src/cpu/sparc/vm/sparc.ad

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 993
3b5ac9e7e6ea
child 1059
337400e7a5dd
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 //
     2 // Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg());
   197 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg()->next());
   198 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg());
   199 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg()->next());
   200 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg());
   201 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg()->next());
   202 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg());
   203 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg()->next());
   204 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg());
   205 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg()->next());
   206 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg());
   207 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next());
   208 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg());
   209 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next());
   210 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg());
   211 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next());
   212 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg());
   213 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next());
   214 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg());
   215 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next());
   216 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg());
   217 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next());
   218 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg());
   219 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next());
   220 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg());
   221 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next());
   222 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg());
   223 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next());
   224 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg());
   225 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next());
   226 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg());
   227 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // tertiary op of a LoadP or StoreP encoding
   475 #define REGP_OP true
   477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   479 static Register reg_to_register_object(int register_encoding);
   481 // Used by the DFA in dfa_sparc.cpp.
   482 // Check for being able to use a V9 branch-on-register.  Requires a
   483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   484 // extended.  Doesn't work following an integer ADD, for example, because of
   485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   487 // replace them with zero, which could become sign-extension in a different OS
   488 // release.  There's no obvious reason why an interrupt will ever fill these
   489 // bits with non-zero junk (the registers are reloaded with standard LD
   490 // instructions which either zero-fill or sign-fill).
   491 bool can_branch_register( Node *bol, Node *cmp ) {
   492   if( !BranchOnRegister ) return false;
   493 #ifdef _LP64
   494   if( cmp->Opcode() == Op_CmpP )
   495     return true;  // No problems with pointer compares
   496 #endif
   497   if( cmp->Opcode() == Op_CmpL )
   498     return true;  // No problems with long compares
   500   if( !SparcV9RegsHiBitsZero ) return false;
   501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   502       bol->as_Bool()->_test._test != BoolTest::eq )
   503      return false;
   505   // Check for comparing against a 'safe' value.  Any operation which
   506   // clears out the high word is safe.  Thus, loads and certain shifts
   507   // are safe, as are non-negative constants.  Any operation which
   508   // preserves zero bits in the high word is safe as long as each of its
   509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   510   // inputs are safe.  At present, the only important case to recognize
   511   // seems to be loads.  Constants should fold away, and shifts &
   512   // logicals can use the 'cc' forms.
   513   Node *x = cmp->in(1);
   514   if( x->is_Load() ) return true;
   515   if( x->is_Phi() ) {
   516     for( uint i = 1; i < x->req(); i++ )
   517       if( !x->in(i)->is_Load() )
   518         return false;
   519     return true;
   520   }
   521   return false;
   522 }
   524 // ****************************************************************************
   526 // REQUIRED FUNCTIONALITY
   528 // !!!!! Special hack to get all type of calls to specify the byte offset
   529 //       from the start of the call to the point where the return address
   530 //       will point.
   531 //       The "return address" is the address of the call instruction, plus 8.
   533 int MachCallStaticJavaNode::ret_addr_offset() {
   534   return NativeCall::instruction_size;  // call; delay slot
   535 }
   537 int MachCallDynamicJavaNode::ret_addr_offset() {
   538   int vtable_index = this->_vtable_index;
   539   if (vtable_index < 0) {
   540     // must be invalid_vtable_index, not nonvirtual_vtable_index
   541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   542     return (NativeMovConstReg::instruction_size +
   543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   544   } else {
   545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   548     int klass_load_size;
   549     if (UseCompressedOops) {
   550       klass_load_size = 3*BytesPerInstWord; // see MacroAssembler::load_klass()
   551     } else {
   552       klass_load_size = 1*BytesPerInstWord;
   553     }
   554     if( Assembler::is_simm13(v_off) ) {
   555       return klass_load_size +
   556              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   557              NativeCall::instruction_size);  // call; delay slot
   558     } else {
   559       return klass_load_size +
   560              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   561              NativeCall::instruction_size);  // call; delay slot
   562     }
   563   }
   564 }
   566 int MachCallRuntimeNode::ret_addr_offset() {
   567 #ifdef _LP64
   568   return NativeFarCall::instruction_size;  // farcall; delay slot
   569 #else
   570   return NativeCall::instruction_size;  // call; delay slot
   571 #endif
   572 }
   574 // Indicate if the safepoint node needs the polling page as an input.
   575 // Since Sparc does not have absolute addressing, it does.
   576 bool SafePointNode::needs_polling_address_input() {
   577   return true;
   578 }
   580 // emit an interrupt that is caught by the debugger (for debugging compiler)
   581 void emit_break(CodeBuffer &cbuf) {
   582   MacroAssembler _masm(&cbuf);
   583   __ breakpoint_trap();
   584 }
   586 #ifndef PRODUCT
   587 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   588   st->print("TA");
   589 }
   590 #endif
   592 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   593   emit_break(cbuf);
   594 }
   596 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   597   return MachNode::size(ra_);
   598 }
   600 // Traceable jump
   601 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   602   MacroAssembler _masm(&cbuf);
   603   Register rdest = reg_to_register_object(jump_target);
   604   __ JMP(rdest, 0);
   605   __ delayed()->nop();
   606 }
   608 // Traceable jump and set exception pc
   609 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   610   MacroAssembler _masm(&cbuf);
   611   Register rdest = reg_to_register_object(jump_target);
   612   __ JMP(rdest, 0);
   613   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   614 }
   616 void emit_nop(CodeBuffer &cbuf) {
   617   MacroAssembler _masm(&cbuf);
   618   __ nop();
   619 }
   621 void emit_illtrap(CodeBuffer &cbuf) {
   622   MacroAssembler _masm(&cbuf);
   623   __ illtrap(0);
   624 }
   627 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   628   assert(n->rule() != loadUB_rule, "");
   630   intptr_t offset = 0;
   631   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   632   const Node* addr = n->get_base_and_disp(offset, adr_type);
   633   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   634   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   635   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   636   atype = atype->add_offset(offset);
   637   assert(disp32 == offset, "wrong disp32");
   638   return atype->_offset;
   639 }
   642 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   643   assert(n->rule() != loadUB_rule, "");
   645   intptr_t offset = 0;
   646   Node* addr = n->in(2);
   647   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   648   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   649     Node* a = addr->in(2/*AddPNode::Address*/);
   650     Node* o = addr->in(3/*AddPNode::Offset*/);
   651     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   652     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   653     assert(atype->isa_oop_ptr(), "still an oop");
   654   }
   655   offset = atype->is_ptr()->_offset;
   656   if (offset != Type::OffsetBot)  offset += disp32;
   657   return offset;
   658 }
   660 // Standard Sparc opcode form2 field breakdown
   661 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   662   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   663   int op = (f30 << 30) |
   664            (f29 << 29) |
   665            (f25 << 25) |
   666            (f22 << 22) |
   667            (f20 << 20) |
   668            (f19 << 19) |
   669            (f0  <<  0);
   670   *((int*)(cbuf.code_end())) = op;
   671   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   672 }
   674 // Standard Sparc opcode form2 field breakdown
   675 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   676   f0 >>= 10;           // Drop 10 bits
   677   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   678   int op = (f30 << 30) |
   679            (f25 << 25) |
   680            (f22 << 22) |
   681            (f0  <<  0);
   682   *((int*)(cbuf.code_end())) = op;
   683   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   684 }
   686 // Standard Sparc opcode form3 field breakdown
   687 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   688   int op = (f30 << 30) |
   689            (f25 << 25) |
   690            (f19 << 19) |
   691            (f14 << 14) |
   692            (f5  <<  5) |
   693            (f0  <<  0);
   694   *((int*)(cbuf.code_end())) = op;
   695   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   696 }
   698 // Standard Sparc opcode form3 field breakdown
   699 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   700   simm13 &= (1<<13)-1; // Mask to 13 bits
   701   int op = (f30 << 30) |
   702            (f25 << 25) |
   703            (f19 << 19) |
   704            (f14 << 14) |
   705            (1   << 13) | // bit to indicate immediate-mode
   706            (simm13<<0);
   707   *((int*)(cbuf.code_end())) = op;
   708   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   709 }
   711 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   712   simm10 &= (1<<10)-1; // Mask to 10 bits
   713   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   714 }
   716 #ifdef ASSERT
   717 // Helper function for VerifyOops in emit_form3_mem_reg
   718 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   719   warning("VerifyOops encountered unexpected instruction:");
   720   n->dump(2);
   721   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   722 }
   723 #endif
   726 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   727                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   729 #ifdef ASSERT
   730   // The following code implements the +VerifyOops feature.
   731   // It verifies oop values which are loaded into or stored out of
   732   // the current method activation.  +VerifyOops complements techniques
   733   // like ScavengeALot, because it eagerly inspects oops in transit,
   734   // as they enter or leave the stack, as opposed to ScavengeALot,
   735   // which inspects oops "at rest", in the stack or heap, at safepoints.
   736   // For this reason, +VerifyOops can sometimes detect bugs very close
   737   // to their point of creation.  It can also serve as a cross-check
   738   // on the validity of oop maps, when used toegether with ScavengeALot.
   740   // It would be good to verify oops at other points, especially
   741   // when an oop is used as a base pointer for a load or store.
   742   // This is presently difficult, because it is hard to know when
   743   // a base address is biased or not.  (If we had such information,
   744   // it would be easy and useful to make a two-argument version of
   745   // verify_oop which unbiases the base, and performs verification.)
   747   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   748   bool is_verified_oop_base  = false;
   749   bool is_verified_oop_load  = false;
   750   bool is_verified_oop_store = false;
   751   int tmp_enc = -1;
   752   if (VerifyOops && src1_enc != R_SP_enc) {
   753     // classify the op, mainly for an assert check
   754     int st_op = 0, ld_op = 0;
   755     switch (primary) {
   756     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   757     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   758     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   759     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   760     case Assembler::std_op3:  st_op = Op_StoreL; break;
   761     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   762     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   764     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   765     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   766     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   767     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   768     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   769     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   770     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   771     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   772     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   773     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   774     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   776     default: ShouldNotReachHere();
   777     }
   778     if (tertiary == REGP_OP) {
   779       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   780       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   781       else                          ShouldNotReachHere();
   782       if (st_op) {
   783         // a store
   784         // inputs are (0:control, 1:memory, 2:address, 3:value)
   785         Node* n2 = n->in(3);
   786         if (n2 != NULL) {
   787           const Type* t = n2->bottom_type();
   788           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   789         }
   790       } else {
   791         // a load
   792         const Type* t = n->bottom_type();
   793         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   794       }
   795     }
   797     if (ld_op) {
   798       // a Load
   799       // inputs are (0:control, 1:memory, 2:address)
   800       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   801           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   802           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   803           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   804           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   805           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   806           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   807           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   808           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   809           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   810           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   811           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   812           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   813           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   814           !(n->rule() == loadUB_rule)) {
   815         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   816       }
   817     } else if (st_op) {
   818       // a Store
   819       // inputs are (0:control, 1:memory, 2:address, 3:value)
   820       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   821           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   822           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   823           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   824           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   825           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   826         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   827       }
   828     }
   830     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   831       Node* addr = n->in(2);
   832       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   833         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   834         if (atype != NULL) {
   835           intptr_t offset = get_offset_from_base(n, atype, disp32);
   836           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   837           if (offset != offset_2) {
   838             get_offset_from_base(n, atype, disp32);
   839             get_offset_from_base_2(n, atype, disp32);
   840           }
   841           assert(offset == offset_2, "different offsets");
   842           if (offset == disp32) {
   843             // we now know that src1 is a true oop pointer
   844             is_verified_oop_base = true;
   845             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   846               if( primary == Assembler::ldd_op3 ) {
   847                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   848               } else {
   849                 tmp_enc = dst_enc;
   850                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   851                 assert(src1_enc != dst_enc, "");
   852               }
   853             }
   854           }
   855           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   856                        || offset == oopDesc::mark_offset_in_bytes())) {
   857                       // loading the mark should not be allowed either, but
   858                       // we don't check this since it conflicts with InlineObjectHash
   859                       // usage of LoadINode to get the mark. We could keep the
   860                       // check if we create a new LoadMarkNode
   861             // but do not verify the object before its header is initialized
   862             ShouldNotReachHere();
   863           }
   864         }
   865       }
   866     }
   867   }
   868 #endif
   870   uint instr;
   871   instr = (Assembler::ldst_op << 30)
   872         | (dst_enc        << 25)
   873         | (primary        << 19)
   874         | (src1_enc       << 14);
   876   uint index = src2_enc;
   877   int disp = disp32;
   879   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   880     disp += STACK_BIAS;
   882   // We should have a compiler bailout here rather than a guarantee.
   883   // Better yet would be some mechanism to handle variable-size matches correctly.
   884   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   886   if( disp == 0 ) {
   887     // use reg-reg form
   888     // bit 13 is already zero
   889     instr |= index;
   890   } else {
   891     // use reg-imm form
   892     instr |= 0x00002000;          // set bit 13 to one
   893     instr |= disp & 0x1FFF;
   894   }
   896   uint *code = (uint*)cbuf.code_end();
   897   *code = instr;
   898   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   900 #ifdef ASSERT
   901   {
   902     MacroAssembler _masm(&cbuf);
   903     if (is_verified_oop_base) {
   904       __ verify_oop(reg_to_register_object(src1_enc));
   905     }
   906     if (is_verified_oop_store) {
   907       __ verify_oop(reg_to_register_object(dst_enc));
   908     }
   909     if (tmp_enc != -1) {
   910       __ mov(O7, reg_to_register_object(tmp_enc));
   911     }
   912     if (is_verified_oop_load) {
   913       __ verify_oop(reg_to_register_object(dst_enc));
   914     }
   915   }
   916 #endif
   917 }
   919 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   920                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
   922   uint instr;
   923   instr = (Assembler::ldst_op << 30)
   924         | (dst_enc        << 25)
   925         | (primary        << 19)
   926         | (src1_enc       << 14);
   928   int disp = disp32;
   929   int index    = src2_enc;
   931   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   932     disp += STACK_BIAS;
   934   // We should have a compiler bailout here rather than a guarantee.
   935   // Better yet would be some mechanism to handle variable-size matches correctly.
   936   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   938   if( disp != 0 ) {
   939     // use reg-reg form
   940     // set src2=R_O7 contains offset
   941     index = R_O7_enc;
   942     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
   943   }
   944   instr |= (asi << 5);
   945   instr |= index;
   946   uint *code = (uint*)cbuf.code_end();
   947   *code = instr;
   948   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
   949 }
   951 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   952   // The method which records debug information at every safepoint
   953   // expects the call to be the first instruction in the snippet as
   954   // it creates a PcDesc structure which tracks the offset of a call
   955   // from the start of the codeBlob. This offset is computed as
   956   // code_end() - code_begin() of the code which has been emitted
   957   // so far.
   958   // In this particular case we have skirted around the problem by
   959   // putting the "mov" instruction in the delay slot but the problem
   960   // may bite us again at some other point and a cleaner/generic
   961   // solution using relocations would be needed.
   962   MacroAssembler _masm(&cbuf);
   963   __ set_inst_mark();
   965   // We flush the current window just so that there is a valid stack copy
   966   // the fact that the current window becomes active again instantly is
   967   // not a problem there is nothing live in it.
   969 #ifdef ASSERT
   970   int startpos = __ offset();
   971 #endif /* ASSERT */
   973 #ifdef _LP64
   974   // Calls to the runtime or native may not be reachable from compiled code,
   975   // so we generate the far call sequence on 64 bit sparc.
   976   // This code sequence is relocatable to any address, even on LP64.
   977   if ( force_far_call ) {
   978     __ relocate(rtype);
   979     Address dest(O7, (address)entry_point);
   980     __ jumpl_to(dest, O7);
   981   }
   982   else
   983 #endif
   984   {
   985      __ call((address)entry_point, rtype);
   986   }
   988   if (preserve_g2)   __ delayed()->mov(G2, L7);
   989   else __ delayed()->nop();
   991   if (preserve_g2)   __ mov(L7, G2);
   993 #ifdef ASSERT
   994   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   995 #ifdef _LP64
   996     // Trash argument dump slots.
   997     __ set(0xb0b8ac0db0b8ac0d, G1);
   998     __ mov(G1, G5);
   999     __ stx(G1, SP, STACK_BIAS + 0x80);
  1000     __ stx(G1, SP, STACK_BIAS + 0x88);
  1001     __ stx(G1, SP, STACK_BIAS + 0x90);
  1002     __ stx(G1, SP, STACK_BIAS + 0x98);
  1003     __ stx(G1, SP, STACK_BIAS + 0xA0);
  1004     __ stx(G1, SP, STACK_BIAS + 0xA8);
  1005 #else // _LP64
  1006     // this is also a native call, so smash the first 7 stack locations,
  1007     // and the various registers
  1009     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1010     // while [SP+0x44..0x58] are the argument dump slots.
  1011     __ set((intptr_t)0xbaadf00d, G1);
  1012     __ mov(G1, G5);
  1013     __ sllx(G1, 32, G1);
  1014     __ or3(G1, G5, G1);
  1015     __ mov(G1, G5);
  1016     __ stx(G1, SP, 0x40);
  1017     __ stx(G1, SP, 0x48);
  1018     __ stx(G1, SP, 0x50);
  1019     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1020 #endif // _LP64
  1022 #endif /*ASSERT*/
  1025 //=============================================================================
  1026 // REQUIRED FUNCTIONALITY for encoding
  1027 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1028 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1030 void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) {
  1031   MacroAssembler _masm(&cbuf);
  1032   if (ForceRelocatable) {
  1033     Address addr(reg, (address)val);
  1034     __ sethi(addr, ForceRelocatable);
  1035     __ add(addr, reg);
  1036   } else {
  1037     __ set(val, reg);
  1042 //=============================================================================
  1044 #ifndef PRODUCT
  1045 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1046   Compile* C = ra_->C;
  1048   for (int i = 0; i < OptoPrologueNops; i++) {
  1049     st->print_cr("NOP"); st->print("\t");
  1052   if( VerifyThread ) {
  1053     st->print_cr("Verify_Thread"); st->print("\t");
  1056   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1058   // Calls to C2R adapters often do not accept exceptional returns.
  1059   // We require that their callers must bang for them.  But be careful, because
  1060   // some VM calls (such as call site linkage) can use several kilobytes of
  1061   // stack.  But the stack safety zone should account for that.
  1062   // See bugs 4446381, 4468289, 4497237.
  1063   if (C->need_stack_bang(framesize)) {
  1064     st->print_cr("! stack bang"); st->print("\t");
  1067   if (Assembler::is_simm13(-framesize)) {
  1068     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1069   } else {
  1070     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1071     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1072     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1076 #endif
  1078 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1079   Compile* C = ra_->C;
  1080   MacroAssembler _masm(&cbuf);
  1082   for (int i = 0; i < OptoPrologueNops; i++) {
  1083     __ nop();
  1086   __ verify_thread();
  1088   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1089   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1090   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1092   // Calls to C2R adapters often do not accept exceptional returns.
  1093   // We require that their callers must bang for them.  But be careful, because
  1094   // some VM calls (such as call site linkage) can use several kilobytes of
  1095   // stack.  But the stack safety zone should account for that.
  1096   // See bugs 4446381, 4468289, 4497237.
  1097   if (C->need_stack_bang(framesize)) {
  1098     __ generate_stack_overflow_check(framesize);
  1101   if (Assembler::is_simm13(-framesize)) {
  1102     __ save(SP, -framesize, SP);
  1103   } else {
  1104     __ sethi(-framesize & ~0x3ff, G3);
  1105     __ add(G3, -framesize & 0x3ff, G3);
  1106     __ save(SP, G3, SP);
  1108   C->set_frame_complete( __ offset() );
  1111 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1112   return MachNode::size(ra_);
  1115 int MachPrologNode::reloc() const {
  1116   return 10; // a large enough number
  1119 //=============================================================================
  1120 #ifndef PRODUCT
  1121 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1122   Compile* C = ra_->C;
  1124   if( do_polling() && ra_->C->is_method_compilation() ) {
  1125     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1126 #ifdef _LP64
  1127     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1128 #else
  1129     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1130 #endif
  1133   if( do_polling() )
  1134     st->print("RET\n\t");
  1136   st->print("RESTORE");
  1138 #endif
  1140 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1141   MacroAssembler _masm(&cbuf);
  1142   Compile* C = ra_->C;
  1144   __ verify_thread();
  1146   // If this does safepoint polling, then do it here
  1147   if( do_polling() && ra_->C->is_method_compilation() ) {
  1148     Address polling_page(L0, (address)os::get_polling_page());
  1149     __ sethi(polling_page, false);
  1150     __ relocate(relocInfo::poll_return_type);
  1151     __ ld_ptr( L0, 0, G0 );
  1154   // If this is a return, then stuff the restore in the delay slot
  1155   if( do_polling() ) {
  1156     __ ret();
  1157     __ delayed()->restore();
  1158   } else {
  1159     __ restore();
  1163 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1164   return MachNode::size(ra_);
  1167 int MachEpilogNode::reloc() const {
  1168   return 16; // a large enough number
  1171 const Pipeline * MachEpilogNode::pipeline() const {
  1172   return MachNode::pipeline_class();
  1175 int MachEpilogNode::safepoint_offset() const {
  1176   assert( do_polling(), "no return for this epilog node");
  1177   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1180 //=============================================================================
  1182 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1183 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1184 static enum RC rc_class( OptoReg::Name reg ) {
  1185   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1186   if (OptoReg::is_stack(reg)) return rc_stack;
  1187   VMReg r = OptoReg::as_VMReg(reg);
  1188   if (r->is_Register()) return rc_int;
  1189   assert(r->is_FloatRegister(), "must be");
  1190   return rc_float;
  1193 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1194   if( cbuf ) {
  1195     // Better yet would be some mechanism to handle variable-size matches correctly
  1196     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1197       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1198     } else {
  1199       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1202 #ifndef PRODUCT
  1203   else if( !do_size ) {
  1204     if( size != 0 ) st->print("\n\t");
  1205     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1206     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1208 #endif
  1209   return size+4;
  1212 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1213   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1214 #ifndef PRODUCT
  1215   else if( !do_size ) {
  1216     if( size != 0 ) st->print("\n\t");
  1217     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1219 #endif
  1220   return size+4;
  1223 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1224                                         PhaseRegAlloc *ra_,
  1225                                         bool do_size,
  1226                                         outputStream* st ) const {
  1227   // Get registers to move
  1228   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1229   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1230   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1231   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1233   enum RC src_second_rc = rc_class(src_second);
  1234   enum RC src_first_rc = rc_class(src_first);
  1235   enum RC dst_second_rc = rc_class(dst_second);
  1236   enum RC dst_first_rc = rc_class(dst_first);
  1238   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1240   // Generate spill code!
  1241   int size = 0;
  1243   if( src_first == dst_first && src_second == dst_second )
  1244     return size;            // Self copy, no move
  1246   // --------------------------------------
  1247   // Check for mem-mem move.  Load into unused float registers and fall into
  1248   // the float-store case.
  1249   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1250     int offset = ra_->reg2offset(src_first);
  1251     // Further check for aligned-adjacent pair, so we can use a double load
  1252     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1253       src_second    = OptoReg::Name(R_F31_num);
  1254       src_second_rc = rc_float;
  1255       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1256     } else {
  1257       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1259     src_first    = OptoReg::Name(R_F30_num);
  1260     src_first_rc = rc_float;
  1263   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1264     int offset = ra_->reg2offset(src_second);
  1265     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1266     src_second    = OptoReg::Name(R_F31_num);
  1267     src_second_rc = rc_float;
  1270   // --------------------------------------
  1271   // Check for float->int copy; requires a trip through memory
  1272   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1273     int offset = frame::register_save_words*wordSize;
  1274     if( cbuf ) {
  1275       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1276       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1277       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1278       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1280 #ifndef PRODUCT
  1281     else if( !do_size ) {
  1282       if( size != 0 ) st->print("\n\t");
  1283       st->print(  "SUB    R_SP,16,R_SP\n");
  1284       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1285       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1286       st->print("\tADD    R_SP,16,R_SP\n");
  1288 #endif
  1289     size += 16;
  1292   // --------------------------------------
  1293   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1294   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1295   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1296   // there.  Misaligned sources only come from native-long-returns (handled
  1297   // special below).
  1298 #ifndef _LP64
  1299   if( src_first_rc == rc_int &&     // source is already big-endian
  1300       src_second_rc != rc_bad &&    // 64-bit move
  1301       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1302     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1303     // Do the big-endian flop.
  1304     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1305     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1307 #endif
  1309   // --------------------------------------
  1310   // Check for integer reg-reg copy
  1311   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1312 #ifndef _LP64
  1313     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1314       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1315       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1316       //       operand contains the least significant word of the 64-bit value and vice versa.
  1317       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1318       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1319       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1320       if( cbuf ) {
  1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1322         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1323         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1324 #ifndef PRODUCT
  1325       } else if( !do_size ) {
  1326         if( size != 0 ) st->print("\n\t");
  1327         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1328         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1329         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1330 #endif
  1332       return size+12;
  1334     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1335       // returning a long value in I0/I1
  1336       // a SpillCopy must be able to target a return instruction's reg_class
  1337       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1338       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1339       //       operand contains the least significant word of the 64-bit value and vice versa.
  1340       OptoReg::Name tdest = dst_first;
  1342       if (src_first == dst_first) {
  1343         tdest = OptoReg::Name(R_O7_num);
  1344         size += 4;
  1347       if( cbuf ) {
  1348         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1349         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1350         // ShrL_reg_imm6
  1351         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1352         // ShrR_reg_imm6  src, 0, dst
  1353         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1354         if (tdest != dst_first) {
  1355           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1358 #ifndef PRODUCT
  1359       else if( !do_size ) {
  1360         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1361         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1362         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1363         if (tdest != dst_first) {
  1364           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1367 #endif // PRODUCT
  1368       return size+8;
  1370 #endif // !_LP64
  1371     // Else normal reg-reg copy
  1372     assert( src_second != dst_first, "smashed second before evacuating it" );
  1373     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1374     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1375     // This moves an aligned adjacent pair.
  1376     // See if we are done.
  1377     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1378       return size;
  1381   // Check for integer store
  1382   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1383     int offset = ra_->reg2offset(dst_first);
  1384     // Further check for aligned-adjacent pair, so we can use a double store
  1385     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1386       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1387     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1390   // Check for integer load
  1391   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1392     int offset = ra_->reg2offset(src_first);
  1393     // Further check for aligned-adjacent pair, so we can use a double load
  1394     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1395       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1396     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1399   // Check for float reg-reg copy
  1400   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1401     // Further check for aligned-adjacent pair, so we can use a double move
  1402     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1403       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1404     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1407   // Check for float store
  1408   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1409     int offset = ra_->reg2offset(dst_first);
  1410     // Further check for aligned-adjacent pair, so we can use a double store
  1411     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1412       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1413     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1416   // Check for float load
  1417   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1418     int offset = ra_->reg2offset(src_first);
  1419     // Further check for aligned-adjacent pair, so we can use a double load
  1420     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1421       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1422     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1425   // --------------------------------------------------------------------
  1426   // Check for hi bits still needing moving.  Only happens for misaligned
  1427   // arguments to native calls.
  1428   if( src_second == dst_second )
  1429     return size;               // Self copy; no move
  1430   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1432 #ifndef _LP64
  1433   // In the LP64 build, all registers can be moved as aligned/adjacent
  1434   // pairs, so there's never any need to move the high bits separately.
  1435   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1436   // all sorts of silly alignment problems.
  1438   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1439   // 32-bits of a 64-bit register, but are needed in low bits of another
  1440   // register (else it's a hi-bits-to-hi-bits copy which should have
  1441   // happened already as part of a 64-bit move)
  1442   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1443     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1444     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1445     // Shift src_second down to dst_second's low bits.
  1446     if( cbuf ) {
  1447       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1448 #ifndef PRODUCT
  1449     } else if( !do_size ) {
  1450       if( size != 0 ) st->print("\n\t");
  1451       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1452 #endif
  1454     return size+4;
  1457   // Check for high word integer store.  Must down-shift the hi bits
  1458   // into a temp register, then fall into the case of storing int bits.
  1459   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1460     // Shift src_second down to dst_second's low bits.
  1461     if( cbuf ) {
  1462       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1463 #ifndef PRODUCT
  1464     } else if( !do_size ) {
  1465       if( size != 0 ) st->print("\n\t");
  1466       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1467 #endif
  1469     size+=4;
  1470     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1473   // Check for high word integer load
  1474   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1475     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1477   // Check for high word integer store
  1478   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1479     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1481   // Check for high word float store
  1482   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1483     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1485 #endif // !_LP64
  1487   Unimplemented();
  1490 #ifndef PRODUCT
  1491 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1492   implementation( NULL, ra_, false, st );
  1494 #endif
  1496 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1497   implementation( &cbuf, ra_, false, NULL );
  1500 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1501   return implementation( NULL, ra_, true, NULL );
  1504 //=============================================================================
  1505 #ifndef PRODUCT
  1506 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1507   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1509 #endif
  1511 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1512   MacroAssembler _masm(&cbuf);
  1513   for(int i = 0; i < _count; i += 1) {
  1514     __ nop();
  1518 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1519   return 4 * _count;
  1523 //=============================================================================
  1524 #ifndef PRODUCT
  1525 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1526   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1527   int reg = ra_->get_reg_first(this);
  1528   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1530 #endif
  1532 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1533   MacroAssembler _masm(&cbuf);
  1534   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1535   int reg = ra_->get_encode(this);
  1537   if (Assembler::is_simm13(offset)) {
  1538      __ add(SP, offset, reg_to_register_object(reg));
  1539   } else {
  1540      __ set(offset, O7);
  1541      __ add(SP, O7, reg_to_register_object(reg));
  1545 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1546   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1547   assert(ra_ == ra_->C->regalloc(), "sanity");
  1548   return ra_->C->scratch_emit_size(this);
  1551 //=============================================================================
  1553 // emit call stub, compiled java to interpretor
  1554 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1556   // Stub is fixed up when the corresponding call is converted from calling
  1557   // compiled code to calling interpreted code.
  1558   // set (empty), G5
  1559   // jmp -1
  1561   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1563   MacroAssembler _masm(&cbuf);
  1565   address base =
  1566   __ start_a_stub(Compile::MAX_stubs_size);
  1567   if (base == NULL)  return;  // CodeBuffer::expand failed
  1569   // static stub relocation stores the instruction address of the call
  1570   __ relocate(static_stub_Relocation::spec(mark));
  1572   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1574   __ set_inst_mark();
  1575   Address a(G3, (address)-1);
  1576   __ JUMP(a, 0);
  1578   __ delayed()->nop();
  1580   // Update current stubs pointer and restore code_end.
  1581   __ end_a_stub();
  1584 // size of call stub, compiled java to interpretor
  1585 uint size_java_to_interp() {
  1586   // This doesn't need to be accurate but it must be larger or equal to
  1587   // the real size of the stub.
