src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 18 Apr 2012 13:39:55 -0400

author
tonyp
date
Wed, 18 Apr 2012 13:39:55 -0400
changeset 3714
f7a8920427a6
parent 3713
720b6a76dd9d
child 3731
8a2e5a6a19a4
permissions
-rw-r--r--

7145441: G1: collection set chooser-related cleanup
Summary: Cleanup of the CSet chooser class: standardize on uints for region num and indexes (instead of int, jint, etc.), make the method / field naming style more consistent, remove a lot of dead code.
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1Log.hpp"
    37 #include "gc_implementation/g1/g1MarkSweep.hpp"
    38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    40 #include "gc_implementation/g1/heapRegion.inline.hpp"
    41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    43 #include "gc_implementation/g1/vm_operations_g1.hpp"
    44 #include "gc_implementation/shared/isGCActiveMark.hpp"
    45 #include "memory/gcLocker.inline.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/generationSpec.hpp"
    48 #include "memory/referenceProcessor.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "oops/oop.pcgc.inline.hpp"
    51 #include "runtime/aprofiler.hpp"
    52 #include "runtime/vmThread.hpp"
    54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    56 // turn it on so that the contents of the young list (scan-only /
    57 // to-be-collected) are printed at "strategic" points before / during
    58 // / after the collection --- this is useful for debugging
    59 #define YOUNG_LIST_VERBOSE 0
    60 // CURRENT STATUS
    61 // This file is under construction.  Search for "FIXME".
    63 // INVARIANTS/NOTES
    64 //
    65 // All allocation activity covered by the G1CollectedHeap interface is
    66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    67 // and allocate_new_tlab, which are the "entry" points to the
    68 // allocation code from the rest of the JVM.  (Note that this does not
    69 // apply to TLAB allocation, which is not part of this interface: it
    70 // is done by clients of this interface.)
    72 // Notes on implementation of parallelism in different tasks.
    73 //
    74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    76 // It does use run_task() which sets _n_workers in the task.
    77 // G1ParTask executes g1_process_strong_roots() ->
    78 // SharedHeap::process_strong_roots() which calls eventuall to
    79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    82 //
    84 // Local to this file.
    86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    87   SuspendibleThreadSet* _sts;
    88   G1RemSet* _g1rs;
    89   ConcurrentG1Refine* _cg1r;
    90   bool _concurrent;
    91 public:
    92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    93                               G1RemSet* g1rs,
    94                               ConcurrentG1Refine* cg1r) :
    95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    96   {}
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    99     // This path is executed by the concurrent refine or mutator threads,
   100     // concurrently, and so we do not care if card_ptr contains references
   101     // that point into the collection set.
   102     assert(!oops_into_cset, "should be");
   104     if (_concurrent && _sts->should_yield()) {
   105       // Caller will actually yield.
   106       return false;
   107     }
   108     // Otherwise, we finished successfully; return true.
   109     return true;
   110   }
   111   void set_concurrent(bool b) { _concurrent = b; }
   112 };
   115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   116   int _calls;
   117   G1CollectedHeap* _g1h;
   118   CardTableModRefBS* _ctbs;
   119   int _histo[256];
   120 public:
   121   ClearLoggedCardTableEntryClosure() :
   122     _calls(0)
   123   {
   124     _g1h = G1CollectedHeap::heap();
   125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   126     for (int i = 0; i < 256; i++) _histo[i] = 0;
   127   }
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   130       _calls++;
   131       unsigned char* ujb = (unsigned char*)card_ptr;
   132       int ind = (int)(*ujb);
   133       _histo[ind]++;
   134       *card_ptr = -1;
   135     }
   136     return true;
   137   }
   138   int calls() { return _calls; }
   139   void print_histo() {
   140     gclog_or_tty->print_cr("Card table value histogram:");
   141     for (int i = 0; i < 256; i++) {
   142       if (_histo[i] != 0) {
   143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   144       }
   145     }
   146   }
   147 };
   149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   150   int _calls;
   151   G1CollectedHeap* _g1h;
   152   CardTableModRefBS* _ctbs;
   153 public:
   154   RedirtyLoggedCardTableEntryClosure() :
   155     _calls(0)
   156   {
   157     _g1h = G1CollectedHeap::heap();
   158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   159   }
   160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   162       _calls++;
   163       *card_ptr = 0;
   164     }
   165     return true;
   166   }
   167   int calls() { return _calls; }
   168 };
   170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   171 public:
   172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   173     *card_ptr = CardTableModRefBS::dirty_card_val();
   174     return true;
   175   }
   176 };
   178 YoungList::YoungList(G1CollectedHeap* g1h) :
   179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   181   guarantee(check_list_empty(false), "just making sure...");
   182 }
   184 void YoungList::push_region(HeapRegion *hr) {
   185   assert(!hr->is_young(), "should not already be young");
   186   assert(hr->get_next_young_region() == NULL, "cause it should!");
   188   hr->set_next_young_region(_head);
   189   _head = hr;
   191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   192   ++_length;
   193 }
   195 void YoungList::add_survivor_region(HeapRegion* hr) {
   196   assert(hr->is_survivor(), "should be flagged as survivor region");
   197   assert(hr->get_next_young_region() == NULL, "cause it should!");
   199   hr->set_next_young_region(_survivor_head);
   200   if (_survivor_head == NULL) {
   201     _survivor_tail = hr;
   202   }
   203   _survivor_head = hr;
   204   ++_survivor_length;
   205 }
   207 void YoungList::empty_list(HeapRegion* list) {
   208   while (list != NULL) {
   209     HeapRegion* next = list->get_next_young_region();
   210     list->set_next_young_region(NULL);
   211     list->uninstall_surv_rate_group();
   212     list->set_not_young();
   213     list = next;
   214   }
   215 }
   217 void YoungList::empty_list() {
   218   assert(check_list_well_formed(), "young list should be well formed");
   220   empty_list(_head);
   221   _head = NULL;
   222   _length = 0;
   224   empty_list(_survivor_head);
   225   _survivor_head = NULL;
   226   _survivor_tail = NULL;
   227   _survivor_length = 0;
   229   _last_sampled_rs_lengths = 0;
   231   assert(check_list_empty(false), "just making sure...");
   232 }
   234 bool YoungList::check_list_well_formed() {
   235   bool ret = true;
   237   uint length = 0;
   238   HeapRegion* curr = _head;
   239   HeapRegion* last = NULL;
   240   while (curr != NULL) {
   241     if (!curr->is_young()) {
   242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   243                              "incorrectly tagged (y: %d, surv: %d)",
   244                              curr->bottom(), curr->end(),
   245                              curr->is_young(), curr->is_survivor());
   246       ret = false;
   247     }
   248     ++length;
   249     last = curr;
   250     curr = curr->get_next_young_region();
   251   }
   252   ret = ret && (length == _length);
   254   if (!ret) {
   255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   257                            length, _length);
   258   }
   260   return ret;
   261 }
   263 bool YoungList::check_list_empty(bool check_sample) {
   264   bool ret = true;
   266   if (_length != 0) {
   267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   268                   _length);
   269     ret = false;
   270   }
   271   if (check_sample && _last_sampled_rs_lengths != 0) {
   272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   273     ret = false;
   274   }
   275   if (_head != NULL) {
   276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   277     ret = false;
   278   }
   279   if (!ret) {
   280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   281   }
   283   return ret;
   284 }
   286 void
   287 YoungList::rs_length_sampling_init() {
   288   _sampled_rs_lengths = 0;
   289   _curr               = _head;
   290 }
   292 bool
   293 YoungList::rs_length_sampling_more() {
   294   return _curr != NULL;
   295 }
   297 void
   298 YoungList::rs_length_sampling_next() {
   299   assert( _curr != NULL, "invariant" );
   300   size_t rs_length = _curr->rem_set()->occupied();
   302   _sampled_rs_lengths += rs_length;
   304   // The current region may not yet have been added to the
   305   // incremental collection set (it gets added when it is
   306   // retired as the current allocation region).
