src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 25 Apr 2012 10:23:12 -0700

author
johnc
date
Wed, 25 Apr 2012 10:23:12 -0700
changeset 3731
8a2e5a6a19a4
parent 3714
f7a8920427a6
child 3734
48fac5d60c3c
permissions
-rw-r--r--

7143490: G1: Remove HeapRegion::_top_at_conc_mark_count
Summary: Removed the HeapRegion::_top_at_conc_mark_count field. It is no longer needed as a result of the changes for 6888336 and 7127706. Refactored the closures that finalize and verify the liveness counting data so that common functionality was placed into a base class.
Reviewed-by: brutisso, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1Log.hpp"
    37 #include "gc_implementation/g1/g1MarkSweep.hpp"
    38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    40 #include "gc_implementation/g1/heapRegion.inline.hpp"
    41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    43 #include "gc_implementation/g1/vm_operations_g1.hpp"
    44 #include "gc_implementation/shared/isGCActiveMark.hpp"
    45 #include "memory/gcLocker.inline.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/generationSpec.hpp"
    48 #include "memory/referenceProcessor.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "oops/oop.pcgc.inline.hpp"
    51 #include "runtime/aprofiler.hpp"
    52 #include "runtime/vmThread.hpp"
    54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    56 // turn it on so that the contents of the young list (scan-only /
    57 // to-be-collected) are printed at "strategic" points before / during
    58 // / after the collection --- this is useful for debugging
    59 #define YOUNG_LIST_VERBOSE 0
    60 // CURRENT STATUS
    61 // This file is under construction.  Search for "FIXME".
    63 // INVARIANTS/NOTES
    64 //
    65 // All allocation activity covered by the G1CollectedHeap interface is
    66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    67 // and allocate_new_tlab, which are the "entry" points to the
    68 // allocation code from the rest of the JVM.  (Note that this does not
    69 // apply to TLAB allocation, which is not part of this interface: it
    70 // is done by clients of this interface.)
    72 // Notes on implementation of parallelism in different tasks.
    73 //
    74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    76 // It does use run_task() which sets _n_workers in the task.
    77 // G1ParTask executes g1_process_strong_roots() ->
    78 // SharedHeap::process_strong_roots() which calls eventuall to
    79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    82 //
    84 // Local to this file.
    86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    87   SuspendibleThreadSet* _sts;
    88   G1RemSet* _g1rs;
    89   ConcurrentG1Refine* _cg1r;
    90   bool _concurrent;
    91 public:
    92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    93                               G1RemSet* g1rs,
    94                               ConcurrentG1Refine* cg1r) :
    95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    96   {}
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    99     // This path is executed by the concurrent refine or mutator threads,
   100     // concurrently, and so we do not care if card_ptr contains references
   101     // that point into the collection set.
   102     assert(!oops_into_cset, "should be");
   104     if (_concurrent && _sts->should_yield()) {
   105       // Caller will actually yield.
   106       return false;
   107     }
   108     // Otherwise, we finished successfully; return true.
   109     return true;
   110   }
   111   void set_concurrent(bool b) { _concurrent = b; }
   112 };
   115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   116   int _calls;
   117   G1CollectedHeap* _g1h;
   118   CardTableModRefBS* _ctbs;
   119   int _histo[256];
   120 public:
   121   ClearLoggedCardTableEntryClosure() :
   122     _calls(0)
   123   {
   124     _g1h = G1CollectedHeap::heap();
   125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   126     for (int i = 0; i < 256; i++) _histo[i] = 0;
   127   }
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   130       _calls++;
   131       unsigned char* ujb = (unsigned char*)card_ptr;
   132       int ind = (int)(*ujb);
   133       _histo[ind]++;
   134       *card_ptr = -1;
   135     }
   136     return true;
   137   }
   138   int calls() { return _calls; }
   139   void print_histo() {
   140     gclog_or_tty->print_cr("Card table value histogram:");
   141     for (int i = 0; i < 256; i++) {
   142       if (_histo[i] != 0) {
   143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   144       }
   145     }
   146   }
   147 };
   149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   150   int _calls;
   151   G1CollectedHeap* _g1h;
   152   CardTableModRefBS* _ctbs;
   153 public:
   154   RedirtyLoggedCardTableEntryClosure() :
   155     _calls(0)
   156   {
   157     _g1h = G1CollectedHeap::heap();
   158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   159   }
   160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   162       _calls++;
   163       *card_ptr = 0;
   164     }
   165     return true;
   166   }
   167   int calls() { return _calls; }
   168 };
   170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   171 public:
   172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   173     *card_ptr = CardTableModRefBS::dirty_card_val();
   174     return true;
   175   }
   176 };
   178 YoungList::YoungList(G1CollectedHeap* g1h) :
   179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   181   guarantee(check_list_empty(false), "just making sure...");
   182 }
   184 void YoungList::push_region(HeapRegion *hr) {
   185   assert(!hr->is_young(), "should not already be young");
   186   assert(hr->get_next_young_region() == NULL, "cause it should!");
   188   hr->set_next_young_region(_head);
   189   _head = hr;
   191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   192   ++_length;
   193 }
   195 void YoungList::add_survivor_region(HeapRegion* hr) {
   196   assert(hr->is_survivor(), "should be flagged as survivor region");
   197   assert(hr->get_next_young_region() == NULL, "cause it should!");
   199   hr->set_next_young_region(_survivor_head);
   200   if (_survivor_head == NULL) {
   201     _survivor_tail = hr;
   202   }
   203   _survivor_head = hr;
   204   ++_survivor_length;
   205 }
   207 void YoungList::empty_list(HeapRegion* list) {
   208   while (list != NULL) {
   209     HeapRegion* next = list->get_next_young_region();
   210     list->set_next_young_region(NULL);
   211     list->uninstall_surv_rate_group();
   212     list->set_not_young();
   213     list = next;
   214   }
   215 }
   217 void YoungList::empty_list() {
   218   assert(check_list_well_formed(), "young list should be well formed");
   220   empty_list(_head);
   221   _head = NULL;
   222   _length = 0;
   224   empty_list(_survivor_head);
   225   _survivor_head = NULL;
   226   _survivor_tail = NULL;
   227   _survivor_length = 0;
   229   _last_sampled_rs_lengths = 0;
   231   assert(check_list_empty(false), "just making sure...");
   232 }
   234 bool YoungList::check_list_well_formed() {
   235   bool ret = true;
   237   uint length = 0;
   238   HeapRegion* curr = _head;
   239   HeapRegion* last = NULL;
   240   while (curr != NULL) {
   241     if (!curr->is_young()) {
   242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   243                              "incorrectly tagged (y: %d, surv: %d)",
   244                              curr->bottom(), curr->end(),
   245                              curr->is_young(), curr->is_survivor());
   246       ret = false;
   247     }
   248     ++length;
   249     last = curr;
   250     curr = curr->get_next_young_region();
   251   }
   252   ret = ret && (length == _length);
   254   if (!ret) {
   255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   257                            length, _length);
   258   }
   260   return ret;
   261 }
   263 bool YoungList::check_list_empty(bool check_sample) {
   264   bool ret = true;
   266   if (_length != 0) {
   267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   268                   _length);
   269     ret = false;
   270   }
   271   if (check_sample && _last_sampled_rs_lengths != 0) {
   272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   273     ret = false;
   274   }
   275   if (_head != NULL) {
   276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   277     ret = false;
   278   }
   279   if (!ret) {
   280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   281   }
   283   return ret;
   284 }
   286 void
   287 YoungList::rs_length_sampling_init() {
   288   _sampled_rs_lengths = 0;
   289   _curr               = _head;
   290 }
   292 bool
   293 YoungList::rs_length_sampling_more() {
   294   return _curr != NULL;
   295 }
   297 void
   298 YoungList::rs_length_sampling_next() {
   299   assert( _curr != NULL, "invariant" );
   300   size_t rs_length = _curr->rem_set()->occupied();
   302   _sampled_rs_lengths += rs_length;
   304   // The current region may not yet have been added to the
   305   // incremental collection set (it gets added when it is
   306   // retired as the current allocation region).
   307   if (_curr->in_collection_set()) {
   308     // Update the collection set policy information for this region
   309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   310   }
   312   _curr = _curr->get_next_young_region();
   313   if (_curr == NULL) {
   314     _last_sampled_rs_lengths = _sampled_rs_lengths;
   315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   316   }
   317 }
   319 void
   320 YoungList::reset_auxilary_lists() {
   321   guarantee( is_empty(), "young list should be empty" );
   322   assert(check_list_well_formed(), "young list should be well formed");
   324   // Add survivor regions to SurvRateGroup.
   325   _g1h->g1_policy()->note_start_adding_survivor_regions();
   326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   328   int young_index_in_cset = 0;
   329   for (HeapRegion* curr = _survivor_head;
   330        curr != NULL;
   331        curr = curr->get_next_young_region()) {
   332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   334     // The region is a non-empty survivor so let's add it to
   335     // the incremental collection set for the next evacuation
   336     // pause.
   337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   338     young_index_in_cset += 1;
   339   }
   340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   343   _head   = _survivor_head;
   344   _length = _survivor_length;
   345   if (_survivor_head != NULL) {
   346     assert(_survivor_tail != NULL, "cause it shouldn't be");
   347     assert(_survivor_length > 0, "invariant");
   348     _survivor_tail->set_next_young_region(NULL);
   349   }
   351   // Don't clear the survivor list handles until the start of
   352   // the next evacuation pause - we need it in order to re-tag
   353   // the survivor regions from this evacuation pause as 'young'
   354   // at the start of the next.
   356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   358   assert(check_list_well_formed(), "young list should be well formed");
   359 }
   361 void YoungList::print() {
   362   HeapRegion* lists[] = {_head,   _survivor_head};
   363   const char* names[] = {"YOUNG", "SURVIVOR"};
   365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   367     HeapRegion *curr = lists[list];
   368     if (curr == NULL)
   369       gclog_or_tty->print_cr("  empty");
   370     while (curr != NULL) {
   371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   372                              HR_FORMAT_PARAMS(curr),
   373                              curr->prev_top_at_mark_start(),
   374                              curr->next_top_at_mark_start(),
   375                              curr->age_in_surv_rate_group_cond());
   376       curr = curr->get_next_young_region();
   377     }
   378   }
   380   gclog_or_tty->print_cr("");
   381 }
   383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   384 {
   385   // Claim the right to put the region on the dirty cards region list
   386   // by installing a self pointer.
   387   HeapRegion* next = hr->get_next_dirty_cards_region();
   388   if (next == NULL) {
   389     HeapRegion* res = (HeapRegion*)
   390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   391                           NULL);
   392     if (res == NULL) {
   393       HeapRegion* head;
   394       do {
   395         // Put the region to the dirty cards region list.
   396         head = _dirty_cards_region_list;
   397         next = (HeapRegion*)
   398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   399         if (next == head) {
   400           assert(hr->get_next_dirty_cards_region() == hr,
   401                  "hr->get_next_dirty_cards_region() != hr");
   402           if (next == NULL) {
   403             // The last region in the list points to itself.
   404             hr->set_next_dirty_cards_region(hr);
   405           } else {
   406             hr->set_next_dirty_cards_region(next);
   407           }
   408         }
   409       } while (next != head);
   410     }
   411   }
   412 }
   414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   415 {
   416   HeapRegion* head;
   417   HeapRegion* hr;
   418   do {
   419     head = _dirty_cards_region_list;
   420     if (head == NULL) {
   421       return NULL;
   422     }
   423     HeapRegion* new_head = head->get_next_dirty_cards_region();
   424     if (head == new_head) {
   425       // The last region.
   426       new_head = NULL;
   427     }
   428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   429                                           head);
   430   } while (hr != head);
   431   assert(hr != NULL, "invariant");
   432   hr->set_next_dirty_cards_region(NULL);
   433   return hr;
   434 }
   436 void G1CollectedHeap::stop_conc_gc_threads() {
   437   _cg1r->stop();
   438   _cmThread->stop();
   439 }
   441 #ifdef ASSERT
   442 // A region is added to the collection set as it is retired
   443 // so an address p can point to a region which will be in the
   444 // collection set but has not yet been retired.  This method
   445 // therefore is only accurate during a GC pause after all
   446 // regions have been retired.  It is used for debugging
   447 // to check if an nmethod has references to objects that can
   448 // be move during a partial collection.  Though it can be
   449 // inaccurate, it is sufficient for G1 because the conservative
   450 // implementation of is_scavengable() for G1 will indicate that
   451 // all nmethods must be scanned during a partial collection.
   452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   453   HeapRegion* hr = heap_region_containing(p);
   454   return hr != NULL && hr->in_collection_set();
   455 }
   456 #endif
   458 // Returns true if the reference points to an object that
   459 // can move in an incremental collecction.
   460 bool G1CollectedHeap::is_scavengable(const void* p) {
   461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   462   G1CollectorPolicy* g1p = g1h->g1_policy();
   463   HeapRegion* hr = heap_region_containing(p);
   464   if (hr == NULL) {
   465      // perm gen (or null)
   466      return false;
   467   } else {
   468     return !hr->isHumongous();
   469   }
   470 }
   472 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   473   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   474   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   476   // Count the dirty cards at the start.
   477   CountNonCleanMemRegionClosure count1(this);
   478   ct_bs->mod_card_iterate(&count1);
   479   int orig_count = count1.n();
   481   // First clear the logged cards.
   482   ClearLoggedCardTableEntryClosure clear;
   483   dcqs.set_closure(&clear);
   484   dcqs.apply_closure_to_all_completed_buffers();
   485   dcqs.iterate_closure_all_threads(false);
   486   clear.print_histo();
   488   // Now ensure that there's no dirty cards.
   489   CountNonCleanMemRegionClosure count2(this);
   490   ct_bs->mod_card_iterate(&count2);
   491   if (count2.n() != 0) {
   492     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   493                            count2.n(), orig_count);
   494   }
   495   guarantee(count2.n() == 0, "Card table should be clean.");
   497   RedirtyLoggedCardTableEntryClosure redirty;
   498   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   499   dcqs.apply_closure_to_all_completed_buffers();
   500   dcqs.iterate_closure_all_threads(false);
   501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   502                          clear.calls(), orig_count);
   503   guarantee(redirty.calls() == clear.calls(),
   504             "Or else mechanism is broken.");
   506   CountNonCleanMemRegionClosure count3(this);
   507   ct_bs->mod_card_iterate(&count3);
   508   if (count3.n() != orig_count) {
   509     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   510                            orig_count, count3.n());
   511     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   512   }
   514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   515 }
   517 // Private class members.
   519 G1CollectedHeap* G1CollectedHeap::_g1h;
   521 // Private methods.
   523 HeapRegion*
   524 G1CollectedHeap::new_region_try_secondary_free_list() {
   525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   527     if (!_secondary_free_list.is_empty()) {
   528       if (G1ConcRegionFreeingVerbose) {
   529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   530                                "secondary_free_list has %u entries",
   531                                _secondary_free_list.length());
   532       }
   533       // It looks as if there are free regions available on the
   534       // secondary_free_list. Let's move them to the free_list and try
   535       // again to allocate from it.
   536       append_secondary_free_list();
   538       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   539              "empty we should have moved at least one entry to the free_list");
   540       HeapRegion* res = _free_list.remove_head();
   541       if (G1ConcRegionFreeingVerbose) {
   542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   543                                "allocated "HR_FORMAT" from secondary_free_list",
   544                                HR_FORMAT_PARAMS(res));
   545       }
   546       return res;
   547     }
   549     // Wait here until we get notifed either when (a) there are no
   550     // more free regions coming or (b) some regions have been moved on
   551     // the secondary_free_list.
   552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   553   }
   555   if (G1ConcRegionFreeingVerbose) {
   556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   557                            "could not allocate from secondary_free_list");
   558   }
   559   return NULL;
   560 }
   562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   563   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   564          "the only time we use this to allocate a humongous region is "
   565          "when we are allocating a single humongous region");
   567   HeapRegion* res;
   568   if (G1StressConcRegionFreeing) {
   569     if (!_secondary_free_list.is_empty()) {
   570       if (G1ConcRegionFreeingVerbose) {
   571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   572                                "forced to look at the secondary_free_list");
   573       }
   574       res = new_region_try_secondary_free_list();
   575       if (res != NULL) {
   576         return res;
   577       }
   578     }
   579   }
   580   res = _free_list.remove_head_or_null();
   581   if (res == NULL) {
   582     if (G1ConcRegionFreeingVerbose) {
   583       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   584                              "res == NULL, trying the secondary_free_list");
   585     }
   586     res = new_region_try_secondary_free_list();
   587   }
   588   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   589     // Currently, only attempts to allocate GC alloc regions set
   590     // do_expand to true. So, we should only reach here during a
   591     // safepoint. If this assumption changes we might have to
   592     // reconsider the use of _expand_heap_after_alloc_failure.
   593     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   595     ergo_verbose1(ErgoHeapSizing,
   596                   "attempt heap expansion",
   597                   ergo_format_reason("region allocation request failed")
   598                   ergo_format_byte("allocation request"),
   599                   word_size * HeapWordSize);
   600     if (expand(word_size * HeapWordSize)) {
   601       // Given that expand() succeeded in expanding the heap, and we
   602       // always expand the heap by an amount aligned to the heap
   603       // region size, the free list should in theory not be empty. So
   604       // it would probably be OK to use remove_head(). But the extra
   605       // check for NULL is unlikely to be a performance issue here (we
   606       // just expanded the heap!) so let's just be conservative and
   607       // use remove_head_or_null().
   608       res = _free_list.remove_head_or_null();
   609     } else {
   610       _expand_heap_after_alloc_failure = false;
   611     }
   612   }
   613   return res;
   614 }
   616 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   617                                                         size_t word_size) {
   618   assert(isHumongous(word_size), "word_size should be humongous");
   619   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   621   uint first = G1_NULL_HRS_INDEX;
   622   if (num_regions == 1) {
   623     // Only one region to allocate, no need to go through the slower
   624     // path. The caller will attempt the expasion if this fails, so
   625     // let's not try to expand here too.
   626     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   627     if (hr != NULL) {
   628       first = hr->hrs_index();
   629     } else {
   630       first = G1_NULL_HRS_INDEX;
   631     }
   632   } else {
   633     // We can't allocate humongous regions while cleanupComplete() is
   634     // running, since some of the regions we find to be empty might not
   635     // yet be added to the free list and it is not straightforward to
   636     // know which list they are on so that we can remove them. Note
   637     // that we only need to do this if we need to allocate more than
   638     // one region to satisfy the current humongous allocation
   639     // request. If we are only allocating one region we use the common
   640     // region allocation code (see above).
   641     wait_while_free_regions_coming();
   642     append_secondary_free_list_if_not_empty_with_lock();
   644     if (free_regions() >= num_regions) {
   645       first = _hrs.find_contiguous(num_regions);
   646       if (first != G1_NULL_HRS_INDEX) {
   647         for (uint i = first; i < first + num_regions; ++i) {
   648           HeapRegion* hr = region_at(i);
   649           assert(hr->is_empty(), "sanity");
   650           assert(is_on_master_free_list(hr), "sanity");
   651           hr->set_pending_removal(true);
   652         }
   653         _free_list.remove_all_pending(num_regions);
   654       }
   655     }
   656   }
   657   return first;
   658 }
   660 HeapWord*
   661 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   662                                                            uint num_regions,
   663                                                            size_t word_size) {
   664   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   665   assert(isHumongous(word_size), "word_size should be humongous");
   666   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   668   // Index of last region in the series + 1.
   669   uint last = first + num_regions;
   671   // We need to initialize the region(s) we just discovered. This is
   672   // a bit tricky given that it can happen concurrently with
   673   // refinement threads refining cards on these regions and
   674   // potentially wanting to refine the BOT as they are scanning
   675   // those cards (this can happen shortly after a cleanup; see CR
   676   // 6991377). So we have to set up the region(s) carefully and in
   677   // a specific order.
   679   // The word size sum of all the regions we will allocate.
   680   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   681   assert(word_size <= word_size_sum, "sanity");
   683   // This will be the "starts humongous" region.
   684   HeapRegion* first_hr = region_at(first);
   685   // The header of the new object will be placed at the bottom of
   686   // the first region.
   687   HeapWord* new_obj = first_hr->bottom();
   688   // This will be the new end of the first region in the series that
   689   // should also match the end of the last region in the seriers.
   690   HeapWord* new_end = new_obj + word_size_sum;
   691   // This will be the new top of the first region that will reflect
   692   // this allocation.
   693   HeapWord* new_top = new_obj + word_size;
   695   // First, we need to zero the header of the space that we will be
   696   // allocating. When we update top further down, some refinement
   697   // threads might try to scan the region. By zeroing the header we
   698   // ensure that any thread that will try to scan the region will
   699   // come across the zero klass word and bail out.
   700   //
   701   // NOTE: It would not have been correct to have used
   702   // CollectedHeap::fill_with_object() and make the space look like
   703   // an int array. The thread that is doing the allocation will
   704   // later update the object header to a potentially different array
   705   // type and, for a very short period of time, the klass and length
   706   // fields will be inconsistent. This could cause a refinement
   707   // thread to calculate the object size incorrectly.
   708   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   710   // We will set up the first region as "starts humongous". This
   711   // will also update the BOT covering all the regions to reflect
   712   // that there is a single object that starts at the bottom of the
   713   // first region.
   714   first_hr->set_startsHumongous(new_top, new_end);
   716   // Then, if there are any, we will set up the "continues
   717   // humongous" regions.
   718   HeapRegion* hr = NULL;
   719   for (uint i = first + 1; i < last; ++i) {
   720     hr = region_at(i);
   721     hr->set_continuesHumongous(first_hr);
   722   }
   723   // If we have "continues humongous" regions (hr != NULL), then the
   724   // end of the last one should match new_end.
   725   assert(hr == NULL || hr->end() == new_end, "sanity");
   727   // Up to this point no concurrent thread would have been able to
   728   // do any scanning on any region in this series. All the top
   729   // fields still point to bottom, so the intersection between
   730   // [bottom,top] and [card_start,card_end] will be empty. Before we
   731   // update the top fields, we'll do a storestore to make sure that
   732   // no thread sees the update to top before the zeroing of the
   733   // object header and the BOT initialization.
   734   OrderAccess::storestore();
   736   // Now that the BOT and the object header have been initialized,
   737   // we can update top of the "starts humongous" region.
   738   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   739          "new_top should be in this region");
   740   first_hr->set_top(new_top);
   741   if (_hr_printer.is_active()) {
   742     HeapWord* bottom = first_hr->bottom();
   743     HeapWord* end = first_hr->orig_end();
   744     if ((first + 1) == last) {
   745       // the series has a single humongous region
   746       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   747     } else {
   748       // the series has more than one humongous regions
   749       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   750     }
   751   }
   753   // Now, we will update the top fields of the "continues humongous"
   754   // regions. The reason we need to do this is that, otherwise,
   755   // these regions would look empty and this will confuse parts of
   756   // G1. For example, the code that looks for a consecutive number
   757   // of empty regions will consider them empty and try to
   758   // re-allocate them. We can extend is_empty() to also include
   759   // !continuesHumongous(), but it is easier to just update the top
   760   // fields here. The way we set top for all regions (i.e., top ==
   761   // end for all regions but the last one, top == new_top for the
   762   // last one) is actually used when we will free up the humongous
   763   // region in free_humongous_region().
   764   hr = NULL;
   765   for (uint i = first + 1; i < last; ++i) {
   766     hr = region_at(i);
   767     if ((i + 1) == last) {
   768       // last continues humongous region
   769       assert(hr->bottom() < new_top && new_top <= hr->end(),
   770              "new_top should fall on this region");
   771       hr->set_top(new_top);
   772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   773     } else {
   774       // not last one
   775       assert(new_top > hr->end(), "new_top should be above this region");
   776       hr->set_top(hr->end());
   777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   778     }
   779   }
   780   // If we have continues humongous regions (hr != NULL), then the
   781   // end of the last one should match new_end and its top should
   782   // match new_top.
   783   assert(hr == NULL ||
   784          (hr->end() == new_end && hr->top() == new_top), "sanity");
   786   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   787   _summary_bytes_used += first_hr->used();
   788   _humongous_set.add(first_hr);
   790   return new_obj;
   791 }
   793 // If could fit into free regions w/o expansion, try.
