src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 18 Apr 2012 13:39:55 -0400

author
tonyp
date
Wed, 18 Apr 2012 13:39:55 -0400
changeset 3714
f7a8920427a6
parent 3713
720b6a76dd9d
child 3731
8a2e5a6a19a4
permissions
-rw-r--r--

7145441: G1: collection set chooser-related cleanup
Summary: Cleanup of the CSet chooser class: standardize on uints for region num and indexes (instead of int, jint, etc.), make the method / field naming style more consistent, remove a lot of dead code.
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrs_index(), \
    58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
    59                 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
    61 // sentinel value for hrs_index
    62 #define G1_NULL_HRS_INDEX ((uint) -1)
    64 // A dirty card to oop closure for heap regions. It
    65 // knows how to get the G1 heap and how to use the bitmap
    66 // in the concurrent marker used by G1 to filter remembered
    67 // sets.
    69 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    70 public:
    71   // Specification of possible DirtyCardToOopClosure filtering.
    72   enum FilterKind {
    73     NoFilterKind,
    74     IntoCSFilterKind,
    75     OutOfRegionFilterKind
    76   };
    78 protected:
    79   HeapRegion* _hr;
    80   FilterKind _fk;
    81   G1CollectedHeap* _g1;
    83   void walk_mem_region_with_cl(MemRegion mr,
    84                                HeapWord* bottom, HeapWord* top,
    85                                OopClosure* cl);
    87   // We don't specialize this for FilteringClosure; filtering is handled by
    88   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    89   // warning.
    90   void walk_mem_region_with_cl(MemRegion mr,
    91                                HeapWord* bottom, HeapWord* top,
    92                                FilteringClosure* cl) {
    93     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    94                                                        (OopClosure*)cl);
    95   }
    97   // Get the actual top of the area on which the closure will
    98   // operate, given where the top is assumed to be (the end of the
    99   // memory region passed to do_MemRegion) and where the object
   100   // at the top is assumed to start. For example, an object may
   101   // start at the top but actually extend past the assumed top,
   102   // in which case the top becomes the end of the object.
   103   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   104     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   105   }
   107   // Walk the given memory region from bottom to (actual) top
   108   // looking for objects and applying the oop closure (_cl) to
   109   // them. The base implementation of this treats the area as
   110   // blocks, where a block may or may not be an object. Sub-
   111   // classes should override this to provide more accurate
   112   // or possibly more efficient walking.
   113   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   114     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   115   }
   117 public:
   118   HeapRegionDCTOC(G1CollectedHeap* g1,
   119                   HeapRegion* hr, OopClosure* cl,
   120                   CardTableModRefBS::PrecisionStyle precision,
   121                   FilterKind fk);
   122 };
   124 // The complicating factor is that BlockOffsetTable diverged
   125 // significantly, and we need functionality that is only in the G1 version.
   126 // So I copied that code, which led to an alternate G1 version of
   127 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   128 // be reconciled, then G1OffsetTableContigSpace could go away.
   130 // The idea behind time stamps is the following. Doing a save_marks on
   131 // all regions at every GC pause is time consuming (if I remember
   132 // well, 10ms or so). So, we would like to do that only for regions
   133 // that are GC alloc regions. To achieve this, we use time
   134 // stamps. For every evacuation pause, G1CollectedHeap generates a
   135 // unique time stamp (essentially a counter that gets
   136 // incremented). Every time we want to call save_marks on a region,
   137 // we set the saved_mark_word to top and also copy the current GC
   138 // time stamp to the time stamp field of the space. Reading the
   139 // saved_mark_word involves checking the time stamp of the
   140 // region. If it is the same as the current GC time stamp, then we
   141 // can safely read the saved_mark_word field, as it is valid. If the
   142 // time stamp of the region is not the same as the current GC time
   143 // stamp, then we instead read top, as the saved_mark_word field is
   144 // invalid. Time stamps (on the regions and also on the
   145 // G1CollectedHeap) are reset at every cleanup (we iterate over
   146 // the regions anyway) and at the end of a Full GC. The current scheme
   147 // that uses sequential unsigned ints will fail only if we have 4b
   148 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   150 class G1OffsetTableContigSpace: public ContiguousSpace {
   151   friend class VMStructs;
   152  protected:
   153   G1BlockOffsetArrayContigSpace _offsets;
   154   Mutex _par_alloc_lock;
   155   volatile unsigned _gc_time_stamp;
   156   // When we need to retire an allocation region, while other threads
   157   // are also concurrently trying to allocate into it, we typically
   158   // allocate a dummy object at the end of the region to ensure that
   159   // no more allocations can take place in it. However, sometimes we
   160   // want to know where the end of the last "real" object we allocated
   161   // into the region was and this is what this keeps track.
