293 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7294   predicate(VM_Version::supports_cx8());
  7295   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7296   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7297   format %{
  7298             "MOV    $newval,O7\n\t"
  7299             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7300             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7301             "MOV    1,$res\n\t"
  7302             "MOVne  xcc,R_G0,$res"
  7303   %}
  7304   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7305               enc_lflags_ne_to_boolean(res) );
  7306   ins_pipe( long_memory_op );
  7307 %}
  7310 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7311   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7312   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7313   format %{
  7314             "MOV    $newval,O7\n\t"
  7315             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7316             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7317             "MOV    1,$res\n\t"
  7318             "MOVne  icc,R_G0,$res"
  7319   %}
  7320   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7321               enc_iflags_ne_to_boolean(res) );
  7322   ins_pipe( long_memory_op );
  7323 %}
  7325 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7326 #ifdef _LP64
  7327   predicate(VM_Version::supports_cx8());
  7328 #endif
  7329   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7330   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7331   format %{
  7332             "MOV    $newval,O7\n\t"
  7333             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7334             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7335             "MOV    1,$res\n\t"
  7336             "MOVne  xcc,R_G0,$res"
  7337   %}
  7338 #ifdef _LP64
  7339   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7340               enc_lflags_ne_to_boolean(res) );
  7341 #else
  7342   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7343               enc_iflags_ne_to_boolean(res) );
  7344 #endif
  7345   ins_pipe( long_memory_op );
  7346 %}
  7348 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7349   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7350   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7351   format %{
  7352             "MOV    $newval,O7\n\t"
  7353             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7354             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7355             "MOV    1,$res\n\t"
  7356             "MOVne  icc,R_G0,$res"
  7357   %}
  7358   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7359               enc_iflags_ne_to_boolean(res) );
  7360   ins_pipe( long_memory_op );
  7361 %}
  7363 instruct xchgI( memory mem, iRegI newval) %{
  7364   match(Set newval (GetAndSetI mem newval));
  7365   format %{ "SWAP  [$mem],$newval" %}
  7366   size(4);
  7367   ins_encode %{
  7368     __ swap($mem$$Address, $newval$$Register);
  7369   %}
  7370   ins_pipe( long_memory_op );
  7371 %}
  7373 #ifndef _LP64
  7374 instruct xchgP( memory mem, iRegP newval) %{
  7375   match(Set newval (GetAndSetP mem newval));
  7376   format %{ "SWAP  [$mem],$newval" %}
  7377   size(4);
  7378   ins_encode %{
  7379     __ swap($mem$$Address, $newval$$Register);
  7380   %}
  7381   ins_pipe( long_memory_op );
  7382 %}
  7383 #endif
  7385 instruct xchgN( memory mem, iRegN newval) %{
  7386   match(Set newval (GetAndSetN mem newval));
  7387   format %{ "SWAP  [$mem],$newval" %}
  7388   size(4);
  7389   ins_encode %{
  7390     __ swap($mem$$Address, $newval$$Register);
  7391   %}
  7392   ins_pipe( long_memory_op );
  7393 %}
  7395 //---------------------
  7396 // Subtraction Instructions
  7397 // Register Subtraction
  7398 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7399   match(Set dst (SubI src1 src2));
  7401   size(4);
  7402   format %{ "SUB    $src1,$src2,$dst" %}
  7403   opcode(Assembler::sub_op3, Assembler::arith_op);
  7404   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7405   ins_pipe(ialu_reg_reg);
  7406 %}
  7408 // Immediate Subtraction
  7409 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7410   match(Set dst (SubI src1 src2));
  7412   size(4);
  7413   format %{ "SUB    $src1,$src2,$dst" %}
  7414   opcode(Assembler::sub_op3, Assembler::arith_op);
  7415   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7416   ins_pipe(ialu_reg_imm);
  7417 %}
  7419 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7420   match(Set dst (SubI zero src2));
  7422   size(4);
  7423   format %{ "NEG    $src2,$dst" %}
  7424   opcode(Assembler::sub_op3, Assembler::arith_op);
  7425   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7426   ins_pipe(ialu_zero_reg);
  7427 %}
  7429 // Long subtraction
  7430 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7431   match(Set dst (SubL src1 src2));
  7433   size(4);
  7434   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7435   opcode(Assembler::sub_op3, Assembler::arith_op);
  7436   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7437   ins_pipe(ialu_reg_reg);
  7438 %}
  7440 // Immediate Subtraction
  7441 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7442   match(Set dst (SubL src1 con));
  7444   size(4);
  7445   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7446   opcode(Assembler::sub_op3, Assembler::arith_op);
  7447   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7448   ins_pipe(ialu_reg_imm);
  7449 %}
  7451 // Long negation
  7452 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7453   match(Set dst (SubL zero src2));
  7455   size(4);
  7456   format %{ "NEG    $src2,$dst\t! long" %}
  7457   opcode(Assembler::sub_op3, Assembler::arith_op);
  7458   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7459   ins_pipe(ialu_zero_reg);
  7460 %}
  7462 // Multiplication Instructions
  7463 // Integer Multiplication
  7464 // Register Multiplication
  7465 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7466   match(Set dst (MulI src1 src2));
  7468   size(4);
  7469   format %{ "MULX   $src1,$src2,$dst" %}
  7470   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7471   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7472   ins_pipe(imul_reg_reg);
  7473 %}
  7475 // Immediate Multiplication
  7476 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7477   match(Set dst (MulI src1 src2));
  7479   size(4);
  7480   format %{ "MULX   $src1,$src2,$dst" %}
  7481   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7482   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7483   ins_pipe(imul_reg_imm);
  7484 %}
  7486 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7487   match(Set dst (MulL src1 src2));
  7488   ins_cost(DEFAULT_COST * 5);
  7489   size(4);
  7490   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7491   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7492   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7493   ins_pipe(mulL_reg_reg);
  7494 %}
  7496 // Immediate Multiplication
  7497 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7498   match(Set dst (MulL src1 src2));
  7499   ins_cost(DEFAULT_COST * 5);
  7500   size(4);
  7501   format %{ "MULX   $src1,$src2,$dst" %}
  7502   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7503   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7504   ins_pipe(mulL_reg_imm);
  7505 %}
  7507 // Integer Division
  7508 // Register Division
  7509 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7510   match(Set dst (DivI src1 src2));
  7511   ins_cost((2+71)*DEFAULT_COST);
  7513   format %{ "SRA     $src2,0,$src2\n\t"
  7514             "SRA     $src1,0,$src1\n\t"
  7515             "SDIVX   $src1,$src2,$dst" %}
  7516   ins_encode( idiv_reg( src1, src2, dst ) );
  7517   ins_pipe(sdiv_reg_reg);
  7518 %}
  7520 // Immediate Division
  7521 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7522   match(Set dst (DivI src1 src2));
  7523   ins_cost((2+71)*DEFAULT_COST);
  7525   format %{ "SRA     $src1,0,$src1\n\t"
  7526             "SDIVX   $src1,$src2,$dst" %}
  7527   ins_encode( idiv_imm( src1, src2, dst ) );
  7528   ins_pipe(sdiv_reg_imm);
  7529 %}
  7531 //----------Div-By-10-Expansion------------------------------------------------
  7532 // Extract hi bits of a 32x32->64 bit multiply.
  7533 // Expand rule only, not matched
  7534 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7535   effect( DEF dst, USE src1, USE src2 );
  7536   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7537             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7538   ins_encode( enc_mul_hi(dst,src1,src2));
  7539   ins_pipe(sdiv_reg_reg);
  7540 %}
  7542 // Magic constant, reciprocal of 10
  7543 instruct loadConI_x66666667(iRegIsafe dst) %{
  7544   effect( DEF dst );
  7546   size(8);
  7547   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7548   ins_encode( Set32(0x66666667, dst) );
  7549   ins_pipe(ialu_hi_lo_reg);
  7550 %}
  7552 // Register Shift Right Arithmetic Long by 32-63
  7553 instruct sra_31( iRegI dst, iRegI src ) %{
  7554   effect( DEF dst, USE src );
  7555   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7556   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7557   ins_pipe(ialu_reg_reg);
  7558 %}
  7560 // Arithmetic Shift Right by 8-bit immediate
  7561 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7562   effect( DEF dst, USE src );
  7563   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7564   opcode(Assembler::sra_op3, Assembler::arith_op);
  7565   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7566   ins_pipe(ialu_reg_imm);
  7567 %}
  7569 // Integer DIV with 10
  7570 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7571   match(Set dst (DivI src div));
  7572   ins_cost((6+6)*DEFAULT_COST);
  7573   expand %{
  7574     iRegIsafe tmp1;               // Killed temps;
  7575     iRegIsafe tmp2;               // Killed temps;
  7576     iRegI tmp3;                   // Killed temps;
  7577     iRegI tmp4;                   // Killed temps;
  7578     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7579     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7580     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7581     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7582     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7583   %}
  7584 %}
  7586 // Register Long Division
  7587 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7588   match(Set dst (DivL src1 src2));
  7589   ins_cost(DEFAULT_COST*71);
  7590   size(4);
  7591   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7592   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7593   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7594   ins_pipe(divL_reg_reg);
  7595 %}
  7597 // Register Long Division
  7598 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7599   match(Set dst (DivL src1 src2));
  7600   ins_cost(DEFAULT_COST*71);
  7601   size(4);
  7602   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7603   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7604   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7605   ins_pipe(divL_reg_imm);
  7606 %}
  7608 // Integer Remainder
  7609 // Register Remainder
  7610 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7611   match(Set dst (ModI src1 src2));
  7612   effect( KILL ccr, KILL temp);
  7614   format %{ "SREM   $src1,$src2,$dst" %}
  7615   ins_encode( irem_reg(src1, src2, dst, temp) );
  7616   ins_pipe(sdiv_reg_reg);
  7617 %}
  7619 // Immediate Remainder
  7620 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7621   match(Set dst (ModI src1 src2));
  7622   effect( KILL ccr, KILL temp);
  7624   format %{ "SREM   $src1,$src2,$dst" %}
  7625   ins_encode( irem_imm(src1, src2, dst, temp) );
  7626   ins_pipe(sdiv_reg_imm);
  7627 %}
  7629 // Register Long Remainder
  7630 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7631   effect(DEF dst, USE src1, USE src2);
  7632   size(4);
  7633   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7634   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7635   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7636   ins_pipe(divL_reg_reg);
  7637 %}
  7639 // Register Long Division
  7640 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7641   effect(DEF dst, USE src1, USE src2);
  7642   size(4);
  7643   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7644   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7645   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7646   ins_pipe(divL_reg_imm);
  7647 %}
  7649 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7650   effect(DEF dst, USE src1, USE src2);
  7651   size(4);
  7652   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7653   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7654   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7655   ins_pipe(mulL_reg_reg);
  7656 %}
  7658 // Immediate Multiplication
  7659 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7660   effect(DEF dst, USE src1, USE src2);
  7661   size(4);
  7662   format %{ "MULX   $src1,$src2,$dst" %}
  7663   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7664   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7665   ins_pipe(mulL_reg_imm);
  7666 %}
  7668 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7669   effect(DEF dst, USE src1, USE src2);
  7670   size(4);
  7671   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7672   opcode(Assembler::sub_op3, Assembler::arith_op);
  7673   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7674   ins_pipe(ialu_reg_reg);
  7675 %}
  7677 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7678   effect(DEF dst, USE src1, USE src2);
  7679   size(4);
  7680   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7681   opcode(Assembler::sub_op3, Assembler::arith_op);
  7682   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7683   ins_pipe(ialu_reg_reg);
  7684 %}
  7686 // Register Long Remainder
  7687 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7688   match(Set dst (ModL src1 src2));
  7689   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7690   expand %{
  7691     iRegL tmp1;
  7692     iRegL tmp2;
  7693     divL_reg_reg_1(tmp1, src1, src2);
  7694     mulL_reg_reg_1(tmp2, tmp1, src2);
  7695     subL_reg_reg_1(dst,  src1, tmp2);
  7696   %}
  7697 %}
  7699 // Register Long Remainder
  7700 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7701   match(Set dst (ModL src1 src2));
  7702   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7703   expand %{
  7704     iRegL tmp1;
  7705     iRegL tmp2;
  7706     divL_reg_imm13_1(tmp1, src1, src2);
  7707     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7708     subL_reg_reg_2  (dst,  src1, tmp2);
  7709   %}
  7710 %}
  7712 // Integer Shift Instructions
  7713 // Register Shift Left
  7714 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7715   match(Set dst (LShiftI src1 src2));
  7717   size(4);
  7718   format %{ "SLL    $src1,$src2,$dst" %}
  7719   opcode(Assembler::sll_op3, Assembler::arith_op);
  7720   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7721   ins_pipe(ialu_reg_reg);
  7722 %}
  7724 // Register Shift Left Immediate
  7725 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7726   match(Set dst (LShiftI src1 src2));
  7728   size(4);
  7729   format %{ "SLL    $src1,$src2,$dst" %}
  7730   opcode(Assembler::sll_op3, Assembler::arith_op);
  7731   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7732   ins_pipe(ialu_reg_imm);
  7733 %}
  7735 // Register Shift Left
  7736 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7737   match(Set dst (LShiftL src1 src2));
  7739   size(4);
  7740   format %{ "SLLX   $src1,$src2,$dst" %}
  7741   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7742   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7743   ins_pipe(ialu_reg_reg);
  7744 %}
  7746 // Register Shift Left Immediate
  7747 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7748   match(Set dst (LShiftL src1 src2));
  7750   size(4);
  7751   format %{ "SLLX   $src1,$src2,$dst" %}
  7752   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7753   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7754   ins_pipe(ialu_reg_imm);
  7755 %}
  7757 // Register Arithmetic Shift Right
  7758 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7759   match(Set dst (RShiftI src1 src2));
  7760   size(4);
  7761   format %{ "SRA    $src1,$src2,$dst" %}