  1588   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1589           NativeJump::instruction_size + // sethi; jmp; nop
  1590           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1592 // relocation entries for call stub, compiled java to interpretor
  1593 uint reloc_java_to_interp() {
  1594   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1598 //=============================================================================
  1599 #ifndef PRODUCT
  1600 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1601   st->print_cr("\nUEP:");
  1602 #ifdef    _LP64
  1603   if (UseCompressedOops) {
  1604     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1605     st->print_cr("\tSLL    R_G5,3,R_G5");
  1606     st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1607   } else {
  1608     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1610   st->print_cr("\tCMP    R_G5,R_G3" );
  1611   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1612 #else  // _LP64
  1613   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1614   st->print_cr("\tCMP    R_G5,R_G3" );
  1615   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1616 #endif // _LP64
  1618 #endif
  1620 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1621   MacroAssembler _masm(&cbuf);
  1622   Label L;
  1623   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1624   Register temp_reg   = G3;
  1625   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1627   // Load klass from receiver
  1628   __ load_klass(O0, temp_reg);
  1629   // Compare against expected klass
  1630   __ cmp(temp_reg, G5_ic_reg);
  1631   // Branch to miss code, checks xcc or icc depending
  1632   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1635 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1636   return MachNode::size(ra_);
  1640 //=============================================================================
  1642 uint size_exception_handler() {
  1643   if (TraceJumps) {
  1644     return (400); // just a guess
  1646   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1649 uint size_deopt_handler() {
  1650   if (TraceJumps) {
  1651     return (400); // just a guess
  1653   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1656 // Emit exception handler code.
  1657 int emit_exception_handler(CodeBuffer& cbuf) {
  1658   Register temp_reg = G3;
  1659   Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin());
  1660   MacroAssembler _masm(&cbuf);
  1662   address base =
  1663   __ start_a_stub(size_exception_handler());
  1664   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1666   int offset = __ offset();
  1668   __ JUMP(exception_blob, 0); // sethi;jmp
  1669   __ delayed()->nop();
  1671   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1673   __ end_a_stub();
  1675   return offset;
  1678 int emit_deopt_handler(CodeBuffer& cbuf) {
  1679   // Can't use any of the current frame's registers as we may have deopted
  1680   // at a poll and everything (including G3) can be live.
  1681   Register temp_reg = L0;
  1682   Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack());
  1683   MacroAssembler _masm(&cbuf);
  1685   address base =
  1686   __ start_a_stub(size_deopt_handler());
  1687   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1689   int offset = __ offset();
  1690   __ save_frame(0);
  1691   __ JUMP(deopt_blob, 0); // sethi;jmp
  1692   __ delayed()->restore();
  1694   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1696   __ end_a_stub();
  1697   return offset;
  1701 // Given a register encoding, produce a Integer Register object
  1702 static Register reg_to_register_object(int register_encoding) {
  1703   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1704   return as_Register(register_encoding);
  1707 // Given a register encoding, produce a single-precision Float Register object
  1708 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1709   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1710   return as_SingleFloatRegister(register_encoding);
  1713 // Given a register encoding, produce a double-precision Float Register object
  1714 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1715   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1716   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1717   return as_DoubleFloatRegister(register_encoding);
  1720 int Matcher::regnum_to_fpu_offset(int regnum) {
  1721   return regnum - 32; // The FP registers are in the second chunk
  1724 #ifdef ASSERT
  1725 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1726 #endif
  1728 // Vector width in bytes
  1729 const uint Matcher::vector_width_in_bytes(void) {
  1730   return 8;
  1733 // Vector ideal reg
  1734 const uint Matcher::vector_ideal_reg(void) {
  1735   return Op_RegD;
  1738 // USII supports fxtof through the whole range of number, USIII doesn't
  1739 const bool Matcher::convL2FSupported(void) {
  1740   return VM_Version::has_fast_fxtof();
  1743 // Is this branch offset short enough that a short branch can be used?
  1744 //
  1745 // NOTE: If the platform does not provide any short branch variants, then
  1746 //       this method should return false for offset 0.
  1747 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1748   return false;
  1751 const bool Matcher::isSimpleConstant64(jlong value) {
  1752   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1753   // Depends on optimizations in MacroAssembler::setx.
  1754   int hi = (int)(value >> 32);
  1755   int lo = (int)(value & ~0);
  1756   return (hi == 0) || (hi == -1) || (lo == 0);
  1759 // No scaling for the parameter the ClearArray node.
  1760 const bool Matcher::init_array_count_is_in_bytes = true;
  1762 // Threshold size for cleararray.
  1763 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1765 // Should the Matcher clone shifts on addressing modes, expecting them to
  1766 // be subsumed into complex addressing expressions or compute them into
  1767 // registers?  True for Intel but false for most RISCs
  1768 const bool Matcher::clone_shift_expressions = false;
  1770 // Is it better to copy float constants, or load them directly from memory?
  1771 // Intel can load a float constant from a direct address, requiring no
  1772 // extra registers.  Most RISCs will have to materialize an address into a
  1773 // register first, so they would do better to copy the constant from stack.
  1774 const bool Matcher::rematerialize_float_constants = false;
  1776 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1777 // needed.  Else we split the double into 2 integer pieces and move it
  1778 // piece-by-piece.  Only happens when passing doubles into C code as the
  1779 // Java calling convention forces doubles to be aligned.
  1780 #ifdef _LP64
  1781 const bool Matcher::misaligned_doubles_ok = true;
  1782 #else
  1783 const bool Matcher::misaligned_doubles_ok = false;
  1784 #endif
  1786 // No-op on SPARC.
  1787 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1790 // Advertise here if the CPU requires explicit rounding operations
  1791 // to implement the UseStrictFP mode.
  1792 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1794 // Do floats take an entire double register or just half?
  1795 const bool Matcher::float_in_double = false;
  1797 // Do ints take an entire long register or just half?
  1798 // Note that we if-def off of _LP64.
  1799 // The relevant question is how the int is callee-saved.  In _LP64
  1800 // the whole long is written but de-opt'ing will have to extract
  1801 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1802 #ifdef _LP64
  1803 const bool Matcher::int_in_long = true;
  1804 #else
  1805 const bool Matcher::int_in_long = false;
  1806 #endif
  1808 // Return whether or not this register is ever used as an argument.  This
  1809 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1810 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1811 // arguments in those registers not be available to the callee.
  1812 bool Matcher::can_be_java_arg( int reg ) {
  1813   // Standard sparc 6 args in registers
  1814   if( reg == R_I0_num ||
  1815       reg == R_I1_num ||
  1816       reg == R_I2_num ||
  1817       reg == R_I3_num ||
  1818       reg == R_I4_num ||
  1819       reg == R_I5_num ) return true;
  1820 #ifdef _LP64
  1821   // 64-bit builds can pass 64-bit pointers and longs in
  1822   // the high I registers
  1823   if( reg == R_I0H_num ||
  1824       reg == R_I1H_num ||
  1825       reg == R_I2H_num ||
  1826       reg == R_I3H_num ||
  1827       reg == R_I4H_num ||
  1828       reg == R_I5H_num ) return true;
  1830   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1831     return true;
  1834 #else
  1835   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1836   // Longs cannot be passed in O regs, because O regs become I regs
  1837   // after a 'save' and I regs get their high bits chopped off on
  1838   // interrupt.
  1839   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1840   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1841 #endif
  1842   // A few float args in registers
  1843   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1845   return false;
  1848 bool Matcher::is_spillable_arg( int reg ) {
  1849   return can_be_java_arg(reg);
  1852 // Register for DIVI projection of divmodI
  1853 RegMask Matcher::divI_proj_mask() {
  1854   ShouldNotReachHere();
  1855   return RegMask();
  1858 // Register for MODI projection of divmodI
  1859 RegMask Matcher::modI_proj_mask() {
  1860   ShouldNotReachHere();
  1861   return RegMask();
  1864 // Register for DIVL projection of divmodL
  1865 RegMask Matcher::divL_proj_mask() {
  1866   ShouldNotReachHere();
  1867   return RegMask();
  1870 // Register for MODL projection of divmodL
  1871 RegMask Matcher::modL_proj_mask() {
  1872   ShouldNotReachHere();
  1873   return RegMask();
  1876 %}
  1879 // The intptr_t operand types, defined by textual substitution.
  1880 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1881 #ifdef _LP64
  1882 #define immX    immL
  1883 #define immX13  immL13
  1884 #define iRegX   iRegL
  1885 #define g1RegX  g1RegL
  1886 #else
  1887 #define immX    immI
  1888 #define immX13  immI13
  1889 #define iRegX   iRegI
  1890 #define g1RegX  g1RegI
  1891 #endif
  1893 //----------ENCODING BLOCK-----------------------------------------------------
  1894 // This block specifies the encoding classes used by the compiler to output
  1895 // byte streams.  Encoding classes are parameterized macros used by
  1896 // Machine Instruction Nodes in order to generate the bit encoding of the
  1897 // instruction.  Operands specify their base encoding interface with the
  1898 // interface keyword.  There are currently supported four interfaces,
  1899 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1900 // operand to generate a function which returns its register number when
  1901 // queried.   CONST_INTER causes an operand to generate a function which
  1902 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1903 // operand to generate four functions which return the Base Register, the
  1904 // Index Register, the Scale Value, and the Offset Value of the operand when
  1905 // queried.  COND_INTER causes an operand to generate six functions which
  1906 // return the encoding code (ie - encoding bits for the instruction)
  1907 // associated with each basic boolean condition for a conditional instruction.
  1908 //
  1909 // Instructions specify two basic values for encoding.  Again, a function
  1910 // is available to check if the constant displacement is an oop. They use the
  1911 // ins_encode keyword to specify their encoding classes (which must be
  1912 // a sequence of enc_class names, and their parameters, specified in
  1913 // the encoding block), and they use the
  1914 // opcode keyword to specify, in order, their primary, secondary, and
  1915 // tertiary opcode.  Only the opcode sections which a particular instruction
  1916 // needs for encoding need to be specified.
  1917 encode %{
  1918   enc_class enc_untested %{
  1919 #ifdef ASSERT
  1920     MacroAssembler _masm(&cbuf);
  1921     __ untested("encoding");
  1922 #endif
  1923   %}
  1925   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1926     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1927                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1928   %}
  1930   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1931     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1932                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1933   %}
  1935   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
  1936     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
  1937                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
  1938   %}
  1940   enc_class form3_mem_prefetch_read( memory mem ) %{
  1941     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1942                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1943   %}
  1945   enc_class form3_mem_prefetch_write( memory mem ) %{
  1946     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1947                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1948   %}
  1950   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1951     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1952     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1953     guarantee($mem$$index == R_G0_enc, "double index?");
  1954     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1955     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1956     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1957     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1958   %}
  1960   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1961     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1962     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1963     guarantee($mem$$index == R_G0_enc, "double index?");
  1964     // Load long with 2 instructions
  1965     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1966     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1967   %}
  1969   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1970   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1971     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1972     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1973   %}
  1975   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1976     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1977     if( $rs2$$reg != $rd$$reg )
  1978       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1979   %}
  1981   // Target lo half of long
  1982   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1983     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1984     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1985       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1986   %}
  1988   // Source lo half of long
  1989   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1990     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1991     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1992       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1993   %}
  1995   // Target hi half of long
  1996   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1997     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1998   %}
  2000   // Source lo half of long, and leave it sign extended.
  2001   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2002     // Sign extend low half
  2003     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2004   %}
  2006   // Source hi half of long, and leave it sign extended.
  2007   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2008     // Shift high half to low half
  2009     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2010   %}
  2012   // Source hi half of long
  2013   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2014     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2015     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2016       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2017   %}
  2019   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2020     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2021   %}
  2023   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2024     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2025     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2026   %}
  2028   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2029     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2030     // clear if nothing else is happening
  2031     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2032     // blt,a,pn done
  2033     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2034     // mov dst,-1 in delay slot
  2035     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2036   %}
  2038   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2039     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2040   %}
  2042   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2043     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2044   %}
  2046   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2047     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2048   %}
  2050   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2051     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2052   %}
  2054   enc_class move_return_pc_to_o1() %{
  2055     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2056   %}
  2058 #ifdef _LP64
  2059   /* %%% merge with enc_to_bool */
  2060   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2061     MacroAssembler _masm(&cbuf);
  2063     Register   src_reg = reg_to_register_object($src$$reg);
  2064     Register   dst_reg = reg_to_register_object($dst$$reg);
  2065     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2066   %}
  2067 #endif
  2069   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2070     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2071     MacroAssembler _masm(&cbuf);
  2073     Register   p_reg = reg_to_register_object($p$$reg);
  2074     Register   q_reg = reg_to_register_object($q$$reg);
  2075     Register   y_reg = reg_to_register_object($y$$reg);
  2076     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2078     __ subcc( p_reg, q_reg,   p_reg );
  2079     __ add  ( p_reg, y_reg, tmp_reg );
  2080     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2081   %}
  2083   enc_class form_d2i_helper(regD src, regF dst) %{
  2084     // fcmp %fcc0,$src,$src
  2085     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2086     // branch %fcc0 not-nan, predict taken
  2087     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2088     // fdtoi $src,$dst
  2089     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2090     // fitos $dst,$dst (if nan)
  2091     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2092     // clear $dst (if nan)
  2093     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2094     // carry on here...
  2095   %}
  2097   enc_class form_d2l_helper(regD src, regD dst) %{
  2098     // fcmp %fcc0,$src,$src  check for NAN
  2099     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2100     // branch %fcc0 not-nan, predict taken
  2101     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2102     // fdtox $src,$dst   convert in delay slot
  2103     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2104     // fxtod $dst,$dst  (if nan)
  2105     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2106     // clear $dst (if nan)
  2107     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2108     // carry on here...
  2109   %}
  2111   enc_class form_f2i_helper(regF src, regF dst) %{
  2112     // fcmps %fcc0,$src,$src
  2113     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2114     // branch %fcc0 not-nan, predict taken
  2115     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2116     // fstoi $src,$dst
  2117     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2118     // fitos $dst,$dst (if nan)
  2119     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2120     // clear $dst (if nan)
  2121     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2122     // carry on here...
  2123   %}
  2125   enc_class form_f2l_helper(regF src, regD dst) %{
  2126     // fcmps %fcc0,$src,$src
  2127     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2128     // branch %fcc0 not-nan, predict taken
  2129     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2130     // fstox $src,$dst
  2131     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2132     // fxtod $dst,$dst (if nan)
  2133     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2134     // clear $dst (if nan)
  2135     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2136     // carry on here...
  2137   %}
  2139   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2140   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2141   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2142   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2144   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2146   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2147   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2149   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2150     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2151   %}
  2153   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2154     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2155   %}
  2157   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2158     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2159   %}
  2161   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2162     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2163   %}
  2165   enc_class form3_convI2F(regF rs2, regF rd) %{
  2166     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2167   %}
  2169   // Encloding class for traceable jumps
  2170   enc_class form_jmpl(g3RegP dest) %{
  2171     emit_jmpl(cbuf, $dest$$reg);
  2172   %}
  2174   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2175     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2176   %}
  2178   enc_class form2_nop() %{
  2179     emit_nop(cbuf);
  2180   %}
  2182   enc_class form2_illtrap() %{
  2183     emit_illtrap(cbuf);
  2184   %}
  2187   // Compare longs and convert into -1, 0, 1.
  2188   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2189     // CMP $src1,$src2
  2190     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2191     // blt,a,pn done
  2192     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2193     // mov dst,-1 in delay slot
  2194     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2195     // bgt,a,pn done
  2196     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2197     // mov dst,1 in delay slot
  2198     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2199     // CLR    $dst
  2200     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2201   %}
  2203   enc_class enc_PartialSubtypeCheck() %{
  2204     MacroAssembler _masm(&cbuf);
  2205     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2206     __ delayed()->nop();
  2207   %}
  2209   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2210     MacroAssembler _masm(&cbuf);
  2211     Label &L = *($labl$$label);
  2212     Assembler::Predict predict_taken =
  2213       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2215     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2216     __ delayed()->nop();
  2217   %}
  2219   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2220     MacroAssembler _masm(&cbuf);
  2221     Label &L = *($labl$$label);
  2222     Assembler::Predict predict_taken =
  2223       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2225     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2226     __ delayed()->nop();
  2227   %}
  2229   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2230     MacroAssembler _masm(&cbuf);
  2231     Label &L = *($labl$$label);
  2232     Assembler::Predict predict_taken =
  2233       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2235     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2236     __ delayed()->nop();
  2237   %}
  2239   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2240     MacroAssembler _masm(&cbuf);
  2241     Label &L = *($labl$$label);
  2242     Assembler::Predict predict_taken =
  2243       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2245     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2246     __ delayed()->nop();
  2247   %}
  2249   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2250     MacroAssembler _masm(&cbuf);
  2252     Register switch_reg       = as_Register($switch_val$$reg);
  2253     Register table_reg        = O7;
  2255     address table_base = __ address_table_constant(_index2label);
  2256     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2258     // Load table address
  2259     Address the_pc(table_reg, table_base, rspec);
  2260     __ load_address(the_pc);
  2262     // Jump to base address + switch value
  2263     __ ld_ptr(table_reg, switch_reg, table_reg);
  2264     __ jmp(table_reg, G0);
  2265     __ delayed()->nop();
  2267   %}
  2269   enc_class enc_ba( Label labl ) %{
  2270     MacroAssembler _masm(&cbuf);
  2271     Label &L = *($labl$$label);
  2272     __ ba(false, L);
  2273     __ delayed()->nop();
  2274   %}
  2276   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2277     MacroAssembler _masm(&cbuf);
  2278     Label &L = *$labl$$label;
  2279     Assembler::Predict predict_taken =
  2280       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2282     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2283     __ delayed()->nop();
  2284   %}
  2286   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2287     int op = (Assembler::arith_op << 30) |
  2288              ($dst$$reg << 25) |
  2289              (Assembler::movcc_op3 << 19) |
  2290              (1 << 18) |                    // cc2 bit for 'icc'
  2291              ($cmp$$cmpcode << 14) |
  2292              (0 << 13) |                    // select register move
  2293              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2294              ($src$$reg << 0);
  2295     *((int*)(cbuf.code_end())) = op;
  2296     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2297   %}
  2299   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2300     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2301     int op = (Assembler::arith_op << 30) |
  2302              ($dst$$reg << 25) |
  2303              (Assembler::movcc_op3 << 19) |
  2304              (1 << 18) |                    // cc2 bit for 'icc'
  2305              ($cmp$$cmpcode << 14) |
  2306              (1 << 13) |                    // select immediate move
  2307              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2308              (simm11 << 0);
  2309     *((int*)(cbuf.code_end())) = op;
  2310     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2311   %}
  2313   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2314     int op = (Assembler::arith_op << 30) |
  2315              ($dst$$reg << 25) |
  2316              (Assembler::movcc_op3 << 19) |
  2317              (0 << 18) |                    // cc2 bit for 'fccX'
  2318              ($cmp$$cmpcode << 14) |
  2319              (0 << 13) |                    // select register move
  2320              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2321              ($src$$reg << 0);
  2322     *((int*)(cbuf.code_end())) = op;
  2323     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2324   %}
  2326   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2327     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2328     int op = (Assembler::arith_op << 30) |
  2329              ($dst$$reg << 25) |
  2330              (Assembler::movcc_op3 << 19) |
  2331              (0 << 18) |                    // cc2 bit for 'fccX'
  2332              ($cmp$$cmpcode << 14) |
  2333              (1 << 13) |                    // select immediate move
  2334              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2335              (simm11 << 0);
  2336     *((int*)(cbuf.code_end())) = op;
  2337     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2338   %}
  2340   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2341     int op = (Assembler::arith_op << 30) |
  2342              ($dst$$reg << 25) |
  2343              (Assembler::fpop2_op3 << 19) |
  2344              (0 << 18) |
  2345              ($cmp$$cmpcode << 14) |
  2346              (1 << 13) |                    // select register move
  2347              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2348              ($primary << 5) |              // select single, double or quad
  2349              ($src$$reg << 0);
  2350     *((int*)(cbuf.code_end())) = op;
  2351     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2352   %}
  2354   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2355     int op = (Assembler::arith_op << 30) |
  2356              ($dst$$reg << 25) |
  2357              (Assembler::fpop2_op3 << 19) |
  2358              (0 << 18) |
  2359              ($cmp$$cmpcode << 14) |
  2360              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2361              ($primary << 5) |              // select single, double or quad
  2362              ($src$$reg << 0);
  2363     *((int*)(cbuf.code_end())) = op;
  2364     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2365   %}
  2367   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2368   // the condition comes from opcode-field instead of an argument.
  2369   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2370     int op = (Assembler::arith_op << 30) |
  2371              ($dst$$reg << 25) |
  2372              (Assembler::movcc_op3 << 19) |
  2373              (1 << 18) |                    // cc2 bit for 'icc'
  2374              ($primary << 14) |
  2375              (0 << 13) |                    // select register move
  2376              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2377              ($src$$reg << 0);
  2378     *((int*)(cbuf.code_end())) = op;
  2379     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2380   %}
  2382   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2383     int op = (Assembler::arith_op << 30) |
  2384              ($dst$$reg << 25) |
  2385              (Assembler::movcc_op3 << 19) |
  2386              (6 << 16) |                    // cc2 bit for 'xcc'
  2387              ($primary << 14) |
  2388              (0 << 13) |                    // select register move
  2389              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2390              ($src$$reg << 0);
  2391     *((int*)(cbuf.code_end())) = op;
  2392     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  2393   %}
  2395   // Utility encoding for loading a 64 bit Pointer into a register
  2396   // The 64 bit pointer is stored in the generated code stream
  2397   enc_class SetPtr( immP src, iRegP rd ) %{
  2398     Register dest = reg_to_register_object($rd$$reg);
  2399     // [RGV] This next line should be generated from ADLC
  2400     if ( _opnds[1]->constant_is_oop() ) {
  2401       intptr_t val = $src$$constant;
  2402       MacroAssembler _masm(&cbuf);
  2403       __ set_oop_constant((jobject)val, dest);
  2404     } else {          // non-oop pointers, e.g. card mark base, heap top
  2405       emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false);
  2407   %}
  2409   enc_class Set13( immI13 src, iRegI rd ) %{
  2410     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2411   %}
  2413   enc_class SetHi22( immI src, iRegI rd ) %{
  2414     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2415   %}
  2417   enc_class Set32( immI src, iRegI rd ) %{
  2418     MacroAssembler _masm(&cbuf);
  2419     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2420   %}
  2422   enc_class SetNull( iRegI rd ) %{
  2423     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2424   %}
  2426   enc_class call_epilog %{
  2427     if( VerifyStackAtCalls ) {
  2428       MacroAssembler _masm(&cbuf);
  2429       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2430       Register temp_reg = G3;
  2431       __ add(SP, framesize, temp_reg);
  2432       __ cmp(temp_reg, FP);
  2433       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2435   %}
  2437   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2438   // to G1 so the register allocator will not have to deal with the misaligned register
  2439   // pair.
  2440   enc_class adjust_long_from_native_call %{
  2441 #ifndef _LP64
  2442     if (returns_long()) {
  2443       //    sllx  O0,32,O0
  2444       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2445       //    srl   O1,0,O1
  2446       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2447       //    or    O0,O1,G1
  2448       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2450 #endif
  2451   %}
  2453   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2454     // CALL directly to the runtime
  2455     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2456     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2457                     /*preserve_g2=*/true, /*force far call*/true);
  2458   %}
  2460   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2461     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2462     // who we intended to call.
  2463     if ( !_method ) {
  2464       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2465     } else if (_optimized_virtual) {
  2466       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2467     } else {
  2468       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2470     if( _method ) {  // Emit stub for static call
  2471       emit_java_to_interp(cbuf);
  2473   %}
  2475   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2476     MacroAssembler _masm(&cbuf);
  2477     __ set_inst_mark();
  2478     int vtable_index = this->_vtable_index;
  2479     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2480     if (vtable_index < 0) {
  2481       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2482       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2483       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2484       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2485       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2486       // !!!!!
  2487       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2488       // emit_call_dynamic_prologue( cbuf );
  2489       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2491       address  virtual_call_oop_addr = __ inst_mark();
  2492       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2493       // who we intended to call.
  2494       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2495       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2496     } else {
  2497       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2498       // Just go thru the vtable
  2499       // get receiver klass (receiver already checked for non-null)
  2500       // If we end up going thru a c2i adapter interpreter expects method in G5
  2501       int off = __ offset();
  2502       __ load_klass(O0, G3_scratch);
  2503       int klass_load_size;
  2504       if (UseCompressedOops) {
  2505         klass_load_size = 3*BytesPerInstWord;
  2506       } else {
  2507         klass_load_size = 1*BytesPerInstWord;
  2509       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2510       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2511       if( __ is_simm13(v_off) ) {
  2512         __ ld_ptr(G3, v_off, G5_method);
  2513       } else {
  2514         // Generate 2 instructions
  2515         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2516         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2517         // ld_ptr, set_hi, set
  2518         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2519                "Unexpected instruction size(s)");
  2520         __ ld_ptr(G3, G5_method, G5_method);
  2522       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2523       // However it may very well end up in handle_wrong_method if the
  2524       // method is abstract for the particular class.
  2525       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2526       // jump to target (either compiled code or c2iadapter)
  2527       __ jmpl(G3_scratch, G0, O7);
  2528       __ delayed()->nop();
  2530   %}
  2532   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2533     MacroAssembler _masm(&cbuf);
  2535     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2536     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2537                               // we might be calling a C2I adapter which needs it.
  2539     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2540     // Load nmethod
  2541     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2543     // CALL to compiled java, indirect the contents of G3
  2544     __ set_inst_mark();
  2545     __ callr(temp_reg, G0);
  2546     __ delayed()->nop();
  2547   %}
  2549 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2550     MacroAssembler _masm(&cbuf);
  2551     Register Rdividend = reg_to_register_object($src1$$reg);
  2552     Register Rdivisor = reg_to_register_object($src2$$reg);
  2553     Register Rresult = reg_to_register_object($dst$$reg);
  2555     __ sra(Rdivisor, 0, Rdivisor);
  2556     __ sra(Rdividend, 0, Rdividend);
  2557     __ sdivx(Rdividend, Rdivisor, Rresult);
  2558 %}
  2560 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2561     MacroAssembler _masm(&cbuf);
  2563     Register Rdividend = reg_to_register_object($src1$$reg);
  2564     int divisor = $imm$$constant;
  2565     Register Rresult = reg_to_register_object($dst$$reg);
  2567     __ sra(Rdividend, 0, Rdividend);
  2568     __ sdivx(Rdividend, divisor, Rresult);
  2569 %}
  2571 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2572     MacroAssembler _masm(&cbuf);
  2573     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2574     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2575     Register Rdst  = reg_to_register_object($dst$$reg);
  2577     __ sra( Rsrc1, 0, Rsrc1 );
  2578     __ sra( Rsrc2, 0, Rsrc2 );
  2579     __ mulx( Rsrc1, Rsrc2, Rdst );
  2580     __ srlx( Rdst, 32, Rdst );
  2581 %}
  2583 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2584     MacroAssembler _masm(&cbuf);
  2585     Register Rdividend = reg_to_register_object($src1$$reg);
  2586     Register Rdivisor = reg_to_register_object($src2$$reg);
  2587     Register Rresult = reg_to_register_object($dst$$reg);
  2588     Register Rscratch = reg_to_register_object($scratch$$reg);
  2590     assert(Rdividend != Rscratch, "");
  2591     assert(Rdivisor  != Rscratch, "");
  2593     __ sra(Rdividend, 0, Rdividend);
  2594     __ sra(Rdivisor, 0, Rdivisor);
  2595     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2596     __ mulx(Rscratch, Rdivisor, Rscratch);
  2597     __ sub(Rdividend, Rscratch, Rresult);
  2598 %}
  2600 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2601     MacroAssembler _masm(&cbuf);
  2603     Register Rdividend = reg_to_register_object($src1$$reg);
  2604     int divisor = $imm$$constant;
  2605     Register Rresult = reg_to_register_object($dst$$reg);
  2606     Register Rscratch = reg_to_register_object($scratch$$reg);
  2608     assert(Rdividend != Rscratch, "");
  2610     __ sra(Rdividend, 0, Rdividend);
  2611     __ sdivx(Rdividend, divisor, Rscratch);
  2612     __ mulx(Rscratch, divisor, Rscratch);
  2613     __ sub(Rdividend, Rscratch, Rresult);
  2614 %}
  2616 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2617     MacroAssembler _masm(&cbuf);
  2619     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2620     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2622     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2623 %}
  2625 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2626     MacroAssembler _masm(&cbuf);
  2628     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2629     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2631     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2632 %}
  2634 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2635     MacroAssembler _masm(&cbuf);
  2637     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2638     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2640     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2641 %}
  2643 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2644     MacroAssembler _masm(&cbuf);
  2646     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2647     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2649     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2650 %}
  2652 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2653     MacroAssembler _masm(&cbuf);
  2655     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2656     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2658     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2659 %}
  2661 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2662     MacroAssembler _masm(&cbuf);
  2664     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2665     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2667     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2668 %}
  2670 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2671     MacroAssembler _masm(&cbuf);
  2673     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2674     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2676     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2677 %}
  2679 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2680     MacroAssembler _masm(&cbuf);
  2682     Register Roop  = reg_to_register_object($oop$$reg);
  2683     Register Rbox  = reg_to_register_object($box$$reg);
  2684     Register Rscratch = reg_to_register_object($scratch$$reg);
  2685     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2687     assert(Roop  != Rscratch, "");
  2688     assert(Roop  != Rmark, "");
  2689     assert(Rbox  != Rscratch, "");
  2690     assert(Rbox  != Rmark, "");
  2692     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2693 %}
  2695 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2696     MacroAssembler _masm(&cbuf);
  2698     Register Roop  = reg_to_register_object($oop$$reg);
  2699     Register Rbox  = reg_to_register_object($box$$reg);
  2700     Register Rscratch = reg_to_register_object($scratch$$reg);
  2701     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2703     assert(Roop  != Rscratch, "");
  2704     assert(Roop  != Rmark, "");
  2705     assert(Rbox  != Rscratch, "");
  2706     assert(Rbox  != Rmark, "");
  2708     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2709   %}
  2711   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2712     MacroAssembler _masm(&cbuf);
  2713     Register Rmem = reg_to_register_object($mem$$reg);
  2714     Register Rold = reg_to_register_object($old$$reg);
  2715     Register Rnew = reg_to_register_object($new$$reg);
  2717     // casx_under_lock picks 1 of 3 encodings:
  2718     // For 32-bit pointers you get a 32-bit CAS
  2719     // For 64-bit pointers you get a 64-bit CASX
  2720     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2721     __ cmp( Rold, Rnew );
  2722   %}
  2724   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2725     Register Rmem = reg_to_register_object($mem$$reg);
  2726     Register Rold = reg_to_register_object($old$$reg);
  2727     Register Rnew = reg_to_register_object($new$$reg);
  2729     MacroAssembler _masm(&cbuf);
  2730     __ mov(Rnew, O7);
  2731     __ casx(Rmem, Rold, O7);
  2732     __ cmp( Rold, O7 );
  2733   %}
  2735   // raw int cas, used for compareAndSwap
  2736   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2737     Register Rmem = reg_to_register_object($mem$$reg);
  2738     Register Rold = reg_to_register_object($old$$reg);
  2739     Register Rnew = reg_to_register_object($new$$reg);
  2741     MacroAssembler _masm(&cbuf);
  2742     __ mov(Rnew, O7);
  2743     __ cas(Rmem, Rold, O7);
  2744     __ cmp( Rold, O7 );
  2745   %}
  2747   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2748     Register Rres = reg_to_register_object($res$$reg);
  2750     MacroAssembler _masm(&cbuf);
  2751     __ mov(1, Rres);
  2752     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2753   %}
  2755   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2756     Register Rres = reg_to_register_object($res$$reg);
  2758     MacroAssembler _masm(&cbuf);
  2759     __ mov(1, Rres);
  2760     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2761   %}
  2763   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2764     MacroAssembler _masm(&cbuf);
  2765     Register Rdst = reg_to_register_object($dst$$reg);
  2766     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2767                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2768     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2769                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2771     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2772     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2773   %}
  2775   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2776     MacroAssembler _masm(&cbuf);
  2777     Register dest = reg_to_register_object($dst$$reg);
  2778     Register temp = reg_to_register_object($tmp$$reg);
  2779     __ set64( $src$$constant, dest, temp );
  2780   %}
  2782   enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{    // Load Immediate
  2783     address float_address = MacroAssembler(&cbuf).float_constant($src$$constant);
  2784     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  2785 #ifdef _LP64
  2786     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2787     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2788     emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true);
  2789     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 );
  2790 #else  // _LP64
  2791     uint *code;
  2792     int tmp_reg = $tmp$$reg;
  2794     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2795     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address );
  2797     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2798     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address );
  2799 #endif // _LP64
  2800   %}
  2802   enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{    // Load Immediate
  2803     address double_address = MacroAssembler(&cbuf).double_constant($src$$constant);
  2804     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2805 #ifdef _LP64
  2806     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2807     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2808     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2809     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2810 #else // _LP64
  2811     uint *code;
  2812     int tmp_reg = $tmp$$reg;
  2814     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2815     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2817     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2818     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2819 #endif // _LP64
  2820   %}
  2822   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2823     // Load a constant replicated "count" times with width "width"
  2824     int bit_width = $width$$constant * 8;
  2825     jlong elt_val = $src$$constant;
  2826     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2827     jlong val = elt_val;
  2828     for (int i = 0; i < $count$$constant - 1; i++) {
  2829         val <<= bit_width;
  2830         val |= elt_val;
  2832     jdouble dval = *(jdouble*)&val; // coerce to double type
  2833     address double_address = MacroAssembler(&cbuf).double_constant(dval);
  2834     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2835 #ifdef _LP64
  2836     Register   tmp_reg = reg_to_register_object($tmp$$reg);
  2837     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2838     emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true);
  2839     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 );
  2840 #else // _LP64
  2841     uint *code;
  2842     int tmp_reg = $tmp$$reg;
  2844     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2845     emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address );
  2847     cbuf.relocate(cbuf.code_end(), rspec, 0);
  2848     emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address );
  2849 #endif // _LP64
  2850   %}
  2853   enc_class ShouldNotEncodeThis ( ) %{
  2854     ShouldNotCallThis();
  2855   %}
  2857   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2858   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2859     MacroAssembler _masm(&cbuf);
  2860     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2861     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2862     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2864     Label loop;
  2865     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2867     // Loop and clear, walking backwards through the array.