   794 // Otherwise, if can expand, do so.
   795 // Otherwise, if using ex regions might help, try with ex given back.
   796 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   797   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   799   verify_region_sets_optional();
   801   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   802   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   803   uint x_num = expansion_regions();
   804   uint fs = _hrs.free_suffix();
   805   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   806   if (first == G1_NULL_HRS_INDEX) {
   807     // The only thing we can do now is attempt expansion.
   808     if (fs + x_num >= num_regions) {
   809       // If the number of regions we're trying to allocate for this
   810       // object is at most the number of regions in the free suffix,
   811       // then the call to humongous_obj_allocate_find_first() above
   812       // should have succeeded and we wouldn't be here.
   813       //
   814       // We should only be trying to expand when the free suffix is
   815       // not sufficient for the object _and_ we have some expansion
   816       // room available.
   817       assert(num_regions > fs, "earlier allocation should have succeeded");
   819       ergo_verbose1(ErgoHeapSizing,
   820                     "attempt heap expansion",
   821                     ergo_format_reason("humongous allocation request failed")
   822                     ergo_format_byte("allocation request"),
   823                     word_size * HeapWordSize);
   824       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   825         // Even though the heap was expanded, it might not have
   826         // reached the desired size. So, we cannot assume that the
   827         // allocation will succeed.
   828         first = humongous_obj_allocate_find_first(num_regions, word_size);
   829       }
   830     }
   831   }
   833   HeapWord* result = NULL;
   834   if (first != G1_NULL_HRS_INDEX) {
   835     result =
   836       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   837     assert(result != NULL, "it should always return a valid result");
   839     // A successful humongous object allocation changes the used space
   840     // information of the old generation so we need to recalculate the
   841     // sizes and update the jstat counters here.
   842     g1mm()->update_sizes();
   843   }
   845   verify_region_sets_optional();
   847   return result;
   848 }
   850 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   851   assert_heap_not_locked_and_not_at_safepoint();
   852   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   854   unsigned int dummy_gc_count_before;
   855   return attempt_allocation(word_size, &dummy_gc_count_before);
   856 }
   858 HeapWord*
   859 G1CollectedHeap::mem_allocate(size_t word_size,
   860                               bool*  gc_overhead_limit_was_exceeded) {
   861   assert_heap_not_locked_and_not_at_safepoint();
   863   // Loop until the allocation is satisified, or unsatisfied after GC.
   864   for (int try_count = 1; /* we'll return */; try_count += 1) {
   865     unsigned int gc_count_before;
   867     HeapWord* result = NULL;
   868     if (!isHumongous(word_size)) {
   869       result = attempt_allocation(word_size, &gc_count_before);
   870     } else {
   871       result = attempt_allocation_humongous(word_size, &gc_count_before);
   872     }
   873     if (result != NULL) {
   874       return result;
   875     }
   877     // Create the garbage collection operation...
   878     VM_G1CollectForAllocation op(gc_count_before, word_size);
   879     // ...and get the VM thread to execute it.
   880     VMThread::execute(&op);
   882     if (op.prologue_succeeded() && op.pause_succeeded()) {
   883       // If the operation was successful we'll return the result even
   884       // if it is NULL. If the allocation attempt failed immediately
   885       // after a Full GC, it's unlikely we'll be able to allocate now.
   886       HeapWord* result = op.result();
   887       if (result != NULL && !isHumongous(word_size)) {
   888         // Allocations that take place on VM operations do not do any
   889         // card dirtying and we have to do it here. We only have to do
   890         // this for non-humongous allocations, though.
   891         dirty_young_block(result, word_size);
   892       }
   893       return result;
   894     } else {
   895       assert(op.result() == NULL,
   896              "the result should be NULL if the VM op did not succeed");
   897     }
   899     // Give a warning if we seem to be looping forever.
   900     if ((QueuedAllocationWarningCount > 0) &&
   901         (try_count % QueuedAllocationWarningCount == 0)) {
   902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   903     }
   904   }
   906   ShouldNotReachHere();
   907   return NULL;
   908 }
   910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   911                                            unsigned int *gc_count_before_ret) {
   912   // Make sure you read the note in attempt_allocation_humongous().
   914   assert_heap_not_locked_and_not_at_safepoint();
   915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   916          "be called for humongous allocation requests");
   918   // We should only get here after the first-level allocation attempt
   919   // (attempt_allocation()) failed to allocate.
   921   // We will loop until a) we manage to successfully perform the
   922   // allocation or b) we successfully schedule a collection which
   923   // fails to perform the allocation. b) is the only case when we'll
   924   // return NULL.
   925   HeapWord* result = NULL;
   926   for (int try_count = 1; /* we'll return */; try_count += 1) {
   927     bool should_try_gc;
   928     unsigned int gc_count_before;
   930     {
   931       MutexLockerEx x(Heap_lock);
   933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   934                                                       false /* bot_updates */);
   935       if (result != NULL) {
   936         return result;
   937       }
   939       // If we reach here, attempt_allocation_locked() above failed to
   940       // allocate a new region. So the mutator alloc region should be NULL.
   941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   943       if (GC_locker::is_active_and_needs_gc()) {
   944         if (g1_policy()->can_expand_young_list()) {
   945           // No need for an ergo verbose message here,
   946           // can_expand_young_list() does this when it returns true.
   947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   948                                                       false /* bot_updates */);
   949           if (result != NULL) {
   950             return result;
   951           }
   952         }
   953         should_try_gc = false;
   954       } else {
   955         // Read the GC count while still holding the Heap_lock.
   956         gc_count_before = total_collections();
   957         should_try_gc = true;
   958       }
   959     }
   961     if (should_try_gc) {
   962       bool succeeded;
   963       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   964       if (result != NULL) {
   965         assert(succeeded, "only way to get back a non-NULL result");
   966         return result;
   967       }
   969       if (succeeded) {
   970         // If we get here we successfully scheduled a collection which
   971         // failed to allocate. No point in trying to allocate
   972         // further. We'll just return NULL.
   973         MutexLockerEx x(Heap_lock);
   974         *gc_count_before_ret = total_collections();
   975         return NULL;
   976       }
   977     } else {
   978       GC_locker::stall_until_clear();
   979     }
   981     // We can reach here if we were unsuccessul in scheduling a
   982     // collection (because another thread beat us to it) or if we were
   983     // stalled due to the GC locker. In either can we should retry the
   984     // allocation attempt in case another thread successfully
   985     // performed a collection and reclaimed enough space. We do the
   986     // first attempt (without holding the Heap_lock) here and the
   987     // follow-on attempt will be at the start of the next loop
   988     // iteration (after taking the Heap_lock).
   989     result = _mutator_alloc_region.attempt_allocation(word_size,
   990                                                       false /* bot_updates */);
   991     if (result != NULL) {
   992       return result;
   993     }
   995     // Give a warning if we seem to be looping forever.
   996     if ((QueuedAllocationWarningCount > 0) &&
   997         (try_count % QueuedAllocationWarningCount == 0)) {
   998       warning("G1CollectedHeap::attempt_allocation_slow() "
   999               "retries %d times", try_count);
  1003   ShouldNotReachHere();
  1004   return NULL;
  1007 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1008                                           unsigned int * gc_count_before_ret) {
  1009   // The structure of this method has a lot of similarities to
  1010   // attempt_allocation_slow(). The reason these two were not merged
  1011   // into a single one is that such a method would require several "if
  1012   // allocation is not humongous do this, otherwise do that"
  1013   // conditional paths which would obscure its flow. In fact, an early
  1014   // version of this code did use a unified method which was harder to
  1015   // follow and, as a result, it had subtle bugs that were hard to
  1016   // track down. So keeping these two methods separate allows each to
  1017   // be more readable. It will be good to keep these two in sync as
  1018   // much as possible.
  1020   assert_heap_not_locked_and_not_at_safepoint();
  1021   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1022          "should only be called for humongous allocations");
  1024   // Humongous objects can exhaust the heap quickly, so we should check if we
  1025   // need to start a marking cycle at each humongous object allocation. We do
  1026   // the check before we do the actual allocation. The reason for doing it
  1027   // before the allocation is that we avoid having to keep track of the newly
  1028   // allocated memory while we do a GC.
  1029   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1030                                            word_size)) {
  1031     collect(GCCause::_g1_humongous_allocation);
  1034   // We will loop until a) we manage to successfully perform the
  1035   // allocation or b) we successfully schedule a collection which
  1036   // fails to perform the allocation. b) is the only case when we'll
  1037   // return NULL.
  1038   HeapWord* result = NULL;
  1039   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1040     bool should_try_gc;
  1041     unsigned int gc_count_before;
  1044       MutexLockerEx x(Heap_lock);
  1046       // Given that humongous objects are not allocated in young
  1047       // regions, we'll first try to do the allocation without doing a
  1048       // collection hoping that there's enough space in the heap.
  1049       result = humongous_obj_allocate(word_size);
  1050       if (result != NULL) {
  1051         return result;
  1054       if (GC_locker::is_active_and_needs_gc()) {
  1055         should_try_gc = false;
  1056       } else {
  1057         // Read the GC count while still holding the Heap_lock.
  1058         gc_count_before = total_collections();
  1059         should_try_gc = true;
  1063     if (should_try_gc) {
  1064       // If we failed to allocate the humongous object, we should try to
  1065       // do a collection pause (if we're allowed) in case it reclaims
  1066       // enough space for the allocation to succeed after the pause.
  1068       bool succeeded;
  1069       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1070       if (result != NULL) {
  1071         assert(succeeded, "only way to get back a non-NULL result");
  1072         return result;
  1075       if (succeeded) {
  1076         // If we get here we successfully scheduled a collection which
  1077         // failed to allocate. No point in trying to allocate
  1078         // further. We'll just return NULL.
  1079         MutexLockerEx x(Heap_lock);
  1080         *gc_count_before_ret = total_collections();
  1081         return NULL;
  1083     } else {
  1084       GC_locker::stall_until_clear();
  1087     // We can reach here if we were unsuccessul in scheduling a
  1088     // collection (because another thread beat us to it) or if we were
  1089     // stalled due to the GC locker. In either can we should retry the
  1090     // allocation attempt in case another thread successfully
  1091     // performed a collection and reclaimed enough space.  Give a
  1092     // warning if we seem to be looping forever.
  1094     if ((QueuedAllocationWarningCount > 0) &&
  1095         (try_count % QueuedAllocationWarningCount == 0)) {
  1096       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1097               "retries %d times", try_count);
  1101   ShouldNotReachHere();
  1102   return NULL;
  1105 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1106                                        bool expect_null_mutator_alloc_region) {
  1107   assert_at_safepoint(true /* should_be_vm_thread */);
  1108   assert(_mutator_alloc_region.get() == NULL ||
  1109                                              !expect_null_mutator_alloc_region,
  1110          "the current alloc region was unexpectedly found to be non-NULL");
  1112   if (!isHumongous(word_size)) {
  1113     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1114                                                       false /* bot_updates */);
  1115   } else {
  1116     HeapWord* result = humongous_obj_allocate(word_size);
  1117     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1118       g1_policy()->set_initiate_conc_mark_if_possible();
  1120     return result;
  1123   ShouldNotReachHere();
  1126 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1127   ModRefBarrierSet* _mr_bs;
  1128 public:
  1129   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1130   bool doHeapRegion(HeapRegion* r) {
  1131     r->reset_gc_time_stamp();
  1132     if (r->continuesHumongous())
  1133       return false;
  1134     HeapRegionRemSet* hrrs = r->rem_set();
  1135     if (hrrs != NULL) hrrs->clear();
  1136     // You might think here that we could clear just the cards
  1137     // corresponding to the used region.  But no: if we leave a dirty card
  1138     // in a region we might allocate into, then it would prevent that card
  1139     // from being enqueued, and cause it to be missed.
  1140     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1141     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1142     return false;
  1144 };
  1147 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1148   ModRefBarrierSet* _mr_bs;
  1149 public:
  1150   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1151   bool doHeapRegion(HeapRegion* r) {
  1152     if (r->continuesHumongous()) return false;
  1153     if (r->used_region().word_size() != 0) {
  1154       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1156     return false;
  1158 };
  1160 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1161   G1CollectedHeap*   _g1h;
  1162   UpdateRSOopClosure _cl;
  1163   int                _worker_i;
  1164 public:
  1165   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1166     _cl(g1->g1_rem_set(), worker_i),
  1167     _worker_i(worker_i),
  1168     _g1h(g1)
  1169   { }
  1171   bool doHeapRegion(HeapRegion* r) {
  1172     if (!r->continuesHumongous()) {
  1173       _cl.set_from(r);
  1174       r->oop_iterate(&_cl);
  1176     return false;
  1178 };
  1180 class ParRebuildRSTask: public AbstractGangTask {
  1181   G1CollectedHeap* _g1;
  1182 public:
  1183   ParRebuildRSTask(G1CollectedHeap* g1)
  1184     : AbstractGangTask("ParRebuildRSTask"),
  1185       _g1(g1)
  1186   { }
  1188   void work(uint worker_id) {
  1189     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1190     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1191                                           _g1->workers()->active_workers(),
  1192                                          HeapRegion::RebuildRSClaimValue);
  1194 };
  1196 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1197 private:
  1198   G1HRPrinter* _hr_printer;
  1199 public:
  1200   bool doHeapRegion(HeapRegion* hr) {
  1201     assert(!hr->is_young(), "not expecting to find young regions");
  1202     // We only generate output for non-empty regions.
  1203     if (!hr->is_empty()) {
  1204       if (!hr->isHumongous()) {
  1205         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1206       } else if (hr->startsHumongous()) {
  1207         if (hr->capacity() == HeapRegion::GrainBytes) {
  1208           // single humongous region
  1209           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1210         } else {
  1211           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1213       } else {
  1214         assert(hr->continuesHumongous(), "only way to get here");
  1215         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1218     return false;
  1221   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1222     : _hr_printer(hr_printer) { }
  1223 };
  1225 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1226                                     bool clear_all_soft_refs,
  1227                                     size_t word_size) {
  1228   assert_at_safepoint(true /* should_be_vm_thread */);
  1230   if (GC_locker::check_active_before_gc()) {
  1231     return false;
  1234   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1235   ResourceMark rm;
  1237   print_heap_before_gc();
  1239   HRSPhaseSetter x(HRSPhaseFullGC);
  1240   verify_region_sets_optional();
  1242   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1243                            collector_policy()->should_clear_all_soft_refs();
  1245   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1248     IsGCActiveMark x;
  1250     // Timing
  1251     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1252     assert(!system_gc || explicit_gc, "invariant");
  1253     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1254     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1255     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1256                 G1Log::fine(), true, gclog_or_tty);
  1258     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1259     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1261     double start = os::elapsedTime();
  1262     g1_policy()->record_full_collection_start();
  1264     // Note: When we have a more flexible GC logging framework that
  1265     // allows us to add optional attributes to a GC log record we
  1266     // could consider timing and reporting how long we wait in the
  1267     // following two methods.
  1268     wait_while_free_regions_coming();
  1269     // If we start the compaction before the CM threads finish
  1270     // scanning the root regions we might trip them over as we'll
  1271     // be moving objects / updating references. So let's wait until
  1272     // they are done. By telling them to abort, they should complete
  1273     // early.
  1274     _cm->root_regions()->abort();
  1275     _cm->root_regions()->wait_until_scan_finished();
  1276     append_secondary_free_list_if_not_empty_with_lock();
  1278     gc_prologue(true);
  1279     increment_total_collections(true /* full gc */);
  1281     size_t g1h_prev_used = used();
  1282     assert(used() == recalculate_used(), "Should be equal");
  1284     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1285       HandleMark hm;  // Discard invalid handles created during verification
  1286       gclog_or_tty->print(" VerifyBeforeGC:");
  1287       prepare_for_verify();
  1288       Universe::verify(/* silent      */ false,
  1289                        /* option      */ VerifyOption_G1UsePrevMarking);
  1292     pre_full_gc_dump();
  1294     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1296     // Disable discovery and empty the discovered lists
  1297     // for the CM ref processor.
  1298     ref_processor_cm()->disable_discovery();
  1299     ref_processor_cm()->abandon_partial_discovery();
  1300     ref_processor_cm()->verify_no_references_recorded();
  1302     // Abandon current iterations of concurrent marking and concurrent
  1303     // refinement, if any are in progress. We have to do this before
  1304     // wait_until_scan_finished() below.
  1305     concurrent_mark()->abort();
  1307     // Make sure we'll choose a new allocation region afterwards.
  1308     release_mutator_alloc_region();
  1309     abandon_gc_alloc_regions();
  1310     g1_rem_set()->cleanupHRRS();
  1312     // We should call this after we retire any currently active alloc
  1313     // regions so that all the ALLOC / RETIRE events are generated
  1314     // before the start GC event.
  1315     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1317     // We may have added regions to the current incremental collection
  1318     // set between the last GC or pause and now. We need to clear the
  1319     // incremental collection set and then start rebuilding it afresh
  1320     // after this full GC.
  1321     abandon_collection_set(g1_policy()->inc_cset_head());
  1322     g1_policy()->clear_incremental_cset();
  1323     g1_policy()->stop_incremental_cset_building();
  1325     tear_down_region_sets(false /* free_list_only */);
  1326     g1_policy()->set_gcs_are_young(true);
  1328     // See the comments in g1CollectedHeap.hpp and
  1329     // G1CollectedHeap::ref_processing_init() about
  1330     // how reference processing currently works in G1.
  1332     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1333     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1335     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1336     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1338     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1339     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1341     // Do collection work
  1343       HandleMark hm;  // Discard invalid handles created during gc
  1344       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1347     assert(free_regions() == 0, "we should not have added any free regions");
  1348     rebuild_region_sets(false /* free_list_only */);
  1350     // Enqueue any discovered reference objects that have
  1351     // not been removed from the discovered lists.
  1352     ref_processor_stw()->enqueue_discovered_references();
  1354     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1356     MemoryService::track_memory_usage();
  1358     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1359       HandleMark hm;  // Discard invalid handles created during verification
  1360       gclog_or_tty->print(" VerifyAfterGC:");
  1361       prepare_for_verify();
  1362       Universe::verify(/* silent      */ false,
  1363                        /* option      */ VerifyOption_G1UsePrevMarking);
  1367     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1368     ref_processor_stw()->verify_no_references_recorded();
  1370     // Note: since we've just done a full GC, concurrent
  1371     // marking is no longer active. Therefore we need not
  1372     // re-enable reference discovery for the CM ref processor.
  1373     // That will be done at the start of the next marking cycle.
  1374     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1375     ref_processor_cm()->verify_no_references_recorded();
  1377     reset_gc_time_stamp();
  1378     // Since everything potentially moved, we will clear all remembered
  1379     // sets, and clear all cards.  Later we will rebuild remebered
  1380     // sets. We will also reset the GC time stamps of the regions.
  1381     PostMCRemSetClearClosure rs_clear(mr_bs());
  1382     heap_region_iterate(&rs_clear);
  1384     // Resize the heap if necessary.
  1385     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1387     if (_hr_printer.is_active()) {
  1388       // We should do this after we potentially resize the heap so
  1389       // that all the COMMIT / UNCOMMIT events are generated before
  1390       // the end GC event.
  1392       PostCompactionPrinterClosure cl(hr_printer());
  1393       heap_region_iterate(&cl);
  1395       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1398     if (_cg1r->use_cache()) {
  1399       _cg1r->clear_and_record_card_counts();
  1400       _cg1r->clear_hot_cache();
  1403     // Rebuild remembered sets of all regions.
  1404     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1405       uint n_workers =
  1406         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1407                                        workers()->active_workers(),
  1408                                        Threads::number_of_non_daemon_threads());
  1409       assert(UseDynamicNumberOfGCThreads ||
  1410              n_workers == workers()->total_workers(),
  1411              "If not dynamic should be using all the  workers");
  1412       workers()->set_active_workers(n_workers);
  1413       // Set parallel threads in the heap (_n_par_threads) only
  1414       // before a parallel phase and always reset it to 0 after
  1415       // the phase so that the number of parallel threads does
  1416       // no get carried forward to a serial phase where there
  1417       // may be code that is "possibly_parallel".
  1418       set_par_threads(n_workers);
  1420       ParRebuildRSTask rebuild_rs_task(this);
  1421       assert(check_heap_region_claim_values(
  1422              HeapRegion::InitialClaimValue), "sanity check");
  1423       assert(UseDynamicNumberOfGCThreads ||
  1424              workers()->active_workers() == workers()->total_workers(),
  1425         "Unless dynamic should use total workers");
  1426       // Use the most recent number of  active workers
  1427       assert(workers()->active_workers() > 0,
  1428         "Active workers not properly set");
  1429       set_par_threads(workers()->active_workers());
  1430       workers()->run_task(&rebuild_rs_task);
  1431       set_par_threads(0);
  1432       assert(check_heap_region_claim_values(
  1433              HeapRegion::RebuildRSClaimValue), "sanity check");
  1434       reset_heap_region_claim_values();
  1435     } else {
  1436       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1437       heap_region_iterate(&rebuild_rs);
  1440     if (G1Log::fine()) {
  1441       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1444     if (true) { // FIXME
  1445       // Ask the permanent generation to adjust size for full collections
  1446       perm()->compute_new_size();
  1449     // Start a new incremental collection set for the next pause
  1450     assert(g1_policy()->collection_set() == NULL, "must be");
  1451     g1_policy()->start_incremental_cset_building();
  1453     // Clear the _cset_fast_test bitmap in anticipation of adding
  1454     // regions to the incremental collection set for the next
  1455     // evacuation pause.
  1456     clear_cset_fast_test();
  1458     init_mutator_alloc_region();
  1460     double end = os::elapsedTime();
  1461     g1_policy()->record_full_collection_end();
  1463 #ifdef TRACESPINNING
  1464     ParallelTaskTerminator::print_termination_counts();
  1465 #endif
  1467     gc_epilogue(true);
  1469     // Discard all rset updates
  1470     JavaThread::dirty_card_queue_set().abandon_logs();
  1471     assert(!G1DeferredRSUpdate
  1472            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1475   _young_list->reset_sampled_info();
  1476   // At this point there should be no regions in the
  1477   // entire heap tagged as young.
  1478   assert( check_young_list_empty(true /* check_heap */),
  1479     "young list should be empty at this point");
  1481   // Update the number of full collections that have been completed.
  1482   increment_full_collections_completed(false /* concurrent */);
  1484   _hrs.verify_optional();
  1485   verify_region_sets_optional();
  1487   print_heap_after_gc();
  1488   g1mm()->update_sizes();
  1489   post_full_gc_dump();
  1491   return true;
  1494 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1495   // do_collection() will return whether it succeeded in performing
  1496   // the GC. Currently, there is no facility on the
  1497   // do_full_collection() API to notify the caller than the collection
  1498   // did not succeed (e.g., because it was locked out by the GC
  1499   // locker). So, right now, we'll ignore the return value.
  1500   bool dummy = do_collection(true,                /* explicit_gc */
  1501                              clear_all_soft_refs,
  1502                              0                    /* word_size */);
  1505 // This code is mostly copied from TenuredGeneration.
  1506 void
  1507 G1CollectedHeap::
  1508 resize_if_necessary_after_full_collection(size_t word_size) {
  1509   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1511   // Include the current allocation, if any, and bytes that will be
  1512   // pre-allocated to support collections, as "used".
  1513   const size_t used_after_gc = used();
  1514   const size_t capacity_after_gc = capacity();
  1515   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1517   // This is enforced in arguments.cpp.
  1518   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1519          "otherwise the code below doesn't make sense");
  1521   // We don't have floating point command-line arguments
  1522   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1523   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1524   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1525   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1527   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1528   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1530   // We have to be careful here as these two calculations can overflow
  1531   // 32-bit size_t's.
  1532   double used_after_gc_d = (double) used_after_gc;
  1533   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1534   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1536   // Let's make sure that they are both under the max heap size, which
  1537   // by default will make them fit into a size_t.
  1538   double desired_capacity_upper_bound = (double) max_heap_size;
  1539   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1540                                     desired_capacity_upper_bound);
  1541   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1542                                     desired_capacity_upper_bound);
  1544   // We can now safely turn them into size_t's.
  1545   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1546   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1548   // This assert only makes sense here, before we adjust them
  1549   // with respect to the min and max heap size.