  7762   opcode(Assembler::sra_op3, Assembler::arith_op);
  7763   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7764   ins_pipe(ialu_reg_reg);
  7765 %}
  7767 // Register Arithmetic Shift Right Immediate
  7768 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7769   match(Set dst (RShiftI src1 src2));
  7771   size(4);
  7772   format %{ "SRA    $src1,$src2,$dst" %}
  7773   opcode(Assembler::sra_op3, Assembler::arith_op);
  7774   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7775   ins_pipe(ialu_reg_imm);
  7776 %}
  7778 // Register Shift Right Arithmatic Long
  7779 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7780   match(Set dst (RShiftL src1 src2));
  7782   size(4);
  7783   format %{ "SRAX   $src1,$src2,$dst" %}
  7784   opcode(Assembler::srax_op3, Assembler::arith_op);
  7785   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7786   ins_pipe(ialu_reg_reg);
  7787 %}
  7789 // Register Shift Left Immediate
  7790 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7791   match(Set dst (RShiftL src1 src2));
  7793   size(4);
  7794   format %{ "SRAX   $src1,$src2,$dst" %}
  7795   opcode(Assembler::srax_op3, Assembler::arith_op);
  7796   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7797   ins_pipe(ialu_reg_imm);
  7798 %}
  7800 // Register Shift Right
  7801 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7802   match(Set dst (URShiftI src1 src2));
  7804   size(4);
  7805   format %{ "SRL    $src1,$src2,$dst" %}
  7806   opcode(Assembler::srl_op3, Assembler::arith_op);
  7807   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7808   ins_pipe(ialu_reg_reg);
  7809 %}
  7811 // Register Shift Right Immediate
  7812 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7813   match(Set dst (URShiftI src1 src2));
  7815   size(4);
  7816   format %{ "SRL    $src1,$src2,$dst" %}
  7817   opcode(Assembler::srl_op3, Assembler::arith_op);
  7818   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7819   ins_pipe(ialu_reg_imm);
  7820 %}
  7822 // Register Shift Right
  7823 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7824   match(Set dst (URShiftL src1 src2));
  7826   size(4);
  7827   format %{ "SRLX   $src1,$src2,$dst" %}
  7828   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7829   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7830   ins_pipe(ialu_reg_reg);
  7831 %}
  7833 // Register Shift Right Immediate
  7834 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7835   match(Set dst (URShiftL src1 src2));
  7837   size(4);
  7838   format %{ "SRLX   $src1,$src2,$dst" %}
  7839   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7840   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7841   ins_pipe(ialu_reg_imm);
  7842 %}
  7844 // Register Shift Right Immediate with a CastP2X
  7845 #ifdef _LP64
  7846 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7847   match(Set dst (URShiftL (CastP2X src1) src2));
  7848   size(4);
  7849   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7850   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7851   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7852   ins_pipe(ialu_reg_imm);
  7853 %}
  7854 #else
  7855 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7856   match(Set dst (URShiftI (CastP2X src1) src2));
  7857   size(4);
  7858   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7859   opcode(Assembler::srl_op3, Assembler::arith_op);
  7860   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7861   ins_pipe(ialu_reg_imm);
  7862 %}
  7863 #endif
  7866 //----------Floating Point Arithmetic Instructions-----------------------------
  7868 //  Add float single precision
  7869 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7870   match(Set dst (AddF src1 src2));
  7872   size(4);
  7873   format %{ "FADDS  $src1,$src2,$dst" %}
  7874   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7875   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7876   ins_pipe(faddF_reg_reg);
  7877 %}
  7879 //  Add float double precision
  7880 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7881   match(Set dst (AddD src1 src2));
  7883   size(4);
  7884   format %{ "FADDD  $src1,$src2,$dst" %}
  7885   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7886   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7887   ins_pipe(faddD_reg_reg);
  7888 %}
  7890 //  Sub float single precision
  7891 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7892   match(Set dst (SubF src1 src2));
  7894   size(4);
  7895   format %{ "FSUBS  $src1,$src2,$dst" %}
  7896   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7897   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7898   ins_pipe(faddF_reg_reg);
  7899 %}
  7901 //  Sub float double precision
  7902 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7903   match(Set dst (SubD src1 src2));
  7905   size(4);
  7906   format %{ "FSUBD  $src1,$src2,$dst" %}
  7907   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7908   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7909   ins_pipe(faddD_reg_reg);
  7910 %}
  7912 //  Mul float single precision
  7913 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7914   match(Set dst (MulF src1 src2));
  7916   size(4);
  7917   format %{ "FMULS  $src1,$src2,$dst" %}
  7918   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7919   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7920   ins_pipe(fmulF_reg_reg);
  7921 %}
  7923 //  Mul float double precision
  7924 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7925   match(Set dst (MulD src1 src2));
  7927   size(4);
  7928   format %{ "FMULD  $src1,$src2,$dst" %}
  7929   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7930   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7931   ins_pipe(fmulD_reg_reg);
  7932 %}
  7934 //  Div float single precision
  7935 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7936   match(Set dst (DivF src1 src2));
  7938   size(4);
  7939   format %{ "FDIVS  $src1,$src2,$dst" %}
  7940   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7941   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7942   ins_pipe(fdivF_reg_reg);
  7943 %}
  7945 //  Div float double precision
  7946 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7947   match(Set dst (DivD src1 src2));
  7949   size(4);
  7950   format %{ "FDIVD  $src1,$src2,$dst" %}
  7951   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7952   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7953   ins_pipe(fdivD_reg_reg);
  7954 %}
  7956 //  Absolute float double precision
  7957 instruct absD_reg(regD dst, regD src) %{
  7958   match(Set dst (AbsD src));
  7960   format %{ "FABSd  $src,$dst" %}
  7961   ins_encode(fabsd(dst, src));
  7962   ins_pipe(faddD_reg);
  7963 %}
  7965 //  Absolute float single precision
  7966 instruct absF_reg(regF dst, regF src) %{
  7967   match(Set dst (AbsF src));
  7969   format %{ "FABSs  $src,$dst" %}
  7970   ins_encode(fabss(dst, src));
  7971   ins_pipe(faddF_reg);
  7972 %}
  7974 instruct negF_reg(regF dst, regF src) %{
  7975   match(Set dst (NegF src));
  7977   size(4);
  7978   format %{ "FNEGs  $src,$dst" %}
  7979   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7980   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7981   ins_pipe(faddF_reg);
  7982 %}
  7984 instruct negD_reg(regD dst, regD src) %{
  7985   match(Set dst (NegD src));
  7987   format %{ "FNEGd  $src,$dst" %}
  7988   ins_encode(fnegd(dst, src));
  7989   ins_pipe(faddD_reg);
  7990 %}
  7992 //  Sqrt float double precision
  7993 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7994   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7996   size(4);
  7997   format %{ "FSQRTS $src,$dst" %}
  7998   ins_encode(fsqrts(dst, src));
  7999   ins_pipe(fdivF_reg_reg);
  8000 %}
  8002 //  Sqrt float double precision
  8003 instruct sqrtD_reg_reg(regD dst, regD src) %{
  8004   match(Set dst (SqrtD src));
  8006   size(4);
  8007   format %{ "FSQRTD $src,$dst" %}
  8008   ins_encode(fsqrtd(dst, src));
  8009   ins_pipe(fdivD_reg_reg);
  8010 %}
  8012 //----------Logical Instructions-----------------------------------------------
  8013 // And Instructions
  8014 // Register And
  8015 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8016   match(Set dst (AndI src1 src2));
  8018   size(4);
  8019   format %{ "AND    $src1,$src2,$dst" %}
  8020   opcode(Assembler::and_op3, Assembler::arith_op);
  8021   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8022   ins_pipe(ialu_reg_reg);
  8023 %}
  8025 // Immediate And
  8026 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8027   match(Set dst (AndI src1 src2));
  8029   size(4);
  8030   format %{ "AND    $src1,$src2,$dst" %}
  8031   opcode(Assembler::and_op3, Assembler::arith_op);
  8032   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8033   ins_pipe(ialu_reg_imm);
  8034 %}
  8036 // Register And Long
  8037 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8038   match(Set dst (AndL src1 src2));
  8040   ins_cost(DEFAULT_COST);
  8041   size(4);
  8042   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8043   opcode(Assembler::and_op3, Assembler::arith_op);
  8044   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8045   ins_pipe(ialu_reg_reg);
  8046 %}
  8048 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8049   match(Set dst (AndL src1 con));
  8051   ins_cost(DEFAULT_COST);
  8052   size(4);
  8053   format %{ "AND    $src1,$con,$dst\t! long" %}
  8054   opcode(Assembler::and_op3, Assembler::arith_op);
  8055   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8056   ins_pipe(ialu_reg_imm);
  8057 %}
  8059 // Or Instructions
  8060 // Register Or
  8061 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8062   match(Set dst (OrI src1 src2));
  8064   size(4);
  8065   format %{ "OR     $src1,$src2,$dst" %}
  8066   opcode(Assembler::or_op3, Assembler::arith_op);
  8067   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8068   ins_pipe(ialu_reg_reg);
  8069 %}
  8071 // Immediate Or
  8072 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8073   match(Set dst (OrI src1 src2));
  8075   size(4);
  8076   format %{ "OR     $src1,$src2,$dst" %}
  8077   opcode(Assembler::or_op3, Assembler::arith_op);
  8078   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8079   ins_pipe(ialu_reg_imm);
  8080 %}
  8082 // Register Or Long
  8083 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8084   match(Set dst (OrL src1 src2));
  8086   ins_cost(DEFAULT_COST);
  8087   size(4);
  8088   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8089   opcode(Assembler::or_op3, Assembler::arith_op);
  8090   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8091   ins_pipe(ialu_reg_reg);
  8092 %}
  8094 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8095   match(Set dst (OrL src1 con));
  8096   ins_cost(DEFAULT_COST*2);
  8098   ins_cost(DEFAULT_COST);
  8099   size(4);
  8100   format %{ "OR     $src1,$con,$dst\t! long" %}
  8101   opcode(Assembler::or_op3, Assembler::arith_op);
  8102   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8103   ins_pipe(ialu_reg_imm);
  8104 %}
  8106 #ifndef _LP64
  8108 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8109 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8110   match(Set dst (OrI src1 (CastP2X src2)));
  8112   size(4);
  8113   format %{ "OR     $src1,$src2,$dst" %}
  8114   opcode(Assembler::or_op3, Assembler::arith_op);
  8115   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8116   ins_pipe(ialu_reg_reg);
  8117 %}
  8119 #else
  8121 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8122   match(Set dst (OrL src1 (CastP2X src2)));
  8124   ins_cost(DEFAULT_COST);
  8125   size(4);
  8126   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8127   opcode(Assembler::or_op3, Assembler::arith_op);
  8128   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8129   ins_pipe(ialu_reg_reg);
  8130 %}
  8132 #endif
  8134 // Xor Instructions
  8135 // Register Xor
  8136 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8137   match(Set dst (XorI src1 src2));
  8139   size(4);
  8140   format %{ "XOR    $src1,$src2,$dst" %}
  8141   opcode(Assembler::xor_op3, Assembler::arith_op);
  8142   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8143   ins_pipe(ialu_reg_reg);
  8144 %}
  8146 // Immediate Xor
  8147 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8148   match(Set dst (XorI src1 src2));
  8150   size(4);
  8151   format %{ "XOR    $src1,$src2,$dst" %}
  8152   opcode(Assembler::xor_op3, Assembler::arith_op);
  8153   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8154   ins_pipe(ialu_reg_imm);
  8155 %}
  8157 // Register Xor Long
  8158 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8159   match(Set dst (XorL src1 src2));
  8161   ins_cost(DEFAULT_COST);
  8162   size(4);
  8163   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8164   opcode(Assembler::xor_op3, Assembler::arith_op);
  8165   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8166   ins_pipe(ialu_reg_reg);
  8167 %}
  8169 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8170   match(Set dst (XorL src1 con));
  8172   ins_cost(DEFAULT_COST);
  8173   size(4);
  8174   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8175   opcode(Assembler::xor_op3, Assembler::arith_op);
  8176   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8177   ins_pipe(ialu_reg_imm);
  8178 %}
  8180 //----------Convert to Boolean-------------------------------------------------
  8181 // Nice hack for 32-bit tests but doesn't work for
  8182 // 64-bit pointers.
  8183 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8184   match(Set dst (Conv2B src));
  8185   effect( KILL ccr );
  8186   ins_cost(DEFAULT_COST*2);
  8187   format %{ "CMP    R_G0,$src\n\t"
  8188             "ADDX   R_G0,0,$dst" %}
  8189   ins_encode( enc_to_bool( src, dst ) );
  8190   ins_pipe(ialu_reg_ialu);
  8191 %}
  8193 #ifndef _LP64
  8194 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8195   match(Set dst (Conv2B src));
  8196   effect( KILL ccr );
  8197   ins_cost(DEFAULT_COST*2);
  8198   format %{ "CMP    R_G0,$src\n\t"
  8199             "ADDX   R_G0,0,$dst" %}
  8200   ins_encode( enc_to_bool( src, dst ) );
  8201   ins_pipe(ialu_reg_ialu);
  8202 %}
  8203 #else
  8204 instruct convP2B( iRegI dst, iRegP src ) %{
  8205   match(Set dst (Conv2B src));
  8206   ins_cost(DEFAULT_COST*2);
  8207   format %{ "MOV    $src,$dst\n\t"
  8208             "MOVRNZ $src,1,$dst" %}
  8209   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8210   ins_pipe(ialu_clr_and_mover);
  8211 %}
  8212 #endif
  8214 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8215   match(Set dst (CmpLTMask src zero));
  8216   effect(KILL ccr);
  8217   size(4);
  8218   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8219   ins_encode %{
  8220     __ sra($src$$Register, 31, $dst$$Register);
  8221   %}
  8222   ins_pipe(ialu_reg_imm);
  8223 %}
  8225 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8226   match(Set dst (CmpLTMask p q));
  8227   effect( KILL ccr );
  8228   ins_cost(DEFAULT_COST*4);
  8229   format %{ "CMP    $p,$q\n\t"
  8230             "MOV    #0,$dst\n\t"
  8231             "BLT,a  .+8\n\t"
  8232             "MOV    #-1,$dst" %}
  8233   ins_encode( enc_ltmask(p,q,dst) );
  8234   ins_pipe(ialu_reg_reg_ialu);
  8235 %}
  8237 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8238   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8239   effect(KILL ccr, TEMP tmp);
  8240   ins_cost(DEFAULT_COST*3);
  8242   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8243             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8244             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8245   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
  8246   ins_pipe(cadd_cmpltmask);
  8247 %}
  8249 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
  8250   match(Set p (AndI (CmpLTMask p q) y));
  8251   effect(KILL ccr);
  8252   ins_cost(DEFAULT_COST*3);
  8254   format %{ "CMP  $p,$q\n\t"
  8255             "MOV  $y,$p\n\t"
  8256             "MOVge G0,$p" %}
  8257   ins_encode %{
  8258     __ cmp($p$$Register, $q$$Register);
  8259     __ mov($y$$Register, $p$$Register);
  8260     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
  8261   %}
  8262   ins_pipe(ialu_reg_reg_ialu);
  8263 %}
  8265 //-----------------------------------------------------------------
  8266 // Direct raw moves between float and general registers using VIS3.
