src/cpu/x86/vm/x86_32.ad

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3846
8b0a4867acf0
child 4001
006050192a5a
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

     1 //
     2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_FPU_size() {
   232   if (Compile::current()->in_24_bit_fp_mode())
   233     return 6; // fldcw
   234   return 0;
   235 }
   237 static int preserve_SP_size() {
   238   return 2;  // op, rm(reg/reg)
   239 }
   241 // !!!!! Special hack to get all type of calls to specify the byte offset
   242 //       from the start of the call to the point where the return address
   243 //       will point.
   244 int MachCallStaticJavaNode::ret_addr_offset() {
   245   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   246   if (_method_handle_invoke)
   247     offset += preserve_SP_size();
   248   return offset;
   249 }
   251 int MachCallDynamicJavaNode::ret_addr_offset() {
   252   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   253 }
   255 static int sizeof_FFree_Float_Stack_All = -1;
   257 int MachCallRuntimeNode::ret_addr_offset() {
   258   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   259   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   260 }
   262 // Indicate if the safepoint node needs the polling page as an input.
   263 // Since x86 does have absolute addressing, it doesn't.
   264 bool SafePointNode::needs_polling_address_input() {
   265   return false;
   266 }
   268 //
   269 // Compute padding required for nodes which need alignment
   270 //
   272 // The address of the call instruction needs to be 4-byte aligned to
   273 // ensure that it does not span a cache line so that it can be patched.
   274 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   275   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   276   current_offset += 1;      // skip call opcode byte
   277   return round_to(current_offset, alignment_required()) - current_offset;
   278 }
   280 // The address of the call instruction needs to be 4-byte aligned to
   281 // ensure that it does not span a cache line so that it can be patched.
   282 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   283   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   284   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   285   current_offset += 1;      // skip call opcode byte
   286   return round_to(current_offset, alignment_required()) - current_offset;
   287 }
   289 // The address of the call instruction needs to be 4-byte aligned to
   290 // ensure that it does not span a cache line so that it can be patched.
   291 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   292   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   293   current_offset += 5;      // skip MOV instruction
   294   current_offset += 1;      // skip call opcode byte
   295   return round_to(current_offset, alignment_required()) - current_offset;
   296 }
   298 // EMIT_RM()
   299 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   300   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   301   cbuf.insts()->emit_int8(c);
   302 }
   304 // EMIT_CC()
   305 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   306   unsigned char c = (unsigned char)( f1 | f2 );
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_OPCODE()
   311 void emit_opcode(CodeBuffer &cbuf, int code) {
   312   cbuf.insts()->emit_int8((unsigned char) code);
   313 }
   315 // EMIT_OPCODE() w/ relocation information
   316 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   317   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   318   emit_opcode(cbuf, code);
   319 }
   321 // EMIT_D8()
   322 void emit_d8(CodeBuffer &cbuf, int d8) {
   323   cbuf.insts()->emit_int8((unsigned char) d8);
   324 }
   326 // EMIT_D16()
   327 void emit_d16(CodeBuffer &cbuf, int d16) {
   328   cbuf.insts()->emit_int16(d16);
   329 }
   331 // EMIT_D32()
   332 void emit_d32(CodeBuffer &cbuf, int d32) {
   333   cbuf.insts()->emit_int32(d32);
   334 }
   336 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   337 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   338         int format) {
   339   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   340   cbuf.insts()->emit_int32(d32);
   341 }
   343 // emit 32 bit value and construct relocation entry from RelocationHolder
   344 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   345         int format) {
   346 #ifdef ASSERT
   347   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   348     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   349   }
   350 #endif
   351   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   352   cbuf.insts()->emit_int32(d32);
   353 }
   355 // Access stack slot for load or store
   356 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   357   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   358   if( -128 <= disp && disp <= 127 ) {
   359     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   360     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   361     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   362   } else {
   363     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   364     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   365     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   366   }
   367 }
   369    // rRegI ereg, memory mem) %{    // emit_reg_mem
   370 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   371   // There is no index & no scale, use form without SIB byte
   372   if ((index == 0x4) &&
   373       (scale == 0) && (base != ESP_enc)) {
   374     // If no displacement, mode is 0x0; unless base is [EBP]
   375     if ( (displace == 0) && (base != EBP_enc) ) {
   376       emit_rm(cbuf, 0x0, reg_encoding, base);
   377     }
   378     else {                    // If 8-bit displacement, mode 0x1
   379       if ((displace >= -128) && (displace <= 127)
   380           && !(displace_is_oop) ) {
   381         emit_rm(cbuf, 0x1, reg_encoding, base);
   382         emit_d8(cbuf, displace);
   383       }
   384       else {                  // If 32-bit displacement
   385         if (base == -1) { // Special flag for absolute address
   386           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   387           // (manual lies; no SIB needed here)
   388           if ( displace_is_oop ) {
   389             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   390           } else {
   391             emit_d32      (cbuf, displace);
   392           }
   393         }
   394         else {                // Normal base + offset
   395           emit_rm(cbuf, 0x2, reg_encoding, base);
   396           if ( displace_is_oop ) {
   397             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   398           } else {
   399             emit_d32      (cbuf, displace);
   400           }
   401         }
   402       }
   403     }
   404   }
   405   else {                      // Else, encode with the SIB byte
   406     // If no displacement, mode is 0x0; unless base is [EBP]
   407     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   408       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   409       emit_rm(cbuf, scale, index, base);
   410     }
   411     else {                    // If 8-bit displacement, mode 0x1
   412       if ((displace >= -128) && (displace <= 127)
   413           && !(displace_is_oop) ) {
   414         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   415         emit_rm(cbuf, scale, index, base);
   416         emit_d8(cbuf, displace);
   417       }
   418       else {                  // If 32-bit displacement
   419         if (base == 0x04 ) {
   420           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   421           emit_rm(cbuf, scale, index, 0x04);
   422         } else {
   423           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   424           emit_rm(cbuf, scale, index, base);
   425         }
   426         if ( displace_is_oop ) {
   427           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   428         } else {
   429           emit_d32      (cbuf, displace);
   430         }
   431       }
   432     }
   433   }
   434 }
   437 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   438   if( dst_encoding == src_encoding ) {
   439     // reg-reg copy, use an empty encoding
   440   } else {
   441     emit_opcode( cbuf, 0x8B );
   442     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   443   }
   444 }
   446 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   447   Label exit;
   448   __ jccb(Assembler::noParity, exit);
   449   __ pushf();
   450   //
   451   // comiss/ucomiss instructions set ZF,PF,CF flags and
   452   // zero OF,AF,SF for NaN values.
   453   // Fixup flags by zeroing ZF,PF so that compare of NaN
   454   // values returns 'less than' result (CF is set).
   455   // Leave the rest of flags unchanged.
   456   //
   457   //    7 6 5 4 3 2 1 0
   458   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   459   //    0 0 1 0 1 0 1 1   (0x2B)
   460   //
   461   __ andl(Address(rsp, 0), 0xffffff2b);
   462   __ popf();
   463   __ bind(exit);
   464 }
   466 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   467   Label done;
   468   __ movl(dst, -1);
   469   __ jcc(Assembler::parity, done);
   470   __ jcc(Assembler::below, done);
   471   __ setb(Assembler::notEqual, dst);
   472   __ movzbl(dst, dst);
   473   __ bind(done);
   474 }
   477 //=============================================================================
   478 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   480 int Compile::ConstantTable::calculate_table_base_offset() const {
   481   return 0;  // absolute addressing, no offset
   482 }
   484 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   485   // Empty encoding
   486 }
   488 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   489   return 0;
   490 }
   492 #ifndef PRODUCT
   493 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   494   st->print("# MachConstantBaseNode (empty encoding)");
   495 }
   496 #endif
   499 //=============================================================================
   500 #ifndef PRODUCT
   501 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   502   Compile* C = ra_->C;
   504   int framesize = C->frame_slots() << LogBytesPerInt;
   505   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   506   // Remove wordSize for return addr which is already pushed.
   507   framesize -= wordSize;
   509   if (C->need_stack_bang(framesize)) {
   510     framesize -= wordSize;
   511     st->print("# stack bang");
   512     st->print("\n\t");
   513     st->print("PUSH   EBP\t# Save EBP");
   514     if (framesize) {
   515       st->print("\n\t");
   516       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   517     }
   518   } else {
   519     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   520     st->print("\n\t");
   521     framesize -= wordSize;
   522     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   523   }
   525   if (VerifyStackAtCalls) {
   526     st->print("\n\t");
   527     framesize -= wordSize;
   528     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   529   }
   531   if( C->in_24_bit_fp_mode() ) {
   532     st->print("\n\t");
   533     st->print("FLDCW  \t# load 24 bit fpu control word");
   534   }
   535   if (UseSSE >= 2 && VerifyFPU) {
   536     st->print("\n\t");
   537     st->print("# verify FPU stack (must be clean on entry)");
   538   }
   540 #ifdef ASSERT
   541   if (VerifyStackAtCalls) {
   542     st->print("\n\t");
   543     st->print("# stack alignment check");
   544   }
   545 #endif
   546   st->cr();
   547 }
   548 #endif
   551 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   552   Compile* C = ra_->C;
   553   MacroAssembler _masm(&cbuf);
   555   int framesize = C->frame_slots() << LogBytesPerInt;
   557   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   559   C->set_frame_complete(cbuf.insts_size());
   561   if (C->has_mach_constant_base_node()) {
   562     // NOTE: We set the table base offset here because users might be
   563     // emitted before MachConstantBaseNode.
   564     Compile::ConstantTable& constant_table = C->constant_table();
   565     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   566   }
   567 }
   569 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   570   return MachNode::size(ra_); // too many variables; just compute it the hard way
   571 }
   573 int MachPrologNode::reloc() const {
   574   return 0; // a large enough number
   575 }
   577 //=============================================================================
   578 #ifndef PRODUCT
   579 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   580   Compile *C = ra_->C;
   581   int framesize = C->frame_slots() << LogBytesPerInt;
   582   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   583   // Remove two words for return addr and rbp,
   584   framesize -= 2*wordSize;
   586   if( C->in_24_bit_fp_mode() ) {
   587     st->print("FLDCW  standard control word");
   588     st->cr(); st->print("\t");
   589   }
   590   if( framesize ) {
   591     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   592     st->cr(); st->print("\t");
   593   }
   594   st->print_cr("POPL   EBP"); st->print("\t");
   595   if( do_polling() && C->is_method_compilation() ) {
   596     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   597     st->cr(); st->print("\t");
   598   }
   599 }
   600 #endif
   602 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   603   Compile *C = ra_->C;
   605   // If method set FPU control word, restore to standard control word
   606   if( C->in_24_bit_fp_mode() ) {
   607     MacroAssembler masm(&cbuf);
   608     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   609   }
   611   int framesize = C->frame_slots() << LogBytesPerInt;
   612   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   613   // Remove two words for return addr and rbp,
   614   framesize -= 2*wordSize;
   616   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   618   if( framesize >= 128 ) {
   619     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   620     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   621     emit_d32(cbuf, framesize);
   622   }
   623   else if( framesize ) {
   624     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   625     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   626     emit_d8(cbuf, framesize);
   627   }
   629   emit_opcode(cbuf, 0x58 | EBP_enc);
   631   if( do_polling() && C->is_method_compilation() ) {
   632     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   633     emit_opcode(cbuf,0x85);
   634     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   635     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   636   }
   637 }
   639 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   640   Compile *C = ra_->C;
   641   // If method set FPU control word, restore to standard control word
   642   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   643   if( do_polling() && C->is_method_compilation() ) size += 6;
   645   int framesize = C->frame_slots() << LogBytesPerInt;
   646   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   647   // Remove two words for return addr and rbp,
   648   framesize -= 2*wordSize;
   650   size++; // popl rbp,
   652   if( framesize >= 128 ) {
   653     size += 6;
   654   } else {
   655     size += framesize ? 3 : 0;
   656   }
   657   return size;
   658 }
   660 int MachEpilogNode::reloc() const {
   661   return 0; // a large enough number
   662 }
   664 const Pipeline * MachEpilogNode::pipeline() const {
   665   return MachNode::pipeline_class();
   666 }
   668 int MachEpilogNode::safepoint_offset() const { return 0; }
   670 //=============================================================================
   672 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   673 static enum RC rc_class( OptoReg::Name reg ) {
   675   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   676   if (OptoReg::is_stack(reg)) return rc_stack;
   678   VMReg r = OptoReg::as_VMReg(reg);
   679   if (r->is_Register()) return rc_int;
   680   if (r->is_FloatRegister()) {
   681     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   682     return rc_float;
   683   }
   684   assert(r->is_XMMRegister(), "must be");
   685   return rc_xmm;
   686 }
   688 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   689                         int opcode, const char *op_str, int size, outputStream* st ) {
   690   if( cbuf ) {
   691     emit_opcode  (*cbuf, opcode );
   692     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   693 #ifndef PRODUCT
   694   } else if( !do_size ) {
   695     if( size != 0 ) st->print("\n\t");
   696     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   697       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   698       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   699     } else { // FLD, FST, PUSH, POP
   700       st->print("%s [ESP + #%d]",op_str,offset);
   701     }
   702 #endif
   703   }
   704   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   705   return size+3+offset_size;
   706 }
   708 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   709 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   710                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   711   if (cbuf) {
   712     MacroAssembler _masm(cbuf);
   713     if (reg_lo+1 == reg_hi) { // double move?
   714       if (is_load) {
   715         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   716       } else {
   717         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   718       }
   719     } else {
   720       if (is_load) {
   721         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   722       } else {
   723         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   724       }
   725     }
   726 #ifndef PRODUCT
   727   } else if (!do_size) {
   728     if (size != 0) st->print("\n\t");
   729     if (reg_lo+1 == reg_hi) { // double move?
   730       if (is_load) st->print("%s %s,[ESP + #%d]",
   731                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   732                               Matcher::regName[reg_lo], offset);
   733       else         st->print("MOVSD  [ESP + #%d],%s",
   734                               offset, Matcher::regName[reg_lo]);
   735     } else {
   736       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   737                               Matcher::regName[reg_lo], offset);
   738       else         st->print("MOVSS  [ESP + #%d],%s",
   739                               offset, Matcher::regName[reg_lo]);
   740     }
   741 #endif
   742   }
   743   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   744   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   745   return size+5+offset_size;
   746 }
   749 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   750                             int src_hi, int dst_hi, int size, outputStream* st ) {
   751   if (cbuf) {
   752     MacroAssembler _masm(cbuf);
   753     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   754       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   755                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   756     } else {
   757       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   758                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   759     }
   760 #ifndef PRODUCT
   761   } else if (!do_size) {
   762     if (size != 0) st->print("\n\t");
   763     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   764       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   765         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   766       } else {
   767         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   768       }
   769     } else {
   770       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   771         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   772       } else {
   773         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   774       }
   775     }
   776 #endif
   777   }
   778   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   779   // Only MOVAPS SSE prefix uses 1 byte.
   780   int sz = 4;
   781   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   782       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   783   return size + sz;
   784 }
   786 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   787                             int src_hi, int dst_hi, int size, outputStream* st ) {
   788   // 32-bit
   789   if (cbuf) {
   790     MacroAssembler _masm(cbuf);
   791     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   792              as_Register(Matcher::_regEncode[src_lo]));
   793 #ifndef PRODUCT
   794   } else if (!do_size) {
   795     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   796 #endif
   797   }
   798   return 4;
   799 }
   802 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   803                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   804   // 32-bit
   805   if (cbuf) {
   806     MacroAssembler _masm(cbuf);
   807     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   808              as_XMMRegister(Matcher::_regEncode[src_lo]));
   809 #ifndef PRODUCT
   810   } else if (!do_size) {
   811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   812 #endif
   813   }
   814   return 4;
   815 }
   817 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   818   if( cbuf ) {
   819     emit_opcode(*cbuf, 0x8B );
   820     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   821 #ifndef PRODUCT
   822   } else if( !do_size ) {
   823     if( size != 0 ) st->print("\n\t");
   824     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   825 #endif
   826   }
   827   return size+2;
   828 }
   830 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   831                                  int offset, int size, outputStream* st ) {
   832   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   833     if( cbuf ) {
   834       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   835       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   836 #ifndef PRODUCT
   837     } else if( !do_size ) {
   838       if( size != 0 ) st->print("\n\t");
   839       st->print("FLD    %s",Matcher::regName[src_lo]);
   840 #endif
   841     }
   842     size += 2;
   843   }
   845   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   846   const char *op_str;
   847   int op;
   848   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   849     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   850     op = 0xDD;
   851   } else {                   // 32-bit store
   852     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   853     op = 0xD9;
   854     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   855   }
   857   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   858 }
   860 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   861 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   862                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   864 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   865                             int stack_offset, int reg, uint ireg, outputStream* st);
   867 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   868                                      int dst_offset, uint ireg, outputStream* st) {
   869   int calc_size = 0;
   870   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   871   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   872   switch (ireg) {
   873   case Op_VecS:
   874     calc_size = 3+src_offset_size + 3+dst_offset_size;
   875     break;
   876   case Op_VecD:
   877     calc_size = 3+src_offset_size + 3+dst_offset_size;
   878     src_offset += 4;
   879     dst_offset += 4;
   880     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   881     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   882     calc_size += 3+src_offset_size + 3+dst_offset_size;
   883     break;
   884   case Op_VecX:
   885     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   886     break;
   887   case Op_VecY:
   888     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   889     break;
   890   default:
   891     ShouldNotReachHere();
   892   }
   893   if (cbuf) {
   894     MacroAssembler _masm(cbuf);
   895     int offset = __ offset();
   896     switch (ireg) {
   897     case Op_VecS:
   898       __ pushl(Address(rsp, src_offset));
   899       __ popl (Address(rsp, dst_offset));
   900       break;
   901     case Op_VecD:
   902       __ pushl(Address(rsp, src_offset));
   903       __ popl (Address(rsp, dst_offset));
   904       __ pushl(Address(rsp, src_offset+4));
   905       __ popl (Address(rsp, dst_offset+4));
   906       break;
   907     case Op_VecX:
   908       __ movdqu(Address(rsp, -16), xmm0);
   909       __ movdqu(xmm0, Address(rsp, src_offset));
   910       __ movdqu(Address(rsp, dst_offset), xmm0);
   911       __ movdqu(xmm0, Address(rsp, -16));
   912       break;
   913     case Op_VecY:
   914       __ vmovdqu(Address(rsp, -32), xmm0);
   915       __ vmovdqu(xmm0, Address(rsp, src_offset));
   916       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   917       __ vmovdqu(xmm0, Address(rsp, -32));
   918       break;
   919     default:
   920       ShouldNotReachHere();
   921     }
   922     int size = __ offset() - offset;
   923     assert(size == calc_size, "incorrect size calculattion");
   924     return size;
   925 #ifndef PRODUCT
   926   } else if (!do_size) {
   927     switch (ireg) {
   928     case Op_VecS:
   929       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   930                 "popl    [rsp + #%d]",
   931                 src_offset, dst_offset);
   932       break;
   933     case Op_VecD:
   934       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   935                 "popq    [rsp + #%d]\n\t"
   936                 "pushl   [rsp + #%d]\n\t"
   937                 "popq    [rsp + #%d]",
   938                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   939       break;
   940      case Op_VecX:
   941       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   942                 "movdqu  xmm0, [rsp + #%d]\n\t"
   943                 "movdqu  [rsp + #%d], xmm0\n\t"
   944                 "movdqu  xmm0, [rsp - #16]",
   945                 src_offset, dst_offset);
   946       break;
   947     case Op_VecY:
   948       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   949                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   950                 "vmovdqu [rsp + #%d], xmm0\n\t"
   951                 "vmovdqu xmm0, [rsp - #32]",
   952                 src_offset, dst_offset);
   953       break;
   954     default:
   955       ShouldNotReachHere();
   956     }
   957 #endif
   958   }
   959   return calc_size;
   960 }
   962 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   963   // Get registers to move
   964   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   965   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   966   OptoReg::Name dst_second = ra_->get_reg_second(this );
   967   OptoReg::Name dst_first = ra_->get_reg_first(this );
   969   enum RC src_second_rc = rc_class(src_second);
   970   enum RC src_first_rc = rc_class(src_first);
   971   enum RC dst_second_rc = rc_class(dst_second);
   972   enum RC dst_first_rc = rc_class(dst_first);
   974   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   976   // Generate spill code!
   977   int size = 0;
   979   if( src_first == dst_first && src_second == dst_second )
   980     return size;            // Self copy, no move
   982   if (bottom_type()->isa_vect() != NULL) {
   983     uint ireg = ideal_reg();
   984     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
   985     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
   986     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
   987     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   988       // mem -> mem
   989       int src_offset = ra_->reg2offset(src_first);
   990       int dst_offset = ra_->reg2offset(dst_first);
   991       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
   992     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
   993       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
   994     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
   995       int stack_offset = ra_->reg2offset(dst_first);
   996       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
   997     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
   998       int stack_offset = ra_->reg2offset(src_first);
   999       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1000     } else {
  1001       ShouldNotReachHere();
  1005   // --------------------------------------
  1006   // Check for mem-mem move.  push/pop to move.
  1007   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1008     if( src_second == dst_first ) { // overlapping stack copy ranges
  1009       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1010       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1011       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1012       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1014     // move low bits
  1015     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1016     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1017     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1018       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1019       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1021     return size;
  1024   // --------------------------------------
  1025   // Check for integer reg-reg copy
  1026   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1027     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1029   // Check for integer store
  1030   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1031     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1033   // Check for integer load
  1034   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1035     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1037   // Check for integer reg-xmm reg copy
  1038   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1039     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1040             "no 64 bit integer-float reg moves" );
  1041     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1043   // --------------------------------------
  1044   // Check for float reg-reg copy
  1045   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1046     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1047             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1048     if( cbuf ) {
  1050       // Note the mucking with the register encode to compensate for the 0/1
  1051       // indexing issue mentioned in a comment in the reg_def sections
  1052       // for FPR registers many lines above here.
  1054       if( src_first != FPR1L_num ) {
  1055         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1056         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1057         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1058         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1059      } else {
  1060         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1061         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1063 #ifndef PRODUCT
  1064     } else if( !do_size ) {
  1065       if( size != 0 ) st->print("\n\t");
  1066       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1067       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1068 #endif
  1070     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1073   // Check for float store
  1074   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1075     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1078   // Check for float load
  1079   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1080     int offset = ra_->reg2offset(src_first);
  1081     const char *op_str;
  1082     int op;
  1083     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1084       op_str = "FLD_D";
  1085       op = 0xDD;
  1086     } else {                   // 32-bit load
  1087       op_str = "FLD_S";
  1088       op = 0xD9;
  1089       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1091     if( cbuf ) {
  1092       emit_opcode  (*cbuf, op );
  1093       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1094       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1095       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1096 #ifndef PRODUCT
  1097     } else if( !do_size ) {
  1098       if( size != 0 ) st->print("\n\t");
  1099       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1100 #endif
  1102     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1103     return size + 3+offset_size+2;
  1106   // Check for xmm reg-reg copy
  1107   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1108     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1109             (src_first+1 == src_second && dst_first+1 == dst_second),
  1110             "no non-adjacent float-moves" );
  1111     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1114   // Check for xmm reg-integer reg copy
  1115   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1116     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1117             "no 64 bit float-integer reg moves" );
  1118     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1121   // Check for xmm store
  1122   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1123     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1126   // Check for float xmm load
  1127   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1128     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1131   // Copy from float reg to xmm reg
  1132   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1133     // copy to the top of stack from floating point reg
  1134     // and use LEA to preserve flags
  1135     if( cbuf ) {
  1136       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1137       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1138       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1139       emit_d8(*cbuf,0xF8);
  1140 #ifndef PRODUCT
  1141     } else if( !do_size ) {
  1142       if( size != 0 ) st->print("\n\t");
  1143       st->print("LEA    ESP,[ESP-8]");
  1144 #endif
  1146     size += 4;
  1148     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1150     // Copy from the temp memory to the xmm reg.
  1151     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1153     if( cbuf ) {
  1154       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1155       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1156       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1157       emit_d8(*cbuf,0x08);
  1158 #ifndef PRODUCT
  1159     } else if( !do_size ) {
  1160       if( size != 0 ) st->print("\n\t");
  1161       st->print("LEA    ESP,[ESP+8]");
  1162 #endif
  1164     size += 4;
  1165     return size;
  1168   assert( size > 0, "missed a case" );
  1170   // --------------------------------------------------------------------
  1171   // Check for second bits still needing moving.
  1172   if( src_second == dst_second )
  1173     return size;               // Self copy; no move
  1174   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1176   // Check for second word int-int move
  1177   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1178     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1180   // Check for second word integer store
  1181   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1182     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1184   // Check for second word integer load
  1185   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1186     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1189   Unimplemented();
  1192 #ifndef PRODUCT
  1193 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1194   implementation( NULL, ra_, false, st );
  1196 #endif
  1198 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1199   implementation( &cbuf, ra_, false, NULL );
  1202 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1203   return implementation( NULL, ra_, true, NULL );
  1207 //=============================================================================
  1208 #ifndef PRODUCT
  1209 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1210   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1211   int reg = ra_->get_reg_first(this);
  1212   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1214 #endif
  1216 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1217   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1218   int reg = ra_->get_encode(this);
  1219   if( offset >= 128 ) {
  1220     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1221     emit_rm(cbuf, 0x2, reg, 0x04);
  1222     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1223     emit_d32(cbuf, offset);
  1225   else {
  1226     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1227     emit_rm(cbuf, 0x1, reg, 0x04);
  1228     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1229     emit_d8(cbuf, offset);
  1233 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1234   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1235   if( offset >= 128 ) {
  1236     return 7;
  1238   else {
  1239     return 4;
  1243 //=============================================================================
  1245 // emit call stub, compiled java to interpreter
  1246 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1247   // Stub is fixed up when the corresponding call is converted from calling
  1248   // compiled code to calling interpreted code.
  1249   // mov rbx,0
  1250   // jmp -1
  1252   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1254   // Note that the code buffer's insts_mark is always relative to insts.
  1255   // That's why we must use the macroassembler to generate a stub.
  1256   MacroAssembler _masm(&cbuf);
  1258   address base =
  1259   __ start_a_stub(Compile::MAX_stubs_size);
  1260   if (base == NULL)  return;  // CodeBuffer::expand failed
  1261   // static stub relocation stores the instruction address of the call
  1262   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1263   // static stub relocation also tags the methodOop in the code-stream.
  1264   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1265   // This is recognized as unresolved by relocs/nativeInst/ic code
  1266   __ jump(RuntimeAddress(__ pc()));
  1268   __ end_a_stub();
  1269   // Update current stubs pointer and restore insts_end.
  1271 // size of call stub, compiled java to interpretor
  1272 uint size_java_to_interp() {
  1273   return 10;  // movl; jmp
  1275 // relocation entries for call stub, compiled java to interpretor
  1276 uint reloc_java_to_interp() {
  1277   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1280 //=============================================================================
  1281 #ifndef PRODUCT
  1282 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1283   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1284   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1285   st->print_cr("\tNOP");
  1286   st->print_cr("\tNOP");
  1287   if( !OptoBreakpoint )
  1288     st->print_cr("\tNOP");
  1290 #endif
  1292 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1293   MacroAssembler masm(&cbuf);
  1294 #ifdef ASSERT
  1295   uint insts_size = cbuf.insts_size();
  1296 #endif
  1297   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1298   masm.jump_cc(Assembler::notEqual,
  1299                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1300   /* WARNING these NOPs are critical so that verified entry point is properly
  1301      aligned for patching by NativeJump::patch_verified_entry() */
  1302   int nops_cnt = 2;
  1303   if( !OptoBreakpoint ) // Leave space for int3
  1304      nops_cnt += 1;
  1305   masm.nop(nops_cnt);
  1307   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1310 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1311   return OptoBreakpoint ? 11 : 12;
  1315 //=============================================================================
  1316 uint size_exception_handler() {
  1317   // NativeCall instruction size is the same as NativeJump.
  1318   // exception handler starts out as jump and can be patched to
  1319   // a call be deoptimization.  (4932387)
  1320   // Note that this value is also credited (in output.cpp) to
  1321   // the size of the code section.
  1322   return NativeJump::instruction_size;
  1325 // Emit exception handler code.  Stuff framesize into a register
  1326 // and call a VM stub routine.
  1327 int emit_exception_handler(CodeBuffer& cbuf) {
  1329   // Note that the code buffer's insts_mark is always relative to insts.
  1330   // That's why we must use the macroassembler to generate a handler.
  1331   MacroAssembler _masm(&cbuf);
  1332   address base =
  1333   __ start_a_stub(size_exception_handler());
  1334   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1335   int offset = __ offset();
  1336   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1337   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1338   __ end_a_stub();
  1339   return offset;
  1342 uint size_deopt_handler() {
  1343   // NativeCall instruction size is the same as NativeJump.
  1344   // exception handler starts out as jump and can be patched to
  1345   // a call be deoptimization.  (4932387)
  1346   // Note that this value is also credited (in output.cpp) to
  1347   // the size of the code section.
  1348   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1351 // Emit deopt handler code.
  1352 int emit_deopt_handler(CodeBuffer& cbuf) {
  1354   // Note that the code buffer's insts_mark is always relative to insts.
  1355   // That's why we must use the macroassembler to generate a handler.
  1356   MacroAssembler _masm(&cbuf);
  1357   address base =
  1358   __ start_a_stub(size_exception_handler());
  1359   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1360   int offset = __ offset();
  1361   InternalAddress here(__ pc());
  1362   __ pushptr(here.addr());
  1364   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1365   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1366   __ end_a_stub();
  1367   return offset;
  1371 const bool Matcher::match_rule_supported(int opcode) {
  1372   if (!has_match_rule(opcode))
  1373     return false;
  1375   switch (opcode) {
  1376     case Op_PopCountI:
  1377     case Op_PopCountL:
  1378       if (!UsePopCountInstruction)
  1379         return false;
  1380     break;
  1383   return true;  // Per default match rules are supported.
  1386 int Matcher::regnum_to_fpu_offset(int regnum) {
  1387   return regnum - 32; // The FP registers are in the second chunk
  1390 // This is UltraSparc specific, true just means we have fast l2f conversion
  1391 const bool Matcher::convL2FSupported(void) {
  1392   return true;
  1395 // Is this branch offset short enough that a short branch can be used?
  1396 //
  1397 // NOTE: If the platform does not provide any short branch variants, then
  1398 //       this method should return false for offset 0.
  1399 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1400   // The passed offset is relative to address of the branch.
  1401   // On 86 a branch displacement is calculated relative to address
  1402   // of a next instruction.
  1403   offset -= br_size;
  1405   // the short version of jmpConUCF2 contains multiple branches,
  1406   // making the reach slightly less
  1407   if (rule == jmpConUCF2_rule)
  1408     return (-126 <= offset && offset <= 125);
  1409   return (-128 <= offset && offset <= 127);
  1412 const bool Matcher::isSimpleConstant64(jlong value) {
  1413   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1414   return false;
  1417 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1418 const bool Matcher::init_array_count_is_in_bytes = false;
  1420 // Threshold size for cleararray.
  1421 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1423 // Needs 2 CMOV's for longs.
  1424 const int Matcher::long_cmove_cost() { return 1; }
  1426 // No CMOVF/CMOVD with SSE/SSE2
  1427 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1429 // Should the Matcher clone shifts on addressing modes, expecting them to
  1430 // be subsumed into complex addressing expressions or compute them into
  1431 // registers?  True for Intel but false for most RISCs
  1432 const bool Matcher::clone_shift_expressions = true;
  1434 // Do we need to mask the count passed to shift instructions or does
  1435 // the cpu only look at the lower 5/6 bits anyway?
  1436 const bool Matcher::need_masked_shift_count = false;
  1438 bool Matcher::narrow_oop_use_complex_address() {
  1439   ShouldNotCallThis();
  1440   return true;
  1444 // Is it better to copy float constants, or load them directly from memory?
  1445 // Intel can load a float constant from a direct address, requiring no
  1446 // extra registers.  Most RISCs will have to materialize an address into a
  1447 // register first, so they would do better to copy the constant from stack.
  1448 const bool Matcher::rematerialize_float_constants = true;
  1450 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1451 // needed.  Else we split the double into 2 integer pieces and move it
  1452 // piece-by-piece.  Only happens when passing doubles into C code as the
  1453 // Java calling convention forces doubles to be aligned.
  1454 const bool Matcher::misaligned_doubles_ok = true;
  1457 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1458   // Get the memory operand from the node
  1459   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1460   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1461   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1462   uint opcnt     = 1;                 // First operand
  1463   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1464   while( idx >= skipped+num_edges ) {
  1465     skipped += num_edges;
  1466     opcnt++;                          // Bump operand count
  1467     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1468     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1471   MachOper *memory = node->_opnds[opcnt];
  1472   MachOper *new_memory = NULL;
  1473   switch (memory->opcode()) {
  1474   case DIRECT:
  1475   case INDOFFSET32X:
  1476     // No transformation necessary.
  1477     return;
  1478   case INDIRECT:
  1479     new_memory = new (C) indirect_win95_safeOper( );
  1480     break;
  1481   case INDOFFSET8:
  1482     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1483     break;
  1484   case INDOFFSET32:
  1485     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1486     break;
  1487   case INDINDEXOFFSET:
  1488     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1489     break;
  1490   case INDINDEXSCALE:
  1491     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1492     break;
  1493   case INDINDEXSCALEOFFSET:
  1494     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1495     break;
  1496   case LOAD_LONG_INDIRECT:
  1497   case LOAD_LONG_INDOFFSET32:
  1498     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1499     return;
  1500   default:
  1501     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1502     return;
  1504   node->_opnds[opcnt] = new_memory;
  1507 // Advertise here if the CPU requires explicit rounding operations
  1508 // to implement the UseStrictFP mode.
  1509 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1511 // Are floats conerted to double when stored to stack during deoptimization?
  1512 // On x32 it is stored with convertion only when FPU is used for floats.
  1513 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1515 // Do ints take an entire long register or just half?
  1516 const bool Matcher::int_in_long = false;
  1518 // Return whether or not this register is ever used as an argument.  This
  1519 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1520 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1521 // arguments in those registers not be available to the callee.
  1522 bool Matcher::can_be_java_arg( int reg ) {
  1523   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1524   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1525   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1526   return false;
  1529 bool Matcher::is_spillable_arg( int reg ) {
  1530   return can_be_java_arg(reg);
  1533 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1534   // Use hardware integer DIV instruction when
  1535   // it is faster than a code which use multiply.
  1536   // Only when constant divisor fits into 32 bit
  1537   // (min_jint is excluded to get only correct
  1538   // positive 32 bit values from negative).
  1539   return VM_Version::has_fast_idiv() &&
  1540          (divisor == (int)divisor && divisor != min_jint);
  1543 // Register for DIVI projection of divmodI
  1544 RegMask Matcher::divI_proj_mask() {
  1545   return EAX_REG_mask();
  1548 // Register for MODI projection of divmodI
  1549 RegMask Matcher::modI_proj_mask() {
  1550   return EDX_REG_mask();
  1553 // Register for DIVL projection of divmodL
  1554 RegMask Matcher::divL_proj_mask() {
  1555   ShouldNotReachHere();
  1556   return RegMask();
  1559 // Register for MODL projection of divmodL
  1560 RegMask Matcher::modL_proj_mask() {
  1561   ShouldNotReachHere();
  1562   return RegMask();
  1565 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1566   return EBP_REG_mask();
  1569 // Returns true if the high 32 bits of the value is known to be zero.
  1570 bool is_operand_hi32_zero(Node* n) {
  1571   int opc = n->Opcode();
  1572   if (opc == Op_LoadUI2L) {
  1573     return true;
  1575   if (opc == Op_AndL) {
  1576     Node* o2 = n->in(2);
  1577     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1578       return true;
  1581   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1582     return true;
  1584   return false;
  1587 %}
  1589 //----------ENCODING BLOCK-----------------------------------------------------
  1590 // This block specifies the encoding classes used by the compiler to output
  1591 // byte streams.  Encoding classes generate functions which are called by
  1592 // Machine Instruction Nodes in order to generate the bit encoding of the
  1593 // instruction.  Operands specify their base encoding interface with the
  1594 // interface keyword.  There are currently supported four interfaces,
  1595 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1596 // operand to generate a function which returns its register number when
  1597 // queried.   CONST_INTER causes an operand to generate a function which
  1598 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1599 // operand to generate four functions which return the Base Register, the
  1600 // Index Register, the Scale Value, and the Offset Value of the operand when
  1601 // queried.  COND_INTER causes an operand to generate six functions which
  1602 // return the encoding code (ie - encoding bits for the instruction)
  1603 // associated with each basic boolean condition for a conditional instruction.
  1604 // Instructions specify two basic values for encoding.  They use the
  1605 // ins_encode keyword to specify their encoding class (which must be one of
  1606 // the class names specified in the encoding block), and they use the
  1607 // opcode keyword to specify, in order, their primary, secondary, and
  1608 // tertiary opcode.  Only the opcode sections which a particular instruction
  1609 // needs for encoding need to be specified.
  1610 encode %{
  1611   // Build emit functions for each basic byte or larger field in the intel
  1612   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1613   // code in the enc_class source block.  Emit functions will live in the
  1614   // main source block for now.  In future, we can generalize this by
  1615   // adding a syntax that specifies the sizes of fields in an order,
  1616   // so that the adlc can build the emit functions automagically
  1618   // Emit primary opcode
  1619   enc_class OpcP %{
  1620     emit_opcode(cbuf, $primary);
  1621   %}
  1623   // Emit secondary opcode
  1624   enc_class OpcS %{
  1625     emit_opcode(cbuf, $secondary);
  1626   %}
  1628   // Emit opcode directly
  1629   enc_class Opcode(immI d8) %{
  1630     emit_opcode(cbuf, $d8$$constant);
  1631   %}
  1633   enc_class SizePrefix %{
  1634     emit_opcode(cbuf,0x66);
  1635   %}
  1637   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1638     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1639   %}
  1641   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1642     emit_opcode(cbuf,$opcode$$constant);
  1643     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1644   %}
  1646   enc_class mov_r32_imm0( rRegI dst ) %{
  1647     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1648     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1649   %}
  1651   enc_class cdq_enc %{
  1652     // Full implementation of Java idiv and irem; checks for
  1653     // special case as described in JVM spec., p.243 & p.271.
  1654     //
  1655     //         normal case                           special case
  1656     //
  1657     // input : rax,: dividend                         min_int
  1658     //         reg: divisor                          -1
  1659     //
  1660     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1661     //         rdx: remainder (= rax, irem reg)       0
  1662     //
  1663     //  Code sequnce:
  1664     //
  1665     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1666     //  0F 85 0B 00 00 00    jne         normal_case
  1667     //  33 D2                xor         rdx,edx
  1668     //  83 F9 FF             cmp         rcx,0FFh
  1669     //  0F 84 03 00 00 00    je          done
  1670     //                  normal_case:
  1671     //  99                   cdq
  1672     //  F7 F9                idiv        rax,ecx
  1673     //                  done:
  1674     //
  1675     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1676     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1677     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1678     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1679     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1680     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1681     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1682     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1683     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1684     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1685     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1686     // normal_case:
  1687     emit_opcode(cbuf,0x99);                                         // cdq
  1688     // idiv (note: must be emitted by the user of this rule)
  1689     // normal:
  1690   %}
  1692   // Dense encoding for older common ops
  1693   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1694     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1695   %}
  1698   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1699   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1700     // Check for 8-bit immediate, and set sign extend bit in opcode
  1701     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1702       emit_opcode(cbuf, $primary | 0x02);
  1704     else {                          // If 32-bit immediate
  1705       emit_opcode(cbuf, $primary);
  1707   %}
  1709   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1710     // Emit primary opcode and set sign-extend bit
  1711     // Check for 8-bit immediate, and set sign extend bit in opcode
  1712     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1713       emit_opcode(cbuf, $primary | 0x02);    }
  1714     else {                          // If 32-bit immediate
  1715       emit_opcode(cbuf, $primary);
  1717     // Emit r/m byte with secondary opcode, after primary opcode.
  1718     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1719   %}
  1721   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1722     // Check for 8-bit immediate, and set sign extend bit in opcode
  1723     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1724       $$$emit8$imm$$constant;
  1726     else {                          // If 32-bit immediate
  1727       // Output immediate
  1728       $$$emit32$imm$$constant;
  1730   %}
  1732   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1733     // Emit primary opcode and set sign-extend bit
  1734     // Check for 8-bit immediate, and set sign extend bit in opcode
  1735     int con = (int)$imm$$constant; // Throw away top bits
  1736     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1737     // Emit r/m byte with secondary opcode, after primary opcode.
  1738     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1739     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1740     else                               emit_d32(cbuf,con);
  1741   %}
  1743   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1744     // Emit primary opcode and set sign-extend bit
  1745     // Check for 8-bit immediate, and set sign extend bit in opcode
  1746     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1747     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1748     // Emit r/m byte with tertiary opcode, after primary opcode.
  1749     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1750     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1751     else                               emit_d32(cbuf,con);
  1752   %}
  1754   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1755     emit_cc(cbuf, $secondary, $dst$$reg );
  1756   %}
  1758   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1759     int destlo = $dst$$reg;
  1760     int desthi = HIGH_FROM_LOW(destlo);
  1761     // bswap lo
  1762     emit_opcode(cbuf, 0x0F);
  1763     emit_cc(cbuf, 0xC8, destlo);
  1764     // bswap hi
  1765     emit_opcode(cbuf, 0x0F);
  1766     emit_cc(cbuf, 0xC8, desthi);
  1767     // xchg lo and hi
  1768     emit_opcode(cbuf, 0x87);
  1769     emit_rm(cbuf, 0x3, destlo, desthi);
  1770   %}
  1772   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1773     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1774   %}
  1776   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1777     $$$emit8$primary;
  1778     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1779   %}
  1781   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1782     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1783     emit_d8(cbuf, op >> 8 );
  1784     emit_d8(cbuf, op & 255);
  1785   %}
  1787   // emulate a CMOV with a conditional branch around a MOV
  1788   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1789     // Invert sense of branch from sense of CMOV
  1790     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1791     emit_d8( cbuf, $brOffs$$constant );
  1792   %}
  1794   enc_class enc_PartialSubtypeCheck( ) %{
  1795     Register Redi = as_Register(EDI_enc); // result register
  1796     Register Reax = as_Register(EAX_enc); // super class
  1797     Register Recx = as_Register(ECX_enc); // killed
  1798     Register Resi = as_Register(ESI_enc); // sub class
  1799     Label miss;
  1801     MacroAssembler _masm(&cbuf);
  1802     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1803                                      NULL, &miss,
  1804                                      /*set_cond_codes:*/ true);
  1805     if ($primary) {
  1806       __ xorptr(Redi, Redi);
  1808     __ bind(miss);
  1809   %}
  1811   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1812     MacroAssembler masm(&cbuf);
  1813     int start = masm.offset();
  1814     if (UseSSE >= 2) {
  1815       if (VerifyFPU) {
  1816         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1818     } else {
  1819       // External c_calling_convention expects the FPU stack to be 'clean'.
  1820       // Compiled code leaves it dirty.  Do cleanup now.
  1821       masm.empty_FPU_stack();
  1823     if (sizeof_FFree_Float_Stack_All == -1) {
  1824       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1825     } else {
  1826       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1828   %}
  1830   enc_class Verify_FPU_For_Leaf %{
  1831     if( VerifyFPU ) {
  1832       MacroAssembler masm(&cbuf);
  1833       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1835   %}
  1837   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1838     // This is the instruction starting address for relocation info.
  1839     cbuf.set_insts_mark();
  1840     $$$emit8$primary;
  1841     // CALL directly to the runtime
  1842     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1843                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1845     if (UseSSE >= 2) {
  1846       MacroAssembler _masm(&cbuf);
  1847       BasicType rt = tf()->return_type();
  1849       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1850         // A C runtime call where the return value is unused.  In SSE2+
  1851         // mode the result needs to be removed from the FPU stack.  It's
  1852         // likely that this function call could be removed by the
  1853         // optimizer if the C function is a pure function.
  1854         __ ffree(0);
  1855       } else if (rt == T_FLOAT) {
  1856         __ lea(rsp, Address(rsp, -4));
  1857         __ fstp_s(Address(rsp, 0));
  1858         __ movflt(xmm0, Address(rsp, 0));
  1859         __ lea(rsp, Address(rsp,  4));
  1860       } else if (rt == T_DOUBLE) {
  1861         __ lea(rsp, Address(rsp, -8));
  1862         __ fstp_d(Address(rsp, 0));
  1863         __ movdbl(xmm0, Address(rsp, 0));
  1864         __ lea(rsp, Address(rsp,  8));
  1867   %}
  1870   enc_class pre_call_FPU %{
  1871     // If method sets FPU control word restore it here
  1872     debug_only(int off0 = cbuf.insts_size());
  1873     if( Compile::current()->in_24_bit_fp_mode() ) {
  1874       MacroAssembler masm(&cbuf);
  1875       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1877     debug_only(int off1 = cbuf.insts_size());
  1878     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1879   %}
  1881   enc_class post_call_FPU %{
  1882     // If method sets FPU control word do it here also
  1883     if( Compile::current()->in_24_bit_fp_mode() ) {
  1884       MacroAssembler masm(&cbuf);
  1885       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1887   %}
  1889   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1890     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1891     // who we intended to call.
  1892     cbuf.set_insts_mark();
  1893     $$$emit8$primary;
  1894     if ( !_method ) {
  1895       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1896                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1897     } else if(_optimized_virtual) {
  1898       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1899                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1900     } else {
  1901       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1902                      static_call_Relocation::spec(), RELOC_IMM32 );
  1904     if( _method ) {  // Emit stub for static call
  1905       emit_java_to_interp(cbuf);
  1907   %}
  1909   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1910     // !!!!!
  1911     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1912     // emit_call_dynamic_prologue( cbuf );
  1913     cbuf.set_insts_mark();
  1914     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1915     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1916     address  virtual_call_oop_addr = cbuf.insts_mark();
  1917     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1918     // who we intended to call.
  1919     cbuf.set_insts_mark();
  1920     $$$emit8$primary;
  1921     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1922                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1923   %}
  1925   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1926     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1927     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1929     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1930     cbuf.set_insts_mark();
  1931     $$$emit8$primary;
  1932     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1933     emit_d8(cbuf, disp);             // Displacement
  1935   %}
  1937 //   Following encoding is no longer used, but may be restored if calling
  1938 //   convention changes significantly.
  1939 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1940 //
  1941 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1942 //     // int ic_reg     = Matcher::inline_cache_reg();
  1943 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1944 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1945 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1946 //
  1947 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1948 //     // // so we load it immediately before the call
  1949 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1950 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1951 //
  1952 //     // xor rbp,ebp
  1953 //     emit_opcode(cbuf, 0x33);
  1954 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1955 //
  1956 //     // CALL to interpreter.
  1957 //     cbuf.set_insts_mark();
  1958 //     $$$emit8$primary;
  1959 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1960 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1961 //   %}
  1963   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1964     $$$emit8$primary;
  1965     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1966     $$$emit8$shift$$constant;
  1967   %}
  1969   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1970     // Load immediate does not have a zero or sign extended version
  1971     // for 8-bit immediates
  1972     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1973     $$$emit32$src$$constant;
  1974   %}
  1976   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1977     // Load immediate does not have a zero or sign extended version
  1978     // for 8-bit immediates
  1979     emit_opcode(cbuf, $primary + $dst$$reg);
  1980     $$$emit32$src$$constant;
  1981   %}
  1983   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1984     // Load immediate does not have a zero or sign extended version
  1985     // for 8-bit immediates
  1986     int dst_enc = $dst$$reg;
  1987     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1988     if (src_con == 0) {
  1989       // xor dst, dst
  1990       emit_opcode(cbuf, 0x33);
  1991       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1992     } else {
  1993       emit_opcode(cbuf, $primary + dst_enc);
  1994       emit_d32(cbuf, src_con);
  1996   %}
  1998   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1999     // Load immediate does not have a zero or sign extended version
  2000     // for 8-bit immediates
  2001     int dst_enc = $dst$$reg + 2;
  2002     int src_con = ((julong)($src$$constant)) >> 32;
  2003     if (src_con == 0) {
  2004       // xor dst, dst
  2005       emit_opcode(cbuf, 0x33);
  2006       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2007     } else {
  2008       emit_opcode(cbuf, $primary + dst_enc);
  2009       emit_d32(cbuf, src_con);
  2011   %}
  2014   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2015   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  2016     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2017   %}
  2019   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  2020     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2021   %}
  2023   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  2024     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2025   %}
  2027   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2028     $$$emit8$primary;
  2029     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2030   %}
  2032   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2033     $$$emit8$secondary;
  2034     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2035   %}
  2037   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2038     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2039   %}
  2041   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2042     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2043   %}
  2045   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  2046     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2047   %}
  2049   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2050     // Output immediate
  2051     $$$emit32$src$$constant;
  2052   %}
  2054   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2055     // Output Float immediate bits
  2056     jfloat jf = $src$$constant;
  2057     int    jf_as_bits = jint_cast( jf );
  2058     emit_d32(cbuf, jf_as_bits);
  2059   %}
  2061   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2062     // Output Float immediate bits
  2063     jfloat jf = $src$$constant;
  2064     int    jf_as_bits = jint_cast( jf );
  2065     emit_d32(cbuf, jf_as_bits);
  2066   %}
  2068   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2069     // Output immediate
  2070     $$$emit16$src$$constant;
  2071   %}
  2073   enc_class Con_d32(immI src) %{
  2074     emit_d32(cbuf,$src$$constant);
  2075   %}
  2077   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2078     // Output immediate memory reference
  2079     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2080     emit_d32(cbuf, 0x00);
  2081   %}
  2083   enc_class lock_prefix( ) %{
  2084     if( os::is_MP() )
  2085       emit_opcode(cbuf,0xF0);         // [Lock]
  2086   %}
  2088   // Cmp-xchg long value.