  1550   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1551          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1552                  "maximum_desired_capacity = "SIZE_FORMAT,
  1553                  minimum_desired_capacity, maximum_desired_capacity));
  1555   // Should not be greater than the heap max size. No need to adjust
  1556   // it with respect to the heap min size as it's a lower bound (i.e.,
  1557   // we'll try to make the capacity larger than it, not smaller).
  1558   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1559   // Should not be less than the heap min size. No need to adjust it
  1560   // with respect to the heap max size as it's an upper bound (i.e.,
  1561   // we'll try to make the capacity smaller than it, not greater).
  1562   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1564   if (capacity_after_gc < minimum_desired_capacity) {
  1565     // Don't expand unless it's significant
  1566     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1567     ergo_verbose4(ErgoHeapSizing,
  1568                   "attempt heap expansion",
  1569                   ergo_format_reason("capacity lower than "
  1570                                      "min desired capacity after Full GC")
  1571                   ergo_format_byte("capacity")
  1572                   ergo_format_byte("occupancy")
  1573                   ergo_format_byte_perc("min desired capacity"),
  1574                   capacity_after_gc, used_after_gc,
  1575                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1576     expand(expand_bytes);
  1578     // No expansion, now see if we want to shrink
  1579   } else if (capacity_after_gc > maximum_desired_capacity) {
  1580     // Capacity too large, compute shrinking size
  1581     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1582     ergo_verbose4(ErgoHeapSizing,
  1583                   "attempt heap shrinking",
  1584                   ergo_format_reason("capacity higher than "
  1585                                      "max desired capacity after Full GC")
  1586                   ergo_format_byte("capacity")
  1587                   ergo_format_byte("occupancy")
  1588                   ergo_format_byte_perc("max desired capacity"),
  1589                   capacity_after_gc, used_after_gc,
  1590                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1591     shrink(shrink_bytes);
  1596 HeapWord*
  1597 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1598                                            bool* succeeded) {
  1599   assert_at_safepoint(true /* should_be_vm_thread */);
  1601   *succeeded = true;
  1602   // Let's attempt the allocation first.
  1603   HeapWord* result =
  1604     attempt_allocation_at_safepoint(word_size,
  1605                                  false /* expect_null_mutator_alloc_region */);
  1606   if (result != NULL) {
  1607     assert(*succeeded, "sanity");
  1608     return result;
  1611   // In a G1 heap, we're supposed to keep allocation from failing by
  1612   // incremental pauses.  Therefore, at least for now, we'll favor
  1613   // expansion over collection.  (This might change in the future if we can
  1614   // do something smarter than full collection to satisfy a failed alloc.)
  1615   result = expand_and_allocate(word_size);
  1616   if (result != NULL) {
  1617     assert(*succeeded, "sanity");
  1618     return result;
  1621   // Expansion didn't work, we'll try to do a Full GC.
  1622   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1623                                     false, /* clear_all_soft_refs */
  1624                                     word_size);
  1625   if (!gc_succeeded) {
  1626     *succeeded = false;
  1627     return NULL;
  1630   // Retry the allocation
  1631   result = attempt_allocation_at_safepoint(word_size,
  1632                                   true /* expect_null_mutator_alloc_region */);
  1633   if (result != NULL) {
  1634     assert(*succeeded, "sanity");
  1635     return result;
  1638   // Then, try a Full GC that will collect all soft references.
  1639   gc_succeeded = do_collection(false, /* explicit_gc */
  1640                                true,  /* clear_all_soft_refs */
  1641                                word_size);
  1642   if (!gc_succeeded) {
  1643     *succeeded = false;
  1644     return NULL;
  1647   // Retry the allocation once more
  1648   result = attempt_allocation_at_safepoint(word_size,
  1649                                   true /* expect_null_mutator_alloc_region */);
  1650   if (result != NULL) {
  1651     assert(*succeeded, "sanity");
  1652     return result;
  1655   assert(!collector_policy()->should_clear_all_soft_refs(),
  1656          "Flag should have been handled and cleared prior to this point");
  1658   // What else?  We might try synchronous finalization later.  If the total
  1659   // space available is large enough for the allocation, then a more
  1660   // complete compaction phase than we've tried so far might be
  1661   // appropriate.
  1662   assert(*succeeded, "sanity");
  1663   return NULL;
  1666 // Attempting to expand the heap sufficiently
  1667 // to support an allocation of the given "word_size".  If
  1668 // successful, perform the allocation and return the address of the
  1669 // allocated block, or else "NULL".
  1671 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1672   assert_at_safepoint(true /* should_be_vm_thread */);
  1674   verify_region_sets_optional();
  1676   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1677   ergo_verbose1(ErgoHeapSizing,
  1678                 "attempt heap expansion",
  1679                 ergo_format_reason("allocation request failed")
  1680                 ergo_format_byte("allocation request"),
  1681                 word_size * HeapWordSize);
  1682   if (expand(expand_bytes)) {
  1683     _hrs.verify_optional();
  1684     verify_region_sets_optional();
  1685     return attempt_allocation_at_safepoint(word_size,
  1686                                  false /* expect_null_mutator_alloc_region */);
  1688   return NULL;
  1691 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1692                                              HeapWord* new_end) {
  1693   assert(old_end != new_end, "don't call this otherwise");
  1694   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1696   // Update the committed mem region.
  1697   _g1_committed.set_end(new_end);
  1698   // Tell the card table about the update.
  1699   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1700   // Tell the BOT about the update.
  1701   _bot_shared->resize(_g1_committed.word_size());
  1704 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1705   size_t old_mem_size = _g1_storage.committed_size();
  1706   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1707   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1708                                        HeapRegion::GrainBytes);
  1709   ergo_verbose2(ErgoHeapSizing,
  1710                 "expand the heap",
  1711                 ergo_format_byte("requested expansion amount")
  1712                 ergo_format_byte("attempted expansion amount"),
  1713                 expand_bytes, aligned_expand_bytes);
  1715   // First commit the memory.
  1716   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1717   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1718   if (successful) {
  1719     // Then propagate this update to the necessary data structures.
  1720     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1721     update_committed_space(old_end, new_end);
  1723     FreeRegionList expansion_list("Local Expansion List");
  1724     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1725     assert(mr.start() == old_end, "post-condition");
  1726     // mr might be a smaller region than what was requested if
  1727     // expand_by() was unable to allocate the HeapRegion instances
  1728     assert(mr.end() <= new_end, "post-condition");
  1730     size_t actual_expand_bytes = mr.byte_size();
  1731     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1732     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1733            "post-condition");
  1734     if (actual_expand_bytes < aligned_expand_bytes) {
  1735       // We could not expand _hrs to the desired size. In this case we
  1736       // need to shrink the committed space accordingly.
  1737       assert(mr.end() < new_end, "invariant");
  1739       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1740       // First uncommit the memory.
  1741       _g1_storage.shrink_by(diff_bytes);
  1742       // Then propagate this update to the necessary data structures.
  1743       update_committed_space(new_end, mr.end());
  1745     _free_list.add_as_tail(&expansion_list);
  1747     if (_hr_printer.is_active()) {
  1748       HeapWord* curr = mr.start();
  1749       while (curr < mr.end()) {
  1750         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1751         _hr_printer.commit(curr, curr_end);
  1752         curr = curr_end;
  1754       assert(curr == mr.end(), "post-condition");
  1756     g1_policy()->record_new_heap_size(n_regions());
  1757   } else {
  1758     ergo_verbose0(ErgoHeapSizing,
  1759                   "did not expand the heap",
  1760                   ergo_format_reason("heap expansion operation failed"));
  1761     // The expansion of the virtual storage space was unsuccessful.
  1762     // Let's see if it was because we ran out of swap.
  1763     if (G1ExitOnExpansionFailure &&
  1764         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1765       // We had head room...
  1766       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1769   return successful;
  1772 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1773   size_t old_mem_size = _g1_storage.committed_size();
  1774   size_t aligned_shrink_bytes =
  1775     ReservedSpace::page_align_size_down(shrink_bytes);
  1776   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1777                                          HeapRegion::GrainBytes);
  1778   uint num_regions_deleted = 0;
  1779   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1780   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1781   assert(mr.end() == old_end, "post-condition");
  1783   ergo_verbose3(ErgoHeapSizing,
  1784                 "shrink the heap",
  1785                 ergo_format_byte("requested shrinking amount")
  1786                 ergo_format_byte("aligned shrinking amount")
  1787                 ergo_format_byte("attempted shrinking amount"),
  1788                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1789   if (mr.byte_size() > 0) {
  1790     if (_hr_printer.is_active()) {
  1791       HeapWord* curr = mr.end();
  1792       while (curr > mr.start()) {
  1793         HeapWord* curr_end = curr;
  1794         curr -= HeapRegion::GrainWords;
  1795         _hr_printer.uncommit(curr, curr_end);
  1797       assert(curr == mr.start(), "post-condition");
  1800     _g1_storage.shrink_by(mr.byte_size());
  1801     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1802     assert(mr.start() == new_end, "post-condition");
  1804     _expansion_regions += num_regions_deleted;
  1805     update_committed_space(old_end, new_end);
  1806     HeapRegionRemSet::shrink_heap(n_regions());
  1807     g1_policy()->record_new_heap_size(n_regions());
  1808   } else {
  1809     ergo_verbose0(ErgoHeapSizing,
  1810                   "did not shrink the heap",
  1811                   ergo_format_reason("heap shrinking operation failed"));
  1815 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1816   verify_region_sets_optional();
  1818   // We should only reach here at the end of a Full GC which means we
  1819   // should not not be holding to any GC alloc regions. The method
  1820   // below will make sure of that and do any remaining clean up.
  1821   abandon_gc_alloc_regions();
  1823   // Instead of tearing down / rebuilding the free lists here, we
  1824   // could instead use the remove_all_pending() method on free_list to
  1825   // remove only the ones that we need to remove.
  1826   tear_down_region_sets(true /* free_list_only */);
  1827   shrink_helper(shrink_bytes);
  1828   rebuild_region_sets(true /* free_list_only */);
  1830   _hrs.verify_optional();
  1831   verify_region_sets_optional();
  1834 // Public methods.
  1836 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1837 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1838 #endif // _MSC_VER
  1841 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1842   SharedHeap(policy_),
  1843   _g1_policy(policy_),
  1844   _dirty_card_queue_set(false),
  1845   _into_cset_dirty_card_queue_set(false),
  1846   _is_alive_closure_cm(this),
  1847   _is_alive_closure_stw(this),
  1848   _ref_processor_cm(NULL),
  1849   _ref_processor_stw(NULL),
  1850   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1851   _bot_shared(NULL),
  1852   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1853   _evac_failure_scan_stack(NULL) ,
  1854   _mark_in_progress(false),
  1855   _cg1r(NULL), _summary_bytes_used(0),
  1856   _g1mm(NULL),
  1857   _refine_cte_cl(NULL),
  1858   _full_collection(false),
  1859   _free_list("Master Free List"),
  1860   _secondary_free_list("Secondary Free List"),
  1861   _old_set("Old Set"),
  1862   _humongous_set("Master Humongous Set"),
  1863   _free_regions_coming(false),
  1864   _young_list(new YoungList(this)),
  1865   _gc_time_stamp(0),
  1866   _retained_old_gc_alloc_region(NULL),
  1867   _expand_heap_after_alloc_failure(true),
  1868   _surviving_young_words(NULL),
  1869   _full_collections_completed(0),
  1870   _in_cset_fast_test(NULL),
  1871   _in_cset_fast_test_base(NULL),
  1872   _dirty_cards_region_list(NULL),
  1873   _worker_cset_start_region(NULL),
  1874   _worker_cset_start_region_time_stamp(NULL) {
  1875   _g1h = this; // To catch bugs.
  1876   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1877     vm_exit_during_initialization("Failed necessary allocation.");
  1880   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1882   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1883   _task_queues = new RefToScanQueueSet(n_queues);
  1885   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1886   assert(n_rem_sets > 0, "Invariant.");
  1888   HeapRegionRemSetIterator** iter_arr =
  1889     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1890   for (int i = 0; i < n_queues; i++) {
  1891     iter_arr[i] = new HeapRegionRemSetIterator();
  1893   _rem_set_iterator = iter_arr;
  1895   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  1896   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
  1898   for (int i = 0; i < n_queues; i++) {
  1899     RefToScanQueue* q = new RefToScanQueue();
  1900     q->initialize();
  1901     _task_queues->register_queue(i, q);
  1904   clear_cset_start_regions();
  1906   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1909 jint G1CollectedHeap::initialize() {
  1910   CollectedHeap::pre_initialize();
  1911   os::enable_vtime();
  1913   G1Log::init();
  1915   // Necessary to satisfy locking discipline assertions.
  1917   MutexLocker x(Heap_lock);
  1919   // We have to initialize the printer before committing the heap, as
  1920   // it will be used then.
  1921   _hr_printer.set_active(G1PrintHeapRegions);
  1923   // While there are no constraints in the GC code that HeapWordSize
  1924   // be any particular value, there are multiple other areas in the
  1925   // system which believe this to be true (e.g. oop->object_size in some
  1926   // cases incorrectly returns the size in wordSize units rather than
  1927   // HeapWordSize).
  1928   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1930   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1931   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1933   // Ensure that the sizes are properly aligned.
  1934   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1935   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1937   _cg1r = new ConcurrentG1Refine();
  1939   // Reserve the maximum.
  1940   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1941   // Includes the perm-gen.
  1943   // When compressed oops are enabled, the preferred heap base
  1944   // is calculated by subtracting the requested size from the
  1945   // 32Gb boundary and using the result as the base address for
  1946   // heap reservation. If the requested size is not aligned to
  1947   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1948   // into the ReservedHeapSpace constructor) then the actual
  1949   // base of the reserved heap may end up differing from the
  1950   // address that was requested (i.e. the preferred heap base).
  1951   // If this happens then we could end up using a non-optimal
  1952   // compressed oops mode.
  1954   // Since max_byte_size is aligned to the size of a heap region (checked
  1955   // above), we also need to align the perm gen size as it might not be.
  1956   const size_t total_reserved = max_byte_size +
  1957                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1958   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1960   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1962   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1963                             UseLargePages, addr);
  1965   if (UseCompressedOops) {
  1966     if (addr != NULL && !heap_rs.is_reserved()) {
  1967       // Failed to reserve at specified address - the requested memory
  1968       // region is taken already, for example, by 'java' launcher.
  1969       // Try again to reserver heap higher.
  1970       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1972       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1973                                  UseLargePages, addr);
  1975       if (addr != NULL && !heap_rs0.is_reserved()) {
  1976         // Failed to reserve at specified address again - give up.
  1977         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1978         assert(addr == NULL, "");
  1980         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1981                                    UseLargePages, addr);
  1982         heap_rs = heap_rs1;
  1983       } else {
  1984         heap_rs = heap_rs0;
  1989   if (!heap_rs.is_reserved()) {
  1990     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1991     return JNI_ENOMEM;
  1994   // It is important to do this in a way such that concurrent readers can't
  1995   // temporarily think somethings in the heap.  (I've actually seen this
  1996   // happen in asserts: DLD.)
  1997   _reserved.set_word_size(0);
  1998   _reserved.set_start((HeapWord*)heap_rs.base());
  1999   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2001   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2003   // Create the gen rem set (and barrier set) for the entire reserved region.
  2004   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2005   set_barrier_set(rem_set()->bs());
  2006   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2007     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2008   } else {
  2009     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2010     return JNI_ENOMEM;
  2013   // Also create a G1 rem set.
  2014   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2015     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2016   } else {
  2017     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2018     return JNI_ENOMEM;
  2021   // Carve out the G1 part of the heap.
  2023   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2024   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2025                            g1_rs.size()/HeapWordSize);
  2026   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2028   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2030   _g1_storage.initialize(g1_rs, 0);
  2031   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2032   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2033                   (HeapWord*) _g1_reserved.end(),
  2034                   _expansion_regions);
  2036   // 6843694 - ensure that the maximum region index can fit
  2037   // in the remembered set structures.
  2038   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2039   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2041   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2042   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2043   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2044             "too many cards per region");
  2046   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2048   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2049                                              heap_word_size(init_byte_size));
  2051   _g1h = this;
  2053    _in_cset_fast_test_length = max_regions();
  2054    _in_cset_fast_test_base =
  2055                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
  2057    // We're biasing _in_cset_fast_test to avoid subtracting the
  2058    // beginning of the heap every time we want to index; basically
  2059    // it's the same with what we do with the card table.
  2060    _in_cset_fast_test = _in_cset_fast_test_base -
  2061                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2063    // Clear the _cset_fast_test bitmap in anticipation of adding
  2064    // regions to the incremental collection set for the first
  2065    // evacuation pause.
  2066    clear_cset_fast_test();
  2068   // Create the ConcurrentMark data structure and thread.
  2069   // (Must do this late, so that "max_regions" is defined.)
  2070   _cm       = new ConcurrentMark(heap_rs, max_regions());
  2071   _cmThread = _cm->cmThread();
  2073   // Initialize the from_card cache structure of HeapRegionRemSet.
  2074   HeapRegionRemSet::init_heap(max_regions());
  2076   // Now expand into the initial heap size.
  2077   if (!expand(init_byte_size)) {
  2078     vm_exit_during_initialization("Failed to allocate initial heap.");
  2079     return JNI_ENOMEM;
  2082   // Perform any initialization actions delegated to the policy.
  2083   g1_policy()->init();
  2085   _refine_cte_cl =
  2086     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2087                                     g1_rem_set(),
  2088                                     concurrent_g1_refine());
  2089   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2091   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2092                                                SATB_Q_FL_lock,
  2093                                                G1SATBProcessCompletedThreshold,
  2094                                                Shared_SATB_Q_lock);
  2096   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2097                                                 DirtyCardQ_FL_lock,
  2098                                                 concurrent_g1_refine()->yellow_zone(),
  2099                                                 concurrent_g1_refine()->red_zone(),
  2100                                                 Shared_DirtyCardQ_lock);
  2102   if (G1DeferredRSUpdate) {
  2103     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2104                                       DirtyCardQ_FL_lock,
  2105                                       -1, // never trigger processing
  2106                                       -1, // no limit on length
  2107                                       Shared_DirtyCardQ_lock,
  2108                                       &JavaThread::dirty_card_queue_set());
  2111   // Initialize the card queue set used to hold cards containing
  2112   // references into the collection set.
  2113   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2114                                              DirtyCardQ_FL_lock,
  2115                                              -1, // never trigger processing
  2116                                              -1, // no limit on length
  2117                                              Shared_DirtyCardQ_lock,
  2118                                              &JavaThread::dirty_card_queue_set());
  2120   // In case we're keeping closure specialization stats, initialize those
  2121   // counts and that mechanism.
  2122   SpecializationStats::clear();
  2124   // Do later initialization work for concurrent refinement.
  2125   _cg1r->init();
  2127   // Here we allocate the dummy full region that is required by the
  2128   // G1AllocRegion class. If we don't pass an address in the reserved
  2129   // space here, lots of asserts fire.
  2131   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2132                                              _g1_reserved.start());
  2133   // We'll re-use the same region whether the alloc region will
  2134   // require BOT updates or not and, if it doesn't, then a non-young
  2135   // region will complain that it cannot support allocations without
  2136   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2137   dummy_region->set_young();
  2138   // Make sure it's full.
  2139   dummy_region->set_top(dummy_region->end());
  2140   G1AllocRegion::setup(this, dummy_region);
  2142   init_mutator_alloc_region();
  2144   // Do create of the monitoring and management support so that
  2145   // values in the heap have been properly initialized.
  2146   _g1mm = new G1MonitoringSupport(this);
  2148   return JNI_OK;
  2151 void G1CollectedHeap::ref_processing_init() {
  2152   // Reference processing in G1 currently works as follows:
  2153   //
  2154   // * There are two reference processor instances. One is
  2155   //   used to record and process discovered references
  2156   //   during concurrent marking; the other is used to
  2157   //   record and process references during STW pauses
  2158   //   (both full and incremental).
  2159   // * Both ref processors need to 'span' the entire heap as
  2160   //   the regions in the collection set may be dotted around.
  2161   //
  2162   // * For the concurrent marking ref processor:
  2163   //   * Reference discovery is enabled at initial marking.
  2164   //   * Reference discovery is disabled and the discovered
  2165   //     references processed etc during remarking.
  2166   //   * Reference discovery is MT (see below).
  2167   //   * Reference discovery requires a barrier (see below).
  2168   //   * Reference processing may or may not be MT
  2169   //     (depending on the value of ParallelRefProcEnabled
  2170   //     and ParallelGCThreads).
  2171   //   * A full GC disables reference discovery by the CM
  2172   //     ref processor and abandons any entries on it's
  2173   //     discovered lists.
  2174   //
  2175   // * For the STW processor:
  2176   //   * Non MT discovery is enabled at the start of a full GC.
  2177   //   * Processing and enqueueing during a full GC is non-MT.
  2178   //   * During a full GC, references are processed after marking.
  2179   //
  2180   //   * Discovery (may or may not be MT) is enabled at the start
  2181   //     of an incremental evacuation pause.
  2182   //   * References are processed near the end of a STW evacuation pause.
  2183   //   * For both types of GC:
  2184   //     * Discovery is atomic - i.e. not concurrent.
  2185   //     * Reference discovery will not need a barrier.
  2187   SharedHeap::ref_processing_init();
  2188   MemRegion mr = reserved_region();
  2190   // Concurrent Mark ref processor
  2191   _ref_processor_cm =
  2192     new ReferenceProcessor(mr,    // span
  2193                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2194                                 // mt processing
  2195                            (int) ParallelGCThreads,
  2196                                 // degree of mt processing
  2197                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2198                                 // mt discovery
  2199                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2200                                 // degree of mt discovery
  2201                            false,
  2202                                 // Reference discovery is not atomic
  2203                            &_is_alive_closure_cm,
  2204                                 // is alive closure
  2205                                 // (for efficiency/performance)
  2206                            true);
  2207                                 // Setting next fields of discovered
  2208                                 // lists requires a barrier.
  2210   // STW ref processor
  2211   _ref_processor_stw =
  2212     new ReferenceProcessor(mr,    // span
  2213                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2214                                 // mt processing
  2215                            MAX2((int)ParallelGCThreads, 1),
  2216                                 // degree of mt processing
  2217                            (ParallelGCThreads > 1),
  2218                                 // mt discovery
  2219                            MAX2((int)ParallelGCThreads, 1),
  2220                                 // degree of mt discovery
  2221                            true,
  2222                                 // Reference discovery is atomic
  2223                            &_is_alive_closure_stw,
  2224                                 // is alive closure
  2225                                 // (for efficiency/performance)
  2226                            false);
  2227                                 // Setting next fields of discovered
  2228                                 // lists requires a barrier.
  2231 size_t G1CollectedHeap::capacity() const {
  2232   return _g1_committed.byte_size();
  2235 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2236                                                  DirtyCardQueue* into_cset_dcq,
  2237                                                  bool concurrent,
  2238                                                  int worker_i) {
  2239   // Clean cards in the hot card cache
  2240   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2242   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2243   int n_completed_buffers = 0;
  2244   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2245     n_completed_buffers++;
  2247   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2248                                                   (double) n_completed_buffers);
  2249   dcqs.clear_n_completed_buffers();
  2250   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2254 // Computes the sum of the storage used by the various regions.
  2256 size_t G1CollectedHeap::used() const {
  2257   assert(Heap_lock->owner() != NULL,
  2258          "Should be owned on this thread's behalf.");
  2259   size_t result = _summary_bytes_used;
  2260   // Read only once in case it is set to NULL concurrently
  2261   HeapRegion* hr = _mutator_alloc_region.get();
  2262   if (hr != NULL)
  2263     result += hr->used();
  2264   return result;
  2267 size_t G1CollectedHeap::used_unlocked() const {
  2268   size_t result = _summary_bytes_used;
  2269   return result;
  2272 class SumUsedClosure: public HeapRegionClosure {
  2273   size_t _used;
  2274 public:
  2275   SumUsedClosure() : _used(0) {}
  2276   bool doHeapRegion(HeapRegion* r) {
  2277     if (!r->continuesHumongous()) {
  2278       _used += r->used();
  2280     return false;
  2282   size_t result() { return _used; }
  2283 };
  2285 size_t G1CollectedHeap::recalculate_used() const {
  2286   SumUsedClosure blk;
  2287   heap_region_iterate(&blk);
  2288   return blk.result();
  2291 size_t G1CollectedHeap::unsafe_max_alloc() {
  2292   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2293   // otherwise, is there space in the current allocation region?