  8268 //  ins_pipe(faddF_reg);
  8269 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8270   predicate(UseVIS >= 3);
  8271   match(Set dst (MoveF2I src));
  8273   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8274   ins_encode %{
  8275     __ movstouw($src$$FloatRegister, $dst$$Register);
  8276   %}
  8277   ins_pipe(ialu_reg_reg);
  8278 %}
  8280 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8281   predicate(UseVIS >= 3);
  8282   match(Set dst (MoveI2F src));
  8284   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8285   ins_encode %{
  8286     __ movwtos($src$$Register, $dst$$FloatRegister);
  8287   %}
  8288   ins_pipe(ialu_reg_reg);
  8289 %}
  8291 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8292   predicate(UseVIS >= 3);
  8293   match(Set dst (MoveD2L src));
  8295   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8296   ins_encode %{
  8297     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8298   %}
  8299   ins_pipe(ialu_reg_reg);
  8300 %}
  8302 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8303   predicate(UseVIS >= 3);
  8304   match(Set dst (MoveL2D src));
  8306   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8307   ins_encode %{
  8308     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8309   %}
  8310   ins_pipe(ialu_reg_reg);
  8311 %}
  8314 // Raw moves between float and general registers using stack.
  8316 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8317   match(Set dst (MoveF2I src));
  8318   effect(DEF dst, USE src);
  8319   ins_cost(MEMORY_REF_COST);
  8321   size(4);
  8322   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8323   opcode(Assembler::lduw_op3);
  8324   ins_encode(simple_form3_mem_reg( src, dst ) );
  8325   ins_pipe(iload_mem);
  8326 %}
  8328 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8329   match(Set dst (MoveI2F src));
  8330   effect(DEF dst, USE src);
  8331   ins_cost(MEMORY_REF_COST);
  8333   size(4);
  8334   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8335   opcode(Assembler::ldf_op3);
  8336   ins_encode(simple_form3_mem_reg(src, dst));
  8337   ins_pipe(floadF_stk);
  8338 %}
  8340 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8341   match(Set dst (MoveD2L src));
  8342   effect(DEF dst, USE src);
  8343   ins_cost(MEMORY_REF_COST);
  8345   size(4);
  8346   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8347   opcode(Assembler::ldx_op3);
  8348   ins_encode(simple_form3_mem_reg( src, dst ) );
  8349   ins_pipe(iload_mem);
  8350 %}
  8352 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8353   match(Set dst (MoveL2D src));
  8354   effect(DEF dst, USE src);
  8355   ins_cost(MEMORY_REF_COST);
  8357   size(4);
  8358   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8359   opcode(Assembler::lddf_op3);
  8360   ins_encode(simple_form3_mem_reg(src, dst));
  8361   ins_pipe(floadD_stk);
  8362 %}
  8364 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8365   match(Set dst (MoveF2I src));
  8366   effect(DEF dst, USE src);
  8367   ins_cost(MEMORY_REF_COST);
  8369   size(4);
  8370   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8371   opcode(Assembler::stf_op3);
  8372   ins_encode(simple_form3_mem_reg(dst, src));
  8373   ins_pipe(fstoreF_stk_reg);
  8374 %}
  8376 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8377   match(Set dst (MoveI2F src));
  8378   effect(DEF dst, USE src);
  8379   ins_cost(MEMORY_REF_COST);
  8381   size(4);
  8382   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8383   opcode(Assembler::stw_op3);
  8384   ins_encode(simple_form3_mem_reg( dst, src ) );
  8385   ins_pipe(istore_mem_reg);
  8386 %}
  8388 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8389   match(Set dst (MoveD2L src));
  8390   effect(DEF dst, USE src);
  8391   ins_cost(MEMORY_REF_COST);
  8393   size(4);
  8394   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8395   opcode(Assembler::stdf_op3);
  8396   ins_encode(simple_form3_mem_reg(dst, src));
  8397   ins_pipe(fstoreD_stk_reg);
  8398 %}
  8400 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8401   match(Set dst (MoveL2D src));
  8402   effect(DEF dst, USE src);
  8403   ins_cost(MEMORY_REF_COST);
  8405   size(4);
  8406   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8407   opcode(Assembler::stx_op3);
  8408   ins_encode(simple_form3_mem_reg( dst, src ) );
  8409   ins_pipe(istore_mem_reg);
  8410 %}
  8413 //----------Arithmetic Conversion Instructions---------------------------------
  8414 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8416 instruct convD2F_reg(regF dst, regD src) %{
  8417   match(Set dst (ConvD2F src));
  8418   size(4);
  8419   format %{ "FDTOS  $src,$dst" %}
  8420   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8421   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8422   ins_pipe(fcvtD2F);
  8423 %}
  8426 // Convert a double to an int in a float register.
  8427 // If the double is a NAN, stuff a zero in instead.
  8428 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8429   effect(DEF dst, USE src, KILL fcc0);
  8430   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8431             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8432             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8433             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8434             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8435       "skip:" %}
  8436   ins_encode(form_d2i_helper(src,dst));
  8437   ins_pipe(fcvtD2I);
  8438 %}
  8440 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8441   match(Set dst (ConvD2I src));
  8442   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8443   expand %{
  8444     regF tmp;
  8445     convD2I_helper(tmp, src);
  8446     regF_to_stkI(dst, tmp);
  8447   %}
  8448 %}
  8450 instruct convD2I_reg(iRegI dst, regD src) %{
  8451   predicate(UseVIS >= 3);
  8452   match(Set dst (ConvD2I src));
  8453   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8454   expand %{
  8455     regF tmp;
  8456     convD2I_helper(tmp, src);
  8457     MoveF2I_reg_reg(dst, tmp);
  8458   %}
  8459 %}
  8462 // Convert a double to a long in a double register.
  8463 // If the double is a NAN, stuff a zero in instead.
  8464 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8465   effect(DEF dst, USE src, KILL fcc0);
  8466   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8467             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8468             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8469             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8470             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8471       "skip:" %}
  8472   ins_encode(form_d2l_helper(src,dst));
  8473   ins_pipe(fcvtD2L);
  8474 %}
  8476 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8477   match(Set dst (ConvD2L src));
  8478   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8479   expand %{
  8480     regD tmp;
  8481     convD2L_helper(tmp, src);
  8482     regD_to_stkL(dst, tmp);
  8483   %}
  8484 %}
  8486 instruct convD2L_reg(iRegL dst, regD src) %{
  8487   predicate(UseVIS >= 3);
  8488   match(Set dst (ConvD2L src));
  8489   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8490   expand %{
  8491     regD tmp;
  8492     convD2L_helper(tmp, src);
  8493     MoveD2L_reg_reg(dst, tmp);
  8494   %}
  8495 %}
  8498 instruct convF2D_reg(regD dst, regF src) %{
  8499   match(Set dst (ConvF2D src));
  8500   format %{ "FSTOD  $src,$dst" %}
  8501   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8502   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8503   ins_pipe(fcvtF2D);
  8504 %}
  8507 // Convert a float to an int in a float register.
  8508 // If the float is a NAN, stuff a zero in instead.
  8509 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8510   effect(DEF dst, USE src, KILL fcc0);
  8511   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8512             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8513             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8514             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8515             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8516       "skip:" %}
  8517   ins_encode(form_f2i_helper(src,dst));
  8518   ins_pipe(fcvtF2I);
  8519 %}
  8521 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8522   match(Set dst (ConvF2I src));
  8523   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8524   expand %{
  8525     regF tmp;
  8526     convF2I_helper(tmp, src);
  8527     regF_to_stkI(dst, tmp);
  8528   %}
  8529 %}
  8531 instruct convF2I_reg(iRegI dst, regF src) %{
  8532   predicate(UseVIS >= 3);
  8533   match(Set dst (ConvF2I src));
  8534   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8535   expand %{
  8536     regF tmp;
  8537     convF2I_helper(tmp, src);
  8538     MoveF2I_reg_reg(dst, tmp);
  8539   %}
  8540 %}
  8543 // Convert a float to a long in a float register.
  8544 // If the float is a NAN, stuff a zero in instead.
  8545 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8546   effect(DEF dst, USE src, KILL fcc0);
  8547   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8548             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8549             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8550             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8551             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8552       "skip:" %}
  8553   ins_encode(form_f2l_helper(src,dst));
  8554   ins_pipe(fcvtF2L);
  8555 %}
  8557 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8558   match(Set dst (ConvF2L src));
  8559   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8560   expand %{
  8561     regD tmp;
  8562     convF2L_helper(tmp, src);
  8563     regD_to_stkL(dst, tmp);
  8564   %}
  8565 %}
  8567 instruct convF2L_reg(iRegL dst, regF src) %{
  8568   predicate(UseVIS >= 3);
  8569   match(Set dst (ConvF2L src));
  8570   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8571   expand %{
  8572     regD tmp;
  8573     convF2L_helper(tmp, src);
  8574     MoveD2L_reg_reg(dst, tmp);
  8575   %}
  8576 %}
  8579 instruct convI2D_helper(regD dst, regF tmp) %{
  8580   effect(USE tmp, DEF dst);
  8581   format %{ "FITOD  $tmp,$dst" %}
  8582   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8583   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8584   ins_pipe(fcvtI2D);
  8585 %}
  8587 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8588   match(Set dst (ConvI2D src));
  8589   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8590   expand %{
  8591     regF tmp;
  8592     stkI_to_regF(tmp, src);
  8593     convI2D_helper(dst, tmp);
  8594   %}
  8595 %}
  8597 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8598   predicate(UseVIS >= 3);
  8599   match(Set dst (ConvI2D src));
  8600   expand %{
  8601     regF tmp;
  8602     MoveI2F_reg_reg(tmp, src);
  8603     convI2D_helper(dst, tmp);
  8604   %}
  8605 %}
  8607 instruct convI2D_mem(regD_low dst, memory mem) %{
  8608   match(Set dst (ConvI2D (LoadI mem)));
  8609   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8610   size(8);
  8611   format %{ "LDF    $mem,$dst\n\t"
  8612             "FITOD  $dst,$dst" %}
  8613   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8614   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8615   ins_pipe(floadF_mem);
  8616 %}
  8619 instruct convI2F_helper(regF dst, regF tmp) %{
  8620   effect(DEF dst, USE tmp);
  8621   format %{ "FITOS  $tmp,$dst" %}
  8622   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8623   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8624   ins_pipe(fcvtI2F);
  8625 %}
  8627 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8628   match(Set dst (ConvI2F src));
  8629   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8630   expand %{
  8631     regF tmp;
  8632     stkI_to_regF(tmp,src);
  8633     convI2F_helper(dst, tmp);
  8634   %}
  8635 %}
  8637 instruct convI2F_reg(regF dst, iRegI src) %{
  8638   predicate(UseVIS >= 3);
  8639   match(Set dst (ConvI2F src));
  8640   ins_cost(DEFAULT_COST);
  8641   expand %{
  8642     regF tmp;
  8643     MoveI2F_reg_reg(tmp, src);
  8644     convI2F_helper(dst, tmp);
  8645   %}
  8646 %}
  8648 instruct convI2F_mem( regF dst, memory mem ) %{
  8649   match(Set dst (ConvI2F (LoadI mem)));
  8650   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8651   size(8);
  8652   format %{ "LDF    $mem,$dst\n\t"
  8653             "FITOS  $dst,$dst" %}
  8654   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8655   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8656   ins_pipe(floadF_mem);
  8657 %}
  8660 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8661   match(Set dst (ConvI2L src));
  8662   size(4);
  8663   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8664   opcode(Assembler::sra_op3, Assembler::arith_op);
  8665   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8666   ins_pipe(ialu_reg_reg);
  8667 %}
  8669 // Zero-extend convert int to long
  8670 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8671   match(Set dst (AndL (ConvI2L src) mask) );
  8672   size(4);
  8673   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8674   opcode(Assembler::srl_op3, Assembler::arith_op);
  8675   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8676   ins_pipe(ialu_reg_reg);
  8677 %}
  8679 // Zero-extend long
  8680 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8681   match(Set dst (AndL src mask) );
  8682   size(4);
  8683   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8684   opcode(Assembler::srl_op3, Assembler::arith_op);
  8685   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8686   ins_pipe(ialu_reg_reg);
  8687 %}
  8690 //-----------
  8691 // Long to Double conversion using V8 opcodes.
  8692 // Still useful because cheetah traps and becomes
  8693 // amazingly slow for some common numbers.
