src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Thu, 20 Sep 2012 16:49:17 +0200

author
roland
date
Thu, 20 Sep 2012 16:49:17 +0200
changeset 4106
7eca5de9e0b6
parent 4051
8a02ca5e5576
child 4142
d8ce2825b193
child 4159
8e47bac5643a
permissions
-rw-r--r--

7023898: Intrinsify AtomicLongFieldUpdater.getAndIncrement()
Summary: use shorter instruction sequences for atomic add and atomic exchange when possible.
Reviewed-by: kvn, jrose

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (dst->is_register()) {
   109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   110           return !PatchALot;
   111         } else if (src->is_single_stack()) {
   112           return true;
   113         }
   114       }
   116       if (src->is_register()) {
   117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   118           return !PatchALot;
   119         } else if (dst->is_single_stack()) {
   120           return true;
   121         }
   122       }
   124       if (dst->is_register() &&
   125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   127         return true;
   128       }
   130       return false;
   131     }
   133     default:
   134       return false;
   135   }
   136   ShouldNotReachHere();
   137 }
   140 LIR_Opr LIR_Assembler::receiverOpr() {
   141   return FrameMap::O0_oop_opr;
   142 }
   145 LIR_Opr LIR_Assembler::osrBufferPointer() {
   146   return FrameMap::I0_opr;
   147 }
   150 int LIR_Assembler::initial_frame_size_in_bytes() {
   151   return in_bytes(frame_map()->framesize_in_bytes());
   152 }
   155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   156 // we fetch the class of the receiver (O0) and compare it with the cached class.
   157 // If they do not match we jump to slow case.
   158 int LIR_Assembler::check_icache() {
   159   int offset = __ offset();
   160   __ inline_cache_check(O0, G5_inline_cache_reg);
   161   return offset;
   162 }
   165 void LIR_Assembler::osr_entry() {
   166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   167   //
   168   //   1. Create a new compiled activation.
   169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   170   //      at the osr_bci; it is not initialized.
   171   //   3. Jump to the continuation address in compiled code to resume execution.
   173   // OSR entry point
   174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   176   ValueStack* entry_state = osr_entry->end()->state();
   177   int number_of_locks = entry_state->locks_size();
   179   // Create a frame for the compiled activation.
   180   __ build_frame(initial_frame_size_in_bytes());
   182   // OSR buffer is
   183   //
   184   // locals[nlocals-1..0]
   185   // monitors[number_of_locks-1..0]
   186   //
   187   // locals is a direct copy of the interpreter frame so in the osr buffer
   188   // so first slot in the local array is the last local from the interpreter
   189   // and last slot is local[0] (receiver) from the interpreter
   190   //
   191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   193   // in the interpreter frame (the method lock if a sync method)
   195   // Initialize monitors in the compiled activation.
   196   //   I0: pointer to osr buffer
   197   //
   198   // All other registers are dead at this point and the locals will be
   199   // copied into place by code emitted in the IR.
   201   Register OSR_buf = osrBufferPointer()->as_register();
   202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   203     int monitor_offset = BytesPerWord * method()->max_locals() +
   204       (2 * BytesPerWord) * (number_of_locks - 1);
   205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   206     // the OSR buffer using 2 word entries: first the lock and then
   207     // the oop.
   208     for (int i = 0; i < number_of_locks; i++) {
   209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   210 #ifdef ASSERT
   211       // verify the interpreter's monitor has a non-null object
   212       {
   213         Label L;
   214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   216         __ stop("locked object is NULL");
   217         __ bind(L);
   218       }
   219 #endif // ASSERT
   220       // Copy the lock field into the compiled activation.
   221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   225     }
   226   }
   227 }
   230 // Optimized Library calls
   231 // This is the fast version of java.lang.String.compare; it has not
   232 // OSR-entry and therefore, we generate a slow version for OSR's
   233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   234   Register str0 = left->as_register();
   235   Register str1 = right->as_register();
   237   Label Ldone;
   239   Register result = dst->as_register();
   240   {
   241     // Get a pointer to the first character of string0 in tmp0
   242     //   and get string0.length() in str0
   243     // Get a pointer to the first character of string1 in tmp1
   244     //   and get string1.length() in str1
   245     // Also, get string0.length()-string1.length() in
   246     //   o7 and get the condition code set
   247     // Note: some instructions have been hoisted for better instruction scheduling
   249     Register tmp0 = L0;
   250     Register tmp1 = L1;
   251     Register tmp2 = L2;
   253     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   254     if (java_lang_String::has_offset_field()) {
   255       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   256       int  count_offset = java_lang_String:: count_offset_in_bytes();
   257       __ load_heap_oop(str0, value_offset, tmp0);
   258       __ ld(str0, offset_offset, tmp2);
   259       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   260       __ ld(str0, count_offset, str0);
   261       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   262     } else {
   263       __ load_heap_oop(str0, value_offset, tmp1);
   264       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   265       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   266     }
   268     // str1 may be null
   269     add_debug_info_for_null_check_here(info);
   271     if (java_lang_String::has_offset_field()) {
   272       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   273       int  count_offset = java_lang_String:: count_offset_in_bytes();
   274       __ load_heap_oop(str1, value_offset, tmp1);
   275       __ add(tmp0, tmp2, tmp0);
   277       __ ld(str1, offset_offset, tmp2);
   278       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   279       __ ld(str1, count_offset, str1);
   280       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   281       __ add(tmp1, tmp2, tmp1);
   282     } else {
   283       __ load_heap_oop(str1, value_offset, tmp2);
   284       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   285       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   286     }
   287     __ subcc(str0, str1, O7);
   288   }
   290   {
   291     // Compute the minimum of the string lengths, scale it and store it in limit
   292     Register count0 = I0;
   293     Register count1 = I1;
   294     Register limit  = L3;
   296     Label Lskip;
   297     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   298     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   299     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   300     __ bind(Lskip);
   302     // If either string is empty (or both of them) the result is the difference in lengths
   303     __ cmp(limit, 0);
   304     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   305     __ delayed()->mov(O7, result);  // result is difference in lengths
   306   }
   308   {
   309     // Neither string is empty
   310     Label Lloop;
   312     Register base0 = L0;
   313     Register base1 = L1;
   314     Register chr0  = I0;
   315     Register chr1  = I1;
   316     Register limit = L3;
   318     // Shift base0 and base1 to the end of the arrays, negate limit
   319     __ add(base0, limit, base0);
   320     __ add(base1, limit, base1);
   321     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   323     __ lduh(base0, limit, chr0);
   324     __ bind(Lloop);
   325     __ lduh(base1, limit, chr1);
   326     __ subcc(chr0, chr1, chr0);
   327     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   328     assert(chr0 == result, "result must be pre-placed");
   329     __ delayed()->inccc(limit, sizeof(jchar));
   330     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   331     __ delayed()->lduh(base0, limit, chr0);
   332   }
   334   // If strings are equal up to min length, return the length difference.
   335   __ mov(O7, result);
   337   // Otherwise, return the difference between the first mismatched chars.
   338   __ bind(Ldone);
   339 }
   342 // --------------------------------------------------------------------------------------------
   344 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   345   if (!GenerateSynchronizationCode) return;
   347   Register obj_reg = obj_opr->as_register();
   348   Register lock_reg = lock_opr->as_register();
   350   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   351   Register reg = mon_addr.base();
   352   int offset = mon_addr.disp();
   353   // compute pointer to BasicLock
   354   if (mon_addr.is_simm13()) {
   355     __ add(reg, offset, lock_reg);
   356   }
   357   else {
   358     __ set(offset, lock_reg);
   359     __ add(reg, lock_reg, lock_reg);
   360   }
   361   // unlock object
   362   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   363   // _slow_case_stubs->append(slow_case);
   364   // temporary fix: must be created after exceptionhandler, therefore as call stub
   365   _slow_case_stubs->append(slow_case);
   366   if (UseFastLocking) {
   367     // try inlined fast unlocking first, revert to slow locking if it fails
   368     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   369     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   370     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   371   } else {
   372     // always do slow unlocking
   373     // note: the slow unlocking code could be inlined here, however if we use
   374     //       slow unlocking, speed doesn't matter anyway and this solution is
   375     //       simpler and requires less duplicated code - additionally, the
   376     //       slow unlocking code is the same in either case which simplifies
   377     //       debugging
   378     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   379     __ delayed()->nop();
   380   }
   381   // done
   382   __ bind(*slow_case->continuation());
   383 }
   386 int LIR_Assembler::emit_exception_handler() {
   387   // if the last instruction is a call (typically to do a throw which
   388   // is coming at the end after block reordering) the return address
   389   // must still point into the code area in order to avoid assertion
   390   // failures when searching for the corresponding bci => add a nop
   391   // (was bug 5/14/1999 - gri)
   392   __ nop();
   394   // generate code for exception handler
   395   ciMethod* method = compilation()->method();
   397   address handler_base = __ start_a_stub(exception_handler_size);
   399   if (handler_base == NULL) {
   400     // not enough space left for the handler
   401     bailout("exception handler overflow");
   402     return -1;
   403   }
   405   int offset = code_offset();
   407   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   408   __ delayed()->nop();
   409   __ should_not_reach_here();
   410   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   411   __ end_a_stub();
   413   return offset;
   414 }
   417 // Emit the code to remove the frame from the stack in the exception
   418 // unwind path.
