src/share/vm/opto/chaitin.cpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3577
9b8ce46870df
child 3885
765ee2d1674b
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 //=============================================================================
    45 #ifndef PRODUCT
    46 void LRG::dump( ) const {
    47   ttyLocker ttyl;
    48   tty->print("%d ",num_regs());
    49   _mask.dump();
    50   if( _msize_valid ) {
    51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    53   } else {
    54     tty->print(", #?(%d) ",_mask.Size());
    55   }
    57   tty->print("EffDeg: ");
    58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    59   else tty->print("? ");
    61   if( is_multidef() ) {
    62     tty->print("MultiDef ");
    63     if (_defs != NULL) {
    64       tty->print("(");
    65       for (int i = 0; i < _defs->length(); i++) {
    66         tty->print("N%d ", _defs->at(i)->_idx);
    67       }
    68       tty->print(") ");
    69     }
    70   }
    71   else if( _def == 0 ) tty->print("Dead ");
    72   else tty->print("Def: N%d ",_def->_idx);
    74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    75   // Flags
    76   if( _is_oop ) tty->print("Oop ");
    77   if( _is_float ) tty->print("Float ");
    78   if( _is_vector ) tty->print("Vector ");
    79   if( _was_spilled1 ) tty->print("Spilled ");
    80   if( _was_spilled2 ) tty->print("Spilled2 ");
    81   if( _direct_conflict ) tty->print("Direct_conflict ");
    82   if( _fat_proj ) tty->print("Fat ");
    83   if( _was_lo ) tty->print("Lo ");
    84   if( _has_copy ) tty->print("Copy ");
    85   if( _at_risk ) tty->print("Risk ");
    87   if( _must_spill ) tty->print("Must_spill ");
    88   if( _is_bound ) tty->print("Bound ");
    89   if( _msize_valid ) {
    90     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    91   }
    93   tty->cr();
    94 }
    95 #endif
    97 //------------------------------score------------------------------------------
    98 // Compute score from cost and area.  Low score is best to spill.
    99 static double raw_score( double cost, double area ) {
   100   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
   101 }
   103 double LRG::score() const {
   104   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   105   // Bigger area lowers score, encourages spilling this live range.
   106   // Bigger cost raise score, prevents spilling this live range.
   107   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   108   // to turn a divide by a constant into a multiply by the reciprical).
   109   double score = raw_score( _cost, _area);
   111   // Account for area.  Basically, LRGs covering large areas are better
   112   // to spill because more other LRGs get freed up.
   113   if( _area == 0.0 )            // No area?  Then no progress to spill
   114     return 1e35;
   116   if( _was_spilled2 )           // If spilled once before, we are unlikely
   117     return score + 1e30;        // to make progress again.
   119   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   120     return score + 1e17;        // Probably no progress to spill
   122   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   123     return score + 1e10;        // Likely no progress to spill
   125   return score;
   126 }
   128 //------------------------------LRG_List---------------------------------------
   129 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   130   memset( _lidxs, 0, sizeof(uint)*max );
   131 }
   133 void LRG_List::extend( uint nidx, uint lidx ) {
   134   _nesting.check();
   135   if( nidx >= _max ) {
   136     uint size = 16;
   137     while( size <= nidx ) size <<=1;
   138     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   139     _max = size;
   140   }
   141   while( _cnt <= nidx )
   142     _lidxs[_cnt++] = 0;
   143   _lidxs[nidx] = lidx;
   144 }
   146 #define NUMBUCKS 3
   148 //------------------------------Chaitin----------------------------------------
   149 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   150   : PhaseRegAlloc(unique, cfg, matcher,
   151 #ifndef PRODUCT
   152        print_chaitin_statistics
   153 #else
   154        NULL
   155 #endif
   156        ),
   157     _names(unique), _uf_map(unique),
   158     _maxlrg(0), _live(0),
   159     _spilled_once(Thread::current()->resource_area()),
   160     _spilled_twice(Thread::current()->resource_area()),
   161     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
   162     _oldphi(unique)
   163 #ifndef PRODUCT
   164   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   165 #endif
   166 {
   167   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   169   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
   171   uint i,j;
   172   // Build a list of basic blocks, sorted by frequency
   173   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   174   // Experiment with sorting strategies to speed compilation
   175   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   176   Block **buckets[NUMBUCKS];             // Array of buckets
   177   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   178   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   179   for( i = 0; i < NUMBUCKS; i++ ) {
   180     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   181     buckcnt[i] = 0;
   182     // Bump by three orders of magnitude each time
   183     cutoff *= 0.001;
   184     buckval[i] = cutoff;
   185     for( j = 0; j < _cfg._num_blocks; j++ ) {
   186       buckets[i][j] = NULL;
   187     }
   188   }
   189   // Sort blocks into buckets
   190   for( i = 0; i < _cfg._num_blocks; i++ ) {
   191     for( j = 0; j < NUMBUCKS; j++ ) {
   192       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
   193         // Assign block to end of list for appropriate bucket
   194         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
   195         break;                      // kick out of inner loop
   196       }
   197     }
   198   }
   199   // Dump buckets into final block array
   200   uint blkcnt = 0;
   201   for( i = 0; i < NUMBUCKS; i++ ) {
   202     for( j = 0; j < buckcnt[i]; j++ ) {
   203       _blks[blkcnt++] = buckets[i][j];
   204     }
   205   }
   207   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
   208 }
   210 void PhaseChaitin::Register_Allocate() {
   212   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   213   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   214   // registers) is the outgoing argument area; above that is the spill/temp
   215   // area.  These are all "frame_slots".  Arg_slots start at the zero
   216   // stack_slots and count up to the known arg_size.  Frame_slots start at
   217   // the stack_slot #arg_size and go up.  After allocation I map stack
   218   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   219   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   221   _trip_cnt = 0;
   222   _alternate = 0;
   223   _matcher._allocation_started = true;
   225   ResourceArea live_arena;      // Arena for liveness & IFG info
   226   ResourceMark rm(&live_arena);
   228   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   229   // liveness is JUST for coalescing, then I can get some mileage by renaming
   230   // all copy-related live ranges low and then using the max copy-related
   231   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   232   // build a subset of LIVE and IFG just for copies.
   233   PhaseLive live(_cfg,_names,&live_arena);
   235   // Need IFG for coalescing and coloring
   236   PhaseIFG ifg( &live_arena );
   237   _ifg = &ifg;
   239   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
   241   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   242   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   243   // - effectively ending SSA form.  This requires either coalescing live
   244   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   245   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   246   // We will attempt to coalesce such "virtual copies" before we manifest
   247   // them for real.
   248   de_ssa();
   250 #ifdef ASSERT
   251   // Veify the graph before RA.
   252   verify(&live_arena);
   253 #endif
   255   {
   256     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   257     _live = NULL;                 // Mark live as being not available
   258     rm.reset_to_mark();           // Reclaim working storage
   259     IndexSet::reset_memory(C, &live_arena);
   260     ifg.init(_maxlrg);            // Empty IFG
   261     gather_lrg_masks( false );    // Collect LRG masks
   262     live.compute( _maxlrg );      // Compute liveness
   263     _live = &live;                // Mark LIVE as being available
   264   }
   266   // Base pointers are currently "used" by instructions which define new
   267   // derived pointers.  This makes base pointers live up to the where the
   268   // derived pointer is made, but not beyond.  Really, they need to be live
   269   // across any GC point where the derived value is live.  So this code looks
   270   // at all the GC points, and "stretches" the live range of any base pointer
   271   // to the GC point.
   272   if( stretch_base_pointer_live_ranges(&live_arena) ) {
   273     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
   274     // Since some live range stretched, I need to recompute live
   275     _live = NULL;
   276     rm.reset_to_mark();         // Reclaim working storage
   277     IndexSet::reset_memory(C, &live_arena);
   278     ifg.init(_maxlrg);
   279     gather_lrg_masks( false );
   280     live.compute( _maxlrg );
   281     _live = &live;
   282   }
   283   // Create the interference graph using virtual copies
   284   build_ifg_virtual( );  // Include stack slots this time
   286   // Aggressive (but pessimistic) copy coalescing.
   287   // This pass works on virtual copies.  Any virtual copies which are not
   288   // coalesced get manifested as actual copies
   289   {
   290     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   291     // faster.  Union requires a 'for all' operation which is slow on the
   292     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   293     // meaning I can visit all the Nodes neighbors less than a Node in time
   294     // O(# of neighbors), but I have to visit all the Nodes greater than a
   295     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   296     _ifg->SquareUp();
   298     PhaseAggressiveCoalesce coalesce( *this );
   299     coalesce.coalesce_driver( );
   300     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   301     // not match the Phi itself, insert a copy.
   302     coalesce.insert_copies(_matcher);
   303   }
   305   // After aggressive coalesce, attempt a first cut at coloring.
   306   // To color, we need the IFG and for that we need LIVE.