  2295   // We need to store the current allocation region in a local variable
  2296   // here. The problem is that this method doesn't take any locks and
  2297   // there may be other threads which overwrite the current allocation
  2298   // region field. attempt_allocation(), for example, sets it to NULL
  2299   // and this can happen *after* the NULL check here but before the call
  2300   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2301   // to be a problem in the optimized build, since the two loads of the
  2302   // current allocation region field are optimized away.
  2303   HeapRegion* hr = _mutator_alloc_region.get();
  2304   if (hr == NULL) {
  2305     return 0;
  2307   return hr->free();
  2310 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2311   switch (cause) {
  2312     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2313     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2314     case GCCause::_g1_humongous_allocation: return true;
  2315     default:                                return false;
  2319 #ifndef PRODUCT
  2320 void G1CollectedHeap::allocate_dummy_regions() {
  2321   // Let's fill up most of the region
  2322   size_t word_size = HeapRegion::GrainWords - 1024;
  2323   // And as a result the region we'll allocate will be humongous.
  2324   guarantee(isHumongous(word_size), "sanity");
  2326   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2327     // Let's use the existing mechanism for the allocation
  2328     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2329     if (dummy_obj != NULL) {
  2330       MemRegion mr(dummy_obj, word_size);
  2331       CollectedHeap::fill_with_object(mr);
  2332     } else {
  2333       // If we can't allocate once, we probably cannot allocate
  2334       // again. Let's get out of the loop.
  2335       break;
  2339 #endif // !PRODUCT
  2341 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2342   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2344   // We assume that if concurrent == true, then the caller is a
  2345   // concurrent thread that was joined the Suspendible Thread
  2346   // Set. If there's ever a cheap way to check this, we should add an
  2347   // assert here.
  2349   // We have already incremented _total_full_collections at the start
  2350   // of the GC, so total_full_collections() represents how many full
  2351   // collections have been started.
  2352   unsigned int full_collections_started = total_full_collections();
  2354   // Given that this method is called at the end of a Full GC or of a
  2355   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2356   // interrupt a concurrent cycle), the number of full collections
  2357   // completed should be either one (in the case where there was no
  2358   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2359   // behind the number of full collections started.
  2361   // This is the case for the inner caller, i.e. a Full GC.
  2362   assert(concurrent ||
  2363          (full_collections_started == _full_collections_completed + 1) ||
  2364          (full_collections_started == _full_collections_completed + 2),
  2365          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2366                  "is inconsistent with _full_collections_completed = %u",
  2367                  full_collections_started, _full_collections_completed));
  2369   // This is the case for the outer caller, i.e. the concurrent cycle.
  2370   assert(!concurrent ||
  2371          (full_collections_started == _full_collections_completed + 1),
  2372          err_msg("for outer caller (concurrent cycle): "
  2373                  "full_collections_started = %u "
  2374                  "is inconsistent with _full_collections_completed = %u",
  2375                  full_collections_started, _full_collections_completed));
  2377   _full_collections_completed += 1;
  2379   // We need to clear the "in_progress" flag in the CM thread before
  2380   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2381   // is set) so that if a waiter requests another System.gc() it doesn't
  2382   // incorrectly see that a marking cyle is still in progress.
  2383   if (concurrent) {
  2384     _cmThread->clear_in_progress();
  2387   // This notify_all() will ensure that a thread that called
  2388   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2389   // and it's waiting for a full GC to finish will be woken up. It is
  2390   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2391   FullGCCount_lock->notify_all();
  2394 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2395   assert_at_safepoint(true /* should_be_vm_thread */);
  2396   GCCauseSetter gcs(this, cause);
  2397   switch (cause) {
  2398     case GCCause::_heap_inspection:
  2399     case GCCause::_heap_dump: {
  2400       HandleMark hm;
  2401       do_full_collection(false);         // don't clear all soft refs
  2402       break;
  2404     default: // XXX FIX ME
  2405       ShouldNotReachHere(); // Unexpected use of this function
  2409 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2410   assert_heap_not_locked();
  2412   unsigned int gc_count_before;
  2413   unsigned int full_gc_count_before;
  2414   bool retry_gc;
  2416   do {
  2417     retry_gc = false;
  2420       MutexLocker ml(Heap_lock);
  2422       // Read the GC count while holding the Heap_lock
  2423       gc_count_before = total_collections();
  2424       full_gc_count_before = total_full_collections();
  2427     if (should_do_concurrent_full_gc(cause)) {
  2428       // Schedule an initial-mark evacuation pause that will start a
  2429       // concurrent cycle. We're setting word_size to 0 which means that
  2430       // we are not requesting a post-GC allocation.
  2431       VM_G1IncCollectionPause op(gc_count_before,
  2432                                  0,     /* word_size */
  2433                                  true,  /* should_initiate_conc_mark */
  2434                                  g1_policy()->max_pause_time_ms(),
  2435                                  cause);
  2437       VMThread::execute(&op);
  2438       if (!op.pause_succeeded()) {
  2439         if (full_gc_count_before == total_full_collections()) {
  2440           retry_gc = op.should_retry_gc();
  2441         } else {
  2442           // A Full GC happened while we were trying to schedule the
  2443           // initial-mark GC. No point in starting a new cycle given
  2444           // that the whole heap was collected anyway.
  2447         if (retry_gc) {
  2448           if (GC_locker::is_active_and_needs_gc()) {
  2449             GC_locker::stall_until_clear();
  2453     } else {
  2454       if (cause == GCCause::_gc_locker
  2455           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2457         // Schedule a standard evacuation pause. We're setting word_size
  2458         // to 0 which means that we are not requesting a post-GC allocation.
  2459         VM_G1IncCollectionPause op(gc_count_before,
  2460                                    0,     /* word_size */
  2461                                    false, /* should_initiate_conc_mark */
  2462                                    g1_policy()->max_pause_time_ms(),
  2463                                    cause);
  2464         VMThread::execute(&op);
  2465       } else {
  2466         // Schedule a Full GC.
  2467         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2468         VMThread::execute(&op);
  2471   } while (retry_gc);
  2474 bool G1CollectedHeap::is_in(const void* p) const {
  2475   if (_g1_committed.contains(p)) {
  2476     // Given that we know that p is in the committed space,
  2477     // heap_region_containing_raw() should successfully
  2478     // return the containing region.
  2479     HeapRegion* hr = heap_region_containing_raw(p);
  2480     return hr->is_in(p);
  2481   } else {
  2482     return _perm_gen->as_gen()->is_in(p);
  2486 // Iteration functions.
  2488 // Iterates an OopClosure over all ref-containing fields of objects
  2489 // within a HeapRegion.
  2491 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2492   MemRegion _mr;
  2493   OopClosure* _cl;
  2494 public:
  2495   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2496     : _mr(mr), _cl(cl) {}
  2497   bool doHeapRegion(HeapRegion* r) {
  2498     if (! r->continuesHumongous()) {
  2499       r->oop_iterate(_cl);
  2501     return false;
  2503 };
  2505 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2506   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2507   heap_region_iterate(&blk);
  2508   if (do_perm) {
  2509     perm_gen()->oop_iterate(cl);
  2513 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2514   IterateOopClosureRegionClosure blk(mr, cl);
  2515   heap_region_iterate(&blk);
  2516   if (do_perm) {
  2517     perm_gen()->oop_iterate(cl);
  2521 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2523 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2524   ObjectClosure* _cl;
  2525 public:
  2526   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2527   bool doHeapRegion(HeapRegion* r) {
  2528     if (! r->continuesHumongous()) {
  2529       r->object_iterate(_cl);
  2531     return false;
  2533 };
  2535 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2536   IterateObjectClosureRegionClosure blk(cl);
  2537   heap_region_iterate(&blk);
  2538   if (do_perm) {
  2539     perm_gen()->object_iterate(cl);
  2543 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2544   // FIXME: is this right?
  2545   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2548 // Calls a SpaceClosure on a HeapRegion.
  2550 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2551   SpaceClosure* _cl;
  2552 public:
  2553   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2554   bool doHeapRegion(HeapRegion* r) {
  2555     _cl->do_space(r);
  2556     return false;
  2558 };
  2560 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2561   SpaceClosureRegionClosure blk(cl);
  2562   heap_region_iterate(&blk);
  2565 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2566   _hrs.iterate(cl);
  2569 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2570                                                HeapRegionClosure* cl) const {
  2571   _hrs.iterate_from(r, cl);
  2574 void
  2575 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2576                                                  uint worker,
  2577                                                  uint no_of_par_workers,
  2578                                                  jint claim_value) {
  2579   const uint regions = n_regions();
  2580   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2581                              no_of_par_workers :
  2582                              1);
  2583   assert(UseDynamicNumberOfGCThreads ||
  2584          no_of_par_workers == workers()->total_workers(),
  2585          "Non dynamic should use fixed number of workers");
  2586   // try to spread out the starting points of the workers
  2587   const uint start_index = regions / max_workers * worker;
  2589   // each worker will actually look at all regions
  2590   for (uint count = 0; count < regions; ++count) {
  2591     const uint index = (start_index + count) % regions;
  2592     assert(0 <= index && index < regions, "sanity");
  2593     HeapRegion* r = region_at(index);
  2594     // we'll ignore "continues humongous" regions (we'll process them
  2595     // when we come across their corresponding "start humongous"
  2596     // region) and regions already claimed
  2597     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2598       continue;
  2600     // OK, try to claim it
  2601     if (r->claimHeapRegion(claim_value)) {
  2602       // success!
  2603       assert(!r->continuesHumongous(), "sanity");
  2604       if (r->startsHumongous()) {
  2605         // If the region is "starts humongous" we'll iterate over its
  2606         // "continues humongous" first; in fact we'll do them
  2607         // first. The order is important. In on case, calling the
  2608         // closure on the "starts humongous" region might de-allocate
  2609         // and clear all its "continues humongous" regions and, as a
  2610         // result, we might end up processing them twice. So, we'll do
  2611         // them first (notice: most closures will ignore them anyway) and
  2612         // then we'll do the "starts humongous" region.
  2613         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2614           HeapRegion* chr = region_at(ch_index);
  2616           // if the region has already been claimed or it's not
  2617           // "continues humongous" we're done
  2618           if (chr->claim_value() == claim_value ||
  2619               !chr->continuesHumongous()) {
  2620             break;
  2623           // Noone should have claimed it directly. We can given
  2624           // that we claimed its "starts humongous" region.
  2625           assert(chr->claim_value() != claim_value, "sanity");
  2626           assert(chr->humongous_start_region() == r, "sanity");
  2628           if (chr->claimHeapRegion(claim_value)) {
  2629             // we should always be able to claim it; noone else should
  2630             // be trying to claim this region
  2632             bool res2 = cl->doHeapRegion(chr);
  2633             assert(!res2, "Should not abort");
  2635             // Right now, this holds (i.e., no closure that actually
  2636             // does something with "continues humongous" regions
  2637             // clears them). We might have to weaken it in the future,
  2638             // but let's leave these two asserts here for extra safety.
  2639             assert(chr->continuesHumongous(), "should still be the case");
  2640             assert(chr->humongous_start_region() == r, "sanity");
  2641           } else {
  2642             guarantee(false, "we should not reach here");
  2647       assert(!r->continuesHumongous(), "sanity");
  2648       bool res = cl->doHeapRegion(r);
  2649       assert(!res, "Should not abort");
  2654 class ResetClaimValuesClosure: public HeapRegionClosure {
  2655 public:
  2656   bool doHeapRegion(HeapRegion* r) {
  2657     r->set_claim_value(HeapRegion::InitialClaimValue);
  2658     return false;
  2660 };
  2662 void G1CollectedHeap::reset_heap_region_claim_values() {
  2663   ResetClaimValuesClosure blk;
  2664   heap_region_iterate(&blk);
  2667 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2668   ResetClaimValuesClosure blk;
  2669   collection_set_iterate(&blk);
  2672 #ifdef ASSERT
  2673 // This checks whether all regions in the heap have the correct claim
  2674 // value. I also piggy-backed on this a check to ensure that the
  2675 // humongous_start_region() information on "continues humongous"
  2676 // regions is correct.
  2678 class CheckClaimValuesClosure : public HeapRegionClosure {
  2679 private:
  2680   jint _claim_value;
  2681   uint _failures;
  2682   HeapRegion* _sh_region;
  2684 public:
  2685   CheckClaimValuesClosure(jint claim_value) :
  2686     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2687   bool doHeapRegion(HeapRegion* r) {
  2688     if (r->claim_value() != _claim_value) {
  2689       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2690                              "claim value = %d, should be %d",
  2691                              HR_FORMAT_PARAMS(r),
  2692                              r->claim_value(), _claim_value);
  2693       ++_failures;
  2695     if (!r->isHumongous()) {
  2696       _sh_region = NULL;
  2697     } else if (r->startsHumongous()) {
  2698       _sh_region = r;
  2699     } else if (r->continuesHumongous()) {
  2700       if (r->humongous_start_region() != _sh_region) {
  2701         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2702                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2703                                HR_FORMAT_PARAMS(r),
  2704                                r->humongous_start_region(),
  2705                                _sh_region);
  2706         ++_failures;
  2709     return false;
  2711   uint failures() { return _failures; }
  2712 };
  2714 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2715   CheckClaimValuesClosure cl(claim_value);
  2716   heap_region_iterate(&cl);
  2717   return cl.failures() == 0;
  2720 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2721 private:
  2722   jint _claim_value;
  2723   uint _failures;
  2725 public:
  2726   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2727     _claim_value(claim_value), _failures(0) { }
  2729   uint failures() { return _failures; }
  2731   bool doHeapRegion(HeapRegion* hr) {
  2732     assert(hr->in_collection_set(), "how?");
  2733     assert(!hr->isHumongous(), "H-region in CSet");
  2734     if (hr->claim_value() != _claim_value) {
  2735       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2736                              "claim value = %d, should be %d",
  2737                              HR_FORMAT_PARAMS(hr),
  2738                              hr->claim_value(), _claim_value);
  2739       _failures += 1;
  2741     return false;
  2743 };
  2745 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2746   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2747   collection_set_iterate(&cl);
  2748   return cl.failures() == 0;
  2750 #endif // ASSERT
  2752 // Clear the cached CSet starting regions and (more importantly)
  2753 // the time stamps. Called when we reset the GC time stamp.
  2754 void G1CollectedHeap::clear_cset_start_regions() {
  2755   assert(_worker_cset_start_region != NULL, "sanity");
  2756   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2758   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2759   for (int i = 0; i < n_queues; i++) {
  2760     _worker_cset_start_region[i] = NULL;
  2761     _worker_cset_start_region_time_stamp[i] = 0;
  2765 // Given the id of a worker, obtain or calculate a suitable
  2766 // starting region for iterating over the current collection set.
  2767 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2768   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2770   HeapRegion* result = NULL;
  2771   unsigned gc_time_stamp = get_gc_time_stamp();
  2773   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2774     // Cached starting region for current worker was set
  2775     // during the current pause - so it's valid.
  2776     // Note: the cached starting heap region may be NULL
  2777     // (when the collection set is empty).
  2778     result = _worker_cset_start_region[worker_i];
  2779     assert(result == NULL || result->in_collection_set(), "sanity");
  2780     return result;
  2783   // The cached entry was not valid so let's calculate
  2784   // a suitable starting heap region for this worker.
  2786   // We want the parallel threads to start their collection
  2787   // set iteration at different collection set regions to
  2788   // avoid contention.
  2789   // If we have:
  2790   //          n collection set regions
  2791   //          p threads
  2792   // Then thread t will start at region floor ((t * n) / p)
  2794   result = g1_policy()->collection_set();
  2795   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2796     uint cs_size = g1_policy()->cset_region_length();
  2797     uint active_workers = workers()->active_workers();
  2798     assert(UseDynamicNumberOfGCThreads ||
  2799              active_workers == workers()->total_workers(),
  2800              "Unless dynamic should use total workers");
  2802     uint end_ind   = (cs_size * worker_i) / active_workers;
  2803     uint start_ind = 0;
  2805     if (worker_i > 0 &&
  2806         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2807       // Previous workers starting region is valid
  2808       // so let's iterate from there
  2809       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2810       result = _worker_cset_start_region[worker_i - 1];
  2813     for (uint i = start_ind; i < end_ind; i++) {
  2814       result = result->next_in_collection_set();
  2818   // Note: the calculated starting heap region may be NULL
  2819   // (when the collection set is empty).
  2820   assert(result == NULL || result->in_collection_set(), "sanity");
  2821   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2822          "should be updated only once per pause");
  2823   _worker_cset_start_region[worker_i] = result;
  2824   OrderAccess::storestore();
  2825   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2826   return result;
  2829 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2830   HeapRegion* r = g1_policy()->collection_set();
  2831   while (r != NULL) {
  2832     HeapRegion* next = r->next_in_collection_set();
  2833     if (cl->doHeapRegion(r)) {
  2834       cl->incomplete();
  2835       return;
  2837     r = next;
  2841 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2842                                                   HeapRegionClosure *cl) {
  2843   if (r == NULL) {
  2844     // The CSet is empty so there's nothing to do.
  2845     return;
  2848   assert(r->in_collection_set(),
  2849          "Start region must be a member of the collection set.");
  2850   HeapRegion* cur = r;
  2851   while (cur != NULL) {
  2852     HeapRegion* next = cur->next_in_collection_set();
  2853     if (cl->doHeapRegion(cur) && false) {
  2854       cl->incomplete();
  2855       return;
  2857     cur = next;
  2859   cur = g1_policy()->collection_set();
  2860   while (cur != r) {
  2861     HeapRegion* next = cur->next_in_collection_set();
  2862     if (cl->doHeapRegion(cur) && false) {
  2863       cl->incomplete();
  2864       return;
  2866     cur = next;
  2870 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2871   return n_regions() > 0 ? region_at(0) : NULL;
  2875 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2876   Space* res = heap_region_containing(addr);
  2877   if (res == NULL)
  2878     res = perm_gen()->space_containing(addr);
  2879   return res;
  2882 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2883   Space* sp = space_containing(addr);
  2884   if (sp != NULL) {
  2885     return sp->block_start(addr);
  2887   return NULL;
  2890 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2891   Space* sp = space_containing(addr);
  2892   assert(sp != NULL, "block_size of address outside of heap");
  2893   return sp->block_size(addr);
  2896 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2897   Space* sp = space_containing(addr);
  2898   return sp->block_is_obj(addr);
  2901 bool G1CollectedHeap::supports_tlab_allocation() const {
  2902   return true;
  2905 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2906   return HeapRegion::GrainBytes;
  2909 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2910   // Return the remaining space in the cur alloc region, but not less than
  2911   // the min TLAB size.
  2913   // Also, this value can be at most the humongous object threshold,
  2914   // since we can't allow tlabs to grow big enough to accomodate
  2915   // humongous objects.
  2917   HeapRegion* hr = _mutator_alloc_region.get();
  2918   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2919   if (hr == NULL) {
  2920     return max_tlab_size;
  2921   } else {
  2922     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2926 size_t G1CollectedHeap::max_capacity() const {
  2927   return _g1_reserved.byte_size();
  2930 jlong G1CollectedHeap::millis_since_last_gc() {
  2931   // assert(false, "NYI");
  2932   return 0;
  2935 void G1CollectedHeap::prepare_for_verify() {
  2936   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2937     ensure_parsability(false);
  2939   g1_rem_set()->prepare_for_verify();
  2942 class VerifyLivenessOopClosure: public OopClosure {
  2943   G1CollectedHeap* _g1h;
  2944   VerifyOption _vo;
  2945 public:
  2946   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2947     _g1h(g1h), _vo(vo)
  2948   { }
  2949   void do_oop(narrowOop *p) { do_oop_work(p); }
  2950   void do_oop(      oop *p) { do_oop_work(p); }
  2952   template <class T> void do_oop_work(T *p) {
  2953     oop obj = oopDesc::load_decode_heap_oop(p);
  2954     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2955               "Dead object referenced by a not dead object");
  2957 };
  2959 class VerifyObjsInRegionClosure: public ObjectClosure {
  2960 private:
  2961   G1CollectedHeap* _g1h;
  2962   size_t _live_bytes;
  2963   HeapRegion *_hr;
  2964   VerifyOption _vo;
  2965 public:
  2966   // _vo == UsePrevMarking -> use "prev" marking information,
  2967   // _vo == UseNextMarking -> use "next" marking information,
  2968   // _vo == UseMarkWord    -> use mark word from object header.
  2969   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2970     : _live_bytes(0), _hr(hr), _vo(vo) {
  2971     _g1h = G1CollectedHeap::heap();
  2973   void do_object(oop o) {
  2974     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2975     assert(o != NULL, "Huh?");
  2976     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2977       // If the object is alive according to the mark word,
  2978       // then verify that the marking information agrees.
  2979       // Note we can't verify the contra-positive of the
  2980       // above: if the object is dead (according to the mark
  2981       // word), it may not be marked, or may have been marked
  2982       // but has since became dead, or may have been allocated
  2983       // since the last marking.
  2984       if (_vo == VerifyOption_G1UseMarkWord) {
  2985         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2988       o->oop_iterate(&isLive);
  2989       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2990         size_t obj_size = o->size();    // Make sure we don't overflow
  2991         _live_bytes += (obj_size * HeapWordSize);
  2995   size_t live_bytes() { return _live_bytes; }
  2996 };
  2998 class PrintObjsInRegionClosure : public ObjectClosure {
  2999   HeapRegion *_hr;
  3000   G1CollectedHeap *_g1;
  3001 public:
  3002   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3003     _g1 = G1CollectedHeap::heap();
  3004   };
  3006   void do_object(oop o) {
  3007     if (o != NULL) {
  3008       HeapWord *start = (HeapWord *) o;
  3009       size_t word_sz = o->size();
  3010       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3011                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3012                           (void*) o, word_sz,
  3013                           _g1->isMarkedPrev(o),
  3014                           _g1->isMarkedNext(o),
  3015                           _hr->obj_allocated_since_prev_marking(o));
  3016       HeapWord *end = start + word_sz;
  3017       HeapWord *cur;
  3018       int *val;
  3019       for (cur = start; cur < end; cur++) {
  3020         val = (int *) cur;
  3021         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3025 };
  3027 class VerifyRegionClosure: public HeapRegionClosure {
  3028 private:
  3029   bool         _par;
  3030   VerifyOption _vo;
  3031   bool         _failures;
  3032 public:
  3033   // _vo == UsePrevMarking -> use "prev" marking information,
  3034   // _vo == UseNextMarking -> use "next" marking information,
  3035   // _vo == UseMarkWord    -> use mark word from object header.
  3036   VerifyRegionClosure(bool par, VerifyOption vo)
  3037     : _par(par),
  3038       _vo(vo),
  3039       _failures(false) {}
  3041   bool failures() {
  3042     return _failures;
  3045   bool doHeapRegion(HeapRegion* r) {
  3046     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  3047               "Should be unclaimed at verify points.");
  3048     if (!r->continuesHumongous()) {
  3049       bool failures = false;
  3050       r->verify(_vo, &failures);
  3051       if (failures) {
  3052         _failures = true;
  3053       } else {
  3054         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3055         r->object_iterate(&not_dead_yet_cl);
  3056         if (_vo != VerifyOption_G1UseNextMarking) {
  3057           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3058             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3059                                    "max_live_bytes "SIZE_FORMAT" "
  3060                                    "< calculated "SIZE_FORMAT,
  3061                                    r->bottom(), r->end(),
  3062                                    r->max_live_bytes(),
  3063                                  not_dead_yet_cl.live_bytes());
  3064             _failures = true;
  3066         } else {
  3067           // When vo == UseNextMarking we cannot currently do a sanity
  3068           // check on the live bytes as the calculation has not been
  3069           // finalized yet.