   419 int LIR_Assembler::emit_unwind_handler() {
   420 #ifndef PRODUCT
   421   if (CommentedAssembly) {
   422     _masm->block_comment("Unwind handler");
   423   }
   424 #endif
   426   int offset = code_offset();
   428   // Fetch the exception from TLS and clear out exception related thread state
   429   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   430   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   431   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   433   __ bind(_unwind_handler_entry);
   434   __ verify_not_null_oop(O0);
   435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   436     __ mov(O0, I0);  // Preserve the exception
   437   }
   439   // Preform needed unlocking
   440   MonitorExitStub* stub = NULL;
   441   if (method()->is_synchronized()) {
   442     monitor_address(0, FrameMap::I1_opr);
   443     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   444     __ unlock_object(I3, I2, I1, *stub->entry());
   445     __ bind(*stub->continuation());
   446   }
   448   if (compilation()->env()->dtrace_method_probes()) {
   449     __ mov(G2_thread, O0);
   450     __ save_thread(I1); // need to preserve thread in G2 across
   451                         // runtime call
   452     metadata2reg(method()->constant_encoding(), O1);
   453     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   454     __ delayed()->nop();
   455     __ restore_thread(I1);
   456   }
   458   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   459     __ mov(I0, O0);  // Restore the exception
   460   }
   462   // dispatch to the unwind logic
   463   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   464   __ delayed()->nop();
   466   // Emit the slow path assembly
   467   if (stub != NULL) {
   468     stub->emit_code(this);
   469   }
   471   return offset;
   472 }
   475 int LIR_Assembler::emit_deopt_handler() {
   476   // if the last instruction is a call (typically to do a throw which
   477   // is coming at the end after block reordering) the return address
   478   // must still point into the code area in order to avoid assertion
   479   // failures when searching for the corresponding bci => add a nop
   480   // (was bug 5/14/1999 - gri)
   481   __ nop();
   483   // generate code for deopt handler
   484   ciMethod* method = compilation()->method();
   485   address handler_base = __ start_a_stub(deopt_handler_size);
   486   if (handler_base == NULL) {
   487     // not enough space left for the handler
   488     bailout("deopt handler overflow");
   489     return -1;
   490   }
   492   int offset = code_offset();
   493   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   494   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   495   __ delayed()->nop();
   496   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   497   __ end_a_stub();
   499   return offset;
   500 }
   503 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   504   if (o == NULL) {
   505     __ set(NULL_WORD, reg);
   506   } else {
   507     int oop_index = __ oop_recorder()->find_index(o);
   508     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
   509     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   510     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   511   }
   512 }
   515 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   516   // Allocate a new index in table to hold the object once it's been patched
   517   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
   518   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
   520   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   521   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   522   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   523   // NULL will be dynamically patched later and the patched value may be large.  We must
   524   // therefore generate the sethi/add as a placeholders
   525   __ patchable_set(addrlit, reg);
   527   patching_epilog(patch, lir_patch_normal, reg, info);
   528 }
   531 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
   532   __ set_metadata_constant(o, reg);
   533 }
   535 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
   536   // Allocate a new index in table to hold the klass once it's been patched
   537   int index = __ oop_recorder()->allocate_metadata_index(NULL);
   538   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
   539   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
   540   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
   541   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   542   // NULL will be dynamically patched later and the patched value may be large.  We must
   543   // therefore generate the sethi/add as a placeholders
   544   __ patchable_set(addrlit, reg);
   546   patching_epilog(patch, lir_patch_normal, reg, info);
   547 }
   549 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   550   Register Rdividend = op->in_opr1()->as_register();
   551   Register Rdivisor  = noreg;
   552   Register Rscratch  = op->in_opr3()->as_register();
   553   Register Rresult   = op->result_opr()->as_register();
   554   int divisor = -1;
   556   if (op->in_opr2()->is_register()) {
   557     Rdivisor = op->in_opr2()->as_register();
   558   } else {
   559     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   560     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   561   }
   563   assert(Rdividend != Rscratch, "");
   564   assert(Rdivisor  != Rscratch, "");
   565   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   567   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   568     // convert division by a power of two into some shifts and logical operations
   569     if (op->code() == lir_idiv) {
   570       if (divisor == 2) {
   571         __ srl(Rdividend, 31, Rscratch);
   572       } else {
   573         __ sra(Rdividend, 31, Rscratch);
   574         __ and3(Rscratch, divisor - 1, Rscratch);
   575       }
   576       __ add(Rdividend, Rscratch, Rscratch);
   577       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   578       return;
   579     } else {
   580       if (divisor == 2) {
   581         __ srl(Rdividend, 31, Rscratch);
   582       } else {
   583         __ sra(Rdividend, 31, Rscratch);
   584         __ and3(Rscratch, divisor - 1,Rscratch);
   585       }
   586       __ add(Rdividend, Rscratch, Rscratch);
   587       __ andn(Rscratch, divisor - 1,Rscratch);
   588       __ sub(Rdividend, Rscratch, Rresult);
   589       return;
   590     }
   591   }
   593   __ sra(Rdividend, 31, Rscratch);
   594   __ wry(Rscratch);
   595   if (!VM_Version::v9_instructions_work()) {
   596     // v9 doesn't require these nops
   597     __ nop();
   598     __ nop();
   599     __ nop();
   600     __ nop();
   601   }
   603   add_debug_info_for_div0_here(op->info());
   605   if (Rdivisor != noreg) {
   606     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   607   } else {
   608     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   609     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   610   }
   612   Label skip;
   613   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   614   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   615   __ bind(skip);
   617   if (op->code() == lir_irem) {
   618     if (Rdivisor != noreg) {
   619       __ smul(Rscratch, Rdivisor, Rscratch);
   620     } else {
   621       __ smul(Rscratch, divisor, Rscratch);
   622     }
   623     __ sub(Rdividend, Rscratch, Rresult);
   624   }
   625 }
   628 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   629 #ifdef ASSERT
   630   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   631   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   632   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   633 #endif
   634   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   636   if (op->cond() == lir_cond_always) {
   637     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   638   } else if (op->code() == lir_cond_float_branch) {
   639     assert(op->ublock() != NULL, "must have unordered successor");
   640     bool is_unordered = (op->ublock() == op->block());
   641     Assembler::Condition acond;
   642     switch (op->cond()) {
   643       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   644       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   645       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   646       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   647       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   648       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   649       default :                         ShouldNotReachHere();
   650     };
   652     if (!VM_Version::v9_instructions_work()) {
   653       __ nop();
   654     }
   655     __ fb( acond, false, Assembler::pn, *(op->label()));
   656   } else {
   657     assert (op->code() == lir_branch, "just checking");
   659     Assembler::Condition acond;
   660     switch (op->cond()) {
   661       case lir_cond_equal:        acond = Assembler::equal;                break;
   662       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   663       case lir_cond_less:         acond = Assembler::less;                 break;
   664       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   665       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   666       case lir_cond_greater:      acond = Assembler::greater;              break;
   667       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   668       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   669       default:                         ShouldNotReachHere();
   670     };
   672     // sparc has different condition codes for testing 32-bit
   673     // vs. 64-bit values.  We could always test xcc is we could
   674     // guarantee that 32-bit loads always sign extended but that isn't
   675     // true and since sign extension isn't free, it would impose a
   676     // slight cost.
   677 #ifdef _LP64
   678     if  (op->type() == T_INT) {
   679       __ br(acond, false, Assembler::pn, *(op->label()));
   680     } else
   681 #endif
   682       __ brx(acond, false, Assembler::pn, *(op->label()));
   683   }
   684   // The peephole pass fills the delay slot
   685 }
   688 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   689   Bytecodes::Code code = op->bytecode();
   690   LIR_Opr dst = op->result_opr();
   692   switch(code) {
   693     case Bytecodes::_i2l: {
   694       Register rlo  = dst->as_register_lo();
   695       Register rhi  = dst->as_register_hi();
   696       Register rval = op->in_opr()->as_register();
   697 #ifdef _LP64
   698       __ sra(rval, 0, rlo);
   699 #else
   700       __ mov(rval, rlo);
   701       __ sra(rval, BitsPerInt-1, rhi);
   702 #endif
   703       break;
   704     }
   705     case Bytecodes::_i2d:
   706     case Bytecodes::_i2f: {
   707       bool is_double = (code == Bytecodes::_i2d);
   708       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   709       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   710       FloatRegister rsrc = op->in_opr()->as_float_reg();
   711       if (rsrc != rdst) {
   712         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   713       }
   714       __ fitof(w, rdst, rdst);
   715       break;
   716     }
   717     case Bytecodes::_f2i:{
   718       FloatRegister rsrc = op->in_opr()->as_float_reg();
   719       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   720       Label L;
   721       // result must be 0 if value is NaN; test by comparing value to itself
   722       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   723       if (!VM_Version::v9_instructions_work()) {
   724         __ nop();
   725       }
   726       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   727       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   728       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   729       // move integer result from float register to int register
   730       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   731       __ bind (L);
   732       break;
   733     }
   734     case Bytecodes::_l2i: {
   735       Register rlo  = op->in_opr()->as_register_lo();
   736       Register rhi  = op->in_opr()->as_register_hi();
   737       Register rdst = dst->as_register();
   738 #ifdef _LP64
   739       __ sra(rlo, 0, rdst);
   740 #else
   741       __ mov(rlo, rdst);
   742 #endif
   743       break;
   744     }
   745     case Bytecodes::_d2f:
   746     case Bytecodes::_f2d: {
   747       bool is_double = (code == Bytecodes::_f2d);
   748       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   749       LIR_Opr val = op->in_opr();
   750       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   751       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   752       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   753       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   754       __ ftof(vw, dw, rval, rdst);
   755       break;
   756     }
   757     case Bytecodes::_i2s:
   758     case Bytecodes::_i2b: {
   759       Register rval = op->in_opr()->as_register();
   760       Register rdst = dst->as_register();
   761       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   762       __ sll (rval, shift, rdst);
   763       __ sra (rdst, shift, rdst);
   764       break;
   765     }
   766     case Bytecodes::_i2c: {
   767       Register rval = op->in_opr()->as_register();
   768       Register rdst = dst->as_register();
   769       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   770       __ sll (rval, shift, rdst);
   771       __ srl (rdst, shift, rdst);
   772       break;
   773     }
   775     default: ShouldNotReachHere();
   776   }
   777 }
   780 void LIR_Assembler::align_call(LIR_Code) {
   781   // do nothing since all instructions are word aligned on sparc
   782 }
   785 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   786   __ call(op->addr(), rtype);
   787   // The peephole pass fills the delay slot, add_call_info is done in
   788   // LIR_Assembler::emit_delay.
   789 }
   792 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   793   __ ic_call(op->addr(), false);
   794   // The peephole pass fills the delay slot, add_call_info is done in
   795   // LIR_Assembler::emit_delay.
   796 }
   799 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   800   add_debug_info_for_null_check_here(op->info());
   801   __ load_klass(O0, G3_scratch);
   802   if (Assembler::is_simm13(op->vtable_offset())) {
   803     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   804   } else {
   805     // This will generate 2 instructions
   806     __ set(op->vtable_offset(), G5_method);
   807     // ld_ptr, set_hi, set
   808     __ ld_ptr(G3_scratch, G5_method, G5_method);
   809   }
   810   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
   811   __ callr(G3_scratch, G0);
   812   // the peephole pass fills the delay slot
   813 }
   815 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   816   int store_offset;
   817   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   818     assert(!unaligned, "can't handle this");
   819     // for offsets larger than a simm13 we setup the offset in O7
   820     __ set(offset, O7);
   821     store_offset = store(from_reg, base, O7, type, wide);
   822   } else {
   823     if (type == T_ARRAY || type == T_OBJECT) {
   824       __ verify_oop(from_reg->as_register());
   825     }
   826     store_offset = code_offset();
   827     switch (type) {
   828       case T_BOOLEAN: // fall through
   829       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   830       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   831       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   832       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   833       case T_LONG  :
   834 #ifdef _LP64
   835         if (unaligned || PatchALot) {
   836           __ srax(from_reg->as_register_lo(), 32, O7);
   837           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   838           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   839         } else {
   840           __ stx(from_reg->as_register_lo(), base, offset);
   841         }
   842 #else
   843         assert(Assembler::is_simm13(offset + 4), "must be");
   844         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   845         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   846 #endif
   847         break;
   848       case T_ADDRESS:
   849       case T_METADATA:
   850         __ st_ptr(from_reg->as_register(), base, offset);
   851         break;
   852       case T_ARRAY : // fall through
   853       case T_OBJECT:
   854         {
   855           if (UseCompressedOops && !wide) {
   856             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   857             store_offset = code_offset();
   858             __ stw(G3_scratch, base, offset);
   859           } else {
   860             __ st_ptr(from_reg->as_register(), base, offset);
   861           }
   862           break;
   863         }
   865       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   866       case T_DOUBLE:
   867         {
   868           FloatRegister reg = from_reg->as_double_reg();
   869           // split unaligned stores
   870           if (unaligned || PatchALot) {
   871             assert(Assembler::is_simm13(offset + 4), "must be");
   872             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   873             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   874           } else {
   875             __ stf(FloatRegisterImpl::D, reg, base, offset);
   876           }
   877           break;
   878         }
   879       default      : ShouldNotReachHere();
   880     }
   881   }
   882   return store_offset;
   883 }
   886 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   887   if (type == T_ARRAY || type == T_OBJECT) {
   888     __ verify_oop(from_reg->as_register());
   889   }
   890   int store_offset = code_offset();