  2089   // Note: we need to swap rbx, and rcx before and after the
  2090   //       cmpxchg8 instruction because the instruction uses
  2091   //       rcx as the high order word of the new value to store but
  2092   //       our register encoding uses rbx,.
  2093   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2095     // XCHG  rbx,ecx
  2096     emit_opcode(cbuf,0x87);
  2097     emit_opcode(cbuf,0xD9);
  2098     // [Lock]
  2099     if( os::is_MP() )
  2100       emit_opcode(cbuf,0xF0);
  2101     // CMPXCHG8 [Eptr]
  2102     emit_opcode(cbuf,0x0F);
  2103     emit_opcode(cbuf,0xC7);
  2104     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2105     // XCHG  rbx,ecx
  2106     emit_opcode(cbuf,0x87);
  2107     emit_opcode(cbuf,0xD9);
  2108   %}
  2110   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2111     // [Lock]
  2112     if( os::is_MP() )
  2113       emit_opcode(cbuf,0xF0);
  2115     // CMPXCHG [Eptr]
  2116     emit_opcode(cbuf,0x0F);
  2117     emit_opcode(cbuf,0xB1);
  2118     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2119   %}
  2121   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2122     int res_encoding = $res$$reg;
  2124     // MOV  res,0
  2125     emit_opcode( cbuf, 0xB8 + res_encoding);
  2126     emit_d32( cbuf, 0 );
  2127     // JNE,s  fail
  2128     emit_opcode(cbuf,0x75);
  2129     emit_d8(cbuf, 5 );
  2130     // MOV  res,1
  2131     emit_opcode( cbuf, 0xB8 + res_encoding);
  2132     emit_d32( cbuf, 1 );
  2133     // fail:
  2134   %}
  2136   enc_class set_instruction_start( ) %{
  2137     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2138   %}
  2140   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2141     int reg_encoding = $ereg$$reg;
  2142     int base  = $mem$$base;
  2143     int index = $mem$$index;
  2144     int scale = $mem$$scale;
  2145     int displace = $mem$$disp;
  2146     bool disp_is_oop = $mem->disp_is_oop();
  2147     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2148   %}
  2150   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2151     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2152     int base  = $mem$$base;
  2153     int index = $mem$$index;
  2154     int scale = $mem$$scale;
  2155     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2156     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2157     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2158   %}
  2160   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2161     int r1, r2;
  2162     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2163     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2164     emit_opcode(cbuf,0x0F);
  2165     emit_opcode(cbuf,$tertiary);
  2166     emit_rm(cbuf, 0x3, r1, r2);
  2167     emit_d8(cbuf,$cnt$$constant);
  2168     emit_d8(cbuf,$primary);
  2169     emit_rm(cbuf, 0x3, $secondary, r1);
  2170     emit_d8(cbuf,$cnt$$constant);
  2171   %}
  2173   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2174     emit_opcode( cbuf, 0x8B ); // Move
  2175     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2176     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2177       emit_d8(cbuf,$primary);
  2178       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2179       emit_d8(cbuf,$cnt$$constant-32);
  2181     emit_d8(cbuf,$primary);
  2182     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2183     emit_d8(cbuf,31);
  2184   %}
  2186   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2187     int r1, r2;
  2188     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2189     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2191     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2192     emit_rm(cbuf, 0x3, r1, r2);
  2193     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2194       emit_opcode(cbuf,$primary);
  2195       emit_rm(cbuf, 0x3, $secondary, r1);
  2196       emit_d8(cbuf,$cnt$$constant-32);
  2198     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2199     emit_rm(cbuf, 0x3, r2, r2);
  2200   %}
  2202   // Clone of RegMem but accepts an extra parameter to access each
  2203   // half of a double in memory; it never needs relocation info.
  2204   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2205     emit_opcode(cbuf,$opcode$$constant);
  2206     int reg_encoding = $rm_reg$$reg;
  2207     int base     = $mem$$base;
  2208     int index    = $mem$$index;
  2209     int scale    = $mem$$scale;
  2210     int displace = $mem$$disp + $disp_for_half$$constant;
  2211     bool disp_is_oop = false;
  2212     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2213   %}
  2215   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2216   //
  2217   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2218   // and it never needs relocation information.
  2219   // Frequently used to move data between FPU's Stack Top and memory.
  2220   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2221     int rm_byte_opcode = $rm_opcode$$constant;
  2222     int base     = $mem$$base;
  2223     int index    = $mem$$index;
  2224     int scale    = $mem$$scale;
  2225     int displace = $mem$$disp;
  2226     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2227     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2228   %}
  2230   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2231     int rm_byte_opcode = $rm_opcode$$constant;
  2232     int base     = $mem$$base;
  2233     int index    = $mem$$index;
  2234     int scale    = $mem$$scale;
  2235     int displace = $mem$$disp;
  2236     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2237     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2238   %}
  2240   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2241     int reg_encoding = $dst$$reg;
  2242     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2243     int index        = 0x04;            // 0x04 indicates no index
  2244     int scale        = 0x00;            // 0x00 indicates no scale
  2245     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2246     bool disp_is_oop = false;
  2247     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2248   %}
  2250   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2251     // Compare dst,src
  2252     emit_opcode(cbuf,0x3B);
  2253     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2254     // jmp dst < src around move
  2255     emit_opcode(cbuf,0x7C);
  2256     emit_d8(cbuf,2);
  2257     // move dst,src
  2258     emit_opcode(cbuf,0x8B);
  2259     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2260   %}
  2262   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2263     // Compare dst,src
  2264     emit_opcode(cbuf,0x3B);
  2265     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2266     // jmp dst > src around move
  2267     emit_opcode(cbuf,0x7F);
  2268     emit_d8(cbuf,2);
  2269     // move dst,src
  2270     emit_opcode(cbuf,0x8B);
  2271     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2272   %}
  2274   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2275     // If src is FPR1, we can just FST to store it.
  2276     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2277     int reg_encoding = 0x2; // Just store
  2278     int base  = $mem$$base;
  2279     int index = $mem$$index;
  2280     int scale = $mem$$scale;
  2281     int displace = $mem$$disp;
  2282     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2283     if( $src$$reg != FPR1L_enc ) {
  2284       reg_encoding = 0x3;  // Store & pop
  2285       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2286       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2288     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2289     emit_opcode(cbuf,$primary);
  2290     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2291   %}
  2293   enc_class neg_reg(rRegI dst) %{
  2294     // NEG $dst
  2295     emit_opcode(cbuf,0xF7);
  2296     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2297   %}
  2299   enc_class setLT_reg(eCXRegI dst) %{
  2300     // SETLT $dst
  2301     emit_opcode(cbuf,0x0F);
  2302     emit_opcode(cbuf,0x9C);
  2303     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2304   %}
  2306   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2307     int tmpReg = $tmp$$reg;
  2309     // SUB $p,$q
  2310     emit_opcode(cbuf,0x2B);
  2311     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2312     // SBB $tmp,$tmp
  2313     emit_opcode(cbuf,0x1B);
  2314     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2315     // AND $tmp,$y
  2316     emit_opcode(cbuf,0x23);
  2317     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2318     // ADD $p,$tmp
  2319     emit_opcode(cbuf,0x03);
  2320     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2321   %}
  2323   enc_class enc_cmpLTP_mem(rRegI p, rRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2324     int tmpReg = $tmp$$reg;
  2326     // SUB $p,$q
  2327     emit_opcode(cbuf,0x2B);
  2328     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2329     // SBB $tmp,$tmp
  2330     emit_opcode(cbuf,0x1B);
  2331     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2332     // AND $tmp,$y
  2333     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2334     emit_opcode(cbuf,0x23);
  2335     int reg_encoding = tmpReg;
  2336     int base  = $mem$$base;
  2337     int index = $mem$$index;
  2338     int scale = $mem$$scale;
  2339     int displace = $mem$$disp;
  2340     bool disp_is_oop = $mem->disp_is_oop();
  2341     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2342     // ADD $p,$tmp
  2343     emit_opcode(cbuf,0x03);
  2344     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2345   %}
  2347   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2348     // TEST shift,32
  2349     emit_opcode(cbuf,0xF7);
  2350     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2351     emit_d32(cbuf,0x20);
  2352     // JEQ,s small
  2353     emit_opcode(cbuf, 0x74);
  2354     emit_d8(cbuf, 0x04);
  2355     // MOV    $dst.hi,$dst.lo
  2356     emit_opcode( cbuf, 0x8B );
  2357     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2358     // CLR    $dst.lo
  2359     emit_opcode(cbuf, 0x33);
  2360     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2361 // small:
  2362     // SHLD   $dst.hi,$dst.lo,$shift
  2363     emit_opcode(cbuf,0x0F);
  2364     emit_opcode(cbuf,0xA5);
  2365     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2366     // SHL    $dst.lo,$shift"
  2367     emit_opcode(cbuf,0xD3);
  2368     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2369   %}
  2371   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2372     // TEST shift,32
  2373     emit_opcode(cbuf,0xF7);
  2374     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2375     emit_d32(cbuf,0x20);
  2376     // JEQ,s small
  2377     emit_opcode(cbuf, 0x74);
  2378     emit_d8(cbuf, 0x04);
  2379     // MOV    $dst.lo,$dst.hi
  2380     emit_opcode( cbuf, 0x8B );
  2381     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2382     // CLR    $dst.hi
  2383     emit_opcode(cbuf, 0x33);
  2384     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2385 // small:
  2386     // SHRD   $dst.lo,$dst.hi,$shift
  2387     emit_opcode(cbuf,0x0F);
  2388     emit_opcode(cbuf,0xAD);
  2389     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2390     // SHR    $dst.hi,$shift"
  2391     emit_opcode(cbuf,0xD3);
  2392     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2393   %}
  2395   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2396     // TEST shift,32
  2397     emit_opcode(cbuf,0xF7);
  2398     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2399     emit_d32(cbuf,0x20);
  2400     // JEQ,s small
  2401     emit_opcode(cbuf, 0x74);
  2402     emit_d8(cbuf, 0x05);
  2403     // MOV    $dst.lo,$dst.hi
  2404     emit_opcode( cbuf, 0x8B );
  2405     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2406     // SAR    $dst.hi,31
  2407     emit_opcode(cbuf, 0xC1);
  2408     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2409     emit_d8(cbuf, 0x1F );
  2410 // small:
  2411     // SHRD   $dst.lo,$dst.hi,$shift
  2412     emit_opcode(cbuf,0x0F);
  2413     emit_opcode(cbuf,0xAD);
  2414     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2415     // SAR    $dst.hi,$shift"
  2416     emit_opcode(cbuf,0xD3);
  2417     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2418   %}
  2421   // ----------------- Encodings for floating point unit -----------------
  2422   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2423   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2424     $$$emit8$primary;
  2425     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2426   %}
  2428   // Pop argument in FPR0 with FSTP ST(0)
  2429   enc_class PopFPU() %{
  2430     emit_opcode( cbuf, 0xDD );
  2431     emit_d8( cbuf, 0xD8 );
  2432   %}
  2434   // !!!!! equivalent to Pop_Reg_F
  2435   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2436     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2437     emit_d8( cbuf, 0xD8+$dst$$reg );
  2438   %}
  2440   enc_class Push_Reg_DPR( regDPR dst ) %{
  2441     emit_opcode( cbuf, 0xD9 );
  2442     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2443   %}
  2445   enc_class strictfp_bias1( regDPR dst ) %{
  2446     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2447     emit_opcode( cbuf, 0x2D );
  2448     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2449     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2450     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2451   %}
  2453   enc_class strictfp_bias2( regDPR dst ) %{
  2454     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2455     emit_opcode( cbuf, 0x2D );
  2456     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2457     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2458     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2459   %}
  2461   // Special case for moving an integer register to a stack slot.
  2462   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2463     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2464   %}
  2466   // Special case for moving a register to a stack slot.
  2467   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2468     // Opcode already emitted
  2469     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2470     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2471     emit_d32(cbuf, $dst$$disp);   // Displacement
  2472   %}
  2474   // Push the integer in stackSlot 'src' onto FP-stack
  2475   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2476     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2477   %}
  2479   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2480   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2481     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2482   %}
  2484   // Same as Pop_Mem_F except for opcode
  2485   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2486   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2487     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2488   %}
  2490   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2491     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2492     emit_d8( cbuf, 0xD8+$dst$$reg );
  2493   %}
  2495   enc_class Push_Reg_FPR( regFPR dst ) %{
  2496     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2497     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2498   %}
  2500   // Push FPU's float to a stack-slot, and pop FPU-stack
  2501   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2502     int pop = 0x02;
  2503     if ($src$$reg != FPR1L_enc) {
  2504       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2505       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2506       pop = 0x03;
  2508     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2509   %}
  2511   // Push FPU's double to a stack-slot, and pop FPU-stack
  2512   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2513     int pop = 0x02;
  2514     if ($src$$reg != FPR1L_enc) {
  2515       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2516       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2517       pop = 0x03;
  2519     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2520   %}
  2522   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2523   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2524     int pop = 0xD0 - 1; // -1 since we skip FLD
  2525     if ($src$$reg != FPR1L_enc) {
  2526       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2527       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2528       pop = 0xD8;
  2530     emit_opcode( cbuf, 0xDD );
  2531     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2532   %}
  2535   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2536     // load dst in FPR0
  2537     emit_opcode( cbuf, 0xD9 );
  2538     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2539     if ($src$$reg != FPR1L_enc) {
  2540       // fincstp
  2541       emit_opcode (cbuf, 0xD9);
  2542       emit_opcode (cbuf, 0xF7);
  2543       // swap src with FPR1:
  2544       // FXCH FPR1 with src
  2545       emit_opcode(cbuf, 0xD9);
  2546       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2547       // fdecstp
  2548       emit_opcode (cbuf, 0xD9);
  2549       emit_opcode (cbuf, 0xF6);
  2551   %}
  2553   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2554     MacroAssembler _masm(&cbuf);
  2555     __ subptr(rsp, 8);
  2556     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2557     __ fld_d(Address(rsp, 0));
  2558     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2559     __ fld_d(Address(rsp, 0));
  2560   %}
  2562   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2563     MacroAssembler _masm(&cbuf);
  2564     __ subptr(rsp, 4);
  2565     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2566     __ fld_s(Address(rsp, 0));
  2567     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2568     __ fld_s(Address(rsp, 0));
  2569   %}
  2571   enc_class Push_ResultD(regD dst) %{
  2572     MacroAssembler _masm(&cbuf);
  2573     __ fstp_d(Address(rsp, 0));
  2574     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2575     __ addptr(rsp, 8);
  2576   %}
  2578   enc_class Push_ResultF(regF dst, immI d8) %{
  2579     MacroAssembler _masm(&cbuf);
  2580     __ fstp_s(Address(rsp, 0));
  2581     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2582     __ addptr(rsp, $d8$$constant);
  2583   %}
  2585   enc_class Push_SrcD(regD src) %{
  2586     MacroAssembler _masm(&cbuf);
  2587     __ subptr(rsp, 8);
  2588     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2589     __ fld_d(Address(rsp, 0));
  2590   %}
  2592   enc_class push_stack_temp_qword() %{
  2593     MacroAssembler _masm(&cbuf);
  2594     __ subptr(rsp, 8);
  2595   %}
  2597   enc_class pop_stack_temp_qword() %{
  2598     MacroAssembler _masm(&cbuf);
  2599     __ addptr(rsp, 8);
  2600   %}
  2602   enc_class push_xmm_to_fpr1(regD src) %{
  2603     MacroAssembler _masm(&cbuf);
  2604     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2605     __ fld_d(Address(rsp, 0));
  2606   %}
  2608   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2609     if ($src$$reg != FPR1L_enc) {
  2610       // fincstp
  2611       emit_opcode (cbuf, 0xD9);
  2612       emit_opcode (cbuf, 0xF7);
  2613       // FXCH FPR1 with src
  2614       emit_opcode(cbuf, 0xD9);
  2615       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2616       // fdecstp
  2617       emit_opcode (cbuf, 0xD9);
  2618       emit_opcode (cbuf, 0xF6);
  2620     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2621     // // FSTP   FPR$dst$$reg
  2622     // emit_opcode( cbuf, 0xDD );
  2623     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2624   %}
  2626   enc_class fnstsw_sahf_skip_parity() %{
  2627     // fnstsw ax
  2628     emit_opcode( cbuf, 0xDF );
  2629     emit_opcode( cbuf, 0xE0 );
  2630     // sahf
  2631     emit_opcode( cbuf, 0x9E );
  2632     // jnp  ::skip
  2633     emit_opcode( cbuf, 0x7B );
  2634     emit_opcode( cbuf, 0x05 );
  2635   %}
  2637   enc_class emitModDPR() %{
  2638     // fprem must be iterative
  2639     // :: loop
  2640     // fprem
  2641     emit_opcode( cbuf, 0xD9 );
  2642     emit_opcode( cbuf, 0xF8 );
  2643     // wait
  2644     emit_opcode( cbuf, 0x9b );
  2645     // fnstsw ax
  2646     emit_opcode( cbuf, 0xDF );
  2647     emit_opcode( cbuf, 0xE0 );
  2648     // sahf
  2649     emit_opcode( cbuf, 0x9E );
  2650     // jp  ::loop
  2651     emit_opcode( cbuf, 0x0F );
  2652     emit_opcode( cbuf, 0x8A );
  2653     emit_opcode( cbuf, 0xF4 );
  2654     emit_opcode( cbuf, 0xFF );
  2655     emit_opcode( cbuf, 0xFF );
  2656     emit_opcode( cbuf, 0xFF );
  2657   %}
  2659   enc_class fpu_flags() %{
  2660     // fnstsw_ax
  2661     emit_opcode( cbuf, 0xDF);
  2662     emit_opcode( cbuf, 0xE0);
  2663     // test ax,0x0400
  2664     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2665     emit_opcode( cbuf, 0xA9 );
  2666     emit_d16   ( cbuf, 0x0400 );
  2667     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2668     // // test rax,0x0400
  2669     // emit_opcode( cbuf, 0xA9 );
  2670     // emit_d32   ( cbuf, 0x00000400 );
  2671     //
  2672     // jz exit (no unordered comparison)
  2673     emit_opcode( cbuf, 0x74 );
  2674     emit_d8    ( cbuf, 0x02 );
  2675     // mov ah,1 - treat as LT case (set carry flag)
  2676     emit_opcode( cbuf, 0xB4 );
  2677     emit_d8    ( cbuf, 0x01 );
  2678     // sahf
  2679     emit_opcode( cbuf, 0x9E);
  2680   %}
  2682   enc_class cmpF_P6_fixup() %{
  2683     // Fixup the integer flags in case comparison involved a NaN
  2684     //
  2685     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2686     emit_opcode( cbuf, 0x7B );
  2687     emit_d8    ( cbuf, 0x03 );
  2688     // MOV AH,1 - treat as LT case (set carry flag)
  2689     emit_opcode( cbuf, 0xB4 );
  2690     emit_d8    ( cbuf, 0x01 );
  2691     // SAHF
  2692     emit_opcode( cbuf, 0x9E);
  2693     // NOP     // target for branch to avoid branch to branch
  2694     emit_opcode( cbuf, 0x90);
  2695   %}
  2697 //     fnstsw_ax();
  2698 //     sahf();
  2699 //     movl(dst, nan_result);
  2700 //     jcc(Assembler::parity, exit);
  2701 //     movl(dst, less_result);
  2702 //     jcc(Assembler::below, exit);
  2703 //     movl(dst, equal_result);
  2704 //     jcc(Assembler::equal, exit);
  2705 //     movl(dst, greater_result);
  2707 // less_result     =  1;
  2708 // greater_result  = -1;
  2709 // equal_result    = 0;
  2710 // nan_result      = -1;
  2712   enc_class CmpF_Result(rRegI dst) %{
  2713     // fnstsw_ax();
  2714     emit_opcode( cbuf, 0xDF);
  2715     emit_opcode( cbuf, 0xE0);
  2716     // sahf
  2717     emit_opcode( cbuf, 0x9E);
  2718     // movl(dst, nan_result);
  2719     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2720     emit_d32( cbuf, -1 );
  2721     // jcc(Assembler::parity, exit);
  2722     emit_opcode( cbuf, 0x7A );
  2723     emit_d8    ( cbuf, 0x13 );
  2724     // movl(dst, less_result);
  2725     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2726     emit_d32( cbuf, -1 );
  2727     // jcc(Assembler::below, exit);
  2728     emit_opcode( cbuf, 0x72 );
  2729     emit_d8    ( cbuf, 0x0C );
  2730     // movl(dst, equal_result);
  2731     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2732     emit_d32( cbuf, 0 );
  2733     // jcc(Assembler::equal, exit);
  2734     emit_opcode( cbuf, 0x74 );
  2735     emit_d8    ( cbuf, 0x05 );
  2736     // movl(dst, greater_result);
  2737     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2738     emit_d32( cbuf, 1 );
  2739   %}
  2742   // Compare the longs and set flags
  2743   // BROKEN!  Do Not use as-is
  2744   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2745     // CMP    $src1.hi,$src2.hi
  2746     emit_opcode( cbuf, 0x3B );
  2747     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2748     // JNE,s  done
  2749     emit_opcode(cbuf,0x75);
  2750     emit_d8(cbuf, 2 );
  2751     // CMP    $src1.lo,$src2.lo
  2752     emit_opcode( cbuf, 0x3B );
  2753     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2754 // done:
  2755   %}
  2757   enc_class convert_int_long( regL dst, rRegI src ) %{
  2758     // mov $dst.lo,$src
  2759     int dst_encoding = $dst$$reg;
  2760     int src_encoding = $src$$reg;
  2761     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2762     // mov $dst.hi,$src
  2763     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2764     // sar $dst.hi,31
  2765     emit_opcode( cbuf, 0xC1 );
  2766     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2767     emit_d8(cbuf, 0x1F );
  2768   %}
  2770   enc_class convert_long_double( eRegL src ) %{
  2771     // push $src.hi
  2772     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2773     // push $src.lo
  2774     emit_opcode(cbuf, 0x50+$src$$reg  );
  2775     // fild 64-bits at [SP]
  2776     emit_opcode(cbuf,0xdf);
  2777     emit_d8(cbuf, 0x6C);
  2778     emit_d8(cbuf, 0x24);
  2779     emit_d8(cbuf, 0x00);
  2780     // pop stack
  2781     emit_opcode(cbuf, 0x83); // add  SP, #8
  2782     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2783     emit_d8(cbuf, 0x8);
  2784   %}
  2786   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2787     // IMUL   EDX:EAX,$src1
  2788     emit_opcode( cbuf, 0xF7 );
  2789     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2790     // SAR    EDX,$cnt-32
  2791     int shift_count = ((int)$cnt$$constant) - 32;
  2792     if (shift_count > 0) {
  2793       emit_opcode(cbuf, 0xC1);
  2794       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2795       emit_d8(cbuf, shift_count);
  2797   %}
  2799   // this version doesn't have add sp, 8
  2800   enc_class convert_long_double2( eRegL src ) %{
  2801     // push $src.hi
  2802     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2803     // push $src.lo
  2804     emit_opcode(cbuf, 0x50+$src$$reg  );
  2805     // fild 64-bits at [SP]
  2806     emit_opcode(cbuf,0xdf);
  2807     emit_d8(cbuf, 0x6C);
  2808     emit_d8(cbuf, 0x24);
  2809     emit_d8(cbuf, 0x00);
  2810   %}
  2812   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2813     // Basic idea: long = (long)int * (long)int
  2814     // IMUL EDX:EAX, src
  2815     emit_opcode( cbuf, 0xF7 );
  2816     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2817   %}
  2819   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2820     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2821     // MUL EDX:EAX, src
  2822     emit_opcode( cbuf, 0xF7 );
  2823     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2824   %}
  2826   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2827     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2828     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2829     // MOV    $tmp,$src.lo
  2830     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2831     // IMUL   $tmp,EDX
  2832     emit_opcode( cbuf, 0x0F );
  2833     emit_opcode( cbuf, 0xAF );
  2834     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2835     // MOV    EDX,$src.hi
  2836     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2837     // IMUL   EDX,EAX
  2838     emit_opcode( cbuf, 0x0F );
  2839     emit_opcode( cbuf, 0xAF );
  2840     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2841     // ADD    $tmp,EDX
  2842     emit_opcode( cbuf, 0x03 );
  2843     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2844     // MUL   EDX:EAX,$src.lo
  2845     emit_opcode( cbuf, 0xF7 );
  2846     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2847     // ADD    EDX,ESI
  2848     emit_opcode( cbuf, 0x03 );
  2849     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2850   %}
  2852   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2853     // Basic idea: lo(result) = lo(src * y_lo)
  2854     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2855     // IMUL   $tmp,EDX,$src
  2856     emit_opcode( cbuf, 0x6B );
  2857     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2858     emit_d8( cbuf, (int)$src$$constant );
  2859     // MOV    EDX,$src
  2860     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2861     emit_d32( cbuf, (int)$src$$constant );
  2862     // MUL   EDX:EAX,EDX
  2863     emit_opcode( cbuf, 0xF7 );
  2864     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2865     // ADD    EDX,ESI
  2866     emit_opcode( cbuf, 0x03 );
  2867     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2868   %}
  2870   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2871     // PUSH src1.hi
  2872     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2873     // PUSH src1.lo
  2874     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2875     // PUSH src2.hi
  2876     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2877     // PUSH src2.lo
  2878     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2879     // CALL directly to the runtime
  2880     cbuf.set_insts_mark();
  2881     emit_opcode(cbuf,0xE8);       // Call into runtime
  2882     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2883     // Restore stack
  2884     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2885     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2886     emit_d8(cbuf, 4*4);
  2887   %}
  2889   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2890     // PUSH src1.hi
  2891     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2892     // PUSH src1.lo
  2893     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2894     // PUSH src2.hi
  2895     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2896     // PUSH src2.lo
  2897     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2898     // CALL directly to the runtime
  2899     cbuf.set_insts_mark();
  2900     emit_opcode(cbuf,0xE8);       // Call into runtime
  2901     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2902     // Restore stack
  2903     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2904     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2905     emit_d8(cbuf, 4*4);
  2906   %}
  2908   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2909     // MOV   $tmp,$src.lo
  2910     emit_opcode(cbuf, 0x8B);
  2911     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2912     // OR    $tmp,$src.hi
  2913     emit_opcode(cbuf, 0x0B);
  2914     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2915   %}
  2917   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2918     // CMP    $src1.lo,$src2.lo
  2919     emit_opcode( cbuf, 0x3B );
  2920     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2921     // JNE,s  skip
  2922     emit_cc(cbuf, 0x70, 0x5);
  2923     emit_d8(cbuf,2);
  2924     // CMP    $src1.hi,$src2.hi
  2925     emit_opcode( cbuf, 0x3B );
  2926     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2927   %}
  2929   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2930     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2931     emit_opcode( cbuf, 0x3B );
  2932     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2933     // MOV    $tmp,$src1.hi
  2934     emit_opcode( cbuf, 0x8B );
  2935     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2936     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2937     emit_opcode( cbuf, 0x1B );
  2938     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2939   %}
  2941   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2942     // XOR    $tmp,$tmp
  2943     emit_opcode(cbuf,0x33);  // XOR
  2944     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2945     // CMP    $tmp,$src.lo
  2946     emit_opcode( cbuf, 0x3B );
  2947     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2948     // SBB    $tmp,$src.hi
  2949     emit_opcode( cbuf, 0x1B );
  2950     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2951   %}
  2953  // Sniff, sniff... smells like Gnu Superoptimizer
  2954   enc_class neg_long( eRegL dst ) %{
  2955     emit_opcode(cbuf,0xF7);    // NEG hi
  2956     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2957     emit_opcode(cbuf,0xF7);    // NEG lo
  2958     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2959     emit_opcode(cbuf,0x83);    // SBB hi,0
  2960     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2961     emit_d8    (cbuf,0 );
  2962   %}
  2965   // Because the transitions from emitted code to the runtime
  2966   // monitorenter/exit helper stubs are so slow it's critical that
  2967   // we inline both the stack-locking fast-path and the inflated fast path.
  2968   //
  2969   // See also: cmpFastLock and cmpFastUnlock.
  2970   //
  2971   // What follows is a specialized inline transliteration of the code
  2972   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2973   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2974   // at startup-time.  These methods would accept arguments as
  2975   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2976   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2977   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2978   // In practice, however, the # of lock sites is bounded and is usually small.
  2979   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2980   // if the processor uses simple bimodal branch predictors keyed by EIP
  2981   // Since the helper routines would be called from multiple synchronization
  2982   // sites.
  2983   //
  2984   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2985   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2986   // to those specialized methods.  That'd give us a mostly platform-independent
  2987   // implementation that the JITs could optimize and inline at their pleasure.
  2988   // Done correctly, the only time we'd need to cross to native could would be
  2989   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2990   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2991   // (b) explicit barriers or fence operations.
  2992   //
  2993   // TODO:
  2994   //
  2995   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2996   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2997   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2998   //    the lock operators would typically be faster than reifying Self.
  2999   //
  3000   // *  Ideally I'd define the primitives as:
  3001   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3002   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3003   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3004   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3005   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3006   //    sub-optimal code near the synchronization site.
  3007   //
  3008   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3009   //    Alternately, use a better sp-proximity test.
  3010   //
  3011   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3012   //    Either one is sufficient to uniquely identify a thread.
  3013   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3014   //
  3015   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3016   //    object is locked by the calling thread but the waitlist is empty.
  3017   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3018   //
  3019   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3020   //    But beware of excessive branch density on AMD Opterons.
  3021   //
  3022   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3023   //    or failure of the fast-path.  If the fast-path fails then we pass
  3024   //    control to the slow-path, typically in C.  In Fast_Lock and
  3025   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3026   //    will emit a conditional branch immediately after the node.
  3027   //    So we have branches to branches and lots of ICC.ZF games.
  3028   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3029   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3030   //    will drop through the node.  ICC.ZF is undefined at exit.
  3031   //    In the case of failure, the node will branch directly to the
  3032   //    FailureLabel
  3035   // obj: object to lock
  3036   // box: on-stack box address (displaced header location) - KILLED
  3037   // rax,: tmp -- KILLED
  3038   // scr: tmp -- KILLED
  3039   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3041     Register objReg = as_Register($obj$$reg);
  3042     Register boxReg = as_Register($box$$reg);
  3043     Register tmpReg = as_Register($tmp$$reg);
  3044     Register scrReg = as_Register($scr$$reg);
  3046     // Ensure the register assignents are disjoint
  3047     guarantee (objReg != boxReg, "") ;
  3048     guarantee (objReg != tmpReg, "") ;
  3049     guarantee (objReg != scrReg, "") ;
  3050     guarantee (boxReg != tmpReg, "") ;
  3051     guarantee (boxReg != scrReg, "") ;
  3052     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3054     MacroAssembler masm(&cbuf);
  3056     if (_counters != NULL) {
  3057       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3059     if (EmitSync & 1) {
  3060         // set box->dhw = unused_mark (3)
  3061         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3062         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3063         masm.cmpptr (rsp, (int32_t)0) ;                        
  3064     } else 
  3065     if (EmitSync & 2) { 
  3066         Label DONE_LABEL ;           
  3067         if (UseBiasedLocking) {
  3068            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3069            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3072         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3073         masm.orptr (tmpReg, 0x1);
  3074         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3075         if (os::is_MP()) { masm.lock();  }
  3076         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3077         masm.jcc(Assembler::equal, DONE_LABEL);
  3078         // Recursive locking
  3079         masm.subptr(tmpReg, rsp);
  3080         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3081         masm.movptr(Address(boxReg, 0), tmpReg);
  3082         masm.bind(DONE_LABEL) ; 
  3083     } else {  
  3084       // Possible cases that we'll encounter in fast_lock 
  3085       // ------------------------------------------------
  3086       // * Inflated
  3087       //    -- unlocked
  3088       //    -- Locked
  3089       //       = by self
  3090       //       = by other
  3091       // * biased
  3092       //    -- by Self
  3093       //    -- by other
  3094       // * neutral
  3095       // * stack-locked
  3096       //    -- by self
  3097       //       = sp-proximity test hits
  3098       //       = sp-proximity test generates false-negative
  3099       //    -- by other
  3100       //
  3102       Label IsInflated, DONE_LABEL, PopDone ;
  3104       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3105       // order to reduce the number of conditional branches in the most common cases.
  3106       // Beware -- there's a subtle invariant that fetch of the markword
  3107       // at [FETCH], below, will never observe a biased encoding (*101b).
  3108       // If this invariant is not held we risk exclusion (safety) failure.
  3109       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3110         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3113       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3114       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3115       masm.jccb  (Assembler::notZero, IsInflated) ;
  3117       // Attempt stack-locking ...
  3118       masm.orptr (tmpReg, 0x1);
  3119       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3120       if (os::is_MP()) { masm.lock();  }
  3121       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3122       if (_counters != NULL) {
  3123         masm.cond_inc32(Assembler::equal,
  3124                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3126       masm.jccb (Assembler::equal, DONE_LABEL);
  3128       // Recursive locking
  3129       masm.subptr(tmpReg, rsp);
  3130       masm.andptr(tmpReg, 0xFFFFF003 );
  3131       masm.movptr(Address(boxReg, 0), tmpReg);
  3132       if (_counters != NULL) {
  3133         masm.cond_inc32(Assembler::equal,
  3134                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3136       masm.jmp  (DONE_LABEL) ;
  3138       masm.bind (IsInflated) ;
  3140       // The object is inflated.
  3141       //
  3142       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3143       //   Use markOopDesc::monitor_value instead of "2".
  3144       //   use markOop::unused_mark() instead of "3".
  3145       // The tmpReg value is an objectMonitor reference ORed with
  3146       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3147       // objectmonitor pointer by masking off the "2" bit or we can just
  3148       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3149       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3150       //
  3151       // I use the latter as it avoids AGI stalls.
  3152       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3153       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3154       //
  3155       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3157       // boxReg refers to the on-stack BasicLock in the current frame.
  3158       // We'd like to write:
  3159       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3160       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3161       // additional latency as we have another ST in the store buffer that must drain.
  3163       if (EmitSync & 8192) { 
  3164          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3165          masm.get_thread (scrReg) ; 
  3166          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3167          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3168          if (os::is_MP()) { masm.lock(); } 
  3169          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3170       } else 
  3171       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3172          masm.movptr(scrReg, boxReg) ; 
  3173          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3175          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3176          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3177             // prefetchw [eax + Offset(_owner)-2]
  3178             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3181          if ((EmitSync & 64) == 0) {
  3182            // Optimistic form: consider XORL tmpReg,tmpReg
  3183            masm.movptr(tmpReg, NULL_WORD) ; 
  3184          } else { 
  3185            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3186            // Test-And-CAS instead of CAS
  3187            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3188            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3189            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3192          // Appears unlocked - try to swing _owner from null to non-null.
  3193          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3194          // to CAS the register containing Self into m->Owner.
  3195          // But we don't have enough registers, so instead we can either try to CAS
  3196          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3197          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3198          // (rsp or the address of the box) into  m->owner is harmless.
  3199          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3200          if (os::is_MP()) { masm.lock();  }
  3201          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3202          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3203          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3204          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3205          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3206          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3208          // If the CAS fails we can either retry or pass control to the slow-path.  
  3209          // We use the latter tactic.  
  3210          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3211          // If the CAS was successful ...
  3212          //   Self has acquired the lock
  3213          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3214          // Intentional fall-through into DONE_LABEL ...
  3215       } else {
  3216          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3217          masm.movptr(boxReg, tmpReg) ; 
  3219          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3220          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3221             // prefetchw [eax + Offset(_owner)-2]
  3222             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3225          if ((EmitSync & 64) == 0) {
  3226            // Optimistic form
  3227            masm.xorptr  (tmpReg, tmpReg) ; 
  3228          } else { 
  3229            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3230            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3231            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3232            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3235          // Appears unlocked - try to swing _owner from null to non-null.
  3236          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3237          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3238          masm.get_thread (scrReg) ;
  3239          if (os::is_MP()) { masm.lock(); }
  3240          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3242          // If the CAS fails we can either retry or pass control to the slow-path.
  3243          // We use the latter tactic.
  3244          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3245          // If the CAS was successful ...
  3246          //   Self has acquired the lock
  3247          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3248          // Intentional fall-through into DONE_LABEL ...
  3251       // DONE_LABEL is a hot target - we'd really like to place it at the
  3252       // start of cache line by padding with NOPs.
  3253       // See the AMD and Intel software optimization manuals for the
  3254       // most efficient "long" NOP encodings.
  3255       // Unfortunately none of our alignment mechanisms suffice.
  3256       masm.bind(DONE_LABEL);
  3258       // Avoid branch-to-branch on AMD processors
  3259       // This appears to be superstition.
  3260       if (EmitSync & 32) masm.nop() ;
  3263       // At DONE_LABEL the icc ZFlag is set as follows ...
  3264       // Fast_Unlock uses the same protocol.
  3265       // ZFlag == 1 -> Success
  3266       // ZFlag == 0 -> Failure - force control through the slow-path
  3268   %}
  3270   // obj: object to unlock
  3271   // box: box address (displaced header location), killed.  Must be EAX.
  3272   // rbx,: killed tmp; cannot be obj nor box.
  3273   //
  3274   // Some commentary on balanced locking:
  3275   //
  3276   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3277   // Methods that don't have provably balanced locking are forced to run in the
  3278   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3279   // The interpreter provides two properties:
  3280   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3281   //      objects acquired the current activation (frame).  Recall that the
  3282   //      interpreter maintains an on-stack list of locks currently held by
  3283   //      a frame.
  3284   // I2:  If a method attempts to unlock an object that is not held by the
  3285   //      the frame the interpreter throws IMSX.
  3286   //
  3287   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3288   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3289   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3290   // is still locked by A().
  3291   //
  3292   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3293   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3294   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3295   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3297   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3299     Register objReg = as_Register($obj$$reg);
  3300     Register boxReg = as_Register($box$$reg);
  3301     Register tmpReg = as_Register($tmp$$reg);
  3303     guarantee (objReg != boxReg, "") ;
  3304     guarantee (objReg != tmpReg, "") ;
  3305     guarantee (boxReg != tmpReg, "") ;
  3306     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3307     MacroAssembler masm(&cbuf);
  3309     if (EmitSync & 4) {
  3310       // Disable - inhibit all inlining.  Force control through the slow-path
  3311       masm.cmpptr (rsp, 0) ; 
  3312     } else 
  3313     if (EmitSync & 8) {
  3314       Label DONE_LABEL ;
  3315       if (UseBiasedLocking) {
  3316          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3318       // classic stack-locking code ...
  3319       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3320       masm.testptr(tmpReg, tmpReg) ;
  3321       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3322       if (os::is_MP()) { masm.lock(); }
  3323       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3324       masm.bind(DONE_LABEL);
  3325     } else {
  3326       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3328       // Critically, the biased locking test must have precedence over
  3329       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3330       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3331          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3334       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3335       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3336       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3338       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3339       masm.jccb  (Assembler::zero, Stacked) ;
  3341       masm.bind  (Inflated) ;
  3342       // It's inflated.
  3343       // Despite our balanced locking property we still check that m->_owner == Self
  3344       // as java routines or native JNI code called by this thread might
  3345       // have released the lock.
  3346       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3347       // state in _succ so we can avoid fetching EntryList|cxq.
  3348       //
  3349       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3350       // such as recursive enter and exit -- but we have to be wary of
  3351       // I$ bloat, T$ effects and BP$ effects.
  3352       //
  3353       // If there's no contention try a 1-0 exit.  That is, exit without
  3354       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3355       // we detect and recover from the race that the 1-0 exit admits.
  3356       //
  3357       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3358       // before it STs null into _owner, releasing the lock.  Updates
  3359       // to data protected by the critical section must be visible before
  3360       // we drop the lock (and thus before any other thread could acquire
  3361       // the lock and observe the fields protected by the lock).
  3362       // IA32's memory-model is SPO, so STs are ordered with respect to
  3363       // each other and there's no need for an explicit barrier (fence).
  3364       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3366       masm.get_thread (boxReg) ;
  3367       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3368         // prefetchw [ebx + Offset(_owner)-2]
  3369         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3372       // Note that we could employ various encoding schemes to reduce
  3373       // the number of loads below (currently 4) to just 2 or 3.
  3374       // Refer to the comments in synchronizer.cpp.
  3375       // In practice the chain of fetches doesn't seem to impact performance, however.
  3376       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3377          // Attempt to reduce branch density - AMD's branch predictor.
  3378          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3379          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3380          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3381          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3382          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3383          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3384          masm.jmpb  (DONE_LABEL) ; 
  3385       } else { 
  3386          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3387          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3388          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3389          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3390          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3391          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3392          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3393          masm.jmpb  (DONE_LABEL) ; 
  3396       // The Following code fragment (EmitSync & 65536) improves the performance of
  3397       // contended applications and contended synchronization microbenchmarks.
  3398       // Unfortunately the emission of the code - even though not executed - causes regressions
  3399       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3400       // with an equal number of never-executed NOPs results in the same regression.
  3401       // We leave it off by default.
  3403       if ((EmitSync & 65536) != 0) {
  3404          Label LSuccess, LGoSlowPath ;
  3406          masm.bind  (CheckSucc) ;
  3408          // Optional pre-test ... it's safe to elide this
  3409          if ((EmitSync & 16) == 0) { 
  3410             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3411             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3414          // We have a classic Dekker-style idiom:
  3415          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3416          // There are a number of ways to implement the barrier:
  3417          // (1) lock:andl &m->_owner, 0
  3418          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3419          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3420          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3421          // (2) If supported, an explicit MFENCE is appealing.
  3422          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3423          //     particularly if the write-buffer is full as might be the case if
  3424          //     if stores closely precede the fence or fence-equivalent instruction.
  3425          //     In more modern implementations MFENCE appears faster, however.
  3426          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3427          //     The $lines underlying the top-of-stack should be in M-state.
  3428          //     The locked add instruction is serializing, of course.
  3429          // (4) Use xchg, which is serializing
  3430          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3431          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3432          //     The integer condition codes will tell us if succ was 0.
  3433          //     Since _succ and _owner should reside in the same $line and
  3434          //     we just stored into _owner, it's likely that the $line
  3435          //     remains in M-state for the lock:orl.
  3436          //
  3437          // We currently use (3), although it's likely that switching to (2)
  3438          // is correct for the future.
  3440          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3441          if (os::is_MP()) { 
  3442             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3443               masm.mfence();
  3444             } else { 
  3445               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3448          // Ratify _succ remains non-null
  3449          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3450          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3452          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3453          if (os::is_MP()) { masm.lock(); }
  3454          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3455          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3456          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3457          // Now install Self over rsp.  This is safe as we're transitioning from
  3458          // non-null to non=null
  3459          masm.get_thread (boxReg) ;
  3460          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3461          // Intentional fall-through into LGoSlowPath ...
  3463          masm.bind  (LGoSlowPath) ; 
  3464          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3465          masm.jmpb  (DONE_LABEL) ; 
  3467          masm.bind  (LSuccess) ; 
  3468          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3469          masm.jmpb  (DONE_LABEL) ; 
  3472       masm.bind (Stacked) ;
  3473       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3474       // It must be stack-locked.
  3475       // Try to reset the header to displaced header.
  3476       // The "box" value on the stack is stable, so we can reload
  3477       // and be assured we observe the same value as above.
  3478       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3479       if (os::is_MP()) {   masm.lock();    }
  3480       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3481       // Intention fall-thru into DONE_LABEL
  3484       // DONE_LABEL is a hot target - we'd really like to place it at the
  3485       // start of cache line by padding with NOPs.
  3486       // See the AMD and Intel software optimization manuals for the
  3487       // most efficient "long" NOP encodings.
  3488       // Unfortunately none of our alignment mechanisms suffice.
  3489       if ((EmitSync & 65536) == 0) {
  3490          masm.bind (CheckSucc) ;
  3492       masm.bind(DONE_LABEL);
  3494       // Avoid branch to branch on AMD processors
  3495       if (EmitSync & 32768) { masm.nop() ; }
  3497   %}
  3500   enc_class enc_pop_rdx() %{
  3501     emit_opcode(cbuf,0x5A);
  3502   %}
  3504   enc_class enc_rethrow() %{
  3505     cbuf.set_insts_mark();
  3506     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3507     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3508                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3509   %}
  3512   // Convert a double to an int.  Java semantics require we do complex
  3513   // manglelations in the corner cases.  So we set the rounding mode to
  3514   // 'zero', store the darned double down as an int, and reset the
  3515   // rounding mode to 'nearest'.  The hardware throws an exception which
  3516   // patches up the correct value directly to the stack.
  3517   enc_class DPR2I_encoding( regDPR src ) %{
  3518     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3519     // exceptions here, so that a NAN or other corner-case value will
  3520     // thrown an exception (but normal values get converted at full speed).
  3521     // However, I2C adapters and other float-stack manglers leave pending
  3522     // invalid-op exceptions hanging.  We would have to clear them before
  3523     // enabling them and that is more expensive than just testing for the
  3524     // invalid value Intel stores down in the corner cases.
  3525     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3526     emit_opcode(cbuf,0x2D);
  3527     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3528     // Allocate a word
  3529     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3530     emit_opcode(cbuf,0xEC);
  3531     emit_d8(cbuf,0x04);
  3532     // Encoding assumes a double has been pushed into FPR0.
  3533     // Store down the double as an int, popping the FPU stack
  3534     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3535     emit_opcode(cbuf,0x1C);
  3536     emit_d8(cbuf,0x24);
  3537     // Restore the rounding mode; mask the exception
  3538     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3539     emit_opcode(cbuf,0x2D);
  3540     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3541         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3542         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3544     // Load the converted int; adjust CPU stack
  3545     emit_opcode(cbuf,0x58);       // POP EAX
  3546     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3547     emit_d32   (cbuf,0x80000000); //         0x80000000
  3548     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3549     emit_d8    (cbuf,0x07);       // Size of slow_call
  3550     // Push src onto stack slow-path
  3551     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3552     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3553     // CALL directly to the runtime
  3554     cbuf.set_insts_mark();
  3555     emit_opcode(cbuf,0xE8);       // Call into runtime
  3556     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3557     // Carry on here...
  3558   %}
  3560   enc_class DPR2L_encoding( regDPR src ) %{
  3561     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3562     emit_opcode(cbuf,0x2D);
  3563     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3564     // Allocate a word
  3565     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3566     emit_opcode(cbuf,0xEC);
  3567     emit_d8(cbuf,0x08);
  3568     // Encoding assumes a double has been pushed into FPR0.
  3569     // Store down the double as a long, popping the FPU stack
  3570     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3571     emit_opcode(cbuf,0x3C);
  3572     emit_d8(cbuf,0x24);
  3573     // Restore the rounding mode; mask the exception
  3574     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3575     emit_opcode(cbuf,0x2D);
  3576     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3577         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3578         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3580     // Load the converted int; adjust CPU stack
  3581     emit_opcode(cbuf,0x58);       // POP EAX
  3582     emit_opcode(cbuf,0x5A);       // POP EDX
  3583     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3584     emit_d8    (cbuf,0xFA);       // rdx
  3585     emit_d32   (cbuf,0x80000000); //         0x80000000
  3586     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3587     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3588     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3589     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3590     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3591     emit_d8    (cbuf,0x07);       // Size of slow_call
  3592     // Push src onto stack slow-path
  3593     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3594     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3595     // CALL directly to the runtime
  3596     cbuf.set_insts_mark();
  3597     emit_opcode(cbuf,0xE8);       // Call into runtime
  3598     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3599     // Carry on here...
  3600   %}
  3602   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3603     // Operand was loaded from memory into fp ST (stack top)
  3604     // FMUL   ST,$src  /* D8 C8+i */
  3605     emit_opcode(cbuf, 0xD8);
  3606     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3607   %}
  3609   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3610     // FADDP  ST,src2  /* D8 C0+i */
  3611     emit_opcode(cbuf, 0xD8);
  3612     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3613     //could use FADDP  src2,fpST  /* DE C0+i */
  3614   %}
  3616   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3617     // FADDP  src2,ST  /* DE C0+i */
  3618     emit_opcode(cbuf, 0xDE);
  3619     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3620   %}
  3622   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3623     // Operand has been loaded into fp ST (stack top)
  3624       // FSUB   ST,$src1
  3625       emit_opcode(cbuf, 0xD8);
  3626       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3628       // FDIV
  3629       emit_opcode(cbuf, 0xD8);
  3630       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3631   %}
  3633   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3634     // Operand was loaded from memory into fp ST (stack top)
  3635     // FADD   ST,$src  /* D8 C0+i */
  3636     emit_opcode(cbuf, 0xD8);
  3637     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3639     // FMUL  ST,src2  /* D8 C*+i */
  3640     emit_opcode(cbuf, 0xD8);
  3641     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3642   %}
  3645   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3646     // Operand was loaded from memory into fp ST (stack top)
  3647     // FADD   ST,$src  /* D8 C0+i */
  3648     emit_opcode(cbuf, 0xD8);
  3649     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3651     // FMULP  src2,ST  /* DE C8+i */
  3652     emit_opcode(cbuf, 0xDE);
  3653     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3654   %}
  3656   // Atomically load the volatile long
  3657   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3658     emit_opcode(cbuf,0xDF);
  3659     int rm_byte_opcode = 0x05;
  3660     int base     = $mem$$base;
  3661     int index    = $mem$$index;
  3662     int scale    = $mem$$scale;
  3663     int displace = $mem$$disp;
  3664     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3665     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3666     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3667   %}
  3669   // Volatile Store Long.  Must be atomic, so move it into
  3670   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3671   // target address before the store (for null-ptr checks)
  3672   // so the memory operand is used twice in the encoding.