   307   {
   308     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   309     _live = NULL;
   310     rm.reset_to_mark();           // Reclaim working storage
   311     IndexSet::reset_memory(C, &live_arena);
   312     ifg.init(_maxlrg);
   313     gather_lrg_masks( true );
   314     live.compute( _maxlrg );
   315     _live = &live;
   316   }
   318   // Build physical interference graph
   319   uint must_spill = 0;
   320   must_spill = build_ifg_physical( &live_arena );
   321   // If we have a guaranteed spill, might as well spill now
   322   if( must_spill ) {
   323     if( !_maxlrg ) return;
   324     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   325     C->check_node_count(10*must_spill, "out of nodes before split");
   326     if (C->failing())  return;
   327     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   328     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   329     // or we failed to split
   330     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   331     if (C->failing())  return;
   333     NOT_PRODUCT( C->verify_graph_edges(); )
   335     compact();                  // Compact LRGs; return new lower max lrg
   337     {
   338       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   339       _live = NULL;
   340       rm.reset_to_mark();         // Reclaim working storage
   341       IndexSet::reset_memory(C, &live_arena);
   342       ifg.init(_maxlrg);          // Build a new interference graph
   343       gather_lrg_masks( true );   // Collect intersect mask
   344       live.compute( _maxlrg );    // Compute LIVE
   345       _live = &live;
   346     }
   347     build_ifg_physical( &live_arena );
   348     _ifg->SquareUp();
   349     _ifg->Compute_Effective_Degree();
   350     // Only do conservative coalescing if requested
   351     if( OptoCoalesce ) {
   352       // Conservative (and pessimistic) copy coalescing of those spills
   353       PhaseConservativeCoalesce coalesce( *this );
   354       // If max live ranges greater than cutoff, don't color the stack.
   355       // This cutoff can be larger than below since it is only done once.
   356       coalesce.coalesce_driver( );
   357     }
   358     compress_uf_map_for_nodes();
   360 #ifdef ASSERT
   361     verify(&live_arena, true);
   362 #endif
   363   } else {
   364     ifg.SquareUp();
   365     ifg.Compute_Effective_Degree();
   366 #ifdef ASSERT
   367     set_was_low();
   368 #endif
   369   }
   371   // Prepare for Simplify & Select
   372   cache_lrg_info();           // Count degree of LRGs
   374   // Simplify the InterFerence Graph by removing LRGs of low degree.
   375   // LRGs of low degree are trivially colorable.
   376   Simplify();
   378   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   379   // Return whether or not something spills.
   380   uint spills = Select( );
   382   // If we spill, split and recycle the entire thing
   383   while( spills ) {
   384     if( _trip_cnt++ > 24 ) {
   385       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   386       if( _trip_cnt > 27 ) {
   387         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   388         return;
   389       }
   390     }
   392     if( !_maxlrg ) return;
   393     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   394     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   395     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
   396     if (C->failing())  return;
   398     compact();                  // Compact LRGs; return new lower max lrg
   400     // Nuke the live-ness and interference graph and LiveRanGe info
   401     {
   402       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   403       _live = NULL;
   404       rm.reset_to_mark();         // Reclaim working storage
   405       IndexSet::reset_memory(C, &live_arena);
   406       ifg.init(_maxlrg);
   408       // Create LiveRanGe array.
   409       // Intersect register masks for all USEs and DEFs
   410       gather_lrg_masks( true );
   411       live.compute( _maxlrg );
   412       _live = &live;
   413     }
   414     must_spill = build_ifg_physical( &live_arena );
   415     _ifg->SquareUp();
   416     _ifg->Compute_Effective_Degree();
   418     // Only do conservative coalescing if requested
   419     if( OptoCoalesce ) {
   420       // Conservative (and pessimistic) copy coalescing
   421       PhaseConservativeCoalesce coalesce( *this );
   422       // Check for few live ranges determines how aggressive coalesce is.
   423       coalesce.coalesce_driver( );
   424     }
   425     compress_uf_map_for_nodes();
   426 #ifdef ASSERT
   427     verify(&live_arena, true);
   428 #endif
   429     cache_lrg_info();           // Count degree of LRGs
   431     // Simplify the InterFerence Graph by removing LRGs of low degree.
   432     // LRGs of low degree are trivially colorable.
   433     Simplify();
   435     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   436     // Return whether or not something spills.
   437     spills = Select( );
   438   }
   440   // Count number of Simplify-Select trips per coloring success.
   441   _allocator_attempts += _trip_cnt + 1;
   442   _allocator_successes += 1;
   444   // Peephole remove copies
   445   post_allocate_copy_removal();
   447 #ifdef ASSERT
   448   // Veify the graph after RA.
   449   verify(&live_arena);
   450 #endif
   452   // max_reg is past the largest *register* used.
   453   // Convert that to a frame_slot number.
   454   if( _max_reg <= _matcher._new_SP )
   455     _framesize = C->out_preserve_stack_slots();
   456   else _framesize = _max_reg -_matcher._new_SP;
   457   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   459   // This frame must preserve the required fp alignment
   460   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   461   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   462 #ifndef PRODUCT
   463   _total_framesize += _framesize;
   464   if( (int)_framesize > _max_framesize )
   465     _max_framesize = _framesize;
   466 #endif
   468   // Convert CISC spills
   469   fixup_spills();
   471   // Log regalloc results
   472   CompileLog* log = Compile::current()->log();
   473   if (log != NULL) {
   474     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   475   }
   477   if (C->failing())  return;
   479   NOT_PRODUCT( C->verify_graph_edges(); )
   481   // Move important info out of the live_arena to longer lasting storage.
   482   alloc_node_regs(_names.Size());
   483   for (uint i=0; i < _names.Size(); i++) {
   484     if (_names[i]) {           // Live range associated with Node?
   485       LRG &lrg = lrgs(_names[i]);
   486       if (!lrg.alive()) {
   487         _node_regs[i].set_bad();
   488       } else if (lrg.num_regs() == 1) {
   489         _node_regs[i].set1(lrg.reg());
   490       } else {                  // Must be a register-pair
   491         if (!lrg._fat_proj) {   // Must be aligned adjacent register pair
   492           // Live ranges record the highest register in their mask.
   493           // We want the low register for the AD file writer's convenience.
   494           _node_regs[i].set2( OptoReg::add(lrg.reg(),(1-lrg.num_regs())) );
   495         } else {                // Misaligned; extract 2 bits
   496           OptoReg::Name hi = lrg.reg(); // Get hi register
   497           lrg.Remove(hi);       // Yank from mask
   498           int lo = lrg.mask().find_first_elem(); // Find lo
   499           _node_regs[i].set_pair( hi, lo );
   500         }
   501       }
   502       if( lrg._is_oop ) _node_oops.set(i);
   503     } else {
   504       _node_regs[i].set_bad();
   505     }
   506   }
   508   // Done!
   509   _live = NULL;
   510   _ifg = NULL;
   511   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   512 }
   514 //------------------------------de_ssa-----------------------------------------
   515 void PhaseChaitin::de_ssa() {
   516   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   517   // number.  A few get the ZERO live range number.  These do not
   518   // get allocated, but instead rely on correct scheduling to ensure that
   519   // only one instance is simultaneously live at a time.
   520   uint lr_counter = 1;
   521   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   522     Block *b = _cfg._blocks[i];
   523     uint cnt = b->_nodes.size();
   525     // Handle all the normal Nodes in the block
   526     for( uint j = 0; j < cnt; j++ ) {
   527       Node *n = b->_nodes[j];
   528       // Pre-color to the zero live range, or pick virtual register
   529       const RegMask &rm = n->out_RegMask();
   530       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
   531     }
   532   }
   533   // Reset the Union-Find mapping to be identity
   534   reset_uf_map(lr_counter);
   535 }
   538 //------------------------------gather_lrg_masks-------------------------------
   539 // Gather LiveRanGe information, including register masks.  Modification of
   540 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   541 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   543   // Nail down the frame pointer live range
   544   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
   545   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   547   // For all blocks
   548   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   549     Block *b = _cfg._blocks[i];
   551     // For all instructions
   552     for( uint j = 1; j < b->_nodes.size(); j++ ) {
   553       Node *n = b->_nodes[j];
   554       uint input_edge_start =1; // Skip control most nodes
   555       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
   556       uint idx = n->is_Copy();
   558       // Get virtual register number, same as LiveRanGe index
   559       uint vreg = n2lidx(n);
   560       LRG &lrg = lrgs(vreg);
   561       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
   563         // Collect has-copy bit
   564         if( idx ) {
   565           lrg._has_copy = 1;
   566           uint clidx = n2lidx(n->in(idx));
   567           LRG &copy_src = lrgs(clidx);
   568           copy_src._has_copy = 1;
   569         }
   571         // Check for float-vs-int live range (used in register-pressure
   572         // calculations)
   573         const Type *n_type = n->bottom_type();
   574         if (n_type->is_floatingpoint())
   575           lrg._is_float = 1;
   577         // Check for twice prior spilling.  Once prior spilling might have
   578         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   579         // further spilling is unlikely to make progress.
   580         if( _spilled_once.test(n->_idx) ) {
   581           lrg._was_spilled1 = 1;
   582           if( _spilled_twice.test(n->_idx) )
   583             lrg._was_spilled2 = 1;
   584         }
   586 #ifndef PRODUCT
   587         if (trace_spilling() && lrg._def != NULL) {
   588           // collect defs for MultiDef printing
   589           if (lrg._defs == NULL) {
   590             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   591             lrg._defs->append(lrg._def);
   592           }
   593           lrg._defs->append(n);
   594         }
   595 #endif
   597         // Check for a single def LRG; these can spill nicely
   598         // via rematerialization.  Flag as NULL for no def found
   599         // yet, or 'n' for single def or -1 for many defs.