   891   switch (type) {
   892     case T_BOOLEAN: // fall through
   893     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   894     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   895     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   896     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   897     case T_LONG  :
   898 #ifdef _LP64
   899       __ stx(from_reg->as_register_lo(), base, disp);
   900 #else
   901       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   902       __ std(from_reg->as_register_hi(), base, disp);
   903 #endif
   904       break;
   905     case T_ADDRESS:
   906       __ st_ptr(from_reg->as_register(), base, disp);
   907       break;
   908     case T_ARRAY : // fall through
   909     case T_OBJECT:
   910       {
   911         if (UseCompressedOops && !wide) {
   912           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   913           store_offset = code_offset();
   914           __ stw(G3_scratch, base, disp);
   915         } else {
   916           __ st_ptr(from_reg->as_register(), base, disp);
   917         }
   918         break;
   919       }
   920     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   921     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   922     default      : ShouldNotReachHere();
   923   }
   924   return store_offset;
   925 }
   928 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   929   int load_offset;
   930   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   931     assert(base != O7, "destroying register");
   932     assert(!unaligned, "can't handle this");
   933     // for offsets larger than a simm13 we setup the offset in O7
   934     __ set(offset, O7);
   935     load_offset = load(base, O7, to_reg, type, wide);
   936   } else {
   937     load_offset = code_offset();
   938     switch(type) {
   939       case T_BOOLEAN: // fall through
   940       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   941       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   942       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   943       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   944       case T_LONG  :
   945         if (!unaligned) {
   946 #ifdef _LP64
   947           __ ldx(base, offset, to_reg->as_register_lo());
   948 #else
   949           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   950                  "must be sequential");
   951           __ ldd(base, offset, to_reg->as_register_hi());
   952 #endif
   953         } else {
   954 #ifdef _LP64
   955           assert(base != to_reg->as_register_lo(), "can't handle this");
   956           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   957           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   958           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   959           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   960           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   961 #else
   962           if (base == to_reg->as_register_lo()) {
   963             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   964             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   965           } else {
   966             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   967             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   968           }
   969 #endif
   970         }
   971         break;
   972       case T_METADATA:
   973       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   974       case T_ARRAY : // fall through
   975       case T_OBJECT:
   976         {
   977           if (UseCompressedOops && !wide) {
   978             __ lduw(base, offset, to_reg->as_register());
   979             __ decode_heap_oop(to_reg->as_register());
   980           } else {
   981             __ ld_ptr(base, offset, to_reg->as_register());
   982           }
   983           break;
   984         }
   985       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   986       case T_DOUBLE:
   987         {
   988           FloatRegister reg = to_reg->as_double_reg();
   989           // split unaligned loads
   990           if (unaligned || PatchALot) {
   991             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   992             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   993           } else {
   994             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   995           }
   996           break;
   997         }
   998       default      : ShouldNotReachHere();
   999     }
  1000     if (type == T_ARRAY || type == T_OBJECT) {
  1001       __ verify_oop(to_reg->as_register());
  1004   return load_offset;
  1008 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
  1009   int load_offset = code_offset();
  1010   switch(type) {
  1011     case T_BOOLEAN: // fall through
  1012     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
  1013     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
  1014     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
  1015     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
  1016     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1017     case T_ARRAY : // fall through
  1018     case T_OBJECT:
  1020           if (UseCompressedOops && !wide) {
  1021             __ lduw(base, disp, to_reg->as_register());
  1022             __ decode_heap_oop(to_reg->as_register());
  1023           } else {
  1024             __ ld_ptr(base, disp, to_reg->as_register());
  1026           break;
  1028     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1029     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1030     case T_LONG  :
  1031 #ifdef _LP64
  1032       __ ldx(base, disp, to_reg->as_register_lo());
  1033 #else
  1034       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1035              "must be sequential");
  1036       __ ldd(base, disp, to_reg->as_register_hi());
  1037 #endif
  1038       break;
  1039     default      : ShouldNotReachHere();
  1041   if (type == T_ARRAY || type == T_OBJECT) {
  1042     __ verify_oop(to_reg->as_register());
  1044   return load_offset;
  1047 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1048   LIR_Const* c = src->as_constant_ptr();
  1049   switch (c->type()) {
  1050     case T_INT:
  1051     case T_FLOAT: {
  1052       Register src_reg = O7;
  1053       int value = c->as_jint_bits();
  1054       if (value == 0) {
  1055         src_reg = G0;
  1056       } else {
  1057         __ set(value, O7);
  1059       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1060       __ stw(src_reg, addr.base(), addr.disp());
  1061       break;
  1063     case T_ADDRESS: {
  1064       Register src_reg = O7;
  1065       int value = c->as_jint_bits();
  1066       if (value == 0) {
  1067         src_reg = G0;
  1068       } else {
  1069         __ set(value, O7);
  1071       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1072       __ st_ptr(src_reg, addr.base(), addr.disp());
  1073       break;
  1075     case T_OBJECT: {
  1076       Register src_reg = O7;
  1077       jobject2reg(c->as_jobject(), src_reg);
  1078       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1079       __ st_ptr(src_reg, addr.base(), addr.disp());
  1080       break;
  1082     case T_LONG:
  1083     case T_DOUBLE: {
  1084       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1086       Register tmp = O7;
  1087       int value_lo = c->as_jint_lo_bits();
  1088       if (value_lo == 0) {
  1089         tmp = G0;
  1090       } else {
  1091         __ set(value_lo, O7);
  1093       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1094       int value_hi = c->as_jint_hi_bits();
  1095       if (value_hi == 0) {
  1096         tmp = G0;
  1097       } else {
  1098         __ set(value_hi, O7);
  1100       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1101       break;
  1103     default:
  1104       Unimplemented();
  1109 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1110   LIR_Const* c = src->as_constant_ptr();
  1111   LIR_Address* addr     = dest->as_address_ptr();
  1112   Register base = addr->base()->as_pointer_register();
  1113   int offset = -1;
  1115   switch (c->type()) {
  1116     case T_INT:
  1117     case T_FLOAT:
  1118     case T_ADDRESS: {
  1119       LIR_Opr tmp = FrameMap::O7_opr;
  1120       int value = c->as_jint_bits();
  1121       if (value == 0) {
  1122         tmp = FrameMap::G0_opr;
  1123       } else if (Assembler::is_simm13(value)) {
  1124         __ set(value, O7);
  1126       if (addr->index()->is_valid()) {
  1127         assert(addr->disp() == 0, "must be zero");
  1128         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1129       } else {
  1130         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1131         offset = store(tmp, base, addr->disp(), type, wide, false);
  1133       break;
  1135     case T_LONG:
  1136     case T_DOUBLE: {
  1137       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1138       assert(Assembler::is_simm13(addr->disp()) &&
  1139              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1141       LIR_Opr tmp = FrameMap::O7_opr;
  1142       int value_lo = c->as_jint_lo_bits();
  1143       if (value_lo == 0) {
  1144         tmp = FrameMap::G0_opr;
  1145       } else {
  1146         __ set(value_lo, O7);
  1148       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1149       int value_hi = c->as_jint_hi_bits();
  1150       if (value_hi == 0) {
  1151         tmp = FrameMap::G0_opr;
  1152       } else {
  1153         __ set(value_hi, O7);
  1155       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1156       break;
  1158     case T_OBJECT: {
  1159       jobject obj = c->as_jobject();
  1160       LIR_Opr tmp;
  1161       if (obj == NULL) {
  1162         tmp = FrameMap::G0_opr;
  1163       } else {
  1164         tmp = FrameMap::O7_opr;
  1165         jobject2reg(c->as_jobject(), O7);
  1167       // handle either reg+reg or reg+disp address
  1168       if (addr->index()->is_valid()) {
  1169         assert(addr->disp() == 0, "must be zero");
  1170         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1171       } else {
  1172         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1173         offset = store(tmp, base, addr->disp(), type, wide, false);
  1176       break;
  1178     default:
  1179       Unimplemented();
  1181   if (info != NULL) {
  1182     assert(offset != -1, "offset should've been set");
  1183     add_debug_info_for_null_check(offset, info);
  1188 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1189   LIR_Const* c = src->as_constant_ptr();
  1190   LIR_Opr to_reg = dest;
  1192   switch (c->type()) {
  1193     case T_INT:
  1194     case T_ADDRESS:
  1196         jint con = c->as_jint();
  1197         if (to_reg->is_single_cpu()) {
  1198           assert(patch_code == lir_patch_none, "no patching handled here");
  1199           __ set(con, to_reg->as_register());
  1200         } else {
  1201           ShouldNotReachHere();
  1202           assert(to_reg->is_single_fpu(), "wrong register kind");
  1204           __ set(con, O7);
  1205           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1206           __ st(O7, temp_slot);
  1207           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1210       break;
  1212     case T_LONG:
  1214         jlong con = c->as_jlong();
  1216         if (to_reg->is_double_cpu()) {
  1217 #ifdef _LP64
  1218           __ set(con,  to_reg->as_register_lo());
  1219 #else
  1220           __ set(low(con),  to_reg->as_register_lo());
  1221           __ set(high(con), to_reg->as_register_hi());
  1222 #endif
  1223 #ifdef _LP64
  1224         } else if (to_reg->is_single_cpu()) {
  1225           __ set(con, to_reg->as_register());
  1226 #endif
  1227         } else {
  1228           ShouldNotReachHere();
  1229           assert(to_reg->is_double_fpu(), "wrong register kind");
  1230           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1231           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1232           __ set(low(con),  O7);
  1233           __ st(O7, temp_slot_lo);
  1234           __ set(high(con), O7);
  1235           __ st(O7, temp_slot_hi);
  1236           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1239       break;
  1241     case T_OBJECT:
  1243         if (patch_code == lir_patch_none) {
  1244           jobject2reg(c->as_jobject(), to_reg->as_register());
  1245         } else {
  1246           jobject2reg_with_patching(to_reg->as_register(), info);
  1249       break;
  1251     case T_METADATA:
  1253         if (patch_code == lir_patch_none) {
  1254           metadata2reg(c->as_metadata(), to_reg->as_register());
  1255         } else {
  1256           klass2reg_with_patching(to_reg->as_register(), info);
  1259       break;
  1261     case T_FLOAT:
  1263         address const_addr = __ float_constant(c->as_jfloat());
  1264         if (const_addr == NULL) {
  1265           bailout("const section overflow");
  1266           break;
  1268         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1269         AddressLiteral const_addrlit(const_addr, rspec);
  1270         if (to_reg->is_single_fpu()) {
  1271           __ patchable_sethi(const_addrlit, O7);
  1272           __ relocate(rspec);
  1273           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1275         } else {
  1276           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1278           __ set(const_addrlit, O7);
  1279           __ ld(O7, 0, to_reg->as_register());
  1282       break;
  1284     case T_DOUBLE:
  1286         address const_addr = __ double_constant(c->as_jdouble());
  1287         if (const_addr == NULL) {
  1288           bailout("const section overflow");
  1289           break;
  1291         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1293         if (to_reg->is_double_fpu()) {
  1294           AddressLiteral const_addrlit(const_addr, rspec);
  1295           __ patchable_sethi(const_addrlit, O7);
  1296           __ relocate(rspec);
  1297           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1298         } else {
  1299           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1300 #ifdef _LP64
  1301           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1302 #else
  1303           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1304           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1305 #endif
  1309       break;
  1311     default:
  1312       ShouldNotReachHere();
  1316 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1317   Register reg = addr->base()->as_register();
  1318   LIR_Opr index = addr->index();
  1319   if (index->is_illegal()) {
  1320     return Address(reg, addr->disp());
  1321   } else {
  1322     assert (addr->disp() == 0, "unsupported address mode");
  1323     return Address(reg, index->as_pointer_register());
  1328 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1329   switch (type) {
  1330     case T_INT:
  1331     case T_FLOAT: {
  1332       Register tmp = O7;
  1333       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1334       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1335       __ lduw(from.base(), from.disp(), tmp);
  1336       __ stw(tmp, to.base(), to.disp());
  1337       break;
  1339     case T_OBJECT: {
  1340       Register tmp = O7;
  1341       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1342       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1343       __ ld_ptr(from.base(), from.disp(), tmp);
  1344       __ st_ptr(tmp, to.base(), to.disp());
  1345       break;
  1347     case T_LONG:
  1348     case T_DOUBLE: {
  1349       Register tmp = O7;
  1350       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1351       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1352       __ lduw(from.base(), from.disp(), tmp);
  1353       __ stw(tmp, to.base(), to.disp());
  1354       __ lduw(from.base(), from.disp() + 4, tmp);
  1355       __ stw(tmp, to.base(), to.disp() + 4);
  1356       break;
  1359     default:
  1360       ShouldNotReachHere();
  1365 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1366   Address base = as_Address(addr);
  1367   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1371 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1372   Address base = as_Address(addr);
  1373   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1377 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1378                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1380   assert(type != T_METADATA, "load of metadata ptr not supported");
  1381   LIR_Address* addr = src_opr->as_address_ptr();
  1382   LIR_Opr to_reg = dest;
  1384   Register src = addr->base()->as_pointer_register();
  1385   Register disp_reg = noreg;
  1386   int disp_value = addr->disp();
  1387   bool needs_patching = (patch_code != lir_patch_none);
  1389   if (addr->base()->type() == T_OBJECT) {
  1390     __ verify_oop(src);
  1393   PatchingStub* patch = NULL;
  1394   if (needs_patching) {
  1395     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1396     assert(!to_reg->is_double_cpu() ||
  1397            patch_code == lir_patch_none ||
  1398            patch_code == lir_patch_normal, "patching doesn't match register");
  1401   if (addr->index()->is_illegal()) {
  1402     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1403       if (needs_patching) {
  1404         __ patchable_set(0, O7);
  1405       } else {
  1406         __ set(disp_value, O7);
  1408       disp_reg = O7;
  1410   } else if (unaligned || PatchALot) {
  1411     __ add(src, addr->index()->as_register(), O7);
  1412     src = O7;
  1413   } else {
  1414     disp_reg = addr->index()->as_pointer_register();
  1415     assert(disp_value == 0, "can't handle 3 operand addresses");
  1418   // remember the offset of the load.  The patching_epilog must be done
  1419   // before the call to add_debug_info, otherwise the PcDescs don't get
  1420   // entered in increasing order.