  8695 // Magic constant, 0x43300000
  8696 instruct loadConI_x43300000(iRegI dst) %{
  8697   effect(DEF dst);
  8698   size(4);
  8699   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8700   ins_encode(SetHi22(0x43300000, dst));
  8701   ins_pipe(ialu_none);
  8702 %}
  8704 // Magic constant, 0x41f00000
  8705 instruct loadConI_x41f00000(iRegI dst) %{
  8706   effect(DEF dst);
  8707   size(4);
  8708   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8709   ins_encode(SetHi22(0x41f00000, dst));
  8710   ins_pipe(ialu_none);
  8711 %}
  8713 // Construct a double from two float halves
  8714 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8715   effect(DEF dst, USE src1, USE src2);
  8716   size(8);
  8717   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8718             "FMOVS  $src2.lo,$dst.lo" %}
  8719   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8720   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8721   ins_pipe(faddD_reg_reg);
  8722 %}
  8724 // Convert integer in high half of a double register (in the lower half of
  8725 // the double register file) to double
  8726 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8727   effect(DEF dst, USE src);
  8728   size(4);
  8729   format %{ "FITOD  $src,$dst" %}
  8730   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8731   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8732   ins_pipe(fcvtLHi2D);
  8733 %}
  8735 // Add float double precision
  8736 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8737   effect(DEF dst, USE src1, USE src2);
  8738   size(4);
  8739   format %{ "FADDD  $src1,$src2,$dst" %}
  8740   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8741   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8742   ins_pipe(faddD_reg_reg);
  8743 %}
  8745 // Sub float double precision
  8746 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8747   effect(DEF dst, USE src1, USE src2);
  8748   size(4);
  8749   format %{ "FSUBD  $src1,$src2,$dst" %}
  8750   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8751   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8752   ins_pipe(faddD_reg_reg);
  8753 %}
  8755 // Mul float double precision
  8756 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8757   effect(DEF dst, USE src1, USE src2);
  8758   size(4);
  8759   format %{ "FMULD  $src1,$src2,$dst" %}
  8760   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8761   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8762   ins_pipe(fmulD_reg_reg);
  8763 %}
  8765 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8766   match(Set dst (ConvL2D src));
  8767   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8769   expand %{
  8770     regD_low   tmpsrc;
  8771     iRegI      ix43300000;
  8772     iRegI      ix41f00000;
  8773     stackSlotL lx43300000;
  8774     stackSlotL lx41f00000;
  8775     regD_low   dx43300000;
  8776     regD       dx41f00000;
  8777     regD       tmp1;
  8778     regD_low   tmp2;
  8779     regD       tmp3;
  8780     regD       tmp4;
  8782     stkL_to_regD(tmpsrc, src);
  8784     loadConI_x43300000(ix43300000);
  8785     loadConI_x41f00000(ix41f00000);
  8786     regI_to_stkLHi(lx43300000, ix43300000);
  8787     regI_to_stkLHi(lx41f00000, ix41f00000);
  8788     stkL_to_regD(dx43300000, lx43300000);
  8789     stkL_to_regD(dx41f00000, lx41f00000);
  8791     convI2D_regDHi_regD(tmp1, tmpsrc);
  8792     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8793     subD_regD_regD(tmp3, tmp2, dx43300000);
  8794     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8795     addD_regD_regD(dst, tmp3, tmp4);
  8796   %}
  8797 %}
  8799 // Long to Double conversion using fast fxtof
  8800 instruct convL2D_helper(regD dst, regD tmp) %{
  8801   effect(DEF dst, USE tmp);
  8802   size(4);
  8803   format %{ "FXTOD  $tmp,$dst" %}
  8804   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8805   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8806   ins_pipe(fcvtL2D);
  8807 %}
  8809 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8810   predicate(VM_Version::has_fast_fxtof());
  8811   match(Set dst (ConvL2D src));
  8812   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8813   expand %{
  8814     regD tmp;
  8815     stkL_to_regD(tmp, src);
  8816     convL2D_helper(dst, tmp);
  8817   %}
  8818 %}
  8820 instruct convL2D_reg(regD dst, iRegL src) %{
  8821   predicate(UseVIS >= 3);
  8822   match(Set dst (ConvL2D src));
  8823   expand %{
  8824     regD tmp;
  8825     MoveL2D_reg_reg(tmp, src);
  8826     convL2D_helper(dst, tmp);
  8827   %}
  8828 %}
  8830 // Long to Float conversion using fast fxtof
  8831 instruct convL2F_helper(regF dst, regD tmp) %{
  8832   effect(DEF dst, USE tmp);
  8833   size(4);
  8834   format %{ "FXTOS  $tmp,$dst" %}
  8835   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8836   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8837   ins_pipe(fcvtL2F);
  8838 %}
  8840 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8841   match(Set dst (ConvL2F src));
  8842   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8843   expand %{
  8844     regD tmp;
  8845     stkL_to_regD(tmp, src);
  8846     convL2F_helper(dst, tmp);
  8847   %}
  8848 %}
  8850 instruct convL2F_reg(regF dst, iRegL src) %{
  8851   predicate(UseVIS >= 3);
  8852   match(Set dst (ConvL2F src));
  8853   ins_cost(DEFAULT_COST);
  8854   expand %{
  8855     regD tmp;
  8856     MoveL2D_reg_reg(tmp, src);
  8857     convL2F_helper(dst, tmp);
  8858   %}
  8859 %}
  8861 //-----------
  8863 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8864   match(Set dst (ConvL2I src));
  8865 #ifndef _LP64
  8866   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8867   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8868   ins_pipe(ialu_move_reg_I_to_L);
  8869 #else
  8870   size(4);
  8871   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8872   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8873   ins_pipe(ialu_reg);
  8874 #endif
  8875 %}
  8877 // Register Shift Right Immediate
  8878 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8879   match(Set dst (ConvL2I (RShiftL src cnt)));
  8881   size(4);
  8882   format %{ "SRAX   $src,$cnt,$dst" %}
  8883   opcode(Assembler::srax_op3, Assembler::arith_op);
  8884   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8885   ins_pipe(ialu_reg_imm);
  8886 %}
  8888 //----------Control Flow Instructions------------------------------------------
  8889 // Compare Instructions
  8890 // Compare Integers
  8891 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8892   match(Set icc (CmpI op1 op2));
  8893   effect( DEF icc, USE op1, USE op2 );
  8895   size(4);
  8896   format %{ "CMP    $op1,$op2" %}
  8897   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8898   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8899   ins_pipe(ialu_cconly_reg_reg);
  8900 %}
  8902 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8903   match(Set icc (CmpU op1 op2));
  8905   size(4);
  8906   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8907   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8908   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8909   ins_pipe(ialu_cconly_reg_reg);
  8910 %}
  8912 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8913   match(Set icc (CmpI op1 op2));
  8914   effect( DEF icc, USE op1 );
  8916   size(4);
  8917   format %{ "CMP    $op1,$op2" %}
  8918   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8919   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8920   ins_pipe(ialu_cconly_reg_imm);
  8921 %}
  8923 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8924   match(Set icc (CmpI (AndI op1 op2) zero));
  8926   size(4);
  8927   format %{ "BTST   $op2,$op1" %}
  8928   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8929   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8930   ins_pipe(ialu_cconly_reg_reg_zero);
  8931 %}
  8933 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8934   match(Set icc (CmpI (AndI op1 op2) zero));
  8936   size(4);
  8937   format %{ "BTST   $op2,$op1" %}
  8938   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8939   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8940   ins_pipe(ialu_cconly_reg_imm_zero);
  8941 %}
  8943 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8944   match(Set xcc (CmpL op1 op2));
  8945   effect( DEF xcc, USE op1, USE op2 );
  8947   size(4);
  8948   format %{ "CMP    $op1,$op2\t\t! long" %}
  8949   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8950   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8951   ins_pipe(ialu_cconly_reg_reg);
  8952 %}
  8954 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8955   match(Set xcc (CmpL op1 con));
  8956   effect( DEF xcc, USE op1, USE con );
  8958   size(4);
  8959   format %{ "CMP    $op1,$con\t\t! long" %}
  8960   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8961   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8962   ins_pipe(ialu_cconly_reg_reg);
  8963 %}
  8965 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8966   match(Set xcc (CmpL (AndL op1 op2) zero));
  8967   effect( DEF xcc, USE op1, USE op2 );
  8969   size(4);
  8970   format %{ "BTST   $op1,$op2\t\t! long" %}
  8971   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8972   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8973   ins_pipe(ialu_cconly_reg_reg);
  8974 %}
  8976 // useful for checking the alignment of a pointer:
  8977 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8978   match(Set xcc (CmpL (AndL op1 con) zero));
  8979   effect( DEF xcc, USE op1, USE con );
  8981   size(4);
  8982   format %{ "BTST   $op1,$con\t\t! long" %}
  8983   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8984   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8985   ins_pipe(ialu_cconly_reg_reg);
  8986 %}
  8988 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
  8989   match(Set icc (CmpU op1 op2));
  8991   size(4);
  8992   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8993   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8994   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8995   ins_pipe(ialu_cconly_reg_imm);
  8996 %}
  8998 // Compare Pointers
  8999 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9000   match(Set pcc (CmpP op1 op2));
  9002   size(4);
  9003   format %{ "CMP    $op1,$op2\t! ptr" %}
  9004   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9005   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9006   ins_pipe(ialu_cconly_reg_reg);
  9007 %}
  9009 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9010   match(Set pcc (CmpP op1 op2));
  9012   size(4);
  9013   format %{ "CMP    $op1,$op2\t! ptr" %}
  9014   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9015   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9016   ins_pipe(ialu_cconly_reg_imm);
  9017 %}
  9019 // Compare Narrow oops
  9020 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9021   match(Set icc (CmpN op1 op2));
  9023   size(4);
  9024   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9025   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9026   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9027   ins_pipe(ialu_cconly_reg_reg);
  9028 %}
  9030 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9031   match(Set icc (CmpN op1 op2));
  9033   size(4);
  9034   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9035   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9036   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9037   ins_pipe(ialu_cconly_reg_imm);
  9038 %}
  9040 //----------Max and Min--------------------------------------------------------
  9041 // Min Instructions
  9042 // Conditional move for min
  9043 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9044   effect( USE_DEF op2, USE op1, USE icc );
  9046   size(4);
  9047   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9048   opcode(Assembler::less);
  9049   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9050   ins_pipe(ialu_reg_flags);
  9051 %}
  9053 // Min Register with Register.
  9054 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9055   match(Set op2 (MinI op1 op2));
  9056   ins_cost(DEFAULT_COST*2);
  9057   expand %{
  9058     flagsReg icc;
  9059     compI_iReg(icc,op1,op2);
  9060     cmovI_reg_lt(op2,op1,icc);
  9061   %}
  9062 %}
  9064 // Max Instructions
  9065 // Conditional move for max
  9066 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9067   effect( USE_DEF op2, USE op1, USE icc );
  9068   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9069   opcode(Assembler::greater);
  9070   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9071   ins_pipe(ialu_reg_flags);
  9072 %}
  9074 // Max Register with Register
  9075 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9076   match(Set op2 (MaxI op1 op2));
  9077   ins_cost(DEFAULT_COST*2);
  9078   expand %{
  9079     flagsReg icc;
  9080     compI_iReg(icc,op1,op2);
  9081     cmovI_reg_gt(op2,op1,icc);
  9082   %}
  9083 %}
  9086 //----------Float Compares----------------------------------------------------
  9087 // Compare floating, generate condition code
  9088 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9089   match(Set fcc (CmpF src1 src2));
  9091   size(4);
  9092   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9093   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9094   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9095   ins_pipe(faddF_fcc_reg_reg_zero);
  9096 %}
  9098 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9099   match(Set fcc (CmpD src1 src2));
  9101   size(4);
  9102   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9103   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9104   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9105   ins_pipe(faddD_fcc_reg_reg_zero);
  9106 %}
  9109 // Compare floating, generate -1,0,1
  9110 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9111   match(Set dst (CmpF3 src1 src2));
  9112   effect(KILL fcc0);
  9113   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9114   format %{ "fcmpl  $dst,$src1,$src2" %}
  9115   // Primary = float
  9116   opcode( true );
  9117   ins_encode( floating_cmp( dst, src1, src2 ) );
  9118   ins_pipe( floating_cmp );
  9119 %}
  9121 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9122   match(Set dst (CmpD3 src1 src2));
  9123   effect(KILL fcc0);
  9124   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9125   format %{ "dcmpl  $dst,$src1,$src2" %}
  9126   // Primary = double (not float)
  9127   opcode( false );
  9128   ins_encode( floating_cmp( dst, src1, src2 ) );
  9129   ins_pipe( floating_cmp );
  9130 %}
  9132 //----------Branches---------------------------------------------------------
  9133 // Jump
  9134 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9135 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9136   match(Jump switch_val);
  9137   effect(TEMP table);
  9139   ins_cost(350);
  9141   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9142              "LD     [O7 + $switch_val], O7\n\t"
  9143              "JUMP   O7" %}
  9144   ins_encode %{
  9145     // Calculate table address into a register.
  9146     Register table_reg;
  9147     Register label_reg = O7;
  9148     // If we are calculating the size of this instruction don't trust
  9149     // zero offsets because they might change when
  9150     // MachConstantBaseNode decides to optimize the constant table
  9151     // base.
  9152     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9153       table_reg = $constanttablebase;
  9154     } else {
  9155       table_reg = O7;
  9156       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9157       __ add($constanttablebase, con_offset, table_reg);
  9160     // Jump to base address + switch value
  9161     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9162     __ jmp(label_reg, G0);
  9163     __ delayed()->nop();
  9164   %}
  9165   ins_pipe(ialu_reg_reg);
  9166 %}
  9168 // Direct Branch.  Use V8 version with longer range.