   162   HeapWord* _pre_dummy_top;
   164  public:
   165   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   166   // assumed to contain zeros.
   167   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   168                            MemRegion mr, bool is_zeroed = false);
   170   void set_bottom(HeapWord* value);
   171   void set_end(HeapWord* value);
   173   virtual HeapWord* saved_mark_word() const;
   174   virtual void set_saved_mark();
   175   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   177   // See the comment above in the declaration of _pre_dummy_top for an
   178   // explanation of what it is.
   179   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   180     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   181     _pre_dummy_top = pre_dummy_top;
   182   }
   183   HeapWord* pre_dummy_top() {
   184     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   185   }
   186   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   188   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   189   virtual void clear(bool mangle_space);
   191   HeapWord* block_start(const void* p);
   192   HeapWord* block_start_const(const void* p) const;
   194   // Add offset table update.
   195   virtual HeapWord* allocate(size_t word_size);
   196   HeapWord* par_allocate(size_t word_size);
   198   // MarkSweep support phase3
   199   virtual HeapWord* initialize_threshold();
   200   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   202   virtual void print() const;
   204   void reset_bot() {
   205     _offsets.zero_bottom_entry();
   206     _offsets.initialize_threshold();
   207   }
   209   void update_bot_for_object(HeapWord* start, size_t word_size) {
   210     _offsets.alloc_block(start, word_size);
   211   }
   213   void print_bot_on(outputStream* out) {
   214     _offsets.print_on(out);
   215   }
   216 };
   218 class HeapRegion: public G1OffsetTableContigSpace {
   219   friend class VMStructs;
   220  private:
   222   enum HumongousType {
   223     NotHumongous = 0,
   224     StartsHumongous,
   225     ContinuesHumongous
   226   };
   228   // Requires that the region "mr" be dense with objects, and begin and end
   229   // with an object.
   230   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   232   // The remembered set for this region.
   233   // (Might want to make this "inline" later, to avoid some alloc failure
   234   // issues.)
   235   HeapRegionRemSet* _rem_set;
   237   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   239  protected:
   240   // The index of this region in the heap region sequence.
   241   uint  _hrs_index;
   243   HumongousType _humongous_type;
   244   // For a humongous region, region in which it starts.
   245   HeapRegion* _humongous_start_region;
   246   // For the start region of a humongous sequence, it's original end().
   247   HeapWord* _orig_end;
   249   // True iff the region is in current collection_set.
   250   bool _in_collection_set;
   252   // True iff an attempt to evacuate an object in the region failed.
   253   bool _evacuation_failed;
   255   // A heap region may be a member one of a number of special subsets, each
   256   // represented as linked lists through the field below.  Currently, these
   257   // sets include:
   258   //   The collection set.
   259   //   The set of allocation regions used in a collection pause.
   260   //   Spaces that may contain gray objects.
   261   HeapRegion* _next_in_special_set;
   263   // next region in the young "generation" region set
   264   HeapRegion* _next_young_region;
   266   // Next region whose cards need cleaning
   267   HeapRegion* _next_dirty_cards_region;
   269   // Fields used by the HeapRegionSetBase class and subclasses.
   270   HeapRegion* _next;
   271 #ifdef ASSERT
   272   HeapRegionSetBase* _containing_set;
   273 #endif // ASSERT
   274   bool _pending_removal;
   276   // For parallel heapRegion traversal.