   600         lrg._def = lrg._def ? NodeSentinel : n;
   602         // Limit result register mask to acceptable registers
   603         const RegMask &rm = n->out_RegMask();
   604         lrg.AND( rm );
   606         int ireg = n->ideal_reg();
   607         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   608                 "oops must be in Op_RegP's" );
   610         // Check for vector live range (only if vector register is used).
   611         // On SPARC vector uses RegD which could be misaligned so it is not
   612         // processes as vector in RA.
   613         if (RegMask::is_vector(ireg))
   614           lrg._is_vector = 1;
   615         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
   616                "vector must be in vector registers");
   618         // Check for bound register masks
   619         const RegMask &lrgmask = lrg.mask();
   620         if (lrgmask.is_bound(ireg))
   621           lrg._is_bound = 1;
   623         // Check for maximum frequency value
   624         if (lrg._maxfreq < b->_freq)
   625           lrg._maxfreq = b->_freq;
   627         // Check for oop-iness, or long/double
   628         // Check for multi-kill projection
   629         switch( ireg ) {
   630         case MachProjNode::fat_proj:
   631           // Fat projections have size equal to number of registers killed
   632           lrg.set_num_regs(rm.Size());
   633           lrg.set_reg_pressure(lrg.num_regs());
   634           lrg._fat_proj = 1;
   635           lrg._is_bound = 1;
   636           break;
   637         case Op_RegP:
   638 #ifdef _LP64
   639           lrg.set_num_regs(2);  // Size is 2 stack words
   640 #else
   641           lrg.set_num_regs(1);  // Size is 1 stack word
   642 #endif
   643           // Register pressure is tracked relative to the maximum values
   644           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   645           // and relative to other types which compete for the same regs.
   646           //
   647           // The following table contains suggested values based on the
   648           // architectures as defined in each .ad file.
   649           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   650           // compile-speed or performance.
   651           // Note1:
   652           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   653           // since .ad registers are defined as high and low halves.
   654           // These reg_pressure values remain compatible with the code
   655           // in is_high_pressure() which relates get_invalid_mask_size(),
   656           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   657           // Note2:
   658           // SPARC -d32 has 24 registers available for integral values,
   659           // but only 10 of these are safe for 64-bit longs.
   660           // Using set_reg_pressure(2) for both int and long means
   661           // the allocator will believe it can fit 26 longs into
   662           // registers.  Using 2 for longs and 1 for ints means the
   663           // allocator will attempt to put 52 integers into registers.
   664           // The settings below limit this problem to methods with
   665           // many long values which are being run on 32-bit SPARC.
   666           //
   667           // ------------------- reg_pressure --------------------
   668           // Each entry is reg_pressure_per_value,number_of_regs
   669           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   670           // IA32     2     1     1          1    1          6           6
   671           // IA64     1     1     1          1    1         50          41
   672           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   673           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   674           // AMD64    1     1     1          1    1         14          15
   675           // -----------------------------------------------------
   676 #if defined(SPARC)
   677           lrg.set_reg_pressure(2);  // use for v9 as well
   678 #else
   679           lrg.set_reg_pressure(1);  // normally one value per register
   680 #endif
   681           if( n_type->isa_oop_ptr() ) {
   682             lrg._is_oop = 1;
   683           }
   684           break;
   685         case Op_RegL:           // Check for long or double
   686         case Op_RegD:
   687           lrg.set_num_regs(2);
   688           // Define platform specific register pressure
   689 #if defined(SPARC) || defined(ARM)
   690           lrg.set_reg_pressure(2);
   691 #elif defined(IA32)
   692           if( ireg == Op_RegL ) {
   693             lrg.set_reg_pressure(2);
   694           } else {
   695             lrg.set_reg_pressure(1);
   696           }
   697 #else
   698           lrg.set_reg_pressure(1);  // normally one value per register
   699 #endif
   700           // If this def of a double forces a mis-aligned double,
   701           // flag as '_fat_proj' - really flag as allowing misalignment
   702           // AND changes how we count interferences.  A mis-aligned
   703           // double can interfere with TWO aligned pairs, or effectively
   704           // FOUR registers!
   705           if (rm.is_misaligned_pair()) {
   706             lrg._fat_proj = 1;
   707             lrg._is_bound = 1;
   708           }
   709           break;
   710         case Op_RegF:
   711         case Op_RegI:
   712         case Op_RegN:
   713         case Op_RegFlags:
   714         case 0:                 // not an ideal register
   715           lrg.set_num_regs(1);
   716 #ifdef SPARC
   717           lrg.set_reg_pressure(2);
   718 #else
   719           lrg.set_reg_pressure(1);
   720 #endif
   721           break;
   722         case Op_VecS:
   723           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
   724           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
   725           lrg.set_num_regs(RegMask::SlotsPerVecS);
   726           lrg.set_reg_pressure(1);
   727           break;
   728         case Op_VecD:
   729           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
   730           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
   731           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
   732           lrg.set_num_regs(RegMask::SlotsPerVecD);
   733           lrg.set_reg_pressure(1);
   734           break;
   735         case Op_VecX:
   736           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
   737           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
   738           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
   739           lrg.set_num_regs(RegMask::SlotsPerVecX);
   740           lrg.set_reg_pressure(1);
   741           break;
   742         case Op_VecY:
   743           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
   744           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
   745           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
   746           lrg.set_num_regs(RegMask::SlotsPerVecY);
   747           lrg.set_reg_pressure(1);
   748           break;
   749         default:
   750           ShouldNotReachHere();
   751         }
   752       }
   754       // Now do the same for inputs
   755       uint cnt = n->req();
   756       // Setup for CISC SPILLING
   757       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   758       if( UseCISCSpill && after_aggressive ) {
   759         inp = n->cisc_operand();
   760         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   761           // Convert operand number to edge index number
   762           inp = n->as_Mach()->operand_index(inp);
   763       }
   764       // Prepare register mask for each input
   765       for( uint k = input_edge_start; k < cnt; k++ ) {
   766         uint vreg = n2lidx(n->in(k));
   767         if( !vreg ) continue;
   769         // If this instruction is CISC Spillable, add the flags
   770         // bit to its appropriate input
   771         if( UseCISCSpill && after_aggressive && inp == k ) {
   772 #ifndef PRODUCT
   773           if( TraceCISCSpill ) {
   774             tty->print("  use_cisc_RegMask: ");
   775             n->dump();
   776           }
   777 #endif
   778           n->as_Mach()->use_cisc_RegMask();
   779         }
   781         LRG &lrg = lrgs(vreg);
   782         // // Testing for floating point code shape
   783         // Node *test = n->in(k);
   784         // if( test->is_Mach() ) {
   785         //   MachNode *m = test->as_Mach();
   786         //   int  op = m->ideal_Opcode();
   787         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   788         //     int zzz = 1;
   789         //   }
   790         // }
   792         // Limit result register mask to acceptable registers.
   793         // Do not limit registers from uncommon uses before
   794         // AggressiveCoalesce.  This effectively pre-virtual-splits
   795         // around uncommon uses of common defs.
   796         const RegMask &rm = n->in_RegMask(k);
   797         if( !after_aggressive &&
   798           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
   799           // Since we are BEFORE aggressive coalesce, leave the register
   800           // mask untrimmed by the call.  This encourages more coalescing.
   801           // Later, AFTER aggressive, this live range will have to spill
   802           // but the spiller handles slow-path calls very nicely.
   803         } else {
   804           lrg.AND( rm );
   805         }
   807         // Check for bound register masks
   808         const RegMask &lrgmask = lrg.mask();
   809         int kreg = n->in(k)->ideal_reg();
   810         bool is_vect = RegMask::is_vector(kreg);
   811         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
   812                is_vect || kreg == Op_RegD,
   813                "vector must be in vector registers");
   814         if (lrgmask.is_bound(kreg))
   815           lrg._is_bound = 1;
   817         // If this use of a double forces a mis-aligned double,
   818         // flag as '_fat_proj' - really flag as allowing misalignment
   819         // AND changes how we count interferences.  A mis-aligned
   820         // double can interfere with TWO aligned pairs, or effectively
   821         // FOUR registers!
   822 #ifdef ASSERT
   823         if (is_vect) {
   824           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
   825           assert(!lrg._fat_proj, "sanity");
   826           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
   827         }
   828 #endif
   829         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
   830           lrg._fat_proj = 1;
   831           lrg._is_bound = 1;
   832         }
   833         // if the LRG is an unaligned pair, we will have to spill
   834         // so clear the LRG's register mask if it is not already spilled
   835         if (!is_vect && !n->is_SpillCopy() &&
   836             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
   837             lrgmask.is_misaligned_pair()) {
   838           lrg.Clear();
   839         }
   841         // Check for maximum frequency value
   842         if( lrg._maxfreq < b->_freq )
   843           lrg._maxfreq = b->_freq;
   845       } // End for all allocated inputs
   846     } // end for all instructions
   847   } // end for all blocks
   849   // Final per-liverange setup
   850   for (uint i2=0; i2<_maxlrg; i2++) {
   851     LRG &lrg = lrgs(i2);
   852     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
   853     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
   854       lrg.clear_to_sets();
   855     }
   856     lrg.compute_set_mask_size();
   857     if (lrg.not_free()) {      // Handle case where we lose from the start
   858       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   859       lrg._direct_conflict = 1;
   860     }
   861     lrg.set_degree(0);          // no neighbors in IFG yet
   862   }
   863 }
   865 //------------------------------set_was_low------------------------------------
   866 // Set the was-lo-degree bit.  Conservative coalescing should not change the
   867 // colorability of the graph.  If any live range was of low-degree before
   868 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
   869 // The bit is checked in Simplify.