  9169 instruct branch(label labl) %{
  9170   match(Goto);
  9171   effect(USE labl);
  9173   size(8);
  9174   ins_cost(BRANCH_COST);
  9175   format %{ "BA     $labl" %}
  9176   ins_encode %{
  9177     Label* L = $labl$$label;
  9178     __ ba(*L);
  9179     __ delayed()->nop();
  9180   %}
  9181   ins_pipe(br);
  9182 %}
  9184 // Direct Branch, short with no delay slot
  9185 instruct branch_short(label labl) %{
  9186   match(Goto);
  9187   predicate(UseCBCond);
  9188   effect(USE labl);
  9190   size(4);
  9191   ins_cost(BRANCH_COST);
  9192   format %{ "BA     $labl\t! short branch" %}
  9193   ins_encode %{
  9194     Label* L = $labl$$label;
  9195     assert(__ use_cbcond(*L), "back to back cbcond");
  9196     __ ba_short(*L);
  9197   %}
  9198   ins_short_branch(1);
  9199   ins_avoid_back_to_back(1);
  9200   ins_pipe(cbcond_reg_imm);
  9201 %}
  9203 // Conditional Direct Branch
  9204 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9205   match(If cmp icc);
  9206   effect(USE labl);
  9208   size(8);
  9209   ins_cost(BRANCH_COST);
  9210   format %{ "BP$cmp   $icc,$labl" %}
  9211   // Prim = bits 24-22, Secnd = bits 31-30
  9212   ins_encode( enc_bp( labl, cmp, icc ) );
  9213   ins_pipe(br_cc);
  9214 %}
  9216 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9217   match(If cmp icc);
  9218   effect(USE labl);
  9220   ins_cost(BRANCH_COST);
  9221   format %{ "BP$cmp  $icc,$labl" %}
  9222   // Prim = bits 24-22, Secnd = bits 31-30
  9223   ins_encode( enc_bp( labl, cmp, icc ) );
  9224   ins_pipe(br_cc);
  9225 %}
  9227 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9228   match(If cmp pcc);
  9229   effect(USE labl);
  9231   size(8);
  9232   ins_cost(BRANCH_COST);
  9233   format %{ "BP$cmp  $pcc,$labl" %}
  9234   ins_encode %{
  9235     Label* L = $labl$$label;
  9236     Assembler::Predict predict_taken =
  9237       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9239     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9240     __ delayed()->nop();
  9241   %}
  9242   ins_pipe(br_cc);
  9243 %}
  9245 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9246   match(If cmp fcc);
  9247   effect(USE labl);
  9249   size(8);
  9250   ins_cost(BRANCH_COST);
  9251   format %{ "FBP$cmp $fcc,$labl" %}
  9252   ins_encode %{
  9253     Label* L = $labl$$label;
  9254     Assembler::Predict predict_taken =
  9255       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9257     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9258     __ delayed()->nop();
  9259   %}
  9260   ins_pipe(br_fcc);
  9261 %}
  9263 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9264   match(CountedLoopEnd cmp icc);
  9265   effect(USE labl);
  9267   size(8);
  9268   ins_cost(BRANCH_COST);
  9269   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9270   // Prim = bits 24-22, Secnd = bits 31-30
  9271   ins_encode( enc_bp( labl, cmp, icc ) );
  9272   ins_pipe(br_cc);
  9273 %}
  9275 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9276   match(CountedLoopEnd cmp icc);
  9277   effect(USE labl);
  9279   size(8);
  9280   ins_cost(BRANCH_COST);
  9281   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9282   // Prim = bits 24-22, Secnd = bits 31-30
  9283   ins_encode( enc_bp( labl, cmp, icc ) );
  9284   ins_pipe(br_cc);
  9285 %}
  9287 // Compare and branch instructions
  9288 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9289   match(If cmp (CmpI op1 op2));
  9290   effect(USE labl, KILL icc);
  9292   size(12);
  9293   ins_cost(BRANCH_COST);
  9294   format %{ "CMP    $op1,$op2\t! int\n\t"
  9295             "BP$cmp   $labl" %}
  9296   ins_encode %{
  9297     Label* L = $labl$$label;
  9298     Assembler::Predict predict_taken =
  9299       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9300     __ cmp($op1$$Register, $op2$$Register);
  9301     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9302     __ delayed()->nop();
  9303   %}
  9304   ins_pipe(cmp_br_reg_reg);
  9305 %}
  9307 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9308   match(If cmp (CmpI op1 op2));
  9309   effect(USE labl, KILL icc);
  9311   size(12);
  9312   ins_cost(BRANCH_COST);
  9313   format %{ "CMP    $op1,$op2\t! int\n\t"
  9314             "BP$cmp   $labl" %}
  9315   ins_encode %{
  9316     Label* L = $labl$$label;
  9317     Assembler::Predict predict_taken =
  9318       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9319     __ cmp($op1$$Register, $op2$$constant);
  9320     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9321     __ delayed()->nop();
  9322   %}
  9323   ins_pipe(cmp_br_reg_imm);
  9324 %}
  9326 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9327   match(If cmp (CmpU op1 op2));
  9328   effect(USE labl, KILL icc);
  9330   size(12);
  9331   ins_cost(BRANCH_COST);
  9332   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9333             "BP$cmp  $labl" %}
  9334   ins_encode %{
  9335     Label* L = $labl$$label;
  9336     Assembler::Predict predict_taken =
  9337       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9338     __ cmp($op1$$Register, $op2$$Register);
  9339     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9340     __ delayed()->nop();
  9341   %}
  9342   ins_pipe(cmp_br_reg_reg);
  9343 %}
  9345 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9346   match(If cmp (CmpU op1 op2));
  9347   effect(USE labl, KILL icc);
  9349   size(12);
  9350   ins_cost(BRANCH_COST);
  9351   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9352             "BP$cmp  $labl" %}
  9353   ins_encode %{
  9354     Label* L = $labl$$label;
  9355     Assembler::Predict predict_taken =
  9356       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9357     __ cmp($op1$$Register, $op2$$constant);
  9358     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9359     __ delayed()->nop();
  9360   %}
  9361   ins_pipe(cmp_br_reg_imm);
  9362 %}
  9364 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9365   match(If cmp (CmpL op1 op2));
  9366   effect(USE labl, KILL xcc);
  9368   size(12);
  9369   ins_cost(BRANCH_COST);
  9370   format %{ "CMP    $op1,$op2\t! long\n\t"
  9371             "BP$cmp   $labl" %}
  9372   ins_encode %{
  9373     Label* L = $labl$$label;
  9374     Assembler::Predict predict_taken =
  9375       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9376     __ cmp($op1$$Register, $op2$$Register);
  9377     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9378     __ delayed()->nop();
  9379   %}
  9380   ins_pipe(cmp_br_reg_reg);
  9381 %}
  9383 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9384   match(If cmp (CmpL op1 op2));
  9385   effect(USE labl, KILL xcc);
  9387   size(12);
  9388   ins_cost(BRANCH_COST);
  9389   format %{ "CMP    $op1,$op2\t! long\n\t"
  9390             "BP$cmp   $labl" %}
  9391   ins_encode %{
  9392     Label* L = $labl$$label;
  9393     Assembler::Predict predict_taken =
  9394       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9395     __ cmp($op1$$Register, $op2$$constant);
  9396     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9397     __ delayed()->nop();
  9398   %}
  9399   ins_pipe(cmp_br_reg_imm);
  9400 %}
  9402 // Compare Pointers and branch
  9403 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9404   match(If cmp (CmpP op1 op2));
  9405   effect(USE labl, KILL pcc);
  9407   size(12);
  9408   ins_cost(BRANCH_COST);
  9409   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9410             "B$cmp   $labl" %}
  9411   ins_encode %{
  9412     Label* L = $labl$$label;
  9413     Assembler::Predict predict_taken =
  9414       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9415     __ cmp($op1$$Register, $op2$$Register);
  9416     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9417     __ delayed()->nop();
  9418   %}
  9419   ins_pipe(cmp_br_reg_reg);
  9420 %}
  9422 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9423   match(If cmp (CmpP op1 null));
  9424   effect(USE labl, KILL pcc);
  9426   size(12);
  9427   ins_cost(BRANCH_COST);
  9428   format %{ "CMP    $op1,0\t! ptr\n\t"
  9429             "B$cmp   $labl" %}
  9430   ins_encode %{
  9431     Label* L = $labl$$label;
  9432     Assembler::Predict predict_taken =
  9433       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9434     __ cmp($op1$$Register, G0);
  9435     // bpr() is not used here since it has shorter distance.
  9436     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9437     __ delayed()->nop();
  9438   %}
  9439   ins_pipe(cmp_br_reg_reg);
  9440 %}
  9442 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9443   match(If cmp (CmpN op1 op2));
  9444   effect(USE labl, KILL icc);
  9446   size(12);
  9447   ins_cost(BRANCH_COST);
  9448   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9449             "BP$cmp   $labl" %}
  9450   ins_encode %{
  9451     Label* L = $labl$$label;
  9452     Assembler::Predict predict_taken =
  9453       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9454     __ cmp($op1$$Register, $op2$$Register);
  9455     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9456     __ delayed()->nop();
  9457   %}
  9458   ins_pipe(cmp_br_reg_reg);
  9459 %}
  9461 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9462   match(If cmp (CmpN op1 null));
  9463   effect(USE labl, KILL icc);
  9465   size(12);
  9466   ins_cost(BRANCH_COST);
  9467   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9468             "BP$cmp   $labl" %}
  9469   ins_encode %{
  9470     Label* L = $labl$$label;
  9471     Assembler::Predict predict_taken =
  9472       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9473     __ cmp($op1$$Register, G0);
  9474     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9475     __ delayed()->nop();
  9476   %}
  9477   ins_pipe(cmp_br_reg_reg);
  9478 %}
  9480 // Loop back branch
  9481 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9482   match(CountedLoopEnd cmp (CmpI op1 op2));
  9483   effect(USE labl, KILL icc);
  9485   size(12);
  9486   ins_cost(BRANCH_COST);
  9487   format %{ "CMP    $op1,$op2\t! int\n\t"
  9488             "BP$cmp   $labl\t! Loop end" %}
  9489   ins_encode %{
  9490     Label* L = $labl$$label;
  9491     Assembler::Predict predict_taken =
  9492       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9493     __ cmp($op1$$Register, $op2$$Register);
  9494     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9495     __ delayed()->nop();
  9496   %}
  9497   ins_pipe(cmp_br_reg_reg);
  9498 %}
  9500 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9501   match(CountedLoopEnd cmp (CmpI op1 op2));
  9502   effect(USE labl, KILL icc);
  9504   size(12);
  9505   ins_cost(BRANCH_COST);
  9506   format %{ "CMP    $op1,$op2\t! int\n\t"
  9507             "BP$cmp   $labl\t! Loop end" %}
  9508   ins_encode %{
  9509     Label* L = $labl$$label;
  9510     Assembler::Predict predict_taken =
  9511       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9512     __ cmp($op1$$Register, $op2$$constant);
  9513     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9514     __ delayed()->nop();
  9515   %}
  9516   ins_pipe(cmp_br_reg_imm);
  9517 %}
  9519 // Short compare and branch instructions
  9520 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9521   match(If cmp (CmpI op1 op2));
  9522   predicate(UseCBCond);
  9523   effect(USE labl, KILL icc);
  9525   size(4);
  9526   ins_cost(BRANCH_COST);
  9527   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9528   ins_encode %{
  9529     Label* L = $labl$$label;
  9530     assert(__ use_cbcond(*L), "back to back cbcond");
  9531     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9532   %}
  9533   ins_short_branch(1);
  9534   ins_avoid_back_to_back(1);
  9535   ins_pipe(cbcond_reg_reg);
  9536 %}
  9538 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9539   match(If cmp (CmpI op1 op2));
  9540   predicate(UseCBCond);
  9541   effect(USE labl, KILL icc);
  9543   size(4);
  9544   ins_cost(BRANCH_COST);
  9545   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9546   ins_encode %{
  9547     Label* L = $labl$$label;
  9548     assert(__ use_cbcond(*L), "back to back cbcond");
  9549     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9550   %}
  9551   ins_short_branch(1);
  9552   ins_avoid_back_to_back(1);
  9553   ins_pipe(cbcond_reg_imm);
  9554 %}
  9556 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9557   match(If cmp (CmpU op1 op2));
  9558   predicate(UseCBCond);
  9559   effect(USE labl, KILL icc);
  9561   size(4);
  9562   ins_cost(BRANCH_COST);
  9563   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9564   ins_encode %{
  9565     Label* L = $labl$$label;
  9566     assert(__ use_cbcond(*L), "back to back cbcond");
  9567     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9568   %}
  9569   ins_short_branch(1);
  9570   ins_avoid_back_to_back(1);
  9571   ins_pipe(cbcond_reg_reg);
  9572 %}
  9574 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9575   match(If cmp (CmpU op1 op2));
  9576   predicate(UseCBCond);
  9577   effect(USE labl, KILL icc);
  9579   size(4);
  9580   ins_cost(BRANCH_COST);
  9581   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9582   ins_encode %{
  9583     Label* L = $labl$$label;
  9584     assert(__ use_cbcond(*L), "back to back cbcond");
  9585     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9586   %}
  9587   ins_short_branch(1);
  9588   ins_avoid_back_to_back(1);
  9589   ins_pipe(cbcond_reg_imm);
  9590 %}
  9592 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9593   match(If cmp (CmpL op1 op2));
  9594   predicate(UseCBCond);
  9595   effect(USE labl, KILL xcc);
  9597   size(4);
  9598   ins_cost(BRANCH_COST);
  9599   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9600   ins_encode %{
  9601     Label* L = $labl$$label;
  9602     assert(__ use_cbcond(*L), "back to back cbcond");
  9603     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9604   %}
  9605   ins_short_branch(1);
  9606   ins_avoid_back_to_back(1);
  9607   ins_pipe(cbcond_reg_reg);
  9608 %}
  9610 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9611   match(If cmp (CmpL op1 op2));
  9612   predicate(UseCBCond);
  9613   effect(USE labl, KILL xcc);
  9615   size(4);
  9616   ins_cost(BRANCH_COST);
  9617   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9618   ins_encode %{
  9619     Label* L = $labl$$label;
  9620     assert(__ use_cbcond(*L), "back to back cbcond");
  9621     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9622   %}
  9623   ins_short_branch(1);
  9624   ins_avoid_back_to_back(1);
  9625   ins_pipe(cbcond_reg_imm);
  9626 %}
  9628 // Compare Pointers and branch
  9629 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9630   match(If cmp (CmpP op1 op2));
  9631   predicate(UseCBCond);
  9632   effect(USE labl, KILL pcc);
  9634   size(4);
  9635   ins_cost(BRANCH_COST);
  9636 #ifdef _LP64
  9637   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9638 #else
  9639   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9640 #endif
  9641   ins_encode %{
  9642     Label* L = $labl$$label;
  9643     assert(__ use_cbcond(*L), "back to back cbcond");
  9644     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9645   %}
  9646   ins_short_branch(1);
  9647   ins_avoid_back_to_back(1);
  9648   ins_pipe(cbcond_reg_reg);
  9649 %}
  9651 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9652   match(If cmp (CmpP op1 null));
  9653   predicate(UseCBCond);
  9654   effect(USE labl, KILL pcc);
  9656   size(4);
  9657   ins_cost(BRANCH_COST);
  9658 #ifdef _LP64
  9659   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9660 #else
  9661   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9662 #endif
  9663   ins_encode %{
  9664     Label* L = $labl$$label;
  9665     assert(__ use_cbcond(*L), "back to back cbcond");
  9666     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9667   %}
  9668   ins_short_branch(1);
  9669   ins_avoid_back_to_back(1);
  9670   ins_pipe(cbcond_reg_reg);
  9671 %}
  9673 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9674   match(If cmp (CmpN op1 op2));
  9675   predicate(UseCBCond);
  9676   effect(USE labl, KILL icc);
  9678   size(4);
  9679   ins_cost(BRANCH_COST);
  9680   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9681   ins_encode %{
  9682     Label* L = $labl$$label;
  9683     assert(__ use_cbcond(*L), "back to back cbcond");
  9684     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9685   %}
  9686   ins_short_branch(1);
  9687   ins_avoid_back_to_back(1);
  9688   ins_pipe(cbcond_reg_reg);
  9689 %}
  9691 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9692   match(If cmp (CmpN op1 null));
  9693   predicate(UseCBCond);
  9694   effect(USE labl, KILL icc);
  9696   size(4);
  9697   ins_cost(BRANCH_COST);
  9698   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9699   ins_encode %{
  9700     Label* L = $labl$$label;
  9701     assert(__ use_cbcond(*L), "back to back cbcond");
  9702     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9703   %}
  9704   ins_short_branch(1);
  9705   ins_avoid_back_to_back(1);
  9706   ins_pipe(cbcond_reg_reg);
  9707 %}
  9709 // Loop back branch
  9710 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9711   match(CountedLoopEnd cmp (CmpI op1 op2));
  9712   predicate(UseCBCond);
  9713   effect(USE labl, KILL icc);
  9715   size(4);
  9716   ins_cost(BRANCH_COST);
  9717   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9718   ins_encode %{
  9719     Label* L = $labl$$label;
  9720     assert(__ use_cbcond(*L), "back to back cbcond");
  9721     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9722   %}
  9723   ins_short_branch(1);
  9724   ins_avoid_back_to_back(1);
  9725   ins_pipe(cbcond_reg_reg);
  9726 %}
  9728 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9729   match(CountedLoopEnd cmp (CmpI op1 op2));
  9730   predicate(UseCBCond);
  9731   effect(USE labl, KILL icc);
  9733   size(4);
  9734   ins_cost(BRANCH_COST);
  9735   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9736   ins_encode %{
  9737     Label* L = $labl$$label;
  9738     assert(__ use_cbcond(*L), "back to back cbcond");
  9739     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9740   %}
  9741   ins_short_branch(1);
  9742   ins_avoid_back_to_back(1);
  9743   ins_pipe(cbcond_reg_imm);
  9744 %}
  9746 // Branch-on-register tests all 64 bits.  We assume that values
  9747 // in 64-bit registers always remains zero or sign extended
  9748 // unless our code munges the high bits.  Interrupts can chop
  9749 // the high order bits to zero or sign at any time.