   277   jint _claimed;
   279   // We use concurrent marking to determine the amount of live data
   280   // in each heap region.
   281   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   282   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   284   // The calculated GC efficiency of the region.
   285   double _gc_efficiency;
   287   enum YoungType {
   288     NotYoung,                   // a region is not young
   289     Young,                      // a region is young
   290     Survivor                    // a region is young and it contains survivors
   291   };
   293   volatile YoungType _young_type;
   294   int  _young_index_in_cset;
   295   SurvRateGroup* _surv_rate_group;
   296   int  _age_index;
   298   // The start of the unmarked area. The unmarked area extends from this
   299   // word until the top and/or end of the region, and is the part
   300   // of the region for which no marking was done, i.e. objects may
   301   // have been allocated in this part since the last mark phase.
   302   // "prev" is the top at the start of the last completed marking.
   303   // "next" is the top at the start of the in-progress marking (if any.)
   304   HeapWord* _prev_top_at_mark_start;
   305   HeapWord* _next_top_at_mark_start;
   306   // If a collection pause is in progress, this is the top at the start
   307   // of that pause.
   309   // We've counted the marked bytes of objects below here.
   310   HeapWord* _top_at_conc_mark_count;
   312   void init_top_at_mark_start() {
   313     assert(_prev_marked_bytes == 0 &&
   314            _next_marked_bytes == 0,
   315            "Must be called after zero_marked_bytes.");
   316     HeapWord* bot = bottom();
   317     _prev_top_at_mark_start = bot;
   318     _next_top_at_mark_start = bot;
   319     _top_at_conc_mark_count = bot;
   320   }
   322   void set_young_type(YoungType new_type) {
   323     //assert(_young_type != new_type, "setting the same type" );
   324     // TODO: add more assertions here
   325     _young_type = new_type;
   326   }
   328   // Cached attributes used in the collection set policy information
   330   // The RSet length that was added to the total value
   331   // for the collection set.
   332   size_t _recorded_rs_length;
   334   // The predicted elapsed time that was added to total value
   335   // for the collection set.
   336   double _predicted_elapsed_time_ms;
   338   // The predicted number of bytes to copy that was added to
   339   // the total value for the collection set.
   340   size_t _predicted_bytes_to_copy;
   342  public:
   343   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   344   HeapRegion(uint hrs_index,
   345              G1BlockOffsetSharedArray* sharedOffsetArray,
   346              MemRegion mr, bool is_zeroed);
   348   static int    LogOfHRGrainBytes;
   349   static int    LogOfHRGrainWords;
   351   static size_t GrainBytes;
   352   static size_t GrainWords;
   353   static size_t CardsPerRegion;
   355   static size_t align_up_to_region_byte_size(size_t sz) {
   356     return (sz + (size_t) GrainBytes - 1) &
   357                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   358   }
   360   // It sets up the heap region size (GrainBytes / GrainWords), as
   361   // well as other related fields that are based on the heap region
   362   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   363   // CardsPerRegion). All those fields are considered constant
   364   // throughout the JVM's execution, therefore they should only be set
   365   // up once during initialization time.
   366   static void setup_heap_region_size(uintx min_heap_size);
   368   enum ClaimValues {
   369     InitialClaimValue          = 0,
   370     FinalCountClaimValue       = 1,
   371     NoteEndClaimValue          = 2,
   372     ScrubRemSetClaimValue      = 3,
   373     ParVerifyClaimValue        = 4,
   374     RebuildRSClaimValue        = 5,
   375     ParEvacFailureClaimValue   = 6,
   376     AggregateCountClaimValue   = 7,
   377     VerifyCountClaimValue      = 8
   378   };
   380   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   381     assert(is_young(), "we can only skip BOT updates on young regions");
   382     return ContiguousSpace::par_allocate(word_size);
   383   }
   384   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   385     assert(is_young(), "we can only skip BOT updates on young regions");
   386     return ContiguousSpace::allocate(word_size);
   387   }
   389   // If this region is a member of a HeapRegionSeq, the index in that
   390   // sequence, otherwise -1.