  3073     return false; // stop the region iteration if we hit a failure
  3075 };
  3077 class VerifyRootsClosure: public OopsInGenClosure {
  3078 private:
  3079   G1CollectedHeap* _g1h;
  3080   VerifyOption     _vo;
  3081   bool             _failures;
  3082 public:
  3083   // _vo == UsePrevMarking -> use "prev" marking information,
  3084   // _vo == UseNextMarking -> use "next" marking information,
  3085   // _vo == UseMarkWord    -> use mark word from object header.
  3086   VerifyRootsClosure(VerifyOption vo) :
  3087     _g1h(G1CollectedHeap::heap()),
  3088     _vo(vo),
  3089     _failures(false) { }
  3091   bool failures() { return _failures; }
  3093   template <class T> void do_oop_nv(T* p) {
  3094     T heap_oop = oopDesc::load_heap_oop(p);
  3095     if (!oopDesc::is_null(heap_oop)) {
  3096       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3097       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3098         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3099                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3100         if (_vo == VerifyOption_G1UseMarkWord) {
  3101           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3103         obj->print_on(gclog_or_tty);
  3104         _failures = true;
  3109   void do_oop(oop* p)       { do_oop_nv(p); }
  3110   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3111 };
  3113 // This is the task used for parallel heap verification.
  3115 class G1ParVerifyTask: public AbstractGangTask {
  3116 private:
  3117   G1CollectedHeap* _g1h;
  3118   VerifyOption     _vo;
  3119   bool             _failures;
  3121 public:
  3122   // _vo == UsePrevMarking -> use "prev" marking information,
  3123   // _vo == UseNextMarking -> use "next" marking information,
  3124   // _vo == UseMarkWord    -> use mark word from object header.
  3125   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3126     AbstractGangTask("Parallel verify task"),
  3127     _g1h(g1h),
  3128     _vo(vo),
  3129     _failures(false) { }
  3131   bool failures() {
  3132     return _failures;
  3135   void work(uint worker_id) {
  3136     HandleMark hm;
  3137     VerifyRegionClosure blk(true, _vo);
  3138     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3139                                           _g1h->workers()->active_workers(),
  3140                                           HeapRegion::ParVerifyClaimValue);
  3141     if (blk.failures()) {
  3142       _failures = true;
  3145 };
  3147 void G1CollectedHeap::verify(bool silent) {
  3148   verify(silent, VerifyOption_G1UsePrevMarking);
  3151 void G1CollectedHeap::verify(bool silent,
  3152                              VerifyOption vo) {
  3153   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3154     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3155     VerifyRootsClosure rootsCl(vo);
  3157     assert(Thread::current()->is_VM_thread(),
  3158       "Expected to be executed serially by the VM thread at this point");
  3160     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3162     // We apply the relevant closures to all the oops in the
  3163     // system dictionary, the string table and the code cache.
  3164     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3166     process_strong_roots(true,      // activate StrongRootsScope
  3167                          true,      // we set "collecting perm gen" to true,
  3168                                     // so we don't reset the dirty cards in the perm gen.
  3169                          ScanningOption(so),  // roots scanning options
  3170                          &rootsCl,
  3171                          &blobsCl,
  3172                          &rootsCl);
  3174     // If we're verifying after the marking phase of a Full GC then we can't
  3175     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3176     // the perm gen may be dead and hence not marked. If one of these dead
  3177     // objects is considered to be a root then we may end up with a false
  3178     // "Root location <x> points to dead ob <y>" failure.
  3179     if (vo != VerifyOption_G1UseMarkWord) {
  3180       // Since we used "collecting_perm_gen" == true above, we will not have
  3181       // checked the refs from perm into the G1-collected heap. We check those
  3182       // references explicitly below. Whether the relevant cards are dirty
  3183       // is checked further below in the rem set verification.
  3184       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3185       perm_gen()->oop_iterate(&rootsCl);
  3187     bool failures = rootsCl.failures();
  3189     if (vo != VerifyOption_G1UseMarkWord) {
  3190       // If we're verifying during a full GC then the region sets
  3191       // will have been torn down at the start of the GC. Therefore
  3192       // verifying the region sets will fail. So we only verify
  3193       // the region sets when not in a full GC.
  3194       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3195       verify_region_sets();
  3198     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3199     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3200       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3201              "sanity check");
  3203       G1ParVerifyTask task(this, vo);
  3204       assert(UseDynamicNumberOfGCThreads ||
  3205         workers()->active_workers() == workers()->total_workers(),
  3206         "If not dynamic should be using all the workers");
  3207       int n_workers = workers()->active_workers();
  3208       set_par_threads(n_workers);
  3209       workers()->run_task(&task);
  3210       set_par_threads(0);
  3211       if (task.failures()) {
  3212         failures = true;
  3215       // Checks that the expected amount of parallel work was done.
  3216       // The implication is that n_workers is > 0.
  3217       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3218              "sanity check");
  3220       reset_heap_region_claim_values();
  3222       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3223              "sanity check");
  3224     } else {
  3225       VerifyRegionClosure blk(false, vo);
  3226       heap_region_iterate(&blk);
  3227       if (blk.failures()) {
  3228         failures = true;
  3231     if (!silent) gclog_or_tty->print("RemSet ");
  3232     rem_set()->verify();
  3234     if (failures) {
  3235       gclog_or_tty->print_cr("Heap:");
  3236       // It helps to have the per-region information in the output to
  3237       // help us track down what went wrong. This is why we call
  3238       // print_extended_on() instead of print_on().
  3239       print_extended_on(gclog_or_tty);
  3240       gclog_or_tty->print_cr("");
  3241 #ifndef PRODUCT
  3242       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3243         concurrent_mark()->print_reachable("at-verification-failure",
  3244                                            vo, false /* all */);
  3246 #endif
  3247       gclog_or_tty->flush();
  3249     guarantee(!failures, "there should not have been any failures");
  3250   } else {
  3251     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3255 class PrintRegionClosure: public HeapRegionClosure {
  3256   outputStream* _st;
  3257 public:
  3258   PrintRegionClosure(outputStream* st) : _st(st) {}
  3259   bool doHeapRegion(HeapRegion* r) {
  3260     r->print_on(_st);
  3261     return false;
  3263 };
  3265 void G1CollectedHeap::print_on(outputStream* st) const {
  3266   st->print(" %-20s", "garbage-first heap");
  3267   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3268             capacity()/K, used_unlocked()/K);
  3269   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3270             _g1_storage.low_boundary(),
  3271             _g1_storage.high(),
  3272             _g1_storage.high_boundary());
  3273   st->cr();
  3274   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3275   uint young_regions = _young_list->length();
  3276   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3277             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3278   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3279   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3280             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3281   st->cr();
  3282   perm()->as_gen()->print_on(st);
  3285 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3286   print_on(st);
  3288   // Print the per-region information.
  3289   st->cr();
  3290   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3291                "HS=humongous(starts), HC=humongous(continues), "
  3292                "CS=collection set, F=free, TS=gc time stamp, "
  3293                "PTAMS=previous top-at-mark-start, "
  3294                "NTAMS=next top-at-mark-start)");
  3295   PrintRegionClosure blk(st);
  3296   heap_region_iterate(&blk);
  3299 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3300   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3301     workers()->print_worker_threads_on(st);
  3303   _cmThread->print_on(st);
  3304   st->cr();
  3305   _cm->print_worker_threads_on(st);
  3306   _cg1r->print_worker_threads_on(st);
  3307   st->cr();
  3310 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3311   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3312     workers()->threads_do(tc);
  3314   tc->do_thread(_cmThread);
  3315   _cg1r->threads_do(tc);
  3318 void G1CollectedHeap::print_tracing_info() const {
  3319   // We'll overload this to mean "trace GC pause statistics."
  3320   if (TraceGen0Time || TraceGen1Time) {
  3321     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3322     // to that.
  3323     g1_policy()->print_tracing_info();
  3325   if (G1SummarizeRSetStats) {
  3326     g1_rem_set()->print_summary_info();
  3328   if (G1SummarizeConcMark) {
  3329     concurrent_mark()->print_summary_info();
  3331   g1_policy()->print_yg_surv_rate_info();
  3332   SpecializationStats::print();
  3335 #ifndef PRODUCT
  3336 // Helpful for debugging RSet issues.
  3338 class PrintRSetsClosure : public HeapRegionClosure {
  3339 private:
  3340   const char* _msg;
  3341   size_t _occupied_sum;
  3343 public:
  3344   bool doHeapRegion(HeapRegion* r) {
  3345     HeapRegionRemSet* hrrs = r->rem_set();
  3346     size_t occupied = hrrs->occupied();
  3347     _occupied_sum += occupied;
  3349     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3350                            HR_FORMAT_PARAMS(r));
  3351     if (occupied == 0) {
  3352       gclog_or_tty->print_cr("  RSet is empty");
  3353     } else {
  3354       hrrs->print();
  3356     gclog_or_tty->print_cr("----------");
  3357     return false;
  3360   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3361     gclog_or_tty->cr();
  3362     gclog_or_tty->print_cr("========================================");
  3363     gclog_or_tty->print_cr(msg);
  3364     gclog_or_tty->cr();
  3367   ~PrintRSetsClosure() {
  3368     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3369     gclog_or_tty->print_cr("========================================");
  3370     gclog_or_tty->cr();
  3372 };
  3374 void G1CollectedHeap::print_cset_rsets() {
  3375   PrintRSetsClosure cl("Printing CSet RSets");
  3376   collection_set_iterate(&cl);
  3379 void G1CollectedHeap::print_all_rsets() {
  3380   PrintRSetsClosure cl("Printing All RSets");;
  3381   heap_region_iterate(&cl);
  3383 #endif // PRODUCT
  3385 G1CollectedHeap* G1CollectedHeap::heap() {
  3386   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3387          "not a garbage-first heap");
  3388   return _g1h;
  3391 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3392   // always_do_update_barrier = false;
  3393   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3394   // Call allocation profiler
  3395   AllocationProfiler::iterate_since_last_gc();
  3396   // Fill TLAB's and such
  3397   ensure_parsability(true);
  3400 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3401   // FIXME: what is this about?
  3402   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3403   // is set.
  3404   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3405                         "derived pointer present"));
  3406   // always_do_update_barrier = true;
  3408   // We have just completed a GC. Update the soft reference
  3409   // policy with the new heap occupancy
  3410   Universe::update_heap_info_at_gc();
  3413 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3414                                                unsigned int gc_count_before,
  3415                                                bool* succeeded) {
  3416   assert_heap_not_locked_and_not_at_safepoint();
  3417   g1_policy()->record_stop_world_start();
  3418   VM_G1IncCollectionPause op(gc_count_before,
  3419                              word_size,
  3420                              false, /* should_initiate_conc_mark */
  3421                              g1_policy()->max_pause_time_ms(),
  3422                              GCCause::_g1_inc_collection_pause);
  3423   VMThread::execute(&op);
  3425   HeapWord* result = op.result();
  3426   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3427   assert(result == NULL || ret_succeeded,
  3428          "the result should be NULL if the VM did not succeed");
  3429   *succeeded = ret_succeeded;
  3431   assert_heap_not_locked();
  3432   return result;
  3435 void
  3436 G1CollectedHeap::doConcurrentMark() {
  3437   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3438   if (!_cmThread->in_progress()) {
  3439     _cmThread->set_started();
  3440     CGC_lock->notify();
  3444 size_t G1CollectedHeap::pending_card_num() {
  3445   size_t extra_cards = 0;
  3446   JavaThread *curr = Threads::first();
  3447   while (curr != NULL) {
  3448     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3449     extra_cards += dcq.size();
  3450     curr = curr->next();
  3452   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3453   size_t buffer_size = dcqs.buffer_size();
  3454   size_t buffer_num = dcqs.completed_buffers_num();
  3455   return buffer_size * buffer_num + extra_cards;
  3458 size_t G1CollectedHeap::max_pending_card_num() {
  3459   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3460   size_t buffer_size = dcqs.buffer_size();
  3461   size_t buffer_num  = dcqs.completed_buffers_num();
  3462   int thread_num  = Threads::number_of_threads();
  3463   return (buffer_num + thread_num) * buffer_size;
  3466 size_t G1CollectedHeap::cards_scanned() {
  3467   return g1_rem_set()->cardsScanned();
  3470 void
  3471 G1CollectedHeap::setup_surviving_young_words() {
  3472   assert(_surviving_young_words == NULL, "pre-condition");
  3473   uint array_length = g1_policy()->young_cset_region_length();
  3474   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
  3475   if (_surviving_young_words == NULL) {
  3476     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3477                           "Not enough space for young surv words summary.");
  3479   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3480 #ifdef ASSERT
  3481   for (uint i = 0;  i < array_length; ++i) {
  3482     assert( _surviving_young_words[i] == 0, "memset above" );
  3484 #endif // !ASSERT
  3487 void
  3488 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3489   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3490   uint array_length = g1_policy()->young_cset_region_length();
  3491   for (uint i = 0; i < array_length; ++i) {
  3492     _surviving_young_words[i] += surv_young_words[i];
  3496 void
  3497 G1CollectedHeap::cleanup_surviving_young_words() {
  3498   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3499   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3500   _surviving_young_words = NULL;
  3503 #ifdef ASSERT
  3504 class VerifyCSetClosure: public HeapRegionClosure {
  3505 public:
  3506   bool doHeapRegion(HeapRegion* hr) {
  3507     // Here we check that the CSet region's RSet is ready for parallel
  3508     // iteration. The fields that we'll verify are only manipulated
  3509     // when the region is part of a CSet and is collected. Afterwards,
  3510     // we reset these fields when we clear the region's RSet (when the
  3511     // region is freed) so they are ready when the region is
  3512     // re-allocated. The only exception to this is if there's an
  3513     // evacuation failure and instead of freeing the region we leave
  3514     // it in the heap. In that case, we reset these fields during
  3515     // evacuation failure handling.
  3516     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3518     // Here's a good place to add any other checks we'd like to
  3519     // perform on CSet regions.
  3520     return false;
  3522 };
  3523 #endif // ASSERT
  3525 #if TASKQUEUE_STATS
  3526 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3527   st->print_raw_cr("GC Task Stats");
  3528   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3529   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3532 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3533   print_taskqueue_stats_hdr(st);
  3535   TaskQueueStats totals;
  3536   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3537   for (int i = 0; i < n; ++i) {
  3538     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3539     totals += task_queue(i)->stats;
  3541   st->print_raw("tot "); totals.print(st); st->cr();
  3543   DEBUG_ONLY(totals.verify());
  3546 void G1CollectedHeap::reset_taskqueue_stats() {
  3547   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3548   for (int i = 0; i < n; ++i) {
  3549     task_queue(i)->stats.reset();
  3552 #endif // TASKQUEUE_STATS
  3554 bool
  3555 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3556   assert_at_safepoint(true /* should_be_vm_thread */);
  3557   guarantee(!is_gc_active(), "collection is not reentrant");
  3559   if (GC_locker::check_active_before_gc()) {
  3560     return false;
  3563   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3564   ResourceMark rm;
  3566   print_heap_before_gc();
  3568   HRSPhaseSetter x(HRSPhaseEvacuation);
  3569   verify_region_sets_optional();
  3570   verify_dirty_young_regions();
  3572   // This call will decide whether this pause is an initial-mark
  3573   // pause. If it is, during_initial_mark_pause() will return true
  3574   // for the duration of this pause.
  3575   g1_policy()->decide_on_conc_mark_initiation();
  3577   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3578   assert(!g1_policy()->during_initial_mark_pause() ||
  3579           g1_policy()->gcs_are_young(), "sanity");
  3581   // We also do not allow mixed GCs during marking.
  3582   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3584   // Record whether this pause is an initial mark. When the current
  3585   // thread has completed its logging output and it's safe to signal
  3586   // the CM thread, the flag's value in the policy has been reset.
  3587   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3589   // Inner scope for scope based logging, timers, and stats collection
  3591     char verbose_str[128];
  3592     sprintf(verbose_str, "GC pause ");
  3593     if (g1_policy()->gcs_are_young()) {
  3594       strcat(verbose_str, "(young)");
  3595     } else {
  3596       strcat(verbose_str, "(mixed)");
  3598     if (g1_policy()->during_initial_mark_pause()) {
  3599       strcat(verbose_str, " (initial-mark)");
  3600       // We are about to start a marking cycle, so we increment the
  3601       // full collection counter.
  3602       increment_total_full_collections();
  3605     // if the log level is "finer" is on, we'll print long statistics information
  3606     // in the collector policy code, so let's not print this as the output
  3607     // is messy if we do.
  3608     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  3609     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3610     TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
  3612     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3613     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3615     // If the secondary_free_list is not empty, append it to the
  3616     // free_list. No need to wait for the cleanup operation to finish;
  3617     // the region allocation code will check the secondary_free_list
  3618     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3619     // set, skip this step so that the region allocation code has to
  3620     // get entries from the secondary_free_list.
  3621     if (!G1StressConcRegionFreeing) {
  3622       append_secondary_free_list_if_not_empty_with_lock();
  3625     assert(check_young_list_well_formed(),
  3626       "young list should be well formed");
  3628     // Don't dynamically change the number of GC threads this early.  A value of
  3629     // 0 is used to indicate serial work.  When parallel work is done,
  3630     // it will be set.
  3632     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3633       IsGCActiveMark x;
  3635       gc_prologue(false);
  3636       increment_total_collections(false /* full gc */);
  3637       increment_gc_time_stamp();
  3639       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3640         HandleMark hm;  // Discard invalid handles created during verification
  3641         gclog_or_tty->print(" VerifyBeforeGC:");
  3642         prepare_for_verify();
  3643         Universe::verify(/* silent      */ false,
  3644                          /* option      */ VerifyOption_G1UsePrevMarking);
  3647       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3649       // Please see comment in g1CollectedHeap.hpp and
  3650       // G1CollectedHeap::ref_processing_init() to see how
  3651       // reference processing currently works in G1.
  3653       // Enable discovery in the STW reference processor
  3654       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3655                                             true /*verify_no_refs*/);
  3658         // We want to temporarily turn off discovery by the
  3659         // CM ref processor, if necessary, and turn it back on
  3660         // on again later if we do. Using a scoped
  3661         // NoRefDiscovery object will do this.
  3662         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3664         // Forget the current alloc region (we might even choose it to be part
  3665         // of the collection set!).
  3666         release_mutator_alloc_region();
  3668         // We should call this after we retire the mutator alloc
  3669         // region(s) so that all the ALLOC / RETIRE events are generated
  3670         // before the start GC event.
  3671         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3673         // The elapsed time induced by the start time below deliberately elides
  3674         // the possible verification above.
  3675         double start_time_sec = os::elapsedTime();
  3676         size_t start_used_bytes = used();
  3678 #if YOUNG_LIST_VERBOSE
  3679         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3680         _young_list->print();
  3681         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3682 #endif // YOUNG_LIST_VERBOSE
  3684         g1_policy()->record_collection_pause_start(start_time_sec,
  3685                                                    start_used_bytes);
  3687         double scan_wait_start = os::elapsedTime();
  3688         // We have to wait until the CM threads finish scanning the
  3689         // root regions as it's the only way to ensure that all the
  3690         // objects on them have been correctly scanned before we start
  3691         // moving them during the GC.
  3692         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3693         if (waited) {
  3694           double scan_wait_end = os::elapsedTime();
  3695           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3696           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
  3699 #if YOUNG_LIST_VERBOSE
  3700         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3701         _young_list->print();
  3702 #endif // YOUNG_LIST_VERBOSE
  3704         if (g1_policy()->during_initial_mark_pause()) {
  3705           concurrent_mark()->checkpointRootsInitialPre();
  3707         perm_gen()->save_marks();
  3709 #if YOUNG_LIST_VERBOSE
  3710         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3711         _young_list->print();
  3712         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3713 #endif // YOUNG_LIST_VERBOSE
  3715         g1_policy()->finalize_cset(target_pause_time_ms);
  3717         _cm->note_start_of_gc();
  3718         // We should not verify the per-thread SATB buffers given that
  3719         // we have not filtered them yet (we'll do so during the
  3720         // GC). We also call this after finalize_cset() to
  3721         // ensure that the CSet has been finalized.
  3722         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3723                                  true  /* verify_enqueued_buffers */,
  3724                                  false /* verify_thread_buffers */,
  3725                                  true  /* verify_fingers */);
  3727         if (_hr_printer.is_active()) {
  3728           HeapRegion* hr = g1_policy()->collection_set();
  3729           while (hr != NULL) {
  3730             G1HRPrinter::RegionType type;
  3731             if (!hr->is_young()) {
  3732               type = G1HRPrinter::Old;
  3733             } else if (hr->is_survivor()) {
  3734               type = G1HRPrinter::Survivor;
  3735             } else {
  3736               type = G1HRPrinter::Eden;
  3738             _hr_printer.cset(hr);
  3739             hr = hr->next_in_collection_set();
  3743 #ifdef ASSERT
  3744         VerifyCSetClosure cl;
  3745         collection_set_iterate(&cl);
  3746 #endif // ASSERT
  3748         setup_surviving_young_words();
  3750         // Initialize the GC alloc regions.
  3751         init_gc_alloc_regions();
  3753         // Actually do the work...
  3754         evacuate_collection_set();
  3756         // We do this to mainly verify the per-thread SATB buffers
  3757         // (which have been filtered by now) since we didn't verify
  3758         // them earlier. No point in re-checking the stacks / enqueued
  3759         // buffers given that the CSet has not changed since last time
  3760         // we checked.
  3761         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3762                                  false /* verify_enqueued_buffers */,
  3763                                  true  /* verify_thread_buffers */,
  3764                                  true  /* verify_fingers */);
  3766         free_collection_set(g1_policy()->collection_set());
  3767         g1_policy()->clear_collection_set();
  3769         cleanup_surviving_young_words();
  3771         // Start a new incremental collection set for the next pause.
  3772         g1_policy()->start_incremental_cset_building();
  3774         // Clear the _cset_fast_test bitmap in anticipation of adding
  3775         // regions to the incremental collection set for the next
  3776         // evacuation pause.
  3777         clear_cset_fast_test();
  3779         _young_list->reset_sampled_info();
  3781         // Don't check the whole heap at this point as the
  3782         // GC alloc regions from this pause have been tagged
  3783         // as survivors and moved on to the survivor list.
  3784         // Survivor regions will fail the !is_young() check.
  3785         assert(check_young_list_empty(false /* check_heap */),
  3786           "young list should be empty");
  3788 #if YOUNG_LIST_VERBOSE
  3789         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3790         _young_list->print();
  3791 #endif // YOUNG_LIST_VERBOSE
  3793         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3794                                             _young_list->first_survivor_region(),
  3795                                             _young_list->last_survivor_region());
  3797         _young_list->reset_auxilary_lists();
  3799         if (evacuation_failed()) {
  3800           _summary_bytes_used = recalculate_used();
  3801         } else {
  3802           // The "used" of the the collection set have already been subtracted
  3803           // when they were freed.  Add in the bytes evacuated.
  3804           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3807         if (g1_policy()->during_initial_mark_pause()) {
  3808           // We have to do this before we notify the CM threads that
  3809           // they can start working to make sure that all the
  3810           // appropriate initialization is done on the CM object.
  3811           concurrent_mark()->checkpointRootsInitialPost();
  3812           set_marking_started();
  3813           // Note that we don't actually trigger the CM thread at
  3814           // this point. We do that later when we're sure that
  3815           // the current thread has completed its logging output.
  3818         allocate_dummy_regions();
  3820 #if YOUNG_LIST_VERBOSE
  3821         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3822         _young_list->print();
  3823         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3824 #endif // YOUNG_LIST_VERBOSE
  3826         init_mutator_alloc_region();
  3829           size_t expand_bytes = g1_policy()->expansion_amount();
  3830           if (expand_bytes > 0) {
  3831             size_t bytes_before = capacity();
  3832             // No need for an ergo verbose message here,
  3833             // expansion_amount() does this when it returns a value > 0.
  3834             if (!expand(expand_bytes)) {
  3835               // We failed to expand the heap so let's verify that
  3836               // committed/uncommitted amount match the backing store
  3837               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3838               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3843         // We redo the verificaiton but now wrt to the new CSet which
  3844         // has just got initialized after the previous CSet was freed.