  9750 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9751   match(If cmp (CmpI op1 zero));
  9752   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9753   effect(USE labl);
  9755   size(8);
  9756   ins_cost(BRANCH_COST);
  9757   format %{ "BR$cmp   $op1,$labl" %}
  9758   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9759   ins_pipe(br_reg);
  9760 %}
  9762 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9763   match(If cmp (CmpP op1 null));
  9764   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9765   effect(USE labl);
  9767   size(8);
  9768   ins_cost(BRANCH_COST);
  9769   format %{ "BR$cmp   $op1,$labl" %}
  9770   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9771   ins_pipe(br_reg);
  9772 %}
  9774 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9775   match(If cmp (CmpL op1 zero));
  9776   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9777   effect(USE labl);
  9779   size(8);
  9780   ins_cost(BRANCH_COST);
  9781   format %{ "BR$cmp   $op1,$labl" %}
  9782   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9783   ins_pipe(br_reg);
  9784 %}
  9787 // ============================================================================
  9788 // Long Compare
  9789 //
  9790 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9791 // is tricky.  The flavor of compare used depends on whether we are testing
  9792 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9793 // The GE test is the negated LT test.  The LE test can be had by commuting
  9794 // the operands (yielding a GE test) and then negating; negate again for the
  9795 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9796 // NE test is negated from that.
  9798 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9799 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9800 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9801 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9802 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9803 // foo match ends up with the wrong leaf.  One fix is to not match both
  9804 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9805 // both forms beat the trinary form of long-compare and both are very useful
  9806 // on Intel which has so few registers.
  9808 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9809   match(If cmp xcc);
  9810   effect(USE labl);
  9812   size(8);
  9813   ins_cost(BRANCH_COST);
  9814   format %{ "BP$cmp   $xcc,$labl" %}
  9815   ins_encode %{
  9816     Label* L = $labl$$label;
  9817     Assembler::Predict predict_taken =
  9818       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9820     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9821     __ delayed()->nop();
  9822   %}
  9823   ins_pipe(br_cc);
  9824 %}
  9826 // Manifest a CmpL3 result in an integer register.  Very painful.
  9827 // This is the test to avoid.
  9828 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9829   match(Set dst (CmpL3 src1 src2) );
  9830   effect( KILL ccr );
  9831   ins_cost(6*DEFAULT_COST);
  9832   size(24);
  9833   format %{ "CMP    $src1,$src2\t\t! long\n"
  9834           "\tBLT,a,pn done\n"
  9835           "\tMOV    -1,$dst\t! delay slot\n"
  9836           "\tBGT,a,pn done\n"
  9837           "\tMOV    1,$dst\t! delay slot\n"
  9838           "\tCLR    $dst\n"
  9839     "done:"     %}
  9840   ins_encode( cmpl_flag(src1,src2,dst) );
  9841   ins_pipe(cmpL_reg);
  9842 %}
  9844 // Conditional move
  9845 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9846   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9847   ins_cost(150);
  9848   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9849   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9850   ins_pipe(ialu_reg);
  9851 %}
  9853 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9854   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9855   ins_cost(140);
  9856   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9857   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9858   ins_pipe(ialu_imm);
  9859 %}
  9861 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9862   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9863   ins_cost(150);
  9864   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9865   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9866   ins_pipe(ialu_reg);
  9867 %}
  9869 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9870   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9871   ins_cost(140);
  9872   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9873   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9874   ins_pipe(ialu_imm);
  9875 %}
  9877 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9878   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9879   ins_cost(150);
  9880   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9881   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9882   ins_pipe(ialu_reg);
  9883 %}
  9885 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9886   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9887   ins_cost(150);
  9888   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9889   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9890   ins_pipe(ialu_reg);
  9891 %}
  9893 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9894   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9895   ins_cost(140);
  9896   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9897   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9898   ins_pipe(ialu_imm);
  9899 %}
  9901 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9902   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9903   ins_cost(150);
  9904   opcode(0x101);
  9905   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9906   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9907   ins_pipe(int_conditional_float_move);
  9908 %}
  9910 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9911   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9912   ins_cost(150);
  9913   opcode(0x102);
  9914   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9915   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9916   ins_pipe(int_conditional_float_move);
  9917 %}
  9919 // ============================================================================
  9920 // Safepoint Instruction
  9921 instruct safePoint_poll(iRegP poll) %{
  9922   match(SafePoint poll);
  9923   effect(USE poll);
  9925   size(4);
  9926 #ifdef _LP64
  9927   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9928 #else
  9929   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9930 #endif
  9931   ins_encode %{
  9932     __ relocate(relocInfo::poll_type);
  9933     __ ld_ptr($poll$$Register, 0, G0);
  9934   %}
  9935   ins_pipe(loadPollP);
  9936 %}
  9938 // ============================================================================
  9939 // Call Instructions
  9940 // Call Java Static Instruction
  9941 instruct CallStaticJavaDirect( method meth ) %{
  9942   match(CallStaticJava);
  9943   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9944   effect(USE meth);
  9946   size(8);
  9947   ins_cost(CALL_COST);
  9948   format %{ "CALL,static  ; NOP ==> " %}
  9949   ins_encode( Java_Static_Call( meth ), call_epilog );
  9950   ins_pipe(simple_call);
  9951 %}
  9953 // Call Java Static Instruction (method handle version)
  9954 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9955   match(CallStaticJava);
  9956   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9957   effect(USE meth, KILL l7_mh_SP_save);
  9959   size(16);
  9960   ins_cost(CALL_COST);
  9961   format %{ "CALL,static/MethodHandle" %}
  9962   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9963   ins_pipe(simple_call);
  9964 %}
  9966 // Call Java Dynamic Instruction
  9967 instruct CallDynamicJavaDirect( method meth ) %{
  9968   match(CallDynamicJava);
  9969   effect(USE meth);
  9971   ins_cost(CALL_COST);
  9972   format %{ "SET    (empty),R_G5\n\t"
  9973             "CALL,dynamic  ; NOP ==> " %}
  9974   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9975   ins_pipe(call);
  9976 %}
  9978 // Call Runtime Instruction
  9979 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9980   match(CallRuntime);
  9981   effect(USE meth, KILL l7);
  9982   ins_cost(CALL_COST);
  9983   format %{ "CALL,runtime" %}
  9984   ins_encode( Java_To_Runtime( meth ),
  9985               call_epilog, adjust_long_from_native_call );
  9986   ins_pipe(simple_call);
  9987 %}
  9989 // Call runtime without safepoint - same as CallRuntime
  9990 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9991   match(CallLeaf);
  9992   effect(USE meth, KILL l7);
  9993   ins_cost(CALL_COST);
  9994   format %{ "CALL,runtime leaf" %}
  9995   ins_encode( Java_To_Runtime( meth ),
  9996               call_epilog,
  9997               adjust_long_from_native_call );
  9998   ins_pipe(simple_call);
  9999 %}
 10001 // Call runtime without safepoint - same as CallLeaf
 10002 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
 10003   match(CallLeafNoFP);
 10004   effect(USE meth, KILL l7);
 10005   ins_cost(CALL_COST);
 10006   format %{ "CALL,runtime leaf nofp" %}
 10007   ins_encode( Java_To_Runtime( meth ),
 10008               call_epilog,
 10009               adjust_long_from_native_call );
 10010   ins_pipe(simple_call);
 10011 %}
 10013 // Tail Call; Jump from runtime stub to Java code.
 10014 // Also known as an 'interprocedural jump'.
 10015 // Target of jump will eventually return to caller.
 10016 // TailJump below removes the return address.
 10017 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
 10018   match(TailCall jump_target method_oop );
 10020   ins_cost(CALL_COST);
 10021   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
 10022   ins_encode(form_jmpl(jump_target));
 10023   ins_pipe(tail_call);
 10024 %}
 10027 // Return Instruction
 10028 instruct Ret() %{
 10029   match(Return);
 10031   // The epilogue node did the ret already.
 10032   size(0);
 10033   format %{ "! return" %}
 10034   ins_encode();
 10035   ins_pipe(empty);
 10036 %}
 10039 // Tail Jump; remove the return address; jump to target.
 10040 // TailCall above leaves the return address around.
 10041 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10042 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10043 // "restore" before this instruction (in Epilogue), we need to materialize it
 10044 // in %i0.
 10045 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10046   match( TailJump jump_target ex_oop );
 10047   ins_cost(CALL_COST);
 10048   format %{ "! discard R_O7\n\t"
 10049             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10050   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10051   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10052   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10053   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10054   ins_pipe(tail_call);
 10055 %}
 10057 // Create exception oop: created by stack-crawling runtime code.
 10058 // Created exception is now available to this handler, and is setup
 10059 // just prior to jumping to this handler.  No code emitted.
 10060 instruct CreateException( o0RegP ex_oop )
 10061 %{
 10062   match(Set ex_oop (CreateEx));
 10063   ins_cost(0);
 10065   size(0);
 10066   // use the following format syntax
 10067   format %{ "! exception oop is in R_O0; no code emitted" %}
 10068   ins_encode();
 10069   ins_pipe(empty);
 10070 %}
 10073 // Rethrow exception:
 10074 // The exception oop will come in the first argument position.
 10075 // Then JUMP (not call) to the rethrow stub code.
 10076 instruct RethrowException()
 10077 %{
 10078   match(Rethrow);
 10079   ins_cost(CALL_COST);
 10081   // use the following format syntax
 10082   format %{ "Jmp    rethrow_stub" %}
 10083   ins_encode(enc_rethrow);
 10084   ins_pipe(tail_call);
 10085 %}
 10088 // Die now
 10089 instruct ShouldNotReachHere( )
 10090 %{
 10091   match(Halt);
 10092   ins_cost(CALL_COST);
 10094   size(4);
 10095   // Use the following format syntax
 10096   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10097   ins_encode( form2_illtrap() );
 10098   ins_pipe(tail_call);
 10099 %}
 10101 // ============================================================================
 10102 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10103 // array for an instance of the superklass.  Set a hidden internal cache on a
 10104 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10105 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10106 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10107   match(Set index (PartialSubtypeCheck sub super));
 10108   effect( KILL pcc, KILL o7 );
 10109   ins_cost(DEFAULT_COST*10);
 10110   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10111   ins_encode( enc_PartialSubtypeCheck() );
 10112   ins_pipe(partial_subtype_check_pipe);
 10113 %}
 10115 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10116   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10117   effect( KILL idx, KILL o7 );
 10118   ins_cost(DEFAULT_COST*10);
 10119   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10120   ins_encode( enc_PartialSubtypeCheck() );
 10121   ins_pipe(partial_subtype_check_pipe);
 10122 %}
 10125 // ============================================================================
 10126 // inlined locking and unlocking
 10128 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10129   match(Set pcc (FastLock object box));
 10131   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10132   ins_cost(100);
 10134   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10135   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10136   ins_pipe(long_memory_op);
 10137 %}
 10140 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10141   match(Set pcc (FastUnlock object box));
 10142   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10143   ins_cost(100);
 10145   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10146   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10147   ins_pipe(long_memory_op);
 10148 %}
 10150 // The encodings are generic.
 10151 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10152   predicate(!use_block_zeroing(n->in(2)) );
 10153   match(Set dummy (ClearArray cnt base));
 10154   effect(TEMP temp, KILL ccr);
 10155   ins_cost(300);
 10156   format %{ "MOV    $cnt,$temp\n"
 10157     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10158     "        BRge   loop\t\t! Clearing loop\n"
 10159     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10161   ins_encode %{
 10162     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10163     Register nof_bytes_arg    = $cnt$$Register;
 10164     Register nof_bytes_tmp    = $temp$$Register;
 10165     Register base_pointer_arg = $base$$Register;
 10167     Label loop;
 10168     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10170     // Loop and clear, walking backwards through the array.