   391   uint hrs_index() const { return _hrs_index; }
   393   // The number of bytes marked live in the region in the last marking phase.
   394   size_t marked_bytes()    { return _prev_marked_bytes; }
   395   size_t live_bytes() {
   396     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   397   }
   399   // The number of bytes counted in the next marking.
   400   size_t next_marked_bytes() { return _next_marked_bytes; }
   401   // The number of bytes live wrt the next marking.
   402   size_t next_live_bytes() {
   403     return
   404       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   405   }
   407   // A lower bound on the amount of garbage bytes in the region.
   408   size_t garbage_bytes() {
   409     size_t used_at_mark_start_bytes =
   410       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   411     assert(used_at_mark_start_bytes >= marked_bytes(),
   412            "Can't mark more than we have.");
   413     return used_at_mark_start_bytes - marked_bytes();
   414   }
   416   // Return the amount of bytes we'll reclaim if we collect this
   417   // region. This includes not only the known garbage bytes in the
   418   // region but also any unallocated space in it, i.e., [top, end),
   419   // since it will also be reclaimed if we collect the region.
   420   size_t reclaimable_bytes() {
   421     size_t known_live_bytes = live_bytes();
   422     assert(known_live_bytes <= capacity(), "sanity");
   423     return capacity() - known_live_bytes;
   424   }
   426   // An upper bound on the number of live bytes in the region.
   427   size_t max_live_bytes() { return used() - garbage_bytes(); }
   429   void add_to_marked_bytes(size_t incr_bytes) {
   430     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   431     assert(_next_marked_bytes <= used(), "invariant" );
   432   }
   434   void zero_marked_bytes()      {
   435     _prev_marked_bytes = _next_marked_bytes = 0;
   436   }
   438   bool isHumongous() const { return _humongous_type != NotHumongous; }
   439   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   440   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   441   // For a humongous region, region in which it starts.
   442   HeapRegion* humongous_start_region() const {
   443     return _humongous_start_region;
   444   }
   446   // Same as Space::is_in_reserved, but will use the original size of the region.
   447   // The original size is different only for start humongous regions. They get
   448   // their _end set up to be the end of the last continues region of the
   449   // corresponding humongous object.
   450   bool is_in_reserved_raw(const void* p) const {
   451     return _bottom <= p && p < _orig_end;
   452   }
   454   // Makes the current region be a "starts humongous" region, i.e.,
   455   // the first region in a series of one or more contiguous regions
   456   // that will contain a single "humongous" object. The two parameters
   457   // are as follows:
   458   //
   459   // new_top : The new value of the top field of this region which
   460   // points to the end of the humongous object that's being
   461   // allocated. If there is more than one region in the series, top
   462   // will lie beyond this region's original end field and on the last
   463   // region in the series.
   464   //
   465   // new_end : The new value of the end field of this region which
   466   // points to the end of the last region in the series. If there is
   467   // one region in the series (namely: this one) end will be the same
   468   // as the original end of this region.
   469   //
   470   // Updating top and end as described above makes this region look as
   471   // if it spans the entire space taken up by all the regions in the
   472   // series and an single allocation moved its top to new_top. This
   473   // ensures that the space (capacity / allocated) taken up by all
   474   // humongous regions can be calculated by just looking at the
   475   // "starts humongous" regions and by ignoring the "continues
   476   // humongous" regions.
   477   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   479   // Makes the current region be a "continues humongous'
   480   // region. first_hr is the "start humongous" region of the series
   481   // which this region will be part of.
   482   void set_continuesHumongous(HeapRegion* first_hr);
   484   // Unsets the humongous-related fields on the region.
   485   void set_notHumongous();
   487   // If the region has a remembered set, return a pointer to it.
   488   HeapRegionRemSet* rem_set() const {
   489     return _rem_set;
   490   }
   492   // True iff the region is in current collection_set.