  2868     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2869     __ bind(loop);
  2870     __ deccc(nof_bytes_tmp, 8);
  2871     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2872     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2873     // %%%% this mini-loop must not cross a cache boundary!
  2874   %}
  2877   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{
  2878     Label Ldone, Lloop;
  2879     MacroAssembler _masm(&cbuf);
  2881     Register   str1_reg = reg_to_register_object($str1$$reg);
  2882     Register   str2_reg = reg_to_register_object($str2$$reg);
  2883     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2884     Register   tmp2_reg = reg_to_register_object($tmp2$$reg);
  2885     Register result_reg = reg_to_register_object($result$$reg);
  2887     // Get the first character position in both strings
  2888     //         [8] char array, [12] offset, [16] count
  2889     int  value_offset = java_lang_String:: value_offset_in_bytes();
  2890     int offset_offset = java_lang_String::offset_offset_in_bytes();
  2891     int  count_offset = java_lang_String:: count_offset_in_bytes();
  2893     // load str1 (jchar*) base address into tmp1_reg
  2894     __ load_heap_oop(Address(str1_reg, 0,  value_offset), tmp1_reg);
  2895     __ ld(Address(str1_reg, 0, offset_offset), result_reg);
  2896     __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg);
  2897     __    ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2898     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2899     __    load_heap_oop(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2900     __ add(result_reg, tmp1_reg, tmp1_reg);
  2902     // load str2 (jchar*) base address into tmp2_reg
  2903     // __ ld_ptr(Address(str2_reg, 0,  value_offset), tmp2_reg); // hoisted
  2904     __ ld(Address(str2_reg, 0, offset_offset), result_reg);
  2905     __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg);
  2906     __    ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2907     __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg);
  2908     __   subcc(str1_reg, str2_reg, O7); // hoisted
  2909     __ add(result_reg, tmp2_reg, tmp2_reg);
  2911     // Compute the minimum of the string lengths(str1_reg) and the
  2912     // difference of the string lengths (stack)
  2914     // discard string base pointers, after loading up the lengths
  2915     // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted
  2916     // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted
  2918     // See if the lengths are different, and calculate min in str1_reg.
  2919     // Stash diff in O7 in case we need it for a tie-breaker.
  2920     Label Lskip;
  2921     // __ subcc(str1_reg, str2_reg, O7); // hoisted
  2922     __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2923     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2924     // str2 is shorter, so use its count:
  2925     __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit
  2926     __ bind(Lskip);
  2928     // reallocate str1_reg, str2_reg, result_reg
  2929     // Note:  limit_reg holds the string length pre-scaled by 2
  2930     Register limit_reg =   str1_reg;
  2931     Register  chr2_reg =   str2_reg;
  2932     Register  chr1_reg = result_reg;
  2933     // tmp{12} are the base pointers
  2935     // Is the minimum length zero?
  2936     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2937     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2938     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2940     // Load first characters
  2941     __ lduh(tmp1_reg, 0, chr1_reg);
  2942     __ lduh(tmp2_reg, 0, chr2_reg);
  2944     // Compare first characters
  2945     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2946     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2947     assert(chr1_reg == result_reg, "result must be pre-placed");
  2948     __ delayed()->nop();
  2951       // Check after comparing first character to see if strings are equivalent
  2952       Label LSkip2;
  2953       // Check if the strings start at same location
  2954       __ cmp(tmp1_reg, tmp2_reg);
  2955       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2956       __ delayed()->nop();
  2958       // Check if the length difference is zero (in O7)
  2959       __ cmp(G0, O7);
  2960       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2961       __ delayed()->mov(G0, result_reg);  // result is zero
  2963       // Strings might not be equal
  2964       __ bind(LSkip2);
  2967     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2968     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2969     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2971     // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit
  2972     __ add(tmp1_reg, limit_reg, tmp1_reg);
  2973     __ add(tmp2_reg, limit_reg, tmp2_reg);
  2974     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2976     // Compare the rest of the characters
  2977     __ lduh(tmp1_reg, limit_reg, chr1_reg);
  2978     __ bind(Lloop);
  2979     // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2980     __ lduh(tmp2_reg, limit_reg, chr2_reg);
  2981     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2982     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2983     assert(chr1_reg == result_reg, "result must be pre-placed");
  2984     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2985     // annul LDUH if branch is not taken to prevent access past end of string
  2986     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2987     __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted
  2989     // If strings are equal up to min length, return the length difference.
  2990     __ mov(O7, result_reg);
  2992     // Otherwise, return the difference between the first mismatched chars.
  2993     __ bind(Ldone);
  2994   %}
  2996   enc_class enc_rethrow() %{
  2997     cbuf.set_inst_mark();
  2998     Register temp_reg = G3;
  2999     Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub());
  3000     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3001     MacroAssembler _masm(&cbuf);
  3002 #ifdef ASSERT
  3003     __ save_frame(0);
  3004     Address last_rethrow_addr(L1, (address)&last_rethrow);
  3005     __ sethi(last_rethrow_addr);
  3006     __ get_pc(L2);
  3007     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3008     __ st_ptr(L2, last_rethrow_addr);
  3009     __ restore();
  3010 #endif
  3011     __ JUMP(rethrow_stub, 0); // sethi;jmp
  3012     __ delayed()->nop();
  3013   %}
  3015   enc_class emit_mem_nop() %{
  3016     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3017     unsigned int *code = (unsigned int*)cbuf.code_end();
  3018     *code = (unsigned int)0xc0839040;
  3019     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3020   %}
  3022   enc_class emit_fadd_nop() %{
  3023     // Generates the instruction FMOVS f31,f31
  3024     unsigned int *code = (unsigned int*)cbuf.code_end();
  3025     *code = (unsigned int)0xbfa0003f;
  3026     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3027   %}
  3029   enc_class emit_br_nop() %{
  3030     // Generates the instruction BPN,PN .
  3031     unsigned int *code = (unsigned int*)cbuf.code_end();
  3032     *code = (unsigned int)0x00400000;
  3033     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
  3034   %}
  3036   enc_class enc_membar_acquire %{
  3037     MacroAssembler _masm(&cbuf);
  3038     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3039   %}
  3041   enc_class enc_membar_release %{
  3042     MacroAssembler _masm(&cbuf);
  3043     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3044   %}
  3046   enc_class enc_membar_volatile %{
  3047     MacroAssembler _masm(&cbuf);
  3048     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3049   %}
  3051   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3052     MacroAssembler _masm(&cbuf);
  3053     Register src_reg = reg_to_register_object($src$$reg);
  3054     Register dst_reg = reg_to_register_object($dst$$reg);
  3055     __ sllx(src_reg, 56, dst_reg);
  3056     __ srlx(dst_reg,  8, O7);
  3057     __ or3 (dst_reg, O7, dst_reg);
  3058     __ srlx(dst_reg, 16, O7);
  3059     __ or3 (dst_reg, O7, dst_reg);
  3060     __ srlx(dst_reg, 32, O7);
  3061     __ or3 (dst_reg, O7, dst_reg);
  3062   %}
  3064   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3065     MacroAssembler _masm(&cbuf);
  3066     Register src_reg = reg_to_register_object($src$$reg);
  3067     Register dst_reg = reg_to_register_object($dst$$reg);
  3068     __ sll(src_reg, 24, dst_reg);
  3069     __ srl(dst_reg,  8, O7);
  3070     __ or3(dst_reg, O7, dst_reg);
  3071     __ srl(dst_reg, 16, O7);
  3072     __ or3(dst_reg, O7, dst_reg);
  3073   %}
  3075   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3076     MacroAssembler _masm(&cbuf);
  3077     Register src_reg = reg_to_register_object($src$$reg);
  3078     Register dst_reg = reg_to_register_object($dst$$reg);
  3079     __ sllx(src_reg, 48, dst_reg);
  3080     __ srlx(dst_reg, 16, O7);
  3081     __ or3 (dst_reg, O7, dst_reg);
  3082     __ srlx(dst_reg, 32, O7);
  3083     __ or3 (dst_reg, O7, dst_reg);
  3084   %}
  3086   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3087     MacroAssembler _masm(&cbuf);
  3088     Register src_reg = reg_to_register_object($src$$reg);
  3089     Register dst_reg = reg_to_register_object($dst$$reg);
  3090     __ sllx(src_reg, 32, dst_reg);
  3091     __ srlx(dst_reg, 32, O7);
  3092     __ or3 (dst_reg, O7, dst_reg);
  3093   %}
  3095 %}
  3097 //----------FRAME--------------------------------------------------------------
  3098 // Definition of frame structure and management information.
  3099 //
  3100 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3101 //                             |   (to get allocators register number
  3102 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3103 //  r   CALLER     |        |
  3104 //  o     |        +--------+      pad to even-align allocators stack-slot
  3105 //  w     V        |  pad0  |        numbers; owned by CALLER
  3106 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3107 //  h     ^        |   in   |  5
  3108 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3109 //  |     |        |        |  3
  3110 //  |     |        +--------+
  3111 //  V     |        | old out|      Empty on Intel, window on Sparc
  3112 //        |    old |preserve|      Must be even aligned.
  3113 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3114 //        |        |   in   |  3   area for Intel ret address
  3115 //     Owned by    |preserve|      Empty on Sparc.
  3116 //       SELF      +--------+
  3117 //        |        |  pad2  |  2   pad to align old SP
  3118 //        |        +--------+  1
  3119 //        |        | locks  |  0
  3120 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3121 //        |        |  pad1  | 11   pad to align new SP
  3122 //        |        +--------+
  3123 //        |        |        | 10
  3124 //        |        | spills |  9   spills
  3125 //        V        |        |  8   (pad0 slot for callee)
  3126 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3127 //        ^        |  out   |  7
  3128 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3129 //     Owned by    +--------+
  3130 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3131 //        |    new |preserve|      Must be even-aligned.
  3132 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3133 //        |        |        |
  3134 //
  3135 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3136 //         known from SELF's arguments and the Java calling convention.
  3137 //         Region 6-7 is determined per call site.
  3138 // Note 2: If the calling convention leaves holes in the incoming argument
  3139 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3140 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3141 //         incoming area, as the Java calling convention is completely under
  3142 //         the control of the AD file.  Doubles can be sorted and packed to
  3143 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3144 //         varargs C calling conventions.
  3145 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3146 //         even aligned with pad0 as needed.
  3147 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3148 //         region 6-11 is even aligned; it may be padded out more so that
  3149 //         the region from SP to FP meets the minimum stack alignment.
  3151 frame %{
  3152   // What direction does stack grow in (assumed to be same for native & Java)
  3153   stack_direction(TOWARDS_LOW);
  3155   // These two registers define part of the calling convention
  3156   // between compiled code and the interpreter.
  3157   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3158   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3160   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3161   cisc_spilling_operand_name(indOffset);
  3163   // Number of stack slots consumed by a Monitor enter
  3164 #ifdef _LP64
  3165   sync_stack_slots(2);
  3166 #else
  3167   sync_stack_slots(1);
  3168 #endif
  3170   // Compiled code's Frame Pointer
  3171   frame_pointer(R_SP);
  3173   // Stack alignment requirement
  3174   stack_alignment(StackAlignmentInBytes);
  3175   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3176   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3178   // Number of stack slots between incoming argument block and the start of
  3179   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3180   // EPILOG must remove this many slots.
  3181   in_preserve_stack_slots(0);
  3183   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3184   // for calls to C.  Supports the var-args backing area for register parms.
  3185   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3186 #ifdef _LP64
  3187   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3188   varargs_C_out_slots_killed(12);
  3189 #else
  3190   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3191   varargs_C_out_slots_killed( 7);
  3192 #endif
  3194   // The after-PROLOG location of the return address.  Location of
  3195   // return address specifies a type (REG or STACK) and a number
  3196   // representing the register number (i.e. - use a register name) or
  3197   // stack slot.
  3198   return_addr(REG R_I7);          // Ret Addr is in register I7
  3200   // Body of function which returns an OptoRegs array locating
  3201   // arguments either in registers or in stack slots for calling
  3202   // java
  3203   calling_convention %{
  3204     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3206   %}
  3208   // Body of function which returns an OptoRegs array locating
  3209   // arguments either in registers or in stack slots for callin
  3210   // C.
  3211   c_calling_convention %{
  3212     // This is obviously always outgoing
  3213     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3214   %}
  3216   // Location of native (C/C++) and interpreter return values.  This is specified to
  3217   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3218   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3219   // to and from the register pairs is done by the appropriate call and epilog
  3220   // opcodes.  This simplifies the register allocator.
  3221   c_return_value %{
  3222     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3223 #ifdef     _LP64
  3224     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3225     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3226     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3227     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3228 #else  // !_LP64
  3229     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3230     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3231     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3232     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3233 #endif
  3234     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3235                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3236   %}
  3238   // Location of compiled Java return values.  Same as C
  3239   return_value %{
  3240     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3241 #ifdef     _LP64
  3242     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3243     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3244     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3245     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3246 #else  // !_LP64
  3247     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3248     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3249     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3250     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3251 #endif
  3252     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3253                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3254   %}
  3256 %}
  3259 //----------ATTRIBUTES---------------------------------------------------------
  3260 //----------Operand Attributes-------------------------------------------------
  3261 op_attrib op_cost(1);          // Required cost attribute
  3263 //----------Instruction Attributes---------------------------------------------
  3264 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3265 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3266 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3267 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3268                                 // non-matching short branch variant of some
  3269                                                             // long branch?
  3271 //----------OPERANDS-----------------------------------------------------------
  3272 // Operand definitions must precede instruction definitions for correct parsing
  3273 // in the ADLC because operands constitute user defined types which are used in
  3274 // instruction definitions.
  3276 //----------Simple Operands----------------------------------------------------
  3277 // Immediate Operands
  3278 // Integer Immediate: 32-bit
  3279 operand immI() %{
  3280   match(ConI);
  3282   op_cost(0);
  3283   // formats are generated automatically for constants and base registers
  3284   format %{ %}
  3285   interface(CONST_INTER);
  3286 %}
  3288 // Integer Immediate: 13-bit
  3289 operand immI13() %{
  3290   predicate(Assembler::is_simm13(n->get_int()));
  3291   match(ConI);
  3292   op_cost(0);
  3294   format %{ %}
  3295   interface(CONST_INTER);
  3296 %}
  3298 // Unsigned (positive) Integer Immediate: 13-bit
  3299 operand immU13() %{
  3300   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3301   match(ConI);
  3302   op_cost(0);
  3304   format %{ %}
  3305   interface(CONST_INTER);
  3306 %}
  3308 // Integer Immediate: 6-bit
  3309 operand immU6() %{
  3310   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3311   match(ConI);
  3312   op_cost(0);
  3313   format %{ %}
  3314   interface(CONST_INTER);
  3315 %}
  3317 // Integer Immediate: 11-bit
  3318 operand immI11() %{
  3319   predicate(Assembler::is_simm(n->get_int(),11));
  3320   match(ConI);
  3321   op_cost(0);
  3322   format %{ %}
  3323   interface(CONST_INTER);
  3324 %}
  3326 // Integer Immediate: 0-bit
  3327 operand immI0() %{
  3328   predicate(n->get_int() == 0);
  3329   match(ConI);
  3330   op_cost(0);
  3332   format %{ %}
  3333   interface(CONST_INTER);
  3334 %}
  3336 // Integer Immediate: the value 10
  3337 operand immI10() %{
  3338   predicate(n->get_int() == 10);
  3339   match(ConI);
  3340   op_cost(0);
  3342   format %{ %}
  3343   interface(CONST_INTER);
  3344 %}
  3346 // Integer Immediate: the values 0-31
  3347 operand immU5() %{
  3348   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3349   match(ConI);
  3350   op_cost(0);
  3352   format %{ %}
  3353   interface(CONST_INTER);
  3354 %}
  3356 // Integer Immediate: the values 1-31
  3357 operand immI_1_31() %{
  3358   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3359   match(ConI);
  3360   op_cost(0);
  3362   format %{ %}
  3363   interface(CONST_INTER);
  3364 %}
  3366 // Integer Immediate: the values 32-63
  3367 operand immI_32_63() %{
  3368   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3369   match(ConI);
  3370   op_cost(0);
  3372   format %{ %}
  3373   interface(CONST_INTER);
  3374 %}
  3376 // Integer Immediate: the value 255
  3377 operand immI_255() %{
  3378   predicate( n->get_int() == 255 );
  3379   match(ConI);
  3380   op_cost(0);
  3382   format %{ %}
  3383   interface(CONST_INTER);
  3384 %}
  3386 // Long Immediate: the value FF
  3387 operand immL_FF() %{
  3388   predicate( n->get_long() == 0xFFL );
  3389   match(ConL);
  3390   op_cost(0);
  3392   format %{ %}
  3393   interface(CONST_INTER);
  3394 %}
  3396 // Long Immediate: the value FFFF
  3397 operand immL_FFFF() %{
  3398   predicate( n->get_long() == 0xFFFFL );
  3399   match(ConL);
  3400   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Pointer Immediate: 32 or 64-bit
  3407 operand immP() %{
  3408   match(ConP);
  3410   op_cost(5);
  3411   // formats are generated automatically for constants and base registers
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 operand immP13() %{
  3417   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3418   match(ConP);
  3419   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 operand immP0() %{
  3426   predicate(n->get_ptr() == 0);
  3427   match(ConP);
  3428   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 operand immP_poll() %{
  3435   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3436   match(ConP);
  3438   // formats are generated automatically for constants and base registers
  3439   format %{ %}
  3440   interface(CONST_INTER);
  3441 %}
  3443 // Pointer Immediate
  3444 operand immN()
  3445 %{
  3446   match(ConN);
  3448   op_cost(10);
  3449   format %{ %}
  3450   interface(CONST_INTER);
  3451 %}
  3453 // NULL Pointer Immediate
  3454 operand immN0()
  3455 %{
  3456   predicate(n->get_narrowcon() == 0);
  3457   match(ConN);
  3459   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 operand immL() %{
  3465   match(ConL);
  3466   op_cost(40);
  3467   // formats are generated automatically for constants and base registers
  3468   format %{ %}
  3469   interface(CONST_INTER);
  3470 %}
  3472 operand immL0() %{
  3473   predicate(n->get_long() == 0L);
  3474   match(ConL);
  3475   op_cost(0);
  3476   // formats are generated automatically for constants and base registers
  3477   format %{ %}
  3478   interface(CONST_INTER);
  3479 %}
  3481 // Long Immediate: 13-bit
  3482 operand immL13() %{
  3483   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3484   match(ConL);
  3485   op_cost(0);
  3487   format %{ %}
  3488   interface(CONST_INTER);
  3489 %}
  3491 // Long Immediate: low 32-bit mask
  3492 operand immL_32bits() %{
  3493   predicate(n->get_long() == 0xFFFFFFFFL);
  3494   match(ConL);
  3495   op_cost(0);
  3497   format %{ %}
  3498   interface(CONST_INTER);
  3499 %}
  3501 // Double Immediate
  3502 operand immD() %{
  3503   match(ConD);
  3505   op_cost(40);
  3506   format %{ %}
  3507   interface(CONST_INTER);
  3508 %}
  3510 operand immD0() %{
  3511 #ifdef _LP64
  3512   // on 64-bit architectures this comparision is faster
  3513   predicate(jlong_cast(n->getd()) == 0);
  3514 #else
  3515   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3516 #endif
  3517   match(ConD);
  3519   op_cost(0);
  3520   format %{ %}
  3521   interface(CONST_INTER);
  3522 %}
  3524 // Float Immediate
  3525 operand immF() %{
  3526   match(ConF);
  3528   op_cost(20);
  3529   format %{ %}
  3530   interface(CONST_INTER);
  3531 %}
  3533 // Float Immediate: 0
  3534 operand immF0() %{
  3535   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3536   match(ConF);
  3538   op_cost(0);
  3539   format %{ %}
  3540   interface(CONST_INTER);
  3541 %}
  3543 // Integer Register Operands
  3544 // Integer Register
  3545 operand iRegI() %{
  3546   constraint(ALLOC_IN_RC(int_reg));
  3547   match(RegI);
  3549   match(notemp_iRegI);
  3550   match(g1RegI);
  3551   match(o0RegI);
  3552   match(iRegIsafe);
  3554   format %{ %}
  3555   interface(REG_INTER);
  3556 %}
  3558 operand notemp_iRegI() %{
  3559   constraint(ALLOC_IN_RC(notemp_int_reg));
  3560   match(RegI);
  3562   match(o0RegI);
  3564   format %{ %}
  3565   interface(REG_INTER);
  3566 %}
  3568 operand o0RegI() %{
  3569   constraint(ALLOC_IN_RC(o0_regI));
  3570   match(iRegI);
  3572   format %{ %}
  3573   interface(REG_INTER);
  3574 %}
  3576 // Pointer Register
  3577 operand iRegP() %{
  3578   constraint(ALLOC_IN_RC(ptr_reg));
  3579   match(RegP);
  3581   match(lock_ptr_RegP);
  3582   match(g1RegP);
  3583   match(g2RegP);
  3584   match(g3RegP);
  3585   match(g4RegP);
  3586   match(i0RegP);
  3587   match(o0RegP);
  3588   match(o1RegP);
  3589   match(l7RegP);
  3591   format %{ %}
  3592   interface(REG_INTER);
  3593 %}
  3595 operand sp_ptr_RegP() %{
  3596   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3597   match(RegP);
  3598   match(iRegP);
  3600   format %{ %}
  3601   interface(REG_INTER);
  3602 %}
  3604 operand lock_ptr_RegP() %{
  3605   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3606   match(RegP);
  3607   match(i0RegP);
  3608   match(o0RegP);
  3609   match(o1RegP);
  3610   match(l7RegP);
  3612   format %{ %}
  3613   interface(REG_INTER);
  3614 %}
  3616 operand g1RegP() %{
  3617   constraint(ALLOC_IN_RC(g1_regP));
  3618   match(iRegP);
  3620   format %{ %}
  3621   interface(REG_INTER);
  3622 %}
  3624 operand g2RegP() %{
  3625   constraint(ALLOC_IN_RC(g2_regP));
  3626   match(iRegP);
  3628   format %{ %}
  3629   interface(REG_INTER);
  3630 %}
  3632 operand g3RegP() %{
  3633   constraint(ALLOC_IN_RC(g3_regP));
  3634   match(iRegP);
  3636   format %{ %}
  3637   interface(REG_INTER);
  3638 %}
  3640 operand g1RegI() %{
  3641   constraint(ALLOC_IN_RC(g1_regI));
  3642   match(iRegI);
  3644   format %{ %}
  3645   interface(REG_INTER);
  3646 %}
  3648 operand g3RegI() %{
  3649   constraint(ALLOC_IN_RC(g3_regI));
  3650   match(iRegI);
  3652   format %{ %}
  3653   interface(REG_INTER);
  3654 %}
  3656 operand g4RegI() %{
  3657   constraint(ALLOC_IN_RC(g4_regI));
  3658   match(iRegI);
  3660   format %{ %}
  3661   interface(REG_INTER);
  3662 %}
  3664 operand g4RegP() %{
  3665   constraint(ALLOC_IN_RC(g4_regP));
  3666   match(iRegP);
  3668   format %{ %}
  3669   interface(REG_INTER);
  3670 %}
  3672 operand i0RegP() %{
  3673   constraint(ALLOC_IN_RC(i0_regP));
  3674   match(iRegP);
  3676   format %{ %}
  3677   interface(REG_INTER);
  3678 %}
  3680 operand o0RegP() %{
  3681   constraint(ALLOC_IN_RC(o0_regP));
  3682   match(iRegP);
  3684   format %{ %}
  3685   interface(REG_INTER);
  3686 %}
  3688 operand o1RegP() %{
  3689   constraint(ALLOC_IN_RC(o1_regP));
  3690   match(iRegP);
  3692   format %{ %}
  3693   interface(REG_INTER);
  3694 %}
  3696 operand o2RegP() %{
  3697   constraint(ALLOC_IN_RC(o2_regP));
  3698   match(iRegP);
  3700   format %{ %}
  3701   interface(REG_INTER);
  3702 %}
  3704 operand o7RegP() %{
  3705   constraint(ALLOC_IN_RC(o7_regP));
  3706   match(iRegP);
  3708   format %{ %}
  3709   interface(REG_INTER);
  3710 %}
  3712 operand l7RegP() %{
  3713   constraint(ALLOC_IN_RC(l7_regP));
  3714   match(iRegP);
  3716   format %{ %}
  3717   interface(REG_INTER);
  3718 %}
  3720 operand o7RegI() %{
  3721   constraint(ALLOC_IN_RC(o7_regI));
  3722   match(iRegI);
  3724   format %{ %}
  3725   interface(REG_INTER);
  3726 %}
  3728 operand iRegN() %{
  3729   constraint(ALLOC_IN_RC(int_reg));
  3730   match(RegN);
  3732   format %{ %}
  3733   interface(REG_INTER);
  3734 %}
  3736 // Long Register
  3737 operand iRegL() %{
  3738   constraint(ALLOC_IN_RC(long_reg));
  3739   match(RegL);
  3741   format %{ %}
  3742   interface(REG_INTER);
  3743 %}
  3745 operand o2RegL() %{
  3746   constraint(ALLOC_IN_RC(o2_regL));
  3747   match(iRegL);
  3749   format %{ %}
  3750   interface(REG_INTER);
  3751 %}
  3753 operand o7RegL() %{
  3754   constraint(ALLOC_IN_RC(o7_regL));
  3755   match(iRegL);
  3757   format %{ %}
  3758   interface(REG_INTER);
  3759 %}
  3761 operand g1RegL() %{
  3762   constraint(ALLOC_IN_RC(g1_regL));
  3763   match(iRegL);
  3765   format %{ %}
  3766   interface(REG_INTER);
  3767 %}
  3769 operand g3RegL() %{
  3770   constraint(ALLOC_IN_RC(g3_regL));
  3771   match(iRegL);
  3773   format %{ %}
  3774   interface(REG_INTER);
  3775 %}
  3777 // Int Register safe
  3778 // This is 64bit safe
  3779 operand iRegIsafe() %{
  3780   constraint(ALLOC_IN_RC(long_reg));
  3782   match(iRegI);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 // Condition Code Flag Register
  3789 operand flagsReg() %{
  3790   constraint(ALLOC_IN_RC(int_flags));
  3791   match(RegFlags);
  3793   format %{ "ccr" %} // both ICC and XCC
  3794   interface(REG_INTER);
  3795 %}
  3797 // Condition Code Register, unsigned comparisons.
  3798 operand flagsRegU() %{
  3799   constraint(ALLOC_IN_RC(int_flags));
  3800   match(RegFlags);
  3802   format %{ "icc_U" %}
  3803   interface(REG_INTER);
  3804 %}
  3806 // Condition Code Register, pointer comparisons.
  3807 operand flagsRegP() %{
  3808   constraint(ALLOC_IN_RC(int_flags));
  3809   match(RegFlags);
  3811 #ifdef _LP64
  3812   format %{ "xcc_P" %}
  3813 #else
  3814   format %{ "icc_P" %}
  3815 #endif
  3816   interface(REG_INTER);
  3817 %}
  3819 // Condition Code Register, long comparisons.
  3820 operand flagsRegL() %{
  3821   constraint(ALLOC_IN_RC(int_flags));
  3822   match(RegFlags);
  3824   format %{ "xcc_L" %}
  3825   interface(REG_INTER);
  3826 %}
  3828 // Condition Code Register, floating comparisons, unordered same as "less".