  3673   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3674     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3675     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3676     emit_opcode(cbuf,0xDF);
  3677     int rm_byte_opcode = 0x07;
  3678     int base     = $mem$$base;
  3679     int index    = $mem$$index;
  3680     int scale    = $mem$$scale;
  3681     int displace = $mem$$disp;
  3682     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3683     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3684   %}
  3686   // Safepoint Poll.  This polls the safepoint page, and causes an
  3687   // exception if it is not readable. Unfortunately, it kills the condition code
  3688   // in the process
  3689   // We current use TESTL [spp],EDI
  3690   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3692   enc_class Safepoint_Poll() %{
  3693     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3694     emit_opcode(cbuf,0x85);
  3695     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3696     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3697   %}
  3698 %}
  3701 //----------FRAME--------------------------------------------------------------
  3702 // Definition of frame structure and management information.
  3703 //
  3704 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3705 //                             |   (to get allocators register number
  3706 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3707 //  r   CALLER     |        |
  3708 //  o     |        +--------+      pad to even-align allocators stack-slot
  3709 //  w     V        |  pad0  |        numbers; owned by CALLER
  3710 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3711 //  h     ^        |   in   |  5
  3712 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3713 //  |     |        |        |  3
  3714 //  |     |        +--------+
  3715 //  V     |        | old out|      Empty on Intel, window on Sparc
  3716 //        |    old |preserve|      Must be even aligned.
  3717 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3718 //        |        |   in   |  3   area for Intel ret address
  3719 //     Owned by    |preserve|      Empty on Sparc.
  3720 //       SELF      +--------+
  3721 //        |        |  pad2  |  2   pad to align old SP
  3722 //        |        +--------+  1
  3723 //        |        | locks  |  0
  3724 //        |        +--------+----> OptoReg::stack0(), even aligned
  3725 //        |        |  pad1  | 11   pad to align new SP
  3726 //        |        +--------+
  3727 //        |        |        | 10
  3728 //        |        | spills |  9   spills
  3729 //        V        |        |  8   (pad0 slot for callee)
  3730 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3731 //        ^        |  out   |  7
  3732 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3733 //     Owned by    +--------+
  3734 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3735 //        |    new |preserve|      Must be even-aligned.
  3736 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3737 //        |        |        |
  3738 //
  3739 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3740 //         known from SELF's arguments and the Java calling convention.
  3741 //         Region 6-7 is determined per call site.
  3742 // Note 2: If the calling convention leaves holes in the incoming argument
  3743 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3744 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3745 //         incoming area, as the Java calling convention is completely under
  3746 //         the control of the AD file.  Doubles can be sorted and packed to
  3747 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3748 //         varargs C calling conventions.
  3749 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3750 //         even aligned with pad0 as needed.
  3751 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3752 //         region 6-11 is even aligned; it may be padded out more so that
  3753 //         the region from SP to FP meets the minimum stack alignment.
  3755 frame %{
  3756   // What direction does stack grow in (assumed to be same for C & Java)
  3757   stack_direction(TOWARDS_LOW);
  3759   // These three registers define part of the calling convention
  3760   // between compiled code and the interpreter.
  3761   inline_cache_reg(EAX);                // Inline Cache Register
  3762   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3764   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3765   cisc_spilling_operand_name(indOffset32);
  3767   // Number of stack slots consumed by locking an object
  3768   sync_stack_slots(1);
  3770   // Compiled code's Frame Pointer
  3771   frame_pointer(ESP);
  3772   // Interpreter stores its frame pointer in a register which is
  3773   // stored to the stack by I2CAdaptors.
  3774   // I2CAdaptors convert from interpreted java to compiled java.
  3775   interpreter_frame_pointer(EBP);
  3777   // Stack alignment requirement
  3778   // Alignment size in bytes (128-bit -> 16 bytes)
  3779   stack_alignment(StackAlignmentInBytes);
  3781   // Number of stack slots between incoming argument block and the start of
  3782   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3783   // EPILOG must remove this many slots.  Intel needs one slot for
  3784   // return address and one for rbp, (must save rbp)
  3785   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3787   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3788   // for calls to C.  Supports the var-args backing area for register parms.
  3789   varargs_C_out_slots_killed(0);
  3791   // The after-PROLOG location of the return address.  Location of
  3792   // return address specifies a type (REG or STACK) and a number
  3793   // representing the register number (i.e. - use a register name) or
  3794   // stack slot.
  3795   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3796   // Otherwise, it is above the locks and verification slot and alignment word
  3797   return_addr(STACK - 1 +
  3798               round_to((Compile::current()->in_preserve_stack_slots() +
  3799                         Compile::current()->fixed_slots()),
  3800                        stack_alignment_in_slots()));
  3802   // Body of function which returns an integer array locating
  3803   // arguments either in registers or in stack slots.  Passed an array
  3804   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3805   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3806   // arguments for a CALLEE.  Incoming stack arguments are
  3807   // automatically biased by the preserve_stack_slots field above.
  3808   calling_convention %{
  3809     // No difference between ingoing/outgoing just pass false
  3810     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3811   %}
  3814   // Body of function which returns an integer array locating
  3815   // arguments either in registers or in stack slots.  Passed an array
  3816   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3817   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3818   // arguments for a CALLEE.  Incoming stack arguments are
  3819   // automatically biased by the preserve_stack_slots field above.
  3820   c_calling_convention %{
  3821     // This is obviously always outgoing
  3822     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3823   %}
  3825   // Location of C & interpreter return values
  3826   c_return_value %{
  3827     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3828     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3829     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3831     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3832     // that C functions return float and double results in XMM0.
  3833     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3834       return OptoRegPair(XMM0b_num,XMM0_num);
  3835     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3836       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3838     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3839   %}
  3841   // Location of return values
  3842   return_value %{
  3843     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3844     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3845     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3846     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3847       return OptoRegPair(XMM0b_num,XMM0_num);
  3848     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3849       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3850     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3851   %}
  3853 %}
  3855 //----------ATTRIBUTES---------------------------------------------------------
  3856 //----------Operand Attributes-------------------------------------------------
  3857 op_attrib op_cost(0);        // Required cost attribute
  3859 //----------Instruction Attributes---------------------------------------------
  3860 ins_attrib ins_cost(100);       // Required cost attribute
  3861 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3862 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3863                                 // non-matching short branch variant of some
  3864                                                             // long branch?
  3865 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3866                                 // specifies the alignment that some part of the instruction (not
  3867                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3868                                 // function must be provided for the instruction
  3870 //----------OPERANDS-----------------------------------------------------------
  3871 // Operand definitions must precede instruction definitions for correct parsing
  3872 // in the ADLC because operands constitute user defined types which are used in
  3873 // instruction definitions.
  3875 //----------Simple Operands----------------------------------------------------
  3876 // Immediate Operands
  3877 // Integer Immediate
  3878 operand immI() %{
  3879   match(ConI);
  3881   op_cost(10);
  3882   format %{ %}
  3883   interface(CONST_INTER);
  3884 %}
  3886 // Constant for test vs zero
  3887 operand immI0() %{
  3888   predicate(n->get_int() == 0);
  3889   match(ConI);
  3891   op_cost(0);
  3892   format %{ %}
  3893   interface(CONST_INTER);
  3894 %}
  3896 // Constant for increment
  3897 operand immI1() %{
  3898   predicate(n->get_int() == 1);
  3899   match(ConI);
  3901   op_cost(0);
  3902   format %{ %}
  3903   interface(CONST_INTER);
  3904 %}
  3906 // Constant for decrement
  3907 operand immI_M1() %{
  3908   predicate(n->get_int() == -1);
  3909   match(ConI);
  3911   op_cost(0);
  3912   format %{ %}
  3913   interface(CONST_INTER);
  3914 %}
  3916 // Valid scale values for addressing modes
  3917 operand immI2() %{
  3918   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3919   match(ConI);
  3921   format %{ %}
  3922   interface(CONST_INTER);
  3923 %}
  3925 operand immI8() %{
  3926   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3927   match(ConI);
  3929   op_cost(5);
  3930   format %{ %}
  3931   interface(CONST_INTER);
  3932 %}
  3934 operand immI16() %{
  3935   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3936   match(ConI);
  3938   op_cost(10);
  3939   format %{ %}
  3940   interface(CONST_INTER);
  3941 %}
  3943 // Constant for long shifts
  3944 operand immI_32() %{
  3945   predicate( n->get_int() == 32 );
  3946   match(ConI);
  3948   op_cost(0);
  3949   format %{ %}
  3950   interface(CONST_INTER);
  3951 %}
  3953 operand immI_1_31() %{
  3954   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3955   match(ConI);
  3957   op_cost(0);
  3958   format %{ %}
  3959   interface(CONST_INTER);
  3960 %}
  3962 operand immI_32_63() %{
  3963   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3964   match(ConI);
  3965   op_cost(0);
  3967   format %{ %}
  3968   interface(CONST_INTER);
  3969 %}
  3971 operand immI_1() %{
  3972   predicate( n->get_int() == 1 );
  3973   match(ConI);
  3975   op_cost(0);
  3976   format %{ %}
  3977   interface(CONST_INTER);
  3978 %}
  3980 operand immI_2() %{
  3981   predicate( n->get_int() == 2 );
  3982   match(ConI);
  3984   op_cost(0);
  3985   format %{ %}
  3986   interface(CONST_INTER);
  3987 %}
  3989 operand immI_3() %{
  3990   predicate( n->get_int() == 3 );
  3991   match(ConI);
  3993   op_cost(0);
  3994   format %{ %}
  3995   interface(CONST_INTER);
  3996 %}
  3998 // Pointer Immediate
  3999 operand immP() %{
  4000   match(ConP);
  4002   op_cost(10);
  4003   format %{ %}
  4004   interface(CONST_INTER);
  4005 %}
  4007 // NULL Pointer Immediate
  4008 operand immP0() %{
  4009   predicate( n->get_ptr() == 0 );
  4010   match(ConP);
  4011   op_cost(0);
  4013   format %{ %}
  4014   interface(CONST_INTER);
  4015 %}
  4017 // Long Immediate
  4018 operand immL() %{
  4019   match(ConL);
  4021   op_cost(20);
  4022   format %{ %}
  4023   interface(CONST_INTER);
  4024 %}
  4026 // Long Immediate zero
  4027 operand immL0() %{
  4028   predicate( n->get_long() == 0L );
  4029   match(ConL);
  4030   op_cost(0);
  4032   format %{ %}
  4033   interface(CONST_INTER);
  4034 %}
  4036 // Long Immediate zero
  4037 operand immL_M1() %{
  4038   predicate( n->get_long() == -1L );
  4039   match(ConL);
  4040   op_cost(0);
  4042   format %{ %}
  4043   interface(CONST_INTER);
  4044 %}
  4046 // Long immediate from 0 to 127.
  4047 // Used for a shorter form of long mul by 10.
  4048 operand immL_127() %{
  4049   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4050   match(ConL);
  4051   op_cost(0);
  4053   format %{ %}
  4054   interface(CONST_INTER);
  4055 %}
  4057 // Long Immediate: low 32-bit mask
  4058 operand immL_32bits() %{
  4059   predicate(n->get_long() == 0xFFFFFFFFL);
  4060   match(ConL);
  4061   op_cost(0);
  4063   format %{ %}
  4064   interface(CONST_INTER);
  4065 %}
  4067 // Long Immediate: low 32-bit mask
  4068 operand immL32() %{
  4069   predicate(n->get_long() == (int)(n->get_long()));
  4070   match(ConL);
  4071   op_cost(20);
  4073   format %{ %}
  4074   interface(CONST_INTER);
  4075 %}
  4077 //Double Immediate zero
  4078 operand immDPR0() %{
  4079   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4080   // bug that generates code such that NaNs compare equal to 0.0
  4081   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4082   match(ConD);
  4084   op_cost(5);
  4085   format %{ %}
  4086   interface(CONST_INTER);
  4087 %}
  4089 // Double Immediate one
  4090 operand immDPR1() %{
  4091   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4092   match(ConD);
  4094   op_cost(5);
  4095   format %{ %}
  4096   interface(CONST_INTER);
  4097 %}
  4099 // Double Immediate
  4100 operand immDPR() %{
  4101   predicate(UseSSE<=1);
  4102   match(ConD);
  4104   op_cost(5);
  4105   format %{ %}
  4106   interface(CONST_INTER);
  4107 %}
  4109 operand immD() %{
  4110   predicate(UseSSE>=2);
  4111   match(ConD);
  4113   op_cost(5);
  4114   format %{ %}
  4115   interface(CONST_INTER);
  4116 %}
  4118 // Double Immediate zero
  4119 operand immD0() %{
  4120   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4121   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4122   // compare equal to -0.0.
  4123   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4124   match(ConD);
  4126   format %{ %}
  4127   interface(CONST_INTER);
  4128 %}
  4130 // Float Immediate zero
  4131 operand immFPR0() %{
  4132   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4133   match(ConF);
  4135   op_cost(5);
  4136   format %{ %}
  4137   interface(CONST_INTER);
  4138 %}
  4140 // Float Immediate one
  4141 operand immFPR1() %{
  4142   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4143   match(ConF);
  4145   op_cost(5);
  4146   format %{ %}
  4147   interface(CONST_INTER);
  4148 %}
  4150 // Float Immediate
  4151 operand immFPR() %{
  4152   predicate( UseSSE == 0 );
  4153   match(ConF);
  4155   op_cost(5);
  4156   format %{ %}
  4157   interface(CONST_INTER);
  4158 %}
  4160 // Float Immediate
  4161 operand immF() %{
  4162   predicate(UseSSE >= 1);
  4163   match(ConF);
  4165   op_cost(5);
  4166   format %{ %}
  4167   interface(CONST_INTER);
  4168 %}
  4170 // Float Immediate zero.  Zero and not -0.0
  4171 operand immF0() %{
  4172   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4173   match(ConF);
  4175   op_cost(5);
  4176   format %{ %}
  4177   interface(CONST_INTER);
  4178 %}
  4180 // Immediates for special shifts (sign extend)
  4182 // Constants for increment
  4183 operand immI_16() %{
  4184   predicate( n->get_int() == 16 );
  4185   match(ConI);
  4187   format %{ %}
  4188   interface(CONST_INTER);
  4189 %}
  4191 operand immI_24() %{
  4192   predicate( n->get_int() == 24 );
  4193   match(ConI);
  4195   format %{ %}
  4196   interface(CONST_INTER);
  4197 %}
  4199 // Constant for byte-wide masking
  4200 operand immI_255() %{
  4201   predicate( n->get_int() == 255 );
  4202   match(ConI);
  4204   format %{ %}
  4205   interface(CONST_INTER);
  4206 %}
  4208 // Constant for short-wide masking
  4209 operand immI_65535() %{
  4210   predicate(n->get_int() == 65535);
  4211   match(ConI);
  4213   format %{ %}
  4214   interface(CONST_INTER);
  4215 %}
  4217 // Register Operands
  4218 // Integer Register
  4219 operand rRegI() %{
  4220   constraint(ALLOC_IN_RC(int_reg));
  4221   match(RegI);
  4222   match(xRegI);
  4223   match(eAXRegI);
  4224   match(eBXRegI);
  4225   match(eCXRegI);
  4226   match(eDXRegI);
  4227   match(eDIRegI);
  4228   match(eSIRegI);
  4230   format %{ %}
  4231   interface(REG_INTER);
  4232 %}
  4234 // Subset of Integer Register
  4235 operand xRegI(rRegI reg) %{
  4236   constraint(ALLOC_IN_RC(int_x_reg));
  4237   match(reg);
  4238   match(eAXRegI);
  4239   match(eBXRegI);
  4240   match(eCXRegI);
  4241   match(eDXRegI);
  4243   format %{ %}
  4244   interface(REG_INTER);
  4245 %}
  4247 // Special Registers
  4248 operand eAXRegI(xRegI reg) %{
  4249   constraint(ALLOC_IN_RC(eax_reg));
  4250   match(reg);
  4251   match(rRegI);
  4253   format %{ "EAX" %}
  4254   interface(REG_INTER);
  4255 %}
  4257 // Special Registers
  4258 operand eBXRegI(xRegI reg) %{
  4259   constraint(ALLOC_IN_RC(ebx_reg));
  4260   match(reg);
  4261   match(rRegI);
  4263   format %{ "EBX" %}
  4264   interface(REG_INTER);
  4265 %}
  4267 operand eCXRegI(xRegI reg) %{
  4268   constraint(ALLOC_IN_RC(ecx_reg));
  4269   match(reg);
  4270   match(rRegI);
  4272   format %{ "ECX" %}
  4273   interface(REG_INTER);
  4274 %}
  4276 operand eDXRegI(xRegI reg) %{
  4277   constraint(ALLOC_IN_RC(edx_reg));
  4278   match(reg);
  4279   match(rRegI);
  4281   format %{ "EDX" %}
  4282   interface(REG_INTER);
  4283 %}
  4285 operand eDIRegI(xRegI reg) %{
  4286   constraint(ALLOC_IN_RC(edi_reg));
  4287   match(reg);
  4288   match(rRegI);
  4290   format %{ "EDI" %}
  4291   interface(REG_INTER);
  4292 %}
  4294 operand naxRegI() %{
  4295   constraint(ALLOC_IN_RC(nax_reg));
  4296   match(RegI);
  4297   match(eCXRegI);
  4298   match(eDXRegI);
  4299   match(eSIRegI);
  4300   match(eDIRegI);
  4302   format %{ %}
  4303   interface(REG_INTER);
  4304 %}
  4306 operand nadxRegI() %{
  4307   constraint(ALLOC_IN_RC(nadx_reg));
  4308   match(RegI);
  4309   match(eBXRegI);
  4310   match(eCXRegI);
  4311   match(eSIRegI);
  4312   match(eDIRegI);
  4314   format %{ %}
  4315   interface(REG_INTER);
  4316 %}
  4318 operand ncxRegI() %{
  4319   constraint(ALLOC_IN_RC(ncx_reg));
  4320   match(RegI);
  4321   match(eAXRegI);
  4322   match(eDXRegI);
  4323   match(eSIRegI);
  4324   match(eDIRegI);
  4326   format %{ %}
  4327   interface(REG_INTER);
  4328 %}
  4330 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4331 // //
  4332 operand eSIRegI(xRegI reg) %{
  4333    constraint(ALLOC_IN_RC(esi_reg));
  4334    match(reg);
  4335    match(rRegI);
  4337    format %{ "ESI" %}
  4338    interface(REG_INTER);
  4339 %}
  4341 // Pointer Register
  4342 operand anyRegP() %{
  4343   constraint(ALLOC_IN_RC(any_reg));
  4344   match(RegP);
  4345   match(eAXRegP);
  4346   match(eBXRegP);
  4347   match(eCXRegP);
  4348   match(eDIRegP);
  4349   match(eRegP);
  4351   format %{ %}
  4352   interface(REG_INTER);
  4353 %}
  4355 operand eRegP() %{
  4356   constraint(ALLOC_IN_RC(int_reg));
  4357   match(RegP);
  4358   match(eAXRegP);
  4359   match(eBXRegP);
  4360   match(eCXRegP);
  4361   match(eDIRegP);
  4363   format %{ %}
  4364   interface(REG_INTER);
  4365 %}
  4367 // On windows95, EBP is not safe to use for implicit null tests.
  4368 operand eRegP_no_EBP() %{
  4369   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  4370   match(RegP);
  4371   match(eAXRegP);
  4372   match(eBXRegP);
  4373   match(eCXRegP);
  4374   match(eDIRegP);
  4376   op_cost(100);
  4377   format %{ %}
  4378   interface(REG_INTER);
  4379 %}
  4381 operand naxRegP() %{
  4382   constraint(ALLOC_IN_RC(nax_reg));
  4383   match(RegP);
  4384   match(eBXRegP);
  4385   match(eDXRegP);
  4386   match(eCXRegP);
  4387   match(eSIRegP);
  4388   match(eDIRegP);
  4390   format %{ %}
  4391   interface(REG_INTER);
  4392 %}
  4394 operand nabxRegP() %{
  4395   constraint(ALLOC_IN_RC(nabx_reg));
  4396   match(RegP);
  4397   match(eCXRegP);
  4398   match(eDXRegP);
  4399   match(eSIRegP);
  4400   match(eDIRegP);
  4402   format %{ %}
  4403   interface(REG_INTER);
  4404 %}
  4406 operand pRegP() %{
  4407   constraint(ALLOC_IN_RC(p_reg));
  4408   match(RegP);
  4409   match(eBXRegP);
  4410   match(eDXRegP);
  4411   match(eSIRegP);
  4412   match(eDIRegP);
  4414   format %{ %}
  4415   interface(REG_INTER);
  4416 %}
  4418 // Special Registers
  4419 // Return a pointer value
  4420 operand eAXRegP(eRegP reg) %{
  4421   constraint(ALLOC_IN_RC(eax_reg));
  4422   match(reg);
  4423   format %{ "EAX" %}
  4424   interface(REG_INTER);
  4425 %}
  4427 // Used in AtomicAdd
  4428 operand eBXRegP(eRegP reg) %{
  4429   constraint(ALLOC_IN_RC(ebx_reg));
  4430   match(reg);
  4431   format %{ "EBX" %}
  4432   interface(REG_INTER);
  4433 %}
  4435 // Tail-call (interprocedural jump) to interpreter
  4436 operand eCXRegP(eRegP reg) %{
  4437   constraint(ALLOC_IN_RC(ecx_reg));
  4438   match(reg);
  4439   format %{ "ECX" %}
  4440   interface(REG_INTER);
  4441 %}
  4443 operand eSIRegP(eRegP reg) %{
  4444   constraint(ALLOC_IN_RC(esi_reg));
  4445   match(reg);
  4446   format %{ "ESI" %}
  4447   interface(REG_INTER);
  4448 %}
  4450 // Used in rep stosw
  4451 operand eDIRegP(eRegP reg) %{
  4452   constraint(ALLOC_IN_RC(edi_reg));
  4453   match(reg);
  4454   format %{ "EDI" %}
  4455   interface(REG_INTER);
  4456 %}
  4458 operand eBPRegP() %{
  4459   constraint(ALLOC_IN_RC(ebp_reg));
  4460   match(RegP);
  4461   format %{ "EBP" %}
  4462   interface(REG_INTER);
  4463 %}
  4465 operand eRegL() %{
  4466   constraint(ALLOC_IN_RC(long_reg));
  4467   match(RegL);
  4468   match(eADXRegL);
  4470   format %{ %}
  4471   interface(REG_INTER);
  4472 %}
  4474 operand eADXRegL( eRegL reg ) %{
  4475   constraint(ALLOC_IN_RC(eadx_reg));
  4476   match(reg);
  4478   format %{ "EDX:EAX" %}
  4479   interface(REG_INTER);
  4480 %}
  4482 operand eBCXRegL( eRegL reg ) %{
  4483   constraint(ALLOC_IN_RC(ebcx_reg));
  4484   match(reg);
  4486   format %{ "EBX:ECX" %}
  4487   interface(REG_INTER);
  4488 %}
  4490 // Special case for integer high multiply
  4491 operand eADXRegL_low_only() %{
  4492   constraint(ALLOC_IN_RC(eadx_reg));
  4493   match(RegL);
  4495   format %{ "EAX" %}
  4496   interface(REG_INTER);
  4497 %}
  4499 // Flags register, used as output of compare instructions
  4500 operand eFlagsReg() %{
  4501   constraint(ALLOC_IN_RC(int_flags));
  4502   match(RegFlags);
  4504   format %{ "EFLAGS" %}
  4505   interface(REG_INTER);
  4506 %}
  4508 // Flags register, used as output of FLOATING POINT compare instructions
  4509 operand eFlagsRegU() %{
  4510   constraint(ALLOC_IN_RC(int_flags));
  4511   match(RegFlags);
  4513   format %{ "EFLAGS_U" %}
  4514   interface(REG_INTER);
  4515 %}
  4517 operand eFlagsRegUCF() %{
  4518   constraint(ALLOC_IN_RC(int_flags));
  4519   match(RegFlags);
  4520   predicate(false);
  4522   format %{ "EFLAGS_U_CF" %}
  4523   interface(REG_INTER);
  4524 %}
  4526 // Condition Code Register used by long compare
  4527 operand flagsReg_long_LTGE() %{
  4528   constraint(ALLOC_IN_RC(int_flags));
  4529   match(RegFlags);
  4530   format %{ "FLAGS_LTGE" %}
  4531   interface(REG_INTER);
  4532 %}
  4533 operand flagsReg_long_EQNE() %{
  4534   constraint(ALLOC_IN_RC(int_flags));
  4535   match(RegFlags);
  4536   format %{ "FLAGS_EQNE" %}
  4537   interface(REG_INTER);
  4538 %}
  4539 operand flagsReg_long_LEGT() %{
  4540   constraint(ALLOC_IN_RC(int_flags));
  4541   match(RegFlags);
  4542   format %{ "FLAGS_LEGT" %}
  4543   interface(REG_INTER);
  4544 %}
  4546 // Float register operands
  4547 operand regDPR() %{
  4548   predicate( UseSSE < 2 );
  4549   constraint(ALLOC_IN_RC(fp_dbl_reg));
  4550   match(RegD);
  4551   match(regDPR1);
  4552   match(regDPR2);
  4553   format %{ %}
  4554   interface(REG_INTER);
  4555 %}
  4557 operand regDPR1(regDPR reg) %{
  4558   predicate( UseSSE < 2 );
  4559   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  4560   match(reg);
  4561   format %{ "FPR1" %}
  4562   interface(REG_INTER);
  4563 %}
  4565 operand regDPR2(regDPR reg) %{
  4566   predicate( UseSSE < 2 );
  4567   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  4568   match(reg);
  4569   format %{ "FPR2" %}
  4570   interface(REG_INTER);
  4571 %}
  4573 operand regnotDPR1(regDPR reg) %{
  4574   predicate( UseSSE < 2 );
  4575   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  4576   match(reg);
  4577   format %{ %}
  4578   interface(REG_INTER);
  4579 %}
  4581 // Float register operands
  4582 operand regFPR() %{
  4583   predicate( UseSSE < 2 );
  4584   constraint(ALLOC_IN_RC(fp_flt_reg));
  4585   match(RegF);
  4586   match(regFPR1);
  4587   format %{ %}
  4588   interface(REG_INTER);
  4589 %}
  4591 // Float register operands
  4592 operand regFPR1(regFPR reg) %{
  4593   predicate( UseSSE < 2 );
  4594   constraint(ALLOC_IN_RC(fp_flt_reg0));
  4595   match(reg);
  4596   format %{ "FPR1" %}
  4597   interface(REG_INTER);
  4598 %}
  4600 // XMM Float register operands
  4601 operand regF() %{
  4602   predicate( UseSSE>=1 );
  4603   constraint(ALLOC_IN_RC(float_reg));
  4604   match(RegF);
  4605   format %{ %}
  4606   interface(REG_INTER);
  4607 %}
  4609 // XMM Double register operands
  4610 operand regD() %{
  4611   predicate( UseSSE>=2 );
  4612   constraint(ALLOC_IN_RC(double_reg));
  4613   match(RegD);
  4614   format %{ %}
  4615   interface(REG_INTER);
  4616 %}
  4619 //----------Memory Operands----------------------------------------------------
  4620 // Direct Memory Operand
  4621 operand direct(immP addr) %{
  4622   match(addr);
  4624   format %{ "[$addr]" %}
  4625   interface(MEMORY_INTER) %{
  4626     base(0xFFFFFFFF);
  4627     index(0x4);
  4628     scale(0x0);
  4629     disp($addr);
  4630   %}
  4631 %}
  4633 // Indirect Memory Operand
  4634 operand indirect(eRegP reg) %{
  4635   constraint(ALLOC_IN_RC(int_reg));
  4636   match(reg);
  4638   format %{ "[$reg]" %}
  4639   interface(MEMORY_INTER) %{
  4640     base($reg);
  4641     index(0x4);
  4642     scale(0x0);
  4643     disp(0x0);
  4644   %}
  4645 %}
  4647 // Indirect Memory Plus Short Offset Operand
  4648 operand indOffset8(eRegP reg, immI8 off) %{
  4649   match(AddP reg off);
  4651   format %{ "[$reg + $off]" %}
  4652   interface(MEMORY_INTER) %{
  4653     base($reg);
  4654     index(0x4);
  4655     scale(0x0);
  4656     disp($off);
  4657   %}
  4658 %}
  4660 // Indirect Memory Plus Long Offset Operand
  4661 operand indOffset32(eRegP reg, immI off) %{
  4662   match(AddP reg off);
  4664   format %{ "[$reg + $off]" %}
  4665   interface(MEMORY_INTER) %{
  4666     base($reg);
  4667     index(0x4);
  4668     scale(0x0);
  4669     disp($off);
  4670   %}
  4671 %}
  4673 // Indirect Memory Plus Long Offset Operand
  4674 operand indOffset32X(rRegI reg, immP off) %{
  4675   match(AddP off reg);
  4677   format %{ "[$reg + $off]" %}
  4678   interface(MEMORY_INTER) %{
  4679     base($reg);
  4680     index(0x4);
  4681     scale(0x0);
  4682     disp($off);
  4683   %}
  4684 %}
  4686 // Indirect Memory Plus Index Register Plus Offset Operand
  4687 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4688   match(AddP (AddP reg ireg) off);
  4690   op_cost(10);
  4691   format %{"[$reg + $off + $ireg]" %}
  4692   interface(MEMORY_INTER) %{
  4693     base($reg);
  4694     index($ireg);
  4695     scale(0x0);
  4696     disp($off);
  4697   %}
  4698 %}
  4700 // Indirect Memory Plus Index Register Plus Offset Operand
  4701 operand indIndex(eRegP reg, rRegI ireg) %{
  4702   match(AddP reg ireg);
  4704   op_cost(10);
  4705   format %{"[$reg + $ireg]" %}
  4706   interface(MEMORY_INTER) %{
  4707     base($reg);
  4708     index($ireg);
  4709     scale(0x0);
  4710     disp(0x0);
  4711   %}
  4712 %}
  4714 // // -------------------------------------------------------------------------
  4715 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4716 // // -------------------------------------------------------------------------
  4717 // // Scaled Memory Operands
  4718 // // Indirect Memory Times Scale Plus Offset Operand
  4719 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4720 //   match(AddP off (LShiftI ireg scale));
  4721 //
  4722 //   op_cost(10);
  4723 //   format %{"[$off + $ireg << $scale]" %}
  4724 //   interface(MEMORY_INTER) %{
  4725 //     base(0x4);
  4726 //     index($ireg);
  4727 //     scale($scale);
  4728 //     disp($off);
  4729 //   %}
  4730 // %}
  4732 // Indirect Memory Times Scale Plus Index Register
  4733 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4734   match(AddP reg (LShiftI ireg scale));
  4736   op_cost(10);
  4737   format %{"[$reg + $ireg << $scale]" %}
  4738   interface(MEMORY_INTER) %{
  4739     base($reg);
  4740     index($ireg);
  4741     scale($scale);
  4742     disp(0x0);
  4743   %}
  4744 %}
  4746 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4747 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4748   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4750   op_cost(10);
  4751   format %{"[$reg + $off + $ireg << $scale]" %}
  4752   interface(MEMORY_INTER) %{
  4753     base($reg);
  4754     index($ireg);
  4755     scale($scale);
  4756     disp($off);
  4757   %}
  4758 %}
  4760 //----------Load Long Memory Operands------------------------------------------
  4761 // The load-long idiom will use it's address expression again after loading
  4762 // the first word of the long.  If the load-long destination overlaps with
  4763 // registers used in the addressing expression, the 2nd half will be loaded
  4764 // from a clobbered address.  Fix this by requiring that load-long use
  4765 // address registers that do not overlap with the load-long target.
  4767 // load-long support
  4768 operand load_long_RegP() %{
  4769   constraint(ALLOC_IN_RC(esi_reg));
  4770   match(RegP);
  4771   match(eSIRegP);
  4772   op_cost(100);
  4773   format %{  %}
  4774   interface(REG_INTER);
  4775 %}
  4777 // Indirect Memory Operand Long
  4778 operand load_long_indirect(load_long_RegP reg) %{
  4779   constraint(ALLOC_IN_RC(esi_reg));
  4780   match(reg);
  4782   format %{ "[$reg]" %}
  4783   interface(MEMORY_INTER) %{
  4784     base($reg);
  4785     index(0x4);
  4786     scale(0x0);
  4787     disp(0x0);
  4788   %}
  4789 %}
  4791 // Indirect Memory Plus Long Offset Operand
  4792 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4793   match(AddP reg off);
  4795   format %{ "[$reg + $off]" %}
  4796   interface(MEMORY_INTER) %{
  4797     base($reg);
  4798     index(0x4);
  4799     scale(0x0);
  4800     disp($off);
  4801   %}
  4802 %}
  4804 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4807 //----------Special Memory Operands--------------------------------------------
  4808 // Stack Slot Operand - This operand is used for loading and storing temporary
  4809 //                      values on the stack where a match requires a value to
  4810 //                      flow through memory.
  4811 operand stackSlotP(sRegP reg) %{
  4812   constraint(ALLOC_IN_RC(stack_slots));
  4813   // No match rule because this operand is only generated in matching
  4814   format %{ "[$reg]" %}
  4815   interface(MEMORY_INTER) %{
  4816     base(0x4);   // ESP
  4817     index(0x4);  // No Index
  4818     scale(0x0);  // No Scale
  4819     disp($reg);  // Stack Offset
  4820   %}
  4821 %}
  4823 operand stackSlotI(sRegI reg) %{
  4824   constraint(ALLOC_IN_RC(stack_slots));
  4825   // No match rule because this operand is only generated in matching
  4826   format %{ "[$reg]" %}
  4827   interface(MEMORY_INTER) %{
  4828     base(0x4);   // ESP
  4829     index(0x4);  // No Index
  4830     scale(0x0);  // No Scale
  4831     disp($reg);  // Stack Offset
  4832   %}
  4833 %}
  4835 operand stackSlotF(sRegF reg) %{
  4836   constraint(ALLOC_IN_RC(stack_slots));
  4837   // No match rule because this operand is only generated in matching
  4838   format %{ "[$reg]" %}
  4839   interface(MEMORY_INTER) %{
  4840     base(0x4);   // ESP
  4841     index(0x4);  // No Index
  4842     scale(0x0);  // No Scale
  4843     disp($reg);  // Stack Offset
  4844   %}
  4845 %}
  4847 operand stackSlotD(sRegD reg) %{
  4848   constraint(ALLOC_IN_RC(stack_slots));
  4849   // No match rule because this operand is only generated in matching
  4850   format %{ "[$reg]" %}
  4851   interface(MEMORY_INTER) %{
  4852     base(0x4);   // ESP
  4853     index(0x4);  // No Index
  4854     scale(0x0);  // No Scale
  4855     disp($reg);  // Stack Offset
  4856   %}
  4857 %}
  4859 operand stackSlotL(sRegL reg) %{
  4860   constraint(ALLOC_IN_RC(stack_slots));
  4861   // No match rule because this operand is only generated in matching
  4862   format %{ "[$reg]" %}
  4863   interface(MEMORY_INTER) %{
  4864     base(0x4);   // ESP
  4865     index(0x4);  // No Index
  4866     scale(0x0);  // No Scale
  4867     disp($reg);  // Stack Offset
  4868   %}
  4869 %}
  4871 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4872 // Indirect Memory Operand
  4873 operand indirect_win95_safe(eRegP_no_EBP reg)
  4874 %{
  4875   constraint(ALLOC_IN_RC(int_reg));
  4876   match(reg);
  4878   op_cost(100);
  4879   format %{ "[$reg]" %}
  4880   interface(MEMORY_INTER) %{
  4881     base($reg);
  4882     index(0x4);
  4883     scale(0x0);
  4884     disp(0x0);
  4885   %}
  4886 %}
  4888 // Indirect Memory Plus Short Offset Operand
  4889 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4890 %{
  4891   match(AddP reg off);
  4893   op_cost(100);
  4894   format %{ "[$reg + $off]" %}
  4895   interface(MEMORY_INTER) %{
  4896     base($reg);
  4897     index(0x4);
  4898     scale(0x0);
  4899     disp($off);
  4900   %}
  4901 %}
  4903 // Indirect Memory Plus Long Offset Operand
  4904 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4905 %{
  4906   match(AddP reg off);
  4908   op_cost(100);
  4909   format %{ "[$reg + $off]" %}
  4910   interface(MEMORY_INTER) %{
  4911     base($reg);
  4912     index(0x4);
  4913     scale(0x0);
  4914     disp($off);
  4915   %}
  4916 %}
  4918 // Indirect Memory Plus Index Register Plus Offset Operand
  4919 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4920 %{
  4921   match(AddP (AddP reg ireg) off);
  4923   op_cost(100);
  4924   format %{"[$reg + $off + $ireg]" %}
  4925   interface(MEMORY_INTER) %{
  4926     base($reg);
  4927     index($ireg);
  4928     scale(0x0);
  4929     disp($off);
  4930   %}
  4931 %}
  4933 // Indirect Memory Times Scale Plus Index Register
  4934 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4935 %{
  4936   match(AddP reg (LShiftI ireg scale));
  4938   op_cost(100);
  4939   format %{"[$reg + $ireg << $scale]" %}
  4940   interface(MEMORY_INTER) %{
  4941     base($reg);
  4942     index($ireg);
  4943     scale($scale);
  4944     disp(0x0);
  4945   %}
  4946 %}
  4948 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4949 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4950 %{
  4951   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4953   op_cost(100);
  4954   format %{"[$reg + $off + $ireg << $scale]" %}
  4955   interface(MEMORY_INTER) %{
  4956     base($reg);
  4957     index($ireg);
  4958     scale($scale);
  4959     disp($off);
  4960   %}
  4961 %}
  4963 //----------Conditional Branch Operands----------------------------------------
  4964 // Comparison Op  - This is the operation of the comparison, and is limited to
  4965 //                  the following set of codes:
  4966 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4967 //
  4968 // Other attributes of the comparison, such as unsignedness, are specified
  4969 // by the comparison instruction that sets a condition code flags register.
  4970 // That result is represented by a flags operand whose subtype is appropriate
  4971 // to the unsignedness (etc.) of the comparison.
  4972 //
  4973 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4974 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4975 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4977 // Comparision Code
  4978 operand cmpOp() %{
  4979   match(Bool);
  4981   format %{ "" %}
  4982   interface(COND_INTER) %{
  4983     equal(0x4, "e");
  4984     not_equal(0x5, "ne");
  4985     less(0xC, "l");
  4986     greater_equal(0xD, "ge");
  4987     less_equal(0xE, "le");
  4988     greater(0xF, "g");
  4989   %}
  4990 %}
  4992 // Comparison Code, unsigned compare.  Used by FP also, with
  4993 // C2 (unordered) turned into GT or LT already.  The other bits
  4994 // C0 and C3 are turned into Carry & Zero flags.
  4995 operand cmpOpU() %{
  4996   match(Bool);
  4998   format %{ "" %}
  4999   interface(COND_INTER) %{
  5000     equal(0x4, "e");
  5001     not_equal(0x5, "ne");
  5002     less(0x2, "b");
  5003     greater_equal(0x3, "nb");
  5004     less_equal(0x6, "be");
  5005     greater(0x7, "nbe");
  5006   %}
  5007 %}
  5009 // Floating comparisons that don't require any fixup for the unordered case
  5010 operand cmpOpUCF() %{
  5011   match(Bool);
  5012   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5013             n->as_Bool()->_test._test == BoolTest::ge ||
  5014             n->as_Bool()->_test._test == BoolTest::le ||
  5015             n->as_Bool()->_test._test == BoolTest::gt);
  5016   format %{ "" %}
  5017   interface(COND_INTER) %{
  5018     equal(0x4, "e");
  5019     not_equal(0x5, "ne");
  5020     less(0x2, "b");
  5021     greater_equal(0x3, "nb");
  5022     less_equal(0x6, "be");
  5023     greater(0x7, "nbe");
  5024   %}
  5025 %}
  5028 // Floating comparisons that can be fixed up with extra conditional jumps
  5029 operand cmpOpUCF2() %{
  5030   match(Bool);
  5031   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5032             n->as_Bool()->_test._test == BoolTest::eq);
  5033   format %{ "" %}
  5034   interface(COND_INTER) %{
  5035     equal(0x4, "e");
  5036     not_equal(0x5, "ne");
  5037     less(0x2, "b");
  5038     greater_equal(0x3, "nb");
  5039     less_equal(0x6, "be");
  5040     greater(0x7, "nbe");
  5041   %}
  5042 %}
  5044 // Comparison Code for FP conditional move
  5045 operand cmpOp_fcmov() %{
  5046   match(Bool);
  5048   format %{ "" %}
  5049   interface(COND_INTER) %{
  5050     equal        (0x0C8);
  5051     not_equal    (0x1C8);
  5052     less         (0x0C0);
  5053     greater_equal(0x1C0);
  5054     less_equal   (0x0D0);
  5055     greater      (0x1D0);
  5056   %}
  5057 %}
  5059 // Comparision Code used in long compares
  5060 operand cmpOp_commute() %{
  5061   match(Bool);
  5063   format %{ "" %}
  5064   interface(COND_INTER) %{
  5065     equal(0x4, "e");
  5066     not_equal(0x5, "ne");
  5067     less(0xF, "g");
  5068     greater_equal(0xE, "le");
  5069     less_equal(0xD, "ge");
  5070     greater(0xC, "l");
  5071   %}
  5072 %}
  5074 //----------OPERAND CLASSES----------------------------------------------------
  5075 // Operand Classes are groups of operands that are used as to simplify
  5076 // instruction definitions by not requiring the AD writer to specify separate
  5077 // instructions for every form of operand when the instruction accepts
  5078 // multiple operand types with the same basic encoding and format.  The classic
  5079 // case of this is memory operands.
  5081 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5082                indIndex, indIndexScale, indIndexScaleOffset);
  5084 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5085 // This means some kind of offset is always required and you cannot use
  5086 // an oop as the offset (done when working on static globals).
  5087 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5088                     indIndex, indIndexScale, indIndexScaleOffset);
  5091 //----------PIPELINE-----------------------------------------------------------
  5092 // Rules which define the behavior of the target architectures pipeline.
  5093 pipeline %{
  5095 //----------ATTRIBUTES---------------------------------------------------------
  5096 attributes %{
  5097   variable_size_instructions;        // Fixed size instructions
  5098   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5099   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5100   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5101   instruction_fetch_units = 1;       // of 16 bytes
  5103   // List of nop instructions
  5104   nops( MachNop );
  5105 %}
  5107 //----------RESOURCES----------------------------------------------------------
  5108 // Resources are the functional units available to the machine
  5110 // Generic P2/P3 pipeline
  5111 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5112 // 3 instructions decoded per cycle.
  5113 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5114 // 2 ALU op, only ALU0 handles mul/div instructions.
  5115 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5116            MS0, MS1, MEM = MS0 | MS1,
  5117            BR, FPU,
  5118            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5120 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5121 // Pipeline Description specifies the stages in the machine's pipeline
  5123 // Generic P2/P3 pipeline
  5124 pipe_desc(S0, S1, S2, S3, S4, S5);
  5126 //----------PIPELINE CLASSES---------------------------------------------------
  5127 // Pipeline Classes describe the stages in which input and output are
  5128 // referenced by the hardware pipeline.
  5130 // Naming convention: ialu or fpu
  5131 // Then: _reg
  5132 // Then: _reg if there is a 2nd register
  5133 // Then: _long if it's a pair of instructions implementing a long
  5134 // Then: _fat if it requires the big decoder
  5135 //   Or: _mem if it requires the big decoder and a memory unit.