   493   bool in_collection_set() const {
   494     return _in_collection_set;
   495   }
   496   void set_in_collection_set(bool b) {
   497     _in_collection_set = b;
   498   }
   499   HeapRegion* next_in_collection_set() {
   500     assert(in_collection_set(), "should only invoke on member of CS.");
   501     assert(_next_in_special_set == NULL ||
   502            _next_in_special_set->in_collection_set(),
   503            "Malformed CS.");
   504     return _next_in_special_set;
   505   }
   506   void set_next_in_collection_set(HeapRegion* r) {
   507     assert(in_collection_set(), "should only invoke on member of CS.");
   508     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   509     _next_in_special_set = r;
   510   }
   512   // Methods used by the HeapRegionSetBase class and subclasses.
   514   // Getter and setter for the next field used to link regions into
   515   // linked lists.
   516   HeapRegion* next()              { return _next; }
   518   void set_next(HeapRegion* next) { _next = next; }
   520   // Every region added to a set is tagged with a reference to that
   521   // set. This is used for doing consistency checking to make sure that
   522   // the contents of a set are as they should be and it's only
   523   // available in non-product builds.
   524 #ifdef ASSERT
   525   void set_containing_set(HeapRegionSetBase* containing_set) {
   526     assert((containing_set == NULL && _containing_set != NULL) ||
   527            (containing_set != NULL && _containing_set == NULL),
   528            err_msg("containing_set: "PTR_FORMAT" "
   529                    "_containing_set: "PTR_FORMAT,
   530                    containing_set, _containing_set));
   532     _containing_set = containing_set;
   533   }
   535   HeapRegionSetBase* containing_set() { return _containing_set; }
   536 #else // ASSERT
   537   void set_containing_set(HeapRegionSetBase* containing_set) { }
   539   // containing_set() is only used in asserts so there's no reason
   540   // to provide a dummy version of it.
   541 #endif // ASSERT
   543   // If we want to remove regions from a list in bulk we can simply tag
   544   // them with the pending_removal tag and call the
   545   // remove_all_pending() method on the list.
   547   bool pending_removal() { return _pending_removal; }
   549   void set_pending_removal(bool pending_removal) {
   550     if (pending_removal) {
   551       assert(!_pending_removal && containing_set() != NULL,
   552              "can only set pending removal to true if it's false and "
   553              "the region belongs to a region set");
   554     } else {
   555       assert( _pending_removal && containing_set() == NULL,
   556               "can only set pending removal to false if it's true and "
   557               "the region does not belong to a region set");
   558     }
   560     _pending_removal = pending_removal;
   561   }
   563   HeapRegion* get_next_young_region() { return _next_young_region; }
   564   void set_next_young_region(HeapRegion* hr) {
   565     _next_young_region = hr;
   566   }
   568   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   569   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   570   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   571   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   573   HeapWord* orig_end() { return _orig_end; }
   575   // Allows logical separation between objects allocated before and after.
   576   void save_marks();
   578   // Reset HR stuff to default values.
   579   void hr_clear(bool par, bool clear_space);
   580   void par_clear();
   582   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   584   // Get the start of the unmarked area in this region.
   585   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   586   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   588   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   589   // allocated in the current region before the last call to "save_mark".
   590   void oop_before_save_marks_iterate(OopClosure* cl);
   592   // Note the start or end of marking. This tells the heap region
   593   // that the collector is about to start or has finished (concurrently)
   594   // marking the heap.
   596   // Notify the region that concurrent marking is starting. Initialize
   597   // all fields related to the next marking info.
   598   inline void note_start_of_marking();
   600   // Notify the region that concurrent marking has finished. Copy the
   601   // (now finalized) next marking info fields into the prev marking
   602   // info fields.
   603   inline void note_end_of_marking();
   605   // Notify the region that it will be used as to-space during a GC
   606   // and we are about to start copying objects into it.
   607   inline void note_start_of_copying(bool during_initial_mark);
   609   // Notify the region that it ceases being to-space during a GC and
   610   // we will not copy objects into it any more.
   611   inline void note_end_of_copying(bool during_initial_mark);
   613   // Notify the region that we are about to start processing
   614   // self-forwarded objects during evac failure handling.