   307   if (_curr->in_collection_set()) {
   308     // Update the collection set policy information for this region
   309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   310   }
   312   _curr = _curr->get_next_young_region();
   313   if (_curr == NULL) {
   314     _last_sampled_rs_lengths = _sampled_rs_lengths;
   315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   316   }
   317 }
   319 void
   320 YoungList::reset_auxilary_lists() {
   321   guarantee( is_empty(), "young list should be empty" );
   322   assert(check_list_well_formed(), "young list should be well formed");
   324   // Add survivor regions to SurvRateGroup.
   325   _g1h->g1_policy()->note_start_adding_survivor_regions();
   326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   328   int young_index_in_cset = 0;
   329   for (HeapRegion* curr = _survivor_head;
   330        curr != NULL;
   331        curr = curr->get_next_young_region()) {
   332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   334     // The region is a non-empty survivor so let's add it to
   335     // the incremental collection set for the next evacuation
   336     // pause.
   337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   338     young_index_in_cset += 1;
   339   }
   340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   343   _head   = _survivor_head;
   344   _length = _survivor_length;
   345   if (_survivor_head != NULL) {
   346     assert(_survivor_tail != NULL, "cause it shouldn't be");
   347     assert(_survivor_length > 0, "invariant");
   348     _survivor_tail->set_next_young_region(NULL);
   349   }
   351   // Don't clear the survivor list handles until the start of
   352   // the next evacuation pause - we need it in order to re-tag
   353   // the survivor regions from this evacuation pause as 'young'
   354   // at the start of the next.
   356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   358   assert(check_list_well_formed(), "young list should be well formed");
   359 }
   361 void YoungList::print() {
   362   HeapRegion* lists[] = {_head,   _survivor_head};
   363   const char* names[] = {"YOUNG", "SURVIVOR"};
   365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   367     HeapRegion *curr = lists[list];
   368     if (curr == NULL)
   369       gclog_or_tty->print_cr("  empty");
   370     while (curr != NULL) {
   371       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   372                              "age: %4d, y: %d, surv: %d",
   373                              curr->bottom(), curr->end(),
   374                              curr->top(),
   375                              curr->prev_top_at_mark_start(),
   376                              curr->next_top_at_mark_start(),
   377                              curr->top_at_conc_mark_count(),
   378                              curr->age_in_surv_rate_group_cond(),
   379                              curr->is_young(),
   380                              curr->is_survivor());
   381       curr = curr->get_next_young_region();
   382     }
   383   }
   385   gclog_or_tty->print_cr("");
   386 }
   388 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   389 {
   390   // Claim the right to put the region on the dirty cards region list
   391   // by installing a self pointer.
   392   HeapRegion* next = hr->get_next_dirty_cards_region();
   393   if (next == NULL) {
   394     HeapRegion* res = (HeapRegion*)
   395       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   396                           NULL);
   397     if (res == NULL) {
   398       HeapRegion* head;
   399       do {
   400         // Put the region to the dirty cards region list.
   401         head = _dirty_cards_region_list;
   402         next = (HeapRegion*)
   403           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   404         if (next == head) {
   405           assert(hr->get_next_dirty_cards_region() == hr,
   406                  "hr->get_next_dirty_cards_region() != hr");
   407           if (next == NULL) {
   408             // The last region in the list points to itself.
   409             hr->set_next_dirty_cards_region(hr);
   410           } else {
   411             hr->set_next_dirty_cards_region(next);
   412           }
   413         }
   414       } while (next != head);
   415     }
   416   }
   417 }
   419 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   420 {
   421   HeapRegion* head;
   422   HeapRegion* hr;
   423   do {
   424     head = _dirty_cards_region_list;
   425     if (head == NULL) {
   426       return NULL;
   427     }
   428     HeapRegion* new_head = head->get_next_dirty_cards_region();
   429     if (head == new_head) {
   430       // The last region.
   431       new_head = NULL;
   432     }
   433     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   434                                           head);
   435   } while (hr != head);
   436   assert(hr != NULL, "invariant");
   437   hr->set_next_dirty_cards_region(NULL);
   438   return hr;
   439 }
   441 void G1CollectedHeap::stop_conc_gc_threads() {
   442   _cg1r->stop();
   443   _cmThread->stop();
   444 }
   446 #ifdef ASSERT
   447 // A region is added to the collection set as it is retired
   448 // so an address p can point to a region which will be in the
   449 // collection set but has not yet been retired.  This method
   450 // therefore is only accurate during a GC pause after all
   451 // regions have been retired.  It is used for debugging
   452 // to check if an nmethod has references to objects that can
   453 // be move during a partial collection.  Though it can be
   454 // inaccurate, it is sufficient for G1 because the conservative
   455 // implementation of is_scavengable() for G1 will indicate that
   456 // all nmethods must be scanned during a partial collection.
   457 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   458   HeapRegion* hr = heap_region_containing(p);
   459   return hr != NULL && hr->in_collection_set();
   460 }
   461 #endif
   463 // Returns true if the reference points to an object that
   464 // can move in an incremental collecction.
   465 bool G1CollectedHeap::is_scavengable(const void* p) {
   466   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   467   G1CollectorPolicy* g1p = g1h->g1_policy();
   468   HeapRegion* hr = heap_region_containing(p);
   469   if (hr == NULL) {
   470      // perm gen (or null)
   471      return false;
   472   } else {
   473     return !hr->isHumongous();
   474   }
   475 }
   477 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   478   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   479   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   481   // Count the dirty cards at the start.
   482   CountNonCleanMemRegionClosure count1(this);
   483   ct_bs->mod_card_iterate(&count1);
   484   int orig_count = count1.n();
   486   // First clear the logged cards.