  5137 // Integer ALU reg operation
  5138 pipe_class ialu_reg(rRegI dst) %{
  5139     single_instruction;
  5140     dst    : S4(write);
  5141     dst    : S3(read);
  5142     DECODE : S0;        // any decoder
  5143     ALU    : S3;        // any alu
  5144 %}
  5146 // Long ALU reg operation
  5147 pipe_class ialu_reg_long(eRegL dst) %{
  5148     instruction_count(2);
  5149     dst    : S4(write);
  5150     dst    : S3(read);
  5151     DECODE : S0(2);     // any 2 decoders
  5152     ALU    : S3(2);     // both alus
  5153 %}
  5155 // Integer ALU reg operation using big decoder
  5156 pipe_class ialu_reg_fat(rRegI dst) %{
  5157     single_instruction;
  5158     dst    : S4(write);
  5159     dst    : S3(read);
  5160     D0     : S0;        // big decoder only
  5161     ALU    : S3;        // any alu
  5162 %}
  5164 // Long ALU reg operation using big decoder
  5165 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5166     instruction_count(2);
  5167     dst    : S4(write);
  5168     dst    : S3(read);
  5169     D0     : S0(2);     // big decoder only; twice
  5170     ALU    : S3(2);     // any 2 alus
  5171 %}
  5173 // Integer ALU reg-reg operation
  5174 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  5175     single_instruction;
  5176     dst    : S4(write);
  5177     src    : S3(read);
  5178     DECODE : S0;        // any decoder
  5179     ALU    : S3;        // any alu
  5180 %}
  5182 // Long ALU reg-reg operation
  5183 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5184     instruction_count(2);
  5185     dst    : S4(write);
  5186     src    : S3(read);
  5187     DECODE : S0(2);     // any 2 decoders
  5188     ALU    : S3(2);     // both alus
  5189 %}
  5191 // Integer ALU reg-reg operation
  5192 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  5193     single_instruction;
  5194     dst    : S4(write);
  5195     src    : S3(read);
  5196     D0     : S0;        // big decoder only
  5197     ALU    : S3;        // any alu
  5198 %}
  5200 // Long ALU reg-reg operation
  5201 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5202     instruction_count(2);
  5203     dst    : S4(write);
  5204     src    : S3(read);
  5205     D0     : S0(2);     // big decoder only; twice
  5206     ALU    : S3(2);     // both alus
  5207 %}
  5209 // Integer ALU reg-mem operation
  5210 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  5211     single_instruction;
  5212     dst    : S5(write);
  5213     mem    : S3(read);
  5214     D0     : S0;        // big decoder only
  5215     ALU    : S4;        // any alu
  5216     MEM    : S3;        // any mem
  5217 %}
  5219 // Long ALU reg-mem operation
  5220 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5221     instruction_count(2);
  5222     dst    : S5(write);
  5223     mem    : S3(read);
  5224     D0     : S0(2);     // big decoder only; twice
  5225     ALU    : S4(2);     // any 2 alus
  5226     MEM    : S3(2);     // both mems
  5227 %}
  5229 // Integer mem operation (prefetch)
  5230 pipe_class ialu_mem(memory mem)
  5231 %{
  5232     single_instruction;
  5233     mem    : S3(read);
  5234     D0     : S0;        // big decoder only
  5235     MEM    : S3;        // any mem
  5236 %}
  5238 // Integer Store to Memory
  5239 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  5240     single_instruction;
  5241     mem    : S3(read);
  5242     src    : S5(read);
  5243     D0     : S0;        // big decoder only
  5244     ALU    : S4;        // any alu
  5245     MEM    : S3;
  5246 %}
  5248 // Long Store to Memory
  5249 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5250     instruction_count(2);
  5251     mem    : S3(read);
  5252     src    : S5(read);
  5253     D0     : S0(2);     // big decoder only; twice
  5254     ALU    : S4(2);     // any 2 alus
  5255     MEM    : S3(2);     // Both mems
  5256 %}
  5258 // Integer Store to Memory
  5259 pipe_class ialu_mem_imm(memory mem) %{
  5260     single_instruction;
  5261     mem    : S3(read);
  5262     D0     : S0;        // big decoder only
  5263     ALU    : S4;        // any alu
  5264     MEM    : S3;
  5265 %}
  5267 // Integer ALU0 reg-reg operation
  5268 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  5269     single_instruction;
  5270     dst    : S4(write);
  5271     src    : S3(read);
  5272     D0     : S0;        // Big decoder only
  5273     ALU0   : S3;        // only alu0
  5274 %}
  5276 // Integer ALU0 reg-mem operation
  5277 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  5278     single_instruction;
  5279     dst    : S5(write);
  5280     mem    : S3(read);
  5281     D0     : S0;        // big decoder only
  5282     ALU0   : S4;        // ALU0 only
  5283     MEM    : S3;        // any mem
  5284 %}
  5286 // Integer ALU reg-reg operation
  5287 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  5288     single_instruction;
  5289     cr     : S4(write);
  5290     src1   : S3(read);
  5291     src2   : S3(read);
  5292     DECODE : S0;        // any decoder
  5293     ALU    : S3;        // any alu
  5294 %}
  5296 // Integer ALU reg-imm operation
  5297 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  5298     single_instruction;
  5299     cr     : S4(write);
  5300     src1   : S3(read);
  5301     DECODE : S0;        // any decoder
  5302     ALU    : S3;        // any alu
  5303 %}
  5305 // Integer ALU reg-mem operation
  5306 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  5307     single_instruction;
  5308     cr     : S4(write);
  5309     src1   : S3(read);
  5310     src2   : S3(read);
  5311     D0     : S0;        // big decoder only
  5312     ALU    : S4;        // any alu
  5313     MEM    : S3;
  5314 %}
  5316 // Conditional move reg-reg
  5317 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  5318     instruction_count(4);
  5319     y      : S4(read);
  5320     q      : S3(read);
  5321     p      : S3(read);
  5322     DECODE : S0(4);     // any decoder
  5323 %}
  5325 // Conditional move reg-reg
  5326 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  5327     single_instruction;
  5328     dst    : S4(write);
  5329     src    : S3(read);
  5330     cr     : S3(read);
  5331     DECODE : S0;        // any decoder
  5332 %}
  5334 // Conditional move reg-mem
  5335 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  5336     single_instruction;
  5337     dst    : S4(write);
  5338     src    : S3(read);
  5339     cr     : S3(read);
  5340     DECODE : S0;        // any decoder
  5341     MEM    : S3;
  5342 %}
  5344 // Conditional move reg-reg long
  5345 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5346     single_instruction;
  5347     dst    : S4(write);
  5348     src    : S3(read);
  5349     cr     : S3(read);
  5350     DECODE : S0(2);     // any 2 decoders
  5351 %}
  5353 // Conditional move double reg-reg
  5354 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5355     single_instruction;
  5356     dst    : S4(write);
  5357     src    : S3(read);
  5358     cr     : S3(read);
  5359     DECODE : S0;        // any decoder
  5360 %}
  5362 // Float reg-reg operation
  5363 pipe_class fpu_reg(regDPR dst) %{
  5364     instruction_count(2);
  5365     dst    : S3(read);
  5366     DECODE : S0(2);     // any 2 decoders
  5367     FPU    : S3;
  5368 %}
  5370 // Float reg-reg operation
  5371 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5372     instruction_count(2);
  5373     dst    : S4(write);
  5374     src    : S3(read);
  5375     DECODE : S0(2);     // any 2 decoders
  5376     FPU    : S3;
  5377 %}
  5379 // Float reg-reg operation
  5380 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5381     instruction_count(3);
  5382     dst    : S4(write);
  5383     src1   : S3(read);
  5384     src2   : S3(read);
  5385     DECODE : S0(3);     // any 3 decoders
  5386     FPU    : S3(2);
  5387 %}
  5389 // Float reg-reg operation
  5390 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5391     instruction_count(4);
  5392     dst    : S4(write);
  5393     src1   : S3(read);
  5394     src2   : S3(read);
  5395     src3   : S3(read);
  5396     DECODE : S0(4);     // any 3 decoders
  5397     FPU    : S3(2);
  5398 %}
  5400 // Float reg-reg operation
  5401 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5402     instruction_count(4);
  5403     dst    : S4(write);
  5404     src1   : S3(read);
  5405     src2   : S3(read);
  5406     src3   : S3(read);
  5407     DECODE : S1(3);     // any 3 decoders
  5408     D0     : S0;        // Big decoder only
  5409     FPU    : S3(2);
  5410     MEM    : S3;
  5411 %}
  5413 // Float reg-mem operation
  5414 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5415     instruction_count(2);
  5416     dst    : S5(write);
  5417     mem    : S3(read);
  5418     D0     : S0;        // big decoder only
  5419     DECODE : S1;        // any decoder for FPU POP
  5420     FPU    : S4;
  5421     MEM    : S3;        // any mem
  5422 %}
  5424 // Float reg-mem operation
  5425 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5426     instruction_count(3);
  5427     dst    : S5(write);
  5428     src1   : S3(read);
  5429     mem    : S3(read);
  5430     D0     : S0;        // big decoder only
  5431     DECODE : S1(2);     // any decoder for FPU POP
  5432     FPU    : S4;
  5433     MEM    : S3;        // any mem
  5434 %}
  5436 // Float mem-reg operation
  5437 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5438     instruction_count(2);
  5439     src    : S5(read);
  5440     mem    : S3(read);
  5441     DECODE : S0;        // any decoder for FPU PUSH
  5442     D0     : S1;        // big decoder only
  5443     FPU    : S4;
  5444     MEM    : S3;        // any mem
  5445 %}
  5447 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5448     instruction_count(3);
  5449     src1   : S3(read);
  5450     src2   : S3(read);
  5451     mem    : S3(read);
  5452     DECODE : S0(2);     // any decoder for FPU PUSH
  5453     D0     : S1;        // big decoder only
  5454     FPU    : S4;
  5455     MEM    : S3;        // any mem
  5456 %}
  5458 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5459     instruction_count(3);
  5460     src1   : S3(read);
  5461     src2   : S3(read);
  5462     mem    : S4(read);
  5463     DECODE : S0;        // any decoder for FPU PUSH
  5464     D0     : S0(2);     // big decoder only
  5465     FPU    : S4;
  5466     MEM    : S3(2);     // any mem
  5467 %}
  5469 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5470     instruction_count(2);
  5471     src1   : S3(read);
  5472     dst    : S4(read);
  5473     D0     : S0(2);     // big decoder only
  5474     MEM    : S3(2);     // any mem
  5475 %}
  5477 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5478     instruction_count(3);
  5479     src1   : S3(read);
  5480     src2   : S3(read);
  5481     dst    : S4(read);
  5482     D0     : S0(3);     // big decoder only
  5483     FPU    : S4;
  5484     MEM    : S3(3);     // any mem
  5485 %}
  5487 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5488     instruction_count(3);
  5489     src1   : S4(read);
  5490     mem    : S4(read);
  5491     DECODE : S0;        // any decoder for FPU PUSH
  5492     D0     : S0(2);     // big decoder only
  5493     FPU    : S4;
  5494     MEM    : S3(2);     // any mem
  5495 %}
  5497 // Float load constant
  5498 pipe_class fpu_reg_con(regDPR dst) %{
  5499     instruction_count(2);
  5500     dst    : S5(write);
  5501     D0     : S0;        // big decoder only for the load
  5502     DECODE : S1;        // any decoder for FPU POP
  5503     FPU    : S4;
  5504     MEM    : S3;        // any mem
  5505 %}
  5507 // Float load constant
  5508 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5509     instruction_count(3);
  5510     dst    : S5(write);
  5511     src    : S3(read);
  5512     D0     : S0;        // big decoder only for the load
  5513     DECODE : S1(2);     // any decoder for FPU POP
  5514     FPU    : S4;
  5515     MEM    : S3;        // any mem
  5516 %}
  5518 // UnConditional branch
  5519 pipe_class pipe_jmp( label labl ) %{
  5520     single_instruction;
  5521     BR   : S3;
  5522 %}
  5524 // Conditional branch
  5525 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5526     single_instruction;
  5527     cr    : S1(read);
  5528     BR    : S3;
  5529 %}
  5531 // Allocation idiom
  5532 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5533     instruction_count(1); force_serialization;
  5534     fixed_latency(6);
  5535     heap_ptr : S3(read);
  5536     DECODE   : S0(3);
  5537     D0       : S2;
  5538     MEM      : S3;
  5539     ALU      : S3(2);
  5540     dst      : S5(write);
  5541     BR       : S5;
  5542 %}
  5544 // Generic big/slow expanded idiom
  5545 pipe_class pipe_slow(  ) %{
  5546     instruction_count(10); multiple_bundles; force_serialization;
  5547     fixed_latency(100);
  5548     D0  : S0(2);
  5549     MEM : S3(2);
  5550 %}
  5552 // The real do-nothing guy
  5553 pipe_class empty( ) %{
  5554     instruction_count(0);
  5555 %}
  5557 // Define the class for the Nop node
  5558 define %{
  5559    MachNop = empty;
  5560 %}
  5562 %}
  5564 //----------INSTRUCTIONS-------------------------------------------------------
  5565 //
  5566 // match      -- States which machine-independent subtree may be replaced
  5567 //               by this instruction.
  5568 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5569 //               selection to identify a minimum cost tree of machine
  5570 //               instructions that matches a tree of machine-independent
  5571 //               instructions.
  5572 // format     -- A string providing the disassembly for this instruction.
  5573 //               The value of an instruction's operand may be inserted
  5574 //               by referring to it with a '$' prefix.
  5575 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5576 //               to within an encode class as $primary, $secondary, and $tertiary
  5577 //               respectively.  The primary opcode is commonly used to
  5578 //               indicate the type of machine instruction, while secondary
  5579 //               and tertiary are often used for prefix options or addressing
  5580 //               modes.
  5581 // ins_encode -- A list of encode classes with parameters. The encode class
  5582 //               name must have been defined in an 'enc_class' specification
  5583 //               in the encode section of the architecture description.
  5585 //----------BSWAP-Instruction--------------------------------------------------
  5586 instruct bytes_reverse_int(rRegI dst) %{
  5587   match(Set dst (ReverseBytesI dst));
  5589   format %{ "BSWAP  $dst" %}
  5590   opcode(0x0F, 0xC8);
  5591   ins_encode( OpcP, OpcSReg(dst) );
  5592   ins_pipe( ialu_reg );
  5593 %}
  5595 instruct bytes_reverse_long(eRegL dst) %{
  5596   match(Set dst (ReverseBytesL dst));
  5598   format %{ "BSWAP  $dst.lo\n\t"
  5599             "BSWAP  $dst.hi\n\t"
  5600             "XCHG   $dst.lo $dst.hi" %}
  5602   ins_cost(125);
  5603   ins_encode( bswap_long_bytes(dst) );
  5604   ins_pipe( ialu_reg_reg);
  5605 %}
  5607 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  5608   match(Set dst (ReverseBytesUS dst));
  5609   effect(KILL cr);
  5611   format %{ "BSWAP  $dst\n\t" 
  5612             "SHR    $dst,16\n\t" %}
  5613   ins_encode %{
  5614     __ bswapl($dst$$Register);
  5615     __ shrl($dst$$Register, 16); 
  5616   %}
  5617   ins_pipe( ialu_reg );
  5618 %}
  5620 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5621   match(Set dst (ReverseBytesS dst));
  5622   effect(KILL cr);
  5624   format %{ "BSWAP  $dst\n\t" 
  5625             "SAR    $dst,16\n\t" %}
  5626   ins_encode %{
  5627     __ bswapl($dst$$Register);
  5628     __ sarl($dst$$Register, 16); 
  5629   %}
  5630   ins_pipe( ialu_reg );
  5631 %}
  5634 //---------- Zeros Count Instructions ------------------------------------------
  5636 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5637   predicate(UseCountLeadingZerosInstruction);
  5638   match(Set dst (CountLeadingZerosI src));
  5639   effect(KILL cr);
  5641   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5642   ins_encode %{
  5643     __ lzcntl($dst$$Register, $src$$Register);
  5644   %}
  5645   ins_pipe(ialu_reg);
  5646 %}
  5648 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5649   predicate(!UseCountLeadingZerosInstruction);
  5650   match(Set dst (CountLeadingZerosI src));
  5651   effect(KILL cr);
  5653   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5654             "JNZ    skip\n\t"
  5655             "MOV    $dst, -1\n"
  5656       "skip:\n\t"
  5657             "NEG    $dst\n\t"
  5658             "ADD    $dst, 31" %}
  5659   ins_encode %{
  5660     Register Rdst = $dst$$Register;
  5661     Register Rsrc = $src$$Register;
  5662     Label skip;
  5663     __ bsrl(Rdst, Rsrc);
  5664     __ jccb(Assembler::notZero, skip);
  5665     __ movl(Rdst, -1);
  5666     __ bind(skip);
  5667     __ negl(Rdst);
  5668     __ addl(Rdst, BitsPerInt - 1);
  5669   %}
  5670   ins_pipe(ialu_reg);
  5671 %}
  5673 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5674   predicate(UseCountLeadingZerosInstruction);
  5675   match(Set dst (CountLeadingZerosL src));
  5676   effect(TEMP dst, KILL cr);
  5678   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5679             "JNC    done\n\t"
  5680             "LZCNT  $dst, $src.lo\n\t"
  5681             "ADD    $dst, 32\n"
  5682       "done:" %}
  5683   ins_encode %{
  5684     Register Rdst = $dst$$Register;
  5685     Register Rsrc = $src$$Register;
  5686     Label done;
  5687     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5688     __ jccb(Assembler::carryClear, done);
  5689     __ lzcntl(Rdst, Rsrc);
  5690     __ addl(Rdst, BitsPerInt);
  5691     __ bind(done);
  5692   %}
  5693   ins_pipe(ialu_reg);
  5694 %}
  5696 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5697   predicate(!UseCountLeadingZerosInstruction);
  5698   match(Set dst (CountLeadingZerosL src));
  5699   effect(TEMP dst, KILL cr);
  5701   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5702             "JZ     msw_is_zero\n\t"
  5703             "ADD    $dst, 32\n\t"
  5704             "JMP    not_zero\n"
  5705       "msw_is_zero:\n\t"
  5706             "BSR    $dst, $src.lo\n\t"
  5707             "JNZ    not_zero\n\t"
  5708             "MOV    $dst, -1\n"
  5709       "not_zero:\n\t"
  5710             "NEG    $dst\n\t"
  5711             "ADD    $dst, 63\n" %}
  5712  ins_encode %{
  5713     Register Rdst = $dst$$Register;
  5714     Register Rsrc = $src$$Register;
  5715     Label msw_is_zero;
  5716     Label not_zero;
  5717     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5718     __ jccb(Assembler::zero, msw_is_zero);
  5719     __ addl(Rdst, BitsPerInt);
  5720     __ jmpb(not_zero);
  5721     __ bind(msw_is_zero);
  5722     __ bsrl(Rdst, Rsrc);
  5723     __ jccb(Assembler::notZero, not_zero);
  5724     __ movl(Rdst, -1);
  5725     __ bind(not_zero);
  5726     __ negl(Rdst);
  5727     __ addl(Rdst, BitsPerLong - 1);
  5728   %}
  5729   ins_pipe(ialu_reg);
  5730 %}
  5732 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5733   match(Set dst (CountTrailingZerosI src));
  5734   effect(KILL cr);
  5736   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5737             "JNZ    done\n\t"
  5738             "MOV    $dst, 32\n"
  5739       "done:" %}
  5740   ins_encode %{
  5741     Register Rdst = $dst$$Register;
  5742     Label done;
  5743     __ bsfl(Rdst, $src$$Register);
  5744     __ jccb(Assembler::notZero, done);
  5745     __ movl(Rdst, BitsPerInt);
  5746     __ bind(done);
  5747   %}
  5748   ins_pipe(ialu_reg);
  5749 %}
  5751 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5752   match(Set dst (CountTrailingZerosL src));
  5753   effect(TEMP dst, KILL cr);
  5755   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5756             "JNZ    done\n\t"
  5757             "BSF    $dst, $src.hi\n\t"
  5758             "JNZ    msw_not_zero\n\t"
  5759             "MOV    $dst, 32\n"
  5760       "msw_not_zero:\n\t"
  5761             "ADD    $dst, 32\n"
  5762       "done:" %}
  5763   ins_encode %{
  5764     Register Rdst = $dst$$Register;
  5765     Register Rsrc = $src$$Register;
  5766     Label msw_not_zero;
  5767     Label done;
  5768     __ bsfl(Rdst, Rsrc);
  5769     __ jccb(Assembler::notZero, done);
  5770     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5771     __ jccb(Assembler::notZero, msw_not_zero);
  5772     __ movl(Rdst, BitsPerInt);
  5773     __ bind(msw_not_zero);
  5774     __ addl(Rdst, BitsPerInt);
  5775     __ bind(done);
  5776   %}
  5777   ins_pipe(ialu_reg);
  5778 %}
  5781 //---------- Population Count Instructions -------------------------------------
  5783 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5784   predicate(UsePopCountInstruction);
  5785   match(Set dst (PopCountI src));
  5786   effect(KILL cr);
  5788   format %{ "POPCNT $dst, $src" %}
  5789   ins_encode %{
  5790     __ popcntl($dst$$Register, $src$$Register);
  5791   %}
  5792   ins_pipe(ialu_reg);
  5793 %}
  5795 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5796   predicate(UsePopCountInstruction);
  5797   match(Set dst (PopCountI (LoadI mem)));
  5798   effect(KILL cr);
  5800   format %{ "POPCNT $dst, $mem" %}
  5801   ins_encode %{
  5802     __ popcntl($dst$$Register, $mem$$Address);
  5803   %}
  5804   ins_pipe(ialu_reg);
  5805 %}
  5807 // Note: Long.bitCount(long) returns an int.
  5808 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5809   predicate(UsePopCountInstruction);
  5810   match(Set dst (PopCountL src));
  5811   effect(KILL cr, TEMP tmp, TEMP dst);
  5813   format %{ "POPCNT $dst, $src.lo\n\t"
  5814             "POPCNT $tmp, $src.hi\n\t"
  5815             "ADD    $dst, $tmp" %}
  5816   ins_encode %{
  5817     __ popcntl($dst$$Register, $src$$Register);
  5818     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5819     __ addl($dst$$Register, $tmp$$Register);
  5820   %}
  5821   ins_pipe(ialu_reg);
  5822 %}
  5824 // Note: Long.bitCount(long) returns an int.
  5825 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5826   predicate(UsePopCountInstruction);
  5827   match(Set dst (PopCountL (LoadL mem)));
  5828   effect(KILL cr, TEMP tmp, TEMP dst);
  5830   format %{ "POPCNT $dst, $mem\n\t"
  5831             "POPCNT $tmp, $mem+4\n\t"
  5832             "ADD    $dst, $tmp" %}
  5833   ins_encode %{
  5834     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5835     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5836     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  5837     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  5838     __ addl($dst$$Register, $tmp$$Register);
  5839   %}
  5840   ins_pipe(ialu_reg);
  5841 %}
  5844 //----------Load/Store/Move Instructions---------------------------------------
  5845 //----------Load Instructions--------------------------------------------------
  5846 // Load Byte (8bit signed)
  5847 instruct loadB(xRegI dst, memory mem) %{
  5848   match(Set dst (LoadB mem));
  5850   ins_cost(125);
  5851   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5853   ins_encode %{
  5854     __ movsbl($dst$$Register, $mem$$Address);
  5855   %}
  5857   ins_pipe(ialu_reg_mem);
  5858 %}
  5860 // Load Byte (8bit signed) into Long Register
  5861 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5862   match(Set dst (ConvI2L (LoadB mem)));
  5863   effect(KILL cr);
  5865   ins_cost(375);
  5866   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5867             "MOV    $dst.hi,$dst.lo\n\t"
  5868             "SAR    $dst.hi,7" %}
  5870   ins_encode %{
  5871     __ movsbl($dst$$Register, $mem$$Address);
  5872     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5873     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5874   %}
  5876   ins_pipe(ialu_reg_mem);
  5877 %}
  5879 // Load Unsigned Byte (8bit UNsigned)
  5880 instruct loadUB(xRegI dst, memory mem) %{
  5881   match(Set dst (LoadUB mem));
  5883   ins_cost(125);
  5884   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5886   ins_encode %{
  5887     __ movzbl($dst$$Register, $mem$$Address);
  5888   %}
  5890   ins_pipe(ialu_reg_mem);
  5891 %}
  5893 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5894 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5895   match(Set dst (ConvI2L (LoadUB mem)));
  5896   effect(KILL cr);
  5898   ins_cost(250);
  5899   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5900             "XOR    $dst.hi,$dst.hi" %}
  5902   ins_encode %{
  5903     Register Rdst = $dst$$Register;
  5904     __ movzbl(Rdst, $mem$$Address);
  5905     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5906   %}
  5908   ins_pipe(ialu_reg_mem);
  5909 %}
  5911 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5912 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5913   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5914   effect(KILL cr);
  5916   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5917             "XOR    $dst.hi,$dst.hi\n\t"
  5918             "AND    $dst.lo,$mask" %}
  5919   ins_encode %{
  5920     Register Rdst = $dst$$Register;
  5921     __ movzbl(Rdst, $mem$$Address);
  5922     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5923     __ andl(Rdst, $mask$$constant);
  5924   %}
  5925   ins_pipe(ialu_reg_mem);
  5926 %}
  5928 // Load Short (16bit signed)
  5929 instruct loadS(rRegI dst, memory mem) %{
  5930   match(Set dst (LoadS mem));
  5932   ins_cost(125);
  5933   format %{ "MOVSX  $dst,$mem\t# short" %}
  5935   ins_encode %{
  5936     __ movswl($dst$$Register, $mem$$Address);
  5937   %}
  5939   ins_pipe(ialu_reg_mem);
  5940 %}
  5942 // Load Short (16 bit signed) to Byte (8 bit signed)
  5943 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5944   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5946   ins_cost(125);
  5947   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5948   ins_encode %{
  5949     __ movsbl($dst$$Register, $mem$$Address);
  5950   %}
  5951   ins_pipe(ialu_reg_mem);
  5952 %}
  5954 // Load Short (16bit signed) into Long Register
  5955 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5956   match(Set dst (ConvI2L (LoadS mem)));
  5957   effect(KILL cr);
  5959   ins_cost(375);
  5960   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5961             "MOV    $dst.hi,$dst.lo\n\t"
  5962             "SAR    $dst.hi,15" %}
  5964   ins_encode %{
  5965     __ movswl($dst$$Register, $mem$$Address);
  5966     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5967     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5968   %}
  5970   ins_pipe(ialu_reg_mem);
  5971 %}
  5973 // Load Unsigned Short/Char (16bit unsigned)
  5974 instruct loadUS(rRegI dst, memory mem) %{
  5975   match(Set dst (LoadUS mem));
  5977   ins_cost(125);
  5978   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5980   ins_encode %{
  5981     __ movzwl($dst$$Register, $mem$$Address);
  5982   %}
  5984   ins_pipe(ialu_reg_mem);
  5985 %}
  5987 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5988 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5989   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5991   ins_cost(125);
  5992   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5993   ins_encode %{
  5994     __ movsbl($dst$$Register, $mem$$Address);
  5995   %}
  5996   ins_pipe(ialu_reg_mem);
  5997 %}
  5999 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6000 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6001   match(Set dst (ConvI2L (LoadUS mem)));
  6002   effect(KILL cr);
  6004   ins_cost(250);
  6005   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6006             "XOR    $dst.hi,$dst.hi" %}
  6008   ins_encode %{
  6009     __ movzwl($dst$$Register, $mem$$Address);
  6010     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6011   %}
  6013   ins_pipe(ialu_reg_mem);
  6014 %}
  6016 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6017 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6018   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6019   effect(KILL cr);
  6021   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6022             "XOR    $dst.hi,$dst.hi" %}
  6023   ins_encode %{
  6024     Register Rdst = $dst$$Register;
  6025     __ movzbl(Rdst, $mem$$Address);
  6026     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6027   %}
  6028   ins_pipe(ialu_reg_mem);
  6029 %}
  6031 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6032 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6033   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6034   effect(KILL cr);
  6036   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6037             "XOR    $dst.hi,$dst.hi\n\t"
  6038             "AND    $dst.lo,$mask" %}
  6039   ins_encode %{
  6040     Register Rdst = $dst$$Register;
  6041     __ movzwl(Rdst, $mem$$Address);
  6042     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6043     __ andl(Rdst, $mask$$constant);
  6044   %}
  6045   ins_pipe(ialu_reg_mem);
  6046 %}
  6048 // Load Integer
  6049 instruct loadI(rRegI dst, memory mem) %{
  6050   match(Set dst (LoadI mem));
  6052   ins_cost(125);
  6053   format %{ "MOV    $dst,$mem\t# int" %}
  6055   ins_encode %{
  6056     __ movl($dst$$Register, $mem$$Address);
  6057   %}
  6059   ins_pipe(ialu_reg_mem);
  6060 %}
  6062 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6063 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  6064   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6066   ins_cost(125);
  6067   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6068   ins_encode %{
  6069     __ movsbl($dst$$Register, $mem$$Address);
  6070   %}
  6071   ins_pipe(ialu_reg_mem);
  6072 %}
  6074 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6075 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  6076   match(Set dst (AndI (LoadI mem) mask));
  6078   ins_cost(125);
  6079   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6080   ins_encode %{
  6081     __ movzbl($dst$$Register, $mem$$Address);
  6082   %}
  6083   ins_pipe(ialu_reg_mem);
  6084 %}
  6086 // Load Integer (32 bit signed) to Short (16 bit signed)
  6087 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  6088   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6090   ins_cost(125);
  6091   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6092   ins_encode %{
  6093     __ movswl($dst$$Register, $mem$$Address);
  6094   %}
  6095   ins_pipe(ialu_reg_mem);
  6096 %}
  6098 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6099 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  6100   match(Set dst (AndI (LoadI mem) mask));
  6102   ins_cost(125);
  6103   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6104   ins_encode %{
  6105     __ movzwl($dst$$Register, $mem$$Address);
  6106   %}
  6107   ins_pipe(ialu_reg_mem);
  6108 %}
  6110 // Load Integer into Long Register
  6111 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6112   match(Set dst (ConvI2L (LoadI mem)));
  6113   effect(KILL cr);
  6115   ins_cost(375);
  6116   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6117             "MOV    $dst.hi,$dst.lo\n\t"
  6118             "SAR    $dst.hi,31" %}
  6120   ins_encode %{
  6121     __ movl($dst$$Register, $mem$$Address);
  6122     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6123     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6124   %}
  6126   ins_pipe(ialu_reg_mem);
  6127 %}
  6129 // Load Integer with mask 0xFF into Long Register
  6130 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6131   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6132   effect(KILL cr);
  6134   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6135             "XOR    $dst.hi,$dst.hi" %}
  6136   ins_encode %{
  6137     Register Rdst = $dst$$Register;
  6138     __ movzbl(Rdst, $mem$$Address);
  6139     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6140   %}
  6141   ins_pipe(ialu_reg_mem);
  6142 %}
  6144 // Load Integer with mask 0xFFFF into Long Register
  6145 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6146   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6147   effect(KILL cr);
  6149   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6150             "XOR    $dst.hi,$dst.hi" %}
  6151   ins_encode %{
  6152     Register Rdst = $dst$$Register;
  6153     __ movzwl(Rdst, $mem$$Address);
  6154     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6155   %}
  6156   ins_pipe(ialu_reg_mem);
  6157 %}
  6159 // Load Integer with 32-bit mask into Long Register
  6160 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6161   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6162   effect(KILL cr);
  6164   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6165             "XOR    $dst.hi,$dst.hi\n\t"
  6166             "AND    $dst.lo,$mask" %}
  6167   ins_encode %{
  6168     Register Rdst = $dst$$Register;
  6169     __ movl(Rdst, $mem$$Address);
  6170     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6171     __ andl(Rdst, $mask$$constant);
  6172   %}
  6173   ins_pipe(ialu_reg_mem);
  6174 %}
  6176 // Load Unsigned Integer into Long Register
  6177 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6178   match(Set dst (LoadUI2L mem));
  6179   effect(KILL cr);
  6181   ins_cost(250);
  6182   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6183             "XOR    $dst.hi,$dst.hi" %}
  6185   ins_encode %{
  6186     __ movl($dst$$Register, $mem$$Address);
  6187     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6188   %}
  6190   ins_pipe(ialu_reg_mem);
  6191 %}
  6193 // Load Long.  Cannot clobber address while loading, so restrict address
  6194 // register to ESI
  6195 instruct loadL(eRegL dst, load_long_memory mem) %{
  6196   predicate(!((LoadLNode*)n)->require_atomic_access());
  6197   match(Set dst (LoadL mem));
  6199   ins_cost(250);
  6200   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6201             "MOV    $dst.hi,$mem+4" %}
  6203   ins_encode %{
  6204     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6205     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6206     __ movl($dst$$Register, Amemlo);
  6207     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6208   %}
  6210   ins_pipe(ialu_reg_long_mem);
  6211 %}
  6213 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6214 // then store it down to the stack and reload on the int
  6215 // side.
  6216 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6217   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6218   match(Set dst (LoadL mem));
  6220   ins_cost(200);
  6221   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6222             "FISTp  $dst" %}
  6223   ins_encode(enc_loadL_volatile(mem,dst));
  6224   ins_pipe( fpu_reg_mem );
  6225 %}
  6227 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6228   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6229   match(Set dst (LoadL mem));
  6230   effect(TEMP tmp);
  6231   ins_cost(180);
  6232   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6233             "MOVSD  $dst,$tmp" %}
  6234   ins_encode %{
  6235     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6236     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6237   %}
  6238   ins_pipe( pipe_slow );
  6239 %}
  6241 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6242   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6243   match(Set dst (LoadL mem));
  6244   effect(TEMP tmp);
  6245   ins_cost(160);
  6246   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6247             "MOVD   $dst.lo,$tmp\n\t"
  6248             "PSRLQ  $tmp,32\n\t"
  6249             "MOVD   $dst.hi,$tmp" %}
  6250   ins_encode %{
  6251     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6252     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6253     __ psrlq($tmp$$XMMRegister, 32);
  6254     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6255   %}
  6256   ins_pipe( pipe_slow );
  6257 %}
  6259 // Load Range
  6260 instruct loadRange(rRegI dst, memory mem) %{
  6261   match(Set dst (LoadRange mem));
  6263   ins_cost(125);
  6264   format %{ "MOV    $dst,$mem" %}
  6265   opcode(0x8B);
  6266   ins_encode( OpcP, RegMem(dst,mem));
  6267   ins_pipe( ialu_reg_mem );
  6268 %}
  6271 // Load Pointer
  6272 instruct loadP(eRegP dst, memory mem) %{
  6273   match(Set dst (LoadP mem));
  6275   ins_cost(125);
  6276   format %{ "MOV    $dst,$mem" %}
  6277   opcode(0x8B);
  6278   ins_encode( OpcP, RegMem(dst,mem));
  6279   ins_pipe( ialu_reg_mem );
  6280 %}
  6282 // Load Klass Pointer
  6283 instruct loadKlass(eRegP dst, memory mem) %{
  6284   match(Set dst (LoadKlass mem));
  6286   ins_cost(125);
  6287   format %{ "MOV    $dst,$mem" %}
  6288   opcode(0x8B);
  6289   ins_encode( OpcP, RegMem(dst,mem));
  6290   ins_pipe( ialu_reg_mem );
  6291 %}
  6293 // Load Double
  6294 instruct loadDPR(regDPR dst, memory mem) %{
  6295   predicate(UseSSE<=1);
  6296   match(Set dst (LoadD mem));
  6298   ins_cost(150);
  6299   format %{ "FLD_D  ST,$mem\n\t"
  6300             "FSTP   $dst" %}
  6301   opcode(0xDD);               /* DD /0 */
  6302   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6303               Pop_Reg_DPR(dst) );
  6304   ins_pipe( fpu_reg_mem );
  6305 %}
  6307 // Load Double to XMM
  6308 instruct loadD(regD dst, memory mem) %{
  6309   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6310   match(Set dst (LoadD mem));
  6311   ins_cost(145);
  6312   format %{ "MOVSD  $dst,$mem" %}
  6313   ins_encode %{
  6314     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6315   %}
  6316   ins_pipe( pipe_slow );
  6317 %}
  6319 instruct loadD_partial(regD dst, memory mem) %{
  6320   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6321   match(Set dst (LoadD mem));
  6322   ins_cost(145);
  6323   format %{ "MOVLPD $dst,$mem" %}
  6324   ins_encode %{
  6325     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6326   %}
  6327   ins_pipe( pipe_slow );
  6328 %}
  6330 // Load to XMM register (single-precision floating point)
  6331 // MOVSS instruction
  6332 instruct loadF(regF dst, memory mem) %{
  6333   predicate(UseSSE>=1);
  6334   match(Set dst (LoadF mem));
  6335   ins_cost(145);
  6336   format %{ "MOVSS  $dst,$mem" %}
  6337   ins_encode %{
  6338     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6339   %}
  6340   ins_pipe( pipe_slow );
  6341 %}
  6343 // Load Float
  6344 instruct loadFPR(regFPR dst, memory mem) %{
  6345   predicate(UseSSE==0);
  6346   match(Set dst (LoadF mem));
  6348   ins_cost(150);
  6349   format %{ "FLD_S  ST,$mem\n\t"
  6350             "FSTP   $dst" %}
  6351   opcode(0xD9);               /* D9 /0 */
  6352   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6353               Pop_Reg_FPR(dst) );
  6354   ins_pipe( fpu_reg_mem );
  6355 %}
  6357 // Load Effective Address
  6358 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6359   match(Set dst mem);
  6361   ins_cost(110);
  6362   format %{ "LEA    $dst,$mem" %}
  6363   opcode(0x8D);
  6364   ins_encode( OpcP, RegMem(dst,mem));
  6365   ins_pipe( ialu_reg_reg_fat );
  6366 %}
  6368 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6369   match(Set dst mem);
  6371   ins_cost(110);
  6372   format %{ "LEA    $dst,$mem" %}
  6373   opcode(0x8D);
  6374   ins_encode( OpcP, RegMem(dst,mem));
  6375   ins_pipe( ialu_reg_reg_fat );
  6376 %}
  6378 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6379   match(Set dst mem);
  6381   ins_cost(110);
  6382   format %{ "LEA    $dst,$mem" %}
  6383   opcode(0x8D);
  6384   ins_encode( OpcP, RegMem(dst,mem));
  6385   ins_pipe( ialu_reg_reg_fat );
  6386 %}
  6388 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6389   match(Set dst mem);
  6391   ins_cost(110);
  6392   format %{ "LEA    $dst,$mem" %}
  6393   opcode(0x8D);
  6394   ins_encode( OpcP, RegMem(dst,mem));
  6395   ins_pipe( ialu_reg_reg_fat );
  6396 %}
  6398 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6399   match(Set dst mem);
  6401   ins_cost(110);
  6402   format %{ "LEA    $dst,$mem" %}
  6403   opcode(0x8D);
  6404   ins_encode( OpcP, RegMem(dst,mem));
  6405   ins_pipe( ialu_reg_reg_fat );
  6406 %}
  6408 // Load Constant
  6409 instruct loadConI(rRegI dst, immI src) %{
  6410   match(Set dst src);
  6412   format %{ "MOV    $dst,$src" %}
  6413   ins_encode( LdImmI(dst, src) );
  6414   ins_pipe( ialu_reg_fat );
  6415 %}
  6417 // Load Constant zero
  6418 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  6419   match(Set dst src);
  6420   effect(KILL cr);
  6422   ins_cost(50);
  6423   format %{ "XOR    $dst,$dst" %}
  6424   opcode(0x33);  /* + rd */
  6425   ins_encode( OpcP, RegReg( dst, dst ) );
  6426   ins_pipe( ialu_reg );
  6427 %}
  6429 instruct loadConP(eRegP dst, immP src) %{
  6430   match(Set dst src);
  6432   format %{ "MOV    $dst,$src" %}
  6433   opcode(0xB8);  /* + rd */
  6434   ins_encode( LdImmP(dst, src) );
  6435   ins_pipe( ialu_reg_fat );
  6436 %}
  6438 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6439   match(Set dst src);
  6440   effect(KILL cr);
  6441   ins_cost(200);
  6442   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6443             "MOV    $dst.hi,$src.hi" %}
  6444   opcode(0xB8);
  6445   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6446   ins_pipe( ialu_reg_long_fat );
  6447 %}
  6449 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6450   match(Set dst src);
  6451   effect(KILL cr);
  6452   ins_cost(150);
  6453   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6454             "XOR    $dst.hi,$dst.hi" %}
  6455   opcode(0x33,0x33);
  6456   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6457   ins_pipe( ialu_reg_long );
  6458 %}
  6460 // The instruction usage is guarded by predicate in operand immFPR().
  6461 instruct loadConFPR(regFPR dst, immFPR con) %{
  6462   match(Set dst con);
  6463   ins_cost(125);
  6464   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6465             "FSTP   $dst" %}
  6466   ins_encode %{
  6467     __ fld_s($constantaddress($con));
  6468     __ fstp_d($dst$$reg);
  6469   %}
  6470   ins_pipe(fpu_reg_con);
  6471 %}
  6473 // The instruction usage is guarded by predicate in operand immFPR0().
  6474 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6475   match(Set dst con);
  6476   ins_cost(125);
  6477   format %{ "FLDZ   ST\n\t"
  6478             "FSTP   $dst" %}
  6479   ins_encode %{
  6480     __ fldz();
  6481     __ fstp_d($dst$$reg);
  6482   %}
  6483   ins_pipe(fpu_reg_con);
  6484 %}
  6486 // The instruction usage is guarded by predicate in operand immFPR1().
  6487 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6488   match(Set dst con);
  6489   ins_cost(125);
  6490   format %{ "FLD1   ST\n\t"
  6491             "FSTP   $dst" %}
  6492   ins_encode %{
  6493     __ fld1();
  6494     __ fstp_d($dst$$reg);
  6495   %}
  6496   ins_pipe(fpu_reg_con);
  6497 %}
  6499 // The instruction usage is guarded by predicate in operand immF().
  6500 instruct loadConF(regF dst, immF con) %{
  6501   match(Set dst con);
  6502   ins_cost(125);
  6503   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6504   ins_encode %{
  6505     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6506   %}
  6507   ins_pipe(pipe_slow);
  6508 %}
  6510 // The instruction usage is guarded by predicate in operand immF0().
  6511 instruct loadConF0(regF dst, immF0 src) %{
  6512   match(Set dst src);
  6513   ins_cost(100);
  6514   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6515   ins_encode %{
  6516     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6517   %}
  6518   ins_pipe(pipe_slow);
  6519 %}
  6521 // The instruction usage is guarded by predicate in operand immDPR().
  6522 instruct loadConDPR(regDPR dst, immDPR con) %{
  6523   match(Set dst con);
  6524   ins_cost(125);
  6526   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6527             "FSTP   $dst" %}
  6528   ins_encode %{
  6529     __ fld_d($constantaddress($con));
  6530     __ fstp_d($dst$$reg);
  6531   %}
  6532   ins_pipe(fpu_reg_con);
  6533 %}
  6535 // The instruction usage is guarded by predicate in operand immDPR0().
  6536 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6537   match(Set dst con);
  6538   ins_cost(125);
  6540   format %{ "FLDZ   ST\n\t"
  6541             "FSTP   $dst" %}
  6542   ins_encode %{
  6543     __ fldz();
  6544     __ fstp_d($dst$$reg);
  6545   %}
  6546   ins_pipe(fpu_reg_con);
  6547 %}
  6549 // The instruction usage is guarded by predicate in operand immDPR1().
  6550 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6551   match(Set dst con);
  6552   ins_cost(125);
  6554   format %{ "FLD1   ST\n\t"
  6555             "FSTP   $dst" %}
  6556   ins_encode %{
  6557     __ fld1();
  6558     __ fstp_d($dst$$reg);
  6559   %}
  6560   ins_pipe(fpu_reg_con);
  6561 %}
  6563 // The instruction usage is guarded by predicate in operand immD().
  6564 instruct loadConD(regD dst, immD con) %{
  6565   match(Set dst con);
  6566   ins_cost(125);
  6567   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6568   ins_encode %{
  6569     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6570   %}
  6571   ins_pipe(pipe_slow);
  6572 %}
  6574 // The instruction usage is guarded by predicate in operand immD0().
  6575 instruct loadConD0(regD dst, immD0 src) %{
  6576   match(Set dst src);
  6577   ins_cost(100);
  6578   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6579   ins_encode %{
  6580     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6581   %}
  6582   ins_pipe( pipe_slow );
  6583 %}
  6585 // Load Stack Slot
  6586 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6587   match(Set dst src);
  6588   ins_cost(125);
  6590   format %{ "MOV    $dst,$src" %}
  6591   opcode(0x8B);
  6592   ins_encode( OpcP, RegMem(dst,src));
  6593   ins_pipe( ialu_reg_mem );
  6594 %}
  6596 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6597   match(Set dst src);
  6599   ins_cost(200);
  6600   format %{ "MOV    $dst,$src.lo\n\t"
  6601             "MOV    $dst+4,$src.hi" %}
  6602   opcode(0x8B, 0x8B);
  6603   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6604   ins_pipe( ialu_mem_long_reg );
  6605 %}
  6607 // Load Stack Slot
  6608 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6609   match(Set dst src);
  6610   ins_cost(125);
  6612   format %{ "MOV    $dst,$src" %}
  6613   opcode(0x8B);
  6614   ins_encode( OpcP, RegMem(dst,src));
  6615   ins_pipe( ialu_reg_mem );
  6616 %}
  6618 // Load Stack Slot
  6619 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6620   match(Set dst src);
  6621   ins_cost(125);
  6623   format %{ "FLD_S  $src\n\t"
  6624             "FSTP   $dst" %}
  6625   opcode(0xD9);               /* D9 /0, FLD m32real */
  6626   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6627               Pop_Reg_FPR(dst) );
  6628   ins_pipe( fpu_reg_mem );
  6629 %}
  6631 // Load Stack Slot
  6632 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6633   match(Set dst src);
  6634   ins_cost(125);
  6636   format %{ "FLD_D  $src\n\t"
  6637             "FSTP   $dst" %}
  6638   opcode(0xDD);               /* DD /0, FLD m64real */
  6639   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6640               Pop_Reg_DPR(dst) );
  6641   ins_pipe( fpu_reg_mem );
  6642 %}
  6644 // Prefetch instructions.
  6645 // Must be safe to execute with invalid address (cannot fault).
  6647 instruct prefetchr0( memory mem ) %{
  6648   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6649   match(PrefetchRead mem);
  6650   ins_cost(0);
  6651   size(0);
  6652   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6653   ins_encode();
  6654   ins_pipe(empty);
  6655 %}
  6657 instruct prefetchr( memory mem ) %{
  6658   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6659   match(PrefetchRead mem);
  6660   ins_cost(100);
  6662   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6663   ins_encode %{
  6664     __ prefetchr($mem$$Address);
  6665   %}
  6666   ins_pipe(ialu_mem);
  6667 %}
  6669 instruct prefetchrNTA( memory mem ) %{
  6670   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6671   match(PrefetchRead mem);
  6672   ins_cost(100);
  6674   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6675   ins_encode %{
  6676     __ prefetchnta($mem$$Address);
  6677   %}
  6678   ins_pipe(ialu_mem);
  6679 %}
  6681 instruct prefetchrT0( memory mem ) %{
  6682   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6683   match(PrefetchRead mem);
  6684   ins_cost(100);
  6686   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6687   ins_encode %{
  6688     __ prefetcht0($mem$$Address);
  6689   %}
  6690   ins_pipe(ialu_mem);
  6691 %}
  6693 instruct prefetchrT2( memory mem ) %{
  6694   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6695   match(PrefetchRead mem);
  6696   ins_cost(100);
  6698   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6699   ins_encode %{
  6700     __ prefetcht2($mem$$Address);
  6701   %}
  6702   ins_pipe(ialu_mem);
  6703 %}
  6705 instruct prefetchw0( memory mem ) %{
  6706   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6707   match(PrefetchWrite mem);
  6708   ins_cost(0);
  6709   size(0);
  6710   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6711   ins_encode();
  6712   ins_pipe(empty);
  6713 %}
  6715 instruct prefetchw( memory mem ) %{
  6716   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6717   match( PrefetchWrite mem );
  6718   ins_cost(100);
  6720   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6721   ins_encode %{
  6722     __ prefetchw($mem$$Address);
  6723   %}
  6724   ins_pipe(ialu_mem);
  6725 %}
  6727 instruct prefetchwNTA( memory mem ) %{
  6728   predicate(UseSSE>=1);
  6729   match(PrefetchWrite mem);
  6730   ins_cost(100);
  6732   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6733   ins_encode %{
  6734     __ prefetchnta($mem$$Address);
  6735   %}
  6736   ins_pipe(ialu_mem);
  6737 %}
  6739 // Prefetch instructions for allocation.
  6741 instruct prefetchAlloc0( memory mem ) %{
  6742   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6743   match(PrefetchAllocation mem);
  6744   ins_cost(0);
  6745   size(0);
  6746   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6747   ins_encode();
  6748   ins_pipe(empty);
  6749 %}
  6751 instruct prefetchAlloc( memory mem ) %{
  6752   predicate(AllocatePrefetchInstr==3);
  6753   match( PrefetchAllocation mem );
  6754   ins_cost(100);
  6756   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6757   ins_encode %{
  6758     __ prefetchw($mem$$Address);
  6759   %}
  6760   ins_pipe(ialu_mem);
  6761 %}
  6763 instruct prefetchAllocNTA( memory mem ) %{
  6764   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6765   match(PrefetchAllocation mem);
  6766   ins_cost(100);
  6768   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6769   ins_encode %{
  6770     __ prefetchnta($mem$$Address);
  6771   %}
  6772   ins_pipe(ialu_mem);
  6773 %}
  6775 instruct prefetchAllocT0( memory mem ) %{
  6776   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6777   match(PrefetchAllocation mem);
  6778   ins_cost(100);
  6780   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6781   ins_encode %{
  6782     __ prefetcht0($mem$$Address);
  6783   %}
  6784   ins_pipe(ialu_mem);
  6785 %}
  6787 instruct prefetchAllocT2( memory mem ) %{
  6788   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6789   match(PrefetchAllocation mem);
  6790   ins_cost(100);
  6792   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6793   ins_encode %{
  6794     __ prefetcht2($mem$$Address);
  6795   %}
  6796   ins_pipe(ialu_mem);
  6797 %}
  6799 //----------Store Instructions-------------------------------------------------
  6801 // Store Byte
  6802 instruct storeB(memory mem, xRegI src) %{
  6803   match(Set mem (StoreB mem src));
  6805   ins_cost(125);
  6806   format %{ "MOV8   $mem,$src" %}
  6807   opcode(0x88);
  6808   ins_encode( OpcP, RegMem( src, mem ) );
  6809   ins_pipe( ialu_mem_reg );
  6810 %}
  6812 // Store Char/Short
  6813 instruct storeC(memory mem, rRegI src) %{
  6814   match(Set mem (StoreC mem src));
  6816   ins_cost(125);
  6817   format %{ "MOV16  $mem,$src" %}
  6818   opcode(0x89, 0x66);
  6819   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6820   ins_pipe( ialu_mem_reg );
  6821 %}
  6823 // Store Integer
  6824 instruct storeI(memory mem, rRegI src) %{
  6825   match(Set mem (StoreI mem src));
  6827   ins_cost(125);
  6828   format %{ "MOV    $mem,$src" %}
  6829   opcode(0x89);
  6830   ins_encode( OpcP, RegMem( src, mem ) );
  6831   ins_pipe( ialu_mem_reg );
  6832 %}
  6834 // Store Long
  6835 instruct storeL(long_memory mem, eRegL src) %{
  6836   predicate(!((StoreLNode*)n)->require_atomic_access());
  6837   match(Set mem (StoreL mem src));
  6839   ins_cost(200);
  6840   format %{ "MOV    $mem,$src.lo\n\t"
  6841             "MOV    $mem+4,$src.hi" %}
  6842   opcode(0x89, 0x89);
  6843   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6844   ins_pipe( ialu_mem_long_reg );
  6845 %}
  6847 // Store Long to Integer
  6848 instruct storeL2I(memory mem, eRegL src) %{
  6849   match(Set mem (StoreI mem (ConvL2I src)));
  6851   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6852   ins_encode %{
  6853     __ movl($mem$$Address, $src$$Register);
  6854   %}
  6855   ins_pipe(ialu_mem_reg);
  6856 %}
  6858 // Volatile Store Long.  Must be atomic, so move it into
  6859 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6860 // target address before the store (for null-ptr checks)
  6861 // so the memory operand is used twice in the encoding.
  6862 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6863   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6864   match(Set mem (StoreL mem src));
  6865   effect( KILL cr );
  6866   ins_cost(400);
  6867   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6868             "FILD   $src\n\t"
  6869             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6870   opcode(0x3B);
  6871   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6872   ins_pipe( fpu_reg_mem );
  6873 %}
  6875 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6876   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6877   match(Set mem (StoreL mem src));
  6878   effect( TEMP tmp, KILL cr );
  6879   ins_cost(380);
  6880   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6881             "MOVSD  $tmp,$src\n\t"
  6882             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6883   ins_encode %{
  6884     __ cmpl(rax, $mem$$Address);
  6885     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6886     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6887   %}
  6888   ins_pipe( pipe_slow );
  6889 %}
  6891 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6892   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6893   match(Set mem (StoreL mem src));
  6894   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6895   ins_cost(360);
  6896   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6897             "MOVD   $tmp,$src.lo\n\t"
  6898             "MOVD   $tmp2,$src.hi\n\t"
  6899             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6900             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6901   ins_encode %{
  6902     __ cmpl(rax, $mem$$Address);
  6903     __ movdl($tmp$$XMMRegister, $src$$Register);
  6904     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6905     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6906     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6907   %}
  6908   ins_pipe( pipe_slow );
  6909 %}
  6911 // Store Pointer; for storing unknown oops and raw pointers
  6912 instruct storeP(memory mem, anyRegP src) %{
  6913   match(Set mem (StoreP mem src));
  6915   ins_cost(125);
  6916   format %{ "MOV    $mem,$src" %}
  6917   opcode(0x89);
  6918   ins_encode( OpcP, RegMem( src, mem ) );
  6919   ins_pipe( ialu_mem_reg );
  6920 %}
  6922 // Store Integer Immediate
  6923 instruct storeImmI(memory mem, immI src) %{
  6924   match(Set mem (StoreI mem src));
  6926   ins_cost(150);
  6927   format %{ "MOV    $mem,$src" %}
  6928   opcode(0xC7);               /* C7 /0 */
  6929   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6930   ins_pipe( ialu_mem_imm );
  6931 %}
  6933 // Store Short/Char Immediate
  6934 instruct storeImmI16(memory mem, immI16 src) %{
  6935   predicate(UseStoreImmI16);
  6936   match(Set mem (StoreC mem src));
  6938   ins_cost(150);
  6939   format %{ "MOV16  $mem,$src" %}
  6940   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6941   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6942   ins_pipe( ialu_mem_imm );
  6943 %}
  6945 // Store Pointer Immediate; null pointers or constant oops that do not
  6946 // need card-mark barriers.