   615   void note_self_forwarding_removal_start(bool during_initial_mark,
   616                                           bool during_conc_mark);
   618   // Notify the region that we have finished processing self-forwarded
   619   // objects during evac failure handling.
   620   void note_self_forwarding_removal_end(bool during_initial_mark,
   621                                         bool during_conc_mark,
   622                                         size_t marked_bytes);
   624   // Returns "false" iff no object in the region was allocated when the
   625   // last mark phase ended.
   626   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   628   void init_top_at_conc_mark_count() {
   629     _top_at_conc_mark_count = bottom();
   630   }
   632   void set_top_at_conc_mark_count(HeapWord *cur) {
   633     assert(bottom() <= cur && cur <= end(), "Sanity.");
   634     _top_at_conc_mark_count = cur;
   635   }
   637   HeapWord* top_at_conc_mark_count() {
   638     return _top_at_conc_mark_count;
   639   }
   641   void reset_during_compaction() {
   642     guarantee( isHumongous() && startsHumongous(),
   643                "should only be called for humongous regions");
   645     zero_marked_bytes();
   646     init_top_at_mark_start();
   647   }
   649   void calc_gc_efficiency(void);
   650   double gc_efficiency() { return _gc_efficiency;}
   652   bool is_young() const     { return _young_type != NotYoung; }
   653   bool is_survivor() const  { return _young_type == Survivor; }
   655   int  young_index_in_cset() const { return _young_index_in_cset; }
   656   void set_young_index_in_cset(int index) {
   657     assert( (index == -1) || is_young(), "pre-condition" );
   658     _young_index_in_cset = index;
   659   }
   661   int age_in_surv_rate_group() {
   662     assert( _surv_rate_group != NULL, "pre-condition" );
   663     assert( _age_index > -1, "pre-condition" );
   664     return _surv_rate_group->age_in_group(_age_index);
   665   }
   667   void record_surv_words_in_group(size_t words_survived) {
   668     assert( _surv_rate_group != NULL, "pre-condition" );
   669     assert( _age_index > -1, "pre-condition" );
   670     int age_in_group = age_in_surv_rate_group();
   671     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   672   }
   674   int age_in_surv_rate_group_cond() {
   675     if (_surv_rate_group != NULL)
   676       return age_in_surv_rate_group();
   677     else
   678       return -1;
   679   }
   681   SurvRateGroup* surv_rate_group() {
   682     return _surv_rate_group;
   683   }
   685   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   686     assert( surv_rate_group != NULL, "pre-condition" );
   687     assert( _surv_rate_group == NULL, "pre-condition" );
   688     assert( is_young(), "pre-condition" );
   690     _surv_rate_group = surv_rate_group;
   691     _age_index = surv_rate_group->next_age_index();
   692   }
   694   void uninstall_surv_rate_group() {
   695     if (_surv_rate_group != NULL) {
   696       assert( _age_index > -1, "pre-condition" );
   697       assert( is_young(), "pre-condition" );
   699       _surv_rate_group = NULL;
   700       _age_index = -1;
   701     } else {
   702       assert( _age_index == -1, "pre-condition" );
   703     }
   704   }
   706   void set_young() { set_young_type(Young); }
   708   void set_survivor() { set_young_type(Survivor); }
   710   void set_not_young() { set_young_type(NotYoung); }
   712   // Determine if an object has been allocated since the last
   713   // mark performed by the collector. This returns true iff the object
   714   // is within the unmarked area of the region.
   715   bool obj_allocated_since_prev_marking(oop obj) const {
   716     return (HeapWord *) obj >= prev_top_at_mark_start();
   717   }
   718   bool obj_allocated_since_next_marking(oop obj) const {
   719     return (HeapWord *) obj >= next_top_at_mark_start();
   720   }
   722   // For parallel heapRegion traversal.
   723   bool claimHeapRegion(int claimValue);
   724   jint claim_value() { return _claimed; }
   725   // Use this carefully: only when you're sure no one is claiming...