  1421   int offset = code_offset();
  1423   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1424   if (disp_reg == noreg) {
  1425     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1426   } else {
  1427     assert(!unaligned, "can't handle this");
  1428     offset = load(src, disp_reg, to_reg, type, wide);
  1431   if (patch != NULL) {
  1432     patching_epilog(patch, patch_code, src, info);
  1434   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1438 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1439   LIR_Address* addr = src->as_address_ptr();
  1440   Address from_addr = as_Address(addr);
  1442   if (VM_Version::has_v9()) {
  1443     __ prefetch(from_addr, Assembler::severalReads);
  1448 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1449   LIR_Address* addr = src->as_address_ptr();
  1450   Address from_addr = as_Address(addr);
  1452   if (VM_Version::has_v9()) {
  1453     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1458 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1459   Address addr;
  1460   if (src->is_single_word()) {
  1461     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1462   } else if (src->is_double_word())  {
  1463     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1466   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1467   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1471 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1472   Address addr;
  1473   if (dest->is_single_word()) {
  1474     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1475   } else if (dest->is_double_word())  {
  1476     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1478   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1479   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1483 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1484   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1485     if (from_reg->is_double_fpu()) {
  1486       // double to double moves
  1487       assert(to_reg->is_double_fpu(), "should match");
  1488       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1489     } else {
  1490       // float to float moves
  1491       assert(to_reg->is_single_fpu(), "should match");
  1492       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1494   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1495     if (from_reg->is_double_cpu()) {
  1496 #ifdef _LP64
  1497       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1498 #else
  1499       assert(to_reg->is_double_cpu() &&
  1500              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1501              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1502              "should both be long and not overlap");
  1503       // long to long moves
  1504       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1505       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1506 #endif
  1507 #ifdef _LP64
  1508     } else if (to_reg->is_double_cpu()) {
  1509       // int to int moves
  1510       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1511 #endif
  1512     } else {
  1513       // int to int moves
  1514       __ mov(from_reg->as_register(), to_reg->as_register());
  1516   } else {
  1517     ShouldNotReachHere();
  1519   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1520     __ verify_oop(to_reg->as_register());
  1525 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1526                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1527                             bool wide, bool unaligned) {
  1528   assert(type != T_METADATA, "store of metadata ptr not supported");
  1529   LIR_Address* addr = dest->as_address_ptr();
  1531   Register src = addr->base()->as_pointer_register();
  1532   Register disp_reg = noreg;
  1533   int disp_value = addr->disp();
  1534   bool needs_patching = (patch_code != lir_patch_none);
  1536   if (addr->base()->is_oop_register()) {
  1537     __ verify_oop(src);
  1540   PatchingStub* patch = NULL;
  1541   if (needs_patching) {
  1542     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1543     assert(!from_reg->is_double_cpu() ||
  1544            patch_code == lir_patch_none ||
  1545            patch_code == lir_patch_normal, "patching doesn't match register");
  1548   if (addr->index()->is_illegal()) {
  1549     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1550       if (needs_patching) {
  1551         __ patchable_set(0, O7);
  1552       } else {
  1553         __ set(disp_value, O7);
  1555       disp_reg = O7;
  1557   } else if (unaligned || PatchALot) {
  1558     __ add(src, addr->index()->as_register(), O7);
  1559     src = O7;
  1560   } else {
  1561     disp_reg = addr->index()->as_pointer_register();
  1562     assert(disp_value == 0, "can't handle 3 operand addresses");
  1565   // remember the offset of the store.  The patching_epilog must be done
  1566   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1567   // entered in increasing order.
  1568   int offset;
  1570   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1571   if (disp_reg == noreg) {
  1572     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1573   } else {
  1574     assert(!unaligned, "can't handle this");
  1575     offset = store(from_reg, src, disp_reg, type, wide);
  1578   if (patch != NULL) {
  1579     patching_epilog(patch, patch_code, src, info);
  1582   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1586 void LIR_Assembler::return_op(LIR_Opr result) {
  1587   // the poll may need a register so just pick one that isn't the return register
  1588 #if defined(TIERED) && !defined(_LP64)
  1589   if (result->type_field() == LIR_OprDesc::long_type) {
  1590     // Must move the result to G1
  1591     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1592     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1593     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1594     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1595 #ifdef ASSERT
  1596     // mangle it so any problems will show up
  1597     __ set(0xdeadbeef, I0);
  1598     __ set(0xdeadbeef, I1);
  1599 #endif
  1601 #endif // TIERED
  1602   __ set((intptr_t)os::get_polling_page(), L0);
  1603   __ relocate(relocInfo::poll_return_type);
  1604   __ ld_ptr(L0, 0, G0);
  1605   __ ret();
  1606   __ delayed()->restore();
  1610 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1611   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1612   if (info != NULL) {
  1613     add_debug_info_for_branch(info);
  1614   } else {
  1615     __ relocate(relocInfo::poll_type);
  1618   int offset = __ offset();
  1619   __ ld_ptr(tmp->as_register(), 0, G0);
  1621   return offset;
  1625 void LIR_Assembler::emit_static_call_stub() {
  1626   address call_pc = __ pc();
  1627   address stub = __ start_a_stub(call_stub_size);
  1628   if (stub == NULL) {
  1629     bailout("static call stub overflow");
  1630     return;
  1633   int start = __ offset();
  1634   __ relocate(static_stub_Relocation::spec(call_pc));
  1636   __ set_metadata(NULL, G5);
  1637   // must be set to -1 at code generation time
  1638   AddressLiteral addrlit(-1);
  1639   __ jump_to(addrlit, G3);
  1640   __ delayed()->nop();
  1642   assert(__ offset() - start <= call_stub_size, "stub too big");
  1643   __ end_a_stub();
  1647 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1648   if (opr1->is_single_fpu()) {
  1649     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1650   } else if (opr1->is_double_fpu()) {
  1651     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1652   } else if (opr1->is_single_cpu()) {
  1653     if (opr2->is_constant()) {
  1654       switch (opr2->as_constant_ptr()->type()) {
  1655         case T_INT:
  1656           { jint con = opr2->as_constant_ptr()->as_jint();
  1657             if (Assembler::is_simm13(con)) {
  1658               __ cmp(opr1->as_register(), con);
  1659             } else {
  1660               __ set(con, O7);
  1661               __ cmp(opr1->as_register(), O7);
  1664           break;
  1666         case T_OBJECT:
  1667           // there are only equal/notequal comparisions on objects
  1668           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1669             if (con == NULL) {
  1670               __ cmp(opr1->as_register(), 0);
  1671             } else {
  1672               jobject2reg(con, O7);
  1673               __ cmp(opr1->as_register(), O7);
  1676           break;
  1678         default:
  1679           ShouldNotReachHere();
  1680           break;
  1682     } else {
  1683       if (opr2->is_address()) {
  1684         LIR_Address * addr = opr2->as_address_ptr();
  1685         BasicType type = addr->type();
  1686         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1687         else                    __ ld(as_Address(addr), O7);
  1688         __ cmp(opr1->as_register(), O7);
  1689       } else {
  1690         __ cmp(opr1->as_register(), opr2->as_register());
  1693   } else if (opr1->is_double_cpu()) {
  1694     Register xlo = opr1->as_register_lo();
  1695     Register xhi = opr1->as_register_hi();
  1696     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1697       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1698 #ifdef _LP64
  1699       __ orcc(xhi, G0, G0);
  1700 #else
  1701       __ orcc(xhi, xlo, G0);
  1702 #endif
  1703     } else if (opr2->is_register()) {
  1704       Register ylo = opr2->as_register_lo();
  1705       Register yhi = opr2->as_register_hi();
  1706 #ifdef _LP64
  1707       __ cmp(xlo, ylo);
  1708 #else
  1709       __ subcc(xlo, ylo, xlo);
  1710       __ subccc(xhi, yhi, xhi);
  1711       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1712         __ orcc(xhi, xlo, G0);
  1714 #endif
  1715     } else {
  1716       ShouldNotReachHere();
  1718   } else if (opr1->is_address()) {
  1719     LIR_Address * addr = opr1->as_address_ptr();
  1720     BasicType type = addr->type();
  1721     assert (opr2->is_constant(), "Checking");
  1722     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1723     else                    __ ld(as_Address(addr), O7);
  1724     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1725   } else {
  1726     ShouldNotReachHere();
  1731 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1732   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1733     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1734     if (left->is_single_fpu()) {
  1735       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1736     } else if (left->is_double_fpu()) {
  1737       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1738     } else {
  1739       ShouldNotReachHere();
  1741   } else if (code == lir_cmp_l2i) {
  1742 #ifdef _LP64
  1743     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1744 #else
  1745     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1746             right->as_register_hi(), right->as_register_lo(),
  1747             dst->as_register());
  1748 #endif
  1749   } else {
  1750     ShouldNotReachHere();
  1755 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1756   Assembler::Condition acond;
  1757   switch (condition) {
  1758     case lir_cond_equal:        acond = Assembler::equal;        break;
  1759     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1760     case lir_cond_less:         acond = Assembler::less;         break;
  1761     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1762     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1763     case lir_cond_greater:      acond = Assembler::greater;      break;
  1764     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1765     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1766     default:                         ShouldNotReachHere();
  1767   };
  1769   if (opr1->is_constant() && opr1->type() == T_INT) {
  1770     Register dest = result->as_register();
  1771     // load up first part of constant before branch
  1772     // and do the rest in the delay slot.