  6947 instruct storeImmP(memory mem, immP src) %{
  6948   match(Set mem (StoreP mem src));
  6950   ins_cost(150);
  6951   format %{ "MOV    $mem,$src" %}
  6952   opcode(0xC7);               /* C7 /0 */
  6953   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6954   ins_pipe( ialu_mem_imm );
  6955 %}
  6957 // Store Byte Immediate
  6958 instruct storeImmB(memory mem, immI8 src) %{
  6959   match(Set mem (StoreB mem src));
  6961   ins_cost(150);
  6962   format %{ "MOV8   $mem,$src" %}
  6963   opcode(0xC6);               /* C6 /0 */
  6964   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6965   ins_pipe( ialu_mem_imm );
  6966 %}
  6968 // Store CMS card-mark Immediate
  6969 instruct storeImmCM(memory mem, immI8 src) %{
  6970   match(Set mem (StoreCM mem src));
  6972   ins_cost(150);
  6973   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6974   opcode(0xC6);               /* C6 /0 */
  6975   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6976   ins_pipe( ialu_mem_imm );
  6977 %}
  6979 // Store Double
  6980 instruct storeDPR( memory mem, regDPR1 src) %{
  6981   predicate(UseSSE<=1);
  6982   match(Set mem (StoreD mem src));
  6984   ins_cost(100);
  6985   format %{ "FST_D  $mem,$src" %}
  6986   opcode(0xDD);       /* DD /2 */
  6987   ins_encode( enc_FPR_store(mem,src) );
  6988   ins_pipe( fpu_mem_reg );
  6989 %}
  6991 // Store double does rounding on x86
  6992 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6993   predicate(UseSSE<=1);
  6994   match(Set mem (StoreD mem (RoundDouble src)));
  6996   ins_cost(100);
  6997   format %{ "FST_D  $mem,$src\t# round" %}
  6998   opcode(0xDD);       /* DD /2 */
  6999   ins_encode( enc_FPR_store(mem,src) );
  7000   ins_pipe( fpu_mem_reg );
  7001 %}
  7003 // Store XMM register to memory (double-precision floating points)
  7004 // MOVSD instruction
  7005 instruct storeD(memory mem, regD src) %{
  7006   predicate(UseSSE>=2);
  7007   match(Set mem (StoreD mem src));
  7008   ins_cost(95);
  7009   format %{ "MOVSD  $mem,$src" %}
  7010   ins_encode %{
  7011     __ movdbl($mem$$Address, $src$$XMMRegister);
  7012   %}
  7013   ins_pipe( pipe_slow );
  7014 %}
  7016 // Store XMM register to memory (single-precision floating point)
  7017 // MOVSS instruction
  7018 instruct storeF(memory mem, regF src) %{
  7019   predicate(UseSSE>=1);
  7020   match(Set mem (StoreF mem src));
  7021   ins_cost(95);
  7022   format %{ "MOVSS  $mem,$src" %}
  7023   ins_encode %{
  7024     __ movflt($mem$$Address, $src$$XMMRegister);
  7025   %}
  7026   ins_pipe( pipe_slow );
  7027 %}
  7029 // Store Float
  7030 instruct storeFPR( memory mem, regFPR1 src) %{
  7031   predicate(UseSSE==0);
  7032   match(Set mem (StoreF mem src));
  7034   ins_cost(100);
  7035   format %{ "FST_S  $mem,$src" %}
  7036   opcode(0xD9);       /* D9 /2 */
  7037   ins_encode( enc_FPR_store(mem,src) );
  7038   ins_pipe( fpu_mem_reg );
  7039 %}
  7041 // Store Float does rounding on x86
  7042 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7043   predicate(UseSSE==0);
  7044   match(Set mem (StoreF mem (RoundFloat src)));
  7046   ins_cost(100);
  7047   format %{ "FST_S  $mem,$src\t# round" %}
  7048   opcode(0xD9);       /* D9 /2 */
  7049   ins_encode( enc_FPR_store(mem,src) );
  7050   ins_pipe( fpu_mem_reg );
  7051 %}
  7053 // Store Float does rounding on x86
  7054 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7055   predicate(UseSSE<=1);
  7056   match(Set mem (StoreF mem (ConvD2F src)));
  7058   ins_cost(100);
  7059   format %{ "FST_S  $mem,$src\t# D-round" %}
  7060   opcode(0xD9);       /* D9 /2 */
  7061   ins_encode( enc_FPR_store(mem,src) );
  7062   ins_pipe( fpu_mem_reg );
  7063 %}
  7065 // Store immediate Float value (it is faster than store from FPU register)
  7066 // The instruction usage is guarded by predicate in operand immFPR().
  7067 instruct storeFPR_imm( memory mem, immFPR src) %{
  7068   match(Set mem (StoreF mem src));
  7070   ins_cost(50);
  7071   format %{ "MOV    $mem,$src\t# store float" %}
  7072   opcode(0xC7);               /* C7 /0 */
  7073   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7074   ins_pipe( ialu_mem_imm );
  7075 %}
  7077 // Store immediate Float value (it is faster than store from XMM register)
  7078 // The instruction usage is guarded by predicate in operand immF().
  7079 instruct storeF_imm( memory mem, immF src) %{
  7080   match(Set mem (StoreF mem src));
  7082   ins_cost(50);
  7083   format %{ "MOV    $mem,$src\t# store float" %}
  7084   opcode(0xC7);               /* C7 /0 */
  7085   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7086   ins_pipe( ialu_mem_imm );
  7087 %}
  7089 // Store Integer to stack slot
  7090 instruct storeSSI(stackSlotI dst, rRegI src) %{
  7091   match(Set dst src);
  7093   ins_cost(100);
  7094   format %{ "MOV    $dst,$src" %}
  7095   opcode(0x89);
  7096   ins_encode( OpcPRegSS( dst, src ) );
  7097   ins_pipe( ialu_mem_reg );
  7098 %}
  7100 // Store Integer to stack slot
  7101 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7102   match(Set dst src);
  7104   ins_cost(100);
  7105   format %{ "MOV    $dst,$src" %}
  7106   opcode(0x89);
  7107   ins_encode( OpcPRegSS( dst, src ) );
  7108   ins_pipe( ialu_mem_reg );
  7109 %}
  7111 // Store Long to stack slot
  7112 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7113   match(Set dst src);
  7115   ins_cost(200);
  7116   format %{ "MOV    $dst,$src.lo\n\t"
  7117             "MOV    $dst+4,$src.hi" %}
  7118   opcode(0x89, 0x89);
  7119   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7120   ins_pipe( ialu_mem_long_reg );
  7121 %}
  7123 //----------MemBar Instructions-----------------------------------------------
  7124 // Memory barrier flavors
  7126 instruct membar_acquire() %{
  7127   match(MemBarAcquire);
  7128   ins_cost(400);
  7130   size(0);
  7131   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7132   ins_encode();
  7133   ins_pipe(empty);
  7134 %}
  7136 instruct membar_acquire_lock() %{
  7137   match(MemBarAcquireLock);
  7138   ins_cost(0);
  7140   size(0);
  7141   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7142   ins_encode( );
  7143   ins_pipe(empty);
  7144 %}
  7146 instruct membar_release() %{
  7147   match(MemBarRelease);
  7148   ins_cost(400);
  7150   size(0);
  7151   format %{ "MEMBAR-release ! (empty encoding)" %}
  7152   ins_encode( );
  7153   ins_pipe(empty);
  7154 %}
  7156 instruct membar_release_lock() %{
  7157   match(MemBarReleaseLock);
  7158   ins_cost(0);
  7160   size(0);
  7161   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7162   ins_encode( );
  7163   ins_pipe(empty);
  7164 %}
  7166 instruct membar_volatile(eFlagsReg cr) %{
  7167   match(MemBarVolatile);
  7168   effect(KILL cr);
  7169   ins_cost(400);
  7171   format %{ 
  7172     $$template
  7173     if (os::is_MP()) {
  7174       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7175     } else {
  7176       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7178   %}
  7179   ins_encode %{
  7180     __ membar(Assembler::StoreLoad);
  7181   %}
  7182   ins_pipe(pipe_slow);
  7183 %}
  7185 instruct unnecessary_membar_volatile() %{
  7186   match(MemBarVolatile);
  7187   predicate(Matcher::post_store_load_barrier(n));
  7188   ins_cost(0);
  7190   size(0);
  7191   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7192   ins_encode( );
  7193   ins_pipe(empty);
  7194 %}
  7196 instruct membar_storestore() %{
  7197   match(MemBarStoreStore);
  7198   ins_cost(0);
  7200   size(0);
  7201   format %{ "MEMBAR-storestore (empty encoding)" %}
  7202   ins_encode( );
  7203   ins_pipe(empty);
  7204 %}
  7206 //----------Move Instructions--------------------------------------------------
  7207 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7208   match(Set dst (CastX2P src));
  7209   format %{ "# X2P  $dst, $src" %}
  7210   ins_encode( /*empty encoding*/ );
  7211   ins_cost(0);
  7212   ins_pipe(empty);
  7213 %}
  7215 instruct castP2X(rRegI dst, eRegP src ) %{
  7216   match(Set dst (CastP2X src));
  7217   ins_cost(50);
  7218   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7219   ins_encode( enc_Copy( dst, src) );
  7220   ins_pipe( ialu_reg_reg );
  7221 %}
  7223 //----------Conditional Move---------------------------------------------------
  7224 // Conditional move
  7225 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  7226   predicate(!VM_Version::supports_cmov() );
  7227   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7228   ins_cost(200);
  7229   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7230             "MOV    $dst,$src\n"
  7231       "skip:" %}
  7232   ins_encode %{
  7233     Label Lskip;
  7234     // Invert sense of branch from sense of CMOV
  7235     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7236     __ movl($dst$$Register, $src$$Register);
  7237     __ bind(Lskip);
  7238   %}
  7239   ins_pipe( pipe_cmov_reg );
  7240 %}
  7242 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  7243   predicate(!VM_Version::supports_cmov() );
  7244   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7245   ins_cost(200);
  7246   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7247             "MOV    $dst,$src\n"
  7248       "skip:" %}
  7249   ins_encode %{
  7250     Label Lskip;
  7251     // Invert sense of branch from sense of CMOV
  7252     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7253     __ movl($dst$$Register, $src$$Register);
  7254     __ bind(Lskip);
  7255   %}
  7256   ins_pipe( pipe_cmov_reg );
  7257 %}
  7259 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  7260   predicate(VM_Version::supports_cmov() );
  7261   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7262   ins_cost(200);
  7263   format %{ "CMOV$cop $dst,$src" %}
  7264   opcode(0x0F,0x40);
  7265   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7266   ins_pipe( pipe_cmov_reg );
  7267 %}
  7269 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  7270   predicate(VM_Version::supports_cmov() );
  7271   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7272   ins_cost(200);
  7273   format %{ "CMOV$cop $dst,$src" %}
  7274   opcode(0x0F,0x40);
  7275   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7276   ins_pipe( pipe_cmov_reg );
  7277 %}
  7279 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  7280   predicate(VM_Version::supports_cmov() );
  7281   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7282   ins_cost(200);
  7283   expand %{
  7284     cmovI_regU(cop, cr, dst, src);
  7285   %}
  7286 %}
  7288 // Conditional move
  7289 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  7290   predicate(VM_Version::supports_cmov() );
  7291   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7292   ins_cost(250);
  7293   format %{ "CMOV$cop $dst,$src" %}
  7294   opcode(0x0F,0x40);
  7295   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7296   ins_pipe( pipe_cmov_mem );
  7297 %}
  7299 // Conditional move
  7300 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  7301   predicate(VM_Version::supports_cmov() );
  7302   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7303   ins_cost(250);
  7304   format %{ "CMOV$cop $dst,$src" %}
  7305   opcode(0x0F,0x40);
  7306   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7307   ins_pipe( pipe_cmov_mem );
  7308 %}
  7310 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  7311   predicate(VM_Version::supports_cmov() );
  7312   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7313   ins_cost(250);
  7314   expand %{
  7315     cmovI_memU(cop, cr, dst, src);
  7316   %}
  7317 %}
  7319 // Conditional move
  7320 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7321   predicate(VM_Version::supports_cmov() );
  7322   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7323   ins_cost(200);
  7324   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7325   opcode(0x0F,0x40);
  7326   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7327   ins_pipe( pipe_cmov_reg );
  7328 %}
  7330 // Conditional move (non-P6 version)
  7331 // Note:  a CMoveP is generated for  stubs and native wrappers
  7332 //        regardless of whether we are on a P6, so we
  7333 //        emulate a cmov here
  7334 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7335   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7336   ins_cost(300);
  7337   format %{ "Jn$cop   skip\n\t"
  7338           "MOV    $dst,$src\t# pointer\n"
  7339       "skip:" %}
  7340   opcode(0x8b);
  7341   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7342   ins_pipe( pipe_cmov_reg );
  7343 %}
  7345 // Conditional move
  7346 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7347   predicate(VM_Version::supports_cmov() );
  7348   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7349   ins_cost(200);
  7350   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7351   opcode(0x0F,0x40);
  7352   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7353   ins_pipe( pipe_cmov_reg );
  7354 %}
  7356 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7357   predicate(VM_Version::supports_cmov() );
  7358   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7359   ins_cost(200);
  7360   expand %{
  7361     cmovP_regU(cop, cr, dst, src);
  7362   %}
  7363 %}
  7365 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7366 // correctly meets the two pointer arguments; one is an incoming
  7367 // register but the other is a memory operand.  ALSO appears to
  7368 // be buggy with implicit null checks.
  7369 //
  7370 //// Conditional move
  7371 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7372 //  predicate(VM_Version::supports_cmov() );
  7373 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7374 //  ins_cost(250);
  7375 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7376 //  opcode(0x0F,0x40);
  7377 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7378 //  ins_pipe( pipe_cmov_mem );
  7379 //%}
  7380 //
  7381 //// Conditional move
  7382 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7383 //  predicate(VM_Version::supports_cmov() );
  7384 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7385 //  ins_cost(250);
  7386 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7387 //  opcode(0x0F,0x40);
  7388 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7389 //  ins_pipe( pipe_cmov_mem );
  7390 //%}
  7392 // Conditional move
  7393 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7394   predicate(UseSSE<=1);
  7395   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7396   ins_cost(200);
  7397   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7398   opcode(0xDA);
  7399   ins_encode( enc_cmov_dpr(cop,src) );
  7400   ins_pipe( pipe_cmovDPR_reg );
  7401 %}
  7403 // Conditional move
  7404 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7405   predicate(UseSSE==0);
  7406   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7407   ins_cost(200);
  7408   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7409   opcode(0xDA);
  7410   ins_encode( enc_cmov_dpr(cop,src) );
  7411   ins_pipe( pipe_cmovDPR_reg );
  7412 %}
  7414 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7415 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7416   predicate(UseSSE<=1);
  7417   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7418   ins_cost(200);
  7419   format %{ "Jn$cop   skip\n\t"
  7420             "MOV    $dst,$src\t# double\n"
  7421       "skip:" %}
  7422   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7423   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7424   ins_pipe( pipe_cmovDPR_reg );
  7425 %}
  7427 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7428 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7429   predicate(UseSSE==0);
  7430   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7431   ins_cost(200);
  7432   format %{ "Jn$cop    skip\n\t"
  7433             "MOV    $dst,$src\t# float\n"
  7434       "skip:" %}
  7435   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7436   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7437   ins_pipe( pipe_cmovDPR_reg );
  7438 %}
  7440 // No CMOVE with SSE/SSE2
  7441 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7442   predicate (UseSSE>=1);
  7443   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7444   ins_cost(200);
  7445   format %{ "Jn$cop   skip\n\t"
  7446             "MOVSS  $dst,$src\t# float\n"
  7447       "skip:" %}
  7448   ins_encode %{
  7449     Label skip;
  7450     // Invert sense of branch from sense of CMOV
  7451     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7452     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7453     __ bind(skip);
  7454   %}
  7455   ins_pipe( pipe_slow );
  7456 %}
  7458 // No CMOVE with SSE/SSE2
  7459 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7460   predicate (UseSSE>=2);
  7461   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7462   ins_cost(200);
  7463   format %{ "Jn$cop   skip\n\t"
  7464             "MOVSD  $dst,$src\t# float\n"
  7465       "skip:" %}
  7466   ins_encode %{
  7467     Label skip;
  7468     // Invert sense of branch from sense of CMOV
  7469     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7470     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7471     __ bind(skip);
  7472   %}
  7473   ins_pipe( pipe_slow );
  7474 %}
  7476 // unsigned version
  7477 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7478   predicate (UseSSE>=1);
  7479   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7480   ins_cost(200);
  7481   format %{ "Jn$cop   skip\n\t"
  7482             "MOVSS  $dst,$src\t# float\n"
  7483       "skip:" %}
  7484   ins_encode %{
  7485     Label skip;
  7486     // Invert sense of branch from sense of CMOV
  7487     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7488     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7489     __ bind(skip);
  7490   %}
  7491   ins_pipe( pipe_slow );
  7492 %}
  7494 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7495   predicate (UseSSE>=1);
  7496   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7497   ins_cost(200);
  7498   expand %{
  7499     fcmovF_regU(cop, cr, dst, src);
  7500   %}
  7501 %}
  7503 // unsigned version
  7504 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7505   predicate (UseSSE>=2);
  7506   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7507   ins_cost(200);
  7508   format %{ "Jn$cop   skip\n\t"
  7509             "MOVSD  $dst,$src\t# float\n"
  7510       "skip:" %}
  7511   ins_encode %{
  7512     Label skip;
  7513     // Invert sense of branch from sense of CMOV
  7514     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7515     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7516     __ bind(skip);
  7517   %}
  7518   ins_pipe( pipe_slow );
  7519 %}
  7521 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7522   predicate (UseSSE>=2);
  7523   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7524   ins_cost(200);
  7525   expand %{
  7526     fcmovD_regU(cop, cr, dst, src);
  7527   %}
  7528 %}
  7530 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7531   predicate(VM_Version::supports_cmov() );
  7532   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7533   ins_cost(200);
  7534   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7535             "CMOV$cop $dst.hi,$src.hi" %}
  7536   opcode(0x0F,0x40);
  7537   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7538   ins_pipe( pipe_cmov_reg_long );
  7539 %}
  7541 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7542   predicate(VM_Version::supports_cmov() );
  7543   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7544   ins_cost(200);
  7545   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7546             "CMOV$cop $dst.hi,$src.hi" %}
  7547   opcode(0x0F,0x40);
  7548   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7549   ins_pipe( pipe_cmov_reg_long );
  7550 %}
  7552 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7553   predicate(VM_Version::supports_cmov() );
  7554   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7555   ins_cost(200);
  7556   expand %{
  7557     cmovL_regU(cop, cr, dst, src);
  7558   %}
  7559 %}
  7561 //----------Arithmetic Instructions--------------------------------------------
  7562 //----------Addition Instructions----------------------------------------------
  7563 // Integer Addition Instructions
  7564 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7565   match(Set dst (AddI dst src));
  7566   effect(KILL cr);
  7568   size(2);
  7569   format %{ "ADD    $dst,$src" %}
  7570   opcode(0x03);
  7571   ins_encode( OpcP, RegReg( dst, src) );
  7572   ins_pipe( ialu_reg_reg );
  7573 %}
  7575 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7576   match(Set dst (AddI dst src));
  7577   effect(KILL cr);
  7579   format %{ "ADD    $dst,$src" %}
  7580   opcode(0x81, 0x00); /* /0 id */
  7581   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7582   ins_pipe( ialu_reg );
  7583 %}
  7585 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7586   predicate(UseIncDec);
  7587   match(Set dst (AddI dst src));
  7588   effect(KILL cr);
  7590   size(1);
  7591   format %{ "INC    $dst" %}
  7592   opcode(0x40); /*  */
  7593   ins_encode( Opc_plus( primary, dst ) );
  7594   ins_pipe( ialu_reg );
  7595 %}
  7597 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7598   match(Set dst (AddI src0 src1));
  7599   ins_cost(110);
  7601   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7602   opcode(0x8D); /* 0x8D /r */
  7603   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7604   ins_pipe( ialu_reg_reg );
  7605 %}
  7607 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7608   match(Set dst (AddP src0 src1));
  7609   ins_cost(110);
  7611   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7612   opcode(0x8D); /* 0x8D /r */
  7613   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7614   ins_pipe( ialu_reg_reg );
  7615 %}
  7617 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7618   predicate(UseIncDec);
  7619   match(Set dst (AddI dst src));
  7620   effect(KILL cr);
  7622   size(1);
  7623   format %{ "DEC    $dst" %}
  7624   opcode(0x48); /*  */
  7625   ins_encode( Opc_plus( primary, dst ) );
  7626   ins_pipe( ialu_reg );
  7627 %}
  7629 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7630   match(Set dst (AddP dst src));
  7631   effect(KILL cr);
  7633   size(2);
  7634   format %{ "ADD    $dst,$src" %}
  7635   opcode(0x03);
  7636   ins_encode( OpcP, RegReg( dst, src) );
  7637   ins_pipe( ialu_reg_reg );
  7638 %}
  7640 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7641   match(Set dst (AddP dst src));
  7642   effect(KILL cr);
  7644   format %{ "ADD    $dst,$src" %}
  7645   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7646   // ins_encode( RegImm( dst, src) );
  7647   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7648   ins_pipe( ialu_reg );
  7649 %}
  7651 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7652   match(Set dst (AddI dst (LoadI src)));
  7653   effect(KILL cr);
  7655   ins_cost(125);
  7656   format %{ "ADD    $dst,$src" %}
  7657   opcode(0x03);
  7658   ins_encode( OpcP, RegMem( dst, src) );
  7659   ins_pipe( ialu_reg_mem );
  7660 %}
  7662 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7663   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7664   effect(KILL cr);
  7666   ins_cost(150);
  7667   format %{ "ADD    $dst,$src" %}
  7668   opcode(0x01);  /* Opcode 01 /r */
  7669   ins_encode( OpcP, RegMem( src, dst ) );
  7670   ins_pipe( ialu_mem_reg );
  7671 %}
  7673 // Add Memory with Immediate
  7674 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7675   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7676   effect(KILL cr);
  7678   ins_cost(125);
  7679   format %{ "ADD    $dst,$src" %}
  7680   opcode(0x81);               /* Opcode 81 /0 id */
  7681   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7682   ins_pipe( ialu_mem_imm );
  7683 %}
  7685 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7686   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7687   effect(KILL cr);
  7689   ins_cost(125);
  7690   format %{ "INC    $dst" %}
  7691   opcode(0xFF);               /* Opcode FF /0 */
  7692   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7693   ins_pipe( ialu_mem_imm );
  7694 %}
  7696 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7697   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7698   effect(KILL cr);
  7700   ins_cost(125);
  7701   format %{ "DEC    $dst" %}
  7702   opcode(0xFF);               /* Opcode FF /1 */
  7703   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7704   ins_pipe( ialu_mem_imm );
  7705 %}
  7708 instruct checkCastPP( eRegP dst ) %{
  7709   match(Set dst (CheckCastPP dst));
  7711   size(0);
  7712   format %{ "#checkcastPP of $dst" %}
  7713   ins_encode( /*empty encoding*/ );
  7714   ins_pipe( empty );
  7715 %}
  7717 instruct castPP( eRegP dst ) %{
  7718   match(Set dst (CastPP dst));
  7719   format %{ "#castPP of $dst" %}
  7720   ins_encode( /*empty encoding*/ );
  7721   ins_pipe( empty );
  7722 %}
  7724 instruct castII( rRegI dst ) %{
  7725   match(Set dst (CastII dst));
  7726   format %{ "#castII of $dst" %}
  7727   ins_encode( /*empty encoding*/ );
  7728   ins_cost(0);
  7729   ins_pipe( empty );
  7730 %}
  7733 // Load-locked - same as a regular pointer load when used with compare-swap
  7734 instruct loadPLocked(eRegP dst, memory mem) %{
  7735   match(Set dst (LoadPLocked mem));
  7737   ins_cost(125);
  7738   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7739   opcode(0x8B);
  7740   ins_encode( OpcP, RegMem(dst,mem));
  7741   ins_pipe( ialu_reg_mem );
  7742 %}
  7744 // Conditional-store of the updated heap-top.
  7745 // Used during allocation of the shared heap.
  7746 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7747 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7748   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7749   // EAX is killed if there is contention, but then it's also unused.
  7750   // In the common case of no contention, EAX holds the new oop address.
  7751   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7752   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7753   ins_pipe( pipe_cmpxchg );
  7754 %}
  7756 // Conditional-store of an int value.
  7757 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7758 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7759   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7760   effect(KILL oldval);
  7761   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7762   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7763   ins_pipe( pipe_cmpxchg );
  7764 %}
  7766 // Conditional-store of a long value.
  7767 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7768 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7769   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7770   effect(KILL oldval);
  7771   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7772             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7773             "XCHG   EBX,ECX"
  7774   %}
  7775   ins_encode %{
  7776     // Note: we need to swap rbx, and rcx before and after the
  7777     //       cmpxchg8 instruction because the instruction uses
  7778     //       rcx as the high order word of the new value to store but
  7779     //       our register encoding uses rbx.
  7780     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7781     if( os::is_MP() )
  7782       __ lock();
  7783     __ cmpxchg8($mem$$Address);
  7784     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7785   %}
  7786   ins_pipe( pipe_cmpxchg );
  7787 %}
  7789 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7791 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7792   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7793   effect(KILL cr, KILL oldval);
  7794   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7795             "MOV    $res,0\n\t"
  7796             "JNE,s  fail\n\t"
  7797             "MOV    $res,1\n"
  7798           "fail:" %}
  7799   ins_encode( enc_cmpxchg8(mem_ptr),
  7800               enc_flags_ne_to_boolean(res) );
  7801   ins_pipe( pipe_cmpxchg );
  7802 %}
  7804 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7805   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7806   effect(KILL cr, KILL oldval);
  7807   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7808             "MOV    $res,0\n\t"
  7809             "JNE,s  fail\n\t"
  7810             "MOV    $res,1\n"
  7811           "fail:" %}
  7812   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7813   ins_pipe( pipe_cmpxchg );
  7814 %}
  7816 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7817   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7818   effect(KILL cr, KILL oldval);
  7819   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7820             "MOV    $res,0\n\t"
  7821             "JNE,s  fail\n\t"
  7822             "MOV    $res,1\n"
  7823           "fail:" %}
  7824   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7825   ins_pipe( pipe_cmpxchg );
  7826 %}
  7828 //----------Subtraction Instructions-------------------------------------------
  7829 // Integer Subtraction Instructions
  7830 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7831   match(Set dst (SubI dst src));
  7832   effect(KILL cr);
  7834   size(2);
  7835   format %{ "SUB    $dst,$src" %}
  7836   opcode(0x2B);
  7837   ins_encode( OpcP, RegReg( dst, src) );
  7838   ins_pipe( ialu_reg_reg );
  7839 %}
  7841 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7842   match(Set dst (SubI dst src));
  7843   effect(KILL cr);
  7845   format %{ "SUB    $dst,$src" %}
  7846   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7847   // ins_encode( RegImm( dst, src) );
  7848   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7849   ins_pipe( ialu_reg );
  7850 %}
  7852 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7853   match(Set dst (SubI dst (LoadI src)));
  7854   effect(KILL cr);
  7856   ins_cost(125);
  7857   format %{ "SUB    $dst,$src" %}
  7858   opcode(0x2B);
  7859   ins_encode( OpcP, RegMem( dst, src) );
  7860   ins_pipe( ialu_reg_mem );
  7861 %}
  7863 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7864   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7865   effect(KILL cr);
  7867   ins_cost(150);
  7868   format %{ "SUB    $dst,$src" %}
  7869   opcode(0x29);  /* Opcode 29 /r */
  7870   ins_encode( OpcP, RegMem( src, dst ) );
  7871   ins_pipe( ialu_mem_reg );
  7872 %}
  7874 // Subtract from a pointer
  7875 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7876   match(Set dst (AddP dst (SubI zero src)));
  7877   effect(KILL cr);
  7879   size(2);
  7880   format %{ "SUB    $dst,$src" %}
  7881   opcode(0x2B);
  7882   ins_encode( OpcP, RegReg( dst, src) );
  7883   ins_pipe( ialu_reg_reg );
  7884 %}
  7886 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7887   match(Set dst (SubI zero dst));
  7888   effect(KILL cr);
  7890   size(2);
  7891   format %{ "NEG    $dst" %}
  7892   opcode(0xF7,0x03);  // Opcode F7 /3
  7893   ins_encode( OpcP, RegOpc( dst ) );
  7894   ins_pipe( ialu_reg );
  7895 %}
  7898 //----------Multiplication/Division Instructions-------------------------------
  7899 // Integer Multiplication Instructions
  7900 // Multiply Register
  7901 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7902   match(Set dst (MulI dst src));
  7903   effect(KILL cr);
  7905   size(3);
  7906   ins_cost(300);
  7907   format %{ "IMUL   $dst,$src" %}
  7908   opcode(0xAF, 0x0F);
  7909   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7910   ins_pipe( ialu_reg_reg_alu0 );
  7911 %}
  7913 // Multiply 32-bit Immediate
  7914 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7915   match(Set dst (MulI src imm));
  7916   effect(KILL cr);
  7918   ins_cost(300);
  7919   format %{ "IMUL   $dst,$src,$imm" %}
  7920   opcode(0x69);  /* 69 /r id */
  7921   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7922   ins_pipe( ialu_reg_reg_alu0 );
  7923 %}
  7925 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7926   match(Set dst src);
  7927   effect(KILL cr);
  7929   // Note that this is artificially increased to make it more expensive than loadConL
  7930   ins_cost(250);
  7931   format %{ "MOV    EAX,$src\t// low word only" %}
  7932   opcode(0xB8);
  7933   ins_encode( LdImmL_Lo(dst, src) );
  7934   ins_pipe( ialu_reg_fat );
  7935 %}
  7937 // Multiply by 32-bit Immediate, taking the shifted high order results
  7938 //  (special case for shift by 32)
  7939 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7940   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7941   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7942              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7943              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7944   effect(USE src1, KILL cr);
  7946   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7947   ins_cost(0*100 + 1*400 - 150);
  7948   format %{ "IMUL   EDX:EAX,$src1" %}
  7949   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7950   ins_pipe( pipe_slow );
  7951 %}
  7953 // Multiply by 32-bit Immediate, taking the shifted high order results
  7954 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7955   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7956   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7957              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7958              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7959   effect(USE src1, KILL cr);
  7961   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7962   ins_cost(1*100 + 1*400 - 150);
  7963   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7964             "SAR    EDX,$cnt-32" %}
  7965   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7966   ins_pipe( pipe_slow );
  7967 %}
  7969 // Multiply Memory 32-bit Immediate
  7970 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7971   match(Set dst (MulI (LoadI src) imm));
  7972   effect(KILL cr);
  7974   ins_cost(300);
  7975   format %{ "IMUL   $dst,$src,$imm" %}
  7976   opcode(0x69);  /* 69 /r id */
  7977   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7978   ins_pipe( ialu_reg_mem_alu0 );
  7979 %}
  7981 // Multiply Memory
  7982 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  7983   match(Set dst (MulI dst (LoadI src)));
  7984   effect(KILL cr);
  7986   ins_cost(350);
  7987   format %{ "IMUL   $dst,$src" %}
  7988   opcode(0xAF, 0x0F);
  7989   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  7990   ins_pipe( ialu_reg_mem_alu0 );
  7991 %}
  7993 // Multiply Register Int to Long
  7994 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  7995   // Basic Idea: long = (long)int * (long)int
  7996   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  7997   effect(DEF dst, USE src, USE src1, KILL flags);
  7999   ins_cost(300);
  8000   format %{ "IMUL   $dst,$src1" %}
  8002   ins_encode( long_int_multiply( dst, src1 ) );
  8003   ins_pipe( ialu_reg_reg_alu0 );
  8004 %}
  8006 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8007   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8008   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8009   effect(KILL flags);
  8011   ins_cost(300);
  8012   format %{ "MUL    $dst,$src1" %}
  8014   ins_encode( long_uint_multiply(dst, src1) );
  8015   ins_pipe( ialu_reg_reg_alu0 );
  8016 %}
  8018 // Multiply Register Long
  8019 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8020   match(Set dst (MulL dst src));
  8021   effect(KILL cr, TEMP tmp);
  8022   ins_cost(4*100+3*400);
  8023 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8024 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8025   format %{ "MOV    $tmp,$src.lo\n\t"
  8026             "IMUL   $tmp,EDX\n\t"
  8027             "MOV    EDX,$src.hi\n\t"
  8028             "IMUL   EDX,EAX\n\t"
  8029             "ADD    $tmp,EDX\n\t"
  8030             "MUL    EDX:EAX,$src.lo\n\t"
  8031             "ADD    EDX,$tmp" %}
  8032   ins_encode( long_multiply( dst, src, tmp ) );
  8033   ins_pipe( pipe_slow );
  8034 %}
  8036 // Multiply Register Long where the left operand's high 32 bits are zero
  8037 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8038   predicate(is_operand_hi32_zero(n->in(1)));
  8039   match(Set dst (MulL dst src));
  8040   effect(KILL cr, TEMP tmp);
  8041   ins_cost(2*100+2*400);
  8042 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8043 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8044   format %{ "MOV    $tmp,$src.hi\n\t"
  8045             "IMUL   $tmp,EAX\n\t"
  8046             "MUL    EDX:EAX,$src.lo\n\t"
  8047             "ADD    EDX,$tmp" %}
  8048   ins_encode %{
  8049     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8050     __ imull($tmp$$Register, rax);
  8051     __ mull($src$$Register);
  8052     __ addl(rdx, $tmp$$Register);
  8053   %}
  8054   ins_pipe( pipe_slow );
  8055 %}
  8057 // Multiply Register Long where the right operand's high 32 bits are zero
  8058 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  8059   predicate(is_operand_hi32_zero(n->in(2)));
  8060   match(Set dst (MulL dst src));
  8061   effect(KILL cr, TEMP tmp);
  8062   ins_cost(2*100+2*400);
  8063 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8064 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8065   format %{ "MOV    $tmp,$src.lo\n\t"
  8066             "IMUL   $tmp,EDX\n\t"
  8067             "MUL    EDX:EAX,$src.lo\n\t"
  8068             "ADD    EDX,$tmp" %}
  8069   ins_encode %{
  8070     __ movl($tmp$$Register, $src$$Register);
  8071     __ imull($tmp$$Register, rdx);
  8072     __ mull($src$$Register);
  8073     __ addl(rdx, $tmp$$Register);
  8074   %}
  8075   ins_pipe( pipe_slow );
  8076 %}
  8078 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8079 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8080   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8081   match(Set dst (MulL dst src));
  8082   effect(KILL cr);
  8083   ins_cost(1*400);
  8084 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8085 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8086   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8087   ins_encode %{
  8088     __ mull($src$$Register);
  8089   %}
  8090   ins_pipe( pipe_slow );
  8091 %}
  8093 // Multiply Register Long by small constant
  8094 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  8095   match(Set dst (MulL dst src));
  8096   effect(KILL cr, TEMP tmp);
  8097   ins_cost(2*100+2*400);
  8098   size(12);
  8099 // Basic idea: lo(result) = lo(src * EAX)
  8100 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8101   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8102             "MOV    EDX,$src\n\t"
  8103             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8104             "ADD    EDX,$tmp" %}
  8105   ins_encode( long_multiply_con( dst, src, tmp ) );
  8106   ins_pipe( pipe_slow );
  8107 %}
  8109 // Integer DIV with Register
  8110 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8111   match(Set rax (DivI rax div));
  8112   effect(KILL rdx, KILL cr);
  8113   size(26);
  8114   ins_cost(30*100+10*100);
  8115   format %{ "CMP    EAX,0x80000000\n\t"
  8116             "JNE,s  normal\n\t"
  8117             "XOR    EDX,EDX\n\t"
  8118             "CMP    ECX,-1\n\t"
  8119             "JE,s   done\n"
  8120     "normal: CDQ\n\t"
  8121             "IDIV   $div\n\t"
  8122     "done:"        %}
  8123   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8124   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8125   ins_pipe( ialu_reg_reg_alu0 );
  8126 %}
  8128 // Divide Register Long
  8129 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8130   match(Set dst (DivL src1 src2));
  8131   effect( KILL cr, KILL cx, KILL bx );
  8132   ins_cost(10000);
  8133   format %{ "PUSH   $src1.hi\n\t"
  8134             "PUSH   $src1.lo\n\t"
  8135             "PUSH   $src2.hi\n\t"
  8136             "PUSH   $src2.lo\n\t"
  8137             "CALL   SharedRuntime::ldiv\n\t"
  8138             "ADD    ESP,16" %}
  8139   ins_encode( long_div(src1,src2) );
  8140   ins_pipe( pipe_slow );
  8141 %}
  8143 // Integer DIVMOD with Register, both quotient and mod results
  8144 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8145   match(DivModI rax div);
  8146   effect(KILL cr);
  8147   size(26);
  8148   ins_cost(30*100+10*100);
  8149   format %{ "CMP    EAX,0x80000000\n\t"
  8150             "JNE,s  normal\n\t"
  8151             "XOR    EDX,EDX\n\t"
  8152             "CMP    ECX,-1\n\t"
  8153             "JE,s   done\n"
  8154     "normal: CDQ\n\t"
  8155             "IDIV   $div\n\t"
  8156     "done:"        %}
  8157   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8158   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8159   ins_pipe( pipe_slow );
  8160 %}
  8162 // Integer MOD with Register
  8163 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8164   match(Set rdx (ModI rax div));
  8165   effect(KILL rax, KILL cr);
  8167   size(26);
  8168   ins_cost(300);
  8169   format %{ "CDQ\n\t"
  8170             "IDIV   $div" %}
  8171   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8172   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8173   ins_pipe( ialu_reg_reg_alu0 );
  8174 %}
  8176 // Remainder Register Long
  8177 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8178   match(Set dst (ModL src1 src2));
  8179   effect( KILL cr, KILL cx, KILL bx );
  8180   ins_cost(10000);
  8181   format %{ "PUSH   $src1.hi\n\t"
  8182             "PUSH   $src1.lo\n\t"
  8183             "PUSH   $src2.hi\n\t"
  8184             "PUSH   $src2.lo\n\t"
  8185             "CALL   SharedRuntime::lrem\n\t"
  8186             "ADD    ESP,16" %}
  8187   ins_encode( long_mod(src1,src2) );
  8188   ins_pipe( pipe_slow );
  8189 %}
  8191 // Divide Register Long (no special case since divisor != -1)
  8192 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8193   match(Set dst (DivL dst imm));
  8194   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8195   ins_cost(1000);
  8196   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8197             "XOR    $tmp2,$tmp2\n\t"
  8198             "CMP    $tmp,EDX\n\t"
  8199             "JA,s   fast\n\t"
  8200             "MOV    $tmp2,EAX\n\t"
  8201             "MOV    EAX,EDX\n\t"
  8202             "MOV    EDX,0\n\t"
  8203             "JLE,s  pos\n\t"
  8204             "LNEG   EAX : $tmp2\n\t"
  8205             "DIV    $tmp # unsigned division\n\t"
  8206             "XCHG   EAX,$tmp2\n\t"
  8207             "DIV    $tmp\n\t"
  8208             "LNEG   $tmp2 : EAX\n\t"
  8209             "JMP,s  done\n"
  8210     "pos:\n\t"
  8211             "DIV    $tmp\n\t"
  8212             "XCHG   EAX,$tmp2\n"
  8213     "fast:\n\t"
  8214             "DIV    $tmp\n"
  8215     "done:\n\t"
  8216             "MOV    EDX,$tmp2\n\t"
  8217             "NEG    EDX:EAX # if $imm < 0" %}
  8218   ins_encode %{
  8219     int con = (int)$imm$$constant;
  8220     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8221     int pcon = (con > 0) ? con : -con;
  8222     Label Lfast, Lpos, Ldone;
  8224     __ movl($tmp$$Register, pcon);
  8225     __ xorl($tmp2$$Register,$tmp2$$Register);
  8226     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8227     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8229     __ movl($tmp2$$Register, $dst$$Register); // save
  8230     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8231     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8232     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8234     // Negative dividend.
  8235     // convert value to positive to use unsigned division
  8236     __ lneg($dst$$Register, $tmp2$$Register);
  8237     __ divl($tmp$$Register);
  8238     __ xchgl($dst$$Register, $tmp2$$Register);
  8239     __ divl($tmp$$Register);
  8240     // revert result back to negative
  8241     __ lneg($tmp2$$Register, $dst$$Register);
  8242     __ jmpb(Ldone);
  8244     __ bind(Lpos);
  8245     __ divl($tmp$$Register); // Use unsigned division
  8246     __ xchgl($dst$$Register, $tmp2$$Register);
  8247     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8249     __ bind(Lfast);
  8250     // fast path: src is positive
  8251     __ divl($tmp$$Register); // Use unsigned division
  8253     __ bind(Ldone);
  8254     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8255     if (con < 0) {
  8256       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8258   %}
  8259   ins_pipe( pipe_slow );
  8260 %}
  8262 // Remainder Register Long (remainder fit into 32 bits)
  8263 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  8264   match(Set dst (ModL dst imm));
  8265   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8266   ins_cost(1000);
  8267   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8268             "CMP    $tmp,EDX\n\t"
  8269             "JA,s   fast\n\t"
  8270             "MOV    $tmp2,EAX\n\t"
  8271             "MOV    EAX,EDX\n\t"
  8272             "MOV    EDX,0\n\t"
  8273             "JLE,s  pos\n\t"
  8274             "LNEG   EAX : $tmp2\n\t"
  8275             "DIV    $tmp # unsigned division\n\t"
  8276             "MOV    EAX,$tmp2\n\t"
  8277             "DIV    $tmp\n\t"
  8278             "NEG    EDX\n\t"
  8279             "JMP,s  done\n"
  8280     "pos:\n\t"
  8281             "DIV    $tmp\n\t"
  8282             "MOV    EAX,$tmp2\n"
  8283     "fast:\n\t"
  8284             "DIV    $tmp\n"
  8285     "done:\n\t"
  8286             "MOV    EAX,EDX\n\t"
  8287             "SAR    EDX,31\n\t" %}
  8288   ins_encode %{
  8289     int con = (int)$imm$$constant;
  8290     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8291     int pcon = (con > 0) ? con : -con;
  8292     Label  Lfast, Lpos, Ldone;
  8294     __ movl($tmp$$Register, pcon);
  8295     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8296     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8298     __ movl($tmp2$$Register, $dst$$Register); // save
  8299     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8300     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8301     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8303     // Negative dividend.
  8304     // convert value to positive to use unsigned division
  8305     __ lneg($dst$$Register, $tmp2$$Register);
  8306     __ divl($tmp$$Register);
  8307     __ movl($dst$$Register, $tmp2$$Register);
  8308     __ divl($tmp$$Register);
  8309     // revert remainder back to negative
  8310     __ negl(HIGH_FROM_LOW($dst$$Register));
  8311     __ jmpb(Ldone);
  8313     __ bind(Lpos);
  8314     __ divl($tmp$$Register);
  8315     __ movl($dst$$Register, $tmp2$$Register);
  8317     __ bind(Lfast);
  8318     // fast path: src is positive
  8319     __ divl($tmp$$Register);
  8321     __ bind(Ldone);
  8322     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8323     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8325   %}
  8326   ins_pipe( pipe_slow );
  8327 %}
  8329 // Integer Shift Instructions
  8330 // Shift Left by one
  8331 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8332   match(Set dst (LShiftI dst shift));
  8333   effect(KILL cr);
  8335   size(2);
  8336   format %{ "SHL    $dst,$shift" %}
  8337   opcode(0xD1, 0x4);  /* D1 /4 */
  8338   ins_encode( OpcP, RegOpc( dst ) );
  8339   ins_pipe( ialu_reg );
  8340 %}
  8342 // Shift Left by 8-bit immediate
  8343 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8344   match(Set dst (LShiftI dst shift));
  8345   effect(KILL cr);
  8347   size(3);
  8348   format %{ "SHL    $dst,$shift" %}
  8349   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8350   ins_encode( RegOpcImm( dst, shift) );
  8351   ins_pipe( ialu_reg );
  8352 %}
  8354 // Shift Left by variable
  8355 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8356   match(Set dst (LShiftI dst shift));
  8357   effect(KILL cr);
  8359   size(2);
  8360   format %{ "SHL    $dst,$shift" %}
  8361   opcode(0xD3, 0x4);  /* D3 /4 */
  8362   ins_encode( OpcP, RegOpc( dst ) );
  8363   ins_pipe( ialu_reg_reg );
  8364 %}
  8366 // Arithmetic shift right by one
  8367 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8368   match(Set dst (RShiftI dst shift));
  8369   effect(KILL cr);
  8371   size(2);
  8372   format %{ "SAR    $dst,$shift" %}
  8373   opcode(0xD1, 0x7);  /* D1 /7 */
  8374   ins_encode( OpcP, RegOpc( dst ) );
  8375   ins_pipe( ialu_reg );
  8376 %}
  8378 // Arithmetic shift right by one
  8379 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8380   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8381   effect(KILL cr);
  8382   format %{ "SAR    $dst,$shift" %}
  8383   opcode(0xD1, 0x7);  /* D1 /7 */
  8384   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8385   ins_pipe( ialu_mem_imm );
  8386 %}
  8388 // Arithmetic Shift Right by 8-bit immediate
  8389 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8390   match(Set dst (RShiftI dst shift));
  8391   effect(KILL cr);
  8393   size(3);
  8394   format %{ "SAR    $dst,$shift" %}
  8395   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8396   ins_encode( RegOpcImm( dst, shift ) );
  8397   ins_pipe( ialu_mem_imm );
  8398 %}
  8400 // Arithmetic Shift Right by 8-bit immediate
  8401 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8402   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8403   effect(KILL cr);
  8405   format %{ "SAR    $dst,$shift" %}
  8406   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8407   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8408   ins_pipe( ialu_mem_imm );
  8409 %}
  8411 // Arithmetic Shift Right by variable
  8412 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8413   match(Set dst (RShiftI dst shift));
  8414   effect(KILL cr);
  8416   size(2);
  8417   format %{ "SAR    $dst,$shift" %}
  8418   opcode(0xD3, 0x7);  /* D3 /7 */
  8419   ins_encode( OpcP, RegOpc( dst ) );
  8420   ins_pipe( ialu_reg_reg );
  8421 %}
  8423 // Logical shift right by one
  8424 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8425   match(Set dst (URShiftI dst shift));
  8426   effect(KILL cr);
  8428   size(2);
  8429   format %{ "SHR    $dst,$shift" %}
  8430   opcode(0xD1, 0x5);  /* D1 /5 */
  8431   ins_encode( OpcP, RegOpc( dst ) );
  8432   ins_pipe( ialu_reg );
  8433 %}
  8435 // Logical Shift Right by 8-bit immediate
  8436 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8437   match(Set dst (URShiftI dst shift));
  8438   effect(KILL cr);
  8440   size(3);
  8441   format %{ "SHR    $dst,$shift" %}
  8442   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8443   ins_encode( RegOpcImm( dst, shift) );
  8444   ins_pipe( ialu_reg );
  8445 %}
  8448 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8449 // This idiom is used by the compiler for the i2b bytecode.
  8450 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  8451   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8453   size(3);
  8454   format %{ "MOVSX  $dst,$src :8" %}
  8455   ins_encode %{
  8456     __ movsbl($dst$$Register, $src$$Register);
  8457   %}
  8458   ins_pipe(ialu_reg_reg);
  8459 %}
  8461 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8462 // This idiom is used by the compiler the i2s bytecode.