   726   void set_claim_value(int claimValue) { _claimed = claimValue; }
   728   // Returns the "evacuation_failed" property of the region.
   729   bool evacuation_failed() { return _evacuation_failed; }
   731   // Sets the "evacuation_failed" property of the region.
   732   void set_evacuation_failed(bool b) {
   733     _evacuation_failed = b;
   735     if (b) {
   736       init_top_at_conc_mark_count();
   737       _next_marked_bytes = 0;
   738     }
   739   }
   741   // Requires that "mr" be entirely within the region.
   742   // Apply "cl->do_object" to all objects that intersect with "mr".
   743   // If the iteration encounters an unparseable portion of the region,
   744   // or if "cl->abort()" is true after a closure application,
   745   // terminate the iteration and return the address of the start of the
   746   // subregion that isn't done.  (The two can be distinguished by querying
   747   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   748   // completed.
   749   HeapWord*
   750   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   752   // filter_young: if true and the region is a young region then we
   753   // skip the iteration.
   754   // card_ptr: if not NULL, and we decide that the card is not young
   755   // and we iterate over it, we'll clean the card before we start the
   756   // iteration.
   757   HeapWord*
   758   oops_on_card_seq_iterate_careful(MemRegion mr,
   759                                    FilterOutOfRegionClosure* cl,
   760                                    bool filter_young,
   761                                    jbyte* card_ptr);
   763   // A version of block start that is guaranteed to find *some* block
   764   // boundary at or before "p", but does not object iteration, and may
   765   // therefore be used safely when the heap is unparseable.
   766   HeapWord* block_start_careful(const void* p) const {
   767     return _offsets.block_start_careful(p);
   768   }
   770   // Requires that "addr" is within the region.  Returns the start of the
   771   // first ("careful") block that starts at or after "addr", or else the
   772   // "end" of the region if there is no such block.
   773   HeapWord* next_block_start_careful(HeapWord* addr);
   775   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   776   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   777   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   779   void set_recorded_rs_length(size_t rs_length) {
   780     _recorded_rs_length = rs_length;
   781   }
   783   void set_predicted_elapsed_time_ms(double ms) {
   784     _predicted_elapsed_time_ms = ms;
   785   }
   787   void set_predicted_bytes_to_copy(size_t bytes) {
   788     _predicted_bytes_to_copy = bytes;
   789   }
   791 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   792   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   793   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   795   CompactibleSpace* next_compaction_space() const;
   797   virtual void reset_after_compaction();
   799   void print() const;
   800   void print_on(outputStream* st) const;
   802   // vo == UsePrevMarking  -> use "prev" marking information,
   803   // vo == UseNextMarking -> use "next" marking information
   804   // vo == UseMarkWord    -> use the mark word in the object header
   805   //
   806   // NOTE: Only the "prev" marking information is guaranteed to be
   807   // consistent most of the time, so most calls to this should use
   808   // vo == UsePrevMarking.
   809   // Currently, there is only one case where this is called with
   810   // vo == UseNextMarking, which is to verify the "next" marking
   811   // information at the end of remark.
   812   // Currently there is only one place where this is called with
   813   // vo == UseMarkWord, which is to verify the marking during a
   814   // full GC.
   815   void verify(VerifyOption vo, bool *failures) const;
   817   // Override; it uses the "prev" marking information
   818   virtual void verify() const;
   819 };
   821 // HeapRegionClosure is used for iterating over regions.
   822 // Terminates the iteration when the "doHeapRegion" method returns "true".
   823 class HeapRegionClosure : public StackObj {
   824   friend class HeapRegionSeq;
   825   friend class G1CollectedHeap;
   827   bool _complete;
   828   void incomplete() { _complete = false; }
   830  public:
   831   HeapRegionClosure(): _complete(true) {}
   833   // Typically called on each region until it returns true.
   834   virtual bool doHeapRegion(HeapRegion* r) = 0;
   836   // True after iteration if the closure was applied to all heap regions
   837   // and returned "false" in all cases.
   838   bool complete() { return _complete; }
   839 };
   841 #endif // SERIALGC
   843 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial