src/share/vm/opto/chaitin.cpp

Thu, 16 Feb 2012 17:12:49 -0800

author
kvn
date
Thu, 16 Feb 2012 17:12:49 -0800
changeset 3577
9b8ce46870df
parent 2708
1d1603768966
child 3882
8c92982cbbc4
permissions
-rw-r--r--

7145346: VerifyStackAtCalls is broken
Summary: Replace call_epilog() encoding with macroassembler use. Moved duplicated code to x86.ad. Fixed return_addr() definition.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 //=============================================================================
    45 #ifndef PRODUCT
    46 void LRG::dump( ) const {
    47   ttyLocker ttyl;
    48   tty->print("%d ",num_regs());
    49   _mask.dump();
    50   if( _msize_valid ) {
    51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    53   } else {
    54     tty->print(", #?(%d) ",_mask.Size());
    55   }
    57   tty->print("EffDeg: ");
    58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    59   else tty->print("? ");
    61   if( is_multidef() ) {
    62     tty->print("MultiDef ");
    63     if (_defs != NULL) {
    64       tty->print("(");
    65       for (int i = 0; i < _defs->length(); i++) {
    66         tty->print("N%d ", _defs->at(i)->_idx);
    67       }
    68       tty->print(") ");
    69     }
    70   }
    71   else if( _def == 0 ) tty->print("Dead ");
    72   else tty->print("Def: N%d ",_def->_idx);
    74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    75   // Flags
    76   if( _is_oop ) tty->print("Oop ");
    77   if( _is_float ) tty->print("Float ");
    78   if( _was_spilled1 ) tty->print("Spilled ");
    79   if( _was_spilled2 ) tty->print("Spilled2 ");
    80   if( _direct_conflict ) tty->print("Direct_conflict ");
    81   if( _fat_proj ) tty->print("Fat ");
    82   if( _was_lo ) tty->print("Lo ");
    83   if( _has_copy ) tty->print("Copy ");
    84   if( _at_risk ) tty->print("Risk ");
    86   if( _must_spill ) tty->print("Must_spill ");
    87   if( _is_bound ) tty->print("Bound ");
    88   if( _msize_valid ) {
    89     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    90   }
    92   tty->cr();
    93 }
    94 #endif
    96 //------------------------------score------------------------------------------
    97 // Compute score from cost and area.  Low score is best to spill.
    98 static double raw_score( double cost, double area ) {
    99   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
   100 }
   102 double LRG::score() const {
   103   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   104   // Bigger area lowers score, encourages spilling this live range.
   105   // Bigger cost raise score, prevents spilling this live range.
   106   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   107   // to turn a divide by a constant into a multiply by the reciprical).
   108   double score = raw_score( _cost, _area);
   110   // Account for area.  Basically, LRGs covering large areas are better
   111   // to spill because more other LRGs get freed up.
   112   if( _area == 0.0 )            // No area?  Then no progress to spill
   113     return 1e35;
   115   if( _was_spilled2 )           // If spilled once before, we are unlikely
   116     return score + 1e30;        // to make progress again.
   118   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   119     return score + 1e17;        // Probably no progress to spill
   121   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   122     return score + 1e10;        // Likely no progress to spill
   124   return score;
   125 }
   127 //------------------------------LRG_List---------------------------------------
   128 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   129   memset( _lidxs, 0, sizeof(uint)*max );
   130 }
   132 void LRG_List::extend( uint nidx, uint lidx ) {
   133   _nesting.check();
   134   if( nidx >= _max ) {
   135     uint size = 16;
   136     while( size <= nidx ) size <<=1;
   137     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   138     _max = size;
   139   }
   140   while( _cnt <= nidx )
   141     _lidxs[_cnt++] = 0;
   142   _lidxs[nidx] = lidx;
   143 }
   145 #define NUMBUCKS 3
   147 //------------------------------Chaitin----------------------------------------
   148 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   149   : PhaseRegAlloc(unique, cfg, matcher,
   150 #ifndef PRODUCT
   151        print_chaitin_statistics
   152 #else
   153        NULL
   154 #endif
   155        ),
   156     _names(unique), _uf_map(unique),
   157     _maxlrg(0), _live(0),
   158     _spilled_once(Thread::current()->resource_area()),
   159     _spilled_twice(Thread::current()->resource_area()),
   160     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
   161     _oldphi(unique)
   162 #ifndef PRODUCT
   163   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   164 #endif
   165 {
   166   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   168   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
   170   uint i,j;
   171   // Build a list of basic blocks, sorted by frequency
   172   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   173   // Experiment with sorting strategies to speed compilation
   174   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   175   Block **buckets[NUMBUCKS];             // Array of buckets
   176   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   177   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   178   for( i = 0; i < NUMBUCKS; i++ ) {
   179     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   180     buckcnt[i] = 0;
   181     // Bump by three orders of magnitude each time
   182     cutoff *= 0.001;
   183     buckval[i] = cutoff;
   184     for( j = 0; j < _cfg._num_blocks; j++ ) {
   185       buckets[i][j] = NULL;
   186     }
   187   }
   188   // Sort blocks into buckets
   189   for( i = 0; i < _cfg._num_blocks; i++ ) {
   190     for( j = 0; j < NUMBUCKS; j++ ) {
   191       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
   192         // Assign block to end of list for appropriate bucket
   193         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
   194         break;                      // kick out of inner loop
   195       }
   196     }
   197   }
   198   // Dump buckets into final block array
   199   uint blkcnt = 0;
   200   for( i = 0; i < NUMBUCKS; i++ ) {
   201     for( j = 0; j < buckcnt[i]; j++ ) {
   202       _blks[blkcnt++] = buckets[i][j];
   203     }
   204   }
   206   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
   207 }
   209 void PhaseChaitin::Register_Allocate() {
   211   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   212   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   213   // registers) is the outgoing argument area; above that is the spill/temp
   214   // area.  These are all "frame_slots".  Arg_slots start at the zero
   215   // stack_slots and count up to the known arg_size.  Frame_slots start at
   216   // the stack_slot #arg_size and go up.  After allocation I map stack
   217   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   218   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   220   _trip_cnt = 0;
   221   _alternate = 0;
   222   _matcher._allocation_started = true;
   224   ResourceArea live_arena;      // Arena for liveness & IFG info
   225   ResourceMark rm(&live_arena);
   227   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   228   // liveness is JUST for coalescing, then I can get some mileage by renaming
   229   // all copy-related live ranges low and then using the max copy-related
   230   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   231   // build a subset of LIVE and IFG just for copies.
   232   PhaseLive live(_cfg,_names,&live_arena);
   234   // Need IFG for coalescing and coloring
   235   PhaseIFG ifg( &live_arena );
   236   _ifg = &ifg;
   238   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
   240   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   241   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   242   // - effectively ending SSA form.  This requires either coalescing live
   243   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   244   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   245   // We will attempt to coalesce such "virtual copies" before we manifest
   246   // them for real.
   247   de_ssa();
   249 #ifdef ASSERT
   250   // Veify the graph before RA.
   251   verify(&live_arena);
   252 #endif
   254   {
   255     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   256     _live = NULL;                 // Mark live as being not available
   257     rm.reset_to_mark();           // Reclaim working storage
   258     IndexSet::reset_memory(C, &live_arena);
   259     ifg.init(_maxlrg);            // Empty IFG
   260     gather_lrg_masks( false );    // Collect LRG masks
   261     live.compute( _maxlrg );      // Compute liveness
   262     _live = &live;                // Mark LIVE as being available
   263   }
   265   // Base pointers are currently "used" by instructions which define new
   266   // derived pointers.  This makes base pointers live up to the where the
   267   // derived pointer is made, but not beyond.  Really, they need to be live
   268   // across any GC point where the derived value is live.  So this code looks
   269   // at all the GC points, and "stretches" the live range of any base pointer
   270   // to the GC point.
   271   if( stretch_base_pointer_live_ranges(&live_arena) ) {
   272     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
   273     // Since some live range stretched, I need to recompute live
   274     _live = NULL;
   275     rm.reset_to_mark();         // Reclaim working storage
   276     IndexSet::reset_memory(C, &live_arena);
   277     ifg.init(_maxlrg);
   278     gather_lrg_masks( false );
   279     live.compute( _maxlrg );
   280     _live = &live;
   281   }
   282   // Create the interference graph using virtual copies
   283   build_ifg_virtual( );  // Include stack slots this time
   285   // Aggressive (but pessimistic) copy coalescing.
   286   // This pass works on virtual copies.  Any virtual copies which are not
   287   // coalesced get manifested as actual copies
   288   {
   289     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   290     // faster.  Union requires a 'for all' operation which is slow on the
   291     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   292     // meaning I can visit all the Nodes neighbors less than a Node in time
   293     // O(# of neighbors), but I have to visit all the Nodes greater than a
   294     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   295     _ifg->SquareUp();
   297     PhaseAggressiveCoalesce coalesce( *this );
   298     coalesce.coalesce_driver( );
   299     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   300     // not match the Phi itself, insert a copy.
   301     coalesce.insert_copies(_matcher);
   302   }
   304   // After aggressive coalesce, attempt a first cut at coloring.
   305   // To color, we need the IFG and for that we need LIVE.
   306   {
   307     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   308     _live = NULL;
   309     rm.reset_to_mark();           // Reclaim working storage
   310     IndexSet::reset_memory(C, &live_arena);
   311     ifg.init(_maxlrg);
   312     gather_lrg_masks( true );
   313     live.compute( _maxlrg );
   314     _live = &live;
   315   }
   317   // Build physical interference graph
   318   uint must_spill = 0;
   319   must_spill = build_ifg_physical( &live_arena );
   320   // If we have a guaranteed spill, might as well spill now
   321   if( must_spill ) {
   322     if( !_maxlrg ) return;
   323     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   324     C->check_node_count(10*must_spill, "out of nodes before split");
   325     if (C->failing())  return;
   326     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   327     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   328     // or we failed to split
   329     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   330     if (C->failing())  return;
   332     NOT_PRODUCT( C->verify_graph_edges(); )
   334     compact();                  // Compact LRGs; return new lower max lrg
   336     {
   337       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   338       _live = NULL;
   339       rm.reset_to_mark();         // Reclaim working storage
   340       IndexSet::reset_memory(C, &live_arena);
   341       ifg.init(_maxlrg);          // Build a new interference graph
   342       gather_lrg_masks( true );   // Collect intersect mask
   343       live.compute( _maxlrg );    // Compute LIVE
   344       _live = &live;
   345     }
   346     build_ifg_physical( &live_arena );
   347     _ifg->SquareUp();
   348     _ifg->Compute_Effective_Degree();
   349     // Only do conservative coalescing if requested
   350     if( OptoCoalesce ) {
   351       // Conservative (and pessimistic) copy coalescing of those spills
   352       PhaseConservativeCoalesce coalesce( *this );
   353       // If max live ranges greater than cutoff, don't color the stack.
   354       // This cutoff can be larger than below since it is only done once.
   355       coalesce.coalesce_driver( );
   356     }
   357     compress_uf_map_for_nodes();
   359 #ifdef ASSERT
   360     verify(&live_arena, true);
   361 #endif
   362   } else {
   363     ifg.SquareUp();
   364     ifg.Compute_Effective_Degree();
   365 #ifdef ASSERT
   366     set_was_low();
   367 #endif
   368   }
   370   // Prepare for Simplify & Select
   371   cache_lrg_info();           // Count degree of LRGs
   373   // Simplify the InterFerence Graph by removing LRGs of low degree.
   374   // LRGs of low degree are trivially colorable.
   375   Simplify();
   377   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   378   // Return whether or not something spills.
   379   uint spills = Select( );
   381   // If we spill, split and recycle the entire thing
   382   while( spills ) {
   383     if( _trip_cnt++ > 24 ) {
   384       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   385       if( _trip_cnt > 27 ) {
   386         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   387         return;
   388       }
   389     }
   391     if( !_maxlrg ) return;
   392     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   393     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   394     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
   395     if (C->failing())  return;
   397     compact();                  // Compact LRGs; return new lower max lrg
   399     // Nuke the live-ness and interference graph and LiveRanGe info
   400     {
   401       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   402       _live = NULL;
   403       rm.reset_to_mark();         // Reclaim working storage
   404       IndexSet::reset_memory(C, &live_arena);
   405       ifg.init(_maxlrg);
   407       // Create LiveRanGe array.
   408       // Intersect register masks for all USEs and DEFs
   409       gather_lrg_masks( true );
   410       live.compute( _maxlrg );
   411       _live = &live;
   412     }
   413     must_spill = build_ifg_physical( &live_arena );
   414     _ifg->SquareUp();
   415     _ifg->Compute_Effective_Degree();
   417     // Only do conservative coalescing if requested
   418     if( OptoCoalesce ) {
   419       // Conservative (and pessimistic) copy coalescing
   420       PhaseConservativeCoalesce coalesce( *this );
   421       // Check for few live ranges determines how aggressive coalesce is.
   422       coalesce.coalesce_driver( );
   423     }
   424     compress_uf_map_for_nodes();
   425 #ifdef ASSERT
   426     verify(&live_arena, true);
   427 #endif
   428     cache_lrg_info();           // Count degree of LRGs
   430     // Simplify the InterFerence Graph by removing LRGs of low degree.
   431     // LRGs of low degree are trivially colorable.
   432     Simplify();
   434     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   435     // Return whether or not something spills.
   436     spills = Select( );
   437   }
   439   // Count number of Simplify-Select trips per coloring success.
   440   _allocator_attempts += _trip_cnt + 1;
   441   _allocator_successes += 1;
   443   // Peephole remove copies
   444   post_allocate_copy_removal();
   446 #ifdef ASSERT
   447   // Veify the graph after RA.
   448   verify(&live_arena);
   449 #endif
   451   // max_reg is past the largest *register* used.
   452   // Convert that to a frame_slot number.
   453   if( _max_reg <= _matcher._new_SP )
   454     _framesize = C->out_preserve_stack_slots();
   455   else _framesize = _max_reg -_matcher._new_SP;
   456   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   458   // This frame must preserve the required fp alignment
   459   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   460   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   461 #ifndef PRODUCT
   462   _total_framesize += _framesize;
   463   if( (int)_framesize > _max_framesize )
   464     _max_framesize = _framesize;
   465 #endif
   467   // Convert CISC spills
   468   fixup_spills();
   470   // Log regalloc results
   471   CompileLog* log = Compile::current()->log();
   472   if (log != NULL) {
   473     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   474   }
   476   if (C->failing())  return;
   478   NOT_PRODUCT( C->verify_graph_edges(); )
   480   // Move important info out of the live_arena to longer lasting storage.
   481   alloc_node_regs(_names.Size());
   482   for( uint i=0; i < _names.Size(); i++ ) {
   483     if( _names[i] ) {           // Live range associated with Node?
   484       LRG &lrg = lrgs( _names[i] );
   485       if( lrg.num_regs() == 1 ) {
   486         _node_regs[i].set1( lrg.reg() );
   487       } else {                  // Must be a register-pair
   488         if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
   489           // Live ranges record the highest register in their mask.
   490           // We want the low register for the AD file writer's convenience.
   491           _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
   492         } else {                // Misaligned; extract 2 bits
   493           OptoReg::Name hi = lrg.reg(); // Get hi register
   494           lrg.Remove(hi);       // Yank from mask
   495           int lo = lrg.mask().find_first_elem(); // Find lo
   496           _node_regs[i].set_pair( hi, lo );
   497         }
   498       }
   499       if( lrg._is_oop ) _node_oops.set(i);
   500     } else {
   501       _node_regs[i].set_bad();
   502     }
   503   }
   505   // Done!
   506   _live = NULL;
   507   _ifg = NULL;
   508   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   509 }
   511 //------------------------------de_ssa-----------------------------------------
   512 void PhaseChaitin::de_ssa() {
   513   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   514   // number.  A few get the ZERO live range number.  These do not
   515   // get allocated, but instead rely on correct scheduling to ensure that
   516   // only one instance is simultaneously live at a time.
   517   uint lr_counter = 1;
   518   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   519     Block *b = _cfg._blocks[i];
   520     uint cnt = b->_nodes.size();
   522     // Handle all the normal Nodes in the block
   523     for( uint j = 0; j < cnt; j++ ) {
   524       Node *n = b->_nodes[j];
   525       // Pre-color to the zero live range, or pick virtual register
   526       const RegMask &rm = n->out_RegMask();
   527       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
   528     }
   529   }
   530   // Reset the Union-Find mapping to be identity
   531   reset_uf_map(lr_counter);
   532 }
   535 //------------------------------gather_lrg_masks-------------------------------
   536 // Gather LiveRanGe information, including register masks.  Modification of
   537 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   538 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   540   // Nail down the frame pointer live range
   541   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
   542   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   544   // For all blocks
   545   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   546     Block *b = _cfg._blocks[i];
   548     // For all instructions
   549     for( uint j = 1; j < b->_nodes.size(); j++ ) {
   550       Node *n = b->_nodes[j];
   551       uint input_edge_start =1; // Skip control most nodes
   552       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
   553       uint idx = n->is_Copy();
   555       // Get virtual register number, same as LiveRanGe index
   556       uint vreg = n2lidx(n);
   557       LRG &lrg = lrgs(vreg);
   558       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
   560         // Collect has-copy bit
   561         if( idx ) {
   562           lrg._has_copy = 1;
   563           uint clidx = n2lidx(n->in(idx));
   564           LRG &copy_src = lrgs(clidx);
   565           copy_src._has_copy = 1;
   566         }
   568         // Check for float-vs-int live range (used in register-pressure
   569         // calculations)
   570         const Type *n_type = n->bottom_type();
   571         if( n_type->is_floatingpoint() )
   572           lrg._is_float = 1;
   574         // Check for twice prior spilling.  Once prior spilling might have
   575         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   576         // further spilling is unlikely to make progress.
   577         if( _spilled_once.test(n->_idx) ) {
   578           lrg._was_spilled1 = 1;
   579           if( _spilled_twice.test(n->_idx) )
   580             lrg._was_spilled2 = 1;
   581         }
   583 #ifndef PRODUCT
   584         if (trace_spilling() && lrg._def != NULL) {
   585           // collect defs for MultiDef printing
   586           if (lrg._defs == NULL) {
   587             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   588             lrg._defs->append(lrg._def);
   589           }
   590           lrg._defs->append(n);
   591         }
   592 #endif
   594         // Check for a single def LRG; these can spill nicely
   595         // via rematerialization.  Flag as NULL for no def found
   596         // yet, or 'n' for single def or -1 for many defs.
   597         lrg._def = lrg._def ? NodeSentinel : n;
   599         // Limit result register mask to acceptable registers
   600         const RegMask &rm = n->out_RegMask();
   601         lrg.AND( rm );
   602         // Check for bound register masks
   603         const RegMask &lrgmask = lrg.mask();
   604         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
   605           lrg._is_bound = 1;
   607         // Check for maximum frequency value
   608         if( lrg._maxfreq < b->_freq )
   609           lrg._maxfreq = b->_freq;
   611         int ireg = n->ideal_reg();
   612         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   613                 "oops must be in Op_RegP's" );
   614         // Check for oop-iness, or long/double
   615         // Check for multi-kill projection
   616         switch( ireg ) {
   617         case MachProjNode::fat_proj:
   618           // Fat projections have size equal to number of registers killed
   619           lrg.set_num_regs(rm.Size());
   620           lrg.set_reg_pressure(lrg.num_regs());
   621           lrg._fat_proj = 1;
   622           lrg._is_bound = 1;
   623           break;
   624         case Op_RegP:
   625 #ifdef _LP64
   626           lrg.set_num_regs(2);  // Size is 2 stack words
   627 #else
   628           lrg.set_num_regs(1);  // Size is 1 stack word
   629 #endif
   630           // Register pressure is tracked relative to the maximum values
   631           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   632           // and relative to other types which compete for the same regs.
   633           //
   634           // The following table contains suggested values based on the
   635           // architectures as defined in each .ad file.
   636           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   637           // compile-speed or performance.
   638           // Note1:
   639           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   640           // since .ad registers are defined as high and low halves.
   641           // These reg_pressure values remain compatible with the code
   642           // in is_high_pressure() which relates get_invalid_mask_size(),
   643           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   644           // Note2:
   645           // SPARC -d32 has 24 registers available for integral values,
   646           // but only 10 of these are safe for 64-bit longs.
   647           // Using set_reg_pressure(2) for both int and long means
   648           // the allocator will believe it can fit 26 longs into
   649           // registers.  Using 2 for longs and 1 for ints means the
   650           // allocator will attempt to put 52 integers into registers.
   651           // The settings below limit this problem to methods with
   652           // many long values which are being run on 32-bit SPARC.
   653           //
   654           // ------------------- reg_pressure --------------------
   655           // Each entry is reg_pressure_per_value,number_of_regs
   656           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   657           // IA32     2     1     1          1    1          6           6
   658           // IA64     1     1     1          1    1         50          41
   659           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   660           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   661           // AMD64    1     1     1          1    1         14          15
   662           // -----------------------------------------------------
   663 #if defined(SPARC)
   664           lrg.set_reg_pressure(2);  // use for v9 as well
   665 #else
   666           lrg.set_reg_pressure(1);  // normally one value per register
   667 #endif
   668           if( n_type->isa_oop_ptr() ) {
   669             lrg._is_oop = 1;
   670           }
   671           break;
   672         case Op_RegL:           // Check for long or double
   673         case Op_RegD:
   674           lrg.set_num_regs(2);
   675           // Define platform specific register pressure
   676 #if defined(SPARC) || defined(ARM)
   677           lrg.set_reg_pressure(2);
   678 #elif defined(IA32)
   679           if( ireg == Op_RegL ) {
   680             lrg.set_reg_pressure(2);
   681           } else {
   682             lrg.set_reg_pressure(1);
   683           }
   684 #else
   685           lrg.set_reg_pressure(1);  // normally one value per register
   686 #endif
   687           // If this def of a double forces a mis-aligned double,
   688           // flag as '_fat_proj' - really flag as allowing misalignment
   689           // AND changes how we count interferences.  A mis-aligned
   690           // double can interfere with TWO aligned pairs, or effectively
   691           // FOUR registers!
   692           if( rm.is_misaligned_Pair() ) {
   693             lrg._fat_proj = 1;
   694             lrg._is_bound = 1;
   695           }
   696           break;
   697         case Op_RegF:
   698         case Op_RegI:
   699         case Op_RegN:
   700         case Op_RegFlags:
   701         case 0:                 // not an ideal register
   702           lrg.set_num_regs(1);
   703 #ifdef SPARC
   704           lrg.set_reg_pressure(2);
   705 #else
   706           lrg.set_reg_pressure(1);
   707 #endif
   708           break;
   709         default:
   710           ShouldNotReachHere();
   711         }
   712       }
   714       // Now do the same for inputs
   715       uint cnt = n->req();
   716       // Setup for CISC SPILLING
   717       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   718       if( UseCISCSpill && after_aggressive ) {
   719         inp = n->cisc_operand();
   720         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   721           // Convert operand number to edge index number
   722           inp = n->as_Mach()->operand_index(inp);
   723       }
   724       // Prepare register mask for each input
   725       for( uint k = input_edge_start; k < cnt; k++ ) {
   726         uint vreg = n2lidx(n->in(k));
   727         if( !vreg ) continue;
   729         // If this instruction is CISC Spillable, add the flags
   730         // bit to its appropriate input
   731         if( UseCISCSpill && after_aggressive && inp == k ) {
   732 #ifndef PRODUCT
   733           if( TraceCISCSpill ) {
   734             tty->print("  use_cisc_RegMask: ");
   735             n->dump();
   736           }
   737 #endif
   738           n->as_Mach()->use_cisc_RegMask();
   739         }
   741         LRG &lrg = lrgs(vreg);
   742         // // Testing for floating point code shape
   743         // Node *test = n->in(k);
   744         // if( test->is_Mach() ) {
   745         //   MachNode *m = test->as_Mach();
   746         //   int  op = m->ideal_Opcode();
   747         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   748         //     int zzz = 1;
   749         //   }
   750         // }
   752         // Limit result register mask to acceptable registers.
   753         // Do not limit registers from uncommon uses before
   754         // AggressiveCoalesce.  This effectively pre-virtual-splits
   755         // around uncommon uses of common defs.
   756         const RegMask &rm = n->in_RegMask(k);
   757         if( !after_aggressive &&
   758           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
   759           // Since we are BEFORE aggressive coalesce, leave the register
   760           // mask untrimmed by the call.  This encourages more coalescing.
   761           // Later, AFTER aggressive, this live range will have to spill
   762           // but the spiller handles slow-path calls very nicely.
   763         } else {
   764           lrg.AND( rm );
   765         }
   766         // Check for bound register masks
   767         const RegMask &lrgmask = lrg.mask();
   768         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
   769           lrg._is_bound = 1;
   770         // If this use of a double forces a mis-aligned double,
   771         // flag as '_fat_proj' - really flag as allowing misalignment
   772         // AND changes how we count interferences.  A mis-aligned
   773         // double can interfere with TWO aligned pairs, or effectively
   774         // FOUR registers!
   775         if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
   776           lrg._fat_proj = 1;
   777           lrg._is_bound = 1;
   778         }
   779         // if the LRG is an unaligned pair, we will have to spill
   780         // so clear the LRG's register mask if it is not already spilled
   781         if ( !n->is_SpillCopy() &&
   782                (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
   783                lrgmask.is_misaligned_Pair()) {
   784           lrg.Clear();
   785         }
   787         // Check for maximum frequency value
   788         if( lrg._maxfreq < b->_freq )
   789           lrg._maxfreq = b->_freq;
   791       } // End for all allocated inputs
   792     } // end for all instructions
   793   } // end for all blocks
   795   // Final per-liverange setup
   796   for( uint i2=0; i2<_maxlrg; i2++ ) {
   797     LRG &lrg = lrgs(i2);
   798     if( lrg.num_regs() == 2 && !lrg._fat_proj )
   799       lrg.ClearToPairs();
   800     lrg.compute_set_mask_size();
   801     if( lrg.not_free() ) {      // Handle case where we lose from the start
   802       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   803       lrg._direct_conflict = 1;
   804     }
   805     lrg.set_degree(0);          // no neighbors in IFG yet
   806   }
   807 }
   809 //------------------------------set_was_low------------------------------------
   810 // Set the was-lo-degree bit.  Conservative coalescing should not change the
   811 // colorability of the graph.  If any live range was of low-degree before
   812 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
   813 // The bit is checked in Simplify.
   814 void PhaseChaitin::set_was_low() {
   815 #ifdef ASSERT
   816   for( uint i = 1; i < _maxlrg; i++ ) {
   817     int size = lrgs(i).num_regs();
   818     uint old_was_lo = lrgs(i)._was_lo;
   819     lrgs(i)._was_lo = 0;
   820     if( lrgs(i).lo_degree() ) {
   821       lrgs(i)._was_lo = 1;      // Trivially of low degree
   822     } else {                    // Else check the Brigg's assertion
   823       // Brigg's observation is that the lo-degree neighbors of a
   824       // hi-degree live range will not interfere with the color choices
   825       // of said hi-degree live range.  The Simplify reverse-stack-coloring
   826       // order takes care of the details.  Hence you do not have to count
   827       // low-degree neighbors when determining if this guy colors.
   828       int briggs_degree = 0;
   829       IndexSet *s = _ifg->neighbors(i);
   830       IndexSetIterator elements(s);
   831       uint lidx;
   832       while((lidx = elements.next()) != 0) {
   833         if( !lrgs(lidx).lo_degree() )
   834           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
   835       }
   836       if( briggs_degree < lrgs(i).degrees_of_freedom() )
   837         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
   838     }
   839     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
   840   }
   841 #endif
   842 }
   844 #define REGISTER_CONSTRAINED 16
   846 //------------------------------cache_lrg_info---------------------------------
   847 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
   848 void PhaseChaitin::cache_lrg_info( ) {
   850   for( uint i = 1; i < _maxlrg; i++ ) {
   851     LRG &lrg = lrgs(i);
   853     // Check for being of low degree: means we can be trivially colored.
   854     // Low degree, dead or must-spill guys just get to simplify right away
   855     if( lrg.lo_degree() ||
   856        !lrg.alive() ||
   857         lrg._must_spill ) {
   858       // Split low degree list into those guys that must get a
   859       // register and those that can go to register or stack.
   860       // The idea is LRGs that can go register or stack color first when
   861       // they have a good chance of getting a register.  The register-only
   862       // lo-degree live ranges always get a register.
   863       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
   864       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
   865         lrg._next = _lo_stk_degree;
   866         _lo_stk_degree = i;
   867       } else {
   868         lrg._next = _lo_degree;
   869         _lo_degree = i;
   870       }
   871     } else {                    // Else high degree
   872       lrgs(_hi_degree)._prev = i;
   873       lrg._next = _hi_degree;
   874       lrg._prev = 0;
   875       _hi_degree = i;
   876     }
   877   }
   878 }
   880 //------------------------------Pre-Simplify-----------------------------------
   881 // Simplify the IFG by removing LRGs of low degree that have NO copies
   882 void PhaseChaitin::Pre_Simplify( ) {
   884   // Warm up the lo-degree no-copy list
   885   int lo_no_copy = 0;
   886   for( uint i = 1; i < _maxlrg; i++ ) {
   887     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
   888         !lrgs(i).alive() ||
   889         lrgs(i)._must_spill ) {
   890       lrgs(i)._next = lo_no_copy;
   891       lo_no_copy = i;
   892     }
   893   }
   895   while( lo_no_copy ) {
   896     uint lo = lo_no_copy;
   897     lo_no_copy = lrgs(lo)._next;
   898     int size = lrgs(lo).num_regs();
   900     // Put the simplified guy on the simplified list.
   901     lrgs(lo)._next = _simplified;
   902     _simplified = lo;
   904     // Yank this guy from the IFG.
   905     IndexSet *adj = _ifg->remove_node( lo );
   907     // If any neighbors' degrees fall below their number of
   908     // allowed registers, then put that neighbor on the low degree
   909     // list.  Note that 'degree' can only fall and 'numregs' is
   910     // unchanged by this action.  Thus the two are equal at most once,
   911     // so LRGs hit the lo-degree worklists at most once.
   912     IndexSetIterator elements(adj);
   913     uint neighbor;
   914     while ((neighbor = elements.next()) != 0) {
   915       LRG *n = &lrgs(neighbor);
   916       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   918       // Check for just becoming of-low-degree
   919       if( n->just_lo_degree() && !n->_has_copy ) {
   920         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   921         // Put on lo-degree list
   922         n->_next = lo_no_copy;
   923         lo_no_copy = neighbor;
   924       }
   925     }
   926   } // End of while lo-degree no_copy worklist not empty
   928   // No more lo-degree no-copy live ranges to simplify
   929 }
   931 //------------------------------Simplify---------------------------------------
   932 // Simplify the IFG by removing LRGs of low degree.
   933 void PhaseChaitin::Simplify( ) {
   935   while( 1 ) {                  // Repeat till simplified it all
   936     // May want to explore simplifying lo_degree before _lo_stk_degree.
   937     // This might result in more spills coloring into registers during
   938     // Select().
   939     while( _lo_degree || _lo_stk_degree ) {
   940       // If possible, pull from lo_stk first
   941       uint lo;
   942       if( _lo_degree ) {
   943         lo = _lo_degree;
   944         _lo_degree = lrgs(lo)._next;
   945       } else {
   946         lo = _lo_stk_degree;
   947         _lo_stk_degree = lrgs(lo)._next;
   948       }
   950       // Put the simplified guy on the simplified list.
   951       lrgs(lo)._next = _simplified;
   952       _simplified = lo;
   953       // If this guy is "at risk" then mark his current neighbors
   954       if( lrgs(lo)._at_risk ) {
   955         IndexSetIterator elements(_ifg->neighbors(lo));
   956         uint datum;
   957         while ((datum = elements.next()) != 0) {
   958           lrgs(datum)._risk_bias = lo;
   959         }
   960       }
   962       // Yank this guy from the IFG.
   963       IndexSet *adj = _ifg->remove_node( lo );
   965       // If any neighbors' degrees fall below their number of
   966       // allowed registers, then put that neighbor on the low degree
   967       // list.  Note that 'degree' can only fall and 'numregs' is
   968       // unchanged by this action.  Thus the two are equal at most once,
   969       // so LRGs hit the lo-degree worklist at most once.
   970       IndexSetIterator elements(adj);
   971       uint neighbor;
   972       while ((neighbor = elements.next()) != 0) {
   973         LRG *n = &lrgs(neighbor);
   974 #ifdef ASSERT
   975         if( VerifyOpto || VerifyRegisterAllocator ) {
   976           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   977         }
   978 #endif
   980         // Check for just becoming of-low-degree just counting registers.
   981         // _must_spill live ranges are already on the low degree list.
   982         if( n->just_lo_degree() && !n->_must_spill ) {
   983           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   984           // Pull from hi-degree list
   985           uint prev = n->_prev;
   986           uint next = n->_next;
   987           if( prev ) lrgs(prev)._next = next;
   988           else _hi_degree = next;
   989           lrgs(next)._prev = prev;
   990           n->_next = _lo_degree;
   991           _lo_degree = neighbor;
   992         }
   993       }
   994     } // End of while lo-degree/lo_stk_degree worklist not empty
   996     // Check for got everything: is hi-degree list empty?
   997     if( !_hi_degree ) break;
   999     // Time to pick a potential spill guy
  1000     uint lo_score = _hi_degree;
  1001     double score = lrgs(lo_score).score();
  1002     double area = lrgs(lo_score)._area;
  1003     double cost = lrgs(lo_score)._cost;
  1004     bool bound = lrgs(lo_score)._is_bound;
  1006     // Find cheapest guy
  1007     debug_only( int lo_no_simplify=0; );
  1008     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1009       assert( !(*_ifg->_yanked)[i], "" );
  1010       // It's just vaguely possible to move hi-degree to lo-degree without
  1011       // going through a just-lo-degree stage: If you remove a double from
  1012       // a float live range it's degree will drop by 2 and you can skip the
  1013       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1014       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1015       if( lrgs(i).lo_degree() ) {
  1016         lo_score = i;
  1017         break;
  1019       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1020       double iscore = lrgs(i).score();
  1021       double iarea = lrgs(i)._area;
  1022       double icost = lrgs(i)._cost;
  1023       bool ibound = lrgs(i)._is_bound;
  1025       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1026       // wins.  Ties happen because all live ranges in question have spilled
  1027       // a few times before and the spill-score adds a huge number which
  1028       // washes out the low order bits.  We are choosing the lesser of 2
  1029       // evils; in this case pick largest area to spill.
  1030       // Ties also happen when live ranges are defined and used only inside
  1031       // one block. In which case their area is 0 and score set to max.
  1032       // In such case choose bound live range over unbound to free registers
  1033       // or with smaller cost to spill.
  1034       if( iscore < score ||
  1035           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1036           (iscore == score && iarea == area &&
  1037            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1038         lo_score = i;
  1039         score = iscore;
  1040         area = iarea;
  1041         cost = icost;
  1042         bound = ibound;
  1045     LRG *lo_lrg = &lrgs(lo_score);
  1046     // The live range we choose for spilling is either hi-degree, or very
  1047     // rarely it can be low-degree.  If we choose a hi-degree live range
  1048     // there better not be any lo-degree choices.
  1049     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1051     // Pull from hi-degree list
  1052     uint prev = lo_lrg->_prev;
  1053     uint next = lo_lrg->_next;
  1054     if( prev ) lrgs(prev)._next = next;
  1055     else _hi_degree = next;
  1056     lrgs(next)._prev = prev;
  1057     // Jam him on the lo-degree list, despite his high degree.
  1058     // Maybe he'll get a color, and maybe he'll spill.
  1059     // Only Select() will know.
  1060     lrgs(lo_score)._at_risk = true;
  1061     _lo_degree = lo_score;
  1062     lo_lrg->_next = 0;
  1064   } // End of while not simplified everything
  1068 //------------------------------bias_color-------------------------------------
  1069 // Choose a color using the biasing heuristic
  1070 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1072   // Check for "at_risk" LRG's
  1073   uint risk_lrg = Find(lrg._risk_bias);
  1074   if( risk_lrg != 0 ) {
  1075     // Walk the colored neighbors of the "at_risk" candidate
  1076     // Choose a color which is both legal and already taken by a neighbor
  1077     // of the "at_risk" candidate in order to improve the chances of the
  1078     // "at_risk" candidate of coloring
  1079     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1080     uint datum;
  1081     while ((datum = elements.next()) != 0) {
  1082       OptoReg::Name reg = lrgs(datum).reg();
  1083       // If this LRG's register is legal for us, choose it
  1084       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1085           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1086           (lrg.num_regs()==1 || // either size 1
  1087            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1088         return reg;
  1092   uint copy_lrg = Find(lrg._copy_bias);
  1093   if( copy_lrg != 0 ) {
  1094     // If he has a color,
  1095     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1096       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1097       //  And it is legal for you,
  1098       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1099           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1100           (lrg.num_regs()==1 || // either size 1
  1101            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1102         return reg;
  1103     } else if( chunk == 0 ) {
  1104       // Choose a color which is legal for him
  1105       RegMask tempmask = lrg.mask();
  1106       tempmask.AND(lrgs(copy_lrg).mask());
  1107       OptoReg::Name reg;
  1108       if( lrg.num_regs() == 1 ) {
  1109         reg = tempmask.find_first_elem();
  1110       } else {
  1111         tempmask.ClearToPairs();
  1112         reg = tempmask.find_first_pair();
  1114       if( OptoReg::is_valid(reg) )
  1115         return reg;
  1119   // If no bias info exists, just go with the register selection ordering
  1120   if( lrg.num_regs() == 2 ) {
  1121     // Find an aligned pair
  1122     return OptoReg::add(lrg.mask().find_first_pair(),chunk);
  1125   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1126   // copy removal to remove many more copies, by preventing a just-assigned
  1127   // register from being repeatedly assigned.
  1128   OptoReg::Name reg = lrg.mask().find_first_elem();
  1129   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1130     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1131     // SECOND element in the mask.
  1132     lrg.Remove(reg);
  1133     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1134     lrg.Insert(reg);
  1135     if( OptoReg::is_reg(reg2))
  1136       reg = reg2;
  1138   return OptoReg::add( reg, chunk );
  1141 //------------------------------choose_color-----------------------------------
  1142 // Choose a color in the current chunk
  1143 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1144   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1145   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1147   if( lrg.num_regs() == 1 ||    // Common Case
  1148       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1149     // Use a heuristic to "bias" the color choice
  1150     return bias_color(lrg, chunk);
  1152   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1154   // Fat-proj case or misaligned double argument.
  1155   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1156          lrg.num_regs() == 2,"fat projs exactly color" );
  1157   assert( !chunk, "always color in 1st chunk" );
  1158   // Return the highest element in the set.
  1159   return lrg.mask().find_last_elem();
  1162 //------------------------------Select-----------------------------------------
  1163 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1164 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1165 // everything going back is guaranteed a color.  Select that color.  If some
  1166 // hi-degree LRG cannot get a color then we record that we must spill.
  1167 uint PhaseChaitin::Select( ) {
  1168   uint spill_reg = LRG::SPILL_REG;
  1169   _max_reg = OptoReg::Name(0);  // Past max register used
  1170   while( _simplified ) {
  1171     // Pull next LRG from the simplified list - in reverse order of removal
  1172     uint lidx = _simplified;
  1173     LRG *lrg = &lrgs(lidx);
  1174     _simplified = lrg->_next;
  1177 #ifndef PRODUCT
  1178     if (trace_spilling()) {
  1179       ttyLocker ttyl;
  1180       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1181                     lrg->degrees_of_freedom());
  1182       lrg->dump();
  1184 #endif
  1186     // Re-insert into the IFG
  1187     _ifg->re_insert(lidx);
  1188     if( !lrg->alive() ) continue;
  1189     // capture allstackedness flag before mask is hacked
  1190     const int is_allstack = lrg->mask().is_AllStack();
  1192     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1193     // to avoid the GOTO, although the refactored code will not
  1194     // be much clearer.  We arrive here IFF we have a stack-based
  1195     // live range that cannot color in the current chunk, and it
  1196     // has to move into the next free stack chunk.
  1197     int chunk = 0;              // Current chunk is first chunk
  1198     retry_next_chunk:
  1200     // Remove neighbor colors
  1201     IndexSet *s = _ifg->neighbors(lidx);
  1203     debug_only(RegMask orig_mask = lrg->mask();)
  1204     IndexSetIterator elements(s);
  1205     uint neighbor;
  1206     while ((neighbor = elements.next()) != 0) {
  1207       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1208       // of its color will be a no-op, since the spill_reg chunk is in outer
  1209       // space.  Also, if neighbor is in a different chunk, this exclusion
  1210       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1211       // its chunk, a new chunk of color may be tried, in which case
  1212       // examination of neighbors is started again, at retry_next_chunk.)
  1213       LRG &nlrg = lrgs(neighbor);
  1214       OptoReg::Name nreg = nlrg.reg();
  1215       // Only subtract masks in the same chunk
  1216       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1217 #ifndef PRODUCT
  1218         uint size = lrg->mask().Size();
  1219         RegMask rm = lrg->mask();
  1220 #endif
  1221         lrg->SUBTRACT(nlrg.mask());
  1222 #ifndef PRODUCT
  1223         if (trace_spilling() && lrg->mask().Size() != size) {
  1224           ttyLocker ttyl;
  1225           tty->print("L%d ", lidx);
  1226           rm.dump();
  1227           tty->print(" intersected L%d ", neighbor);
  1228           nlrg.mask().dump();
  1229           tty->print(" removed ");
  1230           rm.SUBTRACT(lrg->mask());
  1231           rm.dump();
  1232           tty->print(" leaving ");
  1233           lrg->mask().dump();
  1234           tty->cr();
  1236 #endif
  1239     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1240     // Aligned pairs need aligned masks
  1241     if( lrg->num_regs() == 2 && !lrg->_fat_proj )
  1242       lrg->ClearToPairs();
  1244     // Check if a color is available and if so pick the color
  1245     OptoReg::Name reg = choose_color( *lrg, chunk );
  1246 #ifdef SPARC
  1247     debug_only(lrg->compute_set_mask_size());
  1248     assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1249 #endif
  1251     //---------------
  1252     // If we fail to color and the AllStack flag is set, trigger
  1253     // a chunk-rollover event
  1254     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1255       // Bump register mask up to next stack chunk
  1256       chunk += RegMask::CHUNK_SIZE;
  1257       lrg->Set_All();
  1259       goto retry_next_chunk;
  1262     //---------------
  1263     // Did we get a color?
  1264     else if( OptoReg::is_valid(reg)) {
  1265 #ifndef PRODUCT
  1266       RegMask avail_rm = lrg->mask();
  1267 #endif
  1269       // Record selected register
  1270       lrg->set_reg(reg);
  1272       if( reg >= _max_reg )     // Compute max register limit
  1273         _max_reg = OptoReg::add(reg,1);
  1274       // Fold reg back into normal space
  1275       reg = OptoReg::add(reg,-chunk);
  1277       // If the live range is not bound, then we actually had some choices
  1278       // to make.  In this case, the mask has more bits in it than the colors
  1279       // chosen.  Restrict the mask to just what was picked.
  1280       if( lrg->num_regs() == 1 ) { // Size 1 live range
  1281         lrg->Clear();           // Clear the mask
  1282         lrg->Insert(reg);       // Set regmask to match selected reg
  1283         lrg->set_mask_size(1);
  1284       } else if( !lrg->_fat_proj ) {
  1285         // For pairs, also insert the low bit of the pair
  1286         assert( lrg->num_regs() == 2, "unbound fatproj???" );
  1287         lrg->Clear();           // Clear the mask
  1288         lrg->Insert(reg);       // Set regmask to match selected reg
  1289         lrg->Insert(OptoReg::add(reg,-1));
  1290         lrg->set_mask_size(2);
  1291       } else {                  // Else fatproj
  1292         // mask must be equal to fatproj bits, by definition
  1294 #ifndef PRODUCT
  1295       if (trace_spilling()) {
  1296         ttyLocker ttyl;
  1297         tty->print("L%d selected ", lidx);
  1298         lrg->mask().dump();
  1299         tty->print(" from ");
  1300         avail_rm.dump();
  1301         tty->cr();
  1303 #endif
  1304       // Note that reg is the highest-numbered register in the newly-bound mask.
  1305     } // end color available case
  1307     //---------------
  1308     // Live range is live and no colors available
  1309     else {
  1310       assert( lrg->alive(), "" );
  1311       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1312               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1313       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1315       // Assign the special spillreg register
  1316       lrg->set_reg(OptoReg::Name(spill_reg++));
  1317       // Do not empty the regmask; leave mask_size lying around
  1318       // for use during Spilling
  1319 #ifndef PRODUCT
  1320       if( trace_spilling() ) {
  1321         ttyLocker ttyl;
  1322         tty->print("L%d spilling with neighbors: ", lidx);
  1323         s->dump();
  1324         debug_only(tty->print(" original mask: "));
  1325         debug_only(orig_mask.dump());
  1326         dump_lrg(lidx);
  1328 #endif
  1329     } // end spill case
  1333   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1337 //------------------------------copy_was_spilled-------------------------------
  1338 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1339 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1340   if( _spilled_once.test(src->_idx) ) {
  1341     _spilled_once.set(dst->_idx);
  1342     lrgs(Find(dst))._was_spilled1 = 1;
  1343     if( _spilled_twice.test(src->_idx) ) {
  1344       _spilled_twice.set(dst->_idx);
  1345       lrgs(Find(dst))._was_spilled2 = 1;
  1350 //------------------------------set_was_spilled--------------------------------
  1351 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1352 void PhaseChaitin::set_was_spilled( Node *n ) {
  1353   if( _spilled_once.test_set(n->_idx) )
  1354     _spilled_twice.set(n->_idx);
  1357 //------------------------------fixup_spills-----------------------------------
  1358 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1359 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1360 void PhaseChaitin::fixup_spills() {
  1361   // This function does only cisc spill work.
  1362   if( !UseCISCSpill ) return;
  1364   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1366   // Grab the Frame Pointer
  1367   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
  1369   // For all blocks
  1370   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1371     Block *b = _cfg._blocks[i];
  1373     // For all instructions in block
  1374     uint last_inst = b->end_idx();
  1375     for( uint j = 1; j <= last_inst; j++ ) {
  1376       Node *n = b->_nodes[j];
  1378       // Dead instruction???
  1379       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1380               C->top() == n ||  // Or the random TOP node
  1381               n->is_Proj(),     // Or a fat-proj kill node
  1382               "No dead instructions after post-alloc" );
  1384       int inp = n->cisc_operand();
  1385       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1386         // Convert operand number to edge index number
  1387         MachNode *mach = n->as_Mach();
  1388         inp = mach->operand_index(inp);
  1389         Node *src = n->in(inp);   // Value to load or store
  1390         LRG &lrg_cisc = lrgs( Find_const(src) );
  1391         OptoReg::Name src_reg = lrg_cisc.reg();
  1392         // Doubles record the HIGH register of an adjacent pair.
  1393         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1394         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1395           // This is a CISC Spill, get stack offset and construct new node
  1396 #ifndef PRODUCT
  1397           if( TraceCISCSpill ) {
  1398             tty->print("    reg-instr:  ");
  1399             n->dump();
  1401 #endif
  1402           int stk_offset = reg2offset(src_reg);
  1403           // Bailout if we might exceed node limit when spilling this instruction
  1404           C->check_node_count(0, "out of nodes fixing spills");
  1405           if (C->failing())  return;
  1406           // Transform node
  1407           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1408           cisc->set_req(inp,fp);          // Base register is frame pointer
  1409           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1410             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1411             cisc->ins_req(1,src);         // Requires a memory edge
  1413           b->_nodes.map(j,cisc);          // Insert into basic block
  1414           n->subsume_by(cisc); // Correct graph
  1415           //
  1416           ++_used_cisc_instructions;
  1417 #ifndef PRODUCT
  1418           if( TraceCISCSpill ) {
  1419             tty->print("    cisc-instr: ");
  1420             cisc->dump();
  1422 #endif
  1423         } else {
  1424 #ifndef PRODUCT
  1425           if( TraceCISCSpill ) {
  1426             tty->print("    using reg-instr: ");
  1427             n->dump();
  1429 #endif
  1430           ++_unused_cisc_instructions;    // input can be on stack
  1434     } // End of for all instructions
  1436   } // End of for all blocks
  1439 //------------------------------find_base_for_derived--------------------------
  1440 // Helper to stretch above; recursively discover the base Node for a
  1441 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1442 // to be recursive for derived Phis.
  1443 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1444   // See if already computed; if so return it
  1445   if( derived_base_map[derived->_idx] )
  1446     return derived_base_map[derived->_idx];
  1448   // See if this happens to be a base.
  1449   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1450   // pointers derived from NULL!  These are always along paths that
  1451   // can't happen at run-time but the optimizer cannot deduce it so
  1452   // we have to handle it gracefully.
  1453   assert(!derived->bottom_type()->isa_narrowoop() ||
  1454           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1455   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1456   // If its an OOP with a non-zero offset, then it is derived.
  1457   if( tj == NULL || tj->_offset == 0 ) {
  1458     derived_base_map[derived->_idx] = derived;
  1459     return derived;
  1461   // Derived is NULL+offset?  Base is NULL!
  1462   if( derived->is_Con() ) {
  1463     Node *base = _matcher.mach_null();
  1464     assert(base != NULL, "sanity");
  1465     if (base->in(0) == NULL) {
  1466       // Initialize it once and make it shared:
  1467       // set control to _root and place it into Start block
  1468       // (where top() node is placed).
  1469       base->init_req(0, _cfg._root);
  1470       Block *startb = _cfg._bbs[C->top()->_idx];
  1471       startb->_nodes.insert(startb->find_node(C->top()), base );
  1472       _cfg._bbs.map( base->_idx, startb );
  1473       assert (n2lidx(base) == 0, "should not have LRG yet");
  1475     if (n2lidx(base) == 0) {
  1476       new_lrg(base, maxlrg++);
  1478     assert(base->in(0) == _cfg._root &&
  1479            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
  1480     derived_base_map[derived->_idx] = base;
  1481     return base;
  1484   // Check for AddP-related opcodes
  1485   if( !derived->is_Phi() ) {
  1486     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
  1487     Node *base = derived->in(AddPNode::Base);
  1488     derived_base_map[derived->_idx] = base;
  1489     return base;
  1492   // Recursively find bases for Phis.
  1493   // First check to see if we can avoid a base Phi here.
  1494   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1495   uint i;
  1496   for( i = 2; i < derived->req(); i++ )
  1497     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1498       break;
  1499   // Went to the end without finding any different bases?
  1500   if( i == derived->req() ) {   // No need for a base Phi here
  1501     derived_base_map[derived->_idx] = base;
  1502     return base;
  1505   // Now we see we need a base-Phi here to merge the bases
  1506   const Type *t = base->bottom_type();
  1507   base = new (C, derived->req()) PhiNode( derived->in(0), t );
  1508   for( i = 1; i < derived->req(); i++ ) {
  1509     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1510     t = t->meet(base->in(i)->bottom_type());
  1512   base->as_Phi()->set_type(t);
  1514   // Search the current block for an existing base-Phi
  1515   Block *b = _cfg._bbs[derived->_idx];
  1516   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1517     Node *phi = b->_nodes[i];
  1518     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1519       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1520       _cfg._bbs.map( base->_idx, b );
  1521       new_lrg(base,maxlrg++);
  1522       break;
  1524     // See if Phi matches.
  1525     uint j;
  1526     for( j = 1; j < base->req(); j++ )
  1527       if( phi->in(j) != base->in(j) &&
  1528           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1529         break;
  1530     if( j == base->req() ) {    // All inputs match?
  1531       base = phi;               // Then use existing 'phi' and drop 'base'
  1532       break;
  1537   // Cache info for later passes
  1538   derived_base_map[derived->_idx] = base;
  1539   return base;
  1543 //------------------------------stretch_base_pointer_live_ranges---------------
  1544 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1545 // base pointer that is live across the Safepoint for oopmap building.  The
  1546 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1547 // required edge set.
  1548 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
  1549   int must_recompute_live = false;
  1550   uint maxlrg = _maxlrg;
  1551   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1552   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1554   // For all blocks in RPO do...
  1555   for( uint i=0; i<_cfg._num_blocks; i++ ) {
  1556     Block *b = _cfg._blocks[i];
  1557     // Note use of deep-copy constructor.  I cannot hammer the original
  1558     // liveout bits, because they are needed by the following coalesce pass.
  1559     IndexSet liveout(_live->live(b));
  1561     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
  1562       Node *n = b->_nodes[j-1];
  1564       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1565       // like to see in the same register.  Compare uses the loop-phi and so
  1566       // extends its live range BUT cannot be part of the cycle.  If this
  1567       // extended live range overlaps with the update of the loop-phi value
  1568       // we need both alive at the same time -- which requires at least 1
  1569       // copy.  But because Intel has only 2-address registers we end up with
  1570       // at least 2 copies, one before the loop-phi update instruction and
  1571       // one after.  Instead we split the input to the compare just after the
  1572       // phi.
  1573       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1574         Node *phi = n->in(1);
  1575         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1576           Block *phi_block = _cfg._bbs[phi->_idx];
  1577           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
  1578             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1579             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1580             insert_proj( phi_block, 1, spill, maxlrg++ );
  1581             n->set_req(1,spill);
  1582             must_recompute_live = true;
  1587       // Get value being defined
  1588       uint lidx = n2lidx(n);
  1589       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
  1590         // Remove from live-out set
  1591         liveout.remove(lidx);
  1593         // Copies do not define a new value and so do not interfere.
  1594         // Remove the copies source from the liveout set before interfering.
  1595         uint idx = n->is_Copy();
  1596         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
  1599       // Found a safepoint?
  1600       JVMState *jvms = n->jvms();
  1601       if( jvms ) {
  1602         // Now scan for a live derived pointer
  1603         IndexSetIterator elements(&liveout);
  1604         uint neighbor;
  1605         while ((neighbor = elements.next()) != 0) {
  1606           // Find reaching DEF for base and derived values
  1607           // This works because we are still in SSA during this call.
  1608           Node *derived = lrgs(neighbor)._def;
  1609           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1610           assert(!derived->bottom_type()->isa_narrowoop() ||
  1611                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1612           // If its an OOP with a non-zero offset, then it is derived.
  1613           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1614             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
  1615             assert( base->_idx < _names.Size(), "" );
  1616             // Add reaching DEFs of derived pointer and base pointer as a
  1617             // pair of inputs
  1618             n->add_req( derived );
  1619             n->add_req( base );
  1621             // See if the base pointer is already live to this point.
  1622             // Since I'm working on the SSA form, live-ness amounts to
  1623             // reaching def's.  So if I find the base's live range then
  1624             // I know the base's def reaches here.
  1625             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
  1626                  !liveout.member( n2lidx(base) ) ) && // not live) AND
  1627                  (n2lidx(base) > 0)                && // not a constant
  1628                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
  1629               // Base pointer is not currently live.  Since I stretched
  1630               // the base pointer to here and it crosses basic-block
  1631               // boundaries, the global live info is now incorrect.
  1632               // Recompute live.
  1633               must_recompute_live = true;
  1634             } // End of if base pointer is not live to debug info
  1636         } // End of scan all live data for derived ptrs crossing GC point
  1637       } // End of if found a GC point
  1639       // Make all inputs live
  1640       if( !n->is_Phi() ) {      // Phi function uses come from prior block
  1641         for( uint k = 1; k < n->req(); k++ ) {
  1642           uint lidx = n2lidx(n->in(k));
  1643           if( lidx < _maxlrg )
  1644             liveout.insert( lidx );
  1648     } // End of forall instructions in block
  1649     liveout.clear();  // Free the memory used by liveout.
  1651   } // End of forall blocks
  1652   _maxlrg = maxlrg;
  1654   // If I created a new live range I need to recompute live
  1655   if( maxlrg != _ifg->_maxlrg )
  1656     must_recompute_live = true;
  1658   return must_recompute_live != 0;
  1662 //------------------------------add_reference----------------------------------
  1663 // Extend the node to LRG mapping
  1664 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
  1665   _names.extend( node->_idx, n2lidx(old_node) );
  1668 //------------------------------dump-------------------------------------------
  1669 #ifndef PRODUCT
  1670 void PhaseChaitin::dump( const Node *n ) const {
  1671   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
  1672   tty->print("L%d",r);
  1673   if( r && n->Opcode() != Op_Phi ) {
  1674     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1675       tty->print("[");
  1676       OptoReg::Name second = get_reg_second(n);
  1677       if( OptoReg::is_valid(second) ) {
  1678         if( OptoReg::is_reg(second) )
  1679           tty->print("%s:",Matcher::regName[second]);
  1680         else
  1681           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1683       OptoReg::Name first = get_reg_first(n);
  1684       if( OptoReg::is_reg(first) )
  1685         tty->print("%s]",Matcher::regName[first]);
  1686       else
  1687          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1688     } else
  1689     n->out_RegMask().dump();
  1691   tty->print("/N%d\t",n->_idx);
  1692   tty->print("%s === ", n->Name());
  1693   uint k;
  1694   for( k = 0; k < n->req(); k++) {
  1695     Node *m = n->in(k);
  1696     if( !m ) tty->print("_ ");
  1697     else {
  1698       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1699       tty->print("L%d",r);
  1700       // Data MultiNode's can have projections with no real registers.
  1701       // Don't die while dumping them.
  1702       int op = n->Opcode();
  1703       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1704         if( _node_regs ) {
  1705           tty->print("[");
  1706           OptoReg::Name second = get_reg_second(n->in(k));
  1707           if( OptoReg::is_valid(second) ) {
  1708             if( OptoReg::is_reg(second) )
  1709               tty->print("%s:",Matcher::regName[second]);
  1710             else
  1711               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1712                          reg2offset_unchecked(second));
  1714           OptoReg::Name first = get_reg_first(n->in(k));
  1715           if( OptoReg::is_reg(first) )
  1716             tty->print("%s]",Matcher::regName[first]);
  1717           else
  1718             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1719                        reg2offset_unchecked(first));
  1720         } else
  1721           n->in_RegMask(k).dump();
  1723       tty->print("/N%d ",m->_idx);
  1726   if( k < n->len() && n->in(k) ) tty->print("| ");
  1727   for( ; k < n->len(); k++ ) {
  1728     Node *m = n->in(k);
  1729     if( !m ) break;
  1730     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1731     tty->print("L%d",r);
  1732     tty->print("/N%d ",m->_idx);
  1734   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1735   else n->dump_spec(tty);
  1736   if( _spilled_once.test(n->_idx ) ) {
  1737     tty->print(" Spill_1");
  1738     if( _spilled_twice.test(n->_idx ) )
  1739       tty->print(" Spill_2");
  1741   tty->print("\n");
  1744 void PhaseChaitin::dump( const Block * b ) const {
  1745   b->dump_head( &_cfg._bbs );
  1747   // For all instructions
  1748   for( uint j = 0; j < b->_nodes.size(); j++ )
  1749     dump(b->_nodes[j]);
  1750   // Print live-out info at end of block
  1751   if( _live ) {
  1752     tty->print("Liveout: ");
  1753     IndexSet *live = _live->live(b);
  1754     IndexSetIterator elements(live);
  1755     tty->print("{");
  1756     uint i;
  1757     while ((i = elements.next()) != 0) {
  1758       tty->print("L%d ", Find_const(i));
  1760     tty->print_cr("}");
  1762   tty->print("\n");
  1765 void PhaseChaitin::dump() const {
  1766   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1767               _matcher._new_SP, _framesize );
  1769   // For all blocks
  1770   for( uint i = 0; i < _cfg._num_blocks; i++ )
  1771     dump(_cfg._blocks[i]);
  1772   // End of per-block dump
  1773   tty->print("\n");
  1775   if (!_ifg) {
  1776     tty->print("(No IFG.)\n");
  1777     return;
  1780   // Dump LRG array
  1781   tty->print("--- Live RanGe Array ---\n");
  1782   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
  1783     tty->print("L%d: ",i2);
  1784     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
  1785     else tty->print_cr("new LRG");
  1787   tty->print_cr("");
  1789   // Dump lo-degree list
  1790   tty->print("Lo degree: ");
  1791   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  1792     tty->print("L%d ",i3);
  1793   tty->print_cr("");
  1795   // Dump lo-stk-degree list
  1796   tty->print("Lo stk degree: ");
  1797   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  1798     tty->print("L%d ",i4);
  1799   tty->print_cr("");
  1801   // Dump lo-degree list
  1802   tty->print("Hi degree: ");
  1803   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  1804     tty->print("L%d ",i5);
  1805   tty->print_cr("");
  1808 //------------------------------dump_degree_lists------------------------------
  1809 void PhaseChaitin::dump_degree_lists() const {
  1810   // Dump lo-degree list
  1811   tty->print("Lo degree: ");
  1812   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  1813     tty->print("L%d ",i);
  1814   tty->print_cr("");
  1816   // Dump lo-stk-degree list
  1817   tty->print("Lo stk degree: ");
  1818   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  1819     tty->print("L%d ",i2);
  1820   tty->print_cr("");
  1822   // Dump lo-degree list
  1823   tty->print("Hi degree: ");
  1824   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  1825     tty->print("L%d ",i3);
  1826   tty->print_cr("");
  1829 //------------------------------dump_simplified--------------------------------
  1830 void PhaseChaitin::dump_simplified() const {
  1831   tty->print("Simplified: ");
  1832   for( uint i = _simplified; i; i = lrgs(i)._next )
  1833     tty->print("L%d ",i);
  1834   tty->print_cr("");
  1837 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  1838   if ((int)reg < 0)
  1839     sprintf(buf, "<OptoReg::%d>", (int)reg);
  1840   else if (OptoReg::is_reg(reg))
  1841     strcpy(buf, Matcher::regName[reg]);
  1842   else
  1843     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  1844             pc->reg2offset(reg));
  1845   return buf+strlen(buf);
  1848 //------------------------------dump_register----------------------------------
  1849 // Dump a register name into a buffer.  Be intelligent if we get called
  1850 // before allocation is complete.
  1851 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  1852   if( !this ) {                 // Not got anything?
  1853     sprintf(buf,"N%d",n->_idx); // Then use Node index
  1854   } else if( _node_regs ) {
  1855     // Post allocation, use direct mappings, no LRG info available
  1856     print_reg( get_reg_first(n), this, buf );
  1857   } else {
  1858     uint lidx = Find_const(n); // Grab LRG number
  1859     if( !_ifg ) {
  1860       sprintf(buf,"L%d",lidx);  // No register binding yet
  1861     } else if( !lidx ) {        // Special, not allocated value
  1862       strcpy(buf,"Special");
  1863     } else if( (lrgs(lidx).num_regs() == 1)
  1864                 ? !lrgs(lidx).mask().is_bound1()
  1865                 : !lrgs(lidx).mask().is_bound2() ) {
  1866       sprintf(buf,"L%d",lidx); // No register binding yet
  1867     } else {                    // Hah!  We have a bound machine register
  1868       print_reg( lrgs(lidx).reg(), this, buf );
  1871   return buf+strlen(buf);
  1874 //----------------------dump_for_spill_split_recycle--------------------------
  1875 void PhaseChaitin::dump_for_spill_split_recycle() const {
  1876   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  1877     // Display which live ranges need to be split and the allocator's state
  1878     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  1879     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
  1880       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  1881         tty->print("L%d: ", bidx);
  1882         lrgs(bidx).dump();
  1885     tty->cr();
  1886     dump();
  1890 //------------------------------dump_frame------------------------------------
  1891 void PhaseChaitin::dump_frame() const {
  1892   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  1893   const TypeTuple *domain = C->tf()->domain();
  1894   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  1896   // Incoming arguments in registers dump
  1897   for( int k = 0; k < argcnt; k++ ) {
  1898     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  1899     if( OptoReg::is_reg(parmreg))  {
  1900       const char *reg_name = OptoReg::regname(parmreg);
  1901       tty->print("#r%3.3d %s", parmreg, reg_name);
  1902       parmreg = _matcher._parm_regs[k].second();
  1903       if( OptoReg::is_reg(parmreg))  {
  1904         tty->print(":%s", OptoReg::regname(parmreg));
  1906       tty->print("   : parm %d: ", k);
  1907       domain->field_at(k + TypeFunc::Parms)->dump();
  1908       tty->print_cr("");
  1912   // Check for un-owned padding above incoming args
  1913   OptoReg::Name reg = _matcher._new_SP;
  1914   if( reg > _matcher._in_arg_limit ) {
  1915     reg = OptoReg::add(reg, -1);
  1916     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  1919   // Incoming argument area dump
  1920   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  1921   while( reg > begin_in_arg ) {
  1922     reg = OptoReg::add(reg, -1);
  1923     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1924     int j;
  1925     for( j = 0; j < argcnt; j++) {
  1926       if( _matcher._parm_regs[j].first() == reg ||
  1927           _matcher._parm_regs[j].second() == reg ) {
  1928         tty->print("parm %d: ",j);
  1929         domain->field_at(j + TypeFunc::Parms)->dump();
  1930         tty->print_cr("");
  1931         break;
  1934     if( j >= argcnt )
  1935       tty->print_cr("HOLE, owned by SELF");
  1938   // Old outgoing preserve area
  1939   while( reg > _matcher._old_SP ) {
  1940     reg = OptoReg::add(reg, -1);
  1941     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  1944   // Old SP
  1945   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  1946     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  1948   // Preserve area dump
  1949   int fixed_slots = C->fixed_slots();
  1950   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  1951   OptoReg::Name return_addr = _matcher.return_addr();
  1953   reg = OptoReg::add(reg, -1);
  1954   while (OptoReg::is_stack(reg)) {
  1955     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1956     if (return_addr == reg) {
  1957       tty->print_cr("return address");
  1958     } else if (reg >= begin_in_preserve) {
  1959       // Preserved slots are present on x86
  1960       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  1961         tty->print_cr("saved fp register");
  1962       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  1963                VerifyStackAtCalls)
  1964         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  1965       else
  1966         tty->print_cr("in_preserve");
  1967     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  1968       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  1969     } else {
  1970       tty->print_cr("pad2, stack alignment");
  1972     reg = OptoReg::add(reg, -1);
  1975   // Spill area dump
  1976   reg = OptoReg::add(_matcher._new_SP, _framesize );
  1977   while( reg > _matcher._out_arg_limit ) {
  1978     reg = OptoReg::add(reg, -1);
  1979     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  1982   // Outgoing argument area dump
  1983   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  1984     reg = OptoReg::add(reg, -1);
  1985     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  1988   // Outgoing new preserve area
  1989   while( reg > _matcher._new_SP ) {
  1990     reg = OptoReg::add(reg, -1);
  1991     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  1993   tty->print_cr("#");
  1996 //------------------------------dump_bb----------------------------------------
  1997 void PhaseChaitin::dump_bb( uint pre_order ) const {
  1998   tty->print_cr("---dump of B%d---",pre_order);
  1999   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2000     Block *b = _cfg._blocks[i];
  2001     if( b->_pre_order == pre_order )
  2002       dump(b);
  2006 //------------------------------dump_lrg---------------------------------------
  2007 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2008   tty->print_cr("---dump of L%d---",lidx);
  2010   if( _ifg ) {
  2011     if( lidx >= _maxlrg ) {
  2012       tty->print("Attempt to print live range index beyond max live range.\n");
  2013       return;
  2015     tty->print("L%d: ",lidx);
  2016     if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
  2017     else tty->print_cr("new LRG");
  2019   if( _ifg && lidx < _ifg->_maxlrg) {
  2020     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2021     _ifg->neighbors(lidx)->dump();
  2022     tty->cr();
  2024   // For all blocks
  2025   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2026     Block *b = _cfg._blocks[i];
  2027     int dump_once = 0;
  2029     // For all instructions
  2030     for( uint j = 0; j < b->_nodes.size(); j++ ) {
  2031       Node *n = b->_nodes[j];
  2032       if( Find_const(n) == lidx ) {
  2033         if( !dump_once++ ) {
  2034           tty->cr();
  2035           b->dump_head( &_cfg._bbs );
  2037         dump(n);
  2038         continue;
  2040       if (!defs_only) {
  2041         uint cnt = n->req();
  2042         for( uint k = 1; k < cnt; k++ ) {
  2043           Node *m = n->in(k);
  2044           if (!m)  continue;  // be robust in the dumper
  2045           if( Find_const(m) == lidx ) {
  2046             if( !dump_once++ ) {
  2047               tty->cr();
  2048               b->dump_head( &_cfg._bbs );
  2050             dump(n);
  2055   } // End of per-block dump
  2056   tty->cr();
  2058 #endif // not PRODUCT
  2060 //------------------------------print_chaitin_statistics-------------------------------
  2061 int PhaseChaitin::_final_loads  = 0;
  2062 int PhaseChaitin::_final_stores = 0;
  2063 int PhaseChaitin::_final_memoves= 0;
  2064 int PhaseChaitin::_final_copies = 0;
  2065 double PhaseChaitin::_final_load_cost  = 0;
  2066 double PhaseChaitin::_final_store_cost = 0;
  2067 double PhaseChaitin::_final_memove_cost= 0;
  2068 double PhaseChaitin::_final_copy_cost  = 0;
  2069 int PhaseChaitin::_conserv_coalesce = 0;
  2070 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2071 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2072 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2073 int PhaseChaitin::_post_alloc = 0;
  2074 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2075 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2076 int PhaseChaitin::_used_cisc_instructions   = 0;
  2077 int PhaseChaitin::_unused_cisc_instructions = 0;
  2078 int PhaseChaitin::_allocator_attempts       = 0;
  2079 int PhaseChaitin::_allocator_successes      = 0;
  2081 #ifndef PRODUCT
  2082 uint PhaseChaitin::_high_pressure           = 0;
  2083 uint PhaseChaitin::_low_pressure            = 0;
  2085 void PhaseChaitin::print_chaitin_statistics() {
  2086   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2087   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2088   tty->print_cr("Adjusted spill cost = %7.0f.",
  2089                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2090                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2091   tty->print("Conservatively coalesced %d copies, %d pairs",
  2092                 _conserv_coalesce, _conserv_coalesce_pair);
  2093   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2094     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2095   tty->print_cr(", %d post alloc.", _post_alloc);
  2096   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2097     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2098                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2099   if( _used_cisc_instructions || _unused_cisc_instructions )
  2100     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2101                    _used_cisc_instructions, _unused_cisc_instructions);
  2102   if( _allocator_successes != 0 )
  2103     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2104   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2106 #endif // not PRODUCT

mercurial