  8463 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  8464   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8466   size(3);
  8467   format %{ "MOVSX  $dst,$src :16" %}
  8468   ins_encode %{
  8469     __ movswl($dst$$Register, $src$$Register);
  8470   %}
  8471   ins_pipe(ialu_reg_reg);
  8472 %}
  8475 // Logical Shift Right by variable
  8476 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8477   match(Set dst (URShiftI dst shift));
  8478   effect(KILL cr);
  8480   size(2);
  8481   format %{ "SHR    $dst,$shift" %}
  8482   opcode(0xD3, 0x5);  /* D3 /5 */
  8483   ins_encode( OpcP, RegOpc( dst ) );
  8484   ins_pipe( ialu_reg_reg );
  8485 %}
  8488 //----------Logical Instructions-----------------------------------------------
  8489 //----------Integer Logical Instructions---------------------------------------
  8490 // And Instructions
  8491 // And Register with Register
  8492 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8493   match(Set dst (AndI dst src));
  8494   effect(KILL cr);
  8496   size(2);
  8497   format %{ "AND    $dst,$src" %}
  8498   opcode(0x23);
  8499   ins_encode( OpcP, RegReg( dst, src) );
  8500   ins_pipe( ialu_reg_reg );
  8501 %}
  8503 // And Register with Immediate
  8504 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8505   match(Set dst (AndI dst src));
  8506   effect(KILL cr);
  8508   format %{ "AND    $dst,$src" %}
  8509   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8510   // ins_encode( RegImm( dst, src) );
  8511   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8512   ins_pipe( ialu_reg );
  8513 %}
  8515 // And Register with Memory
  8516 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8517   match(Set dst (AndI dst (LoadI src)));
  8518   effect(KILL cr);
  8520   ins_cost(125);
  8521   format %{ "AND    $dst,$src" %}
  8522   opcode(0x23);
  8523   ins_encode( OpcP, RegMem( dst, src) );
  8524   ins_pipe( ialu_reg_mem );
  8525 %}
  8527 // And Memory with Register
  8528 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8529   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8530   effect(KILL cr);
  8532   ins_cost(150);
  8533   format %{ "AND    $dst,$src" %}
  8534   opcode(0x21);  /* Opcode 21 /r */
  8535   ins_encode( OpcP, RegMem( src, dst ) );
  8536   ins_pipe( ialu_mem_reg );
  8537 %}
  8539 // And Memory with Immediate
  8540 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8541   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8542   effect(KILL cr);
  8544   ins_cost(125);
  8545   format %{ "AND    $dst,$src" %}
  8546   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8547   // ins_encode( MemImm( dst, src) );
  8548   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8549   ins_pipe( ialu_mem_imm );
  8550 %}
  8552 // Or Instructions
  8553 // Or Register with Register
  8554 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8555   match(Set dst (OrI dst src));
  8556   effect(KILL cr);
  8558   size(2);
  8559   format %{ "OR     $dst,$src" %}
  8560   opcode(0x0B);
  8561   ins_encode( OpcP, RegReg( dst, src) );
  8562   ins_pipe( ialu_reg_reg );
  8563 %}
  8565 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8566   match(Set dst (OrI dst (CastP2X src)));
  8567   effect(KILL cr);
  8569   size(2);
  8570   format %{ "OR     $dst,$src" %}
  8571   opcode(0x0B);
  8572   ins_encode( OpcP, RegReg( dst, src) );
  8573   ins_pipe( ialu_reg_reg );
  8574 %}
  8577 // Or Register with Immediate
  8578 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8579   match(Set dst (OrI dst src));
  8580   effect(KILL cr);
  8582   format %{ "OR     $dst,$src" %}
  8583   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8584   // ins_encode( RegImm( dst, src) );
  8585   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8586   ins_pipe( ialu_reg );
  8587 %}
  8589 // Or Register with Memory
  8590 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8591   match(Set dst (OrI dst (LoadI src)));
  8592   effect(KILL cr);
  8594   ins_cost(125);
  8595   format %{ "OR     $dst,$src" %}
  8596   opcode(0x0B);
  8597   ins_encode( OpcP, RegMem( dst, src) );
  8598   ins_pipe( ialu_reg_mem );
  8599 %}
  8601 // Or Memory with Register
  8602 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8603   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8604   effect(KILL cr);
  8606   ins_cost(150);
  8607   format %{ "OR     $dst,$src" %}
  8608   opcode(0x09);  /* Opcode 09 /r */
  8609   ins_encode( OpcP, RegMem( src, dst ) );
  8610   ins_pipe( ialu_mem_reg );
  8611 %}
  8613 // Or Memory with Immediate
  8614 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8615   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8616   effect(KILL cr);
  8618   ins_cost(125);
  8619   format %{ "OR     $dst,$src" %}
  8620   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8621   // ins_encode( MemImm( dst, src) );
  8622   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8623   ins_pipe( ialu_mem_imm );
  8624 %}
  8626 // ROL/ROR
  8627 // ROL expand
  8628 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8629   effect(USE_DEF dst, USE shift, KILL cr);
  8631   format %{ "ROL    $dst, $shift" %}
  8632   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8633   ins_encode( OpcP, RegOpc( dst ));
  8634   ins_pipe( ialu_reg );
  8635 %}
  8637 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8638   effect(USE_DEF dst, USE shift, KILL cr);
  8640   format %{ "ROL    $dst, $shift" %}
  8641   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8642   ins_encode( RegOpcImm(dst, shift) );
  8643   ins_pipe(ialu_reg);
  8644 %}
  8646 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8647   effect(USE_DEF dst, USE shift, KILL cr);
  8649   format %{ "ROL    $dst, $shift" %}
  8650   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8651   ins_encode(OpcP, RegOpc(dst));
  8652   ins_pipe( ialu_reg_reg );
  8653 %}
  8654 // end of ROL expand
  8656 // ROL 32bit by one once
  8657 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8658   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8660   expand %{
  8661     rolI_eReg_imm1(dst, lshift, cr);
  8662   %}
  8663 %}
  8665 // ROL 32bit var by imm8 once
  8666 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8667   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8668   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8670   expand %{
  8671     rolI_eReg_imm8(dst, lshift, cr);
  8672   %}
  8673 %}
  8675 // ROL 32bit var by var once
  8676 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8677   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8679   expand %{
  8680     rolI_eReg_CL(dst, shift, cr);
  8681   %}
  8682 %}
  8684 // ROL 32bit var by var once
  8685 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8686   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8688   expand %{
  8689     rolI_eReg_CL(dst, shift, cr);
  8690   %}
  8691 %}
  8693 // ROR expand
  8694 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8695   effect(USE_DEF dst, USE shift, KILL cr);
  8697   format %{ "ROR    $dst, $shift" %}
  8698   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8699   ins_encode( OpcP, RegOpc( dst ) );
  8700   ins_pipe( ialu_reg );
  8701 %}
  8703 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8704   effect (USE_DEF dst, USE shift, KILL cr);
  8706   format %{ "ROR    $dst, $shift" %}
  8707   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8708   ins_encode( RegOpcImm(dst, shift) );
  8709   ins_pipe( ialu_reg );
  8710 %}
  8712 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8713   effect(USE_DEF dst, USE shift, KILL cr);
  8715   format %{ "ROR    $dst, $shift" %}
  8716   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8717   ins_encode(OpcP, RegOpc(dst));
  8718   ins_pipe( ialu_reg_reg );
  8719 %}
  8720 // end of ROR expand
  8722 // ROR right once
  8723 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8724   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8726   expand %{
  8727     rorI_eReg_imm1(dst, rshift, cr);
  8728   %}
  8729 %}
  8731 // ROR 32bit by immI8 once
  8732 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8733   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8734   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8736   expand %{
  8737     rorI_eReg_imm8(dst, rshift, cr);
  8738   %}
  8739 %}
  8741 // ROR 32bit var by var once
  8742 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8743   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8745   expand %{
  8746     rorI_eReg_CL(dst, shift, cr);
  8747   %}
  8748 %}
  8750 // ROR 32bit var by var once
  8751 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8752   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8754   expand %{
  8755     rorI_eReg_CL(dst, shift, cr);
  8756   %}
  8757 %}
  8759 // Xor Instructions
  8760 // Xor Register with Register
  8761 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8762   match(Set dst (XorI dst src));
  8763   effect(KILL cr);
  8765   size(2);
  8766   format %{ "XOR    $dst,$src" %}
  8767   opcode(0x33);
  8768   ins_encode( OpcP, RegReg( dst, src) );
  8769   ins_pipe( ialu_reg_reg );
  8770 %}
  8772 // Xor Register with Immediate -1
  8773 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8774   match(Set dst (XorI dst imm));  
  8776   size(2);
  8777   format %{ "NOT    $dst" %}  
  8778   ins_encode %{
  8779      __ notl($dst$$Register);
  8780   %}
  8781   ins_pipe( ialu_reg );
  8782 %}
  8784 // Xor Register with Immediate
  8785 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8786   match(Set dst (XorI dst src));
  8787   effect(KILL cr);
  8789   format %{ "XOR    $dst,$src" %}
  8790   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8791   // ins_encode( RegImm( dst, src) );
  8792   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8793   ins_pipe( ialu_reg );
  8794 %}
  8796 // Xor Register with Memory
  8797 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8798   match(Set dst (XorI dst (LoadI src)));
  8799   effect(KILL cr);
  8801   ins_cost(125);
  8802   format %{ "XOR    $dst,$src" %}
  8803   opcode(0x33);
  8804   ins_encode( OpcP, RegMem(dst, src) );
  8805   ins_pipe( ialu_reg_mem );
  8806 %}
  8808 // Xor Memory with Register
  8809 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8810   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8811   effect(KILL cr);
  8813   ins_cost(150);
  8814   format %{ "XOR    $dst,$src" %}
  8815   opcode(0x31);  /* Opcode 31 /r */
  8816   ins_encode( OpcP, RegMem( src, dst ) );
  8817   ins_pipe( ialu_mem_reg );
  8818 %}
  8820 // Xor Memory with Immediate
  8821 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8822   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8823   effect(KILL cr);
  8825   ins_cost(125);
  8826   format %{ "XOR    $dst,$src" %}
  8827   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8828   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8829   ins_pipe( ialu_mem_imm );
  8830 %}
  8832 //----------Convert Int to Boolean---------------------------------------------
  8834 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8835   effect( DEF dst, USE src );
  8836   format %{ "MOV    $dst,$src" %}
  8837   ins_encode( enc_Copy( dst, src) );
  8838   ins_pipe( ialu_reg_reg );
  8839 %}
  8841 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8842   effect( USE_DEF dst, USE src, KILL cr );
  8844   size(4);
  8845   format %{ "NEG    $dst\n\t"
  8846             "ADC    $dst,$src" %}
  8847   ins_encode( neg_reg(dst),
  8848               OpcRegReg(0x13,dst,src) );
  8849   ins_pipe( ialu_reg_reg_long );
  8850 %}
  8852 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8853   match(Set dst (Conv2B src));
  8855   expand %{
  8856     movI_nocopy(dst,src);
  8857     ci2b(dst,src,cr);
  8858   %}
  8859 %}
  8861 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8862   effect( DEF dst, USE src );
  8863   format %{ "MOV    $dst,$src" %}
  8864   ins_encode( enc_Copy( dst, src) );
  8865   ins_pipe( ialu_reg_reg );
  8866 %}
  8868 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8869   effect( USE_DEF dst, USE src, KILL cr );
  8870   format %{ "NEG    $dst\n\t"
  8871             "ADC    $dst,$src" %}
  8872   ins_encode( neg_reg(dst),
  8873               OpcRegReg(0x13,dst,src) );
  8874   ins_pipe( ialu_reg_reg_long );
  8875 %}
  8877 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8878   match(Set dst (Conv2B src));
  8880   expand %{
  8881     movP_nocopy(dst,src);
  8882     cp2b(dst,src,cr);
  8883   %}
  8884 %}
  8886 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  8887   match(Set dst (CmpLTMask p q));
  8888   effect( KILL cr );
  8889   ins_cost(400);
  8891   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8892   format %{ "XOR    $dst,$dst\n\t"
  8893             "CMP    $p,$q\n\t"
  8894             "SETlt  $dst\n\t"
  8895             "NEG    $dst" %}
  8896   ins_encode( OpcRegReg(0x33,dst,dst),
  8897               OpcRegReg(0x3B,p,q),
  8898               setLT_reg(dst), neg_reg(dst) );
  8899   ins_pipe( pipe_slow );
  8900 %}
  8902 instruct cmpLTMask0( rRegI dst, immI0 zero, eFlagsReg cr ) %{
  8903   match(Set dst (CmpLTMask dst zero));
  8904   effect( DEF dst, KILL cr );
  8905   ins_cost(100);
  8907   format %{ "SAR    $dst,31" %}
  8908   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8909   ins_encode( RegOpcImm( dst, 0x1F ) );
  8910   ins_pipe( ialu_reg );
  8911 %}
  8914 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  8915   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8916   effect( KILL tmp, KILL cr );
  8917   ins_cost(400);
  8918   // annoyingly, $tmp has no edges so you cant ask for it in
  8919   // any format or encoding
  8920   format %{ "SUB    $p,$q\n\t"
  8921             "SBB    ECX,ECX\n\t"
  8922             "AND    ECX,$y\n\t"
  8923             "ADD    $p,ECX" %}
  8924   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  8925   ins_pipe( pipe_cmplt );
  8926 %}
  8928 /* If I enable this, I encourage spilling in the inner loop of compress.
  8929 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  8930   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8931   effect( USE_KILL tmp, KILL cr );
  8932   ins_cost(400);
  8934   format %{ "SUB    $p,$q\n\t"
  8935             "SBB    ECX,ECX\n\t"
  8936             "AND    ECX,$y\n\t"
  8937             "ADD    $p,ECX" %}
  8938   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  8939 %}
  8940 */
  8942 //----------Long Instructions------------------------------------------------
  8943 // Add Long Register with Register
  8944 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8945   match(Set dst (AddL dst src));
  8946   effect(KILL cr);
  8947   ins_cost(200);
  8948   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8949             "ADC    $dst.hi,$src.hi" %}
  8950   opcode(0x03, 0x13);
  8951   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8952   ins_pipe( ialu_reg_reg_long );
  8953 %}
  8955 // Add Long Register with Immediate
  8956 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8957   match(Set dst (AddL dst src));
  8958   effect(KILL cr);
  8959   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8960             "ADC    $dst.hi,$src.hi" %}
  8961   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8962   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8963   ins_pipe( ialu_reg_long );
  8964 %}
  8966 // Add Long Register with Memory
  8967 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8968   match(Set dst (AddL dst (LoadL mem)));
  8969   effect(KILL cr);
  8970   ins_cost(125);
  8971   format %{ "ADD    $dst.lo,$mem\n\t"
  8972             "ADC    $dst.hi,$mem+4" %}
  8973   opcode(0x03, 0x13);
  8974   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8975   ins_pipe( ialu_reg_long_mem );
  8976 %}
  8978 // Subtract Long Register with Register.
  8979 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8980   match(Set dst (SubL dst src));
  8981   effect(KILL cr);
  8982   ins_cost(200);
  8983   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8984             "SBB    $dst.hi,$src.hi" %}
  8985   opcode(0x2B, 0x1B);
  8986   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8987   ins_pipe( ialu_reg_reg_long );
  8988 %}
  8990 // Subtract Long Register with Immediate
  8991 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8992   match(Set dst (SubL dst src));
  8993   effect(KILL cr);
  8994   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8995             "SBB    $dst.hi,$src.hi" %}
  8996   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  8997   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8998   ins_pipe( ialu_reg_long );
  8999 %}
  9001 // Subtract Long Register with Memory
  9002 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9003   match(Set dst (SubL dst (LoadL mem)));
  9004   effect(KILL cr);
  9005   ins_cost(125);
  9006   format %{ "SUB    $dst.lo,$mem\n\t"
  9007             "SBB    $dst.hi,$mem+4" %}
  9008   opcode(0x2B, 0x1B);
  9009   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9010   ins_pipe( ialu_reg_long_mem );
  9011 %}
  9013 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9014   match(Set dst (SubL zero dst));
  9015   effect(KILL cr);
  9016   ins_cost(300);
  9017   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9018   ins_encode( neg_long(dst) );
  9019   ins_pipe( ialu_reg_reg_long );
  9020 %}
  9022 // And Long Register with Register
  9023 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9024   match(Set dst (AndL dst src));
  9025   effect(KILL cr);
  9026   format %{ "AND    $dst.lo,$src.lo\n\t"
  9027             "AND    $dst.hi,$src.hi" %}
  9028   opcode(0x23,0x23);
  9029   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9030   ins_pipe( ialu_reg_reg_long );
  9031 %}
  9033 // And Long Register with Immediate
  9034 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9035   match(Set dst (AndL dst src));
  9036   effect(KILL cr);
  9037   format %{ "AND    $dst.lo,$src.lo\n\t"
  9038             "AND    $dst.hi,$src.hi" %}
  9039   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9040   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9041   ins_pipe( ialu_reg_long );
  9042 %}
  9044 // And Long Register with Memory
  9045 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9046   match(Set dst (AndL dst (LoadL mem)));
  9047   effect(KILL cr);
  9048   ins_cost(125);
  9049   format %{ "AND    $dst.lo,$mem\n\t"
  9050             "AND    $dst.hi,$mem+4" %}
  9051   opcode(0x23, 0x23);
  9052   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9053   ins_pipe( ialu_reg_long_mem );
  9054 %}
  9056 // Or Long Register with Register
  9057 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9058   match(Set dst (OrL dst src));
  9059   effect(KILL cr);
  9060   format %{ "OR     $dst.lo,$src.lo\n\t"
  9061             "OR     $dst.hi,$src.hi" %}
  9062   opcode(0x0B,0x0B);
  9063   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9064   ins_pipe( ialu_reg_reg_long );
  9065 %}
  9067 // Or Long Register with Immediate
  9068 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9069   match(Set dst (OrL dst src));
  9070   effect(KILL cr);
  9071   format %{ "OR     $dst.lo,$src.lo\n\t"
  9072             "OR     $dst.hi,$src.hi" %}
  9073   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9074   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9075   ins_pipe( ialu_reg_long );
  9076 %}
  9078 // Or Long Register with Memory
  9079 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9080   match(Set dst (OrL dst (LoadL mem)));
  9081   effect(KILL cr);
  9082   ins_cost(125);
  9083   format %{ "OR     $dst.lo,$mem\n\t"
  9084             "OR     $dst.hi,$mem+4" %}
  9085   opcode(0x0B,0x0B);
  9086   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9087   ins_pipe( ialu_reg_long_mem );
  9088 %}
  9090 // Xor Long Register with Register
  9091 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9092   match(Set dst (XorL dst src));
  9093   effect(KILL cr);
  9094   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9095             "XOR    $dst.hi,$src.hi" %}
  9096   opcode(0x33,0x33);
  9097   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9098   ins_pipe( ialu_reg_reg_long );
  9099 %}
  9101 // Xor Long Register with Immediate -1
  9102 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9103   match(Set dst (XorL dst imm));  
  9104   format %{ "NOT    $dst.lo\n\t"
  9105             "NOT    $dst.hi" %}
  9106   ins_encode %{
  9107      __ notl($dst$$Register);
  9108      __ notl(HIGH_FROM_LOW($dst$$Register));
  9109   %}
  9110   ins_pipe( ialu_reg_long );
  9111 %}
  9113 // Xor Long Register with Immediate
  9114 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9115   match(Set dst (XorL dst src));
  9116   effect(KILL cr);
  9117   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9118             "XOR    $dst.hi,$src.hi" %}
  9119   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9120   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9121   ins_pipe( ialu_reg_long );
  9122 %}
  9124 // Xor Long Register with Memory
  9125 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9126   match(Set dst (XorL dst (LoadL mem)));
  9127   effect(KILL cr);
  9128   ins_cost(125);
  9129   format %{ "XOR    $dst.lo,$mem\n\t"
  9130             "XOR    $dst.hi,$mem+4" %}
  9131   opcode(0x33,0x33);
  9132   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9133   ins_pipe( ialu_reg_long_mem );
  9134 %}
  9136 // Shift Left Long by 1
  9137 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9138   predicate(UseNewLongLShift);
  9139   match(Set dst (LShiftL dst cnt));
  9140   effect(KILL cr);
  9141   ins_cost(100);
  9142   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9143             "ADC    $dst.hi,$dst.hi" %}
  9144   ins_encode %{
  9145     __ addl($dst$$Register,$dst$$Register);
  9146     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9147   %}
  9148   ins_pipe( ialu_reg_long );
  9149 %}
  9151 // Shift Left Long by 2
  9152 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9153   predicate(UseNewLongLShift);
  9154   match(Set dst (LShiftL dst cnt));
  9155   effect(KILL cr);
  9156   ins_cost(100);
  9157   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9158             "ADC    $dst.hi,$dst.hi\n\t" 
  9159             "ADD    $dst.lo,$dst.lo\n\t"
  9160             "ADC    $dst.hi,$dst.hi" %}
  9161   ins_encode %{
  9162     __ addl($dst$$Register,$dst$$Register);
  9163     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9164     __ addl($dst$$Register,$dst$$Register);
  9165     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9166   %}
  9167   ins_pipe( ialu_reg_long );
  9168 %}
  9170 // Shift Left Long by 3
  9171 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9172   predicate(UseNewLongLShift);
  9173   match(Set dst (LShiftL dst cnt));
  9174   effect(KILL cr);
  9175   ins_cost(100);
  9176   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9177             "ADC    $dst.hi,$dst.hi\n\t" 
  9178             "ADD    $dst.lo,$dst.lo\n\t"
  9179             "ADC    $dst.hi,$dst.hi\n\t" 
  9180             "ADD    $dst.lo,$dst.lo\n\t"
  9181             "ADC    $dst.hi,$dst.hi" %}
  9182   ins_encode %{
  9183     __ addl($dst$$Register,$dst$$Register);
  9184     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9185     __ addl($dst$$Register,$dst$$Register);
  9186     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9187     __ addl($dst$$Register,$dst$$Register);
  9188     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9189   %}
  9190   ins_pipe( ialu_reg_long );
  9191 %}
  9193 // Shift Left Long by 1-31
  9194 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9195   match(Set dst (LShiftL dst cnt));
  9196   effect(KILL cr);
  9197   ins_cost(200);
  9198   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9199             "SHL    $dst.lo,$cnt" %}
  9200   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9201   ins_encode( move_long_small_shift(dst,cnt) );
  9202   ins_pipe( ialu_reg_long );
  9203 %}
  9205 // Shift Left Long by 32-63
  9206 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9207   match(Set dst (LShiftL dst cnt));
  9208   effect(KILL cr);
  9209   ins_cost(300);
  9210   format %{ "MOV    $dst.hi,$dst.lo\n"
  9211           "\tSHL    $dst.hi,$cnt-32\n"
  9212           "\tXOR    $dst.lo,$dst.lo" %}
  9213   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9214   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9215   ins_pipe( ialu_reg_long );
  9216 %}
  9218 // Shift Left Long by variable
  9219 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9220   match(Set dst (LShiftL dst shift));
  9221   effect(KILL cr);
  9222   ins_cost(500+200);
  9223   size(17);
  9224   format %{ "TEST   $shift,32\n\t"
  9225             "JEQ,s  small\n\t"
  9226             "MOV    $dst.hi,$dst.lo\n\t"
  9227             "XOR    $dst.lo,$dst.lo\n"
  9228     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9229             "SHL    $dst.lo,$shift" %}
  9230   ins_encode( shift_left_long( dst, shift ) );
  9231   ins_pipe( pipe_slow );
  9232 %}
  9234 // Shift Right Long by 1-31
  9235 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9236   match(Set dst (URShiftL dst cnt));
  9237   effect(KILL cr);
  9238   ins_cost(200);
  9239   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9240             "SHR    $dst.hi,$cnt" %}
  9241   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9242   ins_encode( move_long_small_shift(dst,cnt) );
  9243   ins_pipe( ialu_reg_long );
  9244 %}
  9246 // Shift Right Long by 32-63
  9247 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9248   match(Set dst (URShiftL dst cnt));
  9249   effect(KILL cr);
  9250   ins_cost(300);
  9251   format %{ "MOV    $dst.lo,$dst.hi\n"
  9252           "\tSHR    $dst.lo,$cnt-32\n"
  9253           "\tXOR    $dst.hi,$dst.hi" %}
  9254   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9255   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9256   ins_pipe( ialu_reg_long );
  9257 %}
  9259 // Shift Right Long by variable
  9260 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9261   match(Set dst (URShiftL dst shift));
  9262   effect(KILL cr);
  9263   ins_cost(600);
  9264   size(17);
  9265   format %{ "TEST   $shift,32\n\t"
  9266             "JEQ,s  small\n\t"
  9267             "MOV    $dst.lo,$dst.hi\n\t"
  9268             "XOR    $dst.hi,$dst.hi\n"
  9269     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9270             "SHR    $dst.hi,$shift" %}
  9271   ins_encode( shift_right_long( dst, shift ) );
  9272   ins_pipe( pipe_slow );
  9273 %}
  9275 // Shift Right Long by 1-31
  9276 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9277   match(Set dst (RShiftL dst cnt));
  9278   effect(KILL cr);
  9279   ins_cost(200);
  9280   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9281             "SAR    $dst.hi,$cnt" %}
  9282   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9283   ins_encode( move_long_small_shift(dst,cnt) );
  9284   ins_pipe( ialu_reg_long );
  9285 %}
  9287 // Shift Right Long by 32-63
  9288 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9289   match(Set dst (RShiftL dst cnt));
  9290   effect(KILL cr);
  9291   ins_cost(300);
  9292   format %{ "MOV    $dst.lo,$dst.hi\n"
  9293           "\tSAR    $dst.lo,$cnt-32\n"
  9294           "\tSAR    $dst.hi,31" %}
  9295   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9296   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9297   ins_pipe( ialu_reg_long );
  9298 %}
  9300 // Shift Right arithmetic Long by variable
  9301 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9302   match(Set dst (RShiftL dst shift));
  9303   effect(KILL cr);
  9304   ins_cost(600);
  9305   size(18);
  9306   format %{ "TEST   $shift,32\n\t"
  9307             "JEQ,s  small\n\t"
  9308             "MOV    $dst.lo,$dst.hi\n\t"
  9309             "SAR    $dst.hi,31\n"
  9310     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9311             "SAR    $dst.hi,$shift" %}
  9312   ins_encode( shift_right_arith_long( dst, shift ) );
  9313   ins_pipe( pipe_slow );
  9314 %}
  9317 //----------Double Instructions------------------------------------------------
  9318 // Double Math
  9320 // Compare & branch
  9322 // P6 version of float compare, sets condition codes in EFLAGS
  9323 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9324   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9325   match(Set cr (CmpD src1 src2));
  9326   effect(KILL rax);
  9327   ins_cost(150);
  9328   format %{ "FLD    $src1\n\t"
  9329             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9330             "JNP    exit\n\t"
  9331             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9332             "SAHF\n"
  9333      "exit:\tNOP               // avoid branch to branch" %}
  9334   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9335   ins_encode( Push_Reg_DPR(src1),
  9336               OpcP, RegOpc(src2),
  9337               cmpF_P6_fixup );
  9338   ins_pipe( pipe_slow );
  9339 %}
  9341 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9342   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9343   match(Set cr (CmpD src1 src2));
  9344   ins_cost(150);
  9345   format %{ "FLD    $src1\n\t"
  9346             "FUCOMIP ST,$src2  // P6 instruction" %}
  9347   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9348   ins_encode( Push_Reg_DPR(src1),
  9349               OpcP, RegOpc(src2));
  9350   ins_pipe( pipe_slow );
  9351 %}
  9353 // Compare & branch
  9354 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9355   predicate(UseSSE<=1);
  9356   match(Set cr (CmpD src1 src2));
  9357   effect(KILL rax);
  9358   ins_cost(200);
  9359   format %{ "FLD    $src1\n\t"
  9360             "FCOMp  $src2\n\t"
  9361             "FNSTSW AX\n\t"
  9362             "TEST   AX,0x400\n\t"
  9363             "JZ,s   flags\n\t"
  9364             "MOV    AH,1\t# unordered treat as LT\n"
  9365     "flags:\tSAHF" %}
  9366   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9367   ins_encode( Push_Reg_DPR(src1),
  9368               OpcP, RegOpc(src2),
  9369               fpu_flags);
  9370   ins_pipe( pipe_slow );
  9371 %}
  9373 // Compare vs zero into -1,0,1
  9374 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9375   predicate(UseSSE<=1);
  9376   match(Set dst (CmpD3 src1 zero));
  9377   effect(KILL cr, KILL rax);
  9378   ins_cost(280);
  9379   format %{ "FTSTD  $dst,$src1" %}
  9380   opcode(0xE4, 0xD9);
  9381   ins_encode( Push_Reg_DPR(src1),
  9382               OpcS, OpcP, PopFPU,
  9383               CmpF_Result(dst));
  9384   ins_pipe( pipe_slow );
  9385 %}
  9387 // Compare into -1,0,1
  9388 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9389   predicate(UseSSE<=1);
  9390   match(Set dst (CmpD3 src1 src2));
  9391   effect(KILL cr, KILL rax);
  9392   ins_cost(300);
  9393   format %{ "FCMPD  $dst,$src1,$src2" %}
  9394   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9395   ins_encode( Push_Reg_DPR(src1),
  9396               OpcP, RegOpc(src2),
  9397               CmpF_Result(dst));
  9398   ins_pipe( pipe_slow );
  9399 %}
  9401 // float compare and set condition codes in EFLAGS by XMM regs
  9402 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9403   predicate(UseSSE>=2);
  9404   match(Set cr (CmpD src1 src2));
  9405   ins_cost(145);
  9406   format %{ "UCOMISD $src1,$src2\n\t"
  9407             "JNP,s   exit\n\t"
  9408             "PUSHF\t# saw NaN, set CF\n\t"
  9409             "AND     [rsp], #0xffffff2b\n\t"
  9410             "POPF\n"
  9411     "exit:" %}
  9412   ins_encode %{
  9413     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9414     emit_cmpfp_fixup(_masm);
  9415   %}
  9416   ins_pipe( pipe_slow );
  9417 %}
  9419 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9420   predicate(UseSSE>=2);
  9421   match(Set cr (CmpD src1 src2));
  9422   ins_cost(100);
  9423   format %{ "UCOMISD $src1,$src2" %}
  9424   ins_encode %{
  9425     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9426   %}
  9427   ins_pipe( pipe_slow );
  9428 %}
  9430 // float compare and set condition codes in EFLAGS by XMM regs
  9431 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9432   predicate(UseSSE>=2);
  9433   match(Set cr (CmpD src1 (LoadD src2)));
  9434   ins_cost(145);
  9435   format %{ "UCOMISD $src1,$src2\n\t"
  9436             "JNP,s   exit\n\t"
  9437             "PUSHF\t# saw NaN, set CF\n\t"
  9438             "AND     [rsp], #0xffffff2b\n\t"
  9439             "POPF\n"
  9440     "exit:" %}
  9441   ins_encode %{
  9442     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9443     emit_cmpfp_fixup(_masm);
  9444   %}
  9445   ins_pipe( pipe_slow );
  9446 %}
  9448 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9449   predicate(UseSSE>=2);
  9450   match(Set cr (CmpD src1 (LoadD src2)));
  9451   ins_cost(100);
  9452   format %{ "UCOMISD $src1,$src2" %}
  9453   ins_encode %{
  9454     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9455   %}
  9456   ins_pipe( pipe_slow );
  9457 %}
  9459 // Compare into -1,0,1 in XMM
  9460 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9461   predicate(UseSSE>=2);
  9462   match(Set dst (CmpD3 src1 src2));
  9463   effect(KILL cr);
  9464   ins_cost(255);
  9465   format %{ "UCOMISD $src1, $src2\n\t"
  9466             "MOV     $dst, #-1\n\t"
  9467             "JP,s    done\n\t"
  9468             "JB,s    done\n\t"
  9469             "SETNE   $dst\n\t"
  9470             "MOVZB   $dst, $dst\n"
  9471     "done:" %}
  9472   ins_encode %{
  9473     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9474     emit_cmpfp3(_masm, $dst$$Register);
  9475   %}
  9476   ins_pipe( pipe_slow );
  9477 %}
  9479 // Compare into -1,0,1 in XMM and memory
  9480 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9481   predicate(UseSSE>=2);
  9482   match(Set dst (CmpD3 src1 (LoadD src2)));
  9483   effect(KILL cr);
  9484   ins_cost(275);
  9485   format %{ "UCOMISD $src1, $src2\n\t"
  9486             "MOV     $dst, #-1\n\t"
  9487             "JP,s    done\n\t"
  9488             "JB,s    done\n\t"
  9489             "SETNE   $dst\n\t"
  9490             "MOVZB   $dst, $dst\n"
  9491     "done:" %}
  9492   ins_encode %{
  9493     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9494     emit_cmpfp3(_masm, $dst$$Register);
  9495   %}
  9496   ins_pipe( pipe_slow );
  9497 %}
  9500 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9501   predicate (UseSSE <=1);
  9502   match(Set dst (SubD dst src));
  9504   format %{ "FLD    $src\n\t"
  9505             "DSUBp  $dst,ST" %}
  9506   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9507   ins_cost(150);
  9508   ins_encode( Push_Reg_DPR(src),
  9509               OpcP, RegOpc(dst) );
  9510   ins_pipe( fpu_reg_reg );
  9511 %}
  9513 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9514   predicate (UseSSE <=1);
  9515   match(Set dst (RoundDouble (SubD src1 src2)));
  9516   ins_cost(250);
  9518   format %{ "FLD    $src2\n\t"
  9519             "DSUB   ST,$src1\n\t"
  9520             "FSTP_D $dst\t# D-round" %}
  9521   opcode(0xD8, 0x5);
  9522   ins_encode( Push_Reg_DPR(src2),
  9523               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9524   ins_pipe( fpu_mem_reg_reg );
  9525 %}
  9528 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9529   predicate (UseSSE <=1);
  9530   match(Set dst (SubD dst (LoadD src)));
  9531   ins_cost(150);
  9533   format %{ "FLD    $src\n\t"
  9534             "DSUBp  $dst,ST" %}
  9535   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9536   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9537               OpcP, RegOpc(dst) );
  9538   ins_pipe( fpu_reg_mem );
  9539 %}
  9541 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9542   predicate (UseSSE<=1);
  9543   match(Set dst (AbsD src));
  9544   ins_cost(100);
  9545   format %{ "FABS" %}
  9546   opcode(0xE1, 0xD9);
  9547   ins_encode( OpcS, OpcP );
  9548   ins_pipe( fpu_reg_reg );
  9549 %}
  9551 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9552   predicate(UseSSE<=1);
  9553   match(Set dst (NegD src));
  9554   ins_cost(100);
  9555   format %{ "FCHS" %}
  9556   opcode(0xE0, 0xD9);
  9557   ins_encode( OpcS, OpcP );
  9558   ins_pipe( fpu_reg_reg );
  9559 %}
  9561 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9562   predicate(UseSSE<=1);
  9563   match(Set dst (AddD dst src));
  9564   format %{ "FLD    $src\n\t"
  9565             "DADD   $dst,ST" %}
  9566   size(4);
  9567   ins_cost(150);
  9568   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9569   ins_encode( Push_Reg_DPR(src),
  9570               OpcP, RegOpc(dst) );
  9571   ins_pipe( fpu_reg_reg );
  9572 %}
  9575 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9576   predicate(UseSSE<=1);
  9577   match(Set dst (RoundDouble (AddD src1 src2)));
  9578   ins_cost(250);
  9580   format %{ "FLD    $src2\n\t"
  9581             "DADD   ST,$src1\n\t"
  9582             "FSTP_D $dst\t# D-round" %}
  9583   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9584   ins_encode( Push_Reg_DPR(src2),
  9585               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9586   ins_pipe( fpu_mem_reg_reg );
  9587 %}
  9590 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9591   predicate(UseSSE<=1);
  9592   match(Set dst (AddD dst (LoadD src)));
  9593   ins_cost(150);
  9595   format %{ "FLD    $src\n\t"
  9596             "DADDp  $dst,ST" %}
  9597   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9598   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9599               OpcP, RegOpc(dst) );
  9600   ins_pipe( fpu_reg_mem );
  9601 %}
  9603 // add-to-memory
  9604 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9605   predicate(UseSSE<=1);
  9606   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9607   ins_cost(150);
  9609   format %{ "FLD_D  $dst\n\t"
  9610             "DADD   ST,$src\n\t"
  9611             "FST_D  $dst" %}
  9612   opcode(0xDD, 0x0);
  9613   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9614               Opcode(0xD8), RegOpc(src),
  9615               set_instruction_start,
  9616               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9617   ins_pipe( fpu_reg_mem );
  9618 %}
  9620 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9621   predicate(UseSSE<=1);
  9622   match(Set dst (AddD dst con));
  9623   ins_cost(125);
  9624   format %{ "FLD1\n\t"
  9625             "DADDp  $dst,ST" %}
  9626   ins_encode %{
  9627     __ fld1();
  9628     __ faddp($dst$$reg);
  9629   %}
  9630   ins_pipe(fpu_reg);
  9631 %}
  9633 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9634   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9635   match(Set dst (AddD dst con));
  9636   ins_cost(200);
  9637   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9638             "DADDp  $dst,ST" %}
  9639   ins_encode %{
  9640     __ fld_d($constantaddress($con));
  9641     __ faddp($dst$$reg);
  9642   %}
  9643   ins_pipe(fpu_reg_mem);
  9644 %}
  9646 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9647   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9648   match(Set dst (RoundDouble (AddD src con)));
  9649   ins_cost(200);
  9650   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9651             "DADD   ST,$src\n\t"
  9652             "FSTP_D $dst\t# D-round" %}
  9653   ins_encode %{
  9654     __ fld_d($constantaddress($con));
  9655     __ fadd($src$$reg);
  9656     __ fstp_d(Address(rsp, $dst$$disp));
  9657   %}
  9658   ins_pipe(fpu_mem_reg_con);
  9659 %}
  9661 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9662   predicate(UseSSE<=1);
  9663   match(Set dst (MulD dst src));
  9664   format %{ "FLD    $src\n\t"
  9665             "DMULp  $dst,ST" %}
  9666   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9667   ins_cost(150);
  9668   ins_encode( Push_Reg_DPR(src),
  9669               OpcP, RegOpc(dst) );
  9670   ins_pipe( fpu_reg_reg );
  9671 %}
  9673 // Strict FP instruction biases argument before multiply then
  9674 // biases result to avoid double rounding of subnormals.
  9675 //
  9676 // scale arg1 by multiplying arg1 by 2^(-15360)
  9677 // load arg2
  9678 // multiply scaled arg1 by arg2
  9679 // rescale product by 2^(15360)
  9680 //
  9681 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9682   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9683   match(Set dst (MulD dst src));
  9684   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9686   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9687             "DMULp  $dst,ST\n\t"
  9688             "FLD    $src\n\t"
  9689             "DMULp  $dst,ST\n\t"
  9690             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9691             "DMULp  $dst,ST\n\t" %}
  9692   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9693   ins_encode( strictfp_bias1(dst),
  9694               Push_Reg_DPR(src),
  9695               OpcP, RegOpc(dst),
  9696               strictfp_bias2(dst) );
  9697   ins_pipe( fpu_reg_reg );
  9698 %}
  9700 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9701   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9702   match(Set dst (MulD dst con));
  9703   ins_cost(200);
  9704   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9705             "DMULp  $dst,ST" %}
  9706   ins_encode %{
  9707     __ fld_d($constantaddress($con));
  9708     __ fmulp($dst$$reg);
  9709   %}
  9710   ins_pipe(fpu_reg_mem);
  9711 %}
  9714 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9715   predicate( UseSSE<=1 );
  9716   match(Set dst (MulD dst (LoadD src)));
  9717   ins_cost(200);
  9718   format %{ "FLD_D  $src\n\t"
  9719             "DMULp  $dst,ST" %}
  9720   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9721   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9722               OpcP, RegOpc(dst) );
  9723   ins_pipe( fpu_reg_mem );
  9724 %}
  9726 //
  9727 // Cisc-alternate to reg-reg multiply
  9728 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9729   predicate( UseSSE<=1 );
  9730   match(Set dst (MulD src (LoadD mem)));
  9731   ins_cost(250);
  9732   format %{ "FLD_D  $mem\n\t"
  9733             "DMUL   ST,$src\n\t"
  9734             "FSTP_D $dst" %}
  9735   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9736   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9737               OpcReg_FPR(src),
  9738               Pop_Reg_DPR(dst) );
  9739   ins_pipe( fpu_reg_reg_mem );
  9740 %}
  9743 // MACRO3 -- addDPR a mulDPR
  9744 // This instruction is a '2-address' instruction in that the result goes
  9745 // back to src2.  This eliminates a move from the macro; possibly the
  9746 // register allocator will have to add it back (and maybe not).
  9747 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9748   predicate( UseSSE<=1 );
  9749   match(Set src2 (AddD (MulD src0 src1) src2));
  9750   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9751             "DMUL   ST,$src1\n\t"
  9752             "DADDp  $src2,ST" %}
  9753   ins_cost(250);
  9754   opcode(0xDD); /* LoadD DD /0 */
  9755   ins_encode( Push_Reg_FPR(src0),
  9756               FMul_ST_reg(src1),
  9757               FAddP_reg_ST(src2) );
  9758   ins_pipe( fpu_reg_reg_reg );
  9759 %}
  9762 // MACRO3 -- subDPR a mulDPR
  9763 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9764   predicate( UseSSE<=1 );
  9765   match(Set src2 (SubD (MulD src0 src1) src2));
  9766   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9767             "DMUL   ST,$src1\n\t"
  9768             "DSUBRp $src2,ST" %}
  9769   ins_cost(250);
  9770   ins_encode( Push_Reg_FPR(src0),
  9771               FMul_ST_reg(src1),
  9772               Opcode(0xDE), Opc_plus(0xE0,src2));
  9773   ins_pipe( fpu_reg_reg_reg );
  9774 %}
  9777 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9778   predicate( UseSSE<=1 );
  9779   match(Set dst (DivD dst src));
  9781   format %{ "FLD    $src\n\t"
  9782             "FDIVp  $dst,ST" %}
  9783   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9784   ins_cost(150);
  9785   ins_encode( Push_Reg_DPR(src),
  9786               OpcP, RegOpc(dst) );
  9787   ins_pipe( fpu_reg_reg );
  9788 %}
  9790 // Strict FP instruction biases argument before division then
  9791 // biases result, to avoid double rounding of subnormals.