  1773     if (!Assembler::is_simm13(opr1->as_jint())) {
  1774       __ sethi(opr1->as_jint(), dest);
  1776   } else if (opr1->is_constant()) {
  1777     const2reg(opr1, result, lir_patch_none, NULL);
  1778   } else if (opr1->is_register()) {
  1779     reg2reg(opr1, result);
  1780   } else if (opr1->is_stack()) {
  1781     stack2reg(opr1, result, result->type());
  1782   } else {
  1783     ShouldNotReachHere();
  1785   Label skip;
  1786 #ifdef _LP64
  1787     if  (type == T_INT) {
  1788       __ br(acond, false, Assembler::pt, skip);
  1789     } else
  1790 #endif
  1791       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1792   if (opr1->is_constant() && opr1->type() == T_INT) {
  1793     Register dest = result->as_register();
  1794     if (Assembler::is_simm13(opr1->as_jint())) {
  1795       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1796     } else {
  1797       // the sethi has been done above, so just put in the low 10 bits
  1798       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1800   } else {
  1801     // can't do anything useful in the delay slot
  1802     __ delayed()->nop();
  1804   if (opr2->is_constant()) {
  1805     const2reg(opr2, result, lir_patch_none, NULL);
  1806   } else if (opr2->is_register()) {
  1807     reg2reg(opr2, result);
  1808   } else if (opr2->is_stack()) {
  1809     stack2reg(opr2, result, result->type());
  1810   } else {
  1811     ShouldNotReachHere();
  1813   __ bind(skip);
  1817 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1818   assert(info == NULL, "unused on this code path");
  1819   assert(left->is_register(), "wrong items state");
  1820   assert(dest->is_register(), "wrong items state");
  1822   if (right->is_register()) {
  1823     if (dest->is_float_kind()) {
  1825       FloatRegister lreg, rreg, res;
  1826       FloatRegisterImpl::Width w;
  1827       if (right->is_single_fpu()) {
  1828         w = FloatRegisterImpl::S;
  1829         lreg = left->as_float_reg();
  1830         rreg = right->as_float_reg();
  1831         res  = dest->as_float_reg();
  1832       } else {
  1833         w = FloatRegisterImpl::D;
  1834         lreg = left->as_double_reg();
  1835         rreg = right->as_double_reg();
  1836         res  = dest->as_double_reg();
  1839       switch (code) {
  1840         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1841         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1842         case lir_mul: // fall through
  1843         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1844         case lir_div: // fall through
  1845         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1846         default: ShouldNotReachHere();
  1849     } else if (dest->is_double_cpu()) {
  1850 #ifdef _LP64
  1851       Register dst_lo = dest->as_register_lo();
  1852       Register op1_lo = left->as_pointer_register();
  1853       Register op2_lo = right->as_pointer_register();
  1855       switch (code) {
  1856         case lir_add:
  1857           __ add(op1_lo, op2_lo, dst_lo);
  1858           break;
  1860         case lir_sub:
  1861           __ sub(op1_lo, op2_lo, dst_lo);
  1862           break;
  1864         default: ShouldNotReachHere();
  1866 #else
  1867       Register op1_lo = left->as_register_lo();
  1868       Register op1_hi = left->as_register_hi();
  1869       Register op2_lo = right->as_register_lo();
  1870       Register op2_hi = right->as_register_hi();
  1871       Register dst_lo = dest->as_register_lo();
  1872       Register dst_hi = dest->as_register_hi();
  1874       switch (code) {
  1875         case lir_add:
  1876           __ addcc(op1_lo, op2_lo, dst_lo);
  1877           __ addc (op1_hi, op2_hi, dst_hi);
  1878           break;
  1880         case lir_sub:
  1881           __ subcc(op1_lo, op2_lo, dst_lo);
  1882           __ subc (op1_hi, op2_hi, dst_hi);
  1883           break;
  1885         default: ShouldNotReachHere();
  1887 #endif
  1888     } else {
  1889       assert (right->is_single_cpu(), "Just Checking");
  1891       Register lreg = left->as_register();
  1892       Register res  = dest->as_register();
  1893       Register rreg = right->as_register();
  1894       switch (code) {
  1895         case lir_add:  __ add  (lreg, rreg, res); break;
  1896         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1897         case lir_mul:  __ mult (lreg, rreg, res); break;
  1898         default: ShouldNotReachHere();
  1901   } else {
  1902     assert (right->is_constant(), "must be constant");
  1904     if (dest->is_single_cpu()) {
  1905       Register lreg = left->as_register();
  1906       Register res  = dest->as_register();
  1907       int    simm13 = right->as_constant_ptr()->as_jint();
  1909       switch (code) {
  1910         case lir_add:  __ add  (lreg, simm13, res); break;
  1911         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1912         case lir_mul:  __ mult (lreg, simm13, res); break;
  1913         default: ShouldNotReachHere();
  1915     } else {
  1916       Register lreg = left->as_pointer_register();
  1917       Register res  = dest->as_register_lo();
  1918       long con = right->as_constant_ptr()->as_jlong();
  1919       assert(Assembler::is_simm13(con), "must be simm13");
  1921       switch (code) {
  1922         case lir_add:  __ add  (lreg, (int)con, res); break;
  1923         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1924         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1925         default: ShouldNotReachHere();
  1932 void LIR_Assembler::fpop() {
  1933   // do nothing
  1937 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1938   switch (code) {
  1939     case lir_sin:
  1940     case lir_tan:
  1941     case lir_cos: {
  1942       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1943       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1944       break;
  1946     case lir_sqrt: {
  1947       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1948       FloatRegister src_reg = value->as_double_reg();
  1949       FloatRegister dst_reg = dest->as_double_reg();
  1950       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1951       break;
  1953     case lir_abs: {
  1954       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1955       FloatRegister src_reg = value->as_double_reg();
  1956       FloatRegister dst_reg = dest->as_double_reg();
  1957       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1958       break;
  1960     default: {
  1961       ShouldNotReachHere();
  1962       break;
  1968 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1969   if (right->is_constant()) {
  1970     if (dest->is_single_cpu()) {
  1971       int simm13 = right->as_constant_ptr()->as_jint();
  1972       switch (code) {
  1973         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1974         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1975         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1976         default: ShouldNotReachHere();
  1978     } else {
  1979       long c = right->as_constant_ptr()->as_jlong();
  1980       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1981       int simm13 = (int)c;
  1982       switch (code) {
  1983         case lir_logic_and:
  1984 #ifndef _LP64
  1985           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1986 #endif
  1987           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1988           break;
  1990         case lir_logic_or:
  1991 #ifndef _LP64
  1992           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1993 #endif
  1994           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1995           break;
  1997         case lir_logic_xor:
  1998 #ifndef _LP64
  1999           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2000 #endif
  2001           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2002           break;
  2004         default: ShouldNotReachHere();
  2007   } else {
  2008     assert(right->is_register(), "right should be in register");
  2010     if (dest->is_single_cpu()) {
  2011       switch (code) {
  2012         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2013         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2014         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2015         default: ShouldNotReachHere();
  2017     } else {
  2018 #ifdef _LP64
  2019       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2020                                                                         left->as_register_lo();
  2021       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2022                                                                           right->as_register_lo();
  2024       switch (code) {
  2025         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2026         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2027         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2028         default: ShouldNotReachHere();
  2030 #else
  2031       switch (code) {
  2032         case lir_logic_and:
  2033           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2034           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2035           break;
  2037         case lir_logic_or:
  2038           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2039           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2040           break;
  2042         case lir_logic_xor:
  2043           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2044           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2045           break;
  2047         default: ShouldNotReachHere();
  2049 #endif
  2055 int LIR_Assembler::shift_amount(BasicType t) {
  2056   int elem_size = type2aelembytes(t);
  2057   switch (elem_size) {
  2058     case 1 : return 0;
  2059     case 2 : return 1;
  2060     case 4 : return 2;
  2061     case 8 : return 3;
  2063   ShouldNotReachHere();
  2064   return -1;
  2068 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2069   assert(exceptionOop->as_register() == Oexception, "should match");
  2070   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2072   info->add_register_oop(exceptionOop);
  2074   // reuse the debug info from the safepoint poll for the throw op itself
  2075   address pc_for_athrow  = __ pc();
  2076   int pc_for_athrow_offset = __ offset();
  2077   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2078   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2079   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2081   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2082   __ delayed()->nop();
  2086 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2087   assert(exceptionOop->as_register() == Oexception, "should match");
  2089   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2090   __ delayed()->nop();
  2093 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2094   Register src = op->src()->as_register();
  2095   Register dst = op->dst()->as_register();
  2096   Register src_pos = op->src_pos()->as_register();
  2097   Register dst_pos = op->dst_pos()->as_register();
  2098   Register length  = op->length()->as_register();
  2099   Register tmp = op->tmp()->as_register();
  2100   Register tmp2 = O7;
  2102   int flags = op->flags();
  2103   ciArrayKlass* default_type = op->expected_type();
  2104   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2105   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2107 #ifdef _LP64
  2108   // higher 32bits must be null
  2109   __ sra(dst_pos, 0, dst_pos);
  2110   __ sra(src_pos, 0, src_pos);
  2111   __ sra(length, 0, length);
  2112 #endif
  2114   // set up the arraycopy stub information
  2115   ArrayCopyStub* stub = op->stub();
  2117   // always do stub if no type information is available.  it's ok if
  2118   // the known type isn't loaded since the code sanity checks
  2119   // in debug mode and the type isn't required when we know the exact type
  2120   // also check that the type is an array type.
  2121   if (op->expected_type() == NULL) {
  2122     __ mov(src,     O0);
  2123     __ mov(src_pos, O1);
  2124     __ mov(dst,     O2);
  2125     __ mov(dst_pos, O3);
  2126     __ mov(length,  O4);
  2127     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2129     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2130       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2131     } else {
  2132 #ifndef PRODUCT
  2133       if (PrintC1Statistics) {
  2134         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2135         __ inc_counter(counter, G1, G3);
  2137 #endif
  2138       __ call_VM_leaf(tmp, copyfunc_addr);
  2141     if (copyfunc_addr != NULL) {
  2142       __ xor3(O0, -1, tmp);
  2143       __ sub(length, tmp, length);
  2144       __ add(src_pos, tmp, src_pos);
  2145       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2146       __ delayed()->add(dst_pos, tmp, dst_pos);
  2147     } else {
  2148       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2149       __ delayed()->nop();
  2151     __ bind(*stub->continuation());
  2152     return;
  2155   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2157   // make sure src and dst are non-null and load array length
  2158   if (flags & LIR_OpArrayCopy::src_null_check) {
  2159     __ tst(src);
  2160     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2161     __ delayed()->nop();
  2164   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2165     __ tst(dst);
  2166     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2167     __ delayed()->nop();
  2170   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2171     // test src_pos register
  2172     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2173     __ delayed()->nop();
  2176   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2177     // test dst_pos register
  2178     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2179     __ delayed()->nop();
  2182   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2183     // make sure length isn't negative
  2184     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2185     __ delayed()->nop();
  2188   if (flags & LIR_OpArrayCopy::src_range_check) {
  2189     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2190     __ add(length, src_pos, tmp);
  2191     __ cmp(tmp2, tmp);
  2192     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2193     __ delayed()->nop();
  2196   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2197     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2198     __ add(length, dst_pos, tmp);
  2199     __ cmp(tmp2, tmp);
  2200     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2201     __ delayed()->nop();
  2204   int shift = shift_amount(basic_type);
  2206   if (flags & LIR_OpArrayCopy::type_check) {
  2207     // We don't know the array types are compatible
  2208     if (basic_type != T_OBJECT) {
  2209       // Simple test for basic type arrays
  2210       if (UseCompressedKlassPointers) {
  2211         // We don't need decode because we just need to compare
  2212         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2213         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2214         __ cmp(tmp, tmp2);
  2215         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2216       } else {
  2217         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2218         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2219         __ cmp(tmp, tmp2);
  2220         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2222       __ delayed()->nop();
  2223     } else {
  2224       // For object arrays, if src is a sub class of dst then we can
  2225       // safely do the copy.
  2226       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2228       Label cont, slow;
  2229       assert_different_registers(tmp, tmp2, G3, G1);
  2231       __ load_klass(src, G3);
  2232       __ load_klass(dst, G1);
  2234       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2236       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2237       __ delayed()->nop();
  2239       __ cmp(G3, 0);
  2240       if (copyfunc_addr != NULL) { // use stub if available
  2241         // src is not a sub class of dst so we have to do a
  2242         // per-element check.
  2243         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2244         __ delayed()->nop();
  2246         __ bind(slow);
  2248         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2249         if ((flags & mask) != mask) {
  2250           // Check that at least both of them object arrays.