  3829 operand flagsRegF() %{
  3830   constraint(ALLOC_IN_RC(float_flags));
  3831   match(RegFlags);
  3832   match(flagsRegF0);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3838 operand flagsRegF0() %{
  3839   constraint(ALLOC_IN_RC(float_flag0));
  3840   match(RegFlags);
  3842   format %{ %}
  3843   interface(REG_INTER);
  3844 %}
  3847 // Condition Code Flag Register used by long compare
  3848 operand flagsReg_long_LTGE() %{
  3849   constraint(ALLOC_IN_RC(int_flags));
  3850   match(RegFlags);
  3851   format %{ "icc_LTGE" %}
  3852   interface(REG_INTER);
  3853 %}
  3854 operand flagsReg_long_EQNE() %{
  3855   constraint(ALLOC_IN_RC(int_flags));
  3856   match(RegFlags);
  3857   format %{ "icc_EQNE" %}
  3858   interface(REG_INTER);
  3859 %}
  3860 operand flagsReg_long_LEGT() %{
  3861   constraint(ALLOC_IN_RC(int_flags));
  3862   match(RegFlags);
  3863   format %{ "icc_LEGT" %}
  3864   interface(REG_INTER);
  3865 %}
  3868 operand regD() %{
  3869   constraint(ALLOC_IN_RC(dflt_reg));
  3870   match(RegD);
  3872   match(regD_low);
  3874   format %{ %}
  3875   interface(REG_INTER);
  3876 %}
  3878 operand regF() %{
  3879   constraint(ALLOC_IN_RC(sflt_reg));
  3880   match(RegF);
  3882   format %{ %}
  3883   interface(REG_INTER);
  3884 %}
  3886 operand regD_low() %{
  3887   constraint(ALLOC_IN_RC(dflt_low_reg));
  3888   match(regD);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 // Special Registers
  3896 // Method Register
  3897 operand inline_cache_regP(iRegP reg) %{
  3898   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  3899   match(reg);
  3900   format %{ %}
  3901   interface(REG_INTER);
  3902 %}
  3904 operand interpreter_method_oop_regP(iRegP reg) %{
  3905   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  3906   match(reg);
  3907   format %{ %}
  3908   interface(REG_INTER);
  3909 %}
  3912 //----------Complex Operands---------------------------------------------------
  3913 // Indirect Memory Reference
  3914 operand indirect(sp_ptr_RegP reg) %{
  3915   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3916   match(reg);
  3918   op_cost(100);
  3919   format %{ "[$reg]" %}
  3920   interface(MEMORY_INTER) %{
  3921     base($reg);
  3922     index(0x0);
  3923     scale(0x0);
  3924     disp(0x0);
  3925   %}
  3926 %}
  3928 // Indirect with Offset
  3929 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  3930   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3931   match(AddP reg offset);
  3933   op_cost(100);
  3934   format %{ "[$reg + $offset]" %}
  3935   interface(MEMORY_INTER) %{
  3936     base($reg);
  3937     index(0x0);
  3938     scale(0x0);
  3939     disp($offset);
  3940   %}
  3941 %}
  3943 // Note:  Intel has a swapped version also, like this:
  3944 //operand indOffsetX(iRegI reg, immP offset) %{
  3945 //  constraint(ALLOC_IN_RC(int_reg));
  3946 //  match(AddP offset reg);
  3947 //
  3948 //  op_cost(100);
  3949 //  format %{ "[$reg + $offset]" %}
  3950 //  interface(MEMORY_INTER) %{
  3951 //    base($reg);
  3952 //    index(0x0);
  3953 //    scale(0x0);
  3954 //    disp($offset);
  3955 //  %}
  3956 //%}
  3957 //// However, it doesn't make sense for SPARC, since
  3958 // we have no particularly good way to embed oops in
  3959 // single instructions.
  3961 // Indirect with Register Index
  3962 operand indIndex(iRegP addr, iRegX index) %{
  3963   constraint(ALLOC_IN_RC(ptr_reg));
  3964   match(AddP addr index);
  3966   op_cost(100);
  3967   format %{ "[$addr + $index]" %}
  3968   interface(MEMORY_INTER) %{
  3969     base($addr);
  3970     index($index);
  3971     scale(0x0);
  3972     disp(0x0);
  3973   %}
  3974 %}
  3976 //----------Special Memory Operands--------------------------------------------
  3977 // Stack Slot Operand - This operand is used for loading and storing temporary
  3978 //                      values on the stack where a match requires a value to
  3979 //                      flow through memory.
  3980 operand stackSlotI(sRegI reg) %{
  3981   constraint(ALLOC_IN_RC(stack_slots));
  3982   op_cost(100);
  3983   //match(RegI);
  3984   format %{ "[$reg]" %}
  3985   interface(MEMORY_INTER) %{
  3986     base(0xE);   // R_SP
  3987     index(0x0);
  3988     scale(0x0);
  3989     disp($reg);  // Stack Offset
  3990   %}
  3991 %}
  3993 operand stackSlotP(sRegP reg) %{
  3994   constraint(ALLOC_IN_RC(stack_slots));
  3995   op_cost(100);
  3996   //match(RegP);
  3997   format %{ "[$reg]" %}
  3998   interface(MEMORY_INTER) %{
  3999     base(0xE);   // R_SP
  4000     index(0x0);
  4001     scale(0x0);
  4002     disp($reg);  // Stack Offset
  4003   %}
  4004 %}
  4006 operand stackSlotF(sRegF reg) %{
  4007   constraint(ALLOC_IN_RC(stack_slots));
  4008   op_cost(100);
  4009   //match(RegF);
  4010   format %{ "[$reg]" %}
  4011   interface(MEMORY_INTER) %{
  4012     base(0xE);   // R_SP
  4013     index(0x0);
  4014     scale(0x0);
  4015     disp($reg);  // Stack Offset
  4016   %}
  4017 %}
  4018 operand stackSlotD(sRegD reg) %{
  4019   constraint(ALLOC_IN_RC(stack_slots));
  4020   op_cost(100);
  4021   //match(RegD);
  4022   format %{ "[$reg]" %}
  4023   interface(MEMORY_INTER) %{
  4024     base(0xE);   // R_SP
  4025     index(0x0);
  4026     scale(0x0);
  4027     disp($reg);  // Stack Offset
  4028   %}
  4029 %}
  4030 operand stackSlotL(sRegL reg) %{
  4031   constraint(ALLOC_IN_RC(stack_slots));
  4032   op_cost(100);
  4033   //match(RegL);
  4034   format %{ "[$reg]" %}
  4035   interface(MEMORY_INTER) %{
  4036     base(0xE);   // R_SP
  4037     index(0x0);
  4038     scale(0x0);
  4039     disp($reg);  // Stack Offset
  4040   %}
  4041 %}
  4043 // Operands for expressing Control Flow
  4044 // NOTE:  Label is a predefined operand which should not be redefined in
  4045 //        the AD file.  It is generically handled within the ADLC.
  4047 //----------Conditional Branch Operands----------------------------------------
  4048 // Comparison Op  - This is the operation of the comparison, and is limited to
  4049 //                  the following set of codes:
  4050 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4051 //
  4052 // Other attributes of the comparison, such as unsignedness, are specified
  4053 // by the comparison instruction that sets a condition code flags register.
  4054 // That result is represented by a flags operand whose subtype is appropriate
  4055 // to the unsignedness (etc.) of the comparison.
  4056 //
  4057 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4058 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4059 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4061 operand cmpOp() %{
  4062   match(Bool);
  4064   format %{ "" %}
  4065   interface(COND_INTER) %{
  4066     equal(0x1);
  4067     not_equal(0x9);
  4068     less(0x3);
  4069     greater_equal(0xB);
  4070     less_equal(0x2);
  4071     greater(0xA);
  4072   %}
  4073 %}
  4075 // Comparison Op, unsigned
  4076 operand cmpOpU() %{
  4077   match(Bool);
  4079   format %{ "u" %}
  4080   interface(COND_INTER) %{
  4081     equal(0x1);
  4082     not_equal(0x9);
  4083     less(0x5);
  4084     greater_equal(0xD);
  4085     less_equal(0x4);
  4086     greater(0xC);
  4087   %}
  4088 %}
  4090 // Comparison Op, pointer (same as unsigned)
  4091 operand cmpOpP() %{
  4092   match(Bool);
  4094   format %{ "p" %}
  4095   interface(COND_INTER) %{
  4096     equal(0x1);
  4097     not_equal(0x9);
  4098     less(0x5);
  4099     greater_equal(0xD);
  4100     less_equal(0x4);
  4101     greater(0xC);
  4102   %}
  4103 %}
  4105 // Comparison Op, branch-register encoding
  4106 operand cmpOp_reg() %{
  4107   match(Bool);
  4109   format %{ "" %}
  4110   interface(COND_INTER) %{
  4111     equal        (0x1);
  4112     not_equal    (0x5);
  4113     less         (0x3);
  4114     greater_equal(0x7);
  4115     less_equal   (0x2);
  4116     greater      (0x6);
  4117   %}
  4118 %}
  4120 // Comparison Code, floating, unordered same as less
  4121 operand cmpOpF() %{
  4122   match(Bool);
  4124   format %{ "fl" %}
  4125   interface(COND_INTER) %{
  4126     equal(0x9);
  4127     not_equal(0x1);
  4128     less(0x3);
  4129     greater_equal(0xB);
  4130     less_equal(0xE);
  4131     greater(0x6);
  4132   %}
  4133 %}
  4135 // Used by long compare
  4136 operand cmpOp_commute() %{
  4137   match(Bool);
  4139   format %{ "" %}
  4140   interface(COND_INTER) %{
  4141     equal(0x1);
  4142     not_equal(0x9);
  4143     less(0xA);
  4144     greater_equal(0x2);
  4145     less_equal(0xB);
  4146     greater(0x3);
  4147   %}
  4148 %}
  4150 //----------OPERAND CLASSES----------------------------------------------------
  4151 // Operand Classes are groups of operands that are used to simplify
  4152 // instruction definitions by not requiring the AD writer to specify separate
  4153 // instructions for every form of operand when the instruction accepts
  4154 // multiple operand types with the same basic encoding and format.  The classic
  4155 // case of this is memory operands.
  4156 // Indirect is not included since its use is limited to Compare & Swap
  4157 opclass memory( indirect, indOffset13, indIndex );
  4159 //----------PIPELINE-----------------------------------------------------------
  4160 pipeline %{
  4162 //----------ATTRIBUTES---------------------------------------------------------
  4163 attributes %{
  4164   fixed_size_instructions;           // Fixed size instructions
  4165   branch_has_delay_slot;             // Branch has delay slot following
  4166   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4167   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4168   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4169   instruction_fetch_units = 1;       // of 16 bytes
  4171   // List of nop instructions
  4172   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4173 %}
  4175 //----------RESOURCES----------------------------------------------------------
  4176 // Resources are the functional units available to the machine
  4177 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4179 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4180 // Pipeline Description specifies the stages in the machine's pipeline
  4182 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4184 //----------PIPELINE CLASSES---------------------------------------------------
  4185 // Pipeline Classes describe the stages in which input and output are
  4186 // referenced by the hardware pipeline.
  4188 // Integer ALU reg-reg operation
  4189 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4190     single_instruction;
  4191     dst   : E(write);
  4192     src1  : R(read);
  4193     src2  : R(read);
  4194     IALU  : R;
  4195 %}
  4197 // Integer ALU reg-reg long operation
  4198 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4199     instruction_count(2);
  4200     dst   : E(write);
  4201     src1  : R(read);
  4202     src2  : R(read);
  4203     IALU  : R;
  4204     IALU  : R;
  4205 %}
  4207 // Integer ALU reg-reg long dependent operation
  4208 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4209     instruction_count(1); multiple_bundles;
  4210     dst   : E(write);
  4211     src1  : R(read);
  4212     src2  : R(read);
  4213     cr    : E(write);
  4214     IALU  : R(2);
  4215 %}
  4217 // Integer ALU reg-imm operaion
  4218 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4219     single_instruction;
  4220     dst   : E(write);
  4221     src1  : R(read);
  4222     IALU  : R;
  4223 %}
  4225 // Integer ALU reg-reg operation with condition code
  4226 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4227     single_instruction;
  4228     dst   : E(write);
  4229     cr    : E(write);
  4230     src1  : R(read);
  4231     src2  : R(read);
  4232     IALU  : R;
  4233 %}
  4235 // Integer ALU reg-imm operation with condition code
  4236 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4237     single_instruction;
  4238     dst   : E(write);
  4239     cr    : E(write);
  4240     src1  : R(read);
  4241     IALU  : R;
  4242 %}
  4244 // Integer ALU zero-reg operation
  4245 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4246     single_instruction;
  4247     dst   : E(write);
  4248     src2  : R(read);
  4249     IALU  : R;
  4250 %}
  4252 // Integer ALU zero-reg operation with condition code only
  4253 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4254     single_instruction;
  4255     cr    : E(write);
  4256     src   : R(read);
  4257     IALU  : R;
  4258 %}
  4260 // Integer ALU reg-reg operation with condition code only
  4261 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4262     single_instruction;
  4263     cr    : E(write);
  4264     src1  : R(read);
  4265     src2  : R(read);
  4266     IALU  : R;
  4267 %}
  4269 // Integer ALU reg-imm operation with condition code only
  4270 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4271     single_instruction;
  4272     cr    : E(write);
  4273     src1  : R(read);
  4274     IALU  : R;
  4275 %}
  4277 // Integer ALU reg-reg-zero operation with condition code only
  4278 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4279     single_instruction;
  4280     cr    : E(write);
  4281     src1  : R(read);
  4282     src2  : R(read);
  4283     IALU  : R;
  4284 %}
  4286 // Integer ALU reg-imm-zero operation with condition code only
  4287 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4288     single_instruction;
  4289     cr    : E(write);
  4290     src1  : R(read);
  4291     IALU  : R;
  4292 %}
  4294 // Integer ALU reg-reg operation with condition code, src1 modified
  4295 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4296     single_instruction;
  4297     cr    : E(write);
  4298     src1  : E(write);
  4299     src1  : R(read);
  4300     src2  : R(read);
  4301     IALU  : R;
  4302 %}
  4304 // Integer ALU reg-imm operation with condition code, src1 modified
  4305 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4306     single_instruction;
  4307     cr    : E(write);
  4308     src1  : E(write);
  4309     src1  : R(read);
  4310     IALU  : R;
  4311 %}
  4313 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4314     multiple_bundles;
  4315     dst   : E(write)+4;
  4316     cr    : E(write);
  4317     src1  : R(read);
  4318     src2  : R(read);
  4319     IALU  : R(3);
  4320     BR    : R(2);
  4321 %}
  4323 // Integer ALU operation
  4324 pipe_class ialu_none(iRegI dst) %{
  4325     single_instruction;
  4326     dst   : E(write);
  4327     IALU  : R;
  4328 %}
  4330 // Integer ALU reg operation
  4331 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4332     single_instruction; may_have_no_code;
  4333     dst   : E(write);
  4334     src   : R(read);
  4335     IALU  : R;
  4336 %}
  4338 // Integer ALU reg conditional operation
  4339 // This instruction has a 1 cycle stall, and cannot execute
  4340 // in the same cycle as the instruction setting the condition
  4341 // code. We kludge this by pretending to read the condition code
  4342 // 1 cycle earlier, and by marking the functional units as busy
  4343 // for 2 cycles with the result available 1 cycle later than
  4344 // is really the case.
  4345 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4346     single_instruction;
  4347     op2_out : C(write);
  4348     op1     : R(read);
  4349     cr      : R(read);       // This is really E, with a 1 cycle stall
  4350     BR      : R(2);
  4351     MS      : R(2);
  4352 %}
  4354 #ifdef _LP64
  4355 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4356     instruction_count(1); multiple_bundles;
  4357     dst     : C(write)+1;
  4358     src     : R(read)+1;
  4359     IALU    : R(1);
  4360     BR      : E(2);
  4361     MS      : E(2);
  4362 %}
  4363 #endif
  4365 // Integer ALU reg operation
  4366 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4367     single_instruction; may_have_no_code;
  4368     dst   : E(write);
  4369     src   : R(read);
  4370     IALU  : R;
  4371 %}
  4372 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4373     single_instruction; may_have_no_code;
  4374     dst   : E(write);
  4375     src   : R(read);
  4376     IALU  : R;
  4377 %}
  4379 // Two integer ALU reg operations
  4380 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4381     instruction_count(2);
  4382     dst   : E(write);
  4383     src   : R(read);
  4384     A0    : R;
  4385     A1    : R;
  4386 %}
  4388 // Two integer ALU reg operations
  4389 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4390     instruction_count(2); may_have_no_code;
  4391     dst   : E(write);
  4392     src   : R(read);
  4393     A0    : R;
  4394     A1    : R;
  4395 %}
  4397 // Integer ALU imm operation
  4398 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4399     single_instruction;
  4400     dst   : E(write);
  4401     IALU  : R;
  4402 %}
  4404 // Integer ALU reg-reg with carry operation
  4405 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4406     single_instruction;
  4407     dst   : E(write);
  4408     src1  : R(read);
  4409     src2  : R(read);
  4410     IALU  : R;
  4411 %}
  4413 // Integer ALU cc operation
  4414 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4415     single_instruction;
  4416     dst   : E(write);
  4417     cc    : R(read);
  4418     IALU  : R;
  4419 %}
  4421 // Integer ALU cc / second IALU operation
  4422 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4423     instruction_count(1); multiple_bundles;
  4424     dst   : E(write)+1;
  4425     src   : R(read);
  4426     IALU  : R;
  4427 %}
  4429 // Integer ALU cc / second IALU operation
  4430 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4431     instruction_count(1); multiple_bundles;
  4432     dst   : E(write)+1;
  4433     p     : R(read);
  4434     q     : R(read);
  4435     IALU  : R;
  4436 %}
  4438 // Integer ALU hi-lo-reg operation
  4439 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4440     instruction_count(1); multiple_bundles;
  4441     dst   : E(write)+1;
  4442     IALU  : R(2);
  4443 %}
  4445 // Float ALU hi-lo-reg operation (with temp)
  4446 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4447     instruction_count(1); multiple_bundles;
  4448     dst   : E(write)+1;
  4449     IALU  : R(2);
  4450 %}
  4452 // Long Constant
  4453 pipe_class loadConL( iRegL dst, immL src ) %{
  4454     instruction_count(2); multiple_bundles;
  4455     dst   : E(write)+1;
  4456     IALU  : R(2);
  4457     IALU  : R(2);
  4458 %}
  4460 // Pointer Constant
  4461 pipe_class loadConP( iRegP dst, immP src ) %{
  4462     instruction_count(0); multiple_bundles;
  4463     fixed_latency(6);
  4464 %}
  4466 // Polling Address
  4467 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4468 #ifdef _LP64
  4469     instruction_count(0); multiple_bundles;
  4470     fixed_latency(6);
  4471 #else
  4472     dst   : E(write);
  4473     IALU  : R;
  4474 #endif
  4475 %}
  4477 // Long Constant small
  4478 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4479     instruction_count(2);
  4480     dst   : E(write);
  4481     IALU  : R;
  4482     IALU  : R;
  4483 %}
  4485 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4486 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4487     instruction_count(1); multiple_bundles;
  4488     src   : R(read);
  4489     dst   : M(write)+1;
  4490     IALU  : R;
  4491     MS    : E;
  4492 %}
  4494 // Integer ALU nop operation
  4495 pipe_class ialu_nop() %{
  4496     single_instruction;
  4497     IALU  : R;
  4498 %}
  4500 // Integer ALU nop operation
  4501 pipe_class ialu_nop_A0() %{
  4502     single_instruction;
  4503     A0    : R;
  4504 %}
  4506 // Integer ALU nop operation
  4507 pipe_class ialu_nop_A1() %{
  4508     single_instruction;
  4509     A1    : R;
  4510 %}
  4512 // Integer Multiply reg-reg operation
  4513 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4514     single_instruction;
  4515     dst   : E(write);
  4516     src1  : R(read);
  4517     src2  : R(read);
  4518     MS    : R(5);
  4519 %}
  4521 // Integer Multiply reg-imm operation
  4522 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4523     single_instruction;
  4524     dst   : E(write);
  4525     src1  : R(read);
  4526     MS    : R(5);
  4527 %}
  4529 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4530     single_instruction;
  4531     dst   : E(write)+4;
  4532     src1  : R(read);
  4533     src2  : R(read);
  4534     MS    : R(6);
  4535 %}
  4537 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4538     single_instruction;
  4539     dst   : E(write)+4;
  4540     src1  : R(read);
  4541     MS    : R(6);
  4542 %}
  4544 // Integer Divide reg-reg
  4545 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4546     instruction_count(1); multiple_bundles;
  4547     dst   : E(write);
  4548     temp  : E(write);
  4549     src1  : R(read);
  4550     src2  : R(read);
  4551     temp  : R(read);
  4552     MS    : R(38);
  4553 %}
  4555 // Integer Divide reg-imm
  4556 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4557     instruction_count(1); multiple_bundles;
  4558     dst   : E(write);
  4559     temp  : E(write);
  4560     src1  : R(read);
  4561     temp  : R(read);
  4562     MS    : R(38);
  4563 %}
  4565 // Long Divide
  4566 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4567     dst  : E(write)+71;
  4568     src1 : R(read);
  4569     src2 : R(read)+1;
  4570     MS   : R(70);
  4571 %}
  4573 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4574     dst  : E(write)+71;
  4575     src1 : R(read);
  4576     MS   : R(70);
  4577 %}
  4579 // Floating Point Add Float
  4580 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4581     single_instruction;
  4582     dst   : X(write);
  4583     src1  : E(read);
  4584     src2  : E(read);
  4585     FA    : R;
  4586 %}
  4588 // Floating Point Add Double
  4589 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4590     single_instruction;
  4591     dst   : X(write);
  4592     src1  : E(read);
  4593     src2  : E(read);
  4594     FA    : R;
  4595 %}
  4597 // Floating Point Conditional Move based on integer flags
  4598 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4599     single_instruction;
  4600     dst   : X(write);
  4601     src   : E(read);
  4602     cr    : R(read);
  4603     FA    : R(2);
  4604     BR    : R(2);
  4605 %}
  4607 // Floating Point Conditional Move based on integer flags
  4608 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4609     single_instruction;
  4610     dst   : X(write);
  4611     src   : E(read);
  4612     cr    : R(read);
  4613     FA    : R(2);
  4614     BR    : R(2);
  4615 %}
  4617 // Floating Point Multiply Float
  4618 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4619     single_instruction;
  4620     dst   : X(write);
  4621     src1  : E(read);
  4622     src2  : E(read);
  4623     FM    : R;
  4624 %}
  4626 // Floating Point Multiply Double
  4627 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4628     single_instruction;
  4629     dst   : X(write);
  4630     src1  : E(read);
  4631     src2  : E(read);
  4632     FM    : R;
  4633 %}
  4635 // Floating Point Divide Float
  4636 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4637     single_instruction;
  4638     dst   : X(write);
  4639     src1  : E(read);
  4640     src2  : E(read);
  4641     FM    : R;
  4642     FDIV  : C(14);
  4643 %}
  4645 // Floating Point Divide Double
  4646 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4647     single_instruction;
  4648     dst   : X(write);
  4649     src1  : E(read);
  4650     src2  : E(read);
  4651     FM    : R;
  4652     FDIV  : C(17);
  4653 %}
  4655 // Floating Point Move/Negate/Abs Float
  4656 pipe_class faddF_reg(regF dst, regF src) %{
  4657     single_instruction;
  4658     dst   : W(write);
  4659     src   : E(read);
  4660     FA    : R(1);
  4661 %}
  4663 // Floating Point Move/Negate/Abs Double
  4664 pipe_class faddD_reg(regD dst, regD src) %{
  4665     single_instruction;
  4666     dst   : W(write);
  4667     src   : E(read);
  4668     FA    : R;
  4669 %}
  4671 // Floating Point Convert F->D
  4672 pipe_class fcvtF2D(regD dst, regF src) %{
  4673     single_instruction;
  4674     dst   : X(write);
  4675     src   : E(read);
  4676     FA    : R;
  4677 %}
  4679 // Floating Point Convert I->D
  4680 pipe_class fcvtI2D(regD dst, regF src) %{
  4681     single_instruction;
  4682     dst   : X(write);
  4683     src   : E(read);
  4684     FA    : R;
  4685 %}
  4687 // Floating Point Convert LHi->D
  4688 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4689     single_instruction;
  4690     dst   : X(write);
  4691     src   : E(read);
  4692     FA    : R;
  4693 %}
  4695 // Floating Point Convert L->D
  4696 pipe_class fcvtL2D(regD dst, regF src) %{
  4697     single_instruction;
  4698     dst   : X(write);
  4699     src   : E(read);
  4700     FA    : R;
  4701 %}
  4703 // Floating Point Convert L->F
  4704 pipe_class fcvtL2F(regD dst, regF src) %{
  4705     single_instruction;
  4706     dst   : X(write);
  4707     src   : E(read);
  4708     FA    : R;
  4709 %}
  4711 // Floating Point Convert D->F
  4712 pipe_class fcvtD2F(regD dst, regF src) %{
  4713     single_instruction;
  4714     dst   : X(write);
  4715     src   : E(read);
  4716     FA    : R;
  4717 %}
  4719 // Floating Point Convert I->L
  4720 pipe_class fcvtI2L(regD dst, regF src) %{
  4721     single_instruction;
  4722     dst   : X(write);
  4723     src   : E(read);
  4724     FA    : R;
  4725 %}
  4727 // Floating Point Convert D->F
  4728 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4729     instruction_count(1); multiple_bundles;
  4730     dst   : X(write)+6;
  4731     src   : E(read);
  4732     FA    : R;
  4733 %}
  4735 // Floating Point Convert D->L
  4736 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4737     instruction_count(1); multiple_bundles;
  4738     dst   : X(write)+6;
  4739     src   : E(read);
  4740     FA    : R;
  4741 %}
  4743 // Floating Point Convert F->I
  4744 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4745     instruction_count(1); multiple_bundles;
  4746     dst   : X(write)+6;
  4747     src   : E(read);
  4748     FA    : R;
  4749 %}
  4751 // Floating Point Convert F->L
  4752 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4753     instruction_count(1); multiple_bundles;
  4754     dst   : X(write)+6;
  4755     src   : E(read);
  4756     FA    : R;
  4757 %}
  4759 // Floating Point Convert I->F
  4760 pipe_class fcvtI2F(regF dst, regF src) %{
  4761     single_instruction;
  4762     dst   : X(write);
  4763     src   : E(read);
  4764     FA    : R;
  4765 %}
  4767 // Floating Point Compare
  4768 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4769     single_instruction;
  4770     cr    : X(write);
  4771     src1  : E(read);
  4772     src2  : E(read);
  4773     FA    : R;
  4774 %}
  4776 // Floating Point Compare
  4777 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4778     single_instruction;
  4779     cr    : X(write);
  4780     src1  : E(read);
  4781     src2  : E(read);
  4782     FA    : R;
  4783 %}
  4785 // Floating Add Nop
  4786 pipe_class fadd_nop() %{
  4787     single_instruction;
  4788     FA  : R;
  4789 %}
  4791 // Integer Store to Memory
  4792 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4793     single_instruction;
  4794     mem   : R(read);
  4795     src   : C(read);
  4796     MS    : R;
  4797 %}
  4799 // Integer Store to Memory
  4800 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4801     single_instruction;
  4802     mem   : R(read);
  4803     src   : C(read);
  4804     MS    : R;
  4805 %}
  4807 // Integer Store Zero to Memory
  4808 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4809     single_instruction;
  4810     mem   : R(read);
  4811     MS    : R;
  4812 %}
  4814 // Special Stack Slot Store
  4815 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4816     single_instruction;
  4817     stkSlot : R(read);
  4818     src     : C(read);
  4819     MS      : R;
  4820 %}
  4822 // Special Stack Slot Store
  4823 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4824     instruction_count(2); multiple_bundles;
  4825     stkSlot : R(read);
  4826     src     : C(read);
  4827     MS      : R(2);
  4828 %}
  4830 // Float Store
  4831 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4832     single_instruction;
  4833     mem : R(read);
  4834     src : C(read);
  4835     MS  : R;
  4836 %}
  4838 // Float Store
  4839 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4840     single_instruction;
  4841     mem : R(read);
  4842     MS  : R;
  4843 %}
  4845 // Double Store
  4846 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4847     instruction_count(1);
  4848     mem : R(read);
  4849     src : C(read);
  4850     MS  : R;
  4851 %}
  4853 // Double Store
  4854 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4855     single_instruction;
  4856     mem : R(read);
  4857     MS  : R;
  4858 %}
  4860 // Special Stack Slot Float Store
  4861 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4862     single_instruction;
  4863     stkSlot : R(read);
  4864     src     : C(read);
  4865     MS      : R;
  4866 %}
  4868 // Special Stack Slot Double Store
  4869 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4870     single_instruction;
  4871     stkSlot : R(read);
  4872     src     : C(read);
  4873     MS      : R;
  4874 %}
  4876 // Integer Load (when sign bit propagation not needed)
  4877 pipe_class iload_mem(iRegI dst, memory mem) %{
  4878     single_instruction;
  4879     mem : R(read);
  4880     dst : C(write);
  4881     MS  : R;
  4882 %}
  4884 // Integer Load from stack operand
  4885 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  4886     single_instruction;
  4887     mem : R(read);
  4888     dst : C(write);
  4889     MS  : R;
  4890 %}
  4892 // Integer Load (when sign bit propagation or masking is needed)
  4893 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  4894     single_instruction;
  4895     mem : R(read);
  4896     dst : M(write);
  4897     MS  : R;
  4898 %}
  4900 // Float Load
  4901 pipe_class floadF_mem(regF dst, memory mem) %{
  4902     single_instruction;
  4903     mem : R(read);
  4904     dst : M(write);
  4905     MS  : R;
  4906 %}
  4908 // Float Load
  4909 pipe_class floadD_mem(regD dst, memory mem) %{
  4910     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  4911     mem : R(read);
  4912     dst : M(write);
  4913     MS  : R;
  4914 %}
  4916 // Float Load
  4917 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  4918     single_instruction;
  4919     stkSlot : R(read);
  4920     dst : M(write);
  4921     MS  : R;
  4922 %}
  4924 // Float Load
  4925 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  4926     single_instruction;
  4927     stkSlot : R(read);
  4928     dst : M(write);
  4929     MS  : R;
  4930 %}
  4932 // Memory Nop
  4933 pipe_class mem_nop() %{
  4934     single_instruction;
  4935     MS  : R;
  4936 %}
  4938 pipe_class sethi(iRegP dst, immI src) %{
  4939     single_instruction;
  4940     dst  : E(write);
  4941     IALU : R;
  4942 %}
  4944 pipe_class loadPollP(iRegP poll) %{
  4945     single_instruction;
  4946     poll : R(read);
  4947     MS   : R;
  4948 %}
  4950 pipe_class br(Universe br, label labl) %{
  4951     single_instruction_with_delay_slot;
  4952     BR  : R;
  4953 %}
  4955 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  4956     single_instruction_with_delay_slot;
  4957     cr    : E(read);
  4958     BR    : R;
  4959 %}
  4961 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  4962     single_instruction_with_delay_slot;
  4963     op1 : E(read);
  4964     BR  : R;
  4965     MS  : R;
  4966 %}
  4968 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  4969     single_instruction_with_delay_slot;
  4970     cr    : E(read);
  4971     BR    : R;
  4972 %}
  4974 pipe_class br_nop() %{
  4975     single_instruction;
  4976     BR  : R;
  4977 %}
  4979 pipe_class simple_call(method meth) %{
  4980     instruction_count(2); multiple_bundles; force_serialization;
  4981     fixed_latency(100);
  4982     BR  : R(1);
  4983     MS  : R(1);
  4984     A0  : R(1);
  4985 %}
  4987 pipe_class compiled_call(method meth) %{
  4988     instruction_count(1); multiple_bundles; force_serialization;
  4989     fixed_latency(100);
  4990     MS  : R(1);
  4991 %}
  4993 pipe_class call(method meth) %{
  4994     instruction_count(0); multiple_bundles; force_serialization;
  4995     fixed_latency(100);
  4996 %}
  4998 pipe_class tail_call(Universe ignore, label labl) %{
  4999     single_instruction; has_delay_slot;
  5000     fixed_latency(100);
  5001     BR  : R(1);
  5002     MS  : R(1);
  5003 %}
  5005 pipe_class ret(Universe ignore) %{
  5006     single_instruction; has_delay_slot;
  5007     BR  : R(1);
  5008     MS  : R(1);
  5009 %}
  5011 pipe_class ret_poll(g3RegP poll) %{
  5012     instruction_count(3); has_delay_slot;
  5013     poll : E(read);
  5014     MS   : R;
  5015 %}
  5017 // The real do-nothing guy
  5018 pipe_class empty( ) %{
  5019     instruction_count(0);
  5020 %}
  5022 pipe_class long_memory_op() %{
  5023     instruction_count(0); multiple_bundles; force_serialization;
  5024     fixed_latency(25);
  5025     MS  : R(1);
  5026 %}
  5028 // Check-cast
  5029 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5030     array : R(read);
  5031     match  : R(read);
  5032     IALU   : R(2);
  5033     BR     : R(2);
  5034     MS     : R;
  5035 %}
  5037 // Convert FPU flags into +1,0,-1
  5038 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5039     src1  : E(read);
  5040     src2  : E(read);
  5041     dst   : E(write);
  5042     FA    : R;
  5043     MS    : R(2);
  5044     BR    : R(2);
  5045 %}
  5047 // Compare for p < q, and conditionally add y
  5048 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5049     p     : E(read);
  5050     q     : E(read);
  5051     y     : E(read);
  5052     IALU  : R(3)
  5053 %}
  5055 // Perform a compare, then move conditionally in a branch delay slot.