   870 void PhaseChaitin::set_was_low() {
   871 #ifdef ASSERT
   872   for( uint i = 1; i < _maxlrg; i++ ) {
   873     int size = lrgs(i).num_regs();
   874     uint old_was_lo = lrgs(i)._was_lo;
   875     lrgs(i)._was_lo = 0;
   876     if( lrgs(i).lo_degree() ) {
   877       lrgs(i)._was_lo = 1;      // Trivially of low degree
   878     } else {                    // Else check the Brigg's assertion
   879       // Brigg's observation is that the lo-degree neighbors of a
   880       // hi-degree live range will not interfere with the color choices
   881       // of said hi-degree live range.  The Simplify reverse-stack-coloring
   882       // order takes care of the details.  Hence you do not have to count
   883       // low-degree neighbors when determining if this guy colors.
   884       int briggs_degree = 0;
   885       IndexSet *s = _ifg->neighbors(i);
   886       IndexSetIterator elements(s);
   887       uint lidx;
   888       while((lidx = elements.next()) != 0) {
   889         if( !lrgs(lidx).lo_degree() )
   890           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
   891       }
   892       if( briggs_degree < lrgs(i).degrees_of_freedom() )
   893         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
   894     }
   895     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
   896   }
   897 #endif
   898 }
   900 #define REGISTER_CONSTRAINED 16
   902 //------------------------------cache_lrg_info---------------------------------
   903 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
   904 void PhaseChaitin::cache_lrg_info( ) {
   906   for( uint i = 1; i < _maxlrg; i++ ) {
   907     LRG &lrg = lrgs(i);
   909     // Check for being of low degree: means we can be trivially colored.
   910     // Low degree, dead or must-spill guys just get to simplify right away
   911     if( lrg.lo_degree() ||
   912        !lrg.alive() ||
   913         lrg._must_spill ) {
   914       // Split low degree list into those guys that must get a
   915       // register and those that can go to register or stack.
   916       // The idea is LRGs that can go register or stack color first when
   917       // they have a good chance of getting a register.  The register-only
   918       // lo-degree live ranges always get a register.
   919       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
   920       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
   921         lrg._next = _lo_stk_degree;
   922         _lo_stk_degree = i;
   923       } else {
   924         lrg._next = _lo_degree;
   925         _lo_degree = i;
   926       }
   927     } else {                    // Else high degree
   928       lrgs(_hi_degree)._prev = i;
   929       lrg._next = _hi_degree;
   930       lrg._prev = 0;
   931       _hi_degree = i;
   932     }
   933   }
   934 }
   936 //------------------------------Pre-Simplify-----------------------------------
   937 // Simplify the IFG by removing LRGs of low degree that have NO copies
   938 void PhaseChaitin::Pre_Simplify( ) {
   940   // Warm up the lo-degree no-copy list
   941   int lo_no_copy = 0;
   942   for( uint i = 1; i < _maxlrg; i++ ) {
   943     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
   944         !lrgs(i).alive() ||
   945         lrgs(i)._must_spill ) {
   946       lrgs(i)._next = lo_no_copy;
   947       lo_no_copy = i;
   948     }
   949   }
   951   while( lo_no_copy ) {
   952     uint lo = lo_no_copy;
   953     lo_no_copy = lrgs(lo)._next;
   954     int size = lrgs(lo).num_regs();
   956     // Put the simplified guy on the simplified list.
   957     lrgs(lo)._next = _simplified;
   958     _simplified = lo;
   960     // Yank this guy from the IFG.
   961     IndexSet *adj = _ifg->remove_node( lo );
   963     // If any neighbors' degrees fall below their number of
   964     // allowed registers, then put that neighbor on the low degree
   965     // list.  Note that 'degree' can only fall and 'numregs' is
   966     // unchanged by this action.  Thus the two are equal at most once,
   967     // so LRGs hit the lo-degree worklists at most once.
   968     IndexSetIterator elements(adj);
   969     uint neighbor;
   970     while ((neighbor = elements.next()) != 0) {
   971       LRG *n = &lrgs(neighbor);
   972       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   974       // Check for just becoming of-low-degree
   975       if( n->just_lo_degree() && !n->_has_copy ) {
   976         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   977         // Put on lo-degree list
   978         n->_next = lo_no_copy;
   979         lo_no_copy = neighbor;
   980       }
   981     }
   982   } // End of while lo-degree no_copy worklist not empty
   984   // No more lo-degree no-copy live ranges to simplify
   985 }
   987 //------------------------------Simplify---------------------------------------
   988 // Simplify the IFG by removing LRGs of low degree.
   989 void PhaseChaitin::Simplify( ) {
   991   while( 1 ) {                  // Repeat till simplified it all
   992     // May want to explore simplifying lo_degree before _lo_stk_degree.
   993     // This might result in more spills coloring into registers during
   994     // Select().
   995     while( _lo_degree || _lo_stk_degree ) {
   996       // If possible, pull from lo_stk first
   997       uint lo;
   998       if( _lo_degree ) {
   999         lo = _lo_degree;
  1000         _lo_degree = lrgs(lo)._next;
  1001       } else {
  1002         lo = _lo_stk_degree;
  1003         _lo_stk_degree = lrgs(lo)._next;
  1006       // Put the simplified guy on the simplified list.
  1007       lrgs(lo)._next = _simplified;
  1008       _simplified = lo;
  1009       // If this guy is "at risk" then mark his current neighbors
  1010       if( lrgs(lo)._at_risk ) {
  1011         IndexSetIterator elements(_ifg->neighbors(lo));
  1012         uint datum;
  1013         while ((datum = elements.next()) != 0) {
  1014           lrgs(datum)._risk_bias = lo;
  1018       // Yank this guy from the IFG.
  1019       IndexSet *adj = _ifg->remove_node( lo );
  1021       // If any neighbors' degrees fall below their number of
  1022       // allowed registers, then put that neighbor on the low degree
  1023       // list.  Note that 'degree' can only fall and 'numregs' is
  1024       // unchanged by this action.  Thus the two are equal at most once,
  1025       // so LRGs hit the lo-degree worklist at most once.
  1026       IndexSetIterator elements(adj);
  1027       uint neighbor;
  1028       while ((neighbor = elements.next()) != 0) {
  1029         LRG *n = &lrgs(neighbor);
  1030 #ifdef ASSERT
  1031         if( VerifyOpto || VerifyRegisterAllocator ) {
  1032           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1034 #endif
  1036         // Check for just becoming of-low-degree just counting registers.
  1037         // _must_spill live ranges are already on the low degree list.
  1038         if( n->just_lo_degree() && !n->_must_spill ) {
  1039           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1040           // Pull from hi-degree list
  1041           uint prev = n->_prev;
  1042           uint next = n->_next;
  1043           if( prev ) lrgs(prev)._next = next;
  1044           else _hi_degree = next;
  1045           lrgs(next)._prev = prev;
  1046           n->_next = _lo_degree;
  1047           _lo_degree = neighbor;
  1050     } // End of while lo-degree/lo_stk_degree worklist not empty
  1052     // Check for got everything: is hi-degree list empty?
  1053     if( !_hi_degree ) break;
  1055     // Time to pick a potential spill guy
  1056     uint lo_score = _hi_degree;
  1057     double score = lrgs(lo_score).score();
  1058     double area = lrgs(lo_score)._area;
  1059     double cost = lrgs(lo_score)._cost;
  1060     bool bound = lrgs(lo_score)._is_bound;
  1062     // Find cheapest guy
  1063     debug_only( int lo_no_simplify=0; );
  1064     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1065       assert( !(*_ifg->_yanked)[i], "" );
  1066       // It's just vaguely possible to move hi-degree to lo-degree without
  1067       // going through a just-lo-degree stage: If you remove a double from
  1068       // a float live range it's degree will drop by 2 and you can skip the
  1069       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1070       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1071       if( lrgs(i).lo_degree() ) {
  1072         lo_score = i;
  1073         break;
  1075       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1076       double iscore = lrgs(i).score();
  1077       double iarea = lrgs(i)._area;
  1078       double icost = lrgs(i)._cost;
  1079       bool ibound = lrgs(i)._is_bound;
  1081       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1082       // wins.  Ties happen because all live ranges in question have spilled
  1083       // a few times before and the spill-score adds a huge number which
  1084       // washes out the low order bits.  We are choosing the lesser of 2
  1085       // evils; in this case pick largest area to spill.