  3845         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3846                                  true  /* verify_enqueued_buffers */,
  3847                                  true  /* verify_thread_buffers */,
  3848                                  true  /* verify_fingers */);
  3849         _cm->note_end_of_gc();
  3851         double end_time_sec = os::elapsedTime();
  3852         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3853         g1_policy()->record_pause_time_ms(pause_time_ms);
  3854         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3855                                 workers()->active_workers() : 1);
  3856         g1_policy()->record_collection_pause_end(active_workers);
  3858         MemoryService::track_memory_usage();
  3860         // In prepare_for_verify() below we'll need to scan the deferred
  3861         // update buffers to bring the RSets up-to-date if
  3862         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3863         // the update buffers we'll probably need to scan cards on the
  3864         // regions we just allocated to (i.e., the GC alloc
  3865         // regions). However, during the last GC we called
  3866         // set_saved_mark() on all the GC alloc regions, so card
  3867         // scanning might skip the [saved_mark_word()...top()] area of
  3868         // those regions (i.e., the area we allocated objects into
  3869         // during the last GC). But it shouldn't. Given that
  3870         // saved_mark_word() is conditional on whether the GC time stamp
  3871         // on the region is current or not, by incrementing the GC time
  3872         // stamp here we invalidate all the GC time stamps on all the
  3873         // regions and saved_mark_word() will simply return top() for
  3874         // all the regions. This is a nicer way of ensuring this rather
  3875         // than iterating over the regions and fixing them. In fact, the
  3876         // GC time stamp increment here also ensures that
  3877         // saved_mark_word() will return top() between pauses, i.e.,
  3878         // during concurrent refinement. So we don't need the
  3879         // is_gc_active() check to decided which top to use when
  3880         // scanning cards (see CR 7039627).
  3881         increment_gc_time_stamp();
  3883         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3884           HandleMark hm;  // Discard invalid handles created during verification
  3885           gclog_or_tty->print(" VerifyAfterGC:");
  3886           prepare_for_verify();
  3887           Universe::verify(/* silent      */ false,
  3888                            /* option      */ VerifyOption_G1UsePrevMarking);
  3891         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3892         ref_processor_stw()->verify_no_references_recorded();
  3894         // CM reference discovery will be re-enabled if necessary.
  3897       // We should do this after we potentially expand the heap so
  3898       // that all the COMMIT events are generated before the end GC
  3899       // event, and after we retire the GC alloc regions so that all
  3900       // RETIRE events are generated before the end GC event.
  3901       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3903       // We have to do this after we decide whether to expand the heap or not.
  3904       g1_policy()->print_heap_transition();
  3906       if (mark_in_progress()) {
  3907         concurrent_mark()->update_g1_committed();
  3910 #ifdef TRACESPINNING
  3911       ParallelTaskTerminator::print_termination_counts();
  3912 #endif
  3914       gc_epilogue(false);
  3917     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3918       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3919       print_tracing_info();
  3920       vm_exit(-1);
  3924   // The closing of the inner scope, immediately above, will complete
  3925   // logging at the "fine" level. The record_collection_pause_end() call
  3926   // above will complete logging at the "finer" level.
  3927   //
  3928   // It is not yet to safe, however, to tell the concurrent mark to
  3929   // start as we have some optional output below. We don't want the
  3930   // output from the concurrent mark thread interfering with this
  3931   // logging output either.
  3933   _hrs.verify_optional();
  3934   verify_region_sets_optional();
  3936   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3937   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3939   print_heap_after_gc();
  3940   g1mm()->update_sizes();
  3942   if (G1SummarizeRSetStats &&
  3943       (G1SummarizeRSetStatsPeriod > 0) &&
  3944       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3945     g1_rem_set()->print_summary_info();
  3948   // It should now be safe to tell the concurrent mark thread to start
  3949   // without its logging output interfering with the logging output
  3950   // that came from the pause.
  3952   if (should_start_conc_mark) {
  3953     // CAUTION: after the doConcurrentMark() call below,
  3954     // the concurrent marking thread(s) could be running
  3955     // concurrently with us. Make sure that anything after
  3956     // this point does not assume that we are the only GC thread
  3957     // running. Note: of course, the actual marking work will
  3958     // not start until the safepoint itself is released in
  3959     // ConcurrentGCThread::safepoint_desynchronize().
  3960     doConcurrentMark();
  3963   return true;
  3966 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3968   size_t gclab_word_size;
  3969   switch (purpose) {
  3970     case GCAllocForSurvived:
  3971       gclab_word_size = YoungPLABSize;
  3972       break;
  3973     case GCAllocForTenured:
  3974       gclab_word_size = OldPLABSize;
  3975       break;
  3976     default:
  3977       assert(false, "unknown GCAllocPurpose");
  3978       gclab_word_size = OldPLABSize;
  3979       break;
  3981   return gclab_word_size;
  3984 void G1CollectedHeap::init_mutator_alloc_region() {
  3985   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3986   _mutator_alloc_region.init();
  3989 void G1CollectedHeap::release_mutator_alloc_region() {
  3990   _mutator_alloc_region.release();
  3991   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3994 void G1CollectedHeap::init_gc_alloc_regions() {
  3995   assert_at_safepoint(true /* should_be_vm_thread */);
  3997   _survivor_gc_alloc_region.init();
  3998   _old_gc_alloc_region.init();
  3999   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4000   _retained_old_gc_alloc_region = NULL;
  4002   // We will discard the current GC alloc region if:
  4003   // a) it's in the collection set (it can happen!),
  4004   // b) it's already full (no point in using it),
  4005   // c) it's empty (this means that it was emptied during
  4006   // a cleanup and it should be on the free list now), or
  4007   // d) it's humongous (this means that it was emptied
  4008   // during a cleanup and was added to the free list, but
  4009   // has been subseqently used to allocate a humongous
  4010   // object that may be less than the region size).
  4011   if (retained_region != NULL &&
  4012       !retained_region->in_collection_set() &&
  4013       !(retained_region->top() == retained_region->end()) &&
  4014       !retained_region->is_empty() &&
  4015       !retained_region->isHumongous()) {
  4016     retained_region->set_saved_mark();
  4017     // The retained region was added to the old region set when it was
  4018     // retired. We have to remove it now, since we don't allow regions
  4019     // we allocate to in the region sets. We'll re-add it later, when
  4020     // it's retired again.
  4021     _old_set.remove(retained_region);
  4022     bool during_im = g1_policy()->during_initial_mark_pause();
  4023     retained_region->note_start_of_copying(during_im);
  4024     _old_gc_alloc_region.set(retained_region);
  4025     _hr_printer.reuse(retained_region);
  4029 void G1CollectedHeap::release_gc_alloc_regions() {
  4030   _survivor_gc_alloc_region.release();
  4031   // If we have an old GC alloc region to release, we'll save it in
  4032   // _retained_old_gc_alloc_region. If we don't
  4033   // _retained_old_gc_alloc_region will become NULL. This is what we
  4034   // want either way so no reason to check explicitly for either
  4035   // condition.
  4036   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4039 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4040   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4041   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4042   _retained_old_gc_alloc_region = NULL;
  4045 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4046   _drain_in_progress = false;
  4047   set_evac_failure_closure(cl);
  4048   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4051 void G1CollectedHeap::finalize_for_evac_failure() {
  4052   assert(_evac_failure_scan_stack != NULL &&
  4053          _evac_failure_scan_stack->length() == 0,
  4054          "Postcondition");
  4055   assert(!_drain_in_progress, "Postcondition");
  4056   delete _evac_failure_scan_stack;
  4057   _evac_failure_scan_stack = NULL;
  4060 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4061   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4063   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4065   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4066     set_par_threads();
  4067     workers()->run_task(&rsfp_task);
  4068     set_par_threads(0);
  4069   } else {
  4070     rsfp_task.work(0);
  4073   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4075   // Reset the claim values in the regions in the collection set.
  4076   reset_cset_heap_region_claim_values();
  4078   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4080   // Now restore saved marks, if any.
  4081   if (_objs_with_preserved_marks != NULL) {
  4082     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4083     guarantee(_objs_with_preserved_marks->length() ==
  4084               _preserved_marks_of_objs->length(), "Both or none.");
  4085     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4086       oop obj   = _objs_with_preserved_marks->at(i);
  4087       markOop m = _preserved_marks_of_objs->at(i);
  4088       obj->set_mark(m);
  4091     // Delete the preserved marks growable arrays (allocated on the C heap).
  4092     delete _objs_with_preserved_marks;
  4093     delete _preserved_marks_of_objs;
  4094     _objs_with_preserved_marks = NULL;
  4095     _preserved_marks_of_objs = NULL;
  4099 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4100   _evac_failure_scan_stack->push(obj);
  4103 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4104   assert(_evac_failure_scan_stack != NULL, "precondition");
  4106   while (_evac_failure_scan_stack->length() > 0) {
  4107      oop obj = _evac_failure_scan_stack->pop();
  4108      _evac_failure_closure->set_region(heap_region_containing(obj));
  4109      obj->oop_iterate_backwards(_evac_failure_closure);
  4113 oop
  4114 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4115                                                oop old) {
  4116   assert(obj_in_cs(old),
  4117          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4118                  (HeapWord*) old));
  4119   markOop m = old->mark();
  4120   oop forward_ptr = old->forward_to_atomic(old);
  4121   if (forward_ptr == NULL) {
  4122     // Forward-to-self succeeded.
  4124     if (_evac_failure_closure != cl) {
  4125       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4126       assert(!_drain_in_progress,
  4127              "Should only be true while someone holds the lock.");
  4128       // Set the global evac-failure closure to the current thread's.
  4129       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4130       set_evac_failure_closure(cl);
  4131       // Now do the common part.
  4132       handle_evacuation_failure_common(old, m);
  4133       // Reset to NULL.
  4134       set_evac_failure_closure(NULL);
  4135     } else {
  4136       // The lock is already held, and this is recursive.
  4137       assert(_drain_in_progress, "This should only be the recursive case.");
  4138       handle_evacuation_failure_common(old, m);
  4140     return old;
  4141   } else {
  4142     // Forward-to-self failed. Either someone else managed to allocate
  4143     // space for this object (old != forward_ptr) or they beat us in
  4144     // self-forwarding it (old == forward_ptr).
  4145     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4146            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4147                    "should not be in the CSet",
  4148                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4149     return forward_ptr;
  4153 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4154   set_evacuation_failed(true);
  4156   preserve_mark_if_necessary(old, m);
  4158   HeapRegion* r = heap_region_containing(old);
  4159   if (!r->evacuation_failed()) {
  4160     r->set_evacuation_failed(true);
  4161     _hr_printer.evac_failure(r);
  4164   push_on_evac_failure_scan_stack(old);
  4166   if (!_drain_in_progress) {
  4167     // prevent recursion in copy_to_survivor_space()
  4168     _drain_in_progress = true;
  4169     drain_evac_failure_scan_stack();
  4170     _drain_in_progress = false;
  4174 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4175   assert(evacuation_failed(), "Oversaving!");
  4176   // We want to call the "for_promotion_failure" version only in the
  4177   // case of a promotion failure.
  4178   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4179     if (_objs_with_preserved_marks == NULL) {
  4180       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4181       _objs_with_preserved_marks =
  4182         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4183       _preserved_marks_of_objs =
  4184         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4186     _objs_with_preserved_marks->push(obj);
  4187     _preserved_marks_of_objs->push(m);
  4191 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4192                                                   size_t word_size) {
  4193   if (purpose == GCAllocForSurvived) {
  4194     HeapWord* result = survivor_attempt_allocation(word_size);
  4195     if (result != NULL) {
  4196       return result;
  4197     } else {
  4198       // Let's try to allocate in the old gen in case we can fit the
  4199       // object there.
  4200       return old_attempt_allocation(word_size);
  4202   } else {
  4203     assert(purpose ==  GCAllocForTenured, "sanity");
  4204     HeapWord* result = old_attempt_allocation(word_size);
  4205     if (result != NULL) {
  4206       return result;
  4207     } else {
  4208       // Let's try to allocate in the survivors in case we can fit the
  4209       // object there.
  4210       return survivor_attempt_allocation(word_size);
  4214   ShouldNotReachHere();
  4215   // Trying to keep some compilers happy.
  4216   return NULL;
  4219 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4220   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4222 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4223   : _g1h(g1h),
  4224     _refs(g1h->task_queue(queue_num)),
  4225     _dcq(&g1h->dirty_card_queue_set()),
  4226     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4227     _g1_rem(g1h->g1_rem_set()),
  4228     _hash_seed(17), _queue_num(queue_num),
  4229     _term_attempts(0),
  4230     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4231     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4232     _age_table(false),
  4233     _strong_roots_time(0), _term_time(0),
  4234     _alloc_buffer_waste(0), _undo_waste(0) {
  4235   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4236   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4237   // non-young regions (where the age is -1)
  4238   // We also add a few elements at the beginning and at the end in
  4239   // an attempt to eliminate cache contention
  4240   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4241   uint array_length = PADDING_ELEM_NUM +
  4242                       real_length +
  4243                       PADDING_ELEM_NUM;
  4244   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4245   if (_surviving_young_words_base == NULL)
  4246     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4247                           "Not enough space for young surv histo.");
  4248   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4249   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4251   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4252   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4254   _start = os::elapsedTime();
  4257 void
  4258 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4260   st->print_raw_cr("GC Termination Stats");
  4261   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4262                    " ------waste (KiB)------");
  4263   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4264                    "  total   alloc    undo");
  4265   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4266                    " ------- ------- -------");
  4269 void
  4270 G1ParScanThreadState::print_termination_stats(int i,
  4271                                               outputStream* const st) const
  4273   const double elapsed_ms = elapsed_time() * 1000.0;
  4274   const double s_roots_ms = strong_roots_time() * 1000.0;
  4275   const double term_ms    = term_time() * 1000.0;
  4276   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4277                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4278                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4279                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4280                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4281                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4282                alloc_buffer_waste() * HeapWordSize / K,
  4283                undo_waste() * HeapWordSize / K);
  4286 #ifdef ASSERT
  4287 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4288   assert(ref != NULL, "invariant");
  4289   assert(UseCompressedOops, "sanity");
  4290   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4291   oop p = oopDesc::load_decode_heap_oop(ref);
  4292   assert(_g1h->is_in_g1_reserved(p),
  4293          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4294   return true;
  4297 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4298   assert(ref != NULL, "invariant");
  4299   if (has_partial_array_mask(ref)) {
  4300     // Must be in the collection set--it's already been copied.
  4301     oop p = clear_partial_array_mask(ref);
  4302     assert(_g1h->obj_in_cs(p),
  4303            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4304   } else {
  4305     oop p = oopDesc::load_decode_heap_oop(ref);
  4306     assert(_g1h->is_in_g1_reserved(p),
  4307            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4309   return true;
  4312 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4313   if (ref.is_narrow()) {
  4314     return verify_ref((narrowOop*) ref);
  4315   } else {
  4316     return verify_ref((oop*) ref);
  4319 #endif // ASSERT
  4321 void G1ParScanThreadState::trim_queue() {
  4322   assert(_evac_cl != NULL, "not set");
  4323   assert(_evac_failure_cl != NULL, "not set");
  4324   assert(_partial_scan_cl != NULL, "not set");
  4326   StarTask ref;
  4327   do {
  4328     // Drain the overflow stack first, so other threads can steal.
  4329     while (refs()->pop_overflow(ref)) {
  4330       deal_with_reference(ref);
  4333     while (refs()->pop_local(ref)) {
  4334       deal_with_reference(ref);
  4336   } while (!refs()->is_empty());
  4339 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4340                                      G1ParScanThreadState* par_scan_state) :
  4341   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4342   _par_scan_state(par_scan_state),
  4343   _worker_id(par_scan_state->queue_num()),
  4344   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4345   _mark_in_progress(_g1->mark_in_progress()) { }
  4347 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4348 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4349 #ifdef ASSERT
  4350   HeapRegion* hr = _g1->heap_region_containing(obj);
  4351   assert(hr != NULL, "sanity");
  4352   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4353 #endif // ASSERT
  4355   // We know that the object is not moving so it's safe to read its size.
  4356   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4359 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4360 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4361   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4362 #ifdef ASSERT
  4363   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4364   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4365   assert(from_obj != to_obj, "should not be self-forwarded");
  4367   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4368   assert(from_hr != NULL, "sanity");
  4369   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4371   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4372   assert(to_hr != NULL, "sanity");
  4373   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4374 #endif // ASSERT
  4376   // The object might be in the process of being copied by another
  4377   // worker so we cannot trust that its to-space image is
  4378   // well-formed. So we have to read its size from its from-space
  4379   // image which we know should not be changing.
  4380   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4383 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4384 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4385   ::copy_to_survivor_space(oop old) {
  4386   size_t word_sz = old->size();
  4387   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4388   // +1 to make the -1 indexes valid...
  4389   int       young_index = from_region->young_index_in_cset()+1;
  4390   assert( (from_region->is_young() && young_index >  0) ||
  4391          (!from_region->is_young() && young_index == 0), "invariant" );
  4392   G1CollectorPolicy* g1p = _g1->g1_policy();
  4393   markOop m = old->mark();
  4394   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4395                                            : m->age();
  4396   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4397                                                              word_sz);
  4398   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4399   oop       obj     = oop(obj_ptr);
  4401   if (obj_ptr == NULL) {
  4402     // This will either forward-to-self, or detect that someone else has
  4403     // installed a forwarding pointer.
  4404     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4405     return _g1->handle_evacuation_failure_par(cl, old);
  4408   // We're going to allocate linearly, so might as well prefetch ahead.
  4409   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4411   oop forward_ptr = old->forward_to_atomic(obj);
  4412   if (forward_ptr == NULL) {
  4413     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4414     if (g1p->track_object_age(alloc_purpose)) {
  4415       // We could simply do obj->incr_age(). However, this causes a
  4416       // performance issue. obj->incr_age() will first check whether
  4417       // the object has a displaced mark by checking its mark word;
  4418       // getting the mark word from the new location of the object
  4419       // stalls. So, given that we already have the mark word and we
  4420       // are about to install it anyway, it's better to increase the
  4421       // age on the mark word, when the object does not have a
  4422       // displaced mark word. We're not expecting many objects to have
  4423       // a displaced marked word, so that case is not optimized
  4424       // further (it could be...) and we simply call obj->incr_age().
  4426       if (m->has_displaced_mark_helper()) {
  4427         // in this case, we have to install the mark word first,
  4428         // otherwise obj looks to be forwarded (the old mark word,
  4429         // which contains the forward pointer, was copied)
  4430         obj->set_mark(m);
  4431         obj->incr_age();
  4432       } else {
  4433         m = m->incr_age();
  4434         obj->set_mark(m);
  4436       _par_scan_state->age_table()->add(obj, word_sz);
  4437     } else {
  4438       obj->set_mark(m);
  4441     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4442     surv_young_words[young_index] += word_sz;
  4444     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4445       // We keep track of the next start index in the length field of
  4446       // the to-space object. The actual length can be found in the
  4447       // length field of the from-space object.
  4448       arrayOop(obj)->set_length(0);
  4449       oop* old_p = set_partial_array_mask(old);
  4450       _par_scan_state->push_on_queue(old_p);
  4451     } else {
  4452       // No point in using the slower heap_region_containing() method,
  4453       // given that we know obj is in the heap.
  4454       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4455       obj->oop_iterate_backwards(&_scanner);
  4457   } else {
  4458     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4459     obj = forward_ptr;
  4461   return obj;
  4464 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4465 template <class T>
  4466 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4467 ::do_oop_work(T* p) {
  4468   oop obj = oopDesc::load_decode_heap_oop(p);
  4469   assert(barrier != G1BarrierRS || obj != NULL,
  4470          "Precondition: G1BarrierRS implies obj is non-NULL");
  4472   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4474   // here the null check is implicit in the cset_fast_test() test
  4475   if (_g1->in_cset_fast_test(obj)) {
  4476     oop forwardee;
  4477     if (obj->is_forwarded()) {
  4478       forwardee = obj->forwardee();
  4479     } else {
  4480       forwardee = copy_to_survivor_space(obj);
  4482     assert(forwardee != NULL, "forwardee should not be NULL");
  4483     oopDesc::encode_store_heap_oop(p, forwardee);
  4484     if (do_mark_object && forwardee != obj) {
  4485       // If the object is self-forwarded we don't need to explicitly
  4486       // mark it, the evacuation failure protocol will do so.
  4487       mark_forwarded_object(obj, forwardee);
  4490     // When scanning the RS, we only care about objs in CS.
  4491     if (barrier == G1BarrierRS) {
  4492       _par_scan_state->update_rs(_from, p, _worker_id);
  4494   } else {
  4495     // The object is not in collection set. If we're a root scanning
  4496     // closure during an initial mark pause (i.e. do_mark_object will
  4497     // be true) then attempt to mark the object.
  4498     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4499       mark_object(obj);
  4503   if (barrier == G1BarrierEvac && obj != NULL) {
  4504     _par_scan_state->update_rs(_from, p, _worker_id);
  4507   if (do_gen_barrier && obj != NULL) {
  4508     par_do_barrier(p);
  4512 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4513 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4515 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4516   assert(has_partial_array_mask(p), "invariant");
  4517   oop from_obj = clear_partial_array_mask(p);
  4519   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4520   assert(from_obj->is_objArray(), "must be obj array");
  4521   objArrayOop from_obj_array = objArrayOop(from_obj);
  4522   // The from-space object contains the real length.
  4523   int length                 = from_obj_array->length();
  4525   assert(from_obj->is_forwarded(), "must be forwarded");
  4526   oop to_obj                 = from_obj->forwardee();
  4527   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4528   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4529   // We keep track of the next start index in the length field of the
  4530   // to-space object.
  4531   int next_index             = to_obj_array->length();
  4532   assert(0 <= next_index && next_index < length,
  4533          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4535   int start                  = next_index;
  4536   int end                    = length;
  4537   int remainder              = end - start;
  4538   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4539   if (remainder > 2 * ParGCArrayScanChunk) {
  4540     end = start + ParGCArrayScanChunk;
  4541     to_obj_array->set_length(end);
  4542     // Push the remainder before we process the range in case another
  4543     // worker has run out of things to do and can steal it.
  4544     oop* from_obj_p = set_partial_array_mask(from_obj);
  4545     _par_scan_state->push_on_queue(from_obj_p);
  4546   } else {
  4547     assert(length == end, "sanity");
  4548     // We'll process the final range for this object. Restore the length
  4549     // so that the heap remains parsable in case of evacuation failure.
  4550     to_obj_array->set_length(end);
  4552   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4553   // Process indexes [start,end). It will also process the header
  4554   // along with the first chunk (i.e., the chunk with start == 0).
  4555   // Note that at this point the length field of to_obj_array is not
  4556   // correct given that we are using it to keep track of the next
  4557   // start index. oop_iterate_range() (thankfully!) ignores the length
  4558   // field and only relies on the start / end parameters.  It does
  4559   // however return the size of the object which will be incorrect. So
  4560   // we have to ignore it even if we wanted to use it.
  4561   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4564 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4565 protected:
  4566   G1CollectedHeap*              _g1h;
  4567   G1ParScanThreadState*         _par_scan_state;
  4568   RefToScanQueueSet*            _queues;
  4569   ParallelTaskTerminator*       _terminator;
  4571   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4572   RefToScanQueueSet*      queues()         { return _queues; }
  4573   ParallelTaskTerminator* terminator()     { return _terminator; }
  4575 public:
  4576   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4577                                 G1ParScanThreadState* par_scan_state,
  4578                                 RefToScanQueueSet* queues,
  4579                                 ParallelTaskTerminator* terminator)
  4580     : _g1h(g1h), _par_scan_state(par_scan_state),
  4581       _queues(queues), _terminator(terminator) {}
  4583   void do_void();
  4585 private:
  4586   inline bool offer_termination();
  4587 };
  4589 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4590   G1ParScanThreadState* const pss = par_scan_state();
  4591   pss->start_term_time();
  4592   const bool res = terminator()->offer_termination();
  4593   pss->end_term_time();
  4594   return res;
  4597 void G1ParEvacuateFollowersClosure::do_void() {
  4598   StarTask stolen_task;
  4599   G1ParScanThreadState* const pss = par_scan_state();
  4600   pss->trim_queue();
  4602   do {
  4603     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4604       assert(pss->verify_task(stolen_task), "sanity");
  4605       if (stolen_task.is_narrow()) {
  4606         pss->deal_with_reference((narrowOop*) stolen_task);
  4607       } else {
  4608         pss->deal_with_reference((oop*) stolen_task);
  4611       // We've just processed a reference and we might have made
  4612       // available new entries on the queues. So we have to make sure
  4613       // we drain the queues as necessary.