  5056 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5057     src2   : E(read);
  5058     srcdst : E(read);
  5059     IALU   : R;
  5060     BR     : R;
  5061 %}
  5063 // Define the class for the Nop node
  5064 define %{
  5065    MachNop = ialu_nop;
  5066 %}
  5068 %}
  5070 //----------INSTRUCTIONS-------------------------------------------------------
  5072 //------------Special Stack Slot instructions - no match rules-----------------
  5073 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5074   // No match rule to avoid chain rule match.
  5075   effect(DEF dst, USE src);
  5076   ins_cost(MEMORY_REF_COST);
  5077   size(4);
  5078   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5079   opcode(Assembler::ldf_op3);
  5080   ins_encode(simple_form3_mem_reg(src, dst));
  5081   ins_pipe(floadF_stk);
  5082 %}
  5084 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5085   // No match rule to avoid chain rule match.
  5086   effect(DEF dst, USE src);
  5087   ins_cost(MEMORY_REF_COST);
  5088   size(4);
  5089   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5090   opcode(Assembler::lddf_op3);
  5091   ins_encode(simple_form3_mem_reg(src, dst));
  5092   ins_pipe(floadD_stk);
  5093 %}
  5095 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5096   // No match rule to avoid chain rule match.
  5097   effect(DEF dst, USE src);
  5098   ins_cost(MEMORY_REF_COST);
  5099   size(4);
  5100   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5101   opcode(Assembler::stf_op3);
  5102   ins_encode(simple_form3_mem_reg(dst, src));
  5103   ins_pipe(fstoreF_stk_reg);
  5104 %}
  5106 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5107   // No match rule to avoid chain rule match.
  5108   effect(DEF dst, USE src);
  5109   ins_cost(MEMORY_REF_COST);
  5110   size(4);
  5111   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5112   opcode(Assembler::stdf_op3);
  5113   ins_encode(simple_form3_mem_reg(dst, src));
  5114   ins_pipe(fstoreD_stk_reg);
  5115 %}
  5117 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5118   effect(DEF dst, USE src);
  5119   ins_cost(MEMORY_REF_COST*2);
  5120   size(8);
  5121   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5122             "STW    R_G0,$dst.lo" %}
  5123   opcode(Assembler::stw_op3);
  5124   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5125   ins_pipe(lstoreI_stk_reg);
  5126 %}
  5128 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5129   // No match rule to avoid chain rule match.
  5130   effect(DEF dst, USE src);
  5131   ins_cost(MEMORY_REF_COST);
  5132   size(4);
  5133   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5134   opcode(Assembler::stx_op3);
  5135   ins_encode(simple_form3_mem_reg( dst, src ) );
  5136   ins_pipe(istore_stk_reg);
  5137 %}
  5139 //---------- Chain stack slots between similar types --------
  5141 // Load integer from stack slot
  5142 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5143   match(Set dst src);
  5144   ins_cost(MEMORY_REF_COST);
  5146   size(4);
  5147   format %{ "LDUW   $src,$dst\t!stk" %}
  5148   opcode(Assembler::lduw_op3);
  5149   ins_encode(simple_form3_mem_reg( src, dst ) );
  5150   ins_pipe(iload_mem);
  5151 %}
  5153 // Store integer to stack slot
  5154 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5155   match(Set dst src);
  5156   ins_cost(MEMORY_REF_COST);
  5158   size(4);
  5159   format %{ "STW    $src,$dst\t!stk" %}
  5160   opcode(Assembler::stw_op3);
  5161   ins_encode(simple_form3_mem_reg( dst, src ) );
  5162   ins_pipe(istore_mem_reg);
  5163 %}
  5165 // Load long from stack slot
  5166 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5167   match(Set dst src);
  5169   ins_cost(MEMORY_REF_COST);
  5170   size(4);
  5171   format %{ "LDX    $src,$dst\t! long" %}
  5172   opcode(Assembler::ldx_op3);
  5173   ins_encode(simple_form3_mem_reg( src, dst ) );
  5174   ins_pipe(iload_mem);
  5175 %}
  5177 // Store long to stack slot
  5178 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5179   match(Set dst src);
  5181   ins_cost(MEMORY_REF_COST);
  5182   size(4);
  5183   format %{ "STX    $src,$dst\t! long" %}
  5184   opcode(Assembler::stx_op3);
  5185   ins_encode(simple_form3_mem_reg( dst, src ) );
  5186   ins_pipe(istore_mem_reg);
  5187 %}
  5189 #ifdef _LP64
  5190 // Load pointer from stack slot, 64-bit encoding
  5191 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5192   match(Set dst src);
  5193   ins_cost(MEMORY_REF_COST);
  5194   size(4);
  5195   format %{ "LDX    $src,$dst\t!ptr" %}
  5196   opcode(Assembler::ldx_op3);
  5197   ins_encode(simple_form3_mem_reg( src, dst ) );
  5198   ins_pipe(iload_mem);
  5199 %}
  5201 // Store pointer to stack slot
  5202 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5203   match(Set dst src);
  5204   ins_cost(MEMORY_REF_COST);
  5205   size(4);
  5206   format %{ "STX    $src,$dst\t!ptr" %}
  5207   opcode(Assembler::stx_op3);
  5208   ins_encode(simple_form3_mem_reg( dst, src ) );
  5209   ins_pipe(istore_mem_reg);
  5210 %}
  5211 #else // _LP64
  5212 // Load pointer from stack slot, 32-bit encoding
  5213 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5214   match(Set dst src);
  5215   ins_cost(MEMORY_REF_COST);
  5216   format %{ "LDUW   $src,$dst\t!ptr" %}
  5217   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5218   ins_encode(simple_form3_mem_reg( src, dst ) );
  5219   ins_pipe(iload_mem);
  5220 %}
  5222 // Store pointer to stack slot
  5223 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5224   match(Set dst src);
  5225   ins_cost(MEMORY_REF_COST);
  5226   format %{ "STW    $src,$dst\t!ptr" %}
  5227   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5228   ins_encode(simple_form3_mem_reg( dst, src ) );
  5229   ins_pipe(istore_mem_reg);
  5230 %}
  5231 #endif // _LP64
  5233 //------------Special Nop instructions for bundling - no match rules-----------
  5234 // Nop using the A0 functional unit
  5235 instruct Nop_A0() %{
  5236   ins_cost(0);
  5238   format %{ "NOP    ! Alu Pipeline" %}
  5239   opcode(Assembler::or_op3, Assembler::arith_op);
  5240   ins_encode( form2_nop() );
  5241   ins_pipe(ialu_nop_A0);
  5242 %}
  5244 // Nop using the A1 functional unit
  5245 instruct Nop_A1( ) %{
  5246   ins_cost(0);
  5248   format %{ "NOP    ! Alu Pipeline" %}
  5249   opcode(Assembler::or_op3, Assembler::arith_op);
  5250   ins_encode( form2_nop() );
  5251   ins_pipe(ialu_nop_A1);
  5252 %}
  5254 // Nop using the memory functional unit
  5255 instruct Nop_MS( ) %{
  5256   ins_cost(0);
  5258   format %{ "NOP    ! Memory Pipeline" %}
  5259   ins_encode( emit_mem_nop );
  5260   ins_pipe(mem_nop);
  5261 %}
  5263 // Nop using the floating add functional unit
  5264 instruct Nop_FA( ) %{
  5265   ins_cost(0);
  5267   format %{ "NOP    ! Floating Add Pipeline" %}
  5268   ins_encode( emit_fadd_nop );
  5269   ins_pipe(fadd_nop);
  5270 %}
  5272 // Nop using the branch functional unit
  5273 instruct Nop_BR( ) %{
  5274   ins_cost(0);
  5276   format %{ "NOP    ! Branch Pipeline" %}
  5277   ins_encode( emit_br_nop );
  5278   ins_pipe(br_nop);
  5279 %}
  5281 //----------Load/Store/Move Instructions---------------------------------------
  5282 //----------Load Instructions--------------------------------------------------
  5283 // Load Byte (8bit signed)
  5284 instruct loadB(iRegI dst, memory mem) %{
  5285   match(Set dst (LoadB mem));
  5286   ins_cost(MEMORY_REF_COST);
  5288   size(4);
  5289   format %{ "LDSB   $mem,$dst" %}
  5290   opcode(Assembler::ldsb_op3);
  5291   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5292   ins_pipe(iload_mask_mem);
  5293 %}
  5295 // Load Byte (8bit UNsigned) into an int reg
  5296 instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{
  5297   match(Set dst (AndI (LoadB mem) bytemask));
  5298   ins_cost(MEMORY_REF_COST);
  5300   size(4);
  5301   format %{ "LDUB   $mem,$dst" %}
  5302   opcode(Assembler::ldub_op3);
  5303   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5304   ins_pipe(iload_mask_mem);
  5305 %}
  5307 // Load Byte (8bit UNsigned) into a Long Register
  5308 instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
  5309   match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask));
  5310   ins_cost(MEMORY_REF_COST);
  5312   size(4);
  5313   format %{ "LDUB   $mem,$dst" %}
  5314   opcode(Assembler::ldub_op3);
  5315   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5316   ins_pipe(iload_mask_mem);
  5317 %}
  5319 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5320 instruct loadUS2L(iRegL dst, memory mem, immL_FFFF bytemask) %{
  5321   match(Set dst (AndL (ConvI2L (LoadUS mem)) bytemask));
  5322   ins_cost(MEMORY_REF_COST);
  5324   size(4);
  5325   format %{ "LDUH   $mem,$dst" %}
  5326   opcode(Assembler::lduh_op3);
  5327   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5328   ins_pipe(iload_mask_mem);
  5329 %}
  5331 // Load Unsigned Short/Char (16bit unsigned)
  5332 instruct loadUS(iRegI dst, memory mem) %{
  5333   match(Set dst (LoadUS mem));
  5334   ins_cost(MEMORY_REF_COST);
  5336   size(4);
  5337   format %{ "LDUH   $mem,$dst" %}
  5338   opcode(Assembler::lduh_op3);
  5339   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5340   ins_pipe(iload_mask_mem);
  5341 %}
  5343 // Load Integer
  5344 instruct loadI(iRegI dst, memory mem) %{
  5345   match(Set dst (LoadI mem));
  5346   ins_cost(MEMORY_REF_COST);
  5347   size(4);
  5349   format %{ "LDUW   $mem,$dst" %}
  5350   opcode(Assembler::lduw_op3);
  5351   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5352   ins_pipe(iload_mem);
  5353 %}
  5355 // Load Long - aligned
  5356 instruct loadL(iRegL dst, memory mem ) %{
  5357   match(Set dst (LoadL mem));
  5358   ins_cost(MEMORY_REF_COST);
  5359   size(4);
  5360   format %{ "LDX    $mem,$dst\t! long" %}
  5361   opcode(Assembler::ldx_op3);
  5362   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5363   ins_pipe(iload_mem);
  5364 %}
  5366 // Load Long - UNaligned
  5367 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5368   match(Set dst (LoadL_unaligned mem));
  5369   effect(KILL tmp);
  5370   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5371   size(16);
  5372   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5373           "\tLDUW   $mem  ,$dst\n"
  5374           "\tSLLX   #32, $dst, $dst\n"
  5375           "\tOR     $dst, R_O7, $dst" %}
  5376   opcode(Assembler::lduw_op3);
  5377   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5378   ins_pipe(iload_mem);
  5379 %}
  5381 // Load Aligned Packed Byte into a Double Register
  5382 instruct loadA8B(regD dst, memory mem) %{
  5383   match(Set dst (Load8B mem));
  5384   ins_cost(MEMORY_REF_COST);
  5385   size(4);
  5386   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5387   opcode(Assembler::lddf_op3);
  5388   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5389   ins_pipe(floadD_mem);
  5390 %}
  5392 // Load Aligned Packed Char into a Double Register
  5393 instruct loadA4C(regD dst, memory mem) %{
  5394   match(Set dst (Load4C mem));
  5395   ins_cost(MEMORY_REF_COST);
  5396   size(4);
  5397   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5398   opcode(Assembler::lddf_op3);
  5399   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5400   ins_pipe(floadD_mem);
  5401 %}
  5403 // Load Aligned Packed Short into a Double Register
  5404 instruct loadA4S(regD dst, memory mem) %{
  5405   match(Set dst (Load4S mem));
  5406   ins_cost(MEMORY_REF_COST);
  5407   size(4);
  5408   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5409   opcode(Assembler::lddf_op3);
  5410   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5411   ins_pipe(floadD_mem);
  5412 %}
  5414 // Load Aligned Packed Int into a Double Register
  5415 instruct loadA2I(regD dst, memory mem) %{
  5416   match(Set dst (Load2I mem));
  5417   ins_cost(MEMORY_REF_COST);
  5418   size(4);
  5419   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5420   opcode(Assembler::lddf_op3);
  5421   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5422   ins_pipe(floadD_mem);
  5423 %}
  5425 // Load Range
  5426 instruct loadRange(iRegI dst, memory mem) %{
  5427   match(Set dst (LoadRange mem));
  5428   ins_cost(MEMORY_REF_COST);
  5430   size(4);
  5431   format %{ "LDUW   $mem,$dst\t! range" %}
  5432   opcode(Assembler::lduw_op3);
  5433   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5434   ins_pipe(iload_mem);
  5435 %}
  5437 // Load Integer into %f register (for fitos/fitod)
  5438 instruct loadI_freg(regF dst, memory mem) %{
  5439   match(Set dst (LoadI mem));
  5440   ins_cost(MEMORY_REF_COST);
  5441   size(4);
  5443   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5444   opcode(Assembler::ldf_op3);
  5445   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5446   ins_pipe(floadF_mem);
  5447 %}
  5449 // Load Pointer
  5450 instruct loadP(iRegP dst, memory mem) %{
  5451   match(Set dst (LoadP mem));
  5452   ins_cost(MEMORY_REF_COST);
  5453   size(4);
  5455 #ifndef _LP64
  5456   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5457   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5458 #else
  5459   format %{ "LDX    $mem,$dst\t! ptr" %}
  5460   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5461 #endif
  5462   ins_encode( form3_mem_reg( mem, dst ) );
  5463   ins_pipe(iload_mem);
  5464 %}
  5466 // Load Compressed Pointer
  5467 instruct loadN(iRegN dst, memory mem) %{
  5468    match(Set dst (LoadN mem));
  5469    ins_cost(MEMORY_REF_COST);
  5470    size(4);
  5472    format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5473    ins_encode %{
  5474      Register base = as_Register($mem$$base);
  5475      Register index = as_Register($mem$$index);
  5476      Register dst = $dst$$Register;
  5477      if (index != G0) {
  5478        __ lduw(base, index, dst);
  5479      } else {
  5480        __ lduw(base, $mem$$disp, dst);
  5482    %}
  5483    ins_pipe(iload_mem);
  5484 %}
  5486 // Load Klass Pointer
  5487 instruct loadKlass(iRegP dst, memory mem) %{
  5488   match(Set dst (LoadKlass mem));
  5489   ins_cost(MEMORY_REF_COST);
  5490   size(4);
  5492 #ifndef _LP64
  5493   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5494   opcode(Assembler::lduw_op3, 0, REGP_OP);
  5495 #else
  5496   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5497   opcode(Assembler::ldx_op3, 0, REGP_OP);
  5498 #endif
  5499   ins_encode( form3_mem_reg( mem, dst ) );
  5500   ins_pipe(iload_mem);
  5501 %}
  5503 // Load narrow Klass Pointer
  5504 instruct loadNKlass(iRegN dst, memory mem) %{
  5505   match(Set dst (LoadNKlass mem));
  5506   ins_cost(MEMORY_REF_COST);
  5507   size(4);
  5509   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5511   ins_encode %{
  5512      Register base = as_Register($mem$$base);
  5513      Register index = as_Register($mem$$index);
  5514      Register dst = $dst$$Register;
  5515      if (index != G0) {
  5516        __ lduw(base, index, dst);
  5517      } else {
  5518        __ lduw(base, $mem$$disp, dst);
  5520   %}
  5521   ins_pipe(iload_mem);
  5522 %}
  5524 // Load Short (16bit signed)
  5525 instruct loadS(iRegI dst, memory mem) %{
  5526   match(Set dst (LoadS mem));
  5527   ins_cost(MEMORY_REF_COST);
  5529   size(4);
  5530   format %{ "LDSH   $mem,$dst" %}
  5531   opcode(Assembler::ldsh_op3);
  5532   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5533   ins_pipe(iload_mask_mem);
  5534 %}
  5536 // Load Double
  5537 instruct loadD(regD dst, memory mem) %{
  5538   match(Set dst (LoadD mem));
  5539   ins_cost(MEMORY_REF_COST);
  5541   size(4);
  5542   format %{ "LDDF   $mem,$dst" %}
  5543   opcode(Assembler::lddf_op3);
  5544   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5545   ins_pipe(floadD_mem);
  5546 %}
  5548 // Load Double - UNaligned
  5549 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5550   match(Set dst (LoadD_unaligned mem));
  5551   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5552   size(8);
  5553   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5554           "\tLDF    $mem+4,$dst.lo\t!" %}
  5555   opcode(Assembler::ldf_op3);
  5556   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5557   ins_pipe(iload_mem);
  5558 %}
  5560 // Load Float
  5561 instruct loadF(regF dst, memory mem) %{
  5562   match(Set dst (LoadF mem));
  5563   ins_cost(MEMORY_REF_COST);
  5565   size(4);
  5566   format %{ "LDF    $mem,$dst" %}
  5567   opcode(Assembler::ldf_op3);
  5568   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5569   ins_pipe(floadF_mem);
  5570 %}
  5572 // Load Constant
  5573 instruct loadConI( iRegI dst, immI src ) %{
  5574   match(Set dst src);
  5575   ins_cost(DEFAULT_COST * 3/2);
  5576   format %{ "SET    $src,$dst" %}
  5577   ins_encode( Set32(src, dst) );
  5578   ins_pipe(ialu_hi_lo_reg);
  5579 %}
  5581 instruct loadConI13( iRegI dst, immI13 src ) %{
  5582   match(Set dst src);
  5584   size(4);
  5585   format %{ "MOV    $src,$dst" %}
  5586   ins_encode( Set13( src, dst ) );
  5587   ins_pipe(ialu_imm);
  5588 %}
  5590 instruct loadConP(iRegP dst, immP src) %{
  5591   match(Set dst src);
  5592   ins_cost(DEFAULT_COST * 3/2);
  5593   format %{ "SET    $src,$dst\t!ptr" %}
  5594   // This rule does not use "expand" unlike loadConI because then
  5595   // the result type is not known to be an Oop.  An ADLC
  5596   // enhancement will be needed to make that work - not worth it!
  5598   ins_encode( SetPtr( src, dst ) );
  5599   ins_pipe(loadConP);
  5601 %}
  5603 instruct loadConP0(iRegP dst, immP0 src) %{
  5604   match(Set dst src);
  5606   size(4);
  5607   format %{ "CLR    $dst\t!ptr" %}
  5608   ins_encode( SetNull( dst ) );
  5609   ins_pipe(ialu_imm);
  5610 %}
  5612 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  5613   match(Set dst src);
  5614   ins_cost(DEFAULT_COST);
  5615   format %{ "SET    $src,$dst\t!ptr" %}
  5616   ins_encode %{
  5617     Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page());
  5618     __ sethi(polling_page, false );
  5619   %}
  5620   ins_pipe(loadConP_poll);
  5621 %}
  5623 instruct loadConN0(iRegN dst, immN0 src) %{
  5624   match(Set dst src);
  5626   size(4);
  5627   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  5628   ins_encode( SetNull( dst ) );
  5629   ins_pipe(ialu_imm);
  5630 %}
  5632 instruct loadConN(iRegN dst, immN src) %{
  5633   match(Set dst src);
  5634   ins_cost(DEFAULT_COST * 3/2);
  5635   format %{ "SET    $src,$dst\t! compressed ptr" %}
  5636   ins_encode %{
  5637     Register dst = $dst$$Register;
  5638     __ set_narrow_oop((jobject)$src$$constant, dst);
  5639   %}
  5640   ins_pipe(ialu_hi_lo_reg);
  5641 %}
  5643 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  5644   // %%% maybe this should work like loadConD
  5645   match(Set dst src);
  5646   effect(KILL tmp);
  5647   ins_cost(DEFAULT_COST * 4);
  5648   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  5649   ins_encode( LdImmL(src, dst, tmp) );
  5650   ins_pipe(loadConL);
  5651 %}
  5653 instruct loadConL0( iRegL dst, immL0 src ) %{
  5654   match(Set dst src);
  5655   ins_cost(DEFAULT_COST);
  5656   size(4);
  5657   format %{ "CLR    $dst\t! long" %}
  5658   ins_encode( Set13( src, dst ) );
  5659   ins_pipe(ialu_imm);
  5660 %}
  5662 instruct loadConL13( iRegL dst, immL13 src ) %{
  5663   match(Set dst src);
  5664   ins_cost(DEFAULT_COST * 2);
  5666   size(4);
  5667   format %{ "MOV    $src,$dst\t! long" %}
  5668   ins_encode( Set13( src, dst ) );
  5669   ins_pipe(ialu_imm);
  5670 %}
  5672 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  5673   match(Set dst src);
  5674   effect(KILL tmp);
  5676 #ifdef _LP64
  5677   size(36);
  5678 #else
  5679   size(8);
  5680 #endif
  5682   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  5683             "LDF    [$tmp+lo(&$src)],$dst" %}
  5684   ins_encode( LdImmF(src, dst, tmp) );
  5685   ins_pipe(loadConFD);
  5686 %}
  5688 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  5689   match(Set dst src);
  5690   effect(KILL tmp);
  5692 #ifdef _LP64
  5693   size(36);
  5694 #else
  5695   size(8);
  5696 #endif
  5698   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  5699             "LDDF   [$tmp+lo(&$src)],$dst" %}
  5700   ins_encode( LdImmD(src, dst, tmp) );
  5701   ins_pipe(loadConFD);
  5702 %}
  5704 // Prefetch instructions.
  5705 // Must be safe to execute with invalid address (cannot fault).
  5707 instruct prefetchr( memory mem ) %{
  5708   match( PrefetchRead mem );
  5709   ins_cost(MEMORY_REF_COST);
  5711   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  5712   opcode(Assembler::prefetch_op3);
  5713   ins_encode( form3_mem_prefetch_read( mem ) );
  5714   ins_pipe(iload_mem);
  5715 %}
  5717 instruct prefetchw( memory mem ) %{
  5718   match( PrefetchWrite mem );
  5719   ins_cost(MEMORY_REF_COST);
  5721   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  5722   opcode(Assembler::prefetch_op3);
  5723   ins_encode( form3_mem_prefetch_write( mem ) );
  5724   ins_pipe(iload_mem);
  5725 %}
  5728 //----------Store Instructions-------------------------------------------------
  5729 // Store Byte
  5730 instruct storeB(memory mem, iRegI src) %{
  5731   match(Set mem (StoreB mem src));
  5732   ins_cost(MEMORY_REF_COST);
  5734   size(4);
  5735   format %{ "STB    $src,$mem\t! byte" %}
  5736   opcode(Assembler::stb_op3);
  5737   ins_encode(simple_form3_mem_reg( mem, src ) );
  5738   ins_pipe(istore_mem_reg);
  5739 %}
  5741 instruct storeB0(memory mem, immI0 src) %{
  5742   match(Set mem (StoreB mem src));
  5743   ins_cost(MEMORY_REF_COST);
  5745   size(4);
  5746   format %{ "STB    $src,$mem\t! byte" %}
  5747   opcode(Assembler::stb_op3);
  5748   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5749   ins_pipe(istore_mem_zero);
  5750 %}
  5752 instruct storeCM0(memory mem, immI0 src) %{
  5753   match(Set mem (StoreCM mem src));
  5754   ins_cost(MEMORY_REF_COST);
  5756   size(4);
  5757   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  5758   opcode(Assembler::stb_op3);
  5759   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5760   ins_pipe(istore_mem_zero);
  5761 %}
  5763 // Store Char/Short
  5764 instruct storeC(memory mem, iRegI src) %{
  5765   match(Set mem (StoreC mem src));
  5766   ins_cost(MEMORY_REF_COST);
  5768   size(4);
  5769   format %{ "STH    $src,$mem\t! short" %}
  5770   opcode(Assembler::sth_op3);
  5771   ins_encode(simple_form3_mem_reg( mem, src ) );
  5772   ins_pipe(istore_mem_reg);
  5773 %}
  5775 instruct storeC0(memory mem, immI0 src) %{
  5776   match(Set mem (StoreC mem src));
  5777   ins_cost(MEMORY_REF_COST);
  5779   size(4);
  5780   format %{ "STH    $src,$mem\t! short" %}
  5781   opcode(Assembler::sth_op3);
  5782   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5783   ins_pipe(istore_mem_zero);
  5784 %}
  5786 // Store Integer
  5787 instruct storeI(memory mem, iRegI src) %{
  5788   match(Set mem (StoreI mem src));
  5789   ins_cost(MEMORY_REF_COST);
  5791   size(4);
  5792   format %{ "STW    $src,$mem" %}
  5793   opcode(Assembler::stw_op3);
  5794   ins_encode(simple_form3_mem_reg( mem, src ) );
  5795   ins_pipe(istore_mem_reg);
  5796 %}
  5798 // Store Long
  5799 instruct storeL(memory mem, iRegL src) %{
  5800   match(Set mem (StoreL mem src));
  5801   ins_cost(MEMORY_REF_COST);
  5802   size(4);
  5803   format %{ "STX    $src,$mem\t! long" %}
  5804   opcode(Assembler::stx_op3);
  5805   ins_encode(simple_form3_mem_reg( mem, src ) );
  5806   ins_pipe(istore_mem_reg);
  5807 %}
  5809 instruct storeI0(memory mem, immI0 src) %{
  5810   match(Set mem (StoreI mem src));
  5811   ins_cost(MEMORY_REF_COST);
  5813   size(4);
  5814   format %{ "STW    $src,$mem" %}
  5815   opcode(Assembler::stw_op3);
  5816   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5817   ins_pipe(istore_mem_zero);
  5818 %}
  5820 instruct storeL0(memory mem, immL0 src) %{
  5821   match(Set mem (StoreL mem src));
  5822   ins_cost(MEMORY_REF_COST);
  5824   size(4);
  5825   format %{ "STX    $src,$mem" %}
  5826   opcode(Assembler::stx_op3);
  5827   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5828   ins_pipe(istore_mem_zero);
  5829 %}
  5831 // Store Integer from float register (used after fstoi)
  5832 instruct storeI_Freg(memory mem, regF src) %{
  5833   match(Set mem (StoreI mem src));
  5834   ins_cost(MEMORY_REF_COST);
  5836   size(4);
  5837   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  5838   opcode(Assembler::stf_op3);
  5839   ins_encode(simple_form3_mem_reg( mem, src ) );
  5840   ins_pipe(fstoreF_mem_reg);
  5841 %}
  5843 // Store Pointer
  5844 instruct storeP(memory dst, sp_ptr_RegP src) %{
  5845   match(Set dst (StoreP dst src));
  5846   ins_cost(MEMORY_REF_COST);
  5847   size(4);
  5849 #ifndef _LP64
  5850   format %{ "STW    $src,$dst\t! ptr" %}
  5851   opcode(Assembler::stw_op3, 0, REGP_OP);
  5852 #else
  5853   format %{ "STX    $src,$dst\t! ptr" %}
  5854   opcode(Assembler::stx_op3, 0, REGP_OP);
  5855 #endif
  5856   ins_encode( form3_mem_reg( dst, src ) );
  5857   ins_pipe(istore_mem_spORreg);
  5858 %}
  5860 instruct storeP0(memory dst, immP0 src) %{
  5861   match(Set dst (StoreP dst src));
  5862   ins_cost(MEMORY_REF_COST);
  5863   size(4);
  5865 #ifndef _LP64
  5866   format %{ "STW    $src,$dst\t! ptr" %}
  5867   opcode(Assembler::stw_op3, 0, REGP_OP);
  5868 #else
  5869   format %{ "STX    $src,$dst\t! ptr" %}
  5870   opcode(Assembler::stx_op3, 0, REGP_OP);
  5871 #endif
  5872   ins_encode( form3_mem_reg( dst, R_G0 ) );
  5873   ins_pipe(istore_mem_zero);
  5874 %}
  5876 // Store Compressed Pointer
  5877 instruct storeN(memory dst, iRegN src) %{
  5878    match(Set dst (StoreN dst src));
  5879    ins_cost(MEMORY_REF_COST);
  5880    size(4);
  5882    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5883    ins_encode %{
  5884      Register base = as_Register($dst$$base);
  5885      Register index = as_Register($dst$$index);
  5886      Register src = $src$$Register;
  5887      if (index != G0) {
  5888        __ stw(src, base, index);
  5889      } else {
  5890        __ stw(src, base, $dst$$disp);
  5892    %}
  5893    ins_pipe(istore_mem_spORreg);
  5894 %}
  5896 instruct storeN0(memory dst, immN0 src) %{
  5897    match(Set dst (StoreN dst src));
  5898    ins_cost(MEMORY_REF_COST);
  5899    size(4);
  5901    format %{ "STW    $src,$dst\t! compressed ptr" %}
  5902    ins_encode %{
  5903      Register base = as_Register($dst$$base);
  5904      Register index = as_Register($dst$$index);
  5905      if (index != G0) {
  5906        __ stw(0, base, index);
  5907      } else {
  5908        __ stw(0, base, $dst$$disp);
  5910    %}
  5911    ins_pipe(istore_mem_zero);
  5912 %}
  5914 // Store Double
  5915 instruct storeD( memory mem, regD src) %{
  5916   match(Set mem (StoreD mem src));
  5917   ins_cost(MEMORY_REF_COST);
  5919   size(4);
  5920   format %{ "STDF   $src,$mem" %}
  5921   opcode(Assembler::stdf_op3);
  5922   ins_encode(simple_form3_mem_reg( mem, src ) );
  5923   ins_pipe(fstoreD_mem_reg);
  5924 %}
  5926 instruct storeD0( memory mem, immD0 src) %{
  5927   match(Set mem (StoreD mem src));
  5928   ins_cost(MEMORY_REF_COST);
  5930   size(4);
  5931   format %{ "STX    $src,$mem" %}
  5932   opcode(Assembler::stx_op3);
  5933   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5934   ins_pipe(fstoreD_mem_zero);
  5935 %}
  5937 // Store Float
  5938 instruct storeF( memory mem, regF src) %{
  5939   match(Set mem (StoreF mem src));
  5940   ins_cost(MEMORY_REF_COST);
  5942   size(4);
  5943   format %{ "STF    $src,$mem" %}
  5944   opcode(Assembler::stf_op3);
  5945   ins_encode(simple_form3_mem_reg( mem, src ) );
  5946   ins_pipe(fstoreF_mem_reg);
  5947 %}
  5949 instruct storeF0( memory mem, immF0 src) %{
  5950   match(Set mem (StoreF mem src));
  5951   ins_cost(MEMORY_REF_COST);
  5953   size(4);
  5954   format %{ "STW    $src,$mem\t! storeF0" %}
  5955   opcode(Assembler::stw_op3);
  5956   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  5957   ins_pipe(fstoreF_mem_zero);
  5958 %}
  5960 // Store Aligned Packed Bytes in Double register to memory
  5961 instruct storeA8B(memory mem, regD src) %{
  5962   match(Set mem (Store8B mem src));
  5963   ins_cost(MEMORY_REF_COST);
  5964   size(4);
  5965   format %{ "STDF   $src,$mem\t! packed8B" %}
  5966   opcode(Assembler::stdf_op3);
  5967   ins_encode(simple_form3_mem_reg( mem, src ) );
  5968   ins_pipe(fstoreD_mem_reg);
  5969 %}
  5971 // Convert oop pointer into compressed form
  5972 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  5973   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  5974   match(Set dst (EncodeP src));
  5975   format %{ "encode_heap_oop $src, $dst" %}
  5976   ins_encode %{
  5977     __ encode_heap_oop($src$$Register, $dst$$Register);
  5978   %}
  5979   ins_pipe(ialu_reg);
  5980 %}
  5982 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  5983   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  5984   match(Set dst (EncodeP src));
  5985   format %{ "encode_heap_oop_not_null $src, $dst" %}
  5986   ins_encode %{
  5987     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  5988   %}
  5989   ins_pipe(ialu_reg);
  5990 %}
  5992 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  5993   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  5994             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  5995   match(Set dst (DecodeN src));
  5996   format %{ "decode_heap_oop $src, $dst" %}
  5997   ins_encode %{
  5998     __ decode_heap_oop($src$$Register, $dst$$Register);
  5999   %}
  6000   ins_pipe(ialu_reg);
  6001 %}
  6003 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6004   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6005             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6006   match(Set dst (DecodeN src));
  6007   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6008   ins_encode %{
  6009     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6010   %}
  6011   ins_pipe(ialu_reg);
  6012 %}
  6015 // Store Zero into Aligned Packed Bytes
  6016 instruct storeA8B0(memory mem, immI0 zero) %{
  6017   match(Set mem (Store8B mem zero));
  6018   ins_cost(MEMORY_REF_COST);
  6019   size(4);
  6020   format %{ "STX    $zero,$mem\t! packed8B" %}
  6021   opcode(Assembler::stx_op3);
  6022   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6023   ins_pipe(fstoreD_mem_zero);
  6024 %}
  6026 // Store Aligned Packed Chars/Shorts in Double register to memory
  6027 instruct storeA4C(memory mem, regD src) %{
  6028   match(Set mem (Store4C mem src));
  6029   ins_cost(MEMORY_REF_COST);
  6030   size(4);
  6031   format %{ "STDF   $src,$mem\t! packed4C" %}
  6032   opcode(Assembler::stdf_op3);
  6033   ins_encode(simple_form3_mem_reg( mem, src ) );
  6034   ins_pipe(fstoreD_mem_reg);
  6035 %}
  6037 // Store Zero into Aligned Packed Chars/Shorts
  6038 instruct storeA4C0(memory mem, immI0 zero) %{
  6039   match(Set mem (Store4C mem (Replicate4C zero)));
  6040   ins_cost(MEMORY_REF_COST);
  6041   size(4);
  6042   format %{ "STX    $zero,$mem\t! packed4C" %}
  6043   opcode(Assembler::stx_op3);
  6044   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6045   ins_pipe(fstoreD_mem_zero);
  6046 %}
  6048 // Store Aligned Packed Ints in Double register to memory
  6049 instruct storeA2I(memory mem, regD src) %{
  6050   match(Set mem (Store2I mem src));
  6051   ins_cost(MEMORY_REF_COST);
  6052   size(4);
  6053   format %{ "STDF   $src,$mem\t! packed2I" %}
  6054   opcode(Assembler::stdf_op3);
  6055   ins_encode(simple_form3_mem_reg( mem, src ) );
  6056   ins_pipe(fstoreD_mem_reg);
  6057 %}
  6059 // Store Zero into Aligned Packed Ints
  6060 instruct storeA2I0(memory mem, immI0 zero) %{
  6061   match(Set mem (Store2I mem zero));
  6062   ins_cost(MEMORY_REF_COST);
  6063   size(4);
  6064   format %{ "STX    $zero,$mem\t! packed2I" %}
  6065   opcode(Assembler::stx_op3);
  6066   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6067   ins_pipe(fstoreD_mem_zero);
  6068 %}
  6071 //----------MemBar Instructions-----------------------------------------------
  6072 // Memory barrier flavors
  6074 instruct membar_acquire() %{
  6075   match(MemBarAcquire);
  6076   ins_cost(4*MEMORY_REF_COST);
  6078   size(0);
  6079   format %{ "MEMBAR-acquire" %}
  6080   ins_encode( enc_membar_acquire );
  6081   ins_pipe(long_memory_op);
  6082 %}
  6084 instruct membar_acquire_lock() %{
  6085   match(MemBarAcquire);
  6086   predicate(Matcher::prior_fast_lock(n));
  6087   ins_cost(0);
  6089   size(0);
  6090   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6091   ins_encode( );
  6092   ins_pipe(empty);
  6093 %}
  6095 instruct membar_release() %{
  6096   match(MemBarRelease);
  6097   ins_cost(4*MEMORY_REF_COST);
  6099   size(0);
  6100   format %{ "MEMBAR-release" %}
  6101   ins_encode( enc_membar_release );
  6102   ins_pipe(long_memory_op);
  6103 %}
  6105 instruct membar_release_lock() %{
  6106   match(MemBarRelease);
  6107   predicate(Matcher::post_fast_unlock(n));
  6108   ins_cost(0);
  6110   size(0);
  6111   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6112   ins_encode( );
  6113   ins_pipe(empty);
  6114 %}
  6116 instruct membar_volatile() %{
  6117   match(MemBarVolatile);
  6118   ins_cost(4*MEMORY_REF_COST);
  6120   size(4);
  6121   format %{ "MEMBAR-volatile" %}
  6122   ins_encode( enc_membar_volatile );
  6123   ins_pipe(long_memory_op);
  6124 %}
  6126 instruct unnecessary_membar_volatile() %{
  6127   match(MemBarVolatile);
  6128   predicate(Matcher::post_store_load_barrier(n));
  6129   ins_cost(0);
  6131   size(0);
  6132   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6133   ins_encode( );
  6134   ins_pipe(empty);
  6135 %}
  6137 //----------Register Move Instructions-----------------------------------------
  6138 instruct roundDouble_nop(regD dst) %{
  6139   match(Set dst (RoundDouble dst));
  6140   ins_cost(0);
  6141   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6142   ins_encode( );
  6143   ins_pipe(empty);
  6144 %}
  6147 instruct roundFloat_nop(regF dst) %{
  6148   match(Set dst (RoundFloat dst));
  6149   ins_cost(0);
  6150   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6151   ins_encode( );
  6152   ins_pipe(empty);
  6153 %}
  6156 // Cast Index to Pointer for unsafe natives
  6157 instruct castX2P(iRegX src, iRegP dst) %{
  6158   match(Set dst (CastX2P src));
  6160   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6161   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6162   ins_pipe(ialu_reg);
  6163 %}
  6165 // Cast Pointer to Index for unsafe natives
  6166 instruct castP2X(iRegP src, iRegX dst) %{
  6167   match(Set dst (CastP2X src));
  6169   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6170   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6171   ins_pipe(ialu_reg);
  6172 %}
  6174 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6175   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6176   match(Set stkSlot src);   // chain rule
  6177   ins_cost(MEMORY_REF_COST);
  6178   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6179   opcode(Assembler::stdf_op3);
  6180   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6181   ins_pipe(fstoreD_stk_reg);
  6182 %}
  6184 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6185   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6186   match(Set dst stkSlot);   // chain rule
  6187   ins_cost(MEMORY_REF_COST);
  6188   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6189   opcode(Assembler::lddf_op3);
  6190   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6191   ins_pipe(floadD_stk);
  6192 %}
  6194 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6195   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6196   match(Set stkSlot src);   // chain rule
  6197   ins_cost(MEMORY_REF_COST);
  6198   format %{ "STF   $src,$stkSlot\t!stk" %}
  6199   opcode(Assembler::stf_op3);
  6200   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6201   ins_pipe(fstoreF_stk_reg);
  6202 %}
  6204 //----------Conditional Move---------------------------------------------------
  6205 // Conditional move
  6206 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6207   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6208   ins_cost(150);
  6209   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6210   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6211   ins_pipe(ialu_reg);
  6212 %}
  6214 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6215   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6216   ins_cost(140);
  6217   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6218   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6219   ins_pipe(ialu_imm);
  6220 %}
  6222 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6223   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6224   ins_cost(150);
  6225   size(4);
  6226   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6227   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6228   ins_pipe(ialu_reg);
  6229 %}
  6231 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6232   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6233   ins_cost(140);
  6234   size(4);
  6235   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6236   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6237   ins_pipe(ialu_imm);
  6238 %}
  6240 instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6241   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6242   ins_cost(150);
  6243   size(4);
  6244   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6245   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6246   ins_pipe(ialu_reg);
  6247 %}
  6249 instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6250   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6251   ins_cost(140);
  6252   size(4);
  6253   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6254   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6255   ins_pipe(ialu_imm);
  6256 %}
  6258 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6259   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6260   ins_cost(150);
  6261   size(4);
  6262   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6263   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6264   ins_pipe(ialu_reg);
  6265 %}
  6267 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6268   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6269   ins_cost(140);
  6270   size(4);
  6271   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6272   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6273   ins_pipe(ialu_imm);
  6274 %}
  6276 // Conditional move for RegN. Only cmov(reg,reg).
  6277 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6278   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6279   ins_cost(150);
  6280   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6281   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6282   ins_pipe(ialu_reg);
  6283 %}
  6285 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6286 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6287   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6288   ins_cost(150);
  6289   size(4);
  6290   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6291   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6292   ins_pipe(ialu_reg);
  6293 %}
  6295 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6296   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6297   ins_cost(150);
  6298   size(4);
  6299   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6300   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6301   ins_pipe(ialu_reg);
  6302 %}
  6304 // Conditional move
  6305 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6306   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6307   ins_cost(150);
  6308   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6309   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6310   ins_pipe(ialu_reg);
  6311 %}
  6313 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6314   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6315   ins_cost(140);
  6316   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6317   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6318   ins_pipe(ialu_imm);
  6319 %}
  6321 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6322 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6323   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6324   ins_cost(150);
  6326   size(4);
  6327   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6328   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6329   ins_pipe(ialu_reg);
  6330 %}
  6332 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6333   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6334   ins_cost(140);
  6336   size(4);
  6337   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6338   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6339   ins_pipe(ialu_imm);
  6340 %}
  6342 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6343   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6344   ins_cost(150);
  6345   size(4);
  6346   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6347   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6348   ins_pipe(ialu_imm);
  6349 %}
  6351 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6352   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6353   ins_cost(140);
  6354   size(4);
  6355   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6356   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6357   ins_pipe(ialu_imm);
  6358 %}
  6360 // Conditional move
  6361 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6362   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6363   ins_cost(150);
  6364   opcode(0x101);
  6365   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6366   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6367   ins_pipe(int_conditional_float_move);
  6368 %}
  6370 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6371   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6372   ins_cost(150);
  6374   size(4);
  6375   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6376   opcode(0x101);
  6377   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6378   ins_pipe(int_conditional_float_move);
  6379 %}
  6381 // Conditional move,
  6382 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6383   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6384   ins_cost(150);
  6385   size(4);
  6386   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6387   opcode(0x1);
  6388   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6389   ins_pipe(int_conditional_double_move);
  6390 %}
  6392 // Conditional move
  6393 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6394   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6395   ins_cost(150);
  6396   size(4);
  6397   opcode(0x102);
  6398   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6399   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6400   ins_pipe(int_conditional_double_move);
  6401 %}
  6403 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6404   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6405   ins_cost(150);
  6407   size(4);
  6408   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6409   opcode(0x102);
  6410   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6411   ins_pipe(int_conditional_double_move);
  6412 %}
  6414 // Conditional move,
  6415 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6416   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6417   ins_cost(150);
  6418   size(4);
  6419   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6420   opcode(0x2);
  6421   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6422   ins_pipe(int_conditional_double_move);
  6423 %}
  6425 // Conditional move
  6426 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6427   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6428   ins_cost(150);
  6429   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6430   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6431   ins_pipe(ialu_reg);
  6432 %}
  6434 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6435   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6436   ins_cost(140);
  6437   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6438   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6439   ins_pipe(ialu_imm);
  6440 %}
  6442 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6443   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6444   ins_cost(150);
  6446   size(4);
  6447   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6448   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6449   ins_pipe(ialu_reg);
  6450 %}
  6453 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6454   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6455   ins_cost(150);
  6457   size(4);
  6458   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6459   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6460   ins_pipe(ialu_reg);
  6461 %}
  6465 //----------OS and Locking Instructions----------------------------------------
  6467 // This name is KNOWN by the ADLC and cannot be changed.
  6468 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6469 // for this guy.
  6470 instruct tlsLoadP(g2RegP dst) %{
  6471   match(Set dst (ThreadLocal));
  6473   size(0);
  6474   ins_cost(0);
  6475   format %{ "# TLS is in G2" %}
  6476   ins_encode( /*empty encoding*/ );
  6477   ins_pipe(ialu_none);
  6478 %}
  6480 instruct checkCastPP( iRegP dst ) %{
  6481   match(Set dst (CheckCastPP dst));
  6483   size(0);
  6484   format %{ "# checkcastPP of $dst" %}
  6485   ins_encode( /*empty encoding*/ );
  6486   ins_pipe(empty);
  6487 %}
  6490 instruct castPP( iRegP dst ) %{
  6491   match(Set dst (CastPP dst));
  6492   format %{ "# castPP of $dst" %}
  6493   ins_encode( /*empty encoding*/ );
  6494   ins_pipe(empty);
  6495 %}
  6497 instruct castII( iRegI dst ) %{
  6498   match(Set dst (CastII dst));
  6499   format %{ "# castII of $dst" %}
  6500   ins_encode( /*empty encoding*/ );
  6501   ins_cost(0);
  6502   ins_pipe(empty);
  6503 %}
  6505 //----------Arithmetic Instructions--------------------------------------------
  6506 // Addition Instructions
  6507 // Register Addition
  6508 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6509   match(Set dst (AddI src1 src2));
  6511   size(4);
  6512   format %{ "ADD    $src1,$src2,$dst" %}
  6513   ins_encode %{
  6514     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  6515   %}
  6516   ins_pipe(ialu_reg_reg);
  6517 %}
  6519 // Immediate Addition
  6520 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6521   match(Set dst (AddI src1 src2));
  6523   size(4);
  6524   format %{ "ADD    $src1,$src2,$dst" %}
  6525   opcode(Assembler::add_op3, Assembler::arith_op);
  6526   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6527   ins_pipe(ialu_reg_imm);
  6528 %}
  6530 // Pointer Register Addition
  6531 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  6532   match(Set dst (AddP src1 src2));
  6534   size(4);
  6535   format %{ "ADD    $src1,$src2,$dst" %}
  6536   opcode(Assembler::add_op3, Assembler::arith_op);
  6537   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6538   ins_pipe(ialu_reg_reg);
  6539 %}
  6541 // Pointer Immediate Addition
  6542 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  6543   match(Set dst (AddP src1 src2));
  6545   size(4);
  6546   format %{ "ADD    $src1,$src2,$dst" %}
  6547   opcode(Assembler::add_op3, Assembler::arith_op);
  6548   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6549   ins_pipe(ialu_reg_imm);
  6550 %}
  6552 // Long Addition
  6553 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6554   match(Set dst (AddL src1 src2));
  6556   size(4);
  6557   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  6558   opcode(Assembler::add_op3, Assembler::arith_op);
  6559   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6560   ins_pipe(ialu_reg_reg);
  6561 %}
  6563 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6564   match(Set dst (AddL src1 con));
  6566   size(4);
  6567   format %{ "ADD    $src1,$con,$dst" %}
  6568   opcode(Assembler::add_op3, Assembler::arith_op);
  6569   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6570   ins_pipe(ialu_reg_imm);
  6571 %}
  6573 //----------Conditional_store--------------------------------------------------
  6574 // Conditional-store of the updated heap-top.
  6575 // Used during allocation of the shared heap.
  6576 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  6578 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  6579 instruct loadPLocked(iRegP dst, memory mem) %{
  6580   match(Set dst (LoadPLocked mem));
  6581   ins_cost(MEMORY_REF_COST);
  6583 #ifndef _LP64
  6584   size(4);
  6585   format %{ "LDUW   $mem,$dst\t! ptr" %}
  6586   opcode(Assembler::lduw_op3, 0, REGP_OP);
  6587 #else
  6588   format %{ "LDX    $mem,$dst\t! ptr" %}
  6589   opcode(Assembler::ldx_op3, 0, REGP_OP);
  6590 #endif
  6591   ins_encode( form3_mem_reg( mem, dst ) );
  6592   ins_pipe(iload_mem);
  6593 %}
  6595 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  6596 instruct loadLLocked(iRegL dst, memory mem) %{
  6597   match(Set dst (LoadLLocked mem));
  6598   ins_cost(MEMORY_REF_COST);
  6599   size(4);
  6600   format %{ "LDX    $mem,$dst\t! long" %}
  6601   opcode(Assembler::ldx_op3);
  6602   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6603   ins_pipe(iload_mem);
  6604 %}
  6606 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  6607   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  6608   effect( KILL newval );
  6609   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  6610             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  6611   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  6612   ins_pipe( long_memory_op );
  6613 %}
  6615 // Conditional-store of an int value.
  6616 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  6617   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  6618   effect( KILL newval );
  6619   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  6620             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  6621   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  6622   ins_pipe( long_memory_op );
  6623 %}
  6625 // Conditional-store of a long value.
  6626 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  6627   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  6628   effect( KILL newval );
  6629   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  6630             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  6631   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  6632   ins_pipe( long_memory_op );
  6633 %}
  6635 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  6637 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6638   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  6639   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6640   format %{
  6641             "MOV    $newval,O7\n\t"
  6642             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6643             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6644             "MOV    1,$res\n\t"
  6645             "MOVne  xcc,R_G0,$res"
  6646   %}
  6647   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6648               enc_lflags_ne_to_boolean(res) );
  6649   ins_pipe( long_memory_op );
  6650 %}
  6653 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6654   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  6655   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6656   format %{
  6657             "MOV    $newval,O7\n\t"
  6658             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6659             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6660             "MOV    1,$res\n\t"
  6661             "MOVne  icc,R_G0,$res"
  6662   %}
  6663   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6664               enc_iflags_ne_to_boolean(res) );
  6665   ins_pipe( long_memory_op );
  6666 %}
  6668 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6669   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  6670   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6671   format %{
  6672             "MOV    $newval,O7\n\t"
  6673             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6674             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6675             "MOV    1,$res\n\t"
  6676             "MOVne  xcc,R_G0,$res"
  6677   %}
  6678 #ifdef _LP64
  6679   ins_encode( enc_casx(mem_ptr, oldval, newval),
  6680               enc_lflags_ne_to_boolean(res) );
  6681 #else
  6682   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6683               enc_iflags_ne_to_boolean(res) );
  6684 #endif
  6685   ins_pipe( long_memory_op );
  6686 %}
  6688 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  6689   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  6690   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  6691   format %{
  6692             "MOV    $newval,O7\n\t"
  6693             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  6694             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  6695             "MOV    1,$res\n\t"
  6696             "MOVne  icc,R_G0,$res"
  6697   %}
  6698   ins_encode( enc_casi(mem_ptr, oldval, newval),
  6699               enc_iflags_ne_to_boolean(res) );
  6700   ins_pipe( long_memory_op );
  6701 %}
  6703 //---------------------
  6704 // Subtraction Instructions
  6705 // Register Subtraction
  6706 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6707   match(Set dst (SubI src1 src2));
  6709   size(4);
  6710   format %{ "SUB    $src1,$src2,$dst" %}
  6711   opcode(Assembler::sub_op3, Assembler::arith_op);
  6712   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6713   ins_pipe(ialu_reg_reg);
  6714 %}
  6716 // Immediate Subtraction
  6717 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6718   match(Set dst (SubI src1 src2));
  6720   size(4);
  6721   format %{ "SUB    $src1,$src2,$dst" %}
  6722   opcode(Assembler::sub_op3, Assembler::arith_op);
  6723   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6724   ins_pipe(ialu_reg_imm);
  6725 %}
  6727 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  6728   match(Set dst (SubI zero src2));
  6730   size(4);
  6731   format %{ "NEG    $src2,$dst" %}
  6732   opcode(Assembler::sub_op3, Assembler::arith_op);
  6733   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6734   ins_pipe(ialu_zero_reg);
  6735 %}
  6737 // Long subtraction
  6738 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6739   match(Set dst (SubL src1 src2));
  6741   size(4);
  6742   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6743   opcode(Assembler::sub_op3, Assembler::arith_op);
  6744   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6745   ins_pipe(ialu_reg_reg);
  6746 %}
  6748 // Immediate Subtraction
  6749 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  6750   match(Set dst (SubL src1 con));
  6752   size(4);
  6753   format %{ "SUB    $src1,$con,$dst\t! long" %}
  6754   opcode(Assembler::sub_op3, Assembler::arith_op);
  6755   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  6756   ins_pipe(ialu_reg_imm);
  6757 %}
  6759 // Long negation
  6760 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  6761   match(Set dst (SubL zero src2));
  6763   size(4);
  6764   format %{ "NEG    $src2,$dst\t! long" %}
  6765   opcode(Assembler::sub_op3, Assembler::arith_op);
  6766   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  6767   ins_pipe(ialu_zero_reg);
  6768 %}
  6770 // Multiplication Instructions
  6771 // Integer Multiplication
  6772 // Register Multiplication
  6773 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6774   match(Set dst (MulI src1 src2));
  6776   size(4);
  6777   format %{ "MULX   $src1,$src2,$dst" %}
  6778   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6779   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6780   ins_pipe(imul_reg_reg);
  6781 %}
  6783 // Immediate Multiplication
  6784 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  6785   match(Set dst (MulI src1 src2));
  6787   size(4);
  6788   format %{ "MULX   $src1,$src2,$dst" %}
  6789   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6790   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6791   ins_pipe(imul_reg_imm);
  6792 %}
  6794 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6795   match(Set dst (MulL src1 src2));
  6796   ins_cost(DEFAULT_COST * 5);
  6797   size(4);
  6798   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6799   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6800   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6801   ins_pipe(mulL_reg_reg);
  6802 %}
  6804 // Immediate Multiplication
  6805 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6806   match(Set dst (MulL src1 src2));
  6807   ins_cost(DEFAULT_COST * 5);
  6808   size(4);
  6809   format %{ "MULX   $src1,$src2,$dst" %}
  6810   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6811   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6812   ins_pipe(mulL_reg_imm);
  6813 %}
  6815 // Integer Division
  6816 // Register Division
  6817 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  6818   match(Set dst (DivI src1 src2));
  6819   ins_cost((2+71)*DEFAULT_COST);
  6821   format %{ "SRA     $src2,0,$src2\n\t"
  6822             "SRA     $src1,0,$src1\n\t"
  6823             "SDIVX   $src1,$src2,$dst" %}
  6824   ins_encode( idiv_reg( src1, src2, dst ) );
  6825   ins_pipe(sdiv_reg_reg);
  6826 %}
  6828 // Immediate Division
  6829 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  6830   match(Set dst (DivI src1 src2));
  6831   ins_cost((2+71)*DEFAULT_COST);
  6833   format %{ "SRA     $src1,0,$src1\n\t"
  6834             "SDIVX   $src1,$src2,$dst" %}
  6835   ins_encode( idiv_imm( src1, src2, dst ) );
  6836   ins_pipe(sdiv_reg_imm);
  6837 %}
  6839 //----------Div-By-10-Expansion------------------------------------------------
  6840 // Extract hi bits of a 32x32->64 bit multiply.