 10171     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10172     __ bind(loop);
 10173     __ deccc(nof_bytes_tmp, 8);
 10174     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10175     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10176     // %%%% this mini-loop must not cross a cache boundary!
 10177   %}
 10178   ins_pipe(long_memory_op);
 10179 %}
 10181 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10182   predicate(use_block_zeroing(n->in(2)));
 10183   match(Set dummy (ClearArray cnt base));
 10184   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10185   ins_cost(300);
 10186   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10188   ins_encode %{
 10190     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10191     Register to    = $base$$Register;
 10192     Register count = $cnt$$Register;
 10194     Label Ldone;
 10195     __ nop(); // Separate short branches
 10196     // Use BIS for zeroing (temp is not used).
 10197     __ bis_zeroing(to, count, G0, Ldone);
 10198     __ bind(Ldone);
 10200   %}
 10201   ins_pipe(long_memory_op);
 10202 %}
 10204 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10205   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10206   match(Set dummy (ClearArray cnt base));
 10207   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10208   ins_cost(300);
 10209   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10211   ins_encode %{
 10213     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10214     Register to    = $base$$Register;
 10215     Register count = $cnt$$Register;
 10216     Register temp  = $tmp$$Register;
 10218     Label Ldone;
 10219     __ nop(); // Separate short branches
 10220     // Use BIS for zeroing
 10221     __ bis_zeroing(to, count, temp, Ldone);
 10222     __ bind(Ldone);
 10224   %}
 10225   ins_pipe(long_memory_op);
 10226 %}
 10228 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10229                         o7RegI tmp, flagsReg ccr) %{
 10230   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10231   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10232   ins_cost(300);
 10233   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10234   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10235   ins_pipe(long_memory_op);
 10236 %}
 10238 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10239                        o7RegI tmp, flagsReg ccr) %{
 10240   match(Set result (StrEquals (Binary str1 str2) cnt));
 10241   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10242   ins_cost(300);
 10243   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10244   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10245   ins_pipe(long_memory_op);
 10246 %}
 10248 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10249                       o7RegI tmp2, flagsReg ccr) %{
 10250   match(Set result (AryEq ary1 ary2));
 10251   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10252   ins_cost(300);
 10253   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10254   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10255   ins_pipe(long_memory_op);
 10256 %}
 10259 //---------- Zeros Count Instructions ------------------------------------------
 10261 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10262   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10263   match(Set dst (CountLeadingZerosI src));
 10264   effect(TEMP dst, TEMP tmp, KILL cr);
 10266   // x |= (x >> 1);
 10267   // x |= (x >> 2);
 10268   // x |= (x >> 4);
 10269   // x |= (x >> 8);
 10270   // x |= (x >> 16);
 10271   // return (WORDBITS - popc(x));
 10272   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10273             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10274             "OR      $dst,$tmp,$dst\n\t"
 10275             "SRL     $dst,2,$tmp\n\t"
 10276             "OR      $dst,$tmp,$dst\n\t"
 10277             "SRL     $dst,4,$tmp\n\t"
 10278             "OR      $dst,$tmp,$dst\n\t"
 10279             "SRL     $dst,8,$tmp\n\t"
 10280             "OR      $dst,$tmp,$dst\n\t"
 10281             "SRL     $dst,16,$tmp\n\t"
 10282             "OR      $dst,$tmp,$dst\n\t"
 10283             "POPC    $dst,$dst\n\t"
 10284             "MOV     32,$tmp\n\t"
 10285             "SUB     $tmp,$dst,$dst" %}
 10286   ins_encode %{
 10287     Register Rdst = $dst$$Register;
 10288     Register Rsrc = $src$$Register;
 10289     Register Rtmp = $tmp$$Register;
 10290     __ srl(Rsrc, 1,    Rtmp);
 10291     __ srl(Rsrc, 0,    Rdst);
 10292     __ or3(Rdst, Rtmp, Rdst);
 10293     __ srl(Rdst, 2,    Rtmp);
 10294     __ or3(Rdst, Rtmp, Rdst);
 10295     __ srl(Rdst, 4,    Rtmp);
 10296     __ or3(Rdst, Rtmp, Rdst);
 10297     __ srl(Rdst, 8,    Rtmp);
 10298     __ or3(Rdst, Rtmp, Rdst);
 10299     __ srl(Rdst, 16,   Rtmp);
 10300     __ or3(Rdst, Rtmp, Rdst);
 10301     __ popc(Rdst, Rdst);
 10302     __ mov(BitsPerInt, Rtmp);
 10303     __ sub(Rtmp, Rdst, Rdst);
 10304   %}
 10305   ins_pipe(ialu_reg);
 10306 %}
 10308 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10309   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10310   match(Set dst (CountLeadingZerosL src));
 10311   effect(TEMP dst, TEMP tmp, KILL cr);
 10313   // x |= (x >> 1);
 10314   // x |= (x >> 2);
 10315   // x |= (x >> 4);
 10316   // x |= (x >> 8);
 10317   // x |= (x >> 16);
 10318   // x |= (x >> 32);
 10319   // return (WORDBITS - popc(x));
 10320   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10321             "OR      $src,$tmp,$dst\n\t"
 10322             "SRLX    $dst,2,$tmp\n\t"
 10323             "OR      $dst,$tmp,$dst\n\t"
 10324             "SRLX    $dst,4,$tmp\n\t"
 10325             "OR      $dst,$tmp,$dst\n\t"
 10326             "SRLX    $dst,8,$tmp\n\t"
 10327             "OR      $dst,$tmp,$dst\n\t"
 10328             "SRLX    $dst,16,$tmp\n\t"
 10329             "OR      $dst,$tmp,$dst\n\t"
 10330             "SRLX    $dst,32,$tmp\n\t"
 10331             "OR      $dst,$tmp,$dst\n\t"
 10332             "POPC    $dst,$dst\n\t"
 10333             "MOV     64,$tmp\n\t"
 10334             "SUB     $tmp,$dst,$dst" %}
 10335   ins_encode %{
 10336     Register Rdst = $dst$$Register;
 10337     Register Rsrc = $src$$Register;
 10338     Register Rtmp = $tmp$$Register;
 10339     __ srlx(Rsrc, 1,    Rtmp);
 10340     __ or3( Rsrc, Rtmp, Rdst);
 10341     __ srlx(Rdst, 2,    Rtmp);
 10342     __ or3( Rdst, Rtmp, Rdst);
 10343     __ srlx(Rdst, 4,    Rtmp);
 10344     __ or3( Rdst, Rtmp, Rdst);
 10345     __ srlx(Rdst, 8,    Rtmp);
 10346     __ or3( Rdst, Rtmp, Rdst);
 10347     __ srlx(Rdst, 16,   Rtmp);
 10348     __ or3( Rdst, Rtmp, Rdst);
 10349     __ srlx(Rdst, 32,   Rtmp);
 10350     __ or3( Rdst, Rtmp, Rdst);
 10351     __ popc(Rdst, Rdst);
 10352     __ mov(BitsPerLong, Rtmp);
 10353     __ sub(Rtmp, Rdst, Rdst);
 10354   %}
 10355   ins_pipe(ialu_reg);
 10356 %}
 10358 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
 10359   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10360   match(Set dst (CountTrailingZerosI src));
 10361   effect(TEMP dst, KILL cr);
 10363   // return popc(~x & (x - 1));
 10364   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10365             "ANDN    $dst,$src,$dst\n\t"
 10366             "SRL     $dst,R_G0,$dst\n\t"
 10367             "POPC    $dst,$dst" %}
 10368   ins_encode %{
 10369     Register Rdst = $dst$$Register;
 10370     Register Rsrc = $src$$Register;
 10371     __ sub(Rsrc, 1, Rdst);
 10372     __ andn(Rdst, Rsrc, Rdst);
 10373     __ srl(Rdst, G0, Rdst);
 10374     __ popc(Rdst, Rdst);
 10375   %}
 10376   ins_pipe(ialu_reg);
 10377 %}
 10379 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10380   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10381   match(Set dst (CountTrailingZerosL src));
 10382   effect(TEMP dst, KILL cr);
 10384   // return popc(~x & (x - 1));
 10385   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10386             "ANDN    $dst,$src,$dst\n\t"
 10387             "POPC    $dst,$dst" %}
 10388   ins_encode %{
 10389     Register Rdst = $dst$$Register;
 10390     Register Rsrc = $src$$Register;
 10391     __ sub(Rsrc, 1, Rdst);
 10392     __ andn(Rdst, Rsrc, Rdst);
 10393     __ popc(Rdst, Rdst);
 10394   %}
 10395   ins_pipe(ialu_reg);
 10396 %}
 10399 //---------- Population Count Instructions -------------------------------------
 10401 instruct popCountI(iRegIsafe dst, iRegI src) %{
 10402   predicate(UsePopCountInstruction);
 10403   match(Set dst (PopCountI src));
 10405   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
 10406             "POPC   $dst, $dst" %}
 10407   ins_encode %{
 10408     __ srl($src$$Register, G0, $dst$$Register);
 10409     __ popc($dst$$Register, $dst$$Register);
 10410   %}
 10411   ins_pipe(ialu_reg);
 10412 %}
 10414 // Note: Long.bitCount(long) returns an int.
 10415 instruct popCountL(iRegIsafe dst, iRegL src) %{
 10416   predicate(UsePopCountInstruction);
 10417   match(Set dst (PopCountL src));
 10419   format %{ "POPC   $src, $dst" %}
 10420   ins_encode %{
 10421     __ popc($src$$Register, $dst$$Register);
 10422   %}
 10423   ins_pipe(ialu_reg);
 10424 %}
 10427 // ============================================================================
 10428 //------------Bytes reverse--------------------------------------------------
 10430 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10431   match(Set dst (ReverseBytesI src));
 10433   // Op cost is artificially doubled to make sure that load or store
 10434   // instructions are preferred over this one which requires a spill
 10435   // onto a stack slot.
 10436   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10437   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10439   ins_encode %{
 10440     __ set($src$$disp + STACK_BIAS, O7);
 10441     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10442   %}
 10443   ins_pipe( iload_mem );
 10444 %}
 10446 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10447   match(Set dst (ReverseBytesL src));
 10449   // Op cost is artificially doubled to make sure that load or store
 10450   // instructions are preferred over this one which requires a spill
 10451   // onto a stack slot.
 10452   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10453   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10455   ins_encode %{
 10456     __ set($src$$disp + STACK_BIAS, O7);
 10457     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10458   %}
 10459   ins_pipe( iload_mem );
 10460 %}
 10462 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10463   match(Set dst (ReverseBytesUS src));
 10465   // Op cost is artificially doubled to make sure that load or store
 10466   // instructions are preferred over this one which requires a spill
 10467   // onto a stack slot.
 10468   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10469   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10471   ins_encode %{
 10472     // the value was spilled as an int so bias the load
 10473     __ set($src$$disp + STACK_BIAS + 2, O7);
 10474     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10475   %}
 10476   ins_pipe( iload_mem );
 10477 %}
 10479 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10480   match(Set dst (ReverseBytesS src));
 10482   // Op cost is artificially doubled to make sure that load or store
 10483   // instructions are preferred over this one which requires a spill
 10484   // onto a stack slot.