  4614       pss->trim_queue();
  4616   } while (!offer_termination());
  4618   pss->retire_alloc_buffers();
  4621 class G1ParTask : public AbstractGangTask {
  4622 protected:
  4623   G1CollectedHeap*       _g1h;
  4624   RefToScanQueueSet      *_queues;
  4625   ParallelTaskTerminator _terminator;
  4626   uint _n_workers;
  4628   Mutex _stats_lock;
  4629   Mutex* stats_lock() { return &_stats_lock; }
  4631   size_t getNCards() {
  4632     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4633       / G1BlockOffsetSharedArray::N_bytes;
  4636 public:
  4637   G1ParTask(G1CollectedHeap* g1h,
  4638             RefToScanQueueSet *task_queues)
  4639     : AbstractGangTask("G1 collection"),
  4640       _g1h(g1h),
  4641       _queues(task_queues),
  4642       _terminator(0, _queues),
  4643       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4644   {}
  4646   RefToScanQueueSet* queues() { return _queues; }
  4648   RefToScanQueue *work_queue(int i) {
  4649     return queues()->queue(i);
  4652   ParallelTaskTerminator* terminator() { return &_terminator; }
  4654   virtual void set_for_termination(int active_workers) {
  4655     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4656     // in the young space (_par_seq_tasks) in the G1 heap
  4657     // for SequentialSubTasksDone.
  4658     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4659     // both of which need setting by set_n_termination().
  4660     _g1h->SharedHeap::set_n_termination(active_workers);
  4661     _g1h->set_n_termination(active_workers);
  4662     terminator()->reset_for_reuse(active_workers);
  4663     _n_workers = active_workers;
  4666   void work(uint worker_id) {
  4667     if (worker_id >= _n_workers) return;  // no work needed this round
  4669     double start_time_ms = os::elapsedTime() * 1000.0;
  4670     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
  4673       ResourceMark rm;
  4674       HandleMark   hm;
  4676       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4678       G1ParScanThreadState            pss(_g1h, worker_id);
  4679       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4680       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4681       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4683       pss.set_evac_closure(&scan_evac_cl);
  4684       pss.set_evac_failure_closure(&evac_failure_cl);
  4685       pss.set_partial_scan_closure(&partial_scan_cl);
  4687       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4688       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4690       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4691       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4693       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4694       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4696       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4697         // We also need to mark copied objects.
  4698         scan_root_cl = &scan_mark_root_cl;
  4699         scan_perm_cl = &scan_mark_perm_cl;
  4702       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4704       pss.start_strong_roots();
  4705       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4706                                     SharedHeap::SO_AllClasses,
  4707                                     scan_root_cl,
  4708                                     &push_heap_rs_cl,
  4709                                     scan_perm_cl,
  4710                                     worker_id);
  4711       pss.end_strong_roots();
  4714         double start = os::elapsedTime();
  4715         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4716         evac.do_void();
  4717         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4718         double term_ms = pss.term_time()*1000.0;
  4719         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4720         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
  4722       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4723       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4725       // Clean up any par-expanded rem sets.
  4726       HeapRegionRemSet::par_cleanup();
  4728       if (ParallelGCVerbose) {
  4729         MutexLocker x(stats_lock());
  4730         pss.print_termination_stats(worker_id);
  4733       assert(pss.refs()->is_empty(), "should be empty");
  4735       // Close the inner scope so that the ResourceMark and HandleMark
  4736       // destructors are executed here and are included as part of the
  4737       // "GC Worker Time".
  4740     double end_time_ms = os::elapsedTime() * 1000.0;
  4741     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
  4743 };
  4745 // *** Common G1 Evacuation Stuff
  4747 // Closures that support the filtering of CodeBlobs scanned during
  4748 // external root scanning.
  4750 // Closure applied to reference fields in code blobs (specifically nmethods)
  4751 // to determine whether an nmethod contains references that point into
  4752 // the collection set. Used as a predicate when walking code roots so
  4753 // that only nmethods that point into the collection set are added to the
  4754 // 'marked' list.
  4756 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4758   class G1PointsIntoCSOopClosure : public OopClosure {
  4759     G1CollectedHeap* _g1;
  4760     bool _points_into_cs;
  4761   public:
  4762     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4763       _g1(g1), _points_into_cs(false) { }
  4765     bool points_into_cs() const { return _points_into_cs; }
  4767     template <class T>
  4768     void do_oop_nv(T* p) {
  4769       if (!_points_into_cs) {
  4770         T heap_oop = oopDesc::load_heap_oop(p);
  4771         if (!oopDesc::is_null(heap_oop) &&
  4772             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4773           _points_into_cs = true;
  4778     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4779     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4780   };
  4782   G1CollectedHeap* _g1;
  4784 public:
  4785   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4786     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4788   virtual void do_code_blob(CodeBlob* cb) {
  4789     nmethod* nm = cb->as_nmethod_or_null();
  4790     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4791       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4792       nm->oops_do(&predicate_cl);
  4794       if (predicate_cl.points_into_cs()) {
  4795         // At least one of the reference fields or the oop relocations
  4796         // in the nmethod points into the collection set. We have to
  4797         // 'mark' this nmethod.
  4798         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4799         // or MarkingCodeBlobClosure::do_code_blob() change.
  4800         if (!nm->test_set_oops_do_mark()) {
  4801           do_newly_marked_nmethod(nm);
  4806 };
  4808 // This method is run in a GC worker.
  4810 void
  4811 G1CollectedHeap::
  4812 g1_process_strong_roots(bool collecting_perm_gen,
  4813                         ScanningOption so,
  4814                         OopClosure* scan_non_heap_roots,
  4815                         OopsInHeapRegionClosure* scan_rs,
  4816                         OopsInGenClosure* scan_perm,
  4817                         int worker_i) {
  4819   // First scan the strong roots, including the perm gen.
  4820   double ext_roots_start = os::elapsedTime();
  4821   double closure_app_time_sec = 0.0;
  4823   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4824   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4825   buf_scan_perm.set_generation(perm_gen());
  4827   // Walk the code cache w/o buffering, because StarTask cannot handle
  4828   // unaligned oop locations.
  4829   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  4831   process_strong_roots(false, // no scoping; this is parallel code
  4832                        collecting_perm_gen, so,
  4833                        &buf_scan_non_heap_roots,
  4834                        &eager_scan_code_roots,
  4835                        &buf_scan_perm);
  4837   // Now the CM ref_processor roots.
  4838   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4839     // We need to treat the discovered reference lists of the
  4840     // concurrent mark ref processor as roots and keep entries
  4841     // (which are added by the marking threads) on them live
  4842     // until they can be processed at the end of marking.
  4843     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4846   // Finish up any enqueued closure apps (attributed as object copy time).
  4847   buf_scan_non_heap_roots.done();
  4848   buf_scan_perm.done();
  4850   double ext_roots_end = os::elapsedTime();
  4852   g1_policy()->reset_obj_copy_time(worker_i);
  4853   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4854                                 buf_scan_non_heap_roots.closure_app_seconds();
  4855   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4857   double ext_root_time_ms =
  4858     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4860   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4862   // During conc marking we have to filter the per-thread SATB buffers
  4863   // to make sure we remove any oops into the CSet (which will show up
  4864   // as implicitly live).
  4865   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4866     if (mark_in_progress()) {
  4867       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4870   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4871   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4873   // Now scan the complement of the collection set.
  4874   if (scan_rs != NULL) {
  4875     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4878   _process_strong_tasks->all_tasks_completed();
  4881 void
  4882 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4883                                        OopClosure* non_root_closure) {
  4884   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4885   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4888 // Weak Reference Processing support
  4890 // An always "is_alive" closure that is used to preserve referents.
  4891 // If the object is non-null then it's alive.  Used in the preservation
  4892 // of referent objects that are pointed to by reference objects
  4893 // discovered by the CM ref processor.
  4894 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4895   G1CollectedHeap* _g1;
  4896 public:
  4897   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4898   void do_object(oop p) { assert(false, "Do not call."); }
  4899   bool do_object_b(oop p) {
  4900     if (p != NULL) {
  4901       return true;
  4903     return false;
  4905 };
  4907 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4908   // An object is reachable if it is outside the collection set,
  4909   // or is inside and copied.
  4910   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4913 // Non Copying Keep Alive closure
  4914 class G1KeepAliveClosure: public OopClosure {
  4915   G1CollectedHeap* _g1;
  4916 public:
  4917   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4918   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4919   void do_oop(      oop* p) {
  4920     oop obj = *p;
  4922     if (_g1->obj_in_cs(obj)) {
  4923       assert( obj->is_forwarded(), "invariant" );
  4924       *p = obj->forwardee();
  4927 };
  4929 // Copying Keep Alive closure - can be called from both
  4930 // serial and parallel code as long as different worker
  4931 // threads utilize different G1ParScanThreadState instances
  4932 // and different queues.
  4934 class G1CopyingKeepAliveClosure: public OopClosure {
  4935   G1CollectedHeap*         _g1h;
  4936   OopClosure*              _copy_non_heap_obj_cl;
  4937   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4938   G1ParScanThreadState*    _par_scan_state;
  4940 public:
  4941   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4942                             OopClosure* non_heap_obj_cl,
  4943                             OopsInHeapRegionClosure* perm_obj_cl,
  4944                             G1ParScanThreadState* pss):
  4945     _g1h(g1h),
  4946     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4947     _copy_perm_obj_cl(perm_obj_cl),
  4948     _par_scan_state(pss)
  4949   {}
  4951   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4952   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4954   template <class T> void do_oop_work(T* p) {
  4955     oop obj = oopDesc::load_decode_heap_oop(p);
  4957     if (_g1h->obj_in_cs(obj)) {
  4958       // If the referent object has been forwarded (either copied
  4959       // to a new location or to itself in the event of an
  4960       // evacuation failure) then we need to update the reference
  4961       // field and, if both reference and referent are in the G1
  4962       // heap, update the RSet for the referent.
  4963       //
  4964       // If the referent has not been forwarded then we have to keep
  4965       // it alive by policy. Therefore we have copy the referent.
  4966       //
  4967       // If the reference field is in the G1 heap then we can push
  4968       // on the PSS queue. When the queue is drained (after each
  4969       // phase of reference processing) the object and it's followers
  4970       // will be copied, the reference field set to point to the
  4971       // new location, and the RSet updated. Otherwise we need to
  4972       // use the the non-heap or perm closures directly to copy
  4973       // the refernt object and update the pointer, while avoiding
  4974       // updating the RSet.
  4976       if (_g1h->is_in_g1_reserved(p)) {
  4977         _par_scan_state->push_on_queue(p);
  4978       } else {
  4979         // The reference field is not in the G1 heap.
  4980         if (_g1h->perm_gen()->is_in(p)) {
  4981           _copy_perm_obj_cl->do_oop(p);
  4982         } else {
  4983           _copy_non_heap_obj_cl->do_oop(p);
  4988 };
  4990 // Serial drain queue closure. Called as the 'complete_gc'
  4991 // closure for each discovered list in some of the
  4992 // reference processing phases.
  4994 class G1STWDrainQueueClosure: public VoidClosure {
  4995 protected:
  4996   G1CollectedHeap* _g1h;
  4997   G1ParScanThreadState* _par_scan_state;
  4999   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5001 public:
  5002   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5003     _g1h(g1h),
  5004     _par_scan_state(pss)
  5005   { }
  5007   void do_void() {
  5008     G1ParScanThreadState* const pss = par_scan_state();
  5009     pss->trim_queue();
  5011 };
  5013 // Parallel Reference Processing closures
  5015 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5016 // processing during G1 evacuation pauses.
  5018 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5019 private:
  5020   G1CollectedHeap*   _g1h;
  5021   RefToScanQueueSet* _queues;
  5022   FlexibleWorkGang*  _workers;
  5023   int                _active_workers;
  5025 public:
  5026   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5027                         FlexibleWorkGang* workers,
  5028                         RefToScanQueueSet *task_queues,
  5029                         int n_workers) :
  5030     _g1h(g1h),
  5031     _queues(task_queues),
  5032     _workers(workers),
  5033     _active_workers(n_workers)
  5035     assert(n_workers > 0, "shouldn't call this otherwise");
  5038   // Executes the given task using concurrent marking worker threads.
  5039   virtual void execute(ProcessTask& task);
  5040   virtual void execute(EnqueueTask& task);
  5041 };
  5043 // Gang task for possibly parallel reference processing
  5045 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5046   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5047   ProcessTask&     _proc_task;
  5048   G1CollectedHeap* _g1h;
  5049   RefToScanQueueSet *_task_queues;
  5050   ParallelTaskTerminator* _terminator;
  5052 public:
  5053   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5054                      G1CollectedHeap* g1h,
  5055                      RefToScanQueueSet *task_queues,
  5056                      ParallelTaskTerminator* terminator) :
  5057     AbstractGangTask("Process reference objects in parallel"),
  5058     _proc_task(proc_task),
  5059     _g1h(g1h),
  5060     _task_queues(task_queues),
  5061     _terminator(terminator)
  5062   {}
  5064   virtual void work(uint worker_id) {
  5065     // The reference processing task executed by a single worker.
  5066     ResourceMark rm;
  5067     HandleMark   hm;
  5069     G1STWIsAliveClosure is_alive(_g1h);
  5071     G1ParScanThreadState pss(_g1h, worker_id);
  5073     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5074     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5075     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5077     pss.set_evac_closure(&scan_evac_cl);
  5078     pss.set_evac_failure_closure(&evac_failure_cl);
  5079     pss.set_partial_scan_closure(&partial_scan_cl);
  5081     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5082     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5084     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5085     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5087     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5088     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5090     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5091       // We also need to mark copied objects.
  5092       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5093       copy_perm_cl = &copy_mark_perm_cl;
  5096     // Keep alive closure.
  5097     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5099     // Complete GC closure
  5100     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5102     // Call the reference processing task's work routine.
  5103     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5105     // Note we cannot assert that the refs array is empty here as not all
  5106     // of the processing tasks (specifically phase2 - pp2_work) execute
  5107     // the complete_gc closure (which ordinarily would drain the queue) so
  5108     // the queue may not be empty.
  5110 };
  5112 // Driver routine for parallel reference processing.
  5113 // Creates an instance of the ref processing gang
  5114 // task and has the worker threads execute it.
  5115 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5116   assert(_workers != NULL, "Need parallel worker threads.");
  5118   ParallelTaskTerminator terminator(_active_workers, _queues);
  5119   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5121   _g1h->set_par_threads(_active_workers);
  5122   _workers->run_task(&proc_task_proxy);
  5123   _g1h->set_par_threads(0);
  5126 // Gang task for parallel reference enqueueing.
  5128 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5129   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5130   EnqueueTask& _enq_task;
  5132 public:
  5133   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5134     AbstractGangTask("Enqueue reference objects in parallel"),
  5135     _enq_task(enq_task)
  5136   { }
  5138   virtual void work(uint worker_id) {
  5139     _enq_task.work(worker_id);
  5141 };
  5143 // Driver routine for parallel reference enqueing.
  5144 // Creates an instance of the ref enqueueing gang
  5145 // task and has the worker threads execute it.
  5147 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5148   assert(_workers != NULL, "Need parallel worker threads.");
  5150   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5152   _g1h->set_par_threads(_active_workers);
  5153   _workers->run_task(&enq_task_proxy);
  5154   _g1h->set_par_threads(0);
  5157 // End of weak reference support closures
  5159 // Abstract task used to preserve (i.e. copy) any referent objects
  5160 // that are in the collection set and are pointed to by reference
  5161 // objects discovered by the CM ref processor.
  5163 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5164 protected:
  5165   G1CollectedHeap* _g1h;
  5166   RefToScanQueueSet      *_queues;
  5167   ParallelTaskTerminator _terminator;
  5168   uint _n_workers;
  5170 public:
  5171   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5172     AbstractGangTask("ParPreserveCMReferents"),
  5173     _g1h(g1h),
  5174     _queues(task_queues),
  5175     _terminator(workers, _queues),
  5176     _n_workers(workers)
  5177   { }
  5179   void work(uint worker_id) {
  5180     ResourceMark rm;
  5181     HandleMark   hm;
  5183     G1ParScanThreadState            pss(_g1h, worker_id);
  5184     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5185     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5186     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5188     pss.set_evac_closure(&scan_evac_cl);
  5189     pss.set_evac_failure_closure(&evac_failure_cl);
  5190     pss.set_partial_scan_closure(&partial_scan_cl);
  5192     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5195     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5196     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5198     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5199     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5201     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5202     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5204     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5205       // We also need to mark copied objects.
  5206       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5207       copy_perm_cl = &copy_mark_perm_cl;
  5210     // Is alive closure
  5211     G1AlwaysAliveClosure always_alive(_g1h);
  5213     // Copying keep alive closure. Applied to referent objects that need
  5214     // to be copied.
  5215     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5217     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5219     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5220     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5222     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5223     // So this must be true - but assert just in case someone decides to
  5224     // change the worker ids.
  5225     assert(0 <= worker_id && worker_id < limit, "sanity");
  5226     assert(!rp->discovery_is_atomic(), "check this code");
  5228     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5229     for (uint idx = worker_id; idx < limit; idx += stride) {
  5230       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5232       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5233       while (iter.has_next()) {
  5234         // Since discovery is not atomic for the CM ref processor, we
  5235         // can see some null referent objects.
  5236         iter.load_ptrs(DEBUG_ONLY(true));
  5237         oop ref = iter.obj();
  5239         // This will filter nulls.
  5240         if (iter.is_referent_alive()) {
  5241           iter.make_referent_alive();
  5243         iter.move_to_next();
  5247     // Drain the queue - which may cause stealing
  5248     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5249     drain_queue.do_void();
  5250     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5251     assert(pss.refs()->is_empty(), "should be");
  5253 };
  5255 // Weak Reference processing during an evacuation pause (part 1).
  5256 void G1CollectedHeap::process_discovered_references() {
  5257   double ref_proc_start = os::elapsedTime();
  5259   ReferenceProcessor* rp = _ref_processor_stw;
  5260   assert(rp->discovery_enabled(), "should have been enabled");
  5262   // Any reference objects, in the collection set, that were 'discovered'
  5263   // by the CM ref processor should have already been copied (either by
  5264   // applying the external root copy closure to the discovered lists, or
  5265   // by following an RSet entry).
  5266   //
  5267   // But some of the referents, that are in the collection set, that these
  5268   // reference objects point to may not have been copied: the STW ref
  5269   // processor would have seen that the reference object had already
  5270   // been 'discovered' and would have skipped discovering the reference,
  5271   // but would not have treated the reference object as a regular oop.
  5272   // As a reult the copy closure would not have been applied to the
  5273   // referent object.
  5274   //
  5275   // We need to explicitly copy these referent objects - the references
  5276   // will be processed at the end of remarking.
  5277   //
  5278   // We also need to do this copying before we process the reference
  5279   // objects discovered by the STW ref processor in case one of these
  5280   // referents points to another object which is also referenced by an
  5281   // object discovered by the STW ref processor.
  5283   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5284                         workers()->active_workers() : 1);
  5286   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5287            active_workers == workers()->active_workers(),
  5288            "Need to reset active_workers");
  5290   set_par_threads(active_workers);
  5291   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5293   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5294     workers()->run_task(&keep_cm_referents);
  5295   } else {
  5296     keep_cm_referents.work(0);
  5299   set_par_threads(0);
  5301   // Closure to test whether a referent is alive.
  5302   G1STWIsAliveClosure is_alive(this);
  5304   // Even when parallel reference processing is enabled, the processing
  5305   // of JNI refs is serial and performed serially by the current thread
  5306   // rather than by a worker. The following PSS will be used for processing
  5307   // JNI refs.
  5309   // Use only a single queue for this PSS.
  5310   G1ParScanThreadState pss(this, 0);
  5312   // We do not embed a reference processor in the copying/scanning
  5313   // closures while we're actually processing the discovered
  5314   // reference objects.
  5315   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5316   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5317   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5319   pss.set_evac_closure(&scan_evac_cl);
  5320   pss.set_evac_failure_closure(&evac_failure_cl);
  5321   pss.set_partial_scan_closure(&partial_scan_cl);
  5323   assert(pss.refs()->is_empty(), "pre-condition");
  5325   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5326   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5328   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5329   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5331   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5332   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5334   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5335     // We also need to mark copied objects.
  5336     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5337     copy_perm_cl = &copy_mark_perm_cl;
  5340   // Keep alive closure.
  5341   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5343   // Serial Complete GC closure
  5344   G1STWDrainQueueClosure drain_queue(this, &pss);
  5346   // Setup the soft refs policy...
  5347   rp->setup_policy(false);
  5349   if (!rp->processing_is_mt()) {
  5350     // Serial reference processing...
  5351     rp->process_discovered_references(&is_alive,
  5352                                       &keep_alive,
  5353                                       &drain_queue,
  5354                                       NULL);
  5355   } else {
  5356     // Parallel reference processing
  5357     assert(rp->num_q() == active_workers, "sanity");
  5358     assert(active_workers <= rp->max_num_q(), "sanity");
  5360     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5361     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5364   // We have completed copying any necessary live referent objects
  5365   // (that were not copied during the actual pause) so we can
  5366   // retire any active alloc buffers
  5367   pss.retire_alloc_buffers();
  5368   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5370   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5371   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5374 // Weak Reference processing during an evacuation pause (part 2).
  5375 void G1CollectedHeap::enqueue_discovered_references() {
  5376   double ref_enq_start = os::elapsedTime();
  5378   ReferenceProcessor* rp = _ref_processor_stw;
  5379   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5381   // Now enqueue any remaining on the discovered lists on to
  5382   // the pending list.
  5383   if (!rp->processing_is_mt()) {
  5384     // Serial reference processing...
  5385     rp->enqueue_discovered_references();
  5386   } else {
  5387     // Parallel reference enqueuing
  5389     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5390     assert(active_workers == workers()->active_workers(),
  5391            "Need to reset active_workers");
  5392     assert(rp->num_q() == active_workers, "sanity");
  5393     assert(active_workers <= rp->max_num_q(), "sanity");
  5395     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5396     rp->enqueue_discovered_references(&par_task_executor);
  5399   rp->verify_no_references_recorded();
  5400   assert(!rp->discovery_enabled(), "should have been disabled");
  5402   // FIXME
  5403   // CM's reference processing also cleans up the string and symbol tables.
  5404   // Should we do that here also? We could, but it is a serial operation
  5405   // and could signicantly increase the pause time.
  5407   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5408   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5411 void G1CollectedHeap::evacuate_collection_set() {
  5412   _expand_heap_after_alloc_failure = true;
  5413   set_evacuation_failed(false);
  5415   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5416   concurrent_g1_refine()->set_use_cache(false);
  5417   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5419   uint n_workers;
  5420   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5421     n_workers =
  5422       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5423                                      workers()->active_workers(),
  5424                                      Threads::number_of_non_daemon_threads());
  5425     assert(UseDynamicNumberOfGCThreads ||
  5426            n_workers == workers()->total_workers(),
  5427            "If not dynamic should be using all the  workers");
  5428     workers()->set_active_workers(n_workers);
  5429     set_par_threads(n_workers);
  5430   } else {
  5431     assert(n_par_threads() == 0,
  5432            "Should be the original non-parallel value");
  5433     n_workers = 1;
  5436   G1ParTask g1_par_task(this, _task_queues);
  5438   init_for_evac_failure(NULL);
  5440   rem_set()->prepare_for_younger_refs_iterate(true);
  5442   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5443   double start_par_time_sec = os::elapsedTime();
  5444   double end_par_time_sec;
  5447     StrongRootsScope srs(this);
  5449     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5450       // The individual threads will set their evac-failure closures.
  5451       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5452       // These tasks use ShareHeap::_process_strong_tasks
  5453       assert(UseDynamicNumberOfGCThreads ||
  5454              workers()->active_workers() == workers()->total_workers(),
  5455              "If not dynamic should be using all the  workers");
  5456       workers()->run_task(&g1_par_task);
  5457     } else {
  5458       g1_par_task.set_for_termination(n_workers);
  5459       g1_par_task.work(0);
  5461     end_par_time_sec = os::elapsedTime();
  5463     // Closing the inner scope will execute the destructor
  5464     // for the StrongRootsScope object. We record the current
  5465     // elapsed time before closing the scope so that time
  5466     // taken for the SRS destructor is NOT included in the
  5467     // reported parallel time.