  6841 // Expand rule only, not matched
  6842 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  6843   effect( DEF dst, USE src1, USE src2 );
  6844   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  6845             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  6846   ins_encode( enc_mul_hi(dst,src1,src2));
  6847   ins_pipe(sdiv_reg_reg);
  6848 %}
  6850 // Magic constant, reciprocal of 10
  6851 instruct loadConI_x66666667(iRegIsafe dst) %{
  6852   effect( DEF dst );
  6854   size(8);
  6855   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  6856   ins_encode( Set32(0x66666667, dst) );
  6857   ins_pipe(ialu_hi_lo_reg);
  6858 %}
  6860 // Register Shift Right Arithmetic Long by 32-63
  6861 instruct sra_31( iRegI dst, iRegI src ) %{
  6862   effect( DEF dst, USE src );
  6863   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  6864   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  6865   ins_pipe(ialu_reg_reg);
  6866 %}
  6868 // Arithmetic Shift Right by 8-bit immediate
  6869 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  6870   effect( DEF dst, USE src );
  6871   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  6872   opcode(Assembler::sra_op3, Assembler::arith_op);
  6873   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  6874   ins_pipe(ialu_reg_imm);
  6875 %}
  6877 // Integer DIV with 10
  6878 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  6879   match(Set dst (DivI src div));
  6880   ins_cost((6+6)*DEFAULT_COST);
  6881   expand %{
  6882     iRegIsafe tmp1;               // Killed temps;
  6883     iRegIsafe tmp2;               // Killed temps;
  6884     iRegI tmp3;                   // Killed temps;
  6885     iRegI tmp4;                   // Killed temps;
  6886     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  6887     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  6888     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  6889     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  6890     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  6891   %}
  6892 %}
  6894 // Register Long Division
  6895 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6896   match(Set dst (DivL src1 src2));
  6897   ins_cost(DEFAULT_COST*71);
  6898   size(4);
  6899   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6900   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6901   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6902   ins_pipe(divL_reg_reg);
  6903 %}
  6905 // Register Long Division
  6906 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  6907   match(Set dst (DivL src1 src2));
  6908   ins_cost(DEFAULT_COST*71);
  6909   size(4);
  6910   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6911   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6912   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6913   ins_pipe(divL_reg_imm);
  6914 %}
  6916 // Integer Remainder
  6917 // Register Remainder
  6918 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  6919   match(Set dst (ModI src1 src2));
  6920   effect( KILL ccr, KILL temp);
  6922   format %{ "SREM   $src1,$src2,$dst" %}
  6923   ins_encode( irem_reg(src1, src2, dst, temp) );
  6924   ins_pipe(sdiv_reg_reg);
  6925 %}
  6927 // Immediate Remainder
  6928 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  6929   match(Set dst (ModI src1 src2));
  6930   effect( KILL ccr, KILL temp);
  6932   format %{ "SREM   $src1,$src2,$dst" %}
  6933   ins_encode( irem_imm(src1, src2, dst, temp) );
  6934   ins_pipe(sdiv_reg_imm);
  6935 %}
  6937 // Register Long Remainder
  6938 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6939   effect(DEF dst, USE src1, USE src2);
  6940   size(4);
  6941   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6942   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6943   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6944   ins_pipe(divL_reg_reg);
  6945 %}
  6947 // Register Long Division
  6948 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6949   effect(DEF dst, USE src1, USE src2);
  6950   size(4);
  6951   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  6952   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  6953   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6954   ins_pipe(divL_reg_imm);
  6955 %}
  6957 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6958   effect(DEF dst, USE src1, USE src2);
  6959   size(4);
  6960   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  6961   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6962   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6963   ins_pipe(mulL_reg_reg);
  6964 %}
  6966 // Immediate Multiplication
  6967 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  6968   effect(DEF dst, USE src1, USE src2);
  6969   size(4);
  6970   format %{ "MULX   $src1,$src2,$dst" %}
  6971   opcode(Assembler::mulx_op3, Assembler::arith_op);
  6972   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  6973   ins_pipe(mulL_reg_imm);
  6974 %}
  6976 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  6977   effect(DEF dst, USE src1, USE src2);
  6978   size(4);
  6979   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6980   opcode(Assembler::sub_op3, Assembler::arith_op);
  6981   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6982   ins_pipe(ialu_reg_reg);
  6983 %}
  6985 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  6986   effect(DEF dst, USE src1, USE src2);
  6987   size(4);
  6988   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  6989   opcode(Assembler::sub_op3, Assembler::arith_op);
  6990   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  6991   ins_pipe(ialu_reg_reg);
  6992 %}
  6994 // Register Long Remainder
  6995 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  6996   match(Set dst (ModL src1 src2));
  6997   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  6998   expand %{
  6999     iRegL tmp1;
  7000     iRegL tmp2;
  7001     divL_reg_reg_1(tmp1, src1, src2);
  7002     mulL_reg_reg_1(tmp2, tmp1, src2);
  7003     subL_reg_reg_1(dst,  src1, tmp2);
  7004   %}
  7005 %}
  7007 // Register Long Remainder
  7008 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7009   match(Set dst (ModL src1 src2));
  7010   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7011   expand %{
  7012     iRegL tmp1;
  7013     iRegL tmp2;
  7014     divL_reg_imm13_1(tmp1, src1, src2);
  7015     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7016     subL_reg_reg_2  (dst,  src1, tmp2);
  7017   %}
  7018 %}
  7020 // Integer Shift Instructions
  7021 // Register Shift Left
  7022 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7023   match(Set dst (LShiftI src1 src2));
  7025   size(4);
  7026   format %{ "SLL    $src1,$src2,$dst" %}
  7027   opcode(Assembler::sll_op3, Assembler::arith_op);
  7028   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7029   ins_pipe(ialu_reg_reg);
  7030 %}
  7032 // Register Shift Left Immediate
  7033 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7034   match(Set dst (LShiftI src1 src2));
  7036   size(4);
  7037   format %{ "SLL    $src1,$src2,$dst" %}
  7038   opcode(Assembler::sll_op3, Assembler::arith_op);
  7039   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7040   ins_pipe(ialu_reg_imm);
  7041 %}
  7043 // Register Shift Left
  7044 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7045   match(Set dst (LShiftL src1 src2));
  7047   size(4);
  7048   format %{ "SLLX   $src1,$src2,$dst" %}
  7049   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7050   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7051   ins_pipe(ialu_reg_reg);
  7052 %}
  7054 // Register Shift Left Immediate
  7055 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7056   match(Set dst (LShiftL src1 src2));
  7058   size(4);
  7059   format %{ "SLLX   $src1,$src2,$dst" %}
  7060   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7061   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7062   ins_pipe(ialu_reg_imm);
  7063 %}
  7065 // Register Arithmetic Shift Right
  7066 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7067   match(Set dst (RShiftI src1 src2));
  7068   size(4);
  7069   format %{ "SRA    $src1,$src2,$dst" %}
  7070   opcode(Assembler::sra_op3, Assembler::arith_op);
  7071   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7072   ins_pipe(ialu_reg_reg);
  7073 %}
  7075 // Register Arithmetic Shift Right Immediate
  7076 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7077   match(Set dst (RShiftI src1 src2));
  7079   size(4);
  7080   format %{ "SRA    $src1,$src2,$dst" %}
  7081   opcode(Assembler::sra_op3, Assembler::arith_op);
  7082   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7083   ins_pipe(ialu_reg_imm);
  7084 %}
  7086 // Register Shift Right Arithmatic Long
  7087 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7088   match(Set dst (RShiftL src1 src2));
  7090   size(4);
  7091   format %{ "SRAX   $src1,$src2,$dst" %}
  7092   opcode(Assembler::srax_op3, Assembler::arith_op);
  7093   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7094   ins_pipe(ialu_reg_reg);
  7095 %}
  7097 // Register Shift Left Immediate
  7098 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7099   match(Set dst (RShiftL src1 src2));
  7101   size(4);
  7102   format %{ "SRAX   $src1,$src2,$dst" %}
  7103   opcode(Assembler::srax_op3, Assembler::arith_op);
  7104   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7105   ins_pipe(ialu_reg_imm);
  7106 %}
  7108 // Register Shift Right
  7109 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7110   match(Set dst (URShiftI src1 src2));
  7112   size(4);
  7113   format %{ "SRL    $src1,$src2,$dst" %}
  7114   opcode(Assembler::srl_op3, Assembler::arith_op);
  7115   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7116   ins_pipe(ialu_reg_reg);
  7117 %}
  7119 // Register Shift Right Immediate
  7120 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7121   match(Set dst (URShiftI src1 src2));
  7123   size(4);
  7124   format %{ "SRL    $src1,$src2,$dst" %}
  7125   opcode(Assembler::srl_op3, Assembler::arith_op);
  7126   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7127   ins_pipe(ialu_reg_imm);
  7128 %}
  7130 // Register Shift Right
  7131 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7132   match(Set dst (URShiftL src1 src2));
  7134   size(4);
  7135   format %{ "SRLX   $src1,$src2,$dst" %}
  7136   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7137   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7138   ins_pipe(ialu_reg_reg);
  7139 %}
  7141 // Register Shift Right Immediate
  7142 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7143   match(Set dst (URShiftL src1 src2));
  7145   size(4);
  7146   format %{ "SRLX   $src1,$src2,$dst" %}
  7147   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7148   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7149   ins_pipe(ialu_reg_imm);
  7150 %}
  7152 // Register Shift Right Immediate with a CastP2X
  7153 #ifdef _LP64
  7154 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7155   match(Set dst (URShiftL (CastP2X src1) src2));
  7156   size(4);
  7157   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7158   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7159   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7160   ins_pipe(ialu_reg_imm);
  7161 %}
  7162 #else
  7163 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7164   match(Set dst (URShiftI (CastP2X src1) src2));
  7165   size(4);
  7166   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7167   opcode(Assembler::srl_op3, Assembler::arith_op);
  7168   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7169   ins_pipe(ialu_reg_imm);
  7170 %}
  7171 #endif
  7174 //----------Floating Point Arithmetic Instructions-----------------------------
  7176 //  Add float single precision
  7177 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7178   match(Set dst (AddF src1 src2));
  7180   size(4);
  7181   format %{ "FADDS  $src1,$src2,$dst" %}
  7182   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7183   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7184   ins_pipe(faddF_reg_reg);
  7185 %}
  7187 //  Add float double precision
  7188 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7189   match(Set dst (AddD src1 src2));
  7191   size(4);
  7192   format %{ "FADDD  $src1,$src2,$dst" %}
  7193   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7194   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7195   ins_pipe(faddD_reg_reg);
  7196 %}
  7198 //  Sub float single precision
  7199 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7200   match(Set dst (SubF src1 src2));
  7202   size(4);
  7203   format %{ "FSUBS  $src1,$src2,$dst" %}
  7204   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7205   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7206   ins_pipe(faddF_reg_reg);
  7207 %}
  7209 //  Sub float double precision
  7210 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7211   match(Set dst (SubD src1 src2));
  7213   size(4);
  7214   format %{ "FSUBD  $src1,$src2,$dst" %}
  7215   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7216   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7217   ins_pipe(faddD_reg_reg);
  7218 %}
  7220 //  Mul float single precision
  7221 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7222   match(Set dst (MulF src1 src2));
  7224   size(4);
  7225   format %{ "FMULS  $src1,$src2,$dst" %}
  7226   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7227   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7228   ins_pipe(fmulF_reg_reg);
  7229 %}
  7231 //  Mul float double precision
  7232 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7233   match(Set dst (MulD src1 src2));
  7235   size(4);
  7236   format %{ "FMULD  $src1,$src2,$dst" %}
  7237   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7238   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7239   ins_pipe(fmulD_reg_reg);
  7240 %}
  7242 //  Div float single precision
  7243 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7244   match(Set dst (DivF src1 src2));
  7246   size(4);
  7247   format %{ "FDIVS  $src1,$src2,$dst" %}
  7248   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7249   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7250   ins_pipe(fdivF_reg_reg);
  7251 %}
  7253 //  Div float double precision
  7254 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7255   match(Set dst (DivD src1 src2));
  7257   size(4);
  7258   format %{ "FDIVD  $src1,$src2,$dst" %}
  7259   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7260   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7261   ins_pipe(fdivD_reg_reg);
  7262 %}
  7264 //  Absolute float double precision
  7265 instruct absD_reg(regD dst, regD src) %{
  7266   match(Set dst (AbsD src));
  7268   format %{ "FABSd  $src,$dst" %}
  7269   ins_encode(fabsd(dst, src));
  7270   ins_pipe(faddD_reg);
  7271 %}
  7273 //  Absolute float single precision
  7274 instruct absF_reg(regF dst, regF src) %{
  7275   match(Set dst (AbsF src));
  7277   format %{ "FABSs  $src,$dst" %}
  7278   ins_encode(fabss(dst, src));
  7279   ins_pipe(faddF_reg);
  7280 %}
  7282 instruct negF_reg(regF dst, regF src) %{
  7283   match(Set dst (NegF src));
  7285   size(4);
  7286   format %{ "FNEGs  $src,$dst" %}
  7287   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7288   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7289   ins_pipe(faddF_reg);
  7290 %}
  7292 instruct negD_reg(regD dst, regD src) %{
  7293   match(Set dst (NegD src));
  7295   format %{ "FNEGd  $src,$dst" %}
  7296   ins_encode(fnegd(dst, src));
  7297   ins_pipe(faddD_reg);
  7298 %}
  7300 //  Sqrt float double precision
  7301 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7302   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7304   size(4);
  7305   format %{ "FSQRTS $src,$dst" %}
  7306   ins_encode(fsqrts(dst, src));
  7307   ins_pipe(fdivF_reg_reg);
  7308 %}
  7310 //  Sqrt float double precision
  7311 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7312   match(Set dst (SqrtD src));
  7314   size(4);
  7315   format %{ "FSQRTD $src,$dst" %}
  7316   ins_encode(fsqrtd(dst, src));
  7317   ins_pipe(fdivD_reg_reg);
  7318 %}
  7320 //----------Logical Instructions-----------------------------------------------
  7321 // And Instructions
  7322 // Register And
  7323 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7324   match(Set dst (AndI src1 src2));
  7326   size(4);
  7327   format %{ "AND    $src1,$src2,$dst" %}
  7328   opcode(Assembler::and_op3, Assembler::arith_op);
  7329   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7330   ins_pipe(ialu_reg_reg);
  7331 %}
  7333 // Immediate And
  7334 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7335   match(Set dst (AndI src1 src2));
  7337   size(4);
  7338   format %{ "AND    $src1,$src2,$dst" %}
  7339   opcode(Assembler::and_op3, Assembler::arith_op);
  7340   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7341   ins_pipe(ialu_reg_imm);
  7342 %}
  7344 // Register And Long
  7345 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7346   match(Set dst (AndL src1 src2));
  7348   ins_cost(DEFAULT_COST);
  7349   size(4);
  7350   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7351   opcode(Assembler::and_op3, Assembler::arith_op);
  7352   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7353   ins_pipe(ialu_reg_reg);
  7354 %}
  7356 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7357   match(Set dst (AndL src1 con));
  7359   ins_cost(DEFAULT_COST);
  7360   size(4);
  7361   format %{ "AND    $src1,$con,$dst\t! long" %}
  7362   opcode(Assembler::and_op3, Assembler::arith_op);
  7363   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7364   ins_pipe(ialu_reg_imm);
  7365 %}
  7367 // Or Instructions
  7368 // Register Or
  7369 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7370   match(Set dst (OrI src1 src2));
  7372   size(4);
  7373   format %{ "OR     $src1,$src2,$dst" %}
  7374   opcode(Assembler::or_op3, Assembler::arith_op);
  7375   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7376   ins_pipe(ialu_reg_reg);
  7377 %}
  7379 // Immediate Or
  7380 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7381   match(Set dst (OrI src1 src2));
  7383   size(4);
  7384   format %{ "OR     $src1,$src2,$dst" %}
  7385   opcode(Assembler::or_op3, Assembler::arith_op);
  7386   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7387   ins_pipe(ialu_reg_imm);
  7388 %}
  7390 // Register Or Long
  7391 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7392   match(Set dst (OrL src1 src2));
  7394   ins_cost(DEFAULT_COST);
  7395   size(4);
  7396   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7397   opcode(Assembler::or_op3, Assembler::arith_op);
  7398   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7399   ins_pipe(ialu_reg_reg);
  7400 %}
  7402 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7403   match(Set dst (OrL src1 con));
  7404   ins_cost(DEFAULT_COST*2);
  7406   ins_cost(DEFAULT_COST);
  7407   size(4);
  7408   format %{ "OR     $src1,$con,$dst\t! long" %}
  7409   opcode(Assembler::or_op3, Assembler::arith_op);
  7410   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7411   ins_pipe(ialu_reg_imm);
  7412 %}
  7414 #ifndef _LP64
  7416 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7417 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7418   match(Set dst (OrI src1 (CastP2X src2)));
  7420   size(4);
  7421   format %{ "OR     $src1,$src2,$dst" %}
  7422   opcode(Assembler::or_op3, Assembler::arith_op);
  7423   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7424   ins_pipe(ialu_reg_reg);
  7425 %}
  7427 #else
  7429 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7430   match(Set dst (OrL src1 (CastP2X src2)));
  7432   ins_cost(DEFAULT_COST);
  7433   size(4);
  7434   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7435   opcode(Assembler::or_op3, Assembler::arith_op);
  7436   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7437   ins_pipe(ialu_reg_reg);
  7438 %}
  7440 #endif
  7442 // Xor Instructions
  7443 // Register Xor
  7444 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7445   match(Set dst (XorI src1 src2));
  7447   size(4);
  7448   format %{ "XOR    $src1,$src2,$dst" %}
  7449   opcode(Assembler::xor_op3, Assembler::arith_op);
  7450   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7451   ins_pipe(ialu_reg_reg);
  7452 %}
  7454 // Immediate Xor
  7455 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7456   match(Set dst (XorI src1 src2));
  7458   size(4);
  7459   format %{ "XOR    $src1,$src2,$dst" %}
  7460   opcode(Assembler::xor_op3, Assembler::arith_op);
  7461   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7462   ins_pipe(ialu_reg_imm);
  7463 %}
  7465 // Register Xor Long
  7466 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7467   match(Set dst (XorL src1 src2));
  7469   ins_cost(DEFAULT_COST);
  7470   size(4);
  7471   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7472   opcode(Assembler::xor_op3, Assembler::arith_op);
  7473   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7474   ins_pipe(ialu_reg_reg);
  7475 %}
  7477 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7478   match(Set dst (XorL src1 con));
  7480   ins_cost(DEFAULT_COST);
  7481   size(4);
  7482   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7483   opcode(Assembler::xor_op3, Assembler::arith_op);
  7484   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7485   ins_pipe(ialu_reg_imm);
  7486 %}
  7488 //----------Convert to Boolean-------------------------------------------------
  7489 // Nice hack for 32-bit tests but doesn't work for
  7490 // 64-bit pointers.
  7491 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7492   match(Set dst (Conv2B src));
  7493   effect( KILL ccr );
  7494   ins_cost(DEFAULT_COST*2);
  7495   format %{ "CMP    R_G0,$src\n\t"
  7496             "ADDX   R_G0,0,$dst" %}
  7497   ins_encode( enc_to_bool( src, dst ) );
  7498   ins_pipe(ialu_reg_ialu);
  7499 %}
  7501 #ifndef _LP64
  7502 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7503   match(Set dst (Conv2B src));
  7504   effect( KILL ccr );
  7505   ins_cost(DEFAULT_COST*2);
  7506   format %{ "CMP    R_G0,$src\n\t"
  7507             "ADDX   R_G0,0,$dst" %}
  7508   ins_encode( enc_to_bool( src, dst ) );
  7509   ins_pipe(ialu_reg_ialu);
  7510 %}
  7511 #else
  7512 instruct convP2B( iRegI dst, iRegP src ) %{
  7513   match(Set dst (Conv2B src));
  7514   ins_cost(DEFAULT_COST*2);
  7515   format %{ "MOV    $src,$dst\n\t"
  7516             "MOVRNZ $src,1,$dst" %}
  7517   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  7518   ins_pipe(ialu_clr_and_mover);
  7519 %}
  7520 #endif
  7522 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  7523   match(Set dst (CmpLTMask p q));
  7524   effect( KILL ccr );
  7525   ins_cost(DEFAULT_COST*4);
  7526   format %{ "CMP    $p,$q\n\t"
  7527             "MOV    #0,$dst\n\t"
  7528             "BLT,a  .+8\n\t"
  7529             "MOV    #-1,$dst" %}
  7530   ins_encode( enc_ltmask(p,q,dst) );
  7531   ins_pipe(ialu_reg_reg_ialu);
  7532 %}
  7534 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7535   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  7536   effect(KILL ccr, TEMP tmp);
  7537   ins_cost(DEFAULT_COST*3);
  7539   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7540             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7541             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7542   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7543   ins_pipe( cadd_cmpltmask );
  7544 %}
  7546 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  7547   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  7548   effect( KILL ccr, TEMP tmp);
  7549   ins_cost(DEFAULT_COST*3);
  7551   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  7552             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  7553             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  7554   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  7555   ins_pipe( cadd_cmpltmask );
  7556 %}
  7558 //----------Arithmetic Conversion Instructions---------------------------------
  7559 // The conversions operations are all Alpha sorted.  Please keep it that way!
  7561 instruct convD2F_reg(regF dst, regD src) %{
  7562   match(Set dst (ConvD2F src));
  7563   size(4);
  7564   format %{ "FDTOS  $src,$dst" %}
  7565   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  7566   ins_encode(form3_opf_rs2D_rdF(src, dst));
  7567   ins_pipe(fcvtD2F);
  7568 %}
  7571 // Convert a double to an int in a float register.
  7572 // If the double is a NAN, stuff a zero in instead.
  7573 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  7574   effect(DEF dst, USE src, KILL fcc0);
  7575   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7576             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7577             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  7578             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7579             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7580       "skip:" %}
  7581   ins_encode(form_d2i_helper(src,dst));
  7582   ins_pipe(fcvtD2I);
  7583 %}
  7585 instruct convD2I_reg(stackSlotI dst, regD src) %{
  7586   match(Set dst (ConvD2I src));
  7587   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7588   expand %{
  7589     regF tmp;
  7590     convD2I_helper(tmp, src);
  7591     regF_to_stkI(dst, tmp);
  7592   %}
  7593 %}
  7595 // Convert a double to a long in a double register.
  7596 // If the double is a NAN, stuff a zero in instead.
  7597 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  7598   effect(DEF dst, USE src, KILL fcc0);
  7599   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  7600             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7601             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  7602             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7603             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7604       "skip:" %}
  7605   ins_encode(form_d2l_helper(src,dst));
  7606   ins_pipe(fcvtD2L);
  7607 %}
  7610 // Double to Long conversion
  7611 instruct convD2L_reg(stackSlotL dst, regD src) %{
  7612   match(Set dst (ConvD2L src));
  7613   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7614   expand %{
  7615     regD tmp;
  7616     convD2L_helper(tmp, src);
  7617     regD_to_stkL(dst, tmp);
  7618   %}
  7619 %}
  7622 instruct convF2D_reg(regD dst, regF src) %{
  7623   match(Set dst (ConvF2D src));
  7624   format %{ "FSTOD  $src,$dst" %}
  7625   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  7626   ins_encode(form3_opf_rs2F_rdD(src, dst));
  7627   ins_pipe(fcvtF2D);
  7628 %}
  7631 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  7632   effect(DEF dst, USE src, KILL fcc0);
  7633   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7634             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7635             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  7636             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  7637             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  7638       "skip:" %}
  7639   ins_encode(form_f2i_helper(src,dst));
  7640   ins_pipe(fcvtF2I);
  7641 %}
  7643 instruct convF2I_reg(stackSlotI dst, regF src) %{
  7644   match(Set dst (ConvF2I src));
  7645   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7646   expand %{
  7647     regF tmp;
  7648     convF2I_helper(tmp, src);
  7649     regF_to_stkI(dst, tmp);
  7650   %}
  7651 %}
  7654 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  7655   effect(DEF dst, USE src, KILL fcc0);
  7656   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  7657             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  7658             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  7659             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  7660             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  7661       "skip:" %}
  7662   ins_encode(form_f2l_helper(src,dst));
  7663   ins_pipe(fcvtF2L);
  7664 %}
  7666 // Float to Long conversion
  7667 instruct convF2L_reg(stackSlotL dst, regF src) %{
  7668   match(Set dst (ConvF2L src));
  7669   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  7670   expand %{
  7671     regD tmp;
  7672     convF2L_helper(tmp, src);
  7673     regD_to_stkL(dst, tmp);
  7674   %}
  7675 %}
  7678 instruct convI2D_helper(regD dst, regF tmp) %{
  7679   effect(USE tmp, DEF dst);
  7680   format %{ "FITOD  $tmp,$dst" %}
  7681   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7682   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  7683   ins_pipe(fcvtI2D);
  7684 %}
  7686 instruct convI2D_reg(stackSlotI src, regD dst) %{
  7687   match(Set dst (ConvI2D src));
  7688   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7689   expand %{
  7690     regF tmp;
  7691     stkI_to_regF( tmp, src);
  7692     convI2D_helper( dst, tmp);
  7693   %}
  7694 %}
  7696 instruct convI2D_mem( regD_low dst, memory mem ) %{
  7697   match(Set dst (ConvI2D (LoadI mem)));
  7698   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7699   size(8);
  7700   format %{ "LDF    $mem,$dst\n\t"
  7701             "FITOD  $dst,$dst" %}
  7702   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  7703   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7704   ins_pipe(floadF_mem);
  7705 %}
  7708 instruct convI2F_helper(regF dst, regF tmp) %{
  7709   effect(DEF dst, USE tmp);
  7710   format %{ "FITOS  $tmp,$dst" %}
  7711   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  7712   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  7713   ins_pipe(fcvtI2F);
  7714 %}
  7716 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  7717   match(Set dst (ConvI2F src));
  7718   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7719   expand %{
  7720     regF tmp;
  7721     stkI_to_regF(tmp,src);
  7722     convI2F_helper(dst, tmp);
  7723   %}
  7724 %}
  7726 instruct convI2F_mem( regF dst, memory mem ) %{
  7727   match(Set dst (ConvI2F (LoadI mem)));
  7728   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  7729   size(8);
  7730   format %{ "LDF    $mem,$dst\n\t"
  7731             "FITOS  $dst,$dst" %}
  7732   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  7733   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  7734   ins_pipe(floadF_mem);
  7735 %}
  7738 instruct convI2L_reg(iRegL dst, iRegI src) %{
  7739   match(Set dst (ConvI2L src));
  7740   size(4);
  7741   format %{ "SRA    $src,0,$dst\t! int->long" %}
  7742   opcode(Assembler::sra_op3, Assembler::arith_op);
  7743   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7744   ins_pipe(ialu_reg_reg);
  7745 %}
  7747 // Zero-extend convert int to long
  7748 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  7749   match(Set dst (AndL (ConvI2L src) mask) );
  7750   size(4);
  7751   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  7752   opcode(Assembler::srl_op3, Assembler::arith_op);
  7753   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7754   ins_pipe(ialu_reg_reg);
  7755 %}
  7757 // Zero-extend long
  7758 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  7759   match(Set dst (AndL src mask) );
  7760   size(4);
  7761   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  7762   opcode(Assembler::srl_op3, Assembler::arith_op);
  7763   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  7764   ins_pipe(ialu_reg_reg);
  7765 %}
  7767 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  7768   match(Set dst (MoveF2I src));
  7769   effect(DEF dst, USE src);
  7770   ins_cost(MEMORY_REF_COST);
  7772   size(4);
  7773   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  7774   opcode(Assembler::lduw_op3);
  7775   ins_encode(simple_form3_mem_reg( src, dst ) );
  7776   ins_pipe(iload_mem);
  7777 %}
  7779 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  7780   match(Set dst (MoveI2F src));
  7781   effect(DEF dst, USE src);
  7782   ins_cost(MEMORY_REF_COST);
  7784   size(4);
  7785   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  7786   opcode(Assembler::ldf_op3);
  7787   ins_encode(simple_form3_mem_reg(src, dst));
  7788   ins_pipe(floadF_stk);
  7789 %}
  7791 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  7792   match(Set dst (MoveD2L src));
  7793   effect(DEF dst, USE src);
  7794   ins_cost(MEMORY_REF_COST);
  7796   size(4);
  7797   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  7798   opcode(Assembler::ldx_op3);
  7799   ins_encode(simple_form3_mem_reg( src, dst ) );
  7800   ins_pipe(iload_mem);
  7801 %}
  7803 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  7804   match(Set dst (MoveL2D src));
  7805   effect(DEF dst, USE src);
  7806   ins_cost(MEMORY_REF_COST);
  7808   size(4);
  7809   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  7810   opcode(Assembler::lddf_op3);
  7811   ins_encode(simple_form3_mem_reg(src, dst));
  7812   ins_pipe(floadD_stk);
  7813 %}
  7815 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  7816   match(Set dst (MoveF2I src));
  7817   effect(DEF dst, USE src);
  7818   ins_cost(MEMORY_REF_COST);
  7820   size(4);
  7821   format %{ "STF   $src,$dst\t!MoveF2I" %}
  7822   opcode(Assembler::stf_op3);
  7823   ins_encode(simple_form3_mem_reg(dst, src));
  7824   ins_pipe(fstoreF_stk_reg);
  7825 %}
  7827 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  7828   match(Set dst (MoveI2F src));
  7829   effect(DEF dst, USE src);
  7830   ins_cost(MEMORY_REF_COST);
  7832   size(4);
  7833   format %{ "STW    $src,$dst\t!MoveI2F" %}
  7834   opcode(Assembler::stw_op3);
  7835   ins_encode(simple_form3_mem_reg( dst, src ) );
  7836   ins_pipe(istore_mem_reg);
  7837 %}
  7839 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  7840   match(Set dst (MoveD2L src));
  7841   effect(DEF dst, USE src);
  7842   ins_cost(MEMORY_REF_COST);
  7844   size(4);
  7845   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  7846   opcode(Assembler::stdf_op3);
  7847   ins_encode(simple_form3_mem_reg(dst, src));
  7848   ins_pipe(fstoreD_stk_reg);
  7849 %}
  7851 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  7852   match(Set dst (MoveL2D src));
  7853   effect(DEF dst, USE src);
  7854   ins_cost(MEMORY_REF_COST);
  7856   size(4);
  7857   format %{ "STX    $src,$dst\t!MoveL2D" %}
  7858   opcode(Assembler::stx_op3);
  7859   ins_encode(simple_form3_mem_reg( dst, src ) );
  7860   ins_pipe(istore_mem_reg);
  7861 %}
  7864 //-----------
  7865 // Long to Double conversion using V8 opcodes.
  7866 // Still useful because cheetah traps and becomes
  7867 // amazingly slow for some common numbers.
  7869 // Magic constant, 0x43300000
  7870 instruct loadConI_x43300000(iRegI dst) %{
  7871   effect(DEF dst);
  7872   size(4);
  7873   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  7874   ins_encode(SetHi22(0x43300000, dst));
  7875   ins_pipe(ialu_none);
  7876 %}
  7878 // Magic constant, 0x41f00000
  7879 instruct loadConI_x41f00000(iRegI dst) %{
  7880   effect(DEF dst);
  7881   size(4);
  7882   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  7883   ins_encode(SetHi22(0x41f00000, dst));
  7884   ins_pipe(ialu_none);
  7885 %}
  7887 // Construct a double from two float halves
  7888 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  7889   effect(DEF dst, USE src1, USE src2);
  7890   size(8);
  7891   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  7892             "FMOVS  $src2.lo,$dst.lo" %}
  7893   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  7894   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  7895   ins_pipe(faddD_reg_reg);
  7896 %}
  7898 // Convert integer in high half of a double register (in the lower half of
  7899 // the double register file) to double
  7900 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  7901   effect(DEF dst, USE src);
  7902   size(4);
  7903   format %{ "FITOD  $src,$dst" %}
  7904   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  7905   ins_encode(form3_opf_rs2D_rdD(src, dst));
  7906   ins_pipe(fcvtLHi2D);
  7907 %}
  7909 // Add float double precision
  7910 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  7911   effect(DEF dst, USE src1, USE src2);
  7912   size(4);
  7913   format %{ "FADDD  $src1,$src2,$dst" %}
  7914   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7915   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7916   ins_pipe(faddD_reg_reg);
  7917 %}
  7919 // Sub float double precision
  7920 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  7921   effect(DEF dst, USE src1, USE src2);
  7922   size(4);
  7923   format %{ "FSUBD  $src1,$src2,$dst" %}
  7924   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7925   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7926   ins_pipe(faddD_reg_reg);
  7927 %}
  7929 // Mul float double precision
  7930 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  7931   effect(DEF dst, USE src1, USE src2);
  7932   size(4);
  7933   format %{ "FMULD  $src1,$src2,$dst" %}
  7934   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7935   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7936   ins_pipe(fmulD_reg_reg);
  7937 %}
  7939 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  7940   match(Set dst (ConvL2D src));
  7941   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  7943   expand %{
  7944     regD_low   tmpsrc;
  7945     iRegI      ix43300000;
  7946     iRegI      ix41f00000;
  7947     stackSlotL lx43300000;
  7948     stackSlotL lx41f00000;
  7949     regD_low   dx43300000;
  7950     regD       dx41f00000;
  7951     regD       tmp1;
  7952     regD_low   tmp2;
  7953     regD       tmp3;
  7954     regD       tmp4;
  7956     stkL_to_regD(tmpsrc, src);
  7958     loadConI_x43300000(ix43300000);
  7959     loadConI_x41f00000(ix41f00000);
  7960     regI_to_stkLHi(lx43300000, ix43300000);
  7961     regI_to_stkLHi(lx41f00000, ix41f00000);
  7962     stkL_to_regD(dx43300000, lx43300000);
  7963     stkL_to_regD(dx41f00000, lx41f00000);
  7965     convI2D_regDHi_regD(tmp1, tmpsrc);
  7966     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  7967     subD_regD_regD(tmp3, tmp2, dx43300000);
  7968     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  7969     addD_regD_regD(dst, tmp3, tmp4);
  7970   %}
  7971 %}
  7973 // Long to Double conversion using fast fxtof
  7974 instruct convL2D_helper(regD dst, regD tmp) %{
  7975   effect(DEF dst, USE tmp);
  7976   size(4);
  7977   format %{ "FXTOD  $tmp,$dst" %}
  7978   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  7979   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  7980   ins_pipe(fcvtL2D);
  7981 %}
  7983 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  7984   predicate(VM_Version::has_fast_fxtof());
  7985   match(Set dst (ConvL2D src));
  7986   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  7987   expand %{
  7988     regD tmp;
  7989     stkL_to_regD(tmp, src);
  7990     convL2D_helper(dst, tmp);
  7991   %}
  7992 %}
  7994 //-----------
  7995 // Long to Float conversion using V8 opcodes.
  7996 // Still useful because cheetah traps and becomes
  7997 // amazingly slow for some common numbers.
  7999 // Long to Float conversion using fast fxtof
  8000 instruct convL2F_helper(regF dst, regD tmp) %{
  8001   effect(DEF dst, USE tmp);
  8002   size(4);
  8003   format %{ "FXTOS  $tmp,$dst" %}
  8004   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8005   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8006   ins_pipe(fcvtL2F);
  8007 %}
  8009 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8010   match(Set dst (ConvL2F src));
  8011   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8012   expand %{
  8013     regD tmp;
  8014     stkL_to_regD(tmp, src);
  8015     convL2F_helper(dst, tmp);
  8016   %}
  8017 %}
  8018 //-----------
  8020 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8021   match(Set dst (ConvL2I src));
  8022 #ifndef _LP64
  8023   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8024   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8025   ins_pipe(ialu_move_reg_I_to_L);
  8026 #else
  8027   size(4);
  8028   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8029   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8030   ins_pipe(ialu_reg);
  8031 #endif
  8032 %}
  8034 // Register Shift Right Immediate
  8035 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8036   match(Set dst (ConvL2I (RShiftL src cnt)));
  8038   size(4);
  8039   format %{ "SRAX   $src,$cnt,$dst" %}
  8040   opcode(Assembler::srax_op3, Assembler::arith_op);
  8041   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8042   ins_pipe(ialu_reg_imm);
  8043 %}
  8045 // Replicate scalar to packed byte values in Double register
  8046 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8047   effect(DEF dst, USE src);
  8048   format %{ "SLLX  $src,56,$dst\n\t"
  8049             "SRLX  $dst, 8,O7\n\t"
  8050             "OR    $dst,O7,$dst\n\t"
  8051             "SRLX  $dst,16,O7\n\t"
  8052             "OR    $dst,O7,$dst\n\t"
  8053             "SRLX  $dst,32,O7\n\t"
  8054             "OR    $dst,O7,$dst\t! replicate8B" %}
  8055   ins_encode( enc_repl8b(src, dst));
  8056   ins_pipe(ialu_reg);
  8057 %}
  8059 // Replicate scalar to packed byte values in Double register
  8060 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8061   match(Set dst (Replicate8B src));
  8062   expand %{
  8063     iRegL tmp;
  8064     Repl8B_reg_helper(tmp, src);
  8065     regL_to_stkD(dst, tmp);
  8066   %}
  8067 %}
  8069 // Replicate scalar constant to packed byte values in Double register
  8070 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8071   match(Set dst (Replicate8B src));
  8072 #ifdef _LP64
  8073   size(36);
  8074 #else
  8075   size(8);
  8076 #endif
  8077   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8078             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8079   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8080   ins_pipe(loadConFD);
  8081 %}
  8083 // Replicate scalar to packed char values into stack slot
  8084 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8085   effect(DEF dst, USE src);
  8086   format %{ "SLLX  $src,48,$dst\n\t"
  8087             "SRLX  $dst,16,O7\n\t"
  8088             "OR    $dst,O7,$dst\n\t"
  8089             "SRLX  $dst,32,O7\n\t"
  8090             "OR    $dst,O7,$dst\t! replicate4C" %}
  8091   ins_encode( enc_repl4s(src, dst) );
  8092   ins_pipe(ialu_reg);
  8093 %}
  8095 // Replicate scalar to packed char values into stack slot
  8096 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8097   match(Set dst (Replicate4C src));
  8098   expand %{
  8099     iRegL tmp;
  8100     Repl4C_reg_helper(tmp, src);
  8101     regL_to_stkD(dst, tmp);
  8102   %}
  8103 %}
  8105 // Replicate scalar constant to packed char values in Double register
  8106 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8107   match(Set dst (Replicate4C src));
  8108 #ifdef _LP64
  8109   size(36);
  8110 #else
  8111   size(8);
  8112 #endif
  8113   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8114             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8115   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8116   ins_pipe(loadConFD);
  8117 %}
  8119 // Replicate scalar to packed short values into stack slot
  8120 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8121   effect(DEF dst, USE src);
  8122   format %{ "SLLX  $src,48,$dst\n\t"
  8123             "SRLX  $dst,16,O7\n\t"
  8124             "OR    $dst,O7,$dst\n\t"
  8125             "SRLX  $dst,32,O7\n\t"
  8126             "OR    $dst,O7,$dst\t! replicate4S" %}
  8127   ins_encode( enc_repl4s(src, dst) );
  8128   ins_pipe(ialu_reg);
  8129 %}
  8131 // Replicate scalar to packed short values into stack slot
  8132 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8133   match(Set dst (Replicate4S src));
  8134   expand %{
  8135     iRegL tmp;
  8136     Repl4S_reg_helper(tmp, src);
  8137     regL_to_stkD(dst, tmp);
  8138   %}
  8139 %}
  8141 // Replicate scalar constant to packed short values in Double register
  8142 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8143   match(Set dst (Replicate4S src));
  8144 #ifdef _LP64
  8145   size(36);
  8146 #else
  8147   size(8);
  8148 #endif
  8149   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8150             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8151   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8152   ins_pipe(loadConFD);
  8153 %}
  8155 // Replicate scalar to packed int values in Double register
  8156 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8157   effect(DEF dst, USE src);
  8158   format %{ "SLLX  $src,32,$dst\n\t"
  8159             "SRLX  $dst,32,O7\n\t"
  8160             "OR    $dst,O7,$dst\t! replicate2I" %}
  8161   ins_encode( enc_repl2i(src, dst));
  8162   ins_pipe(ialu_reg);
  8163 %}
  8165 // Replicate scalar to packed int values in Double register
  8166 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8167   match(Set dst (Replicate2I src));
  8168   expand %{
  8169     iRegL tmp;
  8170     Repl2I_reg_helper(tmp, src);
  8171     regL_to_stkD(dst, tmp);
  8172   %}
  8173 %}
  8175 // Replicate scalar zero constant to packed int values in Double register
  8176 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8177   match(Set dst (Replicate2I src));
  8178 #ifdef _LP64
  8179   size(36);
  8180 #else
  8181   size(8);
  8182 #endif
  8183   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8184             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8185   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8186   ins_pipe(loadConFD);
  8187 %}
  8189 //----------Control Flow Instructions------------------------------------------
  8190 // Compare Instructions
  8191 // Compare Integers
  8192 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8193   match(Set icc (CmpI op1 op2));
  8194   effect( DEF icc, USE op1, USE op2 );
  8196   size(4);
  8197   format %{ "CMP    $op1,$op2" %}
  8198   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8199   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8200   ins_pipe(ialu_cconly_reg_reg);
  8201 %}
  8203 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8204   match(Set icc (CmpU op1 op2));
  8206   size(4);
  8207   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8208   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8209   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8210   ins_pipe(ialu_cconly_reg_reg);
  8211 %}
  8213 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8214   match(Set icc (CmpI op1 op2));
  8215   effect( DEF icc, USE op1 );
  8217   size(4);
  8218   format %{ "CMP    $op1,$op2" %}
  8219   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8220   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8221   ins_pipe(ialu_cconly_reg_imm);
  8222 %}
  8224 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8225   match(Set icc (CmpI (AndI op1 op2) zero));
  8227   size(4);
  8228   format %{ "BTST   $op2,$op1" %}
  8229   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8230   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8231   ins_pipe(ialu_cconly_reg_reg_zero);
  8232 %}
  8234 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8235   match(Set icc (CmpI (AndI op1 op2) zero));
  8237   size(4);
  8238   format %{ "BTST   $op2,$op1" %}
  8239   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8240   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8241   ins_pipe(ialu_cconly_reg_imm_zero);
  8242 %}
  8244 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8245   match(Set xcc (CmpL op1 op2));
  8246   effect( DEF xcc, USE op1, USE op2 );
  8248   size(4);
  8249   format %{ "CMP    $op1,$op2\t\t! long" %}
  8250   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8251   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8252   ins_pipe(ialu_cconly_reg_reg);
  8253 %}
  8255 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8256   match(Set xcc (CmpL op1 con));
  8257   effect( DEF xcc, USE op1, USE con );
  8259   size(4);
  8260   format %{ "CMP    $op1,$con\t\t! long" %}
  8261   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8262   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8263   ins_pipe(ialu_cconly_reg_reg);
  8264 %}
  8266 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8267   match(Set xcc (CmpL (AndL op1 op2) zero));
  8268   effect( DEF xcc, USE op1, USE op2 );
  8270   size(4);
  8271   format %{ "BTST   $op1,$op2\t\t! long" %}
  8272   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8273   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8274   ins_pipe(ialu_cconly_reg_reg);
  8275 %}
  8277 // useful for checking the alignment of a pointer:
  8278 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8279   match(Set xcc (CmpL (AndL op1 con) zero));
  8280   effect( DEF xcc, USE op1, USE con );
  8282   size(4);
  8283   format %{ "BTST   $op1,$con\t\t! long" %}
  8284   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8285   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8286   ins_pipe(ialu_cconly_reg_reg);
  8287 %}
  8289 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8290   match(Set icc (CmpU op1 op2));
  8292   size(4);
  8293   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8294   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8295   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8296   ins_pipe(ialu_cconly_reg_imm);
  8297 %}
  8299 // Compare Pointers
  8300 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8301   match(Set pcc (CmpP op1 op2));
  8303   size(4);
  8304   format %{ "CMP    $op1,$op2\t! ptr" %}
  8305   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8306   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8307   ins_pipe(ialu_cconly_reg_reg);
  8308 %}
  8310 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8311   match(Set pcc (CmpP op1 op2));
  8313   size(4);
  8314   format %{ "CMP    $op1,$op2\t! ptr" %}
  8315   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8316   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8317   ins_pipe(ialu_cconly_reg_imm);
  8318 %}
  8320 // Compare Narrow oops
  8321 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8322   match(Set icc (CmpN op1 op2));
  8324   size(4);
  8325   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8326   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8327   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8328   ins_pipe(ialu_cconly_reg_reg);
  8329 %}
  8331 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8332   match(Set icc (CmpN op1 op2));
  8334   size(4);
  8335   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8336   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8337   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8338   ins_pipe(ialu_cconly_reg_imm);
  8339 %}
  8341 //----------Max and Min--------------------------------------------------------
  8342 // Min Instructions
  8343 // Conditional move for min
  8344 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8345   effect( USE_DEF op2, USE op1, USE icc );
  8347   size(4);
  8348   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8349   opcode(Assembler::less);
  8350   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8351   ins_pipe(ialu_reg_flags);
  8352 %}
  8354 // Min Register with Register.
  8355 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8356   match(Set op2 (MinI op1 op2));
  8357   ins_cost(DEFAULT_COST*2);
  8358   expand %{
  8359     flagsReg icc;
  8360     compI_iReg(icc,op1,op2);
  8361     cmovI_reg_lt(op2,op1,icc);
  8362   %}
  8363 %}
  8365 // Max Instructions
  8366 // Conditional move for max
  8367 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8368   effect( USE_DEF op2, USE op1, USE icc );
  8369   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8370   opcode(Assembler::greater);
  8371   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8372   ins_pipe(ialu_reg_flags);
  8373 %}
  8375 // Max Register with Register
  8376 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8377   match(Set op2 (MaxI op1 op2));
  8378   ins_cost(DEFAULT_COST*2);
  8379   expand %{
  8380     flagsReg icc;
  8381     compI_iReg(icc,op1,op2);
  8382     cmovI_reg_gt(op2,op1,icc);
  8383   %}
  8384 %}
  8387 //----------Float Compares----------------------------------------------------
  8388 // Compare floating, generate condition code
  8389 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8390   match(Set fcc (CmpF src1 src2));
  8392   size(4);
  8393   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8394   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8395   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8396   ins_pipe(faddF_fcc_reg_reg_zero);
  8397 %}
  8399 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8400   match(Set fcc (CmpD src1 src2));
  8402   size(4);
  8403   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8404   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8405   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8406   ins_pipe(faddD_fcc_reg_reg_zero);
  8407 %}
  8410 // Compare floating, generate -1,0,1
  8411 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8412   match(Set dst (CmpF3 src1 src2));
  8413   effect(KILL fcc0);
  8414   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8415   format %{ "fcmpl  $dst,$src1,$src2" %}
  8416   // Primary = float
  8417   opcode( true );
  8418   ins_encode( floating_cmp( dst, src1, src2 ) );
  8419   ins_pipe( floating_cmp );
  8420 %}
  8422 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8423   match(Set dst (CmpD3 src1 src2));
  8424   effect(KILL fcc0);
  8425   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8426   format %{ "dcmpl  $dst,$src1,$src2" %}
  8427   // Primary = double (not float)
  8428   opcode( false );
  8429   ins_encode( floating_cmp( dst, src1, src2 ) );
  8430   ins_pipe( floating_cmp );
  8431 %}
  8433 //----------Branches---------------------------------------------------------
  8434 // Jump
  8435 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8436 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8437   match(Jump switch_val);
  8439   ins_cost(350);
  8441   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8442              "ADD    O7, lo(table_base), O7\n\t"
  8443              "LD     [O7+$switch_val], O7\n\t"
  8444              "JUMP   O7"
  8445          %}
  8446   ins_encode( jump_enc( switch_val, table) );
  8447   ins_pc_relative(1);
  8448   ins_pipe(ialu_reg_reg);
  8449 %}
  8451 // Direct Branch.  Use V8 version with longer range.
  8452 instruct branch(label labl) %{
  8453   match(Goto);
  8454   effect(USE labl);
  8456   size(8);
  8457   ins_cost(BRANCH_COST);
  8458   format %{ "BA     $labl" %}
  8459   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8460   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8461   ins_encode( enc_ba( labl ) );
  8462   ins_pc_relative(1);
  8463   ins_pipe(br);
  8464 %}
  8466 // Conditional Direct Branch
  8467 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8468   match(If cmp icc);
  8469   effect(USE labl);
  8471   size(8);
  8472   ins_cost(BRANCH_COST);
  8473   format %{ "BP$cmp   $icc,$labl" %}
  8474   // Prim = bits 24-22, Secnd = bits 31-30
  8475   ins_encode( enc_bp( labl, cmp, icc ) );
  8476   ins_pc_relative(1);
  8477   ins_pipe(br_cc);
  8478 %}
  8480 // Branch-on-register tests all 64 bits.  We assume that values
  8481 // in 64-bit registers always remains zero or sign extended
  8482 // unless our code munges the high bits.  Interrupts can chop
  8483 // the high order bits to zero or sign at any time.
  8484 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8485   match(If cmp (CmpI op1 zero));
  8486   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8487   effect(USE labl);
  8489   size(8);
  8490   ins_cost(BRANCH_COST);
  8491   format %{ "BR$cmp   $op1,$labl" %}
  8492   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8493   ins_pc_relative(1);
  8494   ins_pipe(br_reg);
  8495 %}
  8497 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8498   match(If cmp (CmpP op1 null));
  8499   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8500   effect(USE labl);
  8502   size(8);
  8503   ins_cost(BRANCH_COST);
  8504   format %{ "BR$cmp   $op1,$labl" %}
  8505   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8506   ins_pc_relative(1);
  8507   ins_pipe(br_reg);
  8508 %}
  8510 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8511   match(If cmp (CmpL op1 zero));
  8512   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8513   effect(USE labl);
  8515   size(8);
  8516   ins_cost(BRANCH_COST);
  8517   format %{ "BR$cmp   $op1,$labl" %}
  8518   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8519   ins_pc_relative(1);
  8520   ins_pipe(br_reg);
  8521 %}
  8523 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8524   match(If cmp icc);
  8525   effect(USE labl);
  8527   format %{ "BP$cmp  $icc,$labl" %}
  8528   // Prim = bits 24-22, Secnd = bits 31-30
  8529   ins_encode( enc_bp( labl, cmp, icc ) );
  8530   ins_pc_relative(1);
  8531   ins_pipe(br_cc);
  8532 %}
  8534 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  8535   match(If cmp pcc);
  8536   effect(USE labl);
  8538   size(8);
  8539   ins_cost(BRANCH_COST);
  8540   format %{ "BP$cmp  $pcc,$labl" %}
  8541   // Prim = bits 24-22, Secnd = bits 31-30
  8542   ins_encode( enc_bpx( labl, cmp, pcc ) );
  8543   ins_pc_relative(1);
  8544   ins_pipe(br_cc);
  8545 %}
  8547 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  8548   match(If cmp fcc);
  8549   effect(USE labl);
  8551   size(8);
  8552   ins_cost(BRANCH_COST);
  8553   format %{ "FBP$cmp $fcc,$labl" %}
  8554   // Prim = bits 24-22, Secnd = bits 31-30
  8555   ins_encode( enc_fbp( labl, cmp, fcc ) );
  8556   ins_pc_relative(1);
  8557   ins_pipe(br_fcc);
  8558 %}
  8560 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  8561   match(CountedLoopEnd cmp icc);
  8562   effect(USE labl);
  8564   size(8);
  8565   ins_cost(BRANCH_COST);
  8566   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  8567   // Prim = bits 24-22, Secnd = bits 31-30
  8568   ins_encode( enc_bp( labl, cmp, icc ) );
  8569   ins_pc_relative(1);
  8570   ins_pipe(br_cc);
  8571 %}
  8573 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  8574   match(CountedLoopEnd cmp icc);
  8575   effect(USE labl);
  8577   size(8);
  8578   ins_cost(BRANCH_COST);
  8579   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  8580   // Prim = bits 24-22, Secnd = bits 31-30
  8581   ins_encode( enc_bp( labl, cmp, icc ) );
  8582   ins_pc_relative(1);
  8583   ins_pipe(br_cc);
  8584 %}
  8586 // ============================================================================
  8587 // Long Compare
  8588 //
  8589 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  8590 // is tricky.  The flavor of compare used depends on whether we are testing
  8591 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  8592 // The GE test is the negated LT test.  The LE test can be had by commuting
  8593 // the operands (yielding a GE test) and then negating; negate again for the
  8594 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  8595 // NE test is negated from that.
  8597 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  8598 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  8599 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  8600 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  8601 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  8602 // foo match ends up with the wrong leaf.  One fix is to not match both
  8603 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  8604 // both forms beat the trinary form of long-compare and both are very useful
  8605 // on Intel which has so few registers.
  8607 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  8608   match(If cmp xcc);
  8609   effect(USE labl);
  8611   size(8);
  8612   ins_cost(BRANCH_COST);
  8613   format %{ "BP$cmp   $xcc,$labl" %}
  8614   // Prim = bits 24-22, Secnd = bits 31-30
  8615   ins_encode( enc_bpl( labl, cmp, xcc ) );
  8616   ins_pc_relative(1);
  8617   ins_pipe(br_cc);
  8618 %}
  8620 // Manifest a CmpL3 result in an integer register.  Very painful.
  8621 // This is the test to avoid.
  8622 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  8623   match(Set dst (CmpL3 src1 src2) );
  8624   effect( KILL ccr );
  8625   ins_cost(6*DEFAULT_COST);
  8626   size(24);
  8627   format %{ "CMP    $src1,$src2\t\t! long\n"
  8628           "\tBLT,a,pn done\n"
  8629           "\tMOV    -1,$dst\t! delay slot\n"
  8630           "\tBGT,a,pn done\n"
  8631           "\tMOV    1,$dst\t! delay slot\n"
  8632           "\tCLR    $dst\n"
  8633     "done:"     %}
  8634   ins_encode( cmpl_flag(src1,src2,dst) );
  8635   ins_pipe(cmpL_reg);
  8636 %}
  8638 // Conditional move
  8639 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  8640   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8641   ins_cost(150);
  8642   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8643   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8644   ins_pipe(ialu_reg);
  8645 %}
  8647 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  8648   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  8649   ins_cost(140);
  8650   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  8651   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8652   ins_pipe(ialu_imm);
  8653 %}
  8655 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  8656   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8657   ins_cost(150);
  8658   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8659   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8660   ins_pipe(ialu_reg);
  8661 %}
  8663 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  8664   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  8665   ins_cost(140);
  8666   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8667   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8668   ins_pipe(ialu_imm);
  8669 %}
  8671 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  8672   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  8673   ins_cost(150);
  8674   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8675   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8676   ins_pipe(ialu_reg);
  8677 %}
  8679 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  8680   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8681   ins_cost(150);
  8682   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8683   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  8684   ins_pipe(ialu_reg);
  8685 %}
  8687 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  8688   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  8689   ins_cost(140);
  8690   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  8691   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  8692   ins_pipe(ialu_imm);
  8693 %}
  8695 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  8696   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  8697   ins_cost(150);
  8698   opcode(0x101);
  8699   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  8700   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8701   ins_pipe(int_conditional_float_move);
  8702 %}
  8704 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  8705   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  8706   ins_cost(150);
  8707   opcode(0x102);
  8708   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  8709   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  8710   ins_pipe(int_conditional_float_move);
  8711 %}
  8713 // ============================================================================
  8714 // Safepoint Instruction
  8715 instruct safePoint_poll(iRegP poll) %{
  8716   match(SafePoint poll);
  8717   effect(USE poll);
  8719   size(4);
  8720 #ifdef _LP64
  8721   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  8722 #else
  8723   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  8724 #endif
  8725   ins_encode %{
  8726     __ relocate(relocInfo::poll_type);
  8727     __ ld_ptr($poll$$Register, 0, G0);
  8728   %}
  8729   ins_pipe(loadPollP);
  8730 %}
  8732 // ============================================================================
  8733 // Call Instructions
  8734 // Call Java Static Instruction
  8735 instruct CallStaticJavaDirect( method meth ) %{
  8736   match(CallStaticJava);
  8737   effect(USE meth);
  8739   size(8);
  8740   ins_cost(CALL_COST);
  8741   format %{ "CALL,static  ; NOP ==> " %}
  8742   ins_encode( Java_Static_Call( meth ), call_epilog );
  8743   ins_pc_relative(1);
  8744   ins_pipe(simple_call);
  8745 %}
  8747 // Call Java Dynamic Instruction
  8748 instruct CallDynamicJavaDirect( method meth ) %{
  8749   match(CallDynamicJava);
  8750   effect(USE meth);
  8752   ins_cost(CALL_COST);
  8753   format %{ "SET    (empty),R_G5\n\t"
  8754             "CALL,dynamic  ; NOP ==> " %}
  8755   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  8756   ins_pc_relative(1);
  8757   ins_pipe(call);
  8758 %}
  8760 // Call Runtime Instruction
  8761 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  8762   match(CallRuntime);
  8763   effect(USE meth, KILL l7);
  8764   ins_cost(CALL_COST);
  8765   format %{ "CALL,runtime" %}
  8766   ins_encode( Java_To_Runtime( meth ),
  8767               call_epilog, adjust_long_from_native_call );
  8768   ins_pc_relative(1);
  8769   ins_pipe(simple_call);
  8770 %}
  8772 // Call runtime without safepoint - same as CallRuntime
  8773 instruct CallLeafDirect(method meth, l7RegP l7) %{
  8774   match(CallLeaf);
  8775   effect(USE meth, KILL l7);
  8776   ins_cost(CALL_COST);
  8777   format %{ "CALL,runtime leaf" %}
  8778   ins_encode( Java_To_Runtime( meth ),
  8779               call_epilog,
  8780               adjust_long_from_native_call );
  8781   ins_pc_relative(1);
  8782   ins_pipe(simple_call);
  8783 %}
  8785 // Call runtime without safepoint - same as CallLeaf
  8786 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  8787   match(CallLeafNoFP);
  8788   effect(USE meth, KILL l7);
  8789   ins_cost(CALL_COST);
  8790   format %{ "CALL,runtime leaf nofp" %}
  8791   ins_encode( Java_To_Runtime( meth ),
  8792               call_epilog,
  8793               adjust_long_from_native_call );
  8794   ins_pc_relative(1);
  8795   ins_pipe(simple_call);
  8796 %}
  8798 // Tail Call; Jump from runtime stub to Java code.
  8799 // Also known as an 'interprocedural jump'.
  8800 // Target of jump will eventually return to caller.
  8801 // TailJump below removes the return address.
  8802 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  8803   match(TailCall jump_target method_oop );
  8805   ins_cost(CALL_COST);
  8806   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  8807   ins_encode(form_jmpl(jump_target));
  8808   ins_pipe(tail_call);
  8809 %}
  8812 // Return Instruction
  8813 instruct Ret() %{
  8814   match(Return);
  8816   // The epilogue node did the ret already.
  8817   size(0);
  8818   format %{ "! return" %}
  8819   ins_encode();
  8820   ins_pipe(empty);
  8821 %}
  8824 // Tail Jump; remove the return address; jump to target.
  8825 // TailCall above leaves the return address around.
  8826 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  8827 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  8828 // "restore" before this instruction (in Epilogue), we need to materialize it
  8829 // in %i0.
  8830 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  8831   match( TailJump jump_target ex_oop );
  8832   ins_cost(CALL_COST);
  8833   format %{ "! discard R_O7\n\t"
  8834             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  8835   ins_encode(form_jmpl_set_exception_pc(jump_target));
  8836   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  8837   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  8838   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  8839   ins_pipe(tail_call);
  8840 %}
  8842 // Create exception oop: created by stack-crawling runtime code.
  8843 // Created exception is now available to this handler, and is setup
  8844 // just prior to jumping to this handler.  No code emitted.
  8845 instruct CreateException( o0RegP ex_oop )
  8846 %{
  8847   match(Set ex_oop (CreateEx));
  8848   ins_cost(0);
  8850   size(0);
  8851   // use the following format syntax
  8852   format %{ "! exception oop is in R_O0; no code emitted" %}
  8853   ins_encode();
  8854   ins_pipe(empty);
  8855 %}
  8858 // Rethrow exception:
  8859 // The exception oop will come in the first argument position.
  8860 // Then JUMP (not call) to the rethrow stub code.
  8861 instruct RethrowException()
  8862 %{
  8863   match(Rethrow);
  8864   ins_cost(CALL_COST);
  8866   // use the following format syntax
  8867   format %{ "Jmp    rethrow_stub" %}
  8868   ins_encode(enc_rethrow);
  8869   ins_pipe(tail_call);
  8870 %}
  8873 // Die now
  8874 instruct ShouldNotReachHere( )
  8875 %{
  8876   match(Halt);
  8877   ins_cost(CALL_COST);
  8879   size(4);
  8880   // Use the following format syntax
  8881   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  8882   ins_encode( form2_illtrap() );
  8883   ins_pipe(tail_call);
  8884 %}
  8886 // ============================================================================
  8887 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  8888 // array for an instance of the superklass.  Set a hidden internal cache on a
  8889 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  8890 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  8891 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  8892   match(Set index (PartialSubtypeCheck sub super));
  8893   effect( KILL pcc, KILL o7 );
  8894   ins_cost(DEFAULT_COST*10);
  8895   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  8896   ins_encode( enc_PartialSubtypeCheck() );
  8897   ins_pipe(partial_subtype_check_pipe);
  8898 %}
  8900 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  8901   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  8902   effect( KILL idx, KILL o7 );
  8903   ins_cost(DEFAULT_COST*10);
  8904   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  8905   ins_encode( enc_PartialSubtypeCheck() );
  8906   ins_pipe(partial_subtype_check_pipe);
  8907 %}
  8910 // ============================================================================
  8911 // inlined locking and unlocking
  8913 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8914   match(Set pcc (FastLock object box));
  8916   effect(KILL scratch, TEMP scratch2);
  8917   ins_cost(100);
  8919   size(4*112);       // conservative overestimation ...
  8920   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8921   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  8922   ins_pipe(long_memory_op);
  8923 %}
  8926 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  8927   match(Set pcc (FastUnlock object box));
  8928   effect(KILL scratch, TEMP scratch2);
  8929   ins_cost(100);
  8931   size(4*120);       // conservative overestimation ...
  8932   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  8933   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  8934   ins_pipe(long_memory_op);
  8935 %}
  8937 // Count and Base registers are fixed because the allocator cannot
  8938 // kill unknown registers.  The encodings are generic.
  8939 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  8940   match(Set dummy (ClearArray cnt base));
  8941   effect(TEMP temp, KILL ccr);
  8942   ins_cost(300);
  8943   format %{ "MOV    $cnt,$temp\n"
  8944     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  8945     "        BRge   loop\t\t! Clearing loop\n"
  8946     "        STX    G0,[$base+$temp]\t! delay slot" %}
  8947   ins_encode( enc_Clear_Array(cnt, base, temp) );
  8948   ins_pipe(long_memory_op);
  8949 %}
  8951 instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result,
  8952                         o7RegI tmp3, flagsReg ccr) %{
  8953   match(Set result (StrComp str1 str2));
  8954   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr, KILL tmp3);
  8955   ins_cost(300);
  8956   format %{ "String Compare $str1,$str2 -> $result" %}
  8957   ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) );
  8958   ins_pipe(long_memory_op);
  8959 %}
  8961 // ============================================================================
  8962 //------------Bytes reverse--------------------------------------------------
  8964 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  8965   match(Set dst (ReverseBytesI src));
  8966   effect(DEF dst, USE src);
  8968   // Op cost is artificially doubled to make sure that load or store
  8969   // instructions are preferred over this one which requires a spill
  8970   // onto a stack slot.
  8971   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8972   size(8);
  8973   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  8974   opcode(Assembler::lduwa_op3);
  8975   ins_encode( form3_mem_reg_little(src, dst) );
  8976   ins_pipe( iload_mem );
  8977 %}
  8979 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  8980   match(Set dst (ReverseBytesL src));
  8981   effect(DEF dst, USE src);
  8983   // Op cost is artificially doubled to make sure that load or store
  8984   // instructions are preferred over this one which requires a spill
  8985   // onto a stack slot.
  8986   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  8987   size(8);
  8988   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  8990   opcode(Assembler::ldxa_op3);
  8991   ins_encode( form3_mem_reg_little(src, dst) );
  8992   ins_pipe( iload_mem );
  8993 %}
  8995 // Load Integer reversed byte order
  8996 instruct loadI_reversed(iRegI dst, memory src) %{
  8997   match(Set dst (ReverseBytesI (LoadI src)));
  8999   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9000   size(8);
  9001   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9003   opcode(Assembler::lduwa_op3);
  9004   ins_encode( form3_mem_reg_little( src, dst) );
  9005   ins_pipe(iload_mem);
  9006 %}
  9008 // Load Long - aligned and reversed
  9009 instruct loadL_reversed(iRegL dst, memory src) %{
  9010   match(Set dst (ReverseBytesL (LoadL src)));
  9012   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9013   size(8);
  9014   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9016   opcode(Assembler::ldxa_op3);
  9017   ins_encode( form3_mem_reg_little( src, dst ) );
  9018   ins_pipe(iload_mem);
  9019 %}
  9021 // Store Integer reversed byte order
  9022 instruct storeI_reversed(memory dst, iRegI src) %{
  9023   match(Set dst (StoreI dst (ReverseBytesI src)));
  9025   ins_cost(MEMORY_REF_COST);
  9026   size(8);
  9027   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9029   opcode(Assembler::stwa_op3);
  9030   ins_encode( form3_mem_reg_little( dst, src) );
  9031   ins_pipe(istore_mem_reg);
  9032 %}
  9034 // Store Long reversed byte order
  9035 instruct storeL_reversed(memory dst, iRegL src) %{
  9036   match(Set dst (StoreL dst (ReverseBytesL src)));
  9038   ins_cost(MEMORY_REF_COST);
  9039   size(8);
  9040   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9042   opcode(Assembler::stxa_op3);
  9043   ins_encode( form3_mem_reg_little( dst, src) );
  9044   ins_pipe(istore_mem_reg);
  9045 %}
  9047 //----------PEEPHOLE RULES-----------------------------------------------------
  9048 // These must follow all instruction definitions as they use the names
  9049 // defined in the instructions definitions.
  9050 //
  9051 // peepmatch ( root_instr_name [preceding_instruction]* );
  9052 //
  9053 // peepconstraint %{
  9054 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9055 //  [, ...] );
  9056 // // instruction numbers are zero-based using left to right order in peepmatch
  9057 //
  9058 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9059 // // provide an instruction_number.operand_name for each operand that appears
  9060 // // in the replacement instruction's match rule
  9061 //
  9062 // ---------VM FLAGS---------------------------------------------------------
  9063 //
  9064 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9065 //
  9066 // Each peephole rule is given an identifying number starting with zero and
  9067 // increasing by one in the order seen by the parser.  An individual peephole
  9068 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9069 // on the command-line.
  9070 //
  9071 // ---------CURRENT LIMITATIONS----------------------------------------------
  9072 //
  9073 // Only match adjacent instructions in same basic block
  9074 // Only equality constraints
  9075 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9076 // Only one replacement instruction
  9077 //
  9078 // ---------EXAMPLE----------------------------------------------------------
  9079 //
  9080 // // pertinent parts of existing instructions in architecture description
  9081 // instruct movI(eRegI dst, eRegI src) %{
  9082 //   match(Set dst (CopyI src));
  9083 // %}
  9084 //
  9085 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9086 //   match(Set dst (AddI dst src));
  9087 //   effect(KILL cr);
  9088 // %}
  9089 //
  9090 // // Change (inc mov) to lea
  9091 // peephole %{
  9092 //   // increment preceeded by register-register move
  9093 //   peepmatch ( incI_eReg movI );
  9094 //   // require that the destination register of the increment
  9095 //   // match the destination register of the move
  9096 //   peepconstraint ( 0.dst == 1.dst );
  9097 //   // construct a replacement instruction that sets
  9098 //   // the destination to ( move's source register + one )
  9099 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9100 // %}
  9101 //
  9103 // // Change load of spilled value to only a spill
  9104 // instruct storeI(memory mem, eRegI src) %{
  9105 //   match(Set mem (StoreI mem src));
  9106 // %}
  9107 //
  9108 // instruct loadI(eRegI dst, memory mem) %{
  9109 //   match(Set dst (LoadI mem));
  9110 // %}
  9111 //
  9112 // peephole %{
  9113 //   peepmatch ( loadI storeI );
  9114 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9115 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9116 // %}
  9118 //----------SMARTSPILL RULES---------------------------------------------------
  9119 // These must follow all instruction definitions as they use the names
  9120 // defined in the instructions definitions.
  9121 //
  9122 // SPARC will probably not have any of these rules due to RISC instruction set.
  9124 //----------PIPELINE-----------------------------------------------------------
  9125 // Rules which define the behavior of the target architectures pipeline.

mercurial