  9792 //
  9793 // scale dividend by multiplying dividend by 2^(-15360)
  9794 // load divisor
  9795 // divide scaled dividend by divisor
  9796 // rescale quotient by 2^(15360)
  9797 //
  9798 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9799   predicate (UseSSE<=1);
  9800   match(Set dst (DivD dst src));
  9801   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9802   ins_cost(01);
  9804   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9805             "DMULp  $dst,ST\n\t"
  9806             "FLD    $src\n\t"
  9807             "FDIVp  $dst,ST\n\t"
  9808             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9809             "DMULp  $dst,ST\n\t" %}
  9810   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9811   ins_encode( strictfp_bias1(dst),
  9812               Push_Reg_DPR(src),
  9813               OpcP, RegOpc(dst),
  9814               strictfp_bias2(dst) );
  9815   ins_pipe( fpu_reg_reg );
  9816 %}
  9818 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9819   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9820   match(Set dst (RoundDouble (DivD src1 src2)));
  9822   format %{ "FLD    $src1\n\t"
  9823             "FDIV   ST,$src2\n\t"
  9824             "FSTP_D $dst\t# D-round" %}
  9825   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9826   ins_encode( Push_Reg_DPR(src1),
  9827               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9828   ins_pipe( fpu_mem_reg_reg );
  9829 %}
  9832 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9833   predicate(UseSSE<=1);
  9834   match(Set dst (ModD dst src));
  9835   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9837   format %{ "DMOD   $dst,$src" %}
  9838   ins_cost(250);
  9839   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9840               emitModDPR(),
  9841               Push_Result_Mod_DPR(src),
  9842               Pop_Reg_DPR(dst));
  9843   ins_pipe( pipe_slow );
  9844 %}
  9846 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9847   predicate(UseSSE>=2);
  9848   match(Set dst (ModD src0 src1));
  9849   effect(KILL rax, KILL cr);
  9851   format %{ "SUB    ESP,8\t # DMOD\n"
  9852           "\tMOVSD  [ESP+0],$src1\n"
  9853           "\tFLD_D  [ESP+0]\n"
  9854           "\tMOVSD  [ESP+0],$src0\n"
  9855           "\tFLD_D  [ESP+0]\n"
  9856      "loop:\tFPREM\n"
  9857           "\tFWAIT\n"
  9858           "\tFNSTSW AX\n"
  9859           "\tSAHF\n"
  9860           "\tJP     loop\n"
  9861           "\tFSTP_D [ESP+0]\n"
  9862           "\tMOVSD  $dst,[ESP+0]\n"
  9863           "\tADD    ESP,8\n"
  9864           "\tFSTP   ST0\t # Restore FPU Stack"
  9865     %}
  9866   ins_cost(250);
  9867   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9868   ins_pipe( pipe_slow );
  9869 %}
  9871 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9872   predicate (UseSSE<=1);
  9873   match(Set dst (SinD src));
  9874   ins_cost(1800);
  9875   format %{ "DSIN   $dst" %}
  9876   opcode(0xD9, 0xFE);
  9877   ins_encode( OpcP, OpcS );
  9878   ins_pipe( pipe_slow );
  9879 %}
  9881 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9882   predicate (UseSSE>=2);
  9883   match(Set dst (SinD dst));
  9884   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9885   ins_cost(1800);
  9886   format %{ "DSIN   $dst" %}
  9887   opcode(0xD9, 0xFE);
  9888   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9889   ins_pipe( pipe_slow );
  9890 %}
  9892 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9893   predicate (UseSSE<=1);
  9894   match(Set dst (CosD src));
  9895   ins_cost(1800);
  9896   format %{ "DCOS   $dst" %}
  9897   opcode(0xD9, 0xFF);
  9898   ins_encode( OpcP, OpcS );
  9899   ins_pipe( pipe_slow );
  9900 %}
  9902 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9903   predicate (UseSSE>=2);
  9904   match(Set dst (CosD dst));
  9905   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9906   ins_cost(1800);
  9907   format %{ "DCOS   $dst" %}
  9908   opcode(0xD9, 0xFF);
  9909   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9910   ins_pipe( pipe_slow );
  9911 %}
  9913 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9914   predicate (UseSSE<=1);
  9915   match(Set dst(TanD src));
  9916   format %{ "DTAN   $dst" %}
  9917   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9918               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9919   ins_pipe( pipe_slow );
  9920 %}
  9922 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9923   predicate (UseSSE>=2);
  9924   match(Set dst(TanD dst));
  9925   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9926   format %{ "DTAN   $dst" %}
  9927   ins_encode( Push_SrcD(dst),
  9928               Opcode(0xD9), Opcode(0xF2),    // fptan
  9929               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9930               Push_ResultD(dst) );
  9931   ins_pipe( pipe_slow );
  9932 %}
  9934 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9935   predicate (UseSSE<=1);
  9936   match(Set dst(AtanD dst src));
  9937   format %{ "DATA   $dst,$src" %}
  9938   opcode(0xD9, 0xF3);
  9939   ins_encode( Push_Reg_DPR(src),
  9940               OpcP, OpcS, RegOpc(dst) );
  9941   ins_pipe( pipe_slow );
  9942 %}
  9944 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9945   predicate (UseSSE>=2);
  9946   match(Set dst(AtanD dst src));
  9947   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9948   format %{ "DATA   $dst,$src" %}
  9949   opcode(0xD9, 0xF3);
  9950   ins_encode( Push_SrcD(src),
  9951               OpcP, OpcS, Push_ResultD(dst) );
  9952   ins_pipe( pipe_slow );
  9953 %}
  9955 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9956   predicate (UseSSE<=1);
  9957   match(Set dst (SqrtD src));
  9958   format %{ "DSQRT  $dst,$src" %}
  9959   opcode(0xFA, 0xD9);
  9960   ins_encode( Push_Reg_DPR(src),
  9961               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9962   ins_pipe( pipe_slow );
  9963 %}
  9965 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9966   predicate (UseSSE<=1);
  9967   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9968   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9969   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9970   ins_encode %{
  9971     __ subptr(rsp, 8);
  9972     __ fld_s($X$$reg - 1);
  9973     __ fast_pow();
  9974     __ addptr(rsp, 8);
  9975   %}
  9976   ins_pipe( pipe_slow );
  9977 %}
  9979 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9980   predicate (UseSSE>=2);
  9981   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9982   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9983   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
  9984   ins_encode %{
  9985     __ subptr(rsp, 8);
  9986     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  9987     __ fld_d(Address(rsp, 0));
  9988     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  9989     __ fld_d(Address(rsp, 0));
  9990     __ fast_pow();
  9991     __ fstp_d(Address(rsp, 0));
  9992     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9993     __ addptr(rsp, 8);
  9994   %}
  9995   ins_pipe( pipe_slow );
  9996 %}
  9999 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10000   predicate (UseSSE<=1);
 10001   match(Set dpr1 (ExpD dpr1));
 10002   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10003   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
 10004   ins_encode %{
 10005     __ fast_exp();
 10006   %}
 10007   ins_pipe( pipe_slow );
 10008 %}
 10010 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
 10011   predicate (UseSSE>=2);
 10012   match(Set dst (ExpD src));
 10013   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
 10014   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
 10015   ins_encode %{
 10016     __ subptr(rsp, 8);
 10017     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10018     __ fld_d(Address(rsp, 0));
 10019     __ fast_exp();
 10020     __ fstp_d(Address(rsp, 0));
 10021     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
 10022     __ addptr(rsp, 8);
 10023   %}
 10024   ins_pipe( pipe_slow );
 10025 %}
 10027 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10028   predicate (UseSSE<=1);
 10029   // The source Double operand on FPU stack
 10030   match(Set dst (Log10D src));
 10031   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10032   // fxch         ; swap ST(0) with ST(1)
 10033   // fyl2x        ; compute log_10(2) * log_2(x)
 10034   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10035             "FXCH   \n\t"
 10036             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10037          %}
 10038   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10039               Opcode(0xD9), Opcode(0xC9),   // fxch
 10040               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10042   ins_pipe( pipe_slow );
 10043 %}
 10045 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10046   predicate (UseSSE>=2);
 10047   effect(KILL cr);
 10048   match(Set dst (Log10D src));
 10049   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10050   // fyl2x        ; compute log_10(2) * log_2(x)
 10051   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10052             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10053          %}
 10054   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10055               Push_SrcD(src),
 10056               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10057               Push_ResultD(dst));
 10059   ins_pipe( pipe_slow );
 10060 %}
 10062 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10063   predicate (UseSSE<=1);
 10064   // The source Double operand on FPU stack
 10065   match(Set dst (LogD src));
 10066   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10067   // fxch         ; swap ST(0) with ST(1)
 10068   // fyl2x        ; compute log_e(2) * log_2(x)
 10069   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10070             "FXCH   \n\t"
 10071             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10072          %}
 10073   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10074               Opcode(0xD9), Opcode(0xC9),   // fxch
 10075               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10077   ins_pipe( pipe_slow );
 10078 %}
 10080 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10081   predicate (UseSSE>=2);
 10082   effect(KILL cr);
 10083   // The source and result Double operands in XMM registers
 10084   match(Set dst (LogD src));
 10085   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10086   // fyl2x        ; compute log_e(2) * log_2(x)
 10087   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10088             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10089          %}
 10090   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10091               Push_SrcD(src),
 10092               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10093               Push_ResultD(dst));
 10094   ins_pipe( pipe_slow );
 10095 %}
 10097 //-------------Float Instructions-------------------------------
 10098 // Float Math
 10100 // Code for float compare:
 10101 //     fcompp();
 10102 //     fwait(); fnstsw_ax();
 10103 //     sahf();
 10104 //     movl(dst, unordered_result);
 10105 //     jcc(Assembler::parity, exit);
 10106 //     movl(dst, less_result);
 10107 //     jcc(Assembler::below, exit);
 10108 //     movl(dst, equal_result);
 10109 //     jcc(Assembler::equal, exit);
 10110 //     movl(dst, greater_result);
 10111 //   exit:
 10113 // P6 version of float compare, sets condition codes in EFLAGS
 10114 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10115   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10116   match(Set cr (CmpF src1 src2));
 10117   effect(KILL rax);
 10118   ins_cost(150);
 10119   format %{ "FLD    $src1\n\t"
 10120             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10121             "JNP    exit\n\t"
 10122             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10123             "SAHF\n"
 10124      "exit:\tNOP               // avoid branch to branch" %}
 10125   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10126   ins_encode( Push_Reg_DPR(src1),
 10127               OpcP, RegOpc(src2),
 10128               cmpF_P6_fixup );
 10129   ins_pipe( pipe_slow );
 10130 %}
 10132 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10133   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10134   match(Set cr (CmpF src1 src2));
 10135   ins_cost(100);
 10136   format %{ "FLD    $src1\n\t"
 10137             "FUCOMIP ST,$src2  // P6 instruction" %}
 10138   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10139   ins_encode( Push_Reg_DPR(src1),
 10140               OpcP, RegOpc(src2));
 10141   ins_pipe( pipe_slow );
 10142 %}
 10145 // Compare & branch
 10146 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10147   predicate(UseSSE == 0);
 10148   match(Set cr (CmpF src1 src2));
 10149   effect(KILL rax);
 10150   ins_cost(200);
 10151   format %{ "FLD    $src1\n\t"
 10152             "FCOMp  $src2\n\t"
 10153             "FNSTSW AX\n\t"
 10154             "TEST   AX,0x400\n\t"
 10155             "JZ,s   flags\n\t"
 10156             "MOV    AH,1\t# unordered treat as LT\n"
 10157     "flags:\tSAHF" %}
 10158   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10159   ins_encode( Push_Reg_DPR(src1),
 10160               OpcP, RegOpc(src2),
 10161               fpu_flags);
 10162   ins_pipe( pipe_slow );
 10163 %}
 10165 // Compare vs zero into -1,0,1
 10166 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10167   predicate(UseSSE == 0);
 10168   match(Set dst (CmpF3 src1 zero));
 10169   effect(KILL cr, KILL rax);
 10170   ins_cost(280);
 10171   format %{ "FTSTF  $dst,$src1" %}
 10172   opcode(0xE4, 0xD9);
 10173   ins_encode( Push_Reg_DPR(src1),
 10174               OpcS, OpcP, PopFPU,
 10175               CmpF_Result(dst));
 10176   ins_pipe( pipe_slow );
 10177 %}
 10179 // Compare into -1,0,1
 10180 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10181   predicate(UseSSE == 0);
 10182   match(Set dst (CmpF3 src1 src2));
 10183   effect(KILL cr, KILL rax);
 10184   ins_cost(300);
 10185   format %{ "FCMPF  $dst,$src1,$src2" %}
 10186   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10187   ins_encode( Push_Reg_DPR(src1),
 10188               OpcP, RegOpc(src2),
 10189               CmpF_Result(dst));
 10190   ins_pipe( pipe_slow );
 10191 %}
 10193 // float compare and set condition codes in EFLAGS by XMM regs
 10194 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10195   predicate(UseSSE>=1);
 10196   match(Set cr (CmpF src1 src2));
 10197   ins_cost(145);
 10198   format %{ "UCOMISS $src1,$src2\n\t"
 10199             "JNP,s   exit\n\t"
 10200             "PUSHF\t# saw NaN, set CF\n\t"
 10201             "AND     [rsp], #0xffffff2b\n\t"
 10202             "POPF\n"
 10203     "exit:" %}
 10204   ins_encode %{
 10205     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10206     emit_cmpfp_fixup(_masm);
 10207   %}
 10208   ins_pipe( pipe_slow );
 10209 %}
 10211 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10212   predicate(UseSSE>=1);
 10213   match(Set cr (CmpF src1 src2));
 10214   ins_cost(100);
 10215   format %{ "UCOMISS $src1,$src2" %}
 10216   ins_encode %{
 10217     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10218   %}
 10219   ins_pipe( pipe_slow );
 10220 %}
 10222 // float compare and set condition codes in EFLAGS by XMM regs
 10223 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10224   predicate(UseSSE>=1);
 10225   match(Set cr (CmpF src1 (LoadF src2)));
 10226   ins_cost(165);
 10227   format %{ "UCOMISS $src1,$src2\n\t"
 10228             "JNP,s   exit\n\t"
 10229             "PUSHF\t# saw NaN, set CF\n\t"
 10230             "AND     [rsp], #0xffffff2b\n\t"
 10231             "POPF\n"
 10232     "exit:" %}
 10233   ins_encode %{
 10234     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10235     emit_cmpfp_fixup(_masm);
 10236   %}
 10237   ins_pipe( pipe_slow );
 10238 %}
 10240 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10241   predicate(UseSSE>=1);
 10242   match(Set cr (CmpF src1 (LoadF src2)));
 10243   ins_cost(100);
 10244   format %{ "UCOMISS $src1,$src2" %}
 10245   ins_encode %{
 10246     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10247   %}
 10248   ins_pipe( pipe_slow );
 10249 %}
 10251 // Compare into -1,0,1 in XMM
 10252 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10253   predicate(UseSSE>=1);
 10254   match(Set dst (CmpF3 src1 src2));
 10255   effect(KILL cr);
 10256   ins_cost(255);
 10257   format %{ "UCOMISS $src1, $src2\n\t"
 10258             "MOV     $dst, #-1\n\t"
 10259             "JP,s    done\n\t"
 10260             "JB,s    done\n\t"
 10261             "SETNE   $dst\n\t"
 10262             "MOVZB   $dst, $dst\n"
 10263     "done:" %}
 10264   ins_encode %{
 10265     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10266     emit_cmpfp3(_masm, $dst$$Register);
 10267   %}
 10268   ins_pipe( pipe_slow );
 10269 %}
 10271 // Compare into -1,0,1 in XMM and memory
 10272 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10273   predicate(UseSSE>=1);
 10274   match(Set dst (CmpF3 src1 (LoadF src2)));
 10275   effect(KILL cr);
 10276   ins_cost(275);
 10277   format %{ "UCOMISS $src1, $src2\n\t"
 10278             "MOV     $dst, #-1\n\t"
 10279             "JP,s    done\n\t"
 10280             "JB,s    done\n\t"
 10281             "SETNE   $dst\n\t"
 10282             "MOVZB   $dst, $dst\n"
 10283     "done:" %}
 10284   ins_encode %{
 10285     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10286     emit_cmpfp3(_masm, $dst$$Register);
 10287   %}
 10288   ins_pipe( pipe_slow );
 10289 %}
 10291 // Spill to obtain 24-bit precision
 10292 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10293   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10294   match(Set dst (SubF src1 src2));
 10296   format %{ "FSUB   $dst,$src1 - $src2" %}
 10297   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10298   ins_encode( Push_Reg_FPR(src1),
 10299               OpcReg_FPR(src2),
 10300               Pop_Mem_FPR(dst) );
 10301   ins_pipe( fpu_mem_reg_reg );
 10302 %}
 10303 //
 10304 // This instruction does not round to 24-bits
 10305 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10306   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10307   match(Set dst (SubF dst src));
 10309   format %{ "FSUB   $dst,$src" %}
 10310   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10311   ins_encode( Push_Reg_FPR(src),
 10312               OpcP, RegOpc(dst) );
 10313   ins_pipe( fpu_reg_reg );
 10314 %}
 10316 // Spill to obtain 24-bit precision
 10317 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10318   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10319   match(Set dst (AddF src1 src2));
 10321   format %{ "FADD   $dst,$src1,$src2" %}
 10322   opcode(0xD8, 0x0); /* D8 C0+i */
 10323   ins_encode( Push_Reg_FPR(src2),
 10324               OpcReg_FPR(src1),
 10325               Pop_Mem_FPR(dst) );
 10326   ins_pipe( fpu_mem_reg_reg );
 10327 %}
 10328 //
 10329 // This instruction does not round to 24-bits
 10330 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10331   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10332   match(Set dst (AddF dst src));
 10334   format %{ "FLD    $src\n\t"
 10335             "FADDp  $dst,ST" %}
 10336   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10337   ins_encode( Push_Reg_FPR(src),
 10338               OpcP, RegOpc(dst) );
 10339   ins_pipe( fpu_reg_reg );
 10340 %}
 10342 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10343   predicate(UseSSE==0);
 10344   match(Set dst (AbsF src));
 10345   ins_cost(100);
 10346   format %{ "FABS" %}
 10347   opcode(0xE1, 0xD9);
 10348   ins_encode( OpcS, OpcP );
 10349   ins_pipe( fpu_reg_reg );
 10350 %}
 10352 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10353   predicate(UseSSE==0);
 10354   match(Set dst (NegF src));
 10355   ins_cost(100);
 10356   format %{ "FCHS" %}
 10357   opcode(0xE0, 0xD9);
 10358   ins_encode( OpcS, OpcP );
 10359   ins_pipe( fpu_reg_reg );
 10360 %}
 10362 // Cisc-alternate to addFPR_reg
 10363 // Spill to obtain 24-bit precision
 10364 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10365   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10366   match(Set dst (AddF src1 (LoadF src2)));
 10368   format %{ "FLD    $src2\n\t"
 10369             "FADD   ST,$src1\n\t"
 10370             "FSTP_S $dst" %}
 10371   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10372   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10373               OpcReg_FPR(src1),
 10374               Pop_Mem_FPR(dst) );
 10375   ins_pipe( fpu_mem_reg_mem );
 10376 %}
 10377 //
 10378 // Cisc-alternate to addFPR_reg
 10379 // This instruction does not round to 24-bits
 10380 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10381   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10382   match(Set dst (AddF dst (LoadF src)));
 10384   format %{ "FADD   $dst,$src" %}
 10385   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10386   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10387               OpcP, RegOpc(dst) );
 10388   ins_pipe( fpu_reg_mem );
 10389 %}
 10391 // // Following two instructions for _222_mpegaudio
 10392 // Spill to obtain 24-bit precision
 10393 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10394   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10395   match(Set dst (AddF src1 src2));
 10397   format %{ "FADD   $dst,$src1,$src2" %}
 10398   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10399   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10400               OpcReg_FPR(src2),
 10401               Pop_Mem_FPR(dst) );
 10402   ins_pipe( fpu_mem_reg_mem );
 10403 %}
 10405 // Cisc-spill variant
 10406 // Spill to obtain 24-bit precision
 10407 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10408   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10409   match(Set dst (AddF src1 (LoadF src2)));
 10411   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10412   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10413   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10414               set_instruction_start,
 10415               OpcP, RMopc_Mem(secondary,src1),
 10416               Pop_Mem_FPR(dst) );
 10417   ins_pipe( fpu_mem_mem_mem );
 10418 %}
 10420 // Spill to obtain 24-bit precision
 10421 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10422   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10423   match(Set dst (AddF src1 src2));
 10425   format %{ "FADD   $dst,$src1,$src2" %}
 10426   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10427   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10428               set_instruction_start,
 10429               OpcP, RMopc_Mem(secondary,src1),
 10430               Pop_Mem_FPR(dst) );
 10431   ins_pipe( fpu_mem_mem_mem );
 10432 %}
 10435 // Spill to obtain 24-bit precision
 10436 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10437   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10438   match(Set dst (AddF src con));
 10439   format %{ "FLD    $src\n\t"
 10440             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10441             "FSTP_S $dst"  %}
 10442   ins_encode %{
 10443     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10444     __ fadd_s($constantaddress($con));
 10445     __ fstp_s(Address(rsp, $dst$$disp));
 10446   %}
 10447   ins_pipe(fpu_mem_reg_con);
 10448 %}
 10449 //
 10450 // This instruction does not round to 24-bits
 10451 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10452   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10453   match(Set dst (AddF src con));
 10454   format %{ "FLD    $src\n\t"
 10455             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10456             "FSTP   $dst"  %}
 10457   ins_encode %{
 10458     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10459     __ fadd_s($constantaddress($con));
 10460     __ fstp_d($dst$$reg);
 10461   %}
 10462   ins_pipe(fpu_reg_reg_con);
 10463 %}
 10465 // Spill to obtain 24-bit precision
 10466 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10467   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10468   match(Set dst (MulF src1 src2));
 10470   format %{ "FLD    $src1\n\t"
 10471             "FMUL   $src2\n\t"
 10472             "FSTP_S $dst"  %}
 10473   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10474   ins_encode( Push_Reg_FPR(src1),
 10475               OpcReg_FPR(src2),
 10476               Pop_Mem_FPR(dst) );
 10477   ins_pipe( fpu_mem_reg_reg );
 10478 %}
 10479 //
 10480 // This instruction does not round to 24-bits
 10481 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10482   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10483   match(Set dst (MulF src1 src2));
 10485   format %{ "FLD    $src1\n\t"
 10486             "FMUL   $src2\n\t"
 10487             "FSTP_S $dst"  %}
 10488   opcode(0xD8, 0x1); /* D8 C8+i */
 10489   ins_encode( Push_Reg_FPR(src2),
 10490               OpcReg_FPR(src1),
 10491               Pop_Reg_FPR(dst) );
 10492   ins_pipe( fpu_reg_reg_reg );
 10493 %}
 10496 // Spill to obtain 24-bit precision
 10497 // Cisc-alternate to reg-reg multiply
 10498 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10499   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10500   match(Set dst (MulF src1 (LoadF src2)));
 10502   format %{ "FLD_S  $src2\n\t"
 10503             "FMUL   $src1\n\t"
 10504             "FSTP_S $dst"  %}
 10505   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10506   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10507               OpcReg_FPR(src1),
 10508               Pop_Mem_FPR(dst) );
 10509   ins_pipe( fpu_mem_reg_mem );
 10510 %}
 10511 //
 10512 // This instruction does not round to 24-bits
 10513 // Cisc-alternate to reg-reg multiply
 10514 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10515   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10516   match(Set dst (MulF src1 (LoadF src2)));
 10518   format %{ "FMUL   $dst,$src1,$src2" %}
 10519   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10520   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10521               OpcReg_FPR(src1),
 10522               Pop_Reg_FPR(dst) );
 10523   ins_pipe( fpu_reg_reg_mem );
 10524 %}
 10526 // Spill to obtain 24-bit precision
 10527 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10528   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10529   match(Set dst (MulF src1 src2));
 10531   format %{ "FMUL   $dst,$src1,$src2" %}
 10532   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10533   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10534               set_instruction_start,
 10535               OpcP, RMopc_Mem(secondary,src1),
 10536               Pop_Mem_FPR(dst) );
 10537   ins_pipe( fpu_mem_mem_mem );
 10538 %}
 10540 // Spill to obtain 24-bit precision
 10541 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10542   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10543   match(Set dst (MulF src con));
 10545   format %{ "FLD    $src\n\t"
 10546             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10547             "FSTP_S $dst"  %}
 10548   ins_encode %{
 10549     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10550     __ fmul_s($constantaddress($con));
 10551     __ fstp_s(Address(rsp, $dst$$disp));
 10552   %}
 10553   ins_pipe(fpu_mem_reg_con);
 10554 %}
 10555 //
 10556 // This instruction does not round to 24-bits
 10557 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10558   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10559   match(Set dst (MulF src con));
 10561   format %{ "FLD    $src\n\t"
 10562             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10563             "FSTP   $dst"  %}
 10564   ins_encode %{
 10565     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10566     __ fmul_s($constantaddress($con));
 10567     __ fstp_d($dst$$reg);
 10568   %}
 10569   ins_pipe(fpu_reg_reg_con);
 10570 %}
 10573 //
 10574 // MACRO1 -- subsume unshared load into mulFPR
 10575 // This instruction does not round to 24-bits
 10576 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10577   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10578   match(Set dst (MulF (LoadF mem1) src));
 10580   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10581             "FMUL   ST,$src\n\t"
 10582             "FSTP   $dst" %}
 10583   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10584   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10585               OpcReg_FPR(src),
 10586               Pop_Reg_FPR(dst) );
 10587   ins_pipe( fpu_reg_reg_mem );
 10588 %}
 10589 //
 10590 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10591 // This instruction does not round to 24-bits
 10592 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10593   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10594   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10595   ins_cost(95);
 10597   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10598             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10599             "FADD   ST,$src2\n\t"
 10600             "FSTP   $dst" %}
 10601   opcode(0xD9); /* LoadF D9 /0 */
 10602   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10603               FMul_ST_reg(src1),
 10604               FAdd_ST_reg(src2),
 10605               Pop_Reg_FPR(dst) );
 10606   ins_pipe( fpu_reg_mem_reg_reg );
 10607 %}
 10609 // MACRO3 -- addFPR a mulFPR
 10610 // This instruction does not round to 24-bits.  It is a '2-address'
 10611 // instruction in that the result goes back to src2.  This eliminates
 10612 // a move from the macro; possibly the register allocator will have
 10613 // to add it back (and maybe not).
 10614 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10615   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10616   match(Set src2 (AddF (MulF src0 src1) src2));
 10618   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10619             "FMUL   ST,$src1\n\t"
 10620             "FADDP  $src2,ST" %}
 10621   opcode(0xD9); /* LoadF D9 /0 */
 10622   ins_encode( Push_Reg_FPR(src0),
 10623               FMul_ST_reg(src1),
 10624               FAddP_reg_ST(src2) );
 10625   ins_pipe( fpu_reg_reg_reg );
 10626 %}
 10628 // MACRO4 -- divFPR subFPR
 10629 // This instruction does not round to 24-bits
 10630 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10631   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10632   match(Set dst (DivF (SubF src2 src1) src3));
 10634   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10635             "FSUB   ST,$src1\n\t"
 10636             "FDIV   ST,$src3\n\t"
 10637             "FSTP  $dst" %}
 10638   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10639   ins_encode( Push_Reg_FPR(src2),
 10640               subFPR_divFPR_encode(src1,src3),
 10641               Pop_Reg_FPR(dst) );
 10642   ins_pipe( fpu_reg_reg_reg_reg );
 10643 %}
 10645 // Spill to obtain 24-bit precision
 10646 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10647   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10648   match(Set dst (DivF src1 src2));
 10650   format %{ "FDIV   $dst,$src1,$src2" %}
 10651   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10652   ins_encode( Push_Reg_FPR(src1),
 10653               OpcReg_FPR(src2),
 10654               Pop_Mem_FPR(dst) );
 10655   ins_pipe( fpu_mem_reg_reg );
 10656 %}
 10657 //
 10658 // This instruction does not round to 24-bits
 10659 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10660   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10661   match(Set dst (DivF dst src));
 10663   format %{ "FDIV   $dst,$src" %}
 10664   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10665   ins_encode( Push_Reg_FPR(src),
 10666               OpcP, RegOpc(dst) );
 10667   ins_pipe( fpu_reg_reg );
 10668 %}
 10671 // Spill to obtain 24-bit precision
 10672 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10673   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10674   match(Set dst (ModF src1 src2));
 10675   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10677   format %{ "FMOD   $dst,$src1,$src2" %}
 10678   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10679               emitModDPR(),
 10680               Push_Result_Mod_DPR(src2),
 10681               Pop_Mem_FPR(dst));
 10682   ins_pipe( pipe_slow );
 10683 %}
 10684 //
 10685 // This instruction does not round to 24-bits
 10686 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10687   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10688   match(Set dst (ModF dst src));
 10689   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10691   format %{ "FMOD   $dst,$src" %}
 10692   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10693               emitModDPR(),
 10694               Push_Result_Mod_DPR(src),
 10695               Pop_Reg_FPR(dst));
 10696   ins_pipe( pipe_slow );
 10697 %}
 10699 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10700   predicate(UseSSE>=1);
 10701   match(Set dst (ModF src0 src1));
 10702   effect(KILL rax, KILL cr);
 10703   format %{ "SUB    ESP,4\t # FMOD\n"
 10704           "\tMOVSS  [ESP+0],$src1\n"
 10705           "\tFLD_S  [ESP+0]\n"
 10706           "\tMOVSS  [ESP+0],$src0\n"
 10707           "\tFLD_S  [ESP+0]\n"
 10708      "loop:\tFPREM\n"
 10709           "\tFWAIT\n"
 10710           "\tFNSTSW AX\n"
 10711           "\tSAHF\n"
 10712           "\tJP     loop\n"
 10713           "\tFSTP_S [ESP+0]\n"
 10714           "\tMOVSS  $dst,[ESP+0]\n"
 10715           "\tADD    ESP,4\n"
 10716           "\tFSTP   ST0\t # Restore FPU Stack"
 10717     %}
 10718   ins_cost(250);
 10719   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10720   ins_pipe( pipe_slow );
 10721 %}
 10724 //----------Arithmetic Conversion Instructions---------------------------------
 10725 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10727 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10728   predicate(UseSSE==0);
 10729   match(Set dst (RoundFloat src));
 10730   ins_cost(125);
 10731   format %{ "FST_S  $dst,$src\t# F-round" %}
 10732   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10733   ins_pipe( fpu_mem_reg );
 10734 %}
 10736 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10737   predicate(UseSSE<=1);
 10738   match(Set dst (RoundDouble src));
 10739   ins_cost(125);
 10740   format %{ "FST_D  $dst,$src\t# D-round" %}
 10741   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10742   ins_pipe( fpu_mem_reg );
 10743 %}
 10745 // Force rounding to 24-bit precision and 6-bit exponent
 10746 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10747   predicate(UseSSE==0);
 10748   match(Set dst (ConvD2F src));
 10749   format %{ "FST_S  $dst,$src\t# F-round" %}
 10750   expand %{
 10751     roundFloat_mem_reg(dst,src);
 10752   %}
 10753 %}
 10755 // Force rounding to 24-bit precision and 6-bit exponent
 10756 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10757   predicate(UseSSE==1);
 10758   match(Set dst (ConvD2F src));
 10759   effect( KILL cr );
 10760   format %{ "SUB    ESP,4\n\t"
 10761             "FST_S  [ESP],$src\t# F-round\n\t"
 10762             "MOVSS  $dst,[ESP]\n\t"
 10763             "ADD ESP,4" %}
 10764   ins_encode %{
 10765     __ subptr(rsp, 4);
 10766     if ($src$$reg != FPR1L_enc) {
 10767       __ fld_s($src$$reg-1);
 10768       __ fstp_s(Address(rsp, 0));
 10769     } else {
 10770       __ fst_s(Address(rsp, 0));
 10772     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10773     __ addptr(rsp, 4);
 10774   %}
 10775   ins_pipe( pipe_slow );
 10776 %}
 10778 // Force rounding double precision to single precision
 10779 instruct convD2F_reg(regF dst, regD src) %{
 10780   predicate(UseSSE>=2);
 10781   match(Set dst (ConvD2F src));
 10782   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10783   ins_encode %{
 10784     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10785   %}
 10786   ins_pipe( pipe_slow );
 10787 %}
 10789 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10790   predicate(UseSSE==0);
 10791   match(Set dst (ConvF2D src));
 10792   format %{ "FST_S  $dst,$src\t# D-round" %}
 10793   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10794   ins_pipe( fpu_reg_reg );
 10795 %}
 10797 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10798   predicate(UseSSE==1);
 10799   match(Set dst (ConvF2D src));
 10800   format %{ "FST_D  $dst,$src\t# D-round" %}
 10801   expand %{
 10802     roundDouble_mem_reg(dst,src);
 10803   %}
 10804 %}
 10806 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10807   predicate(UseSSE==1);
 10808   match(Set dst (ConvF2D src));
 10809   effect( KILL cr );
 10810   format %{ "SUB    ESP,4\n\t"
 10811             "MOVSS  [ESP] $src\n\t"
 10812             "FLD_S  [ESP]\n\t"
 10813             "ADD    ESP,4\n\t"
 10814             "FSTP   $dst\t# D-round" %}
 10815   ins_encode %{
 10816     __ subptr(rsp, 4);
 10817     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10818     __ fld_s(Address(rsp, 0));
 10819     __ addptr(rsp, 4);
 10820     __ fstp_d($dst$$reg);
 10821   %}
 10822   ins_pipe( pipe_slow );
 10823 %}
 10825 instruct convF2D_reg(regD dst, regF src) %{
 10826   predicate(UseSSE>=2);
 10827   match(Set dst (ConvF2D src));
 10828   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10829   ins_encode %{
 10830     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10831   %}
 10832   ins_pipe( pipe_slow );
 10833 %}
 10835 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10836 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10837   predicate(UseSSE<=1);
 10838   match(Set dst (ConvD2I src));
 10839   effect( KILL tmp, KILL cr );
 10840   format %{ "FLD    $src\t# Convert double to int \n\t"
 10841             "FLDCW  trunc mode\n\t"
 10842             "SUB    ESP,4\n\t"
 10843             "FISTp  [ESP + #0]\n\t"
 10844             "FLDCW  std/24-bit mode\n\t"
 10845             "POP    EAX\n\t"
 10846             "CMP    EAX,0x80000000\n\t"
 10847             "JNE,s  fast\n\t"
 10848             "FLD_D  $src\n\t"
 10849             "CALL   d2i_wrapper\n"
 10850       "fast:" %}
 10851   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10852   ins_pipe( pipe_slow );
 10853 %}
 10855 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10856 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10857   predicate(UseSSE>=2);
 10858   match(Set dst (ConvD2I src));
 10859   effect( KILL tmp, KILL cr );
 10860   format %{ "CVTTSD2SI $dst, $src\n\t"
 10861             "CMP    $dst,0x80000000\n\t"
 10862             "JNE,s  fast\n\t"
 10863             "SUB    ESP, 8\n\t"
 10864             "MOVSD  [ESP], $src\n\t"
 10865             "FLD_D  [ESP]\n\t"
 10866             "ADD    ESP, 8\n\t"
 10867             "CALL   d2i_wrapper\n"
 10868       "fast:" %}
 10869   ins_encode %{
 10870     Label fast;
 10871     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10872     __ cmpl($dst$$Register, 0x80000000);
 10873     __ jccb(Assembler::notEqual, fast);
 10874     __ subptr(rsp, 8);
 10875     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10876     __ fld_d(Address(rsp, 0));
 10877     __ addptr(rsp, 8);
 10878     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10879     __ bind(fast);
 10880   %}
 10881   ins_pipe( pipe_slow );
 10882 %}
 10884 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10885   predicate(UseSSE<=1);
 10886   match(Set dst (ConvD2L src));
 10887   effect( KILL cr );
 10888   format %{ "FLD    $src\t# Convert double to long\n\t"
 10889             "FLDCW  trunc mode\n\t"
 10890             "SUB    ESP,8\n\t"
 10891             "FISTp  [ESP + #0]\n\t"
 10892             "FLDCW  std/24-bit mode\n\t"
 10893             "POP    EAX\n\t"
 10894             "POP    EDX\n\t"
 10895             "CMP    EDX,0x80000000\n\t"
 10896             "JNE,s  fast\n\t"
 10897             "TEST   EAX,EAX\n\t"
 10898             "JNE,s  fast\n\t"
 10899             "FLD    $src\n\t"
 10900             "CALL   d2l_wrapper\n"
 10901       "fast:" %}
 10902   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10903   ins_pipe( pipe_slow );
 10904 %}
 10906 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10907 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10908   predicate (UseSSE>=2);
 10909   match(Set dst (ConvD2L src));
 10910   effect( KILL cr );
 10911   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10912             "MOVSD  [ESP],$src\n\t"
 10913             "FLD_D  [ESP]\n\t"
 10914             "FLDCW  trunc mode\n\t"
 10915             "FISTp  [ESP + #0]\n\t"
 10916             "FLDCW  std/24-bit mode\n\t"
 10917             "POP    EAX\n\t"
 10918             "POP    EDX\n\t"
 10919             "CMP    EDX,0x80000000\n\t"
 10920             "JNE,s  fast\n\t"
 10921             "TEST   EAX,EAX\n\t"
 10922             "JNE,s  fast\n\t"
 10923             "SUB    ESP,8\n\t"
 10924             "MOVSD  [ESP],$src\n\t"
 10925             "FLD_D  [ESP]\n\t"
 10926             "ADD    ESP,8\n\t"
 10927             "CALL   d2l_wrapper\n"
 10928       "fast:" %}
 10929   ins_encode %{
 10930     Label fast;
 10931     __ subptr(rsp, 8);
 10932     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10933     __ fld_d(Address(rsp, 0));
 10934     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10935     __ fistp_d(Address(rsp, 0));
 10936     // Restore the rounding mode, mask the exception
 10937     if (Compile::current()->in_24_bit_fp_mode()) {
 10938       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10939     } else {
 10940       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10942     // Load the converted long, adjust CPU stack
 10943     __ pop(rax);
 10944     __ pop(rdx);
 10945     __ cmpl(rdx, 0x80000000);
 10946     __ jccb(Assembler::notEqual, fast);
 10947     __ testl(rax, rax);
 10948     __ jccb(Assembler::notEqual, fast);
 10949     __ subptr(rsp, 8);
 10950     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10951     __ fld_d(Address(rsp, 0));
 10952     __ addptr(rsp, 8);
 10953     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10954     __ bind(fast);
 10955   %}
 10956   ins_pipe( pipe_slow );
 10957 %}
 10959 // Convert a double to an int.  Java semantics require we do complex
 10960 // manglations in the corner cases.  So we set the rounding mode to
 10961 // 'zero', store the darned double down as an int, and reset the
 10962 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10963 // if we would overflow or converted a NAN; we check for this and
 10964 // and go the slow path if needed.
 10965 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10966   predicate(UseSSE==0);
 10967   match(Set dst (ConvF2I src));
 10968   effect( KILL tmp, KILL cr );
 10969   format %{ "FLD    $src\t# Convert float to int \n\t"
 10970             "FLDCW  trunc mode\n\t"
 10971             "SUB    ESP,4\n\t"
 10972             "FISTp  [ESP + #0]\n\t"
 10973             "FLDCW  std/24-bit mode\n\t"
 10974             "POP    EAX\n\t"
 10975             "CMP    EAX,0x80000000\n\t"
 10976             "JNE,s  fast\n\t"
 10977             "FLD    $src\n\t"
 10978             "CALL   d2i_wrapper\n"
 10979       "fast:" %}
 10980   // DPR2I_encoding works for FPR2I
 10981   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10982   ins_pipe( pipe_slow );
 10983 %}
 10985 // Convert a float in xmm to an int reg.
 10986 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 10987   predicate(UseSSE>=1);
 10988   match(Set dst (ConvF2I src));
 10989   effect( KILL tmp, KILL cr );
 10990   format %{ "CVTTSS2SI $dst, $src\n\t"
 10991             "CMP    $dst,0x80000000\n\t"
 10992             "JNE,s  fast\n\t"
 10993             "SUB    ESP, 4\n\t"
 10994             "MOVSS  [ESP], $src\n\t"
 10995             "FLD    [ESP]\n\t"
 10996             "ADD    ESP, 4\n\t"
 10997             "CALL   d2i_wrapper\n"
 10998       "fast:" %}
 10999   ins_encode %{
 11000     Label fast;
 11001     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11002     __ cmpl($dst$$Register, 0x80000000);
 11003     __ jccb(Assembler::notEqual, fast);
 11004     __ subptr(rsp, 4);
 11005     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11006     __ fld_s(Address(rsp, 0));
 11007     __ addptr(rsp, 4);
 11008     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11009     __ bind(fast);
 11010   %}
 11011   ins_pipe( pipe_slow );
 11012 %}
 11014 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11015   predicate(UseSSE==0);
 11016   match(Set dst (ConvF2L src));
 11017   effect( KILL cr );
 11018   format %{ "FLD    $src\t# Convert float to long\n\t"
 11019             "FLDCW  trunc mode\n\t"
 11020             "SUB    ESP,8\n\t"
 11021             "FISTp  [ESP + #0]\n\t"
 11022             "FLDCW  std/24-bit mode\n\t"
 11023             "POP    EAX\n\t"
 11024             "POP    EDX\n\t"
 11025             "CMP    EDX,0x80000000\n\t"
 11026             "JNE,s  fast\n\t"
 11027             "TEST   EAX,EAX\n\t"
 11028             "JNE,s  fast\n\t"
 11029             "FLD    $src\n\t"
 11030             "CALL   d2l_wrapper\n"
 11031       "fast:" %}
 11032   // DPR2L_encoding works for FPR2L
 11033   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11034   ins_pipe( pipe_slow );
 11035 %}
 11037 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11038 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11039   predicate (UseSSE>=1);
 11040   match(Set dst (ConvF2L src));
 11041   effect( KILL cr );
 11042   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11043             "MOVSS  [ESP],$src\n\t"
 11044             "FLD_S  [ESP]\n\t"
 11045             "FLDCW  trunc mode\n\t"
 11046             "FISTp  [ESP + #0]\n\t"
 11047             "FLDCW  std/24-bit mode\n\t"
 11048             "POP    EAX\n\t"
 11049             "POP    EDX\n\t"
 11050             "CMP    EDX,0x80000000\n\t"
 11051             "JNE,s  fast\n\t"
 11052             "TEST   EAX,EAX\n\t"
 11053             "JNE,s  fast\n\t"
 11054             "SUB    ESP,4\t# Convert float to long\n\t"
 11055             "MOVSS  [ESP],$src\n\t"
 11056             "FLD_S  [ESP]\n\t"
 11057             "ADD    ESP,4\n\t"
 11058             "CALL   d2l_wrapper\n"
 11059       "fast:" %}
 11060   ins_encode %{
 11061     Label fast;
 11062     __ subptr(rsp, 8);
 11063     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11064     __ fld_s(Address(rsp, 0));
 11065     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11066     __ fistp_d(Address(rsp, 0));
 11067     // Restore the rounding mode, mask the exception
 11068     if (Compile::current()->in_24_bit_fp_mode()) {
 11069       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11070     } else {
 11071       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11073     // Load the converted long, adjust CPU stack
 11074     __ pop(rax);
 11075     __ pop(rdx);
 11076     __ cmpl(rdx, 0x80000000);
 11077     __ jccb(Assembler::notEqual, fast);
 11078     __ testl(rax, rax);
 11079     __ jccb(Assembler::notEqual, fast);
 11080     __ subptr(rsp, 4);
 11081     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11082     __ fld_s(Address(rsp, 0));
 11083     __ addptr(rsp, 4);
 11084     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11085     __ bind(fast);
 11086   %}
 11087   ins_pipe( pipe_slow );
 11088 %}
 11090 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11091   predicate( UseSSE<=1 );
 11092   match(Set dst (ConvI2D src));
 11093   format %{ "FILD   $src\n\t"
 11094             "FSTP   $dst" %}
 11095   opcode(0xDB, 0x0);  /* DB /0 */
 11096   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11097   ins_pipe( fpu_reg_mem );
 11098 %}
 11100 instruct convI2D_reg(regD dst, rRegI src) %{
 11101   predicate( UseSSE>=2 && !UseXmmI2D );
 11102   match(Set dst (ConvI2D src));
 11103   format %{ "CVTSI2SD $dst,$src" %}
 11104   ins_encode %{
 11105     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11106   %}
 11107   ins_pipe( pipe_slow );
 11108 %}
 11110 instruct convI2D_mem(regD dst, memory mem) %{
 11111   predicate( UseSSE>=2 );
 11112   match(Set dst (ConvI2D (LoadI mem)));
 11113   format %{ "CVTSI2SD $dst,$mem" %}
 11114   ins_encode %{
 11115     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11116   %}
 11117   ins_pipe( pipe_slow );
 11118 %}
 11120 instruct convXI2D_reg(regD dst, rRegI src)
 11121 %{
 11122   predicate( UseSSE>=2 && UseXmmI2D );
 11123   match(Set dst (ConvI2D src));
 11125   format %{ "MOVD  $dst,$src\n\t"
 11126             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11127   ins_encode %{
 11128     __ movdl($dst$$XMMRegister, $src$$Register);
 11129     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11130   %}
 11131   ins_pipe(pipe_slow); // XXX
 11132 %}
 11134 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11135   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11136   match(Set dst (ConvI2D (LoadI mem)));
 11137   format %{ "FILD   $mem\n\t"
 11138             "FSTP   $dst" %}
 11139   opcode(0xDB);      /* DB /0 */
 11140   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11141               Pop_Reg_DPR(dst));
 11142   ins_pipe( fpu_reg_mem );
 11143 %}
 11145 // Convert a byte to a float; no rounding step needed.
 11146 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11147   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11148   match(Set dst (ConvI2F src));
 11149   format %{ "FILD   $src\n\t"
 11150             "FSTP   $dst" %}
 11152   opcode(0xDB, 0x0);  /* DB /0 */
 11153   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11154   ins_pipe( fpu_reg_mem );
 11155 %}
 11157 // In 24-bit mode, force exponent rounding by storing back out
 11158 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11159   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11160   match(Set dst (ConvI2F src));
 11161   ins_cost(200);
 11162   format %{ "FILD   $src\n\t"
 11163             "FSTP_S $dst" %}
 11164   opcode(0xDB, 0x0);  /* DB /0 */
 11165   ins_encode( Push_Mem_I(src),
 11166               Pop_Mem_FPR(dst));
 11167   ins_pipe( fpu_mem_mem );
 11168 %}
 11170 // In 24-bit mode, force exponent rounding by storing back out
 11171 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11172   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11173   match(Set dst (ConvI2F (LoadI mem)));
 11174   ins_cost(200);
 11175   format %{ "FILD   $mem\n\t"
 11176             "FSTP_S $dst" %}
 11177   opcode(0xDB);  /* DB /0 */
 11178   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11179               Pop_Mem_FPR(dst));
 11180   ins_pipe( fpu_mem_mem );
 11181 %}
 11183 // This instruction does not round to 24-bits
 11184 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11185   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11186   match(Set dst (ConvI2F src));
 11187   format %{ "FILD   $src\n\t"
 11188             "FSTP   $dst" %}
 11189   opcode(0xDB, 0x0);  /* DB /0 */
 11190   ins_encode( Push_Mem_I(src),
 11191               Pop_Reg_FPR(dst));
 11192   ins_pipe( fpu_reg_mem );
 11193 %}
 11195 // This instruction does not round to 24-bits
 11196 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11197   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11198   match(Set dst (ConvI2F (LoadI mem)));
 11199   format %{ "FILD   $mem\n\t"
 11200             "FSTP   $dst" %}
 11201   opcode(0xDB);      /* DB /0 */
 11202   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11203               Pop_Reg_FPR(dst));
 11204   ins_pipe( fpu_reg_mem );
 11205 %}
 11207 // Convert an int to a float in xmm; no rounding step needed.
 11208 instruct convI2F_reg(regF dst, rRegI src) %{
 11209   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11210   match(Set dst (ConvI2F src));
 11211   format %{ "CVTSI2SS $dst, $src" %}
 11212   ins_encode %{
 11213     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11214   %}
 11215   ins_pipe( pipe_slow );
 11216 %}
 11218  instruct convXI2F_reg(regF dst, rRegI src)
 11219 %{
 11220   predicate( UseSSE>=2 && UseXmmI2F );
 11221   match(Set dst (ConvI2F src));
 11223   format %{ "MOVD  $dst,$src\n\t"
 11224             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11225   ins_encode %{
 11226     __ movdl($dst$$XMMRegister, $src$$Register);
 11227     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11228   %}
 11229   ins_pipe(pipe_slow); // XXX
 11230 %}
 11232 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11233   match(Set dst (ConvI2L src));
 11234   effect(KILL cr);
 11235   ins_cost(375);
 11236   format %{ "MOV    $dst.lo,$src\n\t"
 11237             "MOV    $dst.hi,$src\n\t"
 11238             "SAR    $dst.hi,31" %}
 11239   ins_encode(convert_int_long(dst,src));
 11240   ins_pipe( ialu_reg_reg_long );
 11241 %}
 11243 // Zero-extend convert int to long
 11244 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11245   match(Set dst (AndL (ConvI2L src) mask) );
 11246   effect( KILL flags );
 11247   ins_cost(250);
 11248   format %{ "MOV    $dst.lo,$src\n\t"
 11249             "XOR    $dst.hi,$dst.hi" %}
 11250   opcode(0x33); // XOR
 11251   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11252   ins_pipe( ialu_reg_reg_long );
 11253 %}
 11255 // Zero-extend long
 11256 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11257   match(Set dst (AndL src mask) );
 11258   effect( KILL flags );
 11259   ins_cost(250);
 11260   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11261             "XOR    $dst.hi,$dst.hi\n\t" %}
 11262   opcode(0x33); // XOR
 11263   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11264   ins_pipe( ialu_reg_reg_long );
 11265 %}
 11267 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11268   predicate (UseSSE<=1);
 11269   match(Set dst (ConvL2D src));
 11270   effect( KILL cr );
 11271   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11272             "PUSH   $src.lo\n\t"
 11273             "FILD   ST,[ESP + #0]\n\t"
 11274             "ADD    ESP,8\n\t"
 11275             "FSTP_D $dst\t# D-round" %}
 11276   opcode(0xDF, 0x5);  /* DF /5 */
 11277   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11278   ins_pipe( pipe_slow );
 11279 %}
 11281 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11282   predicate (UseSSE>=2);
 11283   match(Set dst (ConvL2D src));
 11284   effect( KILL cr );
 11285   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11286             "PUSH   $src.lo\n\t"
 11287             "FILD_D [ESP]\n\t"
 11288             "FSTP_D [ESP]\n\t"
 11289             "MOVSD  $dst,[ESP]\n\t"
 11290             "ADD    ESP,8" %}
 11291   opcode(0xDF, 0x5);  /* DF /5 */
 11292   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11293   ins_pipe( pipe_slow );
 11294 %}
 11296 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11297   predicate (UseSSE>=1);
 11298   match(Set dst (ConvL2F src));
 11299   effect( KILL cr );
 11300   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11301             "PUSH   $src.lo\n\t"
 11302             "FILD_D [ESP]\n\t"
 11303             "FSTP_S [ESP]\n\t"
 11304             "MOVSS  $dst,[ESP]\n\t"
 11305             "ADD    ESP,8" %}
 11306   opcode(0xDF, 0x5);  /* DF /5 */
 11307   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11308   ins_pipe( pipe_slow );
 11309 %}
 11311 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11312   match(Set dst (ConvL2F src));
 11313   effect( KILL cr );
 11314   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11315             "PUSH   $src.lo\n\t"
 11316             "FILD   ST,[ESP + #0]\n\t"
 11317             "ADD    ESP,8\n\t"
 11318             "FSTP_S $dst\t# F-round" %}
 11319   opcode(0xDF, 0x5);  /* DF /5 */
 11320   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11321   ins_pipe( pipe_slow );
 11322 %}
 11324 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11325   match(Set dst (ConvL2I src));
 11326   effect( DEF dst, USE src );
 11327   format %{ "MOV    $dst,$src.lo" %}
 11328   ins_encode(enc_CopyL_Lo(dst,src));
 11329   ins_pipe( ialu_reg_reg );
 11330 %}
 11333 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11334   match(Set dst (MoveF2I src));
 11335   effect( DEF dst, USE src );
 11336   ins_cost(100);
 11337   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11338   ins_encode %{
 11339     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11340   %}
 11341   ins_pipe( ialu_reg_mem );
 11342 %}
 11344 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11345   predicate(UseSSE==0);
 11346   match(Set dst (MoveF2I src));
 11347   effect( DEF dst, USE src );
 11349   ins_cost(125);
 11350   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11351   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11352   ins_pipe( fpu_mem_reg );
 11353 %}
 11355 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11356   predicate(UseSSE>=1);
 11357   match(Set dst (MoveF2I src));
 11358   effect( DEF dst, USE src );
 11360   ins_cost(95);
 11361   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11362   ins_encode %{
 11363     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11364   %}
 11365   ins_pipe( pipe_slow );
 11366 %}
 11368 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11369   predicate(UseSSE>=2);
 11370   match(Set dst (MoveF2I src));
 11371   effect( DEF dst, USE src );
 11372   ins_cost(85);
 11373   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11374   ins_encode %{
 11375     __ movdl($dst$$Register, $src$$XMMRegister);
 11376   %}
 11377   ins_pipe( pipe_slow );
 11378 %}
 11380 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11381   match(Set dst (MoveI2F src));
 11382   effect( DEF dst, USE src );
 11384   ins_cost(100);
 11385   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11386   ins_encode %{
 11387     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11388   %}
 11389   ins_pipe( ialu_mem_reg );
 11390 %}
 11393 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11394   predicate(UseSSE==0);
 11395   match(Set dst (MoveI2F src));
 11396   effect(DEF dst, USE src);
 11398   ins_cost(125);
 11399   format %{ "FLD_S  $src\n\t"
 11400             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11401   opcode(0xD9);               /* D9 /0, FLD m32real */
 11402   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11403               Pop_Reg_FPR(dst) );
 11404   ins_pipe( fpu_reg_mem );
 11405 %}
 11407 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11408   predicate(UseSSE>=1);
 11409   match(Set dst (MoveI2F src));
 11410   effect( DEF dst, USE src );
 11412   ins_cost(95);
 11413   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11414   ins_encode %{
 11415     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11416   %}
 11417   ins_pipe( pipe_slow );
 11418 %}
 11420 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11421   predicate(UseSSE>=2);
 11422   match(Set dst (MoveI2F src));
 11423   effect( DEF dst, USE src );
 11425   ins_cost(85);
 11426   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11427   ins_encode %{
 11428     __ movdl($dst$$XMMRegister, $src$$Register);
 11429   %}
 11430   ins_pipe( pipe_slow );
 11431 %}
 11433 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11434   match(Set dst (MoveD2L src));
 11435   effect(DEF dst, USE src);
 11437   ins_cost(250);
 11438   format %{ "MOV    $dst.lo,$src\n\t"
 11439             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11440   opcode(0x8B, 0x8B);
 11441   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11442   ins_pipe( ialu_mem_long_reg );
 11443 %}
 11445 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11446   predicate(UseSSE<=1);
 11447   match(Set dst (MoveD2L src));
 11448   effect(DEF dst, USE src);
 11450   ins_cost(125);
 11451   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11452   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11453   ins_pipe( fpu_mem_reg );
 11454 %}
 11456 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11457   predicate(UseSSE>=2);
 11458   match(Set dst (MoveD2L src));
 11459   effect(DEF dst, USE src);
 11460   ins_cost(95);
 11461   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11462   ins_encode %{
 11463     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11464   %}
 11465   ins_pipe( pipe_slow );
 11466 %}
 11468 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11469   predicate(UseSSE>=2);
 11470   match(Set dst (MoveD2L src));
 11471   effect(DEF dst, USE src, TEMP tmp);
 11472   ins_cost(85);
 11473   format %{ "MOVD   $dst.lo,$src\n\t"
 11474             "PSHUFLW $tmp,$src,0x4E\n\t"
 11475             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11476   ins_encode %{
 11477     __ movdl($dst$$Register, $src$$XMMRegister);
 11478     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11479     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11480   %}
 11481   ins_pipe( pipe_slow );
 11482 %}
 11484 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11485   match(Set dst (MoveL2D src));
 11486   effect(DEF dst, USE src);
 11488   ins_cost(200);
 11489   format %{ "MOV    $dst,$src.lo\n\t"
 11490             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11491   opcode(0x89, 0x89);
 11492   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11493   ins_pipe( ialu_mem_long_reg );
 11494 %}
 11497 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11498   predicate(UseSSE<=1);
 11499   match(Set dst (MoveL2D src));
 11500   effect(DEF dst, USE src);
 11501   ins_cost(125);
 11503   format %{ "FLD_D  $src\n\t"
 11504             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11505   opcode(0xDD);               /* DD /0, FLD m64real */
 11506   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11507               Pop_Reg_DPR(dst) );
 11508   ins_pipe( fpu_reg_mem );
 11509 %}
 11512 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11513   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11514   match(Set dst (MoveL2D src));
 11515   effect(DEF dst, USE src);
 11517   ins_cost(95);
 11518   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11519   ins_encode %{
 11520     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11521   %}
 11522   ins_pipe( pipe_slow );
 11523 %}
 11525 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11526   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11527   match(Set dst (MoveL2D src));
 11528   effect(DEF dst, USE src);
 11530   ins_cost(95);
 11531   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11532   ins_encode %{
 11533     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11534   %}
 11535   ins_pipe( pipe_slow );
 11536 %}
 11538 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11539   predicate(UseSSE>=2);
 11540   match(Set dst (MoveL2D src));
 11541   effect(TEMP dst, USE src, TEMP tmp);
 11542   ins_cost(85);
 11543   format %{ "MOVD   $dst,$src.lo\n\t"
 11544             "MOVD   $tmp,$src.hi\n\t"
 11545             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11546   ins_encode %{
 11547     __ movdl($dst$$XMMRegister, $src$$Register);
 11548     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11549     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11550   %}
 11551   ins_pipe( pipe_slow );
 11552 %}
 11555 // =======================================================================
 11556 // fast clearing of an array
 11557 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11558   match(Set dummy (ClearArray cnt base));
 11559   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11560   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11561             "XOR    EAX,EAX\n\t"
 11562             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11563   opcode(0,0x4);
 11564   ins_encode( Opcode(0xD1), RegOpc(ECX),
 11565               OpcRegReg(0x33,EAX,EAX),
 11566               Opcode(0xF3), Opcode(0xAB) );
 11567   ins_pipe( pipe_slow );
 11568 %}
 11570 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11571                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11572   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11573   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11575   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11576   ins_encode %{
 11577     __ string_compare($str1$$Register, $str2$$Register,
 11578                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11579                       $tmp1$$XMMRegister);
 11580   %}
 11581   ins_pipe( pipe_slow );
 11582 %}
 11584 // fast string equals
 11585 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11586                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11587   match(Set result (StrEquals (Binary str1 str2) cnt));
 11588   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11590   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11591   ins_encode %{
 11592     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11593                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11594                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11595   %}
 11596   ins_pipe( pipe_slow );
 11597 %}
 11599 // fast search of substring with known size.