 10485   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10486   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10488   ins_encode %{
 10489     // the value was spilled as an int so bias the load
 10490     __ set($src$$disp + STACK_BIAS + 2, O7);
 10491     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10492   %}
 10493   ins_pipe( iload_mem );
 10494 %}
 10496 // Load Integer reversed byte order
 10497 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10498   match(Set dst (ReverseBytesI (LoadI src)));
 10500   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10501   size(4);
 10502   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10504   ins_encode %{
 10505     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10506   %}
 10507   ins_pipe(iload_mem);
 10508 %}
 10510 // Load Long - aligned and reversed
 10511 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10512   match(Set dst (ReverseBytesL (LoadL src)));
 10514   ins_cost(MEMORY_REF_COST);
 10515   size(4);
 10516   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10518   ins_encode %{
 10519     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10520   %}
 10521   ins_pipe(iload_mem);
 10522 %}
 10524 // Load unsigned short / char reversed byte order
 10525 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10526   match(Set dst (ReverseBytesUS (LoadUS src)));
 10528   ins_cost(MEMORY_REF_COST);
 10529   size(4);
 10530   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10532   ins_encode %{
 10533     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10534   %}
 10535   ins_pipe(iload_mem);
 10536 %}
 10538 // Load short reversed byte order
 10539 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10540   match(Set dst (ReverseBytesS (LoadS src)));
 10542   ins_cost(MEMORY_REF_COST);
 10543   size(4);
 10544   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10546   ins_encode %{
 10547     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10548   %}
 10549   ins_pipe(iload_mem);
 10550 %}
 10552 // Store Integer reversed byte order
 10553 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10554   match(Set dst (StoreI dst (ReverseBytesI src)));
 10556   ins_cost(MEMORY_REF_COST);
 10557   size(4);
 10558   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10560   ins_encode %{
 10561     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10562   %}
 10563   ins_pipe(istore_mem_reg);
 10564 %}
 10566 // Store Long reversed byte order
 10567 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10568   match(Set dst (StoreL dst (ReverseBytesL src)));
 10570   ins_cost(MEMORY_REF_COST);
 10571   size(4);
 10572   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10574   ins_encode %{
 10575     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10576   %}
 10577   ins_pipe(istore_mem_reg);
 10578 %}
 10580 // Store unsighed short/char reversed byte order
 10581 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10582   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10584   ins_cost(MEMORY_REF_COST);
 10585   size(4);
 10586   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10588   ins_encode %{
 10589     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10590   %}
 10591   ins_pipe(istore_mem_reg);
 10592 %}
 10594 // Store short reversed byte order
 10595 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10596   match(Set dst (StoreC dst (ReverseBytesS src)));
 10598   ins_cost(MEMORY_REF_COST);
 10599   size(4);
 10600   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10602   ins_encode %{
 10603     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10604   %}
 10605   ins_pipe(istore_mem_reg);
 10606 %}
 10608 // ====================VECTOR INSTRUCTIONS=====================================
 10610 // Load Aligned Packed values into a Double Register
 10611 instruct loadV8(regD dst, memory mem) %{
 10612   predicate(n->as_LoadVector()->memory_size() == 8);
 10613   match(Set dst (LoadVector mem));
 10614   ins_cost(MEMORY_REF_COST);
 10615   size(4);
 10616   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10617   ins_encode %{
 10618     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10619   %}
 10620   ins_pipe(floadD_mem);
 10621 %}
 10623 // Store Vector in Double register to memory
 10624 instruct storeV8(memory mem, regD src) %{
 10625   predicate(n->as_StoreVector()->memory_size() == 8);
 10626   match(Set mem (StoreVector mem src));
 10627   ins_cost(MEMORY_REF_COST);
 10628   size(4);
 10629   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10630   ins_encode %{
 10631     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10632   %}
 10633   ins_pipe(fstoreD_mem_reg);
 10634 %}
 10636 // Store Zero into vector in memory
 10637 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10638   predicate(n->as_StoreVector()->memory_size() == 8);
 10639   match(Set mem (StoreVector mem (ReplicateB zero)));
 10640   ins_cost(MEMORY_REF_COST);
 10641   size(4);
 10642   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10643   ins_encode %{
 10644     __ stx(G0, $mem$$Address);
 10645   %}
 10646   ins_pipe(fstoreD_mem_zero);
 10647 %}
 10649 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10650   predicate(n->as_StoreVector()->memory_size() == 8);
 10651   match(Set mem (StoreVector mem (ReplicateS zero)));
 10652   ins_cost(MEMORY_REF_COST);
 10653   size(4);
 10654   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10655   ins_encode %{
 10656     __ stx(G0, $mem$$Address);
 10657   %}
 10658   ins_pipe(fstoreD_mem_zero);
 10659 %}
 10661 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10662   predicate(n->as_StoreVector()->memory_size() == 8);
 10663   match(Set mem (StoreVector mem (ReplicateI zero)));
 10664   ins_cost(MEMORY_REF_COST);
 10665   size(4);
 10666   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10667   ins_encode %{
 10668     __ stx(G0, $mem$$Address);
 10669   %}
 10670   ins_pipe(fstoreD_mem_zero);
 10671 %}
 10673 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10674   predicate(n->as_StoreVector()->memory_size() == 8);
 10675   match(Set mem (StoreVector mem (ReplicateF zero)));
 10676   ins_cost(MEMORY_REF_COST);
 10677   size(4);
 10678   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10679   ins_encode %{
 10680     __ stx(G0, $mem$$Address);
 10681   %}
 10682   ins_pipe(fstoreD_mem_zero);
 10683 %}
 10685 // Replicate scalar to packed byte values into Double register
 10686 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10687   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10688   match(Set dst (ReplicateB src));
 10689   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10690   format %{ "SLLX  $src,56,$tmp\n\t"
 10691             "SRLX  $tmp, 8,$tmp2\n\t"
 10692             "OR    $tmp,$tmp2,$tmp\n\t"
 10693             "SRLX  $tmp,16,$tmp2\n\t"
 10694             "OR    $tmp,$tmp2,$tmp\n\t"
 10695             "SRLX  $tmp,32,$tmp2\n\t"
 10696             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10697             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10698   ins_encode %{
 10699     Register Rsrc = $src$$Register;
 10700     Register Rtmp = $tmp$$Register;
 10701     Register Rtmp2 = $tmp2$$Register;
 10702     __ sllx(Rsrc,    56, Rtmp);
 10703     __ srlx(Rtmp,     8, Rtmp2);
 10704     __ or3 (Rtmp, Rtmp2, Rtmp);
 10705     __ srlx(Rtmp,    16, Rtmp2);
 10706     __ or3 (Rtmp, Rtmp2, Rtmp);
 10707     __ srlx(Rtmp,    32, Rtmp2);
 10708     __ or3 (Rtmp, Rtmp2, Rtmp);
 10709     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10710   %}
 10711   ins_pipe(ialu_reg);
 10712 %}
 10714 // Replicate scalar to packed byte values into Double stack
 10715 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10716   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10717   match(Set dst (ReplicateB src));
 10718   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10719   format %{ "SLLX  $src,56,$tmp\n\t"
 10720             "SRLX  $tmp, 8,$tmp2\n\t"
 10721             "OR    $tmp,$tmp2,$tmp\n\t"
 10722             "SRLX  $tmp,16,$tmp2\n\t"
 10723             "OR    $tmp,$tmp2,$tmp\n\t"
 10724             "SRLX  $tmp,32,$tmp2\n\t"
 10725             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10726             "STX   $tmp,$dst\t! regL to stkD" %}
 10727   ins_encode %{
 10728     Register Rsrc = $src$$Register;
 10729     Register Rtmp = $tmp$$Register;
 10730     Register Rtmp2 = $tmp2$$Register;
 10731     __ sllx(Rsrc,    56, Rtmp);
 10732     __ srlx(Rtmp,     8, Rtmp2);
 10733     __ or3 (Rtmp, Rtmp2, Rtmp);
 10734     __ srlx(Rtmp,    16, Rtmp2);
 10735     __ or3 (Rtmp, Rtmp2, Rtmp);
 10736     __ srlx(Rtmp,    32, Rtmp2);
 10737     __ or3 (Rtmp, Rtmp2, Rtmp);
 10738     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10739     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10740   %}
 10741   ins_pipe(ialu_reg);
 10742 %}
 10744 // Replicate scalar constant to packed byte values in Double register
 10745 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10746   predicate(n->as_Vector()->length() == 8);
 10747   match(Set dst (ReplicateB con));
 10748   effect(KILL tmp);
 10749   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10750   ins_encode %{
 10751     // XXX This is a quick fix for 6833573.
 10752     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10753     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10754     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10755   %}
 10756   ins_pipe(loadConFD);
 10757 %}
 10759 // Replicate scalar to packed char/short values into Double register
 10760 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10761   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10762   match(Set dst (ReplicateS src));
 10763   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10764   format %{ "SLLX  $src,48,$tmp\n\t"
 10765             "SRLX  $tmp,16,$tmp2\n\t"
 10766             "OR    $tmp,$tmp2,$tmp\n\t"
 10767             "SRLX  $tmp,32,$tmp2\n\t"
 10768             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10769             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10770   ins_encode %{
 10771     Register Rsrc = $src$$Register;
 10772     Register Rtmp = $tmp$$Register;
 10773     Register Rtmp2 = $tmp2$$Register;
 10774     __ sllx(Rsrc,    48, Rtmp);
 10775     __ srlx(Rtmp,    16, Rtmp2);
 10776     __ or3 (Rtmp, Rtmp2, Rtmp);
 10777     __ srlx(Rtmp,    32, Rtmp2);
 10778     __ or3 (Rtmp, Rtmp2, Rtmp);
 10779     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10780   %}
 10781   ins_pipe(ialu_reg);
 10782 %}
 10784 // Replicate scalar to packed char/short values into Double stack
 10785 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10786   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10787   match(Set dst (ReplicateS src));
 10788   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10789   format %{ "SLLX  $src,48,$tmp\n\t"
 10790             "SRLX  $tmp,16,$tmp2\n\t"
 10791             "OR    $tmp,$tmp2,$tmp\n\t"
 10792             "SRLX  $tmp,32,$tmp2\n\t"
 10793             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10794             "STX   $tmp,$dst\t! regL to stkD" %}
 10795   ins_encode %{
 10796     Register Rsrc = $src$$Register;
 10797     Register Rtmp = $tmp$$Register;
 10798     Register Rtmp2 = $tmp2$$Register;
 10799     __ sllx(Rsrc,    48, Rtmp);
 10800     __ srlx(Rtmp,    16, Rtmp2);
 10801     __ or3 (Rtmp, Rtmp2, Rtmp);
 10802     __ srlx(Rtmp,    32, Rtmp2);
 10803     __ or3 (Rtmp, Rtmp2, Rtmp);
 10804     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10805     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10806   %}
 10807   ins_pipe(ialu_reg);
 10808 %}
 10810 // Replicate scalar constant to packed char/short values in Double register
 10811 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10812   predicate(n->as_Vector()->length() == 4);
 10813   match(Set dst (ReplicateS con));
 10814   effect(KILL tmp);
 10815   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10816   ins_encode %{
 10817     // XXX This is a quick fix for 6833573.
 10818     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10819     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10820     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10821   %}
 10822   ins_pipe(loadConFD);
 10823 %}
 10825 // Replicate scalar to packed int values into Double register
 10826 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10827   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10828   match(Set dst (ReplicateI src));
 10829   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10830   format %{ "SLLX  $src,32,$tmp\n\t"
 10831             "SRLX  $tmp,32,$tmp2\n\t"
 10832             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10833             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10834   ins_encode %{
 10835     Register Rsrc = $src$$Register;
 10836     Register Rtmp = $tmp$$Register;
 10837     Register Rtmp2 = $tmp2$$Register;
 10838     __ sllx(Rsrc,    32, Rtmp);
 10839     __ srlx(Rtmp,    32, Rtmp2);
 10840     __ or3 (Rtmp, Rtmp2, Rtmp);
 10841     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10842   %}
 10843   ins_pipe(ialu_reg);
 10844 %}
 10846 // Replicate scalar to packed int values into Double stack
 10847 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10848   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10849   match(Set dst (ReplicateI src));
 10850   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10851   format %{ "SLLX  $src,32,$tmp\n\t"
 10852             "SRLX  $tmp,32,$tmp2\n\t"
 10853             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10854             "STX   $tmp,$dst\t! regL to stkD" %}
 10855   ins_encode %{
 10856     Register Rsrc = $src$$Register;
 10857     Register Rtmp = $tmp$$Register;
 10858     Register Rtmp2 = $tmp2$$Register;
 10859     __ sllx(Rsrc,    32, Rtmp);
 10860     __ srlx(Rtmp,    32, Rtmp2);
 10861     __ or3 (Rtmp, Rtmp2, Rtmp);
 10862     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10863     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10864   %}
 10865   ins_pipe(ialu_reg);
 10866 %}
 10868 // Replicate scalar zero constant to packed int values in Double register
 10869 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10870   predicate(n->as_Vector()->length() == 2);
 10871   match(Set dst (ReplicateI con));
 10872   effect(KILL tmp);
 10873   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10874   ins_encode %{
 10875     // XXX This is a quick fix for 6833573.
 10876     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10877     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10878     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10879   %}
 10880   ins_pipe(loadConFD);
 10881 %}
 10883 // Replicate scalar to packed float values into Double stack
 10884 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10885   predicate(n->as_Vector()->length() == 2);
 10886   match(Set dst (ReplicateF src));
 10887   ins_cost(MEMORY_REF_COST*2);
 10888   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10889             "STF    $src,$dst.lo" %}
 10890   opcode(Assembler::stf_op3);
 10891   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10892   ins_pipe(fstoreF_stk_reg);
 10893 %}
 10895 // Replicate scalar zero constant to packed float values in Double register
 10896 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10897   predicate(n->as_Vector()->length() == 2);
 10898   match(Set dst (ReplicateF con));
 10899   effect(KILL tmp);
 10900   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10901   ins_encode %{
 10902     // XXX This is a quick fix for 6833573.
 10903     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10904     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10905     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10906   %}
 10907   ins_pipe(loadConFD);
 10908 %}
 10910 //----------PEEPHOLE RULES-----------------------------------------------------
 10911 // These must follow all instruction definitions as they use the names
 10912 // defined in the instructions definitions.
 10913 //
 10914 // peepmatch ( root_instr_name [preceding_instruction]* );
 10915 //
 10916 // peepconstraint %{
 10917 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10918 //  [, ...] );
 10919 // // instruction numbers are zero-based using left to right order in peepmatch
 10920 //
 10921 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10922 // // provide an instruction_number.operand_name for each operand that appears
 10923 // // in the replacement instruction's match rule
 10924 //
 10925 // ---------VM FLAGS---------------------------------------------------------
 10926 //
 10927 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10928 //
 10929 // Each peephole rule is given an identifying number starting with zero and
 10930 // increasing by one in the order seen by the parser.  An individual peephole
 10931 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10932 // on the command-line.
 10933 //
 10934 // ---------CURRENT LIMITATIONS----------------------------------------------
 10935 //
 10936 // Only match adjacent instructions in same basic block
 10937 // Only equality constraints
 10938 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10939 // Only one replacement instruction
 10940 //
 10941 // ---------EXAMPLE----------------------------------------------------------
 10942 //
 10943 // // pertinent parts of existing instructions in architecture description
 10944 // instruct movI(eRegI dst, eRegI src) %{
 10945 //   match(Set dst (CopyI src));
 10946 // %}
 10947 //
 10948 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10949 //   match(Set dst (AddI dst src));
 10950 //   effect(KILL cr);
 10951 // %}
 10952 //
 10953 // // Change (inc mov) to lea
 10954 // peephole %{
 10955 //   // increment preceeded by register-register move
 10956 //   peepmatch ( incI_eReg movI );
 10957 //   // require that the destination register of the increment
 10958 //   // match the destination register of the move
 10959 //   peepconstraint ( 0.dst == 1.dst );
 10960 //   // construct a replacement instruction that sets
 10961 //   // the destination to ( move's source register + one )
 10962 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10963 // %}
 10964 //
 10966 // // Change load of spilled value to only a spill
 10967 // instruct storeI(memory mem, eRegI src) %{
 10968 //   match(Set mem (StoreI mem src));
 10969 // %}
 10970 //
 10971 // instruct loadI(eRegI dst, memory mem) %{
 10972 //   match(Set dst (LoadI mem));
 10973 // %}
 10974 //
 10975 // peephole %{
 10976 //   peepmatch ( loadI storeI );
 10977 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10978 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10979 // %}
 10981 //----------SMARTSPILL RULES---------------------------------------------------
 10982 // These must follow all instruction definitions as they use the names
 10983 // defined in the instructions definitions.
 10984 //
 10985 // SPARC will probably not have any of these rules due to RISC instruction set.
 10987 //----------PIPELINE-----------------------------------------------------------
 10988 // Rules which define the behavior of the target architectures pipeline.

mercurial