  2251           assert(flags & mask, "one of the two should be known to be an object array");
  2253           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2254             __ load_klass(src, tmp);
  2255           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2256             __ load_klass(dst, tmp);
  2258           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2260           __ lduw(tmp, lh_offset, tmp2);
  2262           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2263           __ set(objArray_lh, tmp);
  2264           __ cmp(tmp, tmp2);
  2265           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2266           __ delayed()->nop();
  2269         Register src_ptr = O0;
  2270         Register dst_ptr = O1;
  2271         Register len     = O2;
  2272         Register chk_off = O3;
  2273         Register super_k = O4;
  2275         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2276         if (shift == 0) {
  2277           __ add(src_ptr, src_pos, src_ptr);
  2278         } else {
  2279           __ sll(src_pos, shift, tmp);
  2280           __ add(src_ptr, tmp, src_ptr);
  2283         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2284         if (shift == 0) {
  2285           __ add(dst_ptr, dst_pos, dst_ptr);
  2286         } else {
  2287           __ sll(dst_pos, shift, tmp);
  2288           __ add(dst_ptr, tmp, dst_ptr);
  2290         __ mov(length, len);
  2291         __ load_klass(dst, tmp);
  2293         int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  2294         __ ld_ptr(tmp, ek_offset, super_k);
  2296         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2297         __ lduw(super_k, sco_offset, chk_off);
  2299         __ call_VM_leaf(tmp, copyfunc_addr);
  2301 #ifndef PRODUCT
  2302         if (PrintC1Statistics) {
  2303           Label failed;
  2304           __ br_notnull_short(O0, Assembler::pn, failed);
  2305           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2306           __ bind(failed);
  2308 #endif
  2310         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2311         __ delayed()->xor3(O0, -1, tmp);
  2313 #ifndef PRODUCT
  2314         if (PrintC1Statistics) {
  2315           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2317 #endif
  2319         __ sub(length, tmp, length);
  2320         __ add(src_pos, tmp, src_pos);
  2321         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2322         __ delayed()->add(dst_pos, tmp, dst_pos);
  2324         __ bind(cont);
  2325       } else {
  2326         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2327         __ delayed()->nop();
  2328         __ bind(cont);
  2333 #ifdef ASSERT
  2334   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2335     // Sanity check the known type with the incoming class.  For the
  2336     // primitive case the types must match exactly with src.klass and
  2337     // dst.klass each exactly matching the default type.  For the
  2338     // object array case, if no type check is needed then either the
  2339     // dst type is exactly the expected type and the src type is a
  2340     // subtype which we can't check or src is the same array as dst
  2341     // but not necessarily exactly of type default_type.
  2342     Label known_ok, halt;
  2343     metadata2reg(op->expected_type()->constant_encoding(), tmp);
  2344     if (UseCompressedKlassPointers) {
  2345       // tmp holds the default type. It currently comes uncompressed after the
  2346       // load of a constant, so encode it.
  2347       __ encode_heap_oop(tmp);
  2348       // load the raw value of the dst klass, since we will be comparing
  2349       // uncompressed values directly.
  2350       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2351       if (basic_type != T_OBJECT) {
  2352         __ cmp(tmp, tmp2);
  2353         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2354         // load the raw value of the src klass.
  2355         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2356         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2357       } else {
  2358         __ cmp(tmp, tmp2);
  2359         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2360         __ delayed()->cmp(src, dst);
  2361         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2362         __ delayed()->nop();
  2364     } else {
  2365       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2366       if (basic_type != T_OBJECT) {
  2367         __ cmp(tmp, tmp2);
  2368         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2369         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2370         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2371       } else {
  2372         __ cmp(tmp, tmp2);
  2373         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2374         __ delayed()->cmp(src, dst);
  2375         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2376         __ delayed()->nop();
  2379     __ bind(halt);
  2380     __ stop("incorrect type information in arraycopy");
  2381     __ bind(known_ok);
  2383 #endif
  2385 #ifndef PRODUCT
  2386   if (PrintC1Statistics) {
  2387     address counter = Runtime1::arraycopy_count_address(basic_type);
  2388     __ inc_counter(counter, G1, G3);
  2390 #endif
  2392   Register src_ptr = O0;
  2393   Register dst_ptr = O1;
  2394   Register len     = O2;
  2396   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2397   if (shift == 0) {
  2398     __ add(src_ptr, src_pos, src_ptr);
  2399   } else {
  2400     __ sll(src_pos, shift, tmp);
  2401     __ add(src_ptr, tmp, src_ptr);
  2404   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2405   if (shift == 0) {
  2406     __ add(dst_ptr, dst_pos, dst_ptr);
  2407   } else {
  2408     __ sll(dst_pos, shift, tmp);
  2409     __ add(dst_ptr, tmp, dst_ptr);
  2412   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2413   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2414   const char *name;
  2415   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2417   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2418   __ mov(length, len);
  2419   __ call_VM_leaf(tmp, entry);
  2421   __ bind(*stub->continuation());
  2425 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2426   if (dest->is_single_cpu()) {
  2427 #ifdef _LP64
  2428     if (left->type() == T_OBJECT) {
  2429       switch (code) {
  2430         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2431         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2432         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2433         default: ShouldNotReachHere();
  2435     } else
  2436 #endif
  2437       switch (code) {
  2438         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2439         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2440         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2441         default: ShouldNotReachHere();
  2443   } else {
  2444 #ifdef _LP64
  2445     switch (code) {
  2446       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2447       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2448       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2449       default: ShouldNotReachHere();
  2451 #else
  2452     switch (code) {
  2453       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2454       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2455       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2456       default: ShouldNotReachHere();
  2458 #endif
  2463 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2464 #ifdef _LP64
  2465   if (left->type() == T_OBJECT) {
  2466     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2467     Register l = left->as_register();
  2468     Register d = dest->as_register_lo();
  2469     switch (code) {
  2470       case lir_shl:  __ sllx  (l, count, d); break;
  2471       case lir_shr:  __ srax  (l, count, d); break;
  2472       case lir_ushr: __ srlx  (l, count, d); break;
  2473       default: ShouldNotReachHere();
  2475     return;
  2477 #endif
  2479   if (dest->is_single_cpu()) {
  2480     count = count & 0x1F; // Java spec
  2481     switch (code) {
  2482       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2483       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2484       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2485       default: ShouldNotReachHere();
  2487   } else if (dest->is_double_cpu()) {
  2488     count = count & 63; // Java spec
  2489     switch (code) {
  2490       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2491       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2492       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2493       default: ShouldNotReachHere();
  2495   } else {
  2496     ShouldNotReachHere();
  2501 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2502   assert(op->tmp1()->as_register()  == G1 &&
  2503          op->tmp2()->as_register()  == G3 &&
  2504          op->tmp3()->as_register()  == G4 &&
  2505          op->obj()->as_register()   == O0 &&
  2506          op->klass()->as_register() == G5, "must be");
  2507   if (op->init_check()) {
  2508     __ ldub(op->klass()->as_register(),
  2509           in_bytes(InstanceKlass::init_state_offset()),
  2510           op->tmp1()->as_register());
  2511     add_debug_info_for_null_check_here(op->stub()->info());
  2512     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
  2513     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2514     __ delayed()->nop();
  2516   __ allocate_object(op->obj()->as_register(),
  2517                      op->tmp1()->as_register(),
  2518                      op->tmp2()->as_register(),
  2519                      op->tmp3()->as_register(),
  2520                      op->header_size(),
  2521                      op->object_size(),
  2522                      op->klass()->as_register(),
  2523                      *op->stub()->entry());
  2524   __ bind(*op->stub()->continuation());
  2525   __ verify_oop(op->obj()->as_register());
  2529 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2530   assert(op->tmp1()->as_register()  == G1 &&
  2531          op->tmp2()->as_register()  == G3 &&
  2532          op->tmp3()->as_register()  == G4 &&
  2533          op->tmp4()->as_register()  == O1 &&
  2534          op->klass()->as_register() == G5, "must be");
  2536   LP64_ONLY( __ signx(op->len()->as_register()); )
  2537   if (UseSlowPath ||
  2538       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2539       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2540     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2541     __ delayed()->nop();
  2542   } else {
  2543     __ allocate_array(op->obj()->as_register(),
  2544                       op->len()->as_register(),
  2545                       op->tmp1()->as_register(),
  2546                       op->tmp2()->as_register(),
  2547                       op->tmp3()->as_register(),
  2548                       arrayOopDesc::header_size(op->type()),
  2549                       type2aelembytes(op->type()),
  2550                       op->klass()->as_register(),
  2551                       *op->stub()->entry());
  2553   __ bind(*op->stub()->continuation());
  2557 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2558                                         ciMethodData *md, ciProfileData *data,
  2559                                         Register recv, Register tmp1, Label* update_done) {
  2560   uint i;
  2561   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2562     Label next_test;
  2563     // See if the receiver is receiver[n].
  2564     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2565                           mdo_offset_bias);
  2566     __ ld_ptr(receiver_addr, tmp1);
  2567     __ verify_oop(tmp1);
  2568     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2569     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2570                       mdo_offset_bias);
  2571     __ ld_ptr(data_addr, tmp1);
  2572     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2573     __ st_ptr(tmp1, data_addr);
  2574     __ ba(*update_done);
  2575     __ delayed()->nop();
  2576     __ bind(next_test);
  2579   // Didn't find receiver; find next empty slot and fill it in
  2580   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2581     Label next_test;
  2582     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2583                       mdo_offset_bias);
  2584     __ ld_ptr(recv_addr, tmp1);
  2585     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2586     __ st_ptr(recv, recv_addr);
  2587     __ set(DataLayout::counter_increment, tmp1);
  2588     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2589               mdo_offset_bias);
  2590     __ ba(*update_done);
  2591     __ delayed()->nop();
  2592     __ bind(next_test);
  2597 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2598                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2599   md = method->method_data_or_null();
  2600   assert(md != NULL, "Sanity");
  2601   data = md->bci_to_data(bci);
  2602   assert(data != NULL,       "need data for checkcast");
  2603   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2604   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2605     // The offset is large so bias the mdo by the base of the slot so
  2606     // that the ld can use simm13s to reference the slots of the data
  2607     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2611 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2612   // we always need a stub for the failure case.