  1086       // Ties also happen when live ranges are defined and used only inside
  1087       // one block. In which case their area is 0 and score set to max.
  1088       // In such case choose bound live range over unbound to free registers
  1089       // or with smaller cost to spill.
  1090       if( iscore < score ||
  1091           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1092           (iscore == score && iarea == area &&
  1093            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1094         lo_score = i;
  1095         score = iscore;
  1096         area = iarea;
  1097         cost = icost;
  1098         bound = ibound;
  1101     LRG *lo_lrg = &lrgs(lo_score);
  1102     // The live range we choose for spilling is either hi-degree, or very
  1103     // rarely it can be low-degree.  If we choose a hi-degree live range
  1104     // there better not be any lo-degree choices.
  1105     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1107     // Pull from hi-degree list
  1108     uint prev = lo_lrg->_prev;
  1109     uint next = lo_lrg->_next;
  1110     if( prev ) lrgs(prev)._next = next;
  1111     else _hi_degree = next;
  1112     lrgs(next)._prev = prev;
  1113     // Jam him on the lo-degree list, despite his high degree.
  1114     // Maybe he'll get a color, and maybe he'll spill.
  1115     // Only Select() will know.
  1116     lrgs(lo_score)._at_risk = true;
  1117     _lo_degree = lo_score;
  1118     lo_lrg->_next = 0;
  1120   } // End of while not simplified everything
  1124 //------------------------------bias_color-------------------------------------
  1125 // Choose a color using the biasing heuristic
  1126 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1128   // Check for "at_risk" LRG's
  1129   uint risk_lrg = Find(lrg._risk_bias);
  1130   if( risk_lrg != 0 ) {
  1131     // Walk the colored neighbors of the "at_risk" candidate
  1132     // Choose a color which is both legal and already taken by a neighbor
  1133     // of the "at_risk" candidate in order to improve the chances of the
  1134     // "at_risk" candidate of coloring
  1135     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1136     uint datum;
  1137     while ((datum = elements.next()) != 0) {
  1138       OptoReg::Name reg = lrgs(datum).reg();
  1139       // If this LRG's register is legal for us, choose it
  1140       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1141           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1142           (lrg.num_regs()==1 || // either size 1
  1143            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1144         return reg;
  1148   uint copy_lrg = Find(lrg._copy_bias);
  1149   if( copy_lrg != 0 ) {
  1150     // If he has a color,
  1151     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1152       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1153       //  And it is legal for you,
  1154       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1155           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1156           (lrg.num_regs()==1 || // either size 1
  1157            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1158         return reg;
  1159     } else if( chunk == 0 ) {
  1160       // Choose a color which is legal for him
  1161       RegMask tempmask = lrg.mask();
  1162       tempmask.AND(lrgs(copy_lrg).mask());
  1163       tempmask.clear_to_sets(lrg.num_regs());
  1164       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
  1165       if (OptoReg::is_valid(reg))
  1166         return reg;
  1170   // If no bias info exists, just go with the register selection ordering
  1171   if (lrg._is_vector || lrg.num_regs() == 2) {
  1172     // Find an aligned set
  1173     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  1176   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1177   // copy removal to remove many more copies, by preventing a just-assigned
  1178   // register from being repeatedly assigned.
  1179   OptoReg::Name reg = lrg.mask().find_first_elem();
  1180   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1181     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1182     // SECOND element in the mask.
  1183     lrg.Remove(reg);
  1184     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1185     lrg.Insert(reg);
  1186     if( OptoReg::is_reg(reg2))
  1187       reg = reg2;
  1189   return OptoReg::add( reg, chunk );
  1192 //------------------------------choose_color-----------------------------------
  1193 // Choose a color in the current chunk
  1194 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1195   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1196   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1198   if( lrg.num_regs() == 1 ||    // Common Case
  1199       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1200     // Use a heuristic to "bias" the color choice
  1201     return bias_color(lrg, chunk);
  1203   assert(!lrg._is_vector, "should be not vector here" );
  1204   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1206   // Fat-proj case or misaligned double argument.
  1207   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1208          lrg.num_regs() == 2,"fat projs exactly color" );
  1209   assert( !chunk, "always color in 1st chunk" );
  1210   // Return the highest element in the set.
  1211   return lrg.mask().find_last_elem();
  1214 //------------------------------Select-----------------------------------------
  1215 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1216 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1217 // everything going back is guaranteed a color.  Select that color.  If some
  1218 // hi-degree LRG cannot get a color then we record that we must spill.
  1219 uint PhaseChaitin::Select( ) {
  1220   uint spill_reg = LRG::SPILL_REG;
  1221   _max_reg = OptoReg::Name(0);  // Past max register used
  1222   while( _simplified ) {
  1223     // Pull next LRG from the simplified list - in reverse order of removal
  1224     uint lidx = _simplified;
  1225     LRG *lrg = &lrgs(lidx);
  1226     _simplified = lrg->_next;
  1229 #ifndef PRODUCT
  1230     if (trace_spilling()) {
  1231       ttyLocker ttyl;
  1232       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1233                     lrg->degrees_of_freedom());
  1234       lrg->dump();
  1236 #endif
  1238     // Re-insert into the IFG
  1239     _ifg->re_insert(lidx);
  1240     if( !lrg->alive() ) continue;
  1241     // capture allstackedness flag before mask is hacked
  1242     const int is_allstack = lrg->mask().is_AllStack();
  1244     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1245     // to avoid the GOTO, although the refactored code will not
  1246     // be much clearer.  We arrive here IFF we have a stack-based
  1247     // live range that cannot color in the current chunk, and it
  1248     // has to move into the next free stack chunk.
  1249     int chunk = 0;              // Current chunk is first chunk
  1250     retry_next_chunk:
  1252     // Remove neighbor colors
  1253     IndexSet *s = _ifg->neighbors(lidx);
  1255     debug_only(RegMask orig_mask = lrg->mask();)
  1256     IndexSetIterator elements(s);
  1257     uint neighbor;
  1258     while ((neighbor = elements.next()) != 0) {
  1259       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1260       // of its color will be a no-op, since the spill_reg chunk is in outer
  1261       // space.  Also, if neighbor is in a different chunk, this exclusion
  1262       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1263       // its chunk, a new chunk of color may be tried, in which case
  1264       // examination of neighbors is started again, at retry_next_chunk.)
  1265       LRG &nlrg = lrgs(neighbor);
  1266       OptoReg::Name nreg = nlrg.reg();
  1267       // Only subtract masks in the same chunk
  1268       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1269 #ifndef PRODUCT
  1270         uint size = lrg->mask().Size();
  1271         RegMask rm = lrg->mask();
  1272 #endif
  1273         lrg->SUBTRACT(nlrg.mask());
  1274 #ifndef PRODUCT
  1275         if (trace_spilling() && lrg->mask().Size() != size) {
  1276           ttyLocker ttyl;
  1277           tty->print("L%d ", lidx);
  1278           rm.dump();
  1279           tty->print(" intersected L%d ", neighbor);
  1280           nlrg.mask().dump();
  1281           tty->print(" removed ");
  1282           rm.SUBTRACT(lrg->mask());
  1283           rm.dump();
  1284           tty->print(" leaving ");
  1285           lrg->mask().dump();
  1286           tty->cr();
  1288 #endif
  1291     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1292     // Aligned pairs need aligned masks
  1293     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1294     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
  1295       lrg->clear_to_sets();
  1298     // Check if a color is available and if so pick the color
  1299     OptoReg::Name reg = choose_color( *lrg, chunk );
  1300 #ifdef SPARC
  1301     debug_only(lrg->compute_set_mask_size());
  1302     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1303 #endif
  1305     //---------------
  1306     // If we fail to color and the AllStack flag is set, trigger
  1307     // a chunk-rollover event
  1308     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1309       // Bump register mask up to next stack chunk
  1310       chunk += RegMask::CHUNK_SIZE;
  1311       lrg->Set_All();
  1313       goto retry_next_chunk;
  1316     //---------------
  1317     // Did we get a color?
  1318     else if( OptoReg::is_valid(reg)) {
  1319 #ifndef PRODUCT
  1320       RegMask avail_rm = lrg->mask();
  1321 #endif
  1323       // Record selected register
  1324       lrg->set_reg(reg);
  1326       if( reg >= _max_reg )     // Compute max register limit
  1327         _max_reg = OptoReg::add(reg,1);
  1328       // Fold reg back into normal space
  1329       reg = OptoReg::add(reg,-chunk);
  1331       // If the live range is not bound, then we actually had some choices
  1332       // to make.  In this case, the mask has more bits in it than the colors
  1333       // chosen.  Restrict the mask to just what was picked.
  1334       int n_regs = lrg->num_regs();
  1335       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1336       if (n_regs == 1 || !lrg->_fat_proj) {
  1337         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
  1338         lrg->Clear();           // Clear the mask
  1339         lrg->Insert(reg);       // Set regmask to match selected reg
  1340         // For vectors and pairs, also insert the low bit of the pair
  1341         for (int i = 1; i < n_regs; i++)
  1342           lrg->Insert(OptoReg::add(reg,-i));
  1343         lrg->set_mask_size(n_regs);
  1344       } else {                  // Else fatproj
  1345         // mask must be equal to fatproj bits, by definition
  1347 #ifndef PRODUCT
  1348       if (trace_spilling()) {
  1349         ttyLocker ttyl;
  1350         tty->print("L%d selected ", lidx);
  1351         lrg->mask().dump();
  1352         tty->print(" from ");
  1353         avail_rm.dump();
  1354         tty->cr();
  1356 #endif
  1357       // Note that reg is the highest-numbered register in the newly-bound mask.