  5470   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5471   g1_policy()->record_par_time(par_time_ms);
  5473   double code_root_fixup_time_ms =
  5474         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5475   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5477   set_par_threads(0);
  5479   // Process any discovered reference objects - we have
  5480   // to do this _before_ we retire the GC alloc regions
  5481   // as we may have to copy some 'reachable' referent
  5482   // objects (and their reachable sub-graphs) that were
  5483   // not copied during the pause.
  5484   process_discovered_references();
  5486   // Weak root processing.
  5487   // Note: when JSR 292 is enabled and code blobs can contain
  5488   // non-perm oops then we will need to process the code blobs
  5489   // here too.
  5491     G1STWIsAliveClosure is_alive(this);
  5492     G1KeepAliveClosure keep_alive(this);
  5493     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5496   release_gc_alloc_regions();
  5497   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5499   concurrent_g1_refine()->clear_hot_cache();
  5500   concurrent_g1_refine()->set_use_cache(true);
  5502   finalize_for_evac_failure();
  5504   if (evacuation_failed()) {
  5505     remove_self_forwarding_pointers();
  5506     if (G1Log::finer()) {
  5507       gclog_or_tty->print(" (to-space overflow)");
  5508     } else if (G1Log::fine()) {
  5509       gclog_or_tty->print("--");
  5513   // Enqueue any remaining references remaining on the STW
  5514   // reference processor's discovered lists. We need to do
  5515   // this after the card table is cleaned (and verified) as
  5516   // the act of enqueuing entries on to the pending list
  5517   // will log these updates (and dirty their associated
  5518   // cards). We need these updates logged to update any
  5519   // RSets.
  5520   enqueue_discovered_references();
  5522   if (G1DeferredRSUpdate) {
  5523     RedirtyLoggedCardTableEntryFastClosure redirty;
  5524     dirty_card_queue_set().set_closure(&redirty);
  5525     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5527     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5528     dcq.merge_bufferlists(&dirty_card_queue_set());
  5529     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5531   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5534 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5535                                      size_t* pre_used,
  5536                                      FreeRegionList* free_list,
  5537                                      OldRegionSet* old_proxy_set,
  5538                                      HumongousRegionSet* humongous_proxy_set,
  5539                                      HRRSCleanupTask* hrrs_cleanup_task,
  5540                                      bool par) {
  5541   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5542     if (hr->isHumongous()) {
  5543       assert(hr->startsHumongous(), "we should only see starts humongous");
  5544       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5545     } else {
  5546       _old_set.remove_with_proxy(hr, old_proxy_set);
  5547       free_region(hr, pre_used, free_list, par);
  5549   } else {
  5550     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5554 void G1CollectedHeap::free_region(HeapRegion* hr,
  5555                                   size_t* pre_used,
  5556                                   FreeRegionList* free_list,
  5557                                   bool par) {
  5558   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5559   assert(!hr->is_empty(), "the region should not be empty");
  5560   assert(free_list != NULL, "pre-condition");
  5562   *pre_used += hr->used();
  5563   hr->hr_clear(par, true /* clear_space */);
  5564   free_list->add_as_head(hr);
  5567 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5568                                      size_t* pre_used,
  5569                                      FreeRegionList* free_list,
  5570                                      HumongousRegionSet* humongous_proxy_set,
  5571                                      bool par) {
  5572   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5573   assert(free_list != NULL, "pre-condition");
  5574   assert(humongous_proxy_set != NULL, "pre-condition");
  5576   size_t hr_used = hr->used();
  5577   size_t hr_capacity = hr->capacity();
  5578   size_t hr_pre_used = 0;
  5579   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5580   hr->set_notHumongous();
  5581   free_region(hr, &hr_pre_used, free_list, par);
  5583   uint i = hr->hrs_index() + 1;
  5584   uint num = 1;
  5585   while (i < n_regions()) {
  5586     HeapRegion* curr_hr = region_at(i);
  5587     if (!curr_hr->continuesHumongous()) {
  5588       break;
  5590     curr_hr->set_notHumongous();
  5591     free_region(curr_hr, &hr_pre_used, free_list, par);
  5592     num += 1;
  5593     i += 1;
  5595   assert(hr_pre_used == hr_used,
  5596          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5597                  "should be the same", hr_pre_used, hr_used));
  5598   *pre_used += hr_pre_used;
  5601 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5602                                        FreeRegionList* free_list,
  5603                                        OldRegionSet* old_proxy_set,
  5604                                        HumongousRegionSet* humongous_proxy_set,
  5605                                        bool par) {
  5606   if (pre_used > 0) {
  5607     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5608     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5609     assert(_summary_bytes_used >= pre_used,
  5610            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5611                    "should be >= pre_used: "SIZE_FORMAT,
  5612                    _summary_bytes_used, pre_used));
  5613     _summary_bytes_used -= pre_used;
  5615   if (free_list != NULL && !free_list->is_empty()) {
  5616     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5617     _free_list.add_as_head(free_list);
  5619   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5620     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5621     _old_set.update_from_proxy(old_proxy_set);
  5623   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5624     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5625     _humongous_set.update_from_proxy(humongous_proxy_set);
  5629 class G1ParCleanupCTTask : public AbstractGangTask {
  5630   CardTableModRefBS* _ct_bs;
  5631   G1CollectedHeap* _g1h;
  5632   HeapRegion* volatile _su_head;
  5633 public:
  5634   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5635                      G1CollectedHeap* g1h) :
  5636     AbstractGangTask("G1 Par Cleanup CT Task"),
  5637     _ct_bs(ct_bs), _g1h(g1h) { }
  5639   void work(uint worker_id) {
  5640     HeapRegion* r;
  5641     while (r = _g1h->pop_dirty_cards_region()) {
  5642       clear_cards(r);
  5646   void clear_cards(HeapRegion* r) {
  5647     // Cards of the survivors should have already been dirtied.
  5648     if (!r->is_survivor()) {
  5649       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5652 };
  5654 #ifndef PRODUCT
  5655 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5656   G1CollectedHeap* _g1h;
  5657   CardTableModRefBS* _ct_bs;
  5658 public:
  5659   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5660     : _g1h(g1h), _ct_bs(ct_bs) { }
  5661   virtual bool doHeapRegion(HeapRegion* r) {
  5662     if (r->is_survivor()) {
  5663       _g1h->verify_dirty_region(r);
  5664     } else {
  5665       _g1h->verify_not_dirty_region(r);
  5667     return false;
  5669 };
  5671 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5672   // All of the region should be clean.
  5673   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5674   MemRegion mr(hr->bottom(), hr->end());
  5675   ct_bs->verify_not_dirty_region(mr);
  5678 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5679   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5680   // dirty allocated blocks as they allocate them. The thread that
  5681   // retires each region and replaces it with a new one will do a
  5682   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5683   // not dirty that area (one less thing to have to do while holding
  5684   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5685   // is dirty.
  5686   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5687   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5688   ct_bs->verify_dirty_region(mr);
  5691 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5692   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5693   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5694     verify_dirty_region(hr);
  5698 void G1CollectedHeap::verify_dirty_young_regions() {
  5699   verify_dirty_young_list(_young_list->first_region());
  5700   verify_dirty_young_list(_young_list->first_survivor_region());
  5702 #endif
  5704 void G1CollectedHeap::cleanUpCardTable() {
  5705   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5706   double start = os::elapsedTime();
  5709     // Iterate over the dirty cards region list.
  5710     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5712     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5713       set_par_threads();
  5714       workers()->run_task(&cleanup_task);
  5715       set_par_threads(0);
  5716     } else {
  5717       while (_dirty_cards_region_list) {
  5718         HeapRegion* r = _dirty_cards_region_list;
  5719         cleanup_task.clear_cards(r);
  5720         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5721         if (_dirty_cards_region_list == r) {
  5722           // The last region.
  5723           _dirty_cards_region_list = NULL;
  5725         r->set_next_dirty_cards_region(NULL);
  5728 #ifndef PRODUCT
  5729     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5730       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5731       heap_region_iterate(&cleanup_verifier);
  5733 #endif
  5736   double elapsed = os::elapsedTime() - start;
  5737   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5740 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5741   size_t pre_used = 0;
  5742   FreeRegionList local_free_list("Local List for CSet Freeing");
  5744   double young_time_ms     = 0.0;
  5745   double non_young_time_ms = 0.0;
  5747   // Since the collection set is a superset of the the young list,
  5748   // all we need to do to clear the young list is clear its
  5749   // head and length, and unlink any young regions in the code below
  5750   _young_list->clear();
  5752   G1CollectorPolicy* policy = g1_policy();
  5754   double start_sec = os::elapsedTime();
  5755   bool non_young = true;
  5757   HeapRegion* cur = cs_head;
  5758   int age_bound = -1;
  5759   size_t rs_lengths = 0;
  5761   while (cur != NULL) {
  5762     assert(!is_on_master_free_list(cur), "sanity");
  5763     if (non_young) {
  5764       if (cur->is_young()) {
  5765         double end_sec = os::elapsedTime();
  5766         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5767         non_young_time_ms += elapsed_ms;
  5769         start_sec = os::elapsedTime();
  5770         non_young = false;
  5772     } else {
  5773       if (!cur->is_young()) {
  5774         double end_sec = os::elapsedTime();
  5775         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5776         young_time_ms += elapsed_ms;
  5778         start_sec = os::elapsedTime();
  5779         non_young = true;
  5783     rs_lengths += cur->rem_set()->occupied();
  5785     HeapRegion* next = cur->next_in_collection_set();
  5786     assert(cur->in_collection_set(), "bad CS");
  5787     cur->set_next_in_collection_set(NULL);
  5788     cur->set_in_collection_set(false);
  5790     if (cur->is_young()) {
  5791       int index = cur->young_index_in_cset();
  5792       assert(index != -1, "invariant");
  5793       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5794       size_t words_survived = _surviving_young_words[index];
  5795       cur->record_surv_words_in_group(words_survived);
  5797       // At this point the we have 'popped' cur from the collection set
  5798       // (linked via next_in_collection_set()) but it is still in the
  5799       // young list (linked via next_young_region()). Clear the
  5800       // _next_young_region field.
  5801       cur->set_next_young_region(NULL);
  5802     } else {
  5803       int index = cur->young_index_in_cset();
  5804       assert(index == -1, "invariant");
  5807     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5808             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5809             "invariant" );
  5811     if (!cur->evacuation_failed()) {
  5812       MemRegion used_mr = cur->used_region();
  5814       // And the region is empty.
  5815       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5816       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5817     } else {
  5818       cur->uninstall_surv_rate_group();
  5819       if (cur->is_young()) {
  5820         cur->set_young_index_in_cset(-1);
  5822       cur->set_not_young();
  5823       cur->set_evacuation_failed(false);
  5824       // The region is now considered to be old.
  5825       _old_set.add(cur);
  5827     cur = next;
  5830   policy->record_max_rs_lengths(rs_lengths);
  5831   policy->cset_regions_freed();
  5833   double end_sec = os::elapsedTime();
  5834   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5836   if (non_young) {
  5837     non_young_time_ms += elapsed_ms;
  5838   } else {
  5839     young_time_ms += elapsed_ms;
  5842   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5843                                     NULL /* old_proxy_set */,
  5844                                     NULL /* humongous_proxy_set */,
  5845                                     false /* par */);
  5846   policy->record_young_free_cset_time_ms(young_time_ms);
  5847   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5850 // This routine is similar to the above but does not record
  5851 // any policy statistics or update free lists; we are abandoning
  5852 // the current incremental collection set in preparation of a
  5853 // full collection. After the full GC we will start to build up
  5854 // the incremental collection set again.
  5855 // This is only called when we're doing a full collection
  5856 // and is immediately followed by the tearing down of the young list.
  5858 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5859   HeapRegion* cur = cs_head;
  5861   while (cur != NULL) {
  5862     HeapRegion* next = cur->next_in_collection_set();
  5863     assert(cur->in_collection_set(), "bad CS");
  5864     cur->set_next_in_collection_set(NULL);
  5865     cur->set_in_collection_set(false);
  5866     cur->set_young_index_in_cset(-1);
  5867     cur = next;
  5871 void G1CollectedHeap::set_free_regions_coming() {
  5872   if (G1ConcRegionFreeingVerbose) {
  5873     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5874                            "setting free regions coming");
  5877   assert(!free_regions_coming(), "pre-condition");
  5878   _free_regions_coming = true;
  5881 void G1CollectedHeap::reset_free_regions_coming() {
  5882   assert(free_regions_coming(), "pre-condition");
  5885     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5886     _free_regions_coming = false;
  5887     SecondaryFreeList_lock->notify_all();
  5890   if (G1ConcRegionFreeingVerbose) {
  5891     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5892                            "reset free regions coming");
  5896 void G1CollectedHeap::wait_while_free_regions_coming() {
  5897   // Most of the time we won't have to wait, so let's do a quick test
  5898   // first before we take the lock.
  5899   if (!free_regions_coming()) {
  5900     return;
  5903   if (G1ConcRegionFreeingVerbose) {
  5904     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5905                            "waiting for free regions");
  5909     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5910     while (free_regions_coming()) {
  5911       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5915   if (G1ConcRegionFreeingVerbose) {
  5916     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5917                            "done waiting for free regions");
  5921 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5922   assert(heap_lock_held_for_gc(),
  5923               "the heap lock should already be held by or for this thread");
  5924   _young_list->push_region(hr);
  5927 class NoYoungRegionsClosure: public HeapRegionClosure {
  5928 private:
  5929   bool _success;
  5930 public:
  5931   NoYoungRegionsClosure() : _success(true) { }
  5932   bool doHeapRegion(HeapRegion* r) {
  5933     if (r->is_young()) {
  5934       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5935                              r->bottom(), r->end());
  5936       _success = false;
  5938     return false;
  5940   bool success() { return _success; }
  5941 };
  5943 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5944   bool ret = _young_list->check_list_empty(check_sample);
  5946   if (check_heap) {
  5947     NoYoungRegionsClosure closure;
  5948     heap_region_iterate(&closure);
  5949     ret = ret && closure.success();
  5952   return ret;
  5955 class TearDownRegionSetsClosure : public HeapRegionClosure {
  5956 private:
  5957   OldRegionSet *_old_set;
  5959 public:
  5960   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  5962   bool doHeapRegion(HeapRegion* r) {
  5963     if (r->is_empty()) {
  5964       // We ignore empty regions, we'll empty the free list afterwards
  5965     } else if (r->is_young()) {
  5966       // We ignore young regions, we'll empty the young list afterwards
  5967     } else if (r->isHumongous()) {
  5968       // We ignore humongous regions, we're not tearing down the
  5969       // humongous region set
  5970     } else {
  5971       // The rest should be old
  5972       _old_set->remove(r);
  5974     return false;
  5977   ~TearDownRegionSetsClosure() {
  5978     assert(_old_set->is_empty(), "post-condition");
  5980 };
  5982 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  5983   assert_at_safepoint(true /* should_be_vm_thread */);
  5985   if (!free_list_only) {
  5986     TearDownRegionSetsClosure cl(&_old_set);
  5987     heap_region_iterate(&cl);
  5989     // Need to do this after the heap iteration to be able to
  5990     // recognize the young regions and ignore them during the iteration.
  5991     _young_list->empty_list();
  5993   _free_list.remove_all();
  5996 class RebuildRegionSetsClosure : public HeapRegionClosure {
  5997 private:
  5998   bool            _free_list_only;
  5999   OldRegionSet*   _old_set;
  6000   FreeRegionList* _free_list;
  6001   size_t          _total_used;
  6003 public:
  6004   RebuildRegionSetsClosure(bool free_list_only,
  6005                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6006     _free_list_only(free_list_only),
  6007     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6008     assert(_free_list->is_empty(), "pre-condition");
  6009     if (!free_list_only) {
  6010       assert(_old_set->is_empty(), "pre-condition");
  6014   bool doHeapRegion(HeapRegion* r) {
  6015     if (r->continuesHumongous()) {
  6016       return false;
  6019     if (r->is_empty()) {
  6020       // Add free regions to the free list
  6021       _free_list->add_as_tail(r);
  6022     } else if (!_free_list_only) {
  6023       assert(!r->is_young(), "we should not come across young regions");
  6025       if (r->isHumongous()) {
  6026         // We ignore humongous regions, we left the humongous set unchanged
  6027       } else {
  6028         // The rest should be old, add them to the old set
  6029         _old_set->add(r);
  6031       _total_used += r->used();
  6034     return false;
  6037   size_t total_used() {
  6038     return _total_used;
  6040 };
  6042 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6043   assert_at_safepoint(true /* should_be_vm_thread */);
  6045   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6046   heap_region_iterate(&cl);
  6048   if (!free_list_only) {
  6049     _summary_bytes_used = cl.total_used();
  6051   assert(_summary_bytes_used == recalculate_used(),
  6052          err_msg("inconsistent _summary_bytes_used, "
  6053                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6054                  _summary_bytes_used, recalculate_used()));
  6057 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6058   _refine_cte_cl->set_concurrent(concurrent);
  6061 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6062   HeapRegion* hr = heap_region_containing(p);
  6063   if (hr == NULL) {
  6064     return is_in_permanent(p);
  6065   } else {
  6066     return hr->is_in(p);
  6070 // Methods for the mutator alloc region
  6072 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6073                                                       bool force) {
  6074   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6075   assert(!force || g1_policy()->can_expand_young_list(),
  6076          "if force is true we should be able to expand the young list");
  6077   bool young_list_full = g1_policy()->is_young_list_full();
  6078   if (force || !young_list_full) {
  6079     HeapRegion* new_alloc_region = new_region(word_size,
  6080                                               false /* do_expand */);
  6081     if (new_alloc_region != NULL) {
  6082       set_region_short_lived_locked(new_alloc_region);
  6083       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6084       return new_alloc_region;
  6087   return NULL;
  6090 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6091                                                   size_t allocated_bytes) {
  6092   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6093   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6095   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6096   _summary_bytes_used += allocated_bytes;
  6097   _hr_printer.retire(alloc_region);
  6098   // We update the eden sizes here, when the region is retired,
  6099   // instead of when it's allocated, since this is the point that its
  6100   // used space has been recored in _summary_bytes_used.
  6101   g1mm()->update_eden_size();
  6104 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6105                                                     bool force) {
  6106   return _g1h->new_mutator_alloc_region(word_size, force);
  6109 void G1CollectedHeap::set_par_threads() {
  6110   // Don't change the number of workers.  Use the value previously set
  6111   // in the workgroup.
  6112   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6113   uint n_workers = workers()->active_workers();
  6114   assert(UseDynamicNumberOfGCThreads ||
  6115            n_workers == workers()->total_workers(),
  6116       "Otherwise should be using the total number of workers");
  6117   if (n_workers == 0) {
  6118     assert(false, "Should have been set in prior evacuation pause.");
  6119     n_workers = ParallelGCThreads;
  6120     workers()->set_active_workers(n_workers);
  6122   set_par_threads(n_workers);
  6125 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6126                                        size_t allocated_bytes) {
  6127   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6130 // Methods for the GC alloc regions
  6132 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6133                                                  uint count,
  6134                                                  GCAllocPurpose ap) {
  6135   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6137   if (count < g1_policy()->max_regions(ap)) {
  6138     HeapRegion* new_alloc_region = new_region(word_size,
  6139                                               true /* do_expand */);
  6140     if (new_alloc_region != NULL) {
  6141       // We really only need to do this for old regions given that we
  6142       // should never scan survivors. But it doesn't hurt to do it
  6143       // for survivors too.
  6144       new_alloc_region->set_saved_mark();
  6145       if (ap == GCAllocForSurvived) {
  6146         new_alloc_region->set_survivor();
  6147         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6148       } else {
  6149         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6151       bool during_im = g1_policy()->during_initial_mark_pause();
  6152       new_alloc_region->note_start_of_copying(during_im);
  6153       return new_alloc_region;
  6154     } else {
  6155       g1_policy()->note_alloc_region_limit_reached(ap);
  6158   return NULL;
  6161 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6162                                              size_t allocated_bytes,
  6163                                              GCAllocPurpose ap) {
  6164   bool during_im = g1_policy()->during_initial_mark_pause();
  6165   alloc_region->note_end_of_copying(during_im);
  6166   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6167   if (ap == GCAllocForSurvived) {
  6168     young_list()->add_survivor_region(alloc_region);
  6169   } else {
  6170     _old_set.add(alloc_region);
  6172   _hr_printer.retire(alloc_region);
  6175 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6176                                                        bool force) {
  6177   assert(!force, "not supported for GC alloc regions");
  6178   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6181 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6182                                           size_t allocated_bytes) {
  6183   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6184                                GCAllocForSurvived);
  6187 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6188                                                   bool force) {
  6189   assert(!force, "not supported for GC alloc regions");
  6190   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6193 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6194                                      size_t allocated_bytes) {
  6195   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6196                                GCAllocForTenured);
  6198 // Heap region set verification
  6200 class VerifyRegionListsClosure : public HeapRegionClosure {
  6201 private:
  6202   FreeRegionList*     _free_list;
  6203   OldRegionSet*       _old_set;
  6204   HumongousRegionSet* _humongous_set;
  6205   uint                _region_count;
  6207 public:
  6208   VerifyRegionListsClosure(OldRegionSet* old_set,
  6209                            HumongousRegionSet* humongous_set,
  6210                            FreeRegionList* free_list) :
  6211     _old_set(old_set), _humongous_set(humongous_set),
  6212     _free_list(free_list), _region_count(0) { }
  6214   uint region_count() { return _region_count; }
  6216   bool doHeapRegion(HeapRegion* hr) {
  6217     _region_count += 1;
  6219     if (hr->continuesHumongous()) {
  6220       return false;
  6223     if (hr->is_young()) {
  6224       // TODO
  6225     } else if (hr->startsHumongous()) {
  6226       _humongous_set->verify_next_region(hr);
  6227     } else if (hr->is_empty()) {
  6228       _free_list->verify_next_region(hr);
  6229     } else {
  6230       _old_set->verify_next_region(hr);
  6232     return false;
  6234 };
  6236 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6237                                              HeapWord* bottom) {
  6238   HeapWord* end = bottom + HeapRegion::GrainWords;
  6239   MemRegion mr(bottom, end);
  6240   assert(_g1_reserved.contains(mr), "invariant");
  6241   // This might return NULL if the allocation fails
  6242   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6245 void G1CollectedHeap::verify_region_sets() {
  6246   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6248   // First, check the explicit lists.
  6249   _free_list.verify();
  6251     // Given that a concurrent operation might be adding regions to
  6252     // the secondary free list we have to take the lock before
  6253     // verifying it.
  6254     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6255     _secondary_free_list.verify();
  6257   _old_set.verify();
  6258   _humongous_set.verify();
  6260   // If a concurrent region freeing operation is in progress it will
  6261   // be difficult to correctly attributed any free regions we come
  6262   // across to the correct free list given that they might belong to
  6263   // one of several (free_list, secondary_free_list, any local lists,
  6264   // etc.). So, if that's the case we will skip the rest of the
  6265   // verification operation. Alternatively, waiting for the concurrent
  6266   // operation to complete will have a non-trivial effect on the GC's
  6267   // operation (no concurrent operation will last longer than the
  6268   // interval between two calls to verification) and it might hide
  6269   // any issues that we would like to catch during testing.
  6270   if (free_regions_coming()) {
  6271     return;
  6274   // Make sure we append the secondary_free_list on the free_list so
  6275   // that all free regions we will come across can be safely
  6276   // attributed to the free_list.
  6277   append_secondary_free_list_if_not_empty_with_lock();
  6279   // Finally, make sure that the region accounting in the lists is
  6280   // consistent with what we see in the heap.
  6281   _old_set.verify_start();
  6282   _humongous_set.verify_start();
  6283   _free_list.verify_start();
  6285   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6286   heap_region_iterate(&cl);
  6288   _old_set.verify_end();
  6289   _humongous_set.verify_end();
  6290   _free_list.verify_end();

mercurial