  2613   CodeStub* stub = op->stub();
  2614   Register obj = op->object()->as_register();
  2615   Register k_RInfo = op->tmp1()->as_register();
  2616   Register klass_RInfo = op->tmp2()->as_register();
  2617   Register dst = op->result_opr()->as_register();
  2618   Register Rtmp1 = op->tmp3()->as_register();
  2619   ciKlass* k = op->klass();
  2622   if (obj == k_RInfo) {
  2623     k_RInfo = klass_RInfo;
  2624     klass_RInfo = obj;
  2627   ciMethodData* md;
  2628   ciProfileData* data;
  2629   int mdo_offset_bias = 0;
  2630   if (op->should_profile()) {
  2631     ciMethod* method = op->profiled_method();
  2632     assert(method != NULL, "Should have method");
  2633     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2635     Label not_null;
  2636     __ br_notnull_short(obj, Assembler::pn, not_null);
  2637     Register mdo      = k_RInfo;
  2638     Register data_val = Rtmp1;
  2639     metadata2reg(md->constant_encoding(), mdo);
  2640     if (mdo_offset_bias > 0) {
  2641       __ set(mdo_offset_bias, data_val);
  2642       __ add(mdo, data_val, mdo);
  2644     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2645     __ ldub(flags_addr, data_val);
  2646     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2647     __ stb(data_val, flags_addr);
  2648     __ ba(*obj_is_null);
  2649     __ delayed()->nop();
  2650     __ bind(not_null);
  2651   } else {
  2652     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2653     __ delayed()->nop();
  2656   Label profile_cast_failure, profile_cast_success;
  2657   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2658   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2660   // patching may screw with our temporaries on sparc,
  2661   // so let's do it before loading the class
  2662   if (k->is_loaded()) {
  2663     metadata2reg(k->constant_encoding(), k_RInfo);
  2664   } else {
  2665     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  2667   assert(obj != k_RInfo, "must be different");
  2669   // get object class
  2670   // not a safepoint as obj null check happens earlier
  2671   __ load_klass(obj, klass_RInfo);
  2672   if (op->fast_check()) {
  2673     assert_different_registers(klass_RInfo, k_RInfo);
  2674     __ cmp(k_RInfo, klass_RInfo);
  2675     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2676     __ delayed()->nop();
  2677   } else {
  2678     bool need_slow_path = true;
  2679     if (k->is_loaded()) {
  2680       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2681         need_slow_path = false;
  2682       // perform the fast part of the checking logic
  2683       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2684                                        (need_slow_path ? success_target : NULL),
  2685                                        failure_target, NULL,
  2686                                        RegisterOrConstant(k->super_check_offset()));
  2687     } else {
  2688       // perform the fast part of the checking logic
  2689       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2690                                        failure_target, NULL);
  2692     if (need_slow_path) {
  2693       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2694       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2695       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2696       __ delayed()->nop();
  2697       __ cmp(G3, 0);
  2698       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2699       __ delayed()->nop();
  2700       // Fall through to success case
  2704   if (op->should_profile()) {
  2705     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2706     assert_different_registers(obj, mdo, recv, tmp1);
  2707     __ bind(profile_cast_success);
  2708     metadata2reg(md->constant_encoding(), mdo);
  2709     if (mdo_offset_bias > 0) {
  2710       __ set(mdo_offset_bias, tmp1);
  2711       __ add(mdo, tmp1, mdo);
  2713     __ load_klass(obj, recv);
  2714     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2715     // Jump over the failure case
  2716     __ ba(*success);
  2717     __ delayed()->nop();
  2718     // Cast failure case
  2719     __ bind(profile_cast_failure);
  2720     metadata2reg(md->constant_encoding(), mdo);
  2721     if (mdo_offset_bias > 0) {
  2722       __ set(mdo_offset_bias, tmp1);
  2723       __ add(mdo, tmp1, mdo);
  2725     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2726     __ ld_ptr(data_addr, tmp1);
  2727     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2728     __ st_ptr(tmp1, data_addr);
  2729     __ ba(*failure);
  2730     __ delayed()->nop();
  2732   __ ba(*success);
  2733   __ delayed()->nop();
  2736 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2737   LIR_Code code = op->code();
  2738   if (code == lir_store_check) {
  2739     Register value = op->object()->as_register();
  2740     Register array = op->array()->as_register();
  2741     Register k_RInfo = op->tmp1()->as_register();
  2742     Register klass_RInfo = op->tmp2()->as_register();
  2743     Register Rtmp1 = op->tmp3()->as_register();
  2745     __ verify_oop(value);
  2746     CodeStub* stub = op->stub();
  2747     // check if it needs to be profiled
  2748     ciMethodData* md;
  2749     ciProfileData* data;
  2750     int mdo_offset_bias = 0;
  2751     if (op->should_profile()) {
  2752       ciMethod* method = op->profiled_method();
  2753       assert(method != NULL, "Should have method");
  2754       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2756     Label profile_cast_success, profile_cast_failure, done;
  2757     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2758     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2760     if (op->should_profile()) {
  2761       Label not_null;
  2762       __ br_notnull_short(value, Assembler::pn, not_null);
  2763       Register mdo      = k_RInfo;
  2764       Register data_val = Rtmp1;
  2765       metadata2reg(md->constant_encoding(), mdo);
  2766       if (mdo_offset_bias > 0) {
  2767         __ set(mdo_offset_bias, data_val);
  2768         __ add(mdo, data_val, mdo);
  2770       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2771       __ ldub(flags_addr, data_val);
  2772       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2773       __ stb(data_val, flags_addr);
  2774       __ ba_short(done);
  2775       __ bind(not_null);
  2776     } else {
  2777       __ br_null_short(value, Assembler::pn, done);
  2779     add_debug_info_for_null_check_here(op->info_for_exception());
  2780     __ load_klass(array, k_RInfo);
  2781     __ load_klass(value, klass_RInfo);
  2783     // get instance klass
  2784     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
  2785     // perform the fast part of the checking logic
  2786     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2788     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2789     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2790     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2791     __ delayed()->nop();
  2792     __ cmp(G3, 0);
  2793     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2794     __ delayed()->nop();
  2795     // fall through to the success case
  2797     if (op->should_profile()) {
  2798       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2799       assert_different_registers(value, mdo, recv, tmp1);
  2800       __ bind(profile_cast_success);
  2801       metadata2reg(md->constant_encoding(), mdo);
  2802       if (mdo_offset_bias > 0) {
  2803         __ set(mdo_offset_bias, tmp1);
  2804         __ add(mdo, tmp1, mdo);
  2806       __ load_klass(value, recv);
  2807       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2808       __ ba_short(done);
  2809       // Cast failure case
  2810       __ bind(profile_cast_failure);
  2811       metadata2reg(md->constant_encoding(), mdo);
  2812       if (mdo_offset_bias > 0) {
  2813         __ set(mdo_offset_bias, tmp1);
  2814         __ add(mdo, tmp1, mdo);
  2816       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2817       __ ld_ptr(data_addr, tmp1);
  2818       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2819       __ st_ptr(tmp1, data_addr);
  2820       __ ba(*stub->entry());
  2821       __ delayed()->nop();
  2823     __ bind(done);
  2824   } else if (code == lir_checkcast) {
  2825     Register obj = op->object()->as_register();
  2826     Register dst = op->result_opr()->as_register();
  2827     Label success;
  2828     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2829     __ bind(success);
  2830     __ mov(obj, dst);
  2831   } else if (code == lir_instanceof) {
  2832     Register obj = op->object()->as_register();
  2833     Register dst = op->result_opr()->as_register();
  2834     Label success, failure, done;
  2835     emit_typecheck_helper(op, &success, &failure, &failure);
  2836     __ bind(failure);
  2837     __ set(0, dst);
  2838     __ ba_short(done);
  2839     __ bind(success);
  2840     __ set(1, dst);
  2841     __ bind(done);
  2842   } else {
  2843     ShouldNotReachHere();
  2849 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2850   if (op->code() == lir_cas_long) {
  2851     assert(VM_Version::supports_cx8(), "wrong machine");
  2852     Register addr = op->addr()->as_pointer_register();
  2853     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2854     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2855     Register new_value_lo = op->new_value()->as_register_lo();
  2856     Register new_value_hi = op->new_value()->as_register_hi();
  2857     Register t1 = op->tmp1()->as_register();
  2858     Register t2 = op->tmp2()->as_register();
  2859 #ifdef _LP64
  2860     __ mov(cmp_value_lo, t1);
  2861     __ mov(new_value_lo, t2);
  2862     // perform the compare and swap operation
  2863     __ casx(addr, t1, t2);
  2864     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2865     // overwritten with the original value in "addr" and will be equal to t1.
  2866     __ cmp(t1, t2);
  2867 #else
  2868     // move high and low halves of long values into single registers
  2869     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2870     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2871     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2872     __ sllx(new_value_hi, 32, t2);
  2873     __ srl(new_value_lo, 0, new_value_lo);
  2874     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2875     // perform the compare and swap operation
  2876     __ casx(addr, t1, t2);
  2877     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2878     // overwritten with the original value in "addr" and will be equal to t1.
  2879     // Produce icc flag for 32bit.
  2880     __ sub(t1, t2, t2);
  2881     __ srlx(t2, 32, t1);
  2882     __ orcc(t2, t1, G0);
  2883 #endif
  2884   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2885     Register addr = op->addr()->as_pointer_register();
  2886     Register cmp_value = op->cmp_value()->as_register();
  2887     Register new_value = op->new_value()->as_register();
  2888     Register t1 = op->tmp1()->as_register();
  2889     Register t2 = op->tmp2()->as_register();
  2890     __ mov(cmp_value, t1);
  2891     __ mov(new_value, t2);
  2892     if (op->code() == lir_cas_obj) {
  2893       if (UseCompressedOops) {
  2894         __ encode_heap_oop(t1);
  2895         __ encode_heap_oop(t2);
  2896         __ cas(addr, t1, t2);
  2897       } else {
  2898         __ cas_ptr(addr, t1, t2);
  2900     } else {
  2901       __ cas(addr, t1, t2);
  2903     __ cmp(t1, t2);
  2904   } else {
  2905     Unimplemented();
  2909 void LIR_Assembler::set_24bit_FPU() {
  2910   Unimplemented();
  2914 void LIR_Assembler::reset_FPU() {
  2915   Unimplemented();
  2919 void LIR_Assembler::breakpoint() {
  2920   __ breakpoint_trap();
  2924 void LIR_Assembler::push(LIR_Opr opr) {
  2925   Unimplemented();
  2929 void LIR_Assembler::pop(LIR_Opr opr) {
  2930   Unimplemented();
  2934 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2935   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2936   Register dst = dst_opr->as_register();
  2937   Register reg = mon_addr.base();
  2938   int offset = mon_addr.disp();
  2939   // compute pointer to BasicLock
  2940   if (mon_addr.is_simm13()) {
  2941     __ add(reg, offset, dst);
  2942   } else {
  2943     __ set(offset, dst);
  2944     __ add(dst, reg, dst);
  2949 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2950   Register obj = op->obj_opr()->as_register();
  2951   Register hdr = op->hdr_opr()->as_register();
  2952   Register lock = op->lock_opr()->as_register();
  2954   // obj may not be an oop
  2955   if (op->code() == lir_lock) {
  2956     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2957     if (UseFastLocking) {
  2958       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2959       // add debug info for NullPointerException only if one is possible
  2960       if (op->info() != NULL) {
  2961         add_debug_info_for_null_check_here(op->info());
  2963       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2964     } else {
  2965       // always do slow locking
  2966       // note: the slow locking code could be inlined here, however if we use
  2967       //       slow locking, speed doesn't matter anyway and this solution is
  2968       //       simpler and requires less duplicated code - additionally, the
  2969       //       slow locking code is the same in either case which simplifies
  2970       //       debugging
  2971       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2972       __ delayed()->nop();
  2974   } else {
  2975     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2976     if (UseFastLocking) {
  2977       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2978       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2979     } else {
  2980       // always do slow unlocking
  2981       // note: the slow unlocking code could be inlined here, however if we use
  2982       //       slow unlocking, speed doesn't matter anyway and this solution is
  2983       //       simpler and requires less duplicated code - additionally, the
  2984       //       slow unlocking code is the same in either case which simplifies
  2985       //       debugging
  2986       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2987       __ delayed()->nop();
  2990   __ bind(*op->stub()->continuation());
  2994 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2995   ciMethod* method = op->profiled_method();
  2996   int bci          = op->profiled_bci();
  2997   ciMethod* callee = op->profiled_callee();
  2999   // Update counter for all call types
  3000   ciMethodData* md = method->method_data_or_null();
  3001   assert(md != NULL, "Sanity");
  3002   ciProfileData* data = md->bci_to_data(bci);
  3003   assert(data->is_CounterData(), "need CounterData for calls");
  3004   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3005   Register mdo  = op->mdo()->as_register();
  3006 #ifdef _LP64
  3007   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  3008   Register tmp1 = op->tmp1()->as_register_lo();
  3009 #else
  3010   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  3011   Register tmp1 = op->tmp1()->as_register();
  3012 #endif
  3013   metadata2reg(md->constant_encoding(), mdo);
  3014   int mdo_offset_bias = 0;
  3015   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  3016                             data->size_in_bytes())) {
  3017     // The offset is large so bias the mdo by the base of the slot so
  3018     // that the ld can use simm13s to reference the slots of the data
  3019     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  3020     __ set(mdo_offset_bias, O7);
  3021     __ add(mdo, O7, mdo);
  3024   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  3025   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3026   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3027   // Perform additional virtual call profiling for invokevirtual and
  3028   // invokeinterface bytecodes
  3029   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3030       !callee_is_static &&  // required for optimized MH invokes
  3031       C1ProfileVirtualCalls) {
  3032     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3033     Register recv = op->recv()->as_register();
  3034     assert_different_registers(mdo, tmp1, recv);
  3035     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3036     ciKlass* known_klass = op->known_holder();
  3037     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3038       // We know the type that will be seen at this call site; we can
  3039       // statically update the MethodData* rather than needing to do
  3040       // dynamic tests on the receiver type
  3042       // NOTE: we should probably put a lock around this search to
  3043       // avoid collisions by concurrent compilations
  3044       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3045       uint i;
  3046       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3047         ciKlass* receiver = vc_data->receiver(i);
  3048         if (known_klass->equals(receiver)) {
  3049           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3050                                                          VirtualCallData::receiver_count_offset(i)) -
  3051                             mdo_offset_bias);
  3052           __ ld_ptr(data_addr, tmp1);
  3053           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3054           __ st_ptr(tmp1, data_addr);
  3055           return;
  3059       // Receiver type not found in profile data; select an empty slot
  3061       // Note that this is less efficient than it should be because it
  3062       // always does a write to the receiver part of the
  3063       // VirtualCallData rather than just the first time
  3064       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3065         ciKlass* receiver = vc_data->receiver(i);
  3066         if (receiver == NULL) {
  3067           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3068                             mdo_offset_bias);
  3069           metadata2reg(known_klass->constant_encoding(), tmp1);
  3070           __ st_ptr(tmp1, recv_addr);
  3071           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3072                             mdo_offset_bias);
  3073           __ ld_ptr(data_addr, tmp1);
  3074           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3075           __ st_ptr(tmp1, data_addr);
  3076           return;
  3079     } else {
  3080       __ load_klass(recv, recv);
  3081       Label update_done;
  3082       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3083       // Receiver did not match any saved receiver and there is no empty row for it.