  1358     } // end color available case
  1360     //---------------
  1361     // Live range is live and no colors available
  1362     else {
  1363       assert( lrg->alive(), "" );
  1364       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1365               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1366       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1368       // Assign the special spillreg register
  1369       lrg->set_reg(OptoReg::Name(spill_reg++));
  1370       // Do not empty the regmask; leave mask_size lying around
  1371       // for use during Spilling
  1372 #ifndef PRODUCT
  1373       if( trace_spilling() ) {
  1374         ttyLocker ttyl;
  1375         tty->print("L%d spilling with neighbors: ", lidx);
  1376         s->dump();
  1377         debug_only(tty->print(" original mask: "));
  1378         debug_only(orig_mask.dump());
  1379         dump_lrg(lidx);
  1381 #endif
  1382     } // end spill case
  1386   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1390 //------------------------------copy_was_spilled-------------------------------
  1391 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1392 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1393   if( _spilled_once.test(src->_idx) ) {
  1394     _spilled_once.set(dst->_idx);
  1395     lrgs(Find(dst))._was_spilled1 = 1;
  1396     if( _spilled_twice.test(src->_idx) ) {
  1397       _spilled_twice.set(dst->_idx);
  1398       lrgs(Find(dst))._was_spilled2 = 1;
  1403 //------------------------------set_was_spilled--------------------------------
  1404 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1405 void PhaseChaitin::set_was_spilled( Node *n ) {
  1406   if( _spilled_once.test_set(n->_idx) )
  1407     _spilled_twice.set(n->_idx);
  1410 //------------------------------fixup_spills-----------------------------------
  1411 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1412 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1413 void PhaseChaitin::fixup_spills() {
  1414   // This function does only cisc spill work.
  1415   if( !UseCISCSpill ) return;
  1417   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1419   // Grab the Frame Pointer
  1420   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
  1422   // For all blocks
  1423   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1424     Block *b = _cfg._blocks[i];
  1426     // For all instructions in block
  1427     uint last_inst = b->end_idx();
  1428     for( uint j = 1; j <= last_inst; j++ ) {
  1429       Node *n = b->_nodes[j];
  1431       // Dead instruction???
  1432       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1433               C->top() == n ||  // Or the random TOP node
  1434               n->is_Proj(),     // Or a fat-proj kill node
  1435               "No dead instructions after post-alloc" );
  1437       int inp = n->cisc_operand();
  1438       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1439         // Convert operand number to edge index number
  1440         MachNode *mach = n->as_Mach();
  1441         inp = mach->operand_index(inp);
  1442         Node *src = n->in(inp);   // Value to load or store
  1443         LRG &lrg_cisc = lrgs( Find_const(src) );
  1444         OptoReg::Name src_reg = lrg_cisc.reg();
  1445         // Doubles record the HIGH register of an adjacent pair.
  1446         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1447         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1448           // This is a CISC Spill, get stack offset and construct new node
  1449 #ifndef PRODUCT
  1450           if( TraceCISCSpill ) {
  1451             tty->print("    reg-instr:  ");
  1452             n->dump();
  1454 #endif
  1455           int stk_offset = reg2offset(src_reg);
  1456           // Bailout if we might exceed node limit when spilling this instruction
  1457           C->check_node_count(0, "out of nodes fixing spills");
  1458           if (C->failing())  return;
  1459           // Transform node
  1460           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1461           cisc->set_req(inp,fp);          // Base register is frame pointer
  1462           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1463             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1464             cisc->ins_req(1,src);         // Requires a memory edge
  1466           b->_nodes.map(j,cisc);          // Insert into basic block
  1467           n->subsume_by(cisc); // Correct graph
  1468           //
  1469           ++_used_cisc_instructions;
  1470 #ifndef PRODUCT
  1471           if( TraceCISCSpill ) {
  1472             tty->print("    cisc-instr: ");
  1473             cisc->dump();
  1475 #endif
  1476         } else {
  1477 #ifndef PRODUCT
  1478           if( TraceCISCSpill ) {
  1479             tty->print("    using reg-instr: ");
  1480             n->dump();
  1482 #endif
  1483           ++_unused_cisc_instructions;    // input can be on stack
  1487     } // End of for all instructions
  1489   } // End of for all blocks
  1492 //------------------------------find_base_for_derived--------------------------
  1493 // Helper to stretch above; recursively discover the base Node for a
  1494 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1495 // to be recursive for derived Phis.
  1496 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1497   // See if already computed; if so return it
  1498   if( derived_base_map[derived->_idx] )
  1499     return derived_base_map[derived->_idx];
  1501   // See if this happens to be a base.
  1502   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1503   // pointers derived from NULL!  These are always along paths that
  1504   // can't happen at run-time but the optimizer cannot deduce it so
  1505   // we have to handle it gracefully.
  1506   assert(!derived->bottom_type()->isa_narrowoop() ||
  1507           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1508   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1509   // If its an OOP with a non-zero offset, then it is derived.
  1510   if( tj == NULL || tj->_offset == 0 ) {
  1511     derived_base_map[derived->_idx] = derived;
  1512     return derived;
  1514   // Derived is NULL+offset?  Base is NULL!
  1515   if( derived->is_Con() ) {
  1516     Node *base = _matcher.mach_null();
  1517     assert(base != NULL, "sanity");
  1518     if (base->in(0) == NULL) {
  1519       // Initialize it once and make it shared:
  1520       // set control to _root and place it into Start block
  1521       // (where top() node is placed).
  1522       base->init_req(0, _cfg._root);
  1523       Block *startb = _cfg._bbs[C->top()->_idx];
  1524       startb->_nodes.insert(startb->find_node(C->top()), base );
  1525       _cfg._bbs.map( base->_idx, startb );
  1526       assert (n2lidx(base) == 0, "should not have LRG yet");
  1528     if (n2lidx(base) == 0) {
  1529       new_lrg(base, maxlrg++);
  1531     assert(base->in(0) == _cfg._root &&
  1532            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
  1533     derived_base_map[derived->_idx] = base;
  1534     return base;
  1537   // Check for AddP-related opcodes
  1538   if( !derived->is_Phi() ) {
  1539     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
  1540     Node *base = derived->in(AddPNode::Base);
  1541     derived_base_map[derived->_idx] = base;
  1542     return base;
  1545   // Recursively find bases for Phis.
  1546   // First check to see if we can avoid a base Phi here.
  1547   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1548   uint i;
  1549   for( i = 2; i < derived->req(); i++ )
  1550     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1551       break;
  1552   // Went to the end without finding any different bases?
  1553   if( i == derived->req() ) {   // No need for a base Phi here
  1554     derived_base_map[derived->_idx] = base;
  1555     return base;
  1558   // Now we see we need a base-Phi here to merge the bases
  1559   const Type *t = base->bottom_type();
  1560   base = new (C, derived->req()) PhiNode( derived->in(0), t );
  1561   for( i = 1; i < derived->req(); i++ ) {
  1562     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1563     t = t->meet(base->in(i)->bottom_type());
  1565   base->as_Phi()->set_type(t);
  1567   // Search the current block for an existing base-Phi
  1568   Block *b = _cfg._bbs[derived->_idx];
  1569   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1570     Node *phi = b->_nodes[i];
  1571     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1572       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1573       _cfg._bbs.map( base->_idx, b );
  1574       new_lrg(base,maxlrg++);
  1575       break;
  1577     // See if Phi matches.
  1578     uint j;
  1579     for( j = 1; j < base->req(); j++ )
  1580       if( phi->in(j) != base->in(j) &&
  1581           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1582         break;
  1583     if( j == base->req() ) {    // All inputs match?
  1584       base = phi;               // Then use existing 'phi' and drop 'base'
  1585       break;
  1590   // Cache info for later passes
  1591   derived_base_map[derived->_idx] = base;
  1592   return base;
  1596 //------------------------------stretch_base_pointer_live_ranges---------------
  1597 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1598 // base pointer that is live across the Safepoint for oopmap building.  The
  1599 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1600 // required edge set.
  1601 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
  1602   int must_recompute_live = false;
  1603   uint maxlrg = _maxlrg;
  1604   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1605   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1607   // For all blocks in RPO do...
  1608   for( uint i=0; i<_cfg._num_blocks; i++ ) {
  1609     Block *b = _cfg._blocks[i];
  1610     // Note use of deep-copy constructor.  I cannot hammer the original
  1611     // liveout bits, because they are needed by the following coalesce pass.
  1612     IndexSet liveout(_live->live(b));
  1614     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
  1615       Node *n = b->_nodes[j-1];
  1617       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1618       // like to see in the same register.  Compare uses the loop-phi and so
  1619       // extends its live range BUT cannot be part of the cycle.  If this
  1620       // extended live range overlaps with the update of the loop-phi value
  1621       // we need both alive at the same time -- which requires at least 1
  1622       // copy.  But because Intel has only 2-address registers we end up with
  1623       // at least 2 copies, one before the loop-phi update instruction and
  1624       // one after.  Instead we split the input to the compare just after the
  1625       // phi.
  1626       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1627         Node *phi = n->in(1);
  1628         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1629           Block *phi_block = _cfg._bbs[phi->_idx];
  1630           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
  1631             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1632             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1633             insert_proj( phi_block, 1, spill, maxlrg++ );
  1634             n->set_req(1,spill);
  1635             must_recompute_live = true;
  1640       // Get value being defined
  1641       uint lidx = n2lidx(n);
  1642       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
  1643         // Remove from live-out set
  1644         liveout.remove(lidx);
  1646         // Copies do not define a new value and so do not interfere.
  1647         // Remove the copies source from the liveout set before interfering.
  1648         uint idx = n->is_Copy();
  1649         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
  1652       // Found a safepoint?
  1653       JVMState *jvms = n->jvms();
  1654       if( jvms ) {
  1655         // Now scan for a live derived pointer
  1656         IndexSetIterator elements(&liveout);
  1657         uint neighbor;
  1658         while ((neighbor = elements.next()) != 0) {
  1659           // Find reaching DEF for base and derived values
  1660           // This works because we are still in SSA during this call.
  1661           Node *derived = lrgs(neighbor)._def;
  1662           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1663           assert(!derived->bottom_type()->isa_narrowoop() ||
  1664                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1665           // If its an OOP with a non-zero offset, then it is derived.
  1666           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1667             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
  1668             assert( base->_idx < _names.Size(), "" );
  1669             // Add reaching DEFs of derived pointer and base pointer as a
  1670             // pair of inputs
  1671             n->add_req( derived );
  1672             n->add_req( base );
  1674             // See if the base pointer is already live to this point.
  1675             // Since I'm working on the SSA form, live-ness amounts to
  1676             // reaching def's.  So if I find the base's live range then
  1677             // I know the base's def reaches here.
  1678             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
  1679                  !liveout.member( n2lidx(base) ) ) && // not live) AND
  1680                  (n2lidx(base) > 0)                && // not a constant
  1681                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
  1682               // Base pointer is not currently live.  Since I stretched
  1683               // the base pointer to here and it crosses basic-block
  1684               // boundaries, the global live info is now incorrect.
  1685               // Recompute live.
  1686               must_recompute_live = true;
  1687             } // End of if base pointer is not live to debug info
  1689         } // End of scan all live data for derived ptrs crossing GC point
  1690       } // End of if found a GC point
  1692       // Make all inputs live
  1693       if( !n->is_Phi() ) {      // Phi function uses come from prior block
  1694         for( uint k = 1; k < n->req(); k++ ) {
  1695           uint lidx = n2lidx(n->in(k));
  1696           if( lidx < _maxlrg )
  1697             liveout.insert( lidx );
  1701     } // End of forall instructions in block
  1702     liveout.clear();  // Free the memory used by liveout.
  1704   } // End of forall blocks
  1705   _maxlrg = maxlrg;
  1707   // If I created a new live range I need to recompute live
  1708   if( maxlrg != _ifg->_maxlrg )
  1709     must_recompute_live = true;
  1711   return must_recompute_live != 0;
  1715 //------------------------------add_reference----------------------------------
  1716 // Extend the node to LRG mapping
  1717 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
  1718   _names.extend( node->_idx, n2lidx(old_node) );
  1721 //------------------------------dump-------------------------------------------
  1722 #ifndef PRODUCT
  1723 void PhaseChaitin::dump( const Node *n ) const {
  1724   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
  1725   tty->print("L%d",r);
  1726   if( r && n->Opcode() != Op_Phi ) {
  1727     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1728       tty->print("[");
  1729       OptoReg::Name second = get_reg_second(n);
  1730       if( OptoReg::is_valid(second) ) {
  1731         if( OptoReg::is_reg(second) )
  1732           tty->print("%s:",Matcher::regName[second]);
  1733         else
  1734           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1736       OptoReg::Name first = get_reg_first(n);
  1737       if( OptoReg::is_reg(first) )
  1738         tty->print("%s]",Matcher::regName[first]);
  1739       else
  1740          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1741     } else
  1742     n->out_RegMask().dump();
  1744   tty->print("/N%d\t",n->_idx);
  1745   tty->print("%s === ", n->Name());
  1746   uint k;
  1747   for( k = 0; k < n->req(); k++) {
  1748     Node *m = n->in(k);
  1749     if( !m ) tty->print("_ ");
  1750     else {
  1751       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1752       tty->print("L%d",r);
  1753       // Data MultiNode's can have projections with no real registers.
  1754       // Don't die while dumping them.
  1755       int op = n->Opcode();
  1756       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1757         if( _node_regs ) {
  1758           tty->print("[");
  1759           OptoReg::Name second = get_reg_second(n->in(k));
  1760           if( OptoReg::is_valid(second) ) {
  1761             if( OptoReg::is_reg(second) )
  1762               tty->print("%s:",Matcher::regName[second]);
  1763             else
  1764               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1765                          reg2offset_unchecked(second));
  1767           OptoReg::Name first = get_reg_first(n->in(k));
  1768           if( OptoReg::is_reg(first) )
  1769             tty->print("%s]",Matcher::regName[first]);
  1770           else
  1771             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1772                        reg2offset_unchecked(first));
  1773         } else
  1774           n->in_RegMask(k).dump();
  1776       tty->print("/N%d ",m->_idx);
  1779   if( k < n->len() && n->in(k) ) tty->print("| ");
  1780   for( ; k < n->len(); k++ ) {
  1781     Node *m = n->in(k);
  1782     if( !m ) break;
  1783     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1784     tty->print("L%d",r);
  1785     tty->print("/N%d ",m->_idx);
  1787   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1788   else n->dump_spec(tty);
  1789   if( _spilled_once.test(n->_idx ) ) {
  1790     tty->print(" Spill_1");
  1791     if( _spilled_twice.test(n->_idx ) )
  1792       tty->print(" Spill_2");
  1794   tty->print("\n");
  1797 void PhaseChaitin::dump( const Block * b ) const {
  1798   b->dump_head( &_cfg._bbs );
  1800   // For all instructions
  1801   for( uint j = 0; j < b->_nodes.size(); j++ )
  1802     dump(b->_nodes[j]);
  1803   // Print live-out info at end of block
  1804   if( _live ) {
  1805     tty->print("Liveout: ");
  1806     IndexSet *live = _live->live(b);
  1807     IndexSetIterator elements(live);
  1808     tty->print("{");
  1809     uint i;
  1810     while ((i = elements.next()) != 0) {
  1811       tty->print("L%d ", Find_const(i));
  1813     tty->print_cr("}");
  1815   tty->print("\n");
  1818 void PhaseChaitin::dump() const {
  1819   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1820               _matcher._new_SP, _framesize );
  1822   // For all blocks
  1823   for( uint i = 0; i < _cfg._num_blocks; i++ )
  1824     dump(_cfg._blocks[i]);
  1825   // End of per-block dump
  1826   tty->print("\n");
  1828   if (!_ifg) {
  1829     tty->print("(No IFG.)\n");
  1830     return;
  1833   // Dump LRG array
  1834   tty->print("--- Live RanGe Array ---\n");
  1835   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
  1836     tty->print("L%d: ",i2);
  1837     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
  1838     else tty->print_cr("new LRG");
  1840   tty->print_cr("");
  1842   // Dump lo-degree list
  1843   tty->print("Lo degree: ");
  1844   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  1845     tty->print("L%d ",i3);
  1846   tty->print_cr("");
  1848   // Dump lo-stk-degree list
  1849   tty->print("Lo stk degree: ");
  1850   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  1851     tty->print("L%d ",i4);
  1852   tty->print_cr("");
  1854   // Dump lo-degree list
  1855   tty->print("Hi degree: ");
  1856   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  1857     tty->print("L%d ",i5);
  1858   tty->print_cr("");
  1861 //------------------------------dump_degree_lists------------------------------
  1862 void PhaseChaitin::dump_degree_lists() const {
  1863   // Dump lo-degree list
  1864   tty->print("Lo degree: ");
  1865   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  1866     tty->print("L%d ",i);
  1867   tty->print_cr("");
  1869   // Dump lo-stk-degree list
  1870   tty->print("Lo stk degree: ");
  1871   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  1872     tty->print("L%d ",i2);
  1873   tty->print_cr("");
  1875   // Dump lo-degree list
  1876   tty->print("Hi degree: ");
  1877   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  1878     tty->print("L%d ",i3);
  1879   tty->print_cr("");
  1882 //------------------------------dump_simplified--------------------------------
  1883 void PhaseChaitin::dump_simplified() const {
  1884   tty->print("Simplified: ");
  1885   for( uint i = _simplified; i; i = lrgs(i)._next )
  1886     tty->print("L%d ",i);
  1887   tty->print_cr("");
  1890 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  1891   if ((int)reg < 0)
  1892     sprintf(buf, "<OptoReg::%d>", (int)reg);
  1893   else if (OptoReg::is_reg(reg))
  1894     strcpy(buf, Matcher::regName[reg]);
  1895   else
  1896     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  1897             pc->reg2offset(reg));
  1898   return buf+strlen(buf);
  1901 //------------------------------dump_register----------------------------------
  1902 // Dump a register name into a buffer.  Be intelligent if we get called
  1903 // before allocation is complete.
  1904 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  1905   if( !this ) {                 // Not got anything?
  1906     sprintf(buf,"N%d",n->_idx); // Then use Node index
  1907   } else if( _node_regs ) {
  1908     // Post allocation, use direct mappings, no LRG info available
  1909     print_reg( get_reg_first(n), this, buf );
  1910   } else {
  1911     uint lidx = Find_const(n); // Grab LRG number
  1912     if( !_ifg ) {
  1913       sprintf(buf,"L%d",lidx);  // No register binding yet
  1914     } else if( !lidx ) {        // Special, not allocated value
  1915       strcpy(buf,"Special");
  1916     } else {
  1917       if (lrgs(lidx)._is_vector) {
  1918         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
  1919           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
  1920         else
  1921           sprintf(buf,"L%d",lidx); // No register binding yet
  1922       } else if( (lrgs(lidx).num_regs() == 1)
  1923                  ? lrgs(lidx).mask().is_bound1()
  1924                  : lrgs(lidx).mask().is_bound_pair() ) {
  1925         // Hah!  We have a bound machine register
  1926         print_reg( lrgs(lidx).reg(), this, buf );
  1927       } else {
  1928         sprintf(buf,"L%d",lidx); // No register binding yet
  1932   return buf+strlen(buf);
  1935 //----------------------dump_for_spill_split_recycle--------------------------
  1936 void PhaseChaitin::dump_for_spill_split_recycle() const {
  1937   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  1938     // Display which live ranges need to be split and the allocator's state
  1939     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  1940     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
  1941       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  1942         tty->print("L%d: ", bidx);
  1943         lrgs(bidx).dump();
  1946     tty->cr();
  1947     dump();
  1951 //------------------------------dump_frame------------------------------------
  1952 void PhaseChaitin::dump_frame() const {
  1953   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  1954   const TypeTuple *domain = C->tf()->domain();
  1955   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  1957   // Incoming arguments in registers dump
  1958   for( int k = 0; k < argcnt; k++ ) {
  1959     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  1960     if( OptoReg::is_reg(parmreg))  {
  1961       const char *reg_name = OptoReg::regname(parmreg);
  1962       tty->print("#r%3.3d %s", parmreg, reg_name);
  1963       parmreg = _matcher._parm_regs[k].second();
  1964       if( OptoReg::is_reg(parmreg))  {
  1965         tty->print(":%s", OptoReg::regname(parmreg));
  1967       tty->print("   : parm %d: ", k);
  1968       domain->field_at(k + TypeFunc::Parms)->dump();
  1969       tty->print_cr("");
  1973   // Check for un-owned padding above incoming args
  1974   OptoReg::Name reg = _matcher._new_SP;
  1975   if( reg > _matcher._in_arg_limit ) {
  1976     reg = OptoReg::add(reg, -1);
  1977     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  1980   // Incoming argument area dump
  1981   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  1982   while( reg > begin_in_arg ) {
  1983     reg = OptoReg::add(reg, -1);
  1984     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1985     int j;
  1986     for( j = 0; j < argcnt; j++) {
  1987       if( _matcher._parm_regs[j].first() == reg ||
  1988           _matcher._parm_regs[j].second() == reg ) {
  1989         tty->print("parm %d: ",j);
  1990         domain->field_at(j + TypeFunc::Parms)->dump();
  1991         tty->print_cr("");
  1992         break;
  1995     if( j >= argcnt )
  1996       tty->print_cr("HOLE, owned by SELF");
  1999   // Old outgoing preserve area
  2000   while( reg > _matcher._old_SP ) {
  2001     reg = OptoReg::add(reg, -1);
  2002     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  2005   // Old SP
  2006   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  2007     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  2009   // Preserve area dump
  2010   int fixed_slots = C->fixed_slots();
  2011   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  2012   OptoReg::Name return_addr = _matcher.return_addr();
  2014   reg = OptoReg::add(reg, -1);
  2015   while (OptoReg::is_stack(reg)) {
  2016     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2017     if (return_addr == reg) {
  2018       tty->print_cr("return address");
  2019     } else if (reg >= begin_in_preserve) {
  2020       // Preserved slots are present on x86
  2021       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  2022         tty->print_cr("saved fp register");
  2023       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  2024                VerifyStackAtCalls)
  2025         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  2026       else
  2027         tty->print_cr("in_preserve");
  2028     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  2029       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  2030     } else {
  2031       tty->print_cr("pad2, stack alignment");
  2033     reg = OptoReg::add(reg, -1);
  2036   // Spill area dump
  2037   reg = OptoReg::add(_matcher._new_SP, _framesize );
  2038   while( reg > _matcher._out_arg_limit ) {
  2039     reg = OptoReg::add(reg, -1);
  2040     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  2043   // Outgoing argument area dump
  2044   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  2045     reg = OptoReg::add(reg, -1);
  2046     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  2049   // Outgoing new preserve area
  2050   while( reg > _matcher._new_SP ) {
  2051     reg = OptoReg::add(reg, -1);
  2052     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  2054   tty->print_cr("#");
  2057 //------------------------------dump_bb----------------------------------------
  2058 void PhaseChaitin::dump_bb( uint pre_order ) const {
  2059   tty->print_cr("---dump of B%d---",pre_order);
  2060   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2061     Block *b = _cfg._blocks[i];
  2062     if( b->_pre_order == pre_order )
  2063       dump(b);
  2067 //------------------------------dump_lrg---------------------------------------
  2068 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2069   tty->print_cr("---dump of L%d---",lidx);
  2071   if( _ifg ) {
  2072     if( lidx >= _maxlrg ) {
  2073       tty->print("Attempt to print live range index beyond max live range.\n");
  2074       return;
  2076     tty->print("L%d: ",lidx);
  2077     if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
  2078     else tty->print_cr("new LRG");
  2080   if( _ifg && lidx < _ifg->_maxlrg) {
  2081     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2082     _ifg->neighbors(lidx)->dump();
  2083     tty->cr();
  2085   // For all blocks
  2086   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2087     Block *b = _cfg._blocks[i];
  2088     int dump_once = 0;
  2090     // For all instructions
  2091     for( uint j = 0; j < b->_nodes.size(); j++ ) {
  2092       Node *n = b->_nodes[j];
  2093       if( Find_const(n) == lidx ) {
  2094         if( !dump_once++ ) {
  2095           tty->cr();
  2096           b->dump_head( &_cfg._bbs );
  2098         dump(n);
  2099         continue;
  2101       if (!defs_only) {
  2102         uint cnt = n->req();
  2103         for( uint k = 1; k < cnt; k++ ) {
  2104           Node *m = n->in(k);
  2105           if (!m)  continue;  // be robust in the dumper
  2106           if( Find_const(m) == lidx ) {
  2107             if( !dump_once++ ) {
  2108               tty->cr();
  2109               b->dump_head( &_cfg._bbs );
  2111             dump(n);
  2116   } // End of per-block dump
  2117   tty->cr();
  2119 #endif // not PRODUCT
  2121 //------------------------------print_chaitin_statistics-------------------------------
  2122 int PhaseChaitin::_final_loads  = 0;
  2123 int PhaseChaitin::_final_stores = 0;
  2124 int PhaseChaitin::_final_memoves= 0;
  2125 int PhaseChaitin::_final_copies = 0;
  2126 double PhaseChaitin::_final_load_cost  = 0;
  2127 double PhaseChaitin::_final_store_cost = 0;
  2128 double PhaseChaitin::_final_memove_cost= 0;
  2129 double PhaseChaitin::_final_copy_cost  = 0;
  2130 int PhaseChaitin::_conserv_coalesce = 0;
  2131 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2132 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2133 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2134 int PhaseChaitin::_post_alloc = 0;
  2135 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2136 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2137 int PhaseChaitin::_used_cisc_instructions   = 0;
  2138 int PhaseChaitin::_unused_cisc_instructions = 0;
  2139 int PhaseChaitin::_allocator_attempts       = 0;
  2140 int PhaseChaitin::_allocator_successes      = 0;
  2142 #ifndef PRODUCT
  2143 uint PhaseChaitin::_high_pressure           = 0;
  2144 uint PhaseChaitin::_low_pressure            = 0;
  2146 void PhaseChaitin::print_chaitin_statistics() {
  2147   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2148   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2149   tty->print_cr("Adjusted spill cost = %7.0f.",
  2150                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2151                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2152   tty->print("Conservatively coalesced %d copies, %d pairs",
  2153                 _conserv_coalesce, _conserv_coalesce_pair);
  2154   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2155     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2156   tty->print_cr(", %d post alloc.", _post_alloc);
  2157   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2158     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2159                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2160   if( _used_cisc_instructions || _unused_cisc_instructions )
  2161     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2162                    _used_cisc_instructions, _unused_cisc_instructions);
  2163   if( _allocator_successes != 0 )
  2164     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2165   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2167 #endif // not PRODUCT

mercurial