 11600 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11601                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11602   predicate(UseSSE42Intrinsics);
 11603   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11604   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11606   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11607   ins_encode %{
 11608     int icnt2 = (int)$int_cnt2$$constant;
 11609     if (icnt2 >= 8) {
 11610       // IndexOf for constant substrings with size >= 8 elements
 11611       // which don't need to be loaded through stack.
 11612       __ string_indexofC8($str1$$Register, $str2$$Register,
 11613                           $cnt1$$Register, $cnt2$$Register,
 11614                           icnt2, $result$$Register,
 11615                           $vec$$XMMRegister, $tmp$$Register);
 11616     } else {
 11617       // Small strings are loaded through stack if they cross page boundary.
 11618       __ string_indexof($str1$$Register, $str2$$Register,
 11619                         $cnt1$$Register, $cnt2$$Register,
 11620                         icnt2, $result$$Register,
 11621                         $vec$$XMMRegister, $tmp$$Register);
 11623   %}
 11624   ins_pipe( pipe_slow );
 11625 %}
 11627 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11628                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11629   predicate(UseSSE42Intrinsics);
 11630   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11631   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11633   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11634   ins_encode %{
 11635     __ string_indexof($str1$$Register, $str2$$Register,
 11636                       $cnt1$$Register, $cnt2$$Register,
 11637                       (-1), $result$$Register,
 11638                       $vec$$XMMRegister, $tmp$$Register);
 11639   %}
 11640   ins_pipe( pipe_slow );
 11641 %}
 11643 // fast array equals
 11644 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11645                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11646 %{
 11647   match(Set result (AryEq ary1 ary2));
 11648   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11649   //ins_cost(300);
 11651   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11652   ins_encode %{
 11653     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11654                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11655                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11656   %}
 11657   ins_pipe( pipe_slow );
 11658 %}
 11660 //----------Control Flow Instructions------------------------------------------
 11661 // Signed compare Instructions
 11662 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11663   match(Set cr (CmpI op1 op2));
 11664   effect( DEF cr, USE op1, USE op2 );
 11665   format %{ "CMP    $op1,$op2" %}
 11666   opcode(0x3B);  /* Opcode 3B /r */
 11667   ins_encode( OpcP, RegReg( op1, op2) );
 11668   ins_pipe( ialu_cr_reg_reg );
 11669 %}
 11671 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11672   match(Set cr (CmpI op1 op2));
 11673   effect( DEF cr, USE op1 );
 11674   format %{ "CMP    $op1,$op2" %}
 11675   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11676   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11677   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11678   ins_pipe( ialu_cr_reg_imm );
 11679 %}
 11681 // Cisc-spilled version of cmpI_eReg
 11682 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11683   match(Set cr (CmpI op1 (LoadI op2)));
 11685   format %{ "CMP    $op1,$op2" %}
 11686   ins_cost(500);
 11687   opcode(0x3B);  /* Opcode 3B /r */
 11688   ins_encode( OpcP, RegMem( op1, op2) );
 11689   ins_pipe( ialu_cr_reg_mem );
 11690 %}
 11692 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11693   match(Set cr (CmpI src zero));
 11694   effect( DEF cr, USE src );
 11696   format %{ "TEST   $src,$src" %}
 11697   opcode(0x85);
 11698   ins_encode( OpcP, RegReg( src, src ) );
 11699   ins_pipe( ialu_cr_reg_imm );
 11700 %}
 11702 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11703   match(Set cr (CmpI (AndI src con) zero));
 11705   format %{ "TEST   $src,$con" %}
 11706   opcode(0xF7,0x00);
 11707   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11708   ins_pipe( ialu_cr_reg_imm );
 11709 %}
 11711 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11712   match(Set cr (CmpI (AndI src mem) zero));
 11714   format %{ "TEST   $src,$mem" %}
 11715   opcode(0x85);
 11716   ins_encode( OpcP, RegMem( src, mem ) );
 11717   ins_pipe( ialu_cr_reg_mem );
 11718 %}
 11720 // Unsigned compare Instructions; really, same as signed except they
 11721 // produce an eFlagsRegU instead of eFlagsReg.
 11722 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11723   match(Set cr (CmpU op1 op2));
 11725   format %{ "CMPu   $op1,$op2" %}
 11726   opcode(0x3B);  /* Opcode 3B /r */
 11727   ins_encode( OpcP, RegReg( op1, op2) );
 11728   ins_pipe( ialu_cr_reg_reg );
 11729 %}
 11731 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11732   match(Set cr (CmpU op1 op2));
 11734   format %{ "CMPu   $op1,$op2" %}
 11735   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11736   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11737   ins_pipe( ialu_cr_reg_imm );
 11738 %}
 11740 // // Cisc-spilled version of cmpU_eReg
 11741 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11742   match(Set cr (CmpU op1 (LoadI op2)));
 11744   format %{ "CMPu   $op1,$op2" %}
 11745   ins_cost(500);
 11746   opcode(0x3B);  /* Opcode 3B /r */
 11747   ins_encode( OpcP, RegMem( op1, op2) );
 11748   ins_pipe( ialu_cr_reg_mem );
 11749 %}
 11751 // // Cisc-spilled version of cmpU_eReg
 11752 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11753 //  match(Set cr (CmpU (LoadI op1) op2));
 11754 //
 11755 //  format %{ "CMPu   $op1,$op2" %}
 11756 //  ins_cost(500);
 11757 //  opcode(0x39);  /* Opcode 39 /r */
 11758 //  ins_encode( OpcP, RegMem( op1, op2) );
 11759 //%}
 11761 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11762   match(Set cr (CmpU src zero));
 11764   format %{ "TESTu  $src,$src" %}
 11765   opcode(0x85);
 11766   ins_encode( OpcP, RegReg( src, src ) );
 11767   ins_pipe( ialu_cr_reg_imm );
 11768 %}
 11770 // Unsigned pointer compare Instructions
 11771 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11772   match(Set cr (CmpP op1 op2));
 11774   format %{ "CMPu   $op1,$op2" %}
 11775   opcode(0x3B);  /* Opcode 3B /r */
 11776   ins_encode( OpcP, RegReg( op1, op2) );
 11777   ins_pipe( ialu_cr_reg_reg );
 11778 %}
 11780 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11781   match(Set cr (CmpP op1 op2));
 11783   format %{ "CMPu   $op1,$op2" %}
 11784   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11785   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11786   ins_pipe( ialu_cr_reg_imm );
 11787 %}
 11789 // // Cisc-spilled version of cmpP_eReg
 11790 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11791   match(Set cr (CmpP op1 (LoadP op2)));
 11793   format %{ "CMPu   $op1,$op2" %}
 11794   ins_cost(500);
 11795   opcode(0x3B);  /* Opcode 3B /r */
 11796   ins_encode( OpcP, RegMem( op1, op2) );
 11797   ins_pipe( ialu_cr_reg_mem );
 11798 %}
 11800 // // Cisc-spilled version of cmpP_eReg
 11801 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11802 //  match(Set cr (CmpP (LoadP op1) op2));
 11803 //
 11804 //  format %{ "CMPu   $op1,$op2" %}
 11805 //  ins_cost(500);
 11806 //  opcode(0x39);  /* Opcode 39 /r */
 11807 //  ins_encode( OpcP, RegMem( op1, op2) );
 11808 //%}
 11810 // Compare raw pointer (used in out-of-heap check).
 11811 // Only works because non-oop pointers must be raw pointers
 11812 // and raw pointers have no anti-dependencies.
 11813 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11814   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 11815   match(Set cr (CmpP op1 (LoadP op2)));
 11817   format %{ "CMPu   $op1,$op2" %}
 11818   opcode(0x3B);  /* Opcode 3B /r */
 11819   ins_encode( OpcP, RegMem( op1, op2) );
 11820   ins_pipe( ialu_cr_reg_mem );
 11821 %}
 11823 //
 11824 // This will generate a signed flags result. This should be ok
 11825 // since any compare to a zero should be eq/neq.
 11826 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11827   match(Set cr (CmpP src zero));
 11829   format %{ "TEST   $src,$src" %}
 11830   opcode(0x85);
 11831   ins_encode( OpcP, RegReg( src, src ) );
 11832   ins_pipe( ialu_cr_reg_imm );
 11833 %}
 11835 // Cisc-spilled version of testP_reg
 11836 // This will generate a signed flags result. This should be ok
 11837 // since any compare to a zero should be eq/neq.
 11838 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11839   match(Set cr (CmpP (LoadP op) zero));
 11841   format %{ "TEST   $op,0xFFFFFFFF" %}
 11842   ins_cost(500);
 11843   opcode(0xF7);               /* Opcode F7 /0 */
 11844   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11845   ins_pipe( ialu_cr_reg_imm );
 11846 %}
 11848 // Yanked all unsigned pointer compare operations.
 11849 // Pointer compares are done with CmpP which is already unsigned.
 11851 //----------Max and Min--------------------------------------------------------
 11852 // Min Instructions
 11853 ////
 11854 //   *** Min and Max using the conditional move are slower than the
 11855 //   *** branch version on a Pentium III.
 11856 // // Conditional move for min
 11857 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11858 //  effect( USE_DEF op2, USE op1, USE cr );
 11859 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11860 //  opcode(0x4C,0x0F);
 11861 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11862 //  ins_pipe( pipe_cmov_reg );
 11863 //%}
 11864 //
 11865 //// Min Register with Register (P6 version)
 11866 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11867 //  predicate(VM_Version::supports_cmov() );
 11868 //  match(Set op2 (MinI op1 op2));
 11869 //  ins_cost(200);
 11870 //  expand %{
 11871 //    eFlagsReg cr;
 11872 //    compI_eReg(cr,op1,op2);
 11873 //    cmovI_reg_lt(op2,op1,cr);
 11874 //  %}
 11875 //%}
 11877 // Min Register with Register (generic version)
 11878 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11879   match(Set dst (MinI dst src));
 11880   effect(KILL flags);
 11881   ins_cost(300);
 11883   format %{ "MIN    $dst,$src" %}
 11884   opcode(0xCC);
 11885   ins_encode( min_enc(dst,src) );
 11886   ins_pipe( pipe_slow );
 11887 %}
 11889 // Max Register with Register
 11890 //   *** Min and Max using the conditional move are slower than the
 11891 //   *** branch version on a Pentium III.
 11892 // // Conditional move for max
 11893 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11894 //  effect( USE_DEF op2, USE op1, USE cr );
 11895 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11896 //  opcode(0x4F,0x0F);
 11897 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11898 //  ins_pipe( pipe_cmov_reg );
 11899 //%}
 11900 //
 11901 // // Max Register with Register (P6 version)
 11902 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11903 //  predicate(VM_Version::supports_cmov() );
 11904 //  match(Set op2 (MaxI op1 op2));
 11905 //  ins_cost(200);
 11906 //  expand %{
 11907 //    eFlagsReg cr;
 11908 //    compI_eReg(cr,op1,op2);
 11909 //    cmovI_reg_gt(op2,op1,cr);
 11910 //  %}
 11911 //%}
 11913 // Max Register with Register (generic version)
 11914 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11915   match(Set dst (MaxI dst src));
 11916   effect(KILL flags);
 11917   ins_cost(300);
 11919   format %{ "MAX    $dst,$src" %}
 11920   opcode(0xCC);
 11921   ins_encode( max_enc(dst,src) );
 11922   ins_pipe( pipe_slow );
 11923 %}
 11925 // ============================================================================
 11926 // Counted Loop limit node which represents exact final iterator value.
 11927 // Note: the resulting value should fit into integer range since
 11928 // counted loops have limit check on overflow.
 11929 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11930   match(Set limit (LoopLimit (Binary init limit) stride));
 11931   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11932   ins_cost(300);
 11934   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11935   ins_encode %{
 11936     int strd = (int)$stride$$constant;
 11937     assert(strd != 1 && strd != -1, "sanity");
 11938     int m1 = (strd > 0) ? 1 : -1;
 11939     // Convert limit to long (EAX:EDX)
 11940     __ cdql();
 11941     // Convert init to long (init:tmp)
 11942     __ movl($tmp$$Register, $init$$Register);
 11943     __ sarl($tmp$$Register, 31);
 11944     // $limit - $init
 11945     __ subl($limit$$Register, $init$$Register);
 11946     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11947     // + ($stride - 1)
 11948     if (strd > 0) {
 11949       __ addl($limit$$Register, (strd - 1));
 11950       __ adcl($limit_hi$$Register, 0);
 11951       __ movl($tmp$$Register, strd);
 11952     } else {
 11953       __ addl($limit$$Register, (strd + 1));
 11954       __ adcl($limit_hi$$Register, -1);
 11955       __ lneg($limit_hi$$Register, $limit$$Register);
 11956       __ movl($tmp$$Register, -strd);
 11958     // signed devision: (EAX:EDX) / pos_stride
 11959     __ idivl($tmp$$Register);
 11960     if (strd < 0) {
 11961       // restore sign
 11962       __ negl($tmp$$Register);
 11964     // (EAX) * stride
 11965     __ mull($tmp$$Register);
 11966     // + init (ignore upper bits)
 11967     __ addl($limit$$Register, $init$$Register);
 11968   %}
 11969   ins_pipe( pipe_slow );
 11970 %}
 11972 // ============================================================================
 11973 // Branch Instructions
 11974 // Jump Table
 11975 instruct jumpXtnd(rRegI switch_val) %{
 11976   match(Jump switch_val);
 11977   ins_cost(350);
 11978   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 11979   ins_encode %{
 11980     // Jump to Address(table_base + switch_reg)
 11981     Address index(noreg, $switch_val$$Register, Address::times_1);
 11982     __ jump(ArrayAddress($constantaddress, index));
 11983   %}
 11984   ins_pipe(pipe_jmp);
 11985 %}
 11987 // Jump Direct - Label defines a relative address from JMP+1
 11988 instruct jmpDir(label labl) %{
 11989   match(Goto);
 11990   effect(USE labl);
 11992   ins_cost(300);
 11993   format %{ "JMP    $labl" %}
 11994   size(5);
 11995   ins_encode %{
 11996     Label* L = $labl$$label;
 11997     __ jmp(*L, false); // Always long jump
 11998   %}
 11999   ins_pipe( pipe_jmp );
 12000 %}
 12002 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12003 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12004   match(If cop cr);
 12005   effect(USE labl);
 12007   ins_cost(300);
 12008   format %{ "J$cop    $labl" %}
 12009   size(6);
 12010   ins_encode %{
 12011     Label* L = $labl$$label;
 12012     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12013   %}
 12014   ins_pipe( pipe_jcc );
 12015 %}
 12017 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12018 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12019   match(CountedLoopEnd cop cr);
 12020   effect(USE labl);
 12022   ins_cost(300);
 12023   format %{ "J$cop    $labl\t# Loop end" %}
 12024   size(6);
 12025   ins_encode %{
 12026     Label* L = $labl$$label;
 12027     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12028   %}
 12029   ins_pipe( pipe_jcc );
 12030 %}
 12032 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12033 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12034   match(CountedLoopEnd cop cmp);
 12035   effect(USE labl);
 12037   ins_cost(300);
 12038   format %{ "J$cop,u  $labl\t# Loop end" %}
 12039   size(6);
 12040   ins_encode %{
 12041     Label* L = $labl$$label;
 12042     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12043   %}
 12044   ins_pipe( pipe_jcc );
 12045 %}
 12047 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12048   match(CountedLoopEnd cop cmp);
 12049   effect(USE labl);
 12051   ins_cost(200);
 12052   format %{ "J$cop,u  $labl\t# Loop end" %}
 12053   size(6);
 12054   ins_encode %{
 12055     Label* L = $labl$$label;
 12056     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12057   %}
 12058   ins_pipe( pipe_jcc );
 12059 %}
 12061 // Jump Direct Conditional - using unsigned comparison
 12062 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12063   match(If cop cmp);
 12064   effect(USE labl);
 12066   ins_cost(300);
 12067   format %{ "J$cop,u  $labl" %}
 12068   size(6);
 12069   ins_encode %{
 12070     Label* L = $labl$$label;
 12071     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12072   %}
 12073   ins_pipe(pipe_jcc);
 12074 %}
 12076 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12077   match(If cop cmp);
 12078   effect(USE labl);
 12080   ins_cost(200);
 12081   format %{ "J$cop,u  $labl" %}
 12082   size(6);
 12083   ins_encode %{
 12084     Label* L = $labl$$label;
 12085     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12086   %}
 12087   ins_pipe(pipe_jcc);
 12088 %}
 12090 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12091   match(If cop cmp);
 12092   effect(USE labl);
 12094   ins_cost(200);
 12095   format %{ $$template
 12096     if ($cop$$cmpcode == Assembler::notEqual) {
 12097       $$emit$$"JP,u   $labl\n\t"
 12098       $$emit$$"J$cop,u   $labl"
 12099     } else {
 12100       $$emit$$"JP,u   done\n\t"
 12101       $$emit$$"J$cop,u   $labl\n\t"
 12102       $$emit$$"done:"
 12104   %}
 12105   ins_encode %{
 12106     Label* l = $labl$$label;
 12107     if ($cop$$cmpcode == Assembler::notEqual) {
 12108       __ jcc(Assembler::parity, *l, false);
 12109       __ jcc(Assembler::notEqual, *l, false);
 12110     } else if ($cop$$cmpcode == Assembler::equal) {
 12111       Label done;
 12112       __ jccb(Assembler::parity, done);
 12113       __ jcc(Assembler::equal, *l, false);
 12114       __ bind(done);
 12115     } else {
 12116        ShouldNotReachHere();
 12118   %}
 12119   ins_pipe(pipe_jcc);
 12120 %}
 12122 // ============================================================================
 12123 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12124 // array for an instance of the superklass.  Set a hidden internal cache on a
 12125 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12126 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12127 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12128   match(Set result (PartialSubtypeCheck sub super));
 12129   effect( KILL rcx, KILL cr );
 12131   ins_cost(1100);  // slightly larger than the next version
 12132   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12133             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12134             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12135             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12136             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12137             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12138             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12139      "miss:\t" %}
 12141   opcode(0x1); // Force a XOR of EDI
 12142   ins_encode( enc_PartialSubtypeCheck() );
 12143   ins_pipe( pipe_slow );
 12144 %}
 12146 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12147   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12148   effect( KILL rcx, KILL result );
 12150   ins_cost(1000);
 12151   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12152             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12153             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12154             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12155             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12156             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12157      "miss:\t" %}
 12159   opcode(0x0);  // No need to XOR EDI
 12160   ins_encode( enc_PartialSubtypeCheck() );
 12161   ins_pipe( pipe_slow );
 12162 %}
 12164 // ============================================================================
 12165 // Branch Instructions -- short offset versions
 12166 //
 12167 // These instructions are used to replace jumps of a long offset (the default
 12168 // match) with jumps of a shorter offset.  These instructions are all tagged
 12169 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12170 // match rules in general matching.  Instead, the ADLC generates a conversion
 12171 // method in the MachNode which can be used to do in-place replacement of the
 12172 // long variant with the shorter variant.  The compiler will determine if a
 12173 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12174 // specific code section of the file.
 12176 // Jump Direct - Label defines a relative address from JMP+1
 12177 instruct jmpDir_short(label labl) %{
 12178   match(Goto);
 12179   effect(USE labl);
 12181   ins_cost(300);
 12182   format %{ "JMP,s  $labl" %}
 12183   size(2);
 12184   ins_encode %{
 12185     Label* L = $labl$$label;
 12186     __ jmpb(*L);
 12187   %}
 12188   ins_pipe( pipe_jmp );
 12189   ins_short_branch(1);
 12190 %}
 12192 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12193 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12194   match(If cop cr);
 12195   effect(USE labl);
 12197   ins_cost(300);
 12198   format %{ "J$cop,s  $labl" %}
 12199   size(2);
 12200   ins_encode %{
 12201     Label* L = $labl$$label;
 12202     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12203   %}
 12204   ins_pipe( pipe_jcc );
 12205   ins_short_branch(1);
 12206 %}
 12208 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12209 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12210   match(CountedLoopEnd cop cr);
 12211   effect(USE labl);
 12213   ins_cost(300);
 12214   format %{ "J$cop,s  $labl\t# Loop end" %}
 12215   size(2);
 12216   ins_encode %{
 12217     Label* L = $labl$$label;
 12218     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12219   %}
 12220   ins_pipe( pipe_jcc );
 12221   ins_short_branch(1);
 12222 %}
 12224 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12225 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12226   match(CountedLoopEnd cop cmp);
 12227   effect(USE labl);
 12229   ins_cost(300);
 12230   format %{ "J$cop,us $labl\t# Loop end" %}
 12231   size(2);
 12232   ins_encode %{
 12233     Label* L = $labl$$label;
 12234     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12235   %}
 12236   ins_pipe( pipe_jcc );
 12237   ins_short_branch(1);
 12238 %}
 12240 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12241   match(CountedLoopEnd cop cmp);
 12242   effect(USE labl);
 12244   ins_cost(300);
 12245   format %{ "J$cop,us $labl\t# Loop end" %}
 12246   size(2);
 12247   ins_encode %{
 12248     Label* L = $labl$$label;
 12249     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12250   %}
 12251   ins_pipe( pipe_jcc );
 12252   ins_short_branch(1);
 12253 %}
 12255 // Jump Direct Conditional - using unsigned comparison
 12256 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12257   match(If cop cmp);
 12258   effect(USE labl);
 12260   ins_cost(300);
 12261   format %{ "J$cop,us $labl" %}
 12262   size(2);
 12263   ins_encode %{
 12264     Label* L = $labl$$label;
 12265     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12266   %}
 12267   ins_pipe( pipe_jcc );
 12268   ins_short_branch(1);
 12269 %}
 12271 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12272   match(If cop cmp);
 12273   effect(USE labl);
 12275   ins_cost(300);
 12276   format %{ "J$cop,us $labl" %}
 12277   size(2);
 12278   ins_encode %{
 12279     Label* L = $labl$$label;
 12280     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12281   %}
 12282   ins_pipe( pipe_jcc );
 12283   ins_short_branch(1);
 12284 %}
 12286 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12287   match(If cop cmp);
 12288   effect(USE labl);
 12290   ins_cost(300);
 12291   format %{ $$template
 12292     if ($cop$$cmpcode == Assembler::notEqual) {
 12293       $$emit$$"JP,u,s   $labl\n\t"
 12294       $$emit$$"J$cop,u,s   $labl"
 12295     } else {
 12296       $$emit$$"JP,u,s   done\n\t"
 12297       $$emit$$"J$cop,u,s  $labl\n\t"
 12298       $$emit$$"done:"
 12300   %}
 12301   size(4);
 12302   ins_encode %{
 12303     Label* l = $labl$$label;
 12304     if ($cop$$cmpcode == Assembler::notEqual) {
 12305       __ jccb(Assembler::parity, *l);
 12306       __ jccb(Assembler::notEqual, *l);
 12307     } else if ($cop$$cmpcode == Assembler::equal) {
 12308       Label done;
 12309       __ jccb(Assembler::parity, done);
 12310       __ jccb(Assembler::equal, *l);
 12311       __ bind(done);
 12312     } else {
 12313        ShouldNotReachHere();
 12315   %}
 12316   ins_pipe(pipe_jcc);
 12317   ins_short_branch(1);
 12318 %}
 12320 // ============================================================================
 12321 // Long Compare
 12322 //
 12323 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12324 // is tricky.  The flavor of compare used depends on whether we are testing
 12325 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12326 // The GE test is the negated LT test.  The LE test can be had by commuting
 12327 // the operands (yielding a GE test) and then negating; negate again for the
 12328 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12329 // NE test is negated from that.
 12331 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12332 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12333 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12334 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12335 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12336 // foo match ends up with the wrong leaf.  One fix is to not match both
 12337 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12338 // both forms beat the trinary form of long-compare and both are very useful
 12339 // on Intel which has so few registers.
 12341 // Manifest a CmpL result in an integer register.  Very painful.
 12342 // This is the test to avoid.
 12343 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12344   match(Set dst (CmpL3 src1 src2));
 12345   effect( KILL flags );
 12346   ins_cost(1000);
 12347   format %{ "XOR    $dst,$dst\n\t"
 12348             "CMP    $src1.hi,$src2.hi\n\t"
 12349             "JLT,s  m_one\n\t"
 12350             "JGT,s  p_one\n\t"
 12351             "CMP    $src1.lo,$src2.lo\n\t"
 12352             "JB,s   m_one\n\t"
 12353             "JEQ,s  done\n"
 12354     "p_one:\tINC    $dst\n\t"
 12355             "JMP,s  done\n"
 12356     "m_one:\tDEC    $dst\n"
 12357      "done:" %}
 12358   ins_encode %{
 12359     Label p_one, m_one, done;
 12360     __ xorptr($dst$$Register, $dst$$Register);
 12361     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12362     __ jccb(Assembler::less,    m_one);
 12363     __ jccb(Assembler::greater, p_one);
 12364     __ cmpl($src1$$Register, $src2$$Register);
 12365     __ jccb(Assembler::below,   m_one);
 12366     __ jccb(Assembler::equal,   done);
 12367     __ bind(p_one);
 12368     __ incrementl($dst$$Register);
 12369     __ jmpb(done);
 12370     __ bind(m_one);
 12371     __ decrementl($dst$$Register);
 12372     __ bind(done);
 12373   %}
 12374   ins_pipe( pipe_slow );
 12375 %}
 12377 //======
 12378 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12379 // compares.  Can be used for LE or GT compares by reversing arguments.
 12380 // NOT GOOD FOR EQ/NE tests.
 12381 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12382   match( Set flags (CmpL src zero ));
 12383   ins_cost(100);
 12384   format %{ "TEST   $src.hi,$src.hi" %}
 12385   opcode(0x85);
 12386   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12387   ins_pipe( ialu_cr_reg_reg );
 12388 %}
 12390 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12391 // compares.  Can be used for LE or GT compares by reversing arguments.
 12392 // NOT GOOD FOR EQ/NE tests.
 12393 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12394   match( Set flags (CmpL src1 src2 ));
 12395   effect( TEMP tmp );
 12396   ins_cost(300);
 12397   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12398             "MOV    $tmp,$src1.hi\n\t"
 12399             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12400   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12401   ins_pipe( ialu_cr_reg_reg );
 12402 %}
 12404 // Long compares reg < zero/req OR reg >= zero/req.
 12405 // Just a wrapper for a normal branch, plus the predicate test.
 12406 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12407   match(If cmp flags);
 12408   effect(USE labl);
 12409   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12410   expand %{
 12411     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12412   %}
 12413 %}
 12415 // Compare 2 longs and CMOVE longs.
 12416 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12417   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12418   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12419   ins_cost(400);
 12420   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12421             "CMOV$cmp $dst.hi,$src.hi" %}
 12422   opcode(0x0F,0x40);
 12423   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12424   ins_pipe( pipe_cmov_reg_long );
 12425 %}
 12427 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12428   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12429   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12430   ins_cost(500);
 12431   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12432             "CMOV$cmp $dst.hi,$src.hi" %}
 12433   opcode(0x0F,0x40);
 12434   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12435   ins_pipe( pipe_cmov_reg_long );
 12436 %}
 12438 // Compare 2 longs and CMOVE ints.
 12439 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12440   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12441   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12442   ins_cost(200);
 12443   format %{ "CMOV$cmp $dst,$src" %}
 12444   opcode(0x0F,0x40);
 12445   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12446   ins_pipe( pipe_cmov_reg );
 12447 %}
 12449 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12450   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12451   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12452   ins_cost(250);
 12453   format %{ "CMOV$cmp $dst,$src" %}
 12454   opcode(0x0F,0x40);
 12455   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12456   ins_pipe( pipe_cmov_mem );
 12457 %}
 12459 // Compare 2 longs and CMOVE ints.
 12460 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12461   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12462   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12463   ins_cost(200);
 12464   format %{ "CMOV$cmp $dst,$src" %}
 12465   opcode(0x0F,0x40);
 12466   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12467   ins_pipe( pipe_cmov_reg );
 12468 %}
 12470 // Compare 2 longs and CMOVE doubles
 12471 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12472   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12473   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12474   ins_cost(200);
 12475   expand %{
 12476     fcmovDPR_regS(cmp,flags,dst,src);
 12477   %}
 12478 %}
 12480 // Compare 2 longs and CMOVE doubles
 12481 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12482   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12483   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12484   ins_cost(200);
 12485   expand %{
 12486     fcmovD_regS(cmp,flags,dst,src);
 12487   %}
 12488 %}
 12490 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12491   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12492   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12493   ins_cost(200);
 12494   expand %{
 12495     fcmovFPR_regS(cmp,flags,dst,src);
 12496   %}
 12497 %}
 12499 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12500   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12501   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12502   ins_cost(200);
 12503   expand %{
 12504     fcmovF_regS(cmp,flags,dst,src);
 12505   %}
 12506 %}
 12508 //======
 12509 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12510 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12511   match( Set flags (CmpL src zero ));
 12512   effect(TEMP tmp);
 12513   ins_cost(200);
 12514   format %{ "MOV    $tmp,$src.lo\n\t"
 12515             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12516   ins_encode( long_cmp_flags0( src, tmp ) );
 12517   ins_pipe( ialu_reg_reg_long );
 12518 %}
 12520 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12521 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12522   match( Set flags (CmpL src1 src2 ));
 12523   ins_cost(200+300);
 12524   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12525             "JNE,s  skip\n\t"
 12526             "CMP    $src1.hi,$src2.hi\n\t"
 12527      "skip:\t" %}
 12528   ins_encode( long_cmp_flags1( src1, src2 ) );
 12529   ins_pipe( ialu_cr_reg_reg );
 12530 %}
 12532 // Long compare reg == zero/reg OR reg != zero/reg
 12533 // Just a wrapper for a normal branch, plus the predicate test.
 12534 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12535   match(If cmp flags);
 12536   effect(USE labl);
 12537   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12538   expand %{
 12539     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12540   %}
 12541 %}
 12543 // Compare 2 longs and CMOVE longs.
 12544 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12545   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12546   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12547   ins_cost(400);
 12548   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12549             "CMOV$cmp $dst.hi,$src.hi" %}
 12550   opcode(0x0F,0x40);
 12551   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12552   ins_pipe( pipe_cmov_reg_long );
 12553 %}
 12555 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12556   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12557   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12558   ins_cost(500);
 12559   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12560             "CMOV$cmp $dst.hi,$src.hi" %}
 12561   opcode(0x0F,0x40);
 12562   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12563   ins_pipe( pipe_cmov_reg_long );
 12564 %}
 12566 // Compare 2 longs and CMOVE ints.
 12567 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12568   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12569   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12570   ins_cost(200);
 12571   format %{ "CMOV$cmp $dst,$src" %}
 12572   opcode(0x0F,0x40);
 12573   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12574   ins_pipe( pipe_cmov_reg );
 12575 %}
 12577 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12578   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12579   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12580   ins_cost(250);
 12581   format %{ "CMOV$cmp $dst,$src" %}
 12582   opcode(0x0F,0x40);
 12583   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12584   ins_pipe( pipe_cmov_mem );
 12585 %}
 12587 // Compare 2 longs and CMOVE ints.
 12588 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12589   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12590   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12591   ins_cost(200);
 12592   format %{ "CMOV$cmp $dst,$src" %}
 12593   opcode(0x0F,0x40);
 12594   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12595   ins_pipe( pipe_cmov_reg );
 12596 %}
 12598 // Compare 2 longs and CMOVE doubles
 12599 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12600   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12601   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12602   ins_cost(200);
 12603   expand %{
 12604     fcmovDPR_regS(cmp,flags,dst,src);
 12605   %}
 12606 %}
 12608 // Compare 2 longs and CMOVE doubles
 12609 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12610   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12611   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12612   ins_cost(200);
 12613   expand %{
 12614     fcmovD_regS(cmp,flags,dst,src);
 12615   %}
 12616 %}
 12618 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12619   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12620   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12621   ins_cost(200);
 12622   expand %{
 12623     fcmovFPR_regS(cmp,flags,dst,src);
 12624   %}
 12625 %}
 12627 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12628   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12629   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12630   ins_cost(200);
 12631   expand %{
 12632     fcmovF_regS(cmp,flags,dst,src);
 12633   %}
 12634 %}
 12636 //======
 12637 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12638 // Same as cmpL_reg_flags_LEGT except must negate src
 12639 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12640   match( Set flags (CmpL src zero ));
 12641   effect( TEMP tmp );
 12642   ins_cost(300);
 12643   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12644             "CMP    $tmp,$src.lo\n\t"
 12645             "SBB    $tmp,$src.hi\n\t" %}
 12646   ins_encode( long_cmp_flags3(src, tmp) );
 12647   ins_pipe( ialu_reg_reg_long );
 12648 %}
 12650 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12651 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12652 // requires a commuted test to get the same result.
 12653 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12654   match( Set flags (CmpL src1 src2 ));
 12655   effect( TEMP tmp );
 12656   ins_cost(300);
 12657   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12658             "MOV    $tmp,$src2.hi\n\t"
 12659             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12660   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12661   ins_pipe( ialu_cr_reg_reg );
 12662 %}
 12664 // Long compares reg < zero/req OR reg >= zero/req.
 12665 // Just a wrapper for a normal branch, plus the predicate test
 12666 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12667   match(If cmp flags);
 12668   effect(USE labl);
 12669   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12670   ins_cost(300);
 12671   expand %{
 12672     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12673   %}
 12674 %}
 12676 // Compare 2 longs and CMOVE longs.
 12677 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12678   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12679   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12680   ins_cost(400);
 12681   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12682             "CMOV$cmp $dst.hi,$src.hi" %}
 12683   opcode(0x0F,0x40);
 12684   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12685   ins_pipe( pipe_cmov_reg_long );
 12686 %}
 12688 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12689   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12690   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12691   ins_cost(500);
 12692   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12693             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12694   opcode(0x0F,0x40);
 12695   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12696   ins_pipe( pipe_cmov_reg_long );
 12697 %}
 12699 // Compare 2 longs and CMOVE ints.
 12700 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12701   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12702   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12703   ins_cost(200);
 12704   format %{ "CMOV$cmp $dst,$src" %}
 12705   opcode(0x0F,0x40);
 12706   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12707   ins_pipe( pipe_cmov_reg );
 12708 %}
 12710 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12711   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12712   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12713   ins_cost(250);
 12714   format %{ "CMOV$cmp $dst,$src" %}
 12715   opcode(0x0F,0x40);
 12716   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12717   ins_pipe( pipe_cmov_mem );
 12718 %}
 12720 // Compare 2 longs and CMOVE ptrs.
 12721 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12722   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12723   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12724   ins_cost(200);
 12725   format %{ "CMOV$cmp $dst,$src" %}
 12726   opcode(0x0F,0x40);
 12727   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12728   ins_pipe( pipe_cmov_reg );
 12729 %}
 12731 // Compare 2 longs and CMOVE doubles
 12732 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12733   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12734   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12735   ins_cost(200);
 12736   expand %{
 12737     fcmovDPR_regS(cmp,flags,dst,src);
 12738   %}
 12739 %}
 12741 // Compare 2 longs and CMOVE doubles
 12742 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12743   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12744   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12745   ins_cost(200);
 12746   expand %{
 12747     fcmovD_regS(cmp,flags,dst,src);
 12748   %}
 12749 %}
 12751 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12752   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12753   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12754   ins_cost(200);
 12755   expand %{
 12756     fcmovFPR_regS(cmp,flags,dst,src);
 12757   %}
 12758 %}
 12761 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12762   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12763   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12764   ins_cost(200);
 12765   expand %{
 12766     fcmovF_regS(cmp,flags,dst,src);
 12767   %}
 12768 %}
 12771 // ============================================================================
 12772 // Procedure Call/Return Instructions
 12773 // Call Java Static Instruction
 12774 // Note: If this code changes, the corresponding ret_addr_offset() and
 12775 //       compute_padding() functions will have to be adjusted.
 12776 instruct CallStaticJavaDirect(method meth) %{
 12777   match(CallStaticJava);
 12778   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12779   effect(USE meth);
 12781   ins_cost(300);
 12782   format %{ "CALL,static " %}
 12783   opcode(0xE8); /* E8 cd */
 12784   ins_encode( pre_call_FPU,
 12785               Java_Static_Call( meth ),
 12786               call_epilog,
 12787               post_call_FPU );
 12788   ins_pipe( pipe_slow );
 12789   ins_alignment(4);
 12790 %}
 12792 // Call Java Static Instruction (method handle version)
 12793 // Note: If this code changes, the corresponding ret_addr_offset() and
 12794 //       compute_padding() functions will have to be adjusted.
 12795 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 12796   match(CallStaticJava);
 12797   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12798   effect(USE meth);
 12799   // EBP is saved by all callees (for interpreter stack correction).
 12800   // We use it here for a similar purpose, in {preserve,restore}_SP.
 12802   ins_cost(300);
 12803   format %{ "CALL,static/MethodHandle " %}
 12804   opcode(0xE8); /* E8 cd */
 12805   ins_encode( pre_call_FPU,
 12806               preserve_SP,
 12807               Java_Static_Call( meth ),
 12808               restore_SP,
 12809               call_epilog,
 12810               post_call_FPU );
 12811   ins_pipe( pipe_slow );
 12812   ins_alignment(4);
 12813 %}
 12815 // Call Java Dynamic Instruction
 12816 // Note: If this code changes, the corresponding ret_addr_offset() and
 12817 //       compute_padding() functions will have to be adjusted.
 12818 instruct CallDynamicJavaDirect(method meth) %{
 12819   match(CallDynamicJava);
 12820   effect(USE meth);
 12822   ins_cost(300);
 12823   format %{ "MOV    EAX,(oop)-1\n\t"
 12824             "CALL,dynamic" %}
 12825   opcode(0xE8); /* E8 cd */
 12826   ins_encode( pre_call_FPU,
 12827               Java_Dynamic_Call( meth ),
 12828               call_epilog,
 12829               post_call_FPU );
 12830   ins_pipe( pipe_slow );
 12831   ins_alignment(4);
 12832 %}
 12834 // Call Runtime Instruction
 12835 instruct CallRuntimeDirect(method meth) %{
 12836   match(CallRuntime );
 12837   effect(USE meth);
 12839   ins_cost(300);
 12840   format %{ "CALL,runtime " %}
 12841   opcode(0xE8); /* E8 cd */
 12842   // Use FFREEs to clear entries in float stack
 12843   ins_encode( pre_call_FPU,
 12844               FFree_Float_Stack_All,
 12845               Java_To_Runtime( meth ),
 12846               post_call_FPU );
 12847   ins_pipe( pipe_slow );
 12848 %}
 12850 // Call runtime without safepoint
 12851 instruct CallLeafDirect(method meth) %{
 12852   match(CallLeaf);
 12853   effect(USE meth);
 12855   ins_cost(300);
 12856   format %{ "CALL_LEAF,runtime " %}
 12857   opcode(0xE8); /* E8 cd */
 12858   ins_encode( pre_call_FPU,
 12859               FFree_Float_Stack_All,
 12860               Java_To_Runtime( meth ),
 12861               Verify_FPU_For_Leaf, post_call_FPU );
 12862   ins_pipe( pipe_slow );
 12863 %}
 12865 instruct CallLeafNoFPDirect(method meth) %{
 12866   match(CallLeafNoFP);
 12867   effect(USE meth);
 12869   ins_cost(300);
 12870   format %{ "CALL_LEAF_NOFP,runtime " %}
 12871   opcode(0xE8); /* E8 cd */
 12872   ins_encode(Java_To_Runtime(meth));
 12873   ins_pipe( pipe_slow );
 12874 %}
 12877 // Return Instruction
 12878 // Remove the return address & jump to it.
 12879 instruct Ret() %{
 12880   match(Return);
 12881   format %{ "RET" %}
 12882   opcode(0xC3);
 12883   ins_encode(OpcP);
 12884   ins_pipe( pipe_jmp );
 12885 %}
 12887 // Tail Call; Jump from runtime stub to Java code.
 12888 // Also known as an 'interprocedural jump'.
 12889 // Target of jump will eventually return to caller.
 12890 // TailJump below removes the return address.
 12891 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12892   match(TailCall jump_target method_oop );
 12893   ins_cost(300);
 12894   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12895   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12896   ins_encode( OpcP, RegOpc(jump_target) );
 12897   ins_pipe( pipe_jmp );
 12898 %}
 12901 // Tail Jump; remove the return address; jump to target.
 12902 // TailCall above leaves the return address around.
 12903 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 12904   match( TailJump jump_target ex_oop );
 12905   ins_cost(300);
 12906   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 12907             "JMP    $jump_target " %}
 12908   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12909   ins_encode( enc_pop_rdx,
 12910               OpcP, RegOpc(jump_target) );
 12911   ins_pipe( pipe_jmp );
 12912 %}
 12914 // Create exception oop: created by stack-crawling runtime code.
 12915 // Created exception is now available to this handler, and is setup
 12916 // just prior to jumping to this handler.  No code emitted.
 12917 instruct CreateException( eAXRegP ex_oop )
 12918 %{
 12919   match(Set ex_oop (CreateEx));
 12921   size(0);
 12922   // use the following format syntax
 12923   format %{ "# exception oop is in EAX; no code emitted" %}
 12924   ins_encode();
 12925   ins_pipe( empty );
 12926 %}
 12929 // Rethrow exception:
 12930 // The exception oop will come in the first argument position.
 12931 // Then JUMP (not call) to the rethrow stub code.
 12932 instruct RethrowException()
 12933 %{
 12934   match(Rethrow);
 12936   // use the following format syntax
 12937   format %{ "JMP    rethrow_stub" %}
 12938   ins_encode(enc_rethrow);
 12939   ins_pipe( pipe_jmp );
 12940 %}
 12942 // inlined locking and unlocking
 12945 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 12946   match( Set cr (FastLock object box) );
 12947   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12948   ins_cost(300);
 12949   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 12950   ins_encode( Fast_Lock(object,box,tmp,scr) );
 12951   ins_pipe( pipe_slow );
 12952 %}
 12954 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 12955   match( Set cr (FastUnlock object box) );
 12956   effect( TEMP tmp, USE_KILL box );
 12957   ins_cost(300);
 12958   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 12959   ins_encode( Fast_Unlock(object,box,tmp) );
 12960   ins_pipe( pipe_slow );
 12961 %}
 12965 // ============================================================================
 12966 // Safepoint Instruction
 12967 instruct safePoint_poll(eFlagsReg cr) %{
 12968   match(SafePoint);
 12969   effect(KILL cr);
 12971   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 12972   // On SPARC that might be acceptable as we can generate the address with
 12973   // just a sethi, saving an or.  By polling at offset 0 we can end up
 12974   // putting additional pressure on the index-0 in the D$.  Because of
 12975   // alignment (just like the situation at hand) the lower indices tend
 12976   // to see more traffic.  It'd be better to change the polling address
 12977   // to offset 0 of the last $line in the polling page.
 12979   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 12980   ins_cost(125);
 12981   size(6) ;
 12982   ins_encode( Safepoint_Poll() );
 12983   ins_pipe( ialu_reg_mem );
 12984 %}
 12987 // ============================================================================
 12988 // This name is KNOWN by the ADLC and cannot be changed.
 12989 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 12990 // for this guy.
 12991 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 12992   match(Set dst (ThreadLocal));
 12993   effect(DEF dst, KILL cr);
 12995   format %{ "MOV    $dst, Thread::current()" %}
 12996   ins_encode %{
 12997     Register dstReg = as_Register($dst$$reg);
 12998     __ get_thread(dstReg);
 12999   %}
 13000   ins_pipe( ialu_reg_fat );
 13001 %}
 13005 //----------PEEPHOLE RULES-----------------------------------------------------
 13006 // These must follow all instruction definitions as they use the names
 13007 // defined in the instructions definitions.
 13008 //
 13009 // peepmatch ( root_instr_name [preceding_instruction]* );
 13010 //
 13011 // peepconstraint %{
 13012 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13013 //  [, ...] );
 13014 // // instruction numbers are zero-based using left to right order in peepmatch
 13015 //
 13016 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13017 // // provide an instruction_number.operand_name for each operand that appears
 13018 // // in the replacement instruction's match rule
 13019 //
 13020 // ---------VM FLAGS---------------------------------------------------------
 13021 //
 13022 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13023 //
 13024 // Each peephole rule is given an identifying number starting with zero and
 13025 // increasing by one in the order seen by the parser.  An individual peephole
 13026 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13027 // on the command-line.
 13028 //
 13029 // ---------CURRENT LIMITATIONS----------------------------------------------
 13030 //
 13031 // Only match adjacent instructions in same basic block
 13032 // Only equality constraints
 13033 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13034 // Only one replacement instruction
 13035 //
 13036 // ---------EXAMPLE----------------------------------------------------------
 13037 //
 13038 // // pertinent parts of existing instructions in architecture description
 13039 // instruct movI(rRegI dst, rRegI src) %{
 13040 //   match(Set dst (CopyI src));
 13041 // %}
 13042 //
 13043 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 13044 //   match(Set dst (AddI dst src));
 13045 //   effect(KILL cr);
 13046 // %}
 13047 //
 13048 // // Change (inc mov) to lea
 13049 // peephole %{
 13050 //   // increment preceeded by register-register move
 13051 //   peepmatch ( incI_eReg movI );
 13052 //   // require that the destination register of the increment
 13053 //   // match the destination register of the move
 13054 //   peepconstraint ( 0.dst == 1.dst );
 13055 //   // construct a replacement instruction that sets
 13056 //   // the destination to ( move's source register + one )
 13057 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13058 // %}
 13059 //
 13060 // Implementation no longer uses movX instructions since
 13061 // machine-independent system no longer uses CopyX nodes.
 13062 //
 13063 // peephole %{
 13064 //   peepmatch ( incI_eReg movI );
 13065 //   peepconstraint ( 0.dst == 1.dst );
 13066 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13067 // %}
 13068 //
 13069 // peephole %{
 13070 //   peepmatch ( decI_eReg movI );
 13071 //   peepconstraint ( 0.dst == 1.dst );
 13072 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13073 // %}
 13074 //
 13075 // peephole %{
 13076 //   peepmatch ( addI_eReg_imm movI );
 13077 //   peepconstraint ( 0.dst == 1.dst );
 13078 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13079 // %}
 13080 //
 13081 // peephole %{
 13082 //   peepmatch ( addP_eReg_imm movP );
 13083 //   peepconstraint ( 0.dst == 1.dst );
 13084 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13085 // %}
 13087 // // Change load of spilled value to only a spill
 13088 // instruct storeI(memory mem, rRegI src) %{
 13089 //   match(Set mem (StoreI mem src));
 13090 // %}
 13091 //
 13092 // instruct loadI(rRegI dst, memory mem) %{
 13093 //   match(Set dst (LoadI mem));
 13094 // %}
 13095 //
 13096 peephole %{
 13097   peepmatch ( loadI storeI );
 13098   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13099   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13100 %}
 13102 //----------SMARTSPILL RULES---------------------------------------------------
 13103 // These must follow all instruction definitions as they use the names
 13104 // defined in the instructions definitions.

mercurial