  3084       // Increment total counter to indicate polymorphic case.
  3085       __ ld_ptr(counter_addr, tmp1);
  3086       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3087       __ st_ptr(tmp1, counter_addr);
  3089       __ bind(update_done);
  3091   } else {
  3092     // Static call
  3093     __ ld_ptr(counter_addr, tmp1);
  3094     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3095     __ st_ptr(tmp1, counter_addr);
  3099 void LIR_Assembler::align_backward_branch_target() {
  3100   __ align(OptoLoopAlignment);
  3104 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3105   // make sure we are expecting a delay
  3106   // this has the side effect of clearing the delay state
  3107   // so we can use _masm instead of _masm->delayed() to do the
  3108   // code generation.
  3109   __ delayed();
  3111   // make sure we only emit one instruction
  3112   int offset = code_offset();
  3113   op->delay_op()->emit_code(this);
  3114 #ifdef ASSERT
  3115   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3116     op->delay_op()->print();
  3118   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3119          "only one instruction can go in a delay slot");
  3120 #endif
  3122   // we may also be emitting the call info for the instruction
  3123   // which we are the delay slot of.
  3124   CodeEmitInfo* call_info = op->call_info();
  3125   if (call_info) {
  3126     add_call_info(code_offset(), call_info);
  3129   if (VerifyStackAtCalls) {
  3130     _masm->sub(FP, SP, O7);
  3131     _masm->cmp(O7, initial_frame_size_in_bytes());
  3132     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3137 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3138   assert(left->is_register(), "can only handle registers");
  3140   if (left->is_single_cpu()) {
  3141     __ neg(left->as_register(), dest->as_register());
  3142   } else if (left->is_single_fpu()) {
  3143     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3144   } else if (left->is_double_fpu()) {
  3145     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3146   } else {
  3147     assert (left->is_double_cpu(), "Must be a long");
  3148     Register Rlow = left->as_register_lo();
  3149     Register Rhi = left->as_register_hi();
  3150 #ifdef _LP64
  3151     __ sub(G0, Rlow, dest->as_register_lo());
  3152 #else
  3153     __ subcc(G0, Rlow, dest->as_register_lo());
  3154     __ subc (G0, Rhi,  dest->as_register_hi());
  3155 #endif
  3160 void LIR_Assembler::fxch(int i) {
  3161   Unimplemented();
  3164 void LIR_Assembler::fld(int i) {
  3165   Unimplemented();
  3168 void LIR_Assembler::ffree(int i) {
  3169   Unimplemented();
  3172 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3173                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3175   // if tmp is invalid, then the function being called doesn't destroy the thread
  3176   if (tmp->is_valid()) {
  3177     __ save_thread(tmp->as_register());
  3179   __ call(dest, relocInfo::runtime_call_type);
  3180   __ delayed()->nop();
  3181   if (info != NULL) {
  3182     add_call_info_here(info);
  3184   if (tmp->is_valid()) {
  3185     __ restore_thread(tmp->as_register());
  3188 #ifdef ASSERT
  3189   __ verify_thread();
  3190 #endif // ASSERT
  3194 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3195 #ifdef _LP64
  3196   ShouldNotReachHere();
  3197 #endif
  3199   NEEDS_CLEANUP;
  3200   if (type == T_LONG) {
  3201     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3203     // (extended to allow indexed as well as constant displaced for JSR-166)
  3204     Register idx = noreg; // contains either constant offset or index
  3206     int disp = mem_addr->disp();
  3207     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3208       if (!Assembler::is_simm13(disp)) {
  3209         idx = O7;
  3210         __ set(disp, idx);
  3212     } else {
  3213       assert(disp == 0, "not both indexed and disp");
  3214       idx = mem_addr->index()->as_register();
  3217     int null_check_offset = -1;
  3219     Register base = mem_addr->base()->as_register();
  3220     if (src->is_register() && dest->is_address()) {
  3221       // G4 is high half, G5 is low half
  3222       if (VM_Version::v9_instructions_work()) {
  3223         // clear the top bits of G5, and scale up G4
  3224         __ srl (src->as_register_lo(),  0, G5);
  3225         __ sllx(src->as_register_hi(), 32, G4);
  3226         // combine the two halves into the 64 bits of G4
  3227         __ or3(G4, G5, G4);
  3228         null_check_offset = __ offset();
  3229         if (idx == noreg) {
  3230           __ stx(G4, base, disp);
  3231         } else {
  3232           __ stx(G4, base, idx);
  3234       } else {
  3235         __ mov (src->as_register_hi(), G4);
  3236         __ mov (src->as_register_lo(), G5);
  3237         null_check_offset = __ offset();
  3238         if (idx == noreg) {
  3239           __ std(G4, base, disp);
  3240         } else {
  3241           __ std(G4, base, idx);
  3244     } else if (src->is_address() && dest->is_register()) {
  3245       null_check_offset = __ offset();
  3246       if (VM_Version::v9_instructions_work()) {
  3247         if (idx == noreg) {
  3248           __ ldx(base, disp, G5);
  3249         } else {
  3250           __ ldx(base, idx, G5);
  3252         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3253         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3254       } else {
  3255         if (idx == noreg) {
  3256           __ ldd(base, disp, G4);
  3257         } else {
  3258           __ ldd(base, idx, G4);
  3260         // G4 is high half, G5 is low half
  3261         __ mov (G4, dest->as_register_hi());
  3262         __ mov (G5, dest->as_register_lo());
  3264     } else {
  3265       Unimplemented();
  3267     if (info != NULL) {
  3268       add_debug_info_for_null_check(null_check_offset, info);
  3271   } else {
  3272     // use normal move for all other volatiles since they don't need
  3273     // special handling to remain atomic.
  3274     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3278 void LIR_Assembler::membar() {
  3279   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3280   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3283 void LIR_Assembler::membar_acquire() {
  3284   // no-op on TSO
  3287 void LIR_Assembler::membar_release() {
  3288   // no-op on TSO
  3291 void LIR_Assembler::membar_loadload() {
  3292   // no-op
  3293   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3296 void LIR_Assembler::membar_storestore() {
  3297   // no-op
  3298   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3301 void LIR_Assembler::membar_loadstore() {
  3302   // no-op
  3303   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3306 void LIR_Assembler::membar_storeload() {
  3307   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3311 // Pack two sequential registers containing 32 bit values
  3312 // into a single 64 bit register.
  3313 // src and src->successor() are packed into dst
  3314 // src and dst may be the same register.
  3315 // Note: src is destroyed
  3316 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3317   Register rs = src->as_register();
  3318   Register rd = dst->as_register_lo();
  3319   __ sllx(rs, 32, rs);
  3320   __ srl(rs->successor(), 0, rs->successor());
  3321   __ or3(rs, rs->successor(), rd);
  3324 // Unpack a 64 bit value in a register into
  3325 // two sequential registers.
  3326 // src is unpacked into dst and dst->successor()
  3327 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3328   Register rs = src->as_register_lo();
  3329   Register rd = dst->as_register_hi();
  3330   assert_different_registers(rs, rd, rd->successor());
  3331   __ srlx(rs, 32, rd);
  3332   __ srl (rs,  0, rd->successor());
  3336 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3337   LIR_Address* addr = addr_opr->as_address_ptr();
  3338   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3340   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3344 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3345   assert(result_reg->is_register(), "check");
  3346   __ mov(G2_thread, result_reg->as_register());
  3350 void LIR_Assembler::peephole(LIR_List* lir) {
  3351   LIR_OpList* inst = lir->instructions_list();
  3352   for (int i = 0; i < inst->length(); i++) {
  3353     LIR_Op* op = inst->at(i);
  3354     switch (op->code()) {
  3355       case lir_cond_float_branch:
  3356       case lir_branch: {
  3357         LIR_OpBranch* branch = op->as_OpBranch();
  3358         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3359         LIR_Op* delay_op = NULL;
  3360         // we'd like to be able to pull following instructions into
  3361         // this slot but we don't know enough to do it safely yet so
  3362         // only optimize block to block control flow.
  3363         if (LIRFillDelaySlots && branch->block()) {
  3364           LIR_Op* prev = inst->at(i - 1);
  3365           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3366             // swap previous instruction into delay slot
  3367             inst->at_put(i - 1, op);
  3368             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3369 #ifndef PRODUCT
  3370             if (LIRTracePeephole) {
  3371               tty->print_cr("delayed");
  3372               inst->at(i - 1)->print();
  3373               inst->at(i)->print();
  3374               tty->cr();
  3376 #endif
  3377             continue;
  3381         if (!delay_op) {
  3382           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3384         inst->insert_before(i + 1, delay_op);
  3385         break;
  3387       case lir_static_call:
  3388       case lir_virtual_call:
  3389       case lir_icvirtual_call:
  3390       case lir_optvirtual_call:
  3391       case lir_dynamic_call: {
  3392         LIR_Op* prev = inst->at(i - 1);
  3393         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3394             (op->code() != lir_virtual_call ||
  3395              !prev->result_opr()->is_single_cpu() ||
  3396              prev->result_opr()->as_register() != O0) &&
  3397             LIR_Assembler::is_single_instruction(prev)) {
  3398           // Only moves without info can be put into the delay slot.
  3399           // Also don't allow the setup of the receiver in the delay
  3400           // slot for vtable calls.
  3401           inst->at_put(i - 1, op);
  3402           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3403 #ifndef PRODUCT
  3404           if (LIRTracePeephole) {
  3405             tty->print_cr("delayed");
  3406             inst->at(i - 1)->print();
  3407             inst->at(i)->print();
  3408             tty->cr();
  3410 #endif
  3411         } else {
  3412           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3413           inst->insert_before(i + 1, delay_op);
  3414           i++;
  3417 #if defined(TIERED) && !defined(_LP64)
  3418         // fixup the return value from G1 to O0/O1 for long returns.
  3419         // It's done here instead of in LIRGenerator because there's
  3420         // such a mismatch between the single reg and double reg
  3421         // calling convention.
  3422         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3423         if (callop->result_opr() == FrameMap::out_long_opr) {
  3424           LIR_OpJavaCall* call;
  3425           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3426           for (int a = 0; a < arguments->length(); a++) {
  3427             arguments[a] = callop->arguments()[a];
  3429           if (op->code() == lir_virtual_call) {
  3430             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3431                                       callop->vtable_offset(), arguments, callop->info());
  3432           } else {
  3433             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3434                                       callop->addr(), arguments, callop->info());
  3436           inst->at_put(i - 1, call);
  3437           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3438                                                  T_LONG, lir_patch_none, NULL));
  3440 #endif
  3441         break;
  3447 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3448   LIR_Address* addr = src->as_address_ptr();
  3450   assert(data == dest, "swap uses only 2 operands");
  3451   assert (code == lir_xchg, "no xadd on sparc");
  3453   if (data->type() == T_INT) {
  3454     __ swap(as_Address(addr), data->as_register());
  3455   } else if (data->is_oop()) {
  3456     Register obj = data->as_register();
  3457     Register narrow = tmp->as_register();
  3458 #ifdef _LP64
  3459     assert(UseCompressedOops, "swap is 32bit only");
  3460     __ encode_heap_oop(obj, narrow);
  3461     __ swap(as_Address(addr), narrow);
  3462     __ decode_heap_oop(narrow, obj);
  3463 #else
  3464     __ swap(as_Address(addr), obj);
  3465 #endif
  3466   } else {
  3467     ShouldNotReachHere();
  3471 #undef __

mercurial