   487   ClearLoggedCardTableEntryClosure clear;
   488   dcqs.set_closure(&clear);
   489   dcqs.apply_closure_to_all_completed_buffers();
   490   dcqs.iterate_closure_all_threads(false);
   491   clear.print_histo();
   493   // Now ensure that there's no dirty cards.
   494   CountNonCleanMemRegionClosure count2(this);
   495   ct_bs->mod_card_iterate(&count2);
   496   if (count2.n() != 0) {
   497     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   498                            count2.n(), orig_count);
   499   }
   500   guarantee(count2.n() == 0, "Card table should be clean.");
   502   RedirtyLoggedCardTableEntryClosure redirty;
   503   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   504   dcqs.apply_closure_to_all_completed_buffers();
   505   dcqs.iterate_closure_all_threads(false);
   506   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   507                          clear.calls(), orig_count);
   508   guarantee(redirty.calls() == clear.calls(),
   509             "Or else mechanism is broken.");
   511   CountNonCleanMemRegionClosure count3(this);
   512   ct_bs->mod_card_iterate(&count3);
   513   if (count3.n() != orig_count) {
   514     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   515                            orig_count, count3.n());
   516     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   517   }
   519   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   520 }
   522 // Private class members.
   524 G1CollectedHeap* G1CollectedHeap::_g1h;
   526 // Private methods.
   528 HeapRegion*
   529 G1CollectedHeap::new_region_try_secondary_free_list() {
   530   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   531   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   532     if (!_secondary_free_list.is_empty()) {
   533       if (G1ConcRegionFreeingVerbose) {
   534         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   535                                "secondary_free_list has %u entries",
   536                                _secondary_free_list.length());
   537       }
   538       // It looks as if there are free regions available on the
   539       // secondary_free_list. Let's move them to the free_list and try
   540       // again to allocate from it.
   541       append_secondary_free_list();
   543       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   544              "empty we should have moved at least one entry to the free_list");
   545       HeapRegion* res = _free_list.remove_head();
   546       if (G1ConcRegionFreeingVerbose) {
   547         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   548                                "allocated "HR_FORMAT" from secondary_free_list",
   549                                HR_FORMAT_PARAMS(res));
   550       }
   551       return res;
   552     }
   554     // Wait here until we get notifed either when (a) there are no
   555     // more free regions coming or (b) some regions have been moved on
   556     // the secondary_free_list.
   557     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   558   }
   560   if (G1ConcRegionFreeingVerbose) {
   561     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   562                            "could not allocate from secondary_free_list");
   563   }
   564   return NULL;
   565 }
   567 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   568   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   569          "the only time we use this to allocate a humongous region is "
   570          "when we are allocating a single humongous region");
   572   HeapRegion* res;
   573   if (G1StressConcRegionFreeing) {
   574     if (!_secondary_free_list.is_empty()) {
   575       if (G1ConcRegionFreeingVerbose) {
   576         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   577                                "forced to look at the secondary_free_list");
   578       }
   579       res = new_region_try_secondary_free_list();
   580       if (res != NULL) {
   581         return res;
   582       }
   583     }
   584   }
   585   res = _free_list.remove_head_or_null();
   586   if (res == NULL) {
   587     if (G1ConcRegionFreeingVerbose) {
   588       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   589                              "res == NULL, trying the secondary_free_list");
   590     }
   591     res = new_region_try_secondary_free_list();
   592   }
   593   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   594     // Currently, only attempts to allocate GC alloc regions set
   595     // do_expand to true. So, we should only reach here during a
   596     // safepoint. If this assumption changes we might have to
   597     // reconsider the use of _expand_heap_after_alloc_failure.
   598     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   600     ergo_verbose1(ErgoHeapSizing,
   601                   "attempt heap expansion",
   602                   ergo_format_reason("region allocation request failed")
   603                   ergo_format_byte("allocation request"),
   604                   word_size * HeapWordSize);
   605     if (expand(word_size * HeapWordSize)) {
   606       // Given that expand() succeeded in expanding the heap, and we
   607       // always expand the heap by an amount aligned to the heap
   608       // region size, the free list should in theory not be empty. So
   609       // it would probably be OK to use remove_head(). But the extra
   610       // check for NULL is unlikely to be a performance issue here (we
   611       // just expanded the heap!) so let's just be conservative and
   612       // use remove_head_or_null().
   613       res = _free_list.remove_head_or_null();
   614     } else {
   615       _expand_heap_after_alloc_failure = false;
   616     }
   617   }
   618   return res;
   619 }
   621 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   622                                                         size_t word_size) {
   623   assert(isHumongous(word_size), "word_size should be humongous");
   624   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   626   uint first = G1_NULL_HRS_INDEX;
   627   if (num_regions == 1) {
   628     // Only one region to allocate, no need to go through the slower
   629     // path. The caller will attempt the expasion if this fails, so
   630     // let's not try to expand here too.
   631     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   632     if (hr != NULL) {
   633       first = hr->hrs_index();
   634     } else {
   635       first = G1_NULL_HRS_INDEX;
   636     }
   637   } else {
   638     // We can't allocate humongous regions while cleanupComplete() is
   639     // running, since some of the regions we find to be empty might not
   640     // yet be added to the free list and it is not straightforward to
   641     // know which list they are on so that we can remove them. Note
   642     // that we only need to do this if we need to allocate more than
   643     // one region to satisfy the current humongous allocation
   644     // request. If we are only allocating one region we use the common
   645     // region allocation code (see above).
   646     wait_while_free_regions_coming();
   647     append_secondary_free_list_if_not_empty_with_lock();
   649     if (free_regions() >= num_regions) {
   650       first = _hrs.find_contiguous(num_regions);
   651       if (first != G1_NULL_HRS_INDEX) {
   652         for (uint i = first; i < first + num_regions; ++i) {
   653           HeapRegion* hr = region_at(i);
   654           assert(hr->is_empty(), "sanity");
   655           assert(is_on_master_free_list(hr), "sanity");
   656           hr->set_pending_removal(true);
   657         }
   658         _free_list.remove_all_pending(num_regions);
   659       }
   660     }
   661   }
   662   return first;
   663 }
   665 HeapWord*
   666 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   667                                                            uint num_regions,
   668                                                            size_t word_size) {
   669   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   670   assert(isHumongous(word_size), "word_size should be humongous");
   671   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   673   // Index of last region in the series + 1.
   674   uint last = first + num_regions;
   676   // We need to initialize the region(s) we just discovered. This is
   677   // a bit tricky given that it can happen concurrently with
   678   // refinement threads refining cards on these regions and
   679   // potentially wanting to refine the BOT as they are scanning
   680   // those cards (this can happen shortly after a cleanup; see CR
   681   // 6991377). So we have to set up the region(s) carefully and in
   682   // a specific order.
   684   // The word size sum of all the regions we will allocate.
   685   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   686   assert(word_size <= word_size_sum, "sanity");
   688   // This will be the "starts humongous" region.
   689   HeapRegion* first_hr = region_at(first);
   690   // The header of the new object will be placed at the bottom of
   691   // the first region.
   692   HeapWord* new_obj = first_hr->bottom();
   693   // This will be the new end of the first region in the series that
   694   // should also match the end of the last region in the seriers.
   695   HeapWord* new_end = new_obj + word_size_sum;
   696   // This will be the new top of the first region that will reflect
   697   // this allocation.
   698   HeapWord* new_top = new_obj + word_size;
   700   // First, we need to zero the header of the space that we will be
   701   // allocating. When we update top further down, some refinement
   702   // threads might try to scan the region. By zeroing the header we
   703   // ensure that any thread that will try to scan the region will
   704   // come across the zero klass word and bail out.
   705   //
   706   // NOTE: It would not have been correct to have used
   707   // CollectedHeap::fill_with_object() and make the space look like
   708   // an int array. The thread that is doing the allocation will
   709   // later update the object header to a potentially different array
   710   // type and, for a very short period of time, the klass and length
   711   // fields will be inconsistent. This could cause a refinement
   712   // thread to calculate the object size incorrectly.
   713   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   715   // We will set up the first region as "starts humongous". This
   716   // will also update the BOT covering all the regions to reflect
   717   // that there is a single object that starts at the bottom of the
   718   // first region.
   719   first_hr->set_startsHumongous(new_top, new_end);
   721   // Then, if there are any, we will set up the "continues
   722   // humongous" regions.
   723   HeapRegion* hr = NULL;
   724   for (uint i = first + 1; i < last; ++i) {
   725     hr = region_at(i);
   726     hr->set_continuesHumongous(first_hr);
   727   }
   728   // If we have "continues humongous" regions (hr != NULL), then the
   729   // end of the last one should match new_end.
   730   assert(hr == NULL || hr->end() == new_end, "sanity");
   732   // Up to this point no concurrent thread would have been able to
   733   // do any scanning on any region in this series. All the top
   734   // fields still point to bottom, so the intersection between
   735   // [bottom,top] and [card_start,card_end] will be empty. Before we
   736   // update the top fields, we'll do a storestore to make sure that
   737   // no thread sees the update to top before the zeroing of the
   738   // object header and the BOT initialization.
   739   OrderAccess::storestore();
   741   // Now that the BOT and the object header have been initialized,
   742   // we can update top of the "starts humongous" region.
   743   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   744          "new_top should be in this region");
   745   first_hr->set_top(new_top);
   746   if (_hr_printer.is_active()) {
   747     HeapWord* bottom = first_hr->bottom();
   748     HeapWord* end = first_hr->orig_end();
   749     if ((first + 1) == last) {
   750       // the series has a single humongous region
   751       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   752     } else {
   753       // the series has more than one humongous regions
   754       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   755     }
   756   }
   758   // Now, we will update the top fields of the "continues humongous"
   759   // regions. The reason we need to do this is that, otherwise,
   760   // these regions would look empty and this will confuse parts of
   761   // G1. For example, the code that looks for a consecutive number
   762   // of empty regions will consider them empty and try to
   763   // re-allocate them. We can extend is_empty() to also include
   764   // !continuesHumongous(), but it is easier to just update the top
   765   // fields here. The way we set top for all regions (i.e., top ==
   766   // end for all regions but the last one, top == new_top for the
   767   // last one) is actually used when we will free up the humongous
   768   // region in free_humongous_region().
   769   hr = NULL;
   770   for (uint i = first + 1; i < last; ++i) {
   771     hr = region_at(i);
   772     if ((i + 1) == last) {
   773       // last continues humongous region
   774       assert(hr->bottom() < new_top && new_top <= hr->end(),
   775              "new_top should fall on this region");
   776       hr->set_top(new_top);
   777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   778     } else {
   779       // not last one
   780       assert(new_top > hr->end(), "new_top should be above this region");
   781       hr->set_top(hr->end());
   782       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   783     }
   784   }
   785   // If we have continues humongous regions (hr != NULL), then the
   786   // end of the last one should match new_end and its top should
   787   // match new_top.
   788   assert(hr == NULL ||
   789          (hr->end() == new_end && hr->top() == new_top), "sanity");
   791   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   792   _summary_bytes_used += first_hr->used();
   793   _humongous_set.add(first_hr);
   795   return new_obj;
   796 }
   798 // If could fit into free regions w/o expansion, try.
   799 // Otherwise, if can expand, do so.
   800 // Otherwise, if using ex regions might help, try with ex given back.
   801 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   802   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   804   verify_region_sets_optional();
   806   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   807   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   808   uint x_num = expansion_regions();
   809   uint fs = _hrs.free_suffix();
   810   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   811   if (first == G1_NULL_HRS_INDEX) {
   812     // The only thing we can do now is attempt expansion.
   813     if (fs + x_num >= num_regions) {
   814       // If the number of regions we're trying to allocate for this
   815       // object is at most the number of regions in the free suffix,
   816       // then the call to humongous_obj_allocate_find_first() above
   817       // should have succeeded and we wouldn't be here.
   818       //
   819       // We should only be trying to expand when the free suffix is
   820       // not sufficient for the object _and_ we have some expansion
   821       // room available.
   822       assert(num_regions > fs, "earlier allocation should have succeeded");
   824       ergo_verbose1(ErgoHeapSizing,
   825                     "attempt heap expansion",
   826                     ergo_format_reason("humongous allocation request failed")
   827                     ergo_format_byte("allocation request"),
   828                     word_size * HeapWordSize);
   829       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   830         // Even though the heap was expanded, it might not have
   831         // reached the desired size. So, we cannot assume that the
   832         // allocation will succeed.
   833         first = humongous_obj_allocate_find_first(num_regions, word_size);
   834       }
   835     }
   836   }
   838   HeapWord* result = NULL;
   839   if (first != G1_NULL_HRS_INDEX) {
   840     result =
   841       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   842     assert(result != NULL, "it should always return a valid result");
   844     // A successful humongous object allocation changes the used space
   845     // information of the old generation so we need to recalculate the
   846     // sizes and update the jstat counters here.
   847     g1mm()->update_sizes();
   848   }
   850   verify_region_sets_optional();
   852   return result;
   853 }
   855 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   856   assert_heap_not_locked_and_not_at_safepoint();
   857   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   859   unsigned int dummy_gc_count_before;
   860   return attempt_allocation(word_size, &dummy_gc_count_before);
   861 }
   863 HeapWord*
   864 G1CollectedHeap::mem_allocate(size_t word_size,
   865                               bool*  gc_overhead_limit_was_exceeded) {
   866   assert_heap_not_locked_and_not_at_safepoint();
   868   // Loop until the allocation is satisified, or unsatisfied after GC.
   869   for (int try_count = 1; /* we'll return */; try_count += 1) {
   870     unsigned int gc_count_before;
   872     HeapWord* result = NULL;
   873     if (!isHumongous(word_size)) {
   874       result = attempt_allocation(word_size, &gc_count_before);
   875     } else {
   876       result = attempt_allocation_humongous(word_size, &gc_count_before);
   877     }
   878     if (result != NULL) {
   879       return result;
   880     }
   882     // Create the garbage collection operation...
   883     VM_G1CollectForAllocation op(gc_count_before, word_size);
   884     // ...and get the VM thread to execute it.
   885     VMThread::execute(&op);
   887     if (op.prologue_succeeded() && op.pause_succeeded()) {
   888       // If the operation was successful we'll return the result even
   889       // if it is NULL. If the allocation attempt failed immediately
   890       // after a Full GC, it's unlikely we'll be able to allocate now.
   891       HeapWord* result = op.result();
   892       if (result != NULL && !isHumongous(word_size)) {
   893         // Allocations that take place on VM operations do not do any
   894         // card dirtying and we have to do it here. We only have to do
   895         // this for non-humongous allocations, though.
   896         dirty_young_block(result, word_size);
   897       }
   898       return result;
   899     } else {
   900       assert(op.result() == NULL,
   901              "the result should be NULL if the VM op did not succeed");
   902     }
   904     // Give a warning if we seem to be looping forever.
   905     if ((QueuedAllocationWarningCount > 0) &&
   906         (try_count % QueuedAllocationWarningCount == 0)) {
   907       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   908     }
   909   }
   911   ShouldNotReachHere();
   912   return NULL;
   913 }
   915 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   916                                            unsigned int *gc_count_before_ret) {
   917   // Make sure you read the note in attempt_allocation_humongous().
   919   assert_heap_not_locked_and_not_at_safepoint();
   920   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   921          "be called for humongous allocation requests");
   923   // We should only get here after the first-level allocation attempt
   924   // (attempt_allocation()) failed to allocate.
   926   // We will loop until a) we manage to successfully perform the
   927   // allocation or b) we successfully schedule a collection which
   928   // fails to perform the allocation. b) is the only case when we'll
   929   // return NULL.
   930   HeapWord* result = NULL;
   931   for (int try_count = 1; /* we'll return */; try_count += 1) {
   932     bool should_try_gc;
   933     unsigned int gc_count_before;
   935     {
   936       MutexLockerEx x(Heap_lock);
   938       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   939                                                       false /* bot_updates */);
   940       if (result != NULL) {
   941         return result;
   942       }
   944       // If we reach here, attempt_allocation_locked() above failed to
   945       // allocate a new region. So the mutator alloc region should be NULL.
   946       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   948       if (GC_locker::is_active_and_needs_gc()) {
   949         if (g1_policy()->can_expand_young_list()) {
   950           // No need for an ergo verbose message here,
   951           // can_expand_young_list() does this when it returns true.
   952           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   953                                                       false /* bot_updates */);
   954           if (result != NULL) {
   955             return result;
   956           }
   957         }
   958         should_try_gc = false;
   959       } else {
   960         // Read the GC count while still holding the Heap_lock.
   961         gc_count_before = total_collections();
   962         should_try_gc = true;
   963       }
   964     }
   966     if (should_try_gc) {
   967       bool succeeded;
   968       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   969       if (result != NULL) {
   970         assert(succeeded, "only way to get back a non-NULL result");
   971         return result;
   972       }
   974       if (succeeded) {
   975         // If we get here we successfully scheduled a collection which
   976         // failed to allocate. No point in trying to allocate
   977         // further. We'll just return NULL.
   978         MutexLockerEx x(Heap_lock);
   979         *gc_count_before_ret = total_collections();
   980         return NULL;
   981       }
   982     } else {
   983       GC_locker::stall_until_clear();
   984     }
   986     // We can reach here if we were unsuccessul in scheduling a
   987     // collection (because another thread beat us to it) or if we were
   988     // stalled due to the GC locker. In either can we should retry the
   989     // allocation attempt in case another thread successfully
   990     // performed a collection and reclaimed enough space. We do the
   991     // first attempt (without holding the Heap_lock) here and the
   992     // follow-on attempt will be at the start of the next loop
   993     // iteration (after taking the Heap_lock).
   994     result = _mutator_alloc_region.attempt_allocation(word_size,
   995                                                       false /* bot_updates */);
   996     if (result != NULL) {
   997       return result;
   998     }
  1000     // Give a warning if we seem to be looping forever.
  1001     if ((QueuedAllocationWarningCount > 0) &&
  1002         (try_count % QueuedAllocationWarningCount == 0)) {
  1003       warning("G1CollectedHeap::attempt_allocation_slow() "
  1004               "retries %d times", try_count);
  1008   ShouldNotReachHere();
  1009   return NULL;
  1012 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1013                                           unsigned int * gc_count_before_ret) {
  1014   // The structure of this method has a lot of similarities to
  1015   // attempt_allocation_slow(). The reason these two were not merged
  1016   // into a single one is that such a method would require several "if
  1017   // allocation is not humongous do this, otherwise do that"
  1018   // conditional paths which would obscure its flow. In fact, an early
  1019   // version of this code did use a unified method which was harder to
  1020   // follow and, as a result, it had subtle bugs that were hard to
  1021   // track down. So keeping these two methods separate allows each to
  1022   // be more readable. It will be good to keep these two in sync as
  1023   // much as possible.
  1025   assert_heap_not_locked_and_not_at_safepoint();
  1026   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1027          "should only be called for humongous allocations");
  1029   // Humongous objects can exhaust the heap quickly, so we should check if we
  1030   // need to start a marking cycle at each humongous object allocation. We do
  1031   // the check before we do the actual allocation. The reason for doing it
  1032   // before the allocation is that we avoid having to keep track of the newly
  1033   // allocated memory while we do a GC.
  1034   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1035                                            word_size)) {
  1036     collect(GCCause::_g1_humongous_allocation);
  1039   // We will loop until a) we manage to successfully perform the
  1040   // allocation or b) we successfully schedule a collection which
  1041   // fails to perform the allocation. b) is the only case when we'll
  1042   // return NULL.
  1043   HeapWord* result = NULL;
  1044   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1045     bool should_try_gc;
  1046     unsigned int gc_count_before;
  1049       MutexLockerEx x(Heap_lock);
  1051       // Given that humongous objects are not allocated in young
  1052       // regions, we'll first try to do the allocation without doing a
  1053       // collection hoping that there's enough space in the heap.
  1054       result = humongous_obj_allocate(word_size);
  1055       if (result != NULL) {
  1056         return result;
  1059       if (GC_locker::is_active_and_needs_gc()) {
  1060         should_try_gc = false;
  1061       } else {
  1062         // Read the GC count while still holding the Heap_lock.
  1063         gc_count_before = total_collections();
  1064         should_try_gc = true;
  1068     if (should_try_gc) {
  1069       // If we failed to allocate the humongous object, we should try to
  1070       // do a collection pause (if we're allowed) in case it reclaims
  1071       // enough space for the allocation to succeed after the pause.
  1073       bool succeeded;
  1074       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1075       if (result != NULL) {
  1076         assert(succeeded, "only way to get back a non-NULL result");
  1077         return result;
  1080       if (succeeded) {
  1081         // If we get here we successfully scheduled a collection which
  1082         // failed to allocate. No point in trying to allocate
  1083         // further. We'll just return NULL.
  1084         MutexLockerEx x(Heap_lock);
  1085         *gc_count_before_ret = total_collections();
  1086         return NULL;
  1088     } else {
  1089       GC_locker::stall_until_clear();
  1092     // We can reach here if we were unsuccessul in scheduling a
  1093     // collection (because another thread beat us to it) or if we were
  1094     // stalled due to the GC locker. In either can we should retry the
  1095     // allocation attempt in case another thread successfully
  1096     // performed a collection and reclaimed enough space.  Give a
  1097     // warning if we seem to be looping forever.
  1099     if ((QueuedAllocationWarningCount > 0) &&
  1100         (try_count % QueuedAllocationWarningCount == 0)) {
  1101       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1102               "retries %d times", try_count);
  1106   ShouldNotReachHere();
  1107   return NULL;
  1110 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1111                                        bool expect_null_mutator_alloc_region) {
  1112   assert_at_safepoint(true /* should_be_vm_thread */);
  1113   assert(_mutator_alloc_region.get() == NULL ||
  1114                                              !expect_null_mutator_alloc_region,
  1115          "the current alloc region was unexpectedly found to be non-NULL");
  1117   if (!isHumongous(word_size)) {
  1118     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1119                                                       false /* bot_updates */);
  1120   } else {
  1121     HeapWord* result = humongous_obj_allocate(word_size);
  1122     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1123       g1_policy()->set_initiate_conc_mark_if_possible();
  1125     return result;
  1128   ShouldNotReachHere();
  1131 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1132   ModRefBarrierSet* _mr_bs;
  1133 public:
  1134   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1135   bool doHeapRegion(HeapRegion* r) {
  1136     r->reset_gc_time_stamp();
  1137     if (r->continuesHumongous())
  1138       return false;
  1139     HeapRegionRemSet* hrrs = r->rem_set();
  1140     if (hrrs != NULL) hrrs->clear();
  1141     // You might think here that we could clear just the cards
  1142     // corresponding to the used region.  But no: if we leave a dirty card
  1143     // in a region we might allocate into, then it would prevent that card
  1144     // from being enqueued, and cause it to be missed.
  1145     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1146     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1147     return false;
  1149 };
  1152 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1153   ModRefBarrierSet* _mr_bs;
  1154 public:
  1155   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1156   bool doHeapRegion(HeapRegion* r) {
  1157     if (r->continuesHumongous()) return false;
  1158     if (r->used_region().word_size() != 0) {
  1159       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1161     return false;
  1163 };
  1165 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1166   G1CollectedHeap*   _g1h;
  1167   UpdateRSOopClosure _cl;
  1168   int                _worker_i;
  1169 public:
  1170   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1171     _cl(g1->g1_rem_set(), worker_i),
  1172     _worker_i(worker_i),
  1173     _g1h(g1)
  1174   { }
  1176   bool doHeapRegion(HeapRegion* r) {
  1177     if (!r->continuesHumongous()) {
  1178       _cl.set_from(r);
  1179       r->oop_iterate(&_cl);
  1181     return false;
  1183 };
  1185 class ParRebuildRSTask: public AbstractGangTask {
  1186   G1CollectedHeap* _g1;
  1187 public:
  1188   ParRebuildRSTask(G1CollectedHeap* g1)
  1189     : AbstractGangTask("ParRebuildRSTask"),
  1190       _g1(g1)
  1191   { }
  1193   void work(uint worker_id) {
  1194     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1195     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1196                                           _g1->workers()->active_workers(),
  1197                                          HeapRegion::RebuildRSClaimValue);
  1199 };
  1201 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1202 private:
  1203   G1HRPrinter* _hr_printer;
  1204 public:
  1205   bool doHeapRegion(HeapRegion* hr) {
  1206     assert(!hr->is_young(), "not expecting to find young regions");
  1207     // We only generate output for non-empty regions.
  1208     if (!hr->is_empty()) {
  1209       if (!hr->isHumongous()) {
  1210         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1211       } else if (hr->startsHumongous()) {
  1212         if (hr->capacity() == HeapRegion::GrainBytes) {
  1213           // single humongous region
  1214           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1215         } else {
  1216           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1218       } else {
  1219         assert(hr->continuesHumongous(), "only way to get here");
  1220         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1223     return false;
  1226   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1227     : _hr_printer(hr_printer) { }
  1228 };
  1230 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1231                                     bool clear_all_soft_refs,
  1232                                     size_t word_size) {
  1233   assert_at_safepoint(true /* should_be_vm_thread */);
  1235   if (GC_locker::check_active_before_gc()) {
  1236     return false;
  1239   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1240   ResourceMark rm;
  1242   print_heap_before_gc();
  1244   HRSPhaseSetter x(HRSPhaseFullGC);
  1245   verify_region_sets_optional();
  1247   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1248                            collector_policy()->should_clear_all_soft_refs();
  1250   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1253     IsGCActiveMark x;
  1255     // Timing
  1256     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1257     assert(!system_gc || explicit_gc, "invariant");
  1258     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1259     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1260     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1261                 G1Log::fine(), true, gclog_or_tty);
  1263     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1264     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1266     double start = os::elapsedTime();
  1267     g1_policy()->record_full_collection_start();
  1269     // Note: When we have a more flexible GC logging framework that
  1270     // allows us to add optional attributes to a GC log record we
  1271     // could consider timing and reporting how long we wait in the
  1272     // following two methods.
  1273     wait_while_free_regions_coming();
  1274     // If we start the compaction before the CM threads finish
  1275     // scanning the root regions we might trip them over as we'll
  1276     // be moving objects / updating references. So let's wait until
  1277     // they are done. By telling them to abort, they should complete
  1278     // early.
  1279     _cm->root_regions()->abort();
  1280     _cm->root_regions()->wait_until_scan_finished();
  1281     append_secondary_free_list_if_not_empty_with_lock();
  1283     gc_prologue(true);
  1284     increment_total_collections(true /* full gc */);
  1286     size_t g1h_prev_used = used();
  1287     assert(used() == recalculate_used(), "Should be equal");
  1289     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1290       HandleMark hm;  // Discard invalid handles created during verification
  1291       gclog_or_tty->print(" VerifyBeforeGC:");
  1292       prepare_for_verify();
  1293       Universe::verify(/* silent      */ false,
  1294                        /* option      */ VerifyOption_G1UsePrevMarking);
  1297     pre_full_gc_dump();
  1299     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1301     // Disable discovery and empty the discovered lists
  1302     // for the CM ref processor.
  1303     ref_processor_cm()->disable_discovery();
  1304     ref_processor_cm()->abandon_partial_discovery();
  1305     ref_processor_cm()->verify_no_references_recorded();
  1307     // Abandon current iterations of concurrent marking and concurrent
  1308     // refinement, if any are in progress. We have to do this before
  1309     // wait_until_scan_finished() below.
  1310     concurrent_mark()->abort();
  1312     // Make sure we'll choose a new allocation region afterwards.
  1313     release_mutator_alloc_region();
  1314     abandon_gc_alloc_regions();
  1315     g1_rem_set()->cleanupHRRS();
  1317     // We should call this after we retire any currently active alloc
  1318     // regions so that all the ALLOC / RETIRE events are generated
  1319     // before the start GC event.
  1320     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1322     // We may have added regions to the current incremental collection
  1323     // set between the last GC or pause and now. We need to clear the
  1324     // incremental collection set and then start rebuilding it afresh
  1325     // after this full GC.
  1326     abandon_collection_set(g1_policy()->inc_cset_head());
  1327     g1_policy()->clear_incremental_cset();
  1328     g1_policy()->stop_incremental_cset_building();
  1330     tear_down_region_sets(false /* free_list_only */);
  1331     g1_policy()->set_gcs_are_young(true);
  1333     // See the comments in g1CollectedHeap.hpp and
  1334     // G1CollectedHeap::ref_processing_init() about
  1335     // how reference processing currently works in G1.
  1337     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1338     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1340     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1341     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1343     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1344     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1346     // Do collection work
  1348       HandleMark hm;  // Discard invalid handles created during gc
  1349       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1352     assert(free_regions() == 0, "we should not have added any free regions");
  1353     rebuild_region_sets(false /* free_list_only */);
  1355     // Enqueue any discovered reference objects that have
  1356     // not been removed from the discovered lists.
  1357     ref_processor_stw()->enqueue_discovered_references();
  1359     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1361     MemoryService::track_memory_usage();
  1363     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1364       HandleMark hm;  // Discard invalid handles created during verification
  1365       gclog_or_tty->print(" VerifyAfterGC:");
  1366       prepare_for_verify();
  1367       Universe::verify(/* silent      */ false,
  1368                        /* option      */ VerifyOption_G1UsePrevMarking);
  1372     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1373     ref_processor_stw()->verify_no_references_recorded();
  1375     // Note: since we've just done a full GC, concurrent
  1376     // marking is no longer active. Therefore we need not
  1377     // re-enable reference discovery for the CM ref processor.
  1378     // That will be done at the start of the next marking cycle.
  1379     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1380     ref_processor_cm()->verify_no_references_recorded();
  1382     reset_gc_time_stamp();
  1383     // Since everything potentially moved, we will clear all remembered
  1384     // sets, and clear all cards.  Later we will rebuild remebered
  1385     // sets. We will also reset the GC time stamps of the regions.
  1386     PostMCRemSetClearClosure rs_clear(mr_bs());
  1387     heap_region_iterate(&rs_clear);
  1389     // Resize the heap if necessary.
  1390     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1392     if (_hr_printer.is_active()) {
  1393       // We should do this after we potentially resize the heap so
  1394       // that all the COMMIT / UNCOMMIT events are generated before
  1395       // the end GC event.
  1397       PostCompactionPrinterClosure cl(hr_printer());
  1398       heap_region_iterate(&cl);
  1400       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1403     if (_cg1r->use_cache()) {
  1404       _cg1r->clear_and_record_card_counts();
  1405       _cg1r->clear_hot_cache();
  1408     // Rebuild remembered sets of all regions.
  1409     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1410       uint n_workers =
  1411         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1412                                        workers()->active_workers(),
  1413                                        Threads::number_of_non_daemon_threads());
  1414       assert(UseDynamicNumberOfGCThreads ||
  1415              n_workers == workers()->total_workers(),
  1416              "If not dynamic should be using all the  workers");
  1417       workers()->set_active_workers(n_workers);
  1418       // Set parallel threads in the heap (_n_par_threads) only
  1419       // before a parallel phase and always reset it to 0 after
  1420       // the phase so that the number of parallel threads does
  1421       // no get carried forward to a serial phase where there
  1422       // may be code that is "possibly_parallel".
  1423       set_par_threads(n_workers);
  1425       ParRebuildRSTask rebuild_rs_task(this);
  1426       assert(check_heap_region_claim_values(
  1427              HeapRegion::InitialClaimValue), "sanity check");
  1428       assert(UseDynamicNumberOfGCThreads ||
  1429              workers()->active_workers() == workers()->total_workers(),
  1430         "Unless dynamic should use total workers");
  1431       // Use the most recent number of  active workers
  1432       assert(workers()->active_workers() > 0,
  1433         "Active workers not properly set");
  1434       set_par_threads(workers()->active_workers());
  1435       workers()->run_task(&rebuild_rs_task);
  1436       set_par_threads(0);
  1437       assert(check_heap_region_claim_values(
  1438              HeapRegion::RebuildRSClaimValue), "sanity check");
  1439       reset_heap_region_claim_values();
  1440     } else {
  1441       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1442       heap_region_iterate(&rebuild_rs);
  1445     if (G1Log::fine()) {
  1446       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1449     if (true) { // FIXME
  1450       // Ask the permanent generation to adjust size for full collections
  1451       perm()->compute_new_size();
  1454     // Start a new incremental collection set for the next pause
  1455     assert(g1_policy()->collection_set() == NULL, "must be");
  1456     g1_policy()->start_incremental_cset_building();
  1458     // Clear the _cset_fast_test bitmap in anticipation of adding
  1459     // regions to the incremental collection set for the next
  1460     // evacuation pause.
  1461     clear_cset_fast_test();
  1463     init_mutator_alloc_region();
  1465     double end = os::elapsedTime();
  1466     g1_policy()->record_full_collection_end();
  1468 #ifdef TRACESPINNING
  1469     ParallelTaskTerminator::print_termination_counts();
  1470 #endif
  1472     gc_epilogue(true);
  1474     // Discard all rset updates
  1475     JavaThread::dirty_card_queue_set().abandon_logs();
  1476     assert(!G1DeferredRSUpdate
  1477            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1480   _young_list->reset_sampled_info();
  1481   // At this point there should be no regions in the
  1482   // entire heap tagged as young.
  1483   assert( check_young_list_empty(true /* check_heap */),
  1484     "young list should be empty at this point");
  1486   // Update the number of full collections that have been completed.
  1487   increment_full_collections_completed(false /* concurrent */);
  1489   _hrs.verify_optional();
  1490   verify_region_sets_optional();
  1492   print_heap_after_gc();
  1493   g1mm()->update_sizes();
  1494   post_full_gc_dump();
  1496   return true;
  1499 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1500   // do_collection() will return whether it succeeded in performing
  1501   // the GC. Currently, there is no facility on the
  1502   // do_full_collection() API to notify the caller than the collection
  1503   // did not succeed (e.g., because it was locked out by the GC
  1504   // locker). So, right now, we'll ignore the return value.
  1505   bool dummy = do_collection(true,                /* explicit_gc */
  1506                              clear_all_soft_refs,
  1507                              0                    /* word_size */);
  1510 // This code is mostly copied from TenuredGeneration.
  1511 void
  1512 G1CollectedHeap::
  1513 resize_if_necessary_after_full_collection(size_t word_size) {
  1514   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1516   // Include the current allocation, if any, and bytes that will be
  1517   // pre-allocated to support collections, as "used".
  1518   const size_t used_after_gc = used();
  1519   const size_t capacity_after_gc = capacity();
  1520   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1522   // This is enforced in arguments.cpp.
  1523   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1524          "otherwise the code below doesn't make sense");
  1526   // We don't have floating point command-line arguments
  1527   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1528   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1529   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1530   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1532   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1533   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1535   // We have to be careful here as these two calculations can overflow
  1536   // 32-bit size_t's.
  1537   double used_after_gc_d = (double) used_after_gc;
  1538   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1539   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1541   // Let's make sure that they are both under the max heap size, which
  1542   // by default will make them fit into a size_t.
  1543   double desired_capacity_upper_bound = (double) max_heap_size;
  1544   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1545                                     desired_capacity_upper_bound);
  1546   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1547                                     desired_capacity_upper_bound);
  1549   // We can now safely turn them into size_t's.
  1550   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1551   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1553   // This assert only makes sense here, before we adjust them
  1554   // with respect to the min and max heap size.
  1555   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1556          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1557                  "maximum_desired_capacity = "SIZE_FORMAT,
  1558                  minimum_desired_capacity, maximum_desired_capacity));
  1560   // Should not be greater than the heap max size. No need to adjust
  1561   // it with respect to the heap min size as it's a lower bound (i.e.,
  1562   // we'll try to make the capacity larger than it, not smaller).
  1563   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1564   // Should not be less than the heap min size. No need to adjust it
  1565   // with respect to the heap max size as it's an upper bound (i.e.,
  1566   // we'll try to make the capacity smaller than it, not greater).
  1567   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1569   if (capacity_after_gc < minimum_desired_capacity) {
  1570     // Don't expand unless it's significant
  1571     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1572     ergo_verbose4(ErgoHeapSizing,
  1573                   "attempt heap expansion",
  1574                   ergo_format_reason("capacity lower than "
  1575                                      "min desired capacity after Full GC")
  1576                   ergo_format_byte("capacity")
  1577                   ergo_format_byte("occupancy")
  1578                   ergo_format_byte_perc("min desired capacity"),
  1579                   capacity_after_gc, used_after_gc,
  1580                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1581     expand(expand_bytes);
  1583     // No expansion, now see if we want to shrink
  1584   } else if (capacity_after_gc > maximum_desired_capacity) {
  1585     // Capacity too large, compute shrinking size
  1586     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1587     ergo_verbose4(ErgoHeapSizing,
  1588                   "attempt heap shrinking",
  1589                   ergo_format_reason("capacity higher than "
  1590                                      "max desired capacity after Full GC")
  1591                   ergo_format_byte("capacity")
  1592                   ergo_format_byte("occupancy")
  1593                   ergo_format_byte_perc("max desired capacity"),
  1594                   capacity_after_gc, used_after_gc,
  1595                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1596     shrink(shrink_bytes);
  1601 HeapWord*
  1602 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1603                                            bool* succeeded) {
  1604   assert_at_safepoint(true /* should_be_vm_thread */);
  1606   *succeeded = true;
  1607   // Let's attempt the allocation first.
  1608   HeapWord* result =
  1609     attempt_allocation_at_safepoint(word_size,
  1610                                  false /* expect_null_mutator_alloc_region */);
  1611   if (result != NULL) {
  1612     assert(*succeeded, "sanity");
  1613     return result;
  1616   // In a G1 heap, we're supposed to keep allocation from failing by
  1617   // incremental pauses.  Therefore, at least for now, we'll favor
  1618   // expansion over collection.  (This might change in the future if we can
  1619   // do something smarter than full collection to satisfy a failed alloc.)
  1620   result = expand_and_allocate(word_size);
  1621   if (result != NULL) {
  1622     assert(*succeeded, "sanity");
  1623     return result;
  1626   // Expansion didn't work, we'll try to do a Full GC.
  1627   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1628                                     false, /* clear_all_soft_refs */
  1629                                     word_size);
  1630   if (!gc_succeeded) {
  1631     *succeeded = false;
  1632     return NULL;
  1635   // Retry the allocation
  1636   result = attempt_allocation_at_safepoint(word_size,
  1637                                   true /* expect_null_mutator_alloc_region */);
  1638   if (result != NULL) {
  1639     assert(*succeeded, "sanity");
  1640     return result;
  1643   // Then, try a Full GC that will collect all soft references.
  1644   gc_succeeded = do_collection(false, /* explicit_gc */
  1645                                true,  /* clear_all_soft_refs */
  1646                                word_size);
  1647   if (!gc_succeeded) {
  1648     *succeeded = false;
  1649     return NULL;
  1652   // Retry the allocation once more
  1653   result = attempt_allocation_at_safepoint(word_size,
  1654                                   true /* expect_null_mutator_alloc_region */);
  1655   if (result != NULL) {
  1656     assert(*succeeded, "sanity");
  1657     return result;
  1660   assert(!collector_policy()->should_clear_all_soft_refs(),
  1661          "Flag should have been handled and cleared prior to this point");
  1663   // What else?  We might try synchronous finalization later.  If the total
  1664   // space available is large enough for the allocation, then a more
  1665   // complete compaction phase than we've tried so far might be
  1666   // appropriate.
  1667   assert(*succeeded, "sanity");
  1668   return NULL;
  1671 // Attempting to expand the heap sufficiently
  1672 // to support an allocation of the given "word_size".  If
  1673 // successful, perform the allocation and return the address of the
  1674 // allocated block, or else "NULL".
  1676 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1677   assert_at_safepoint(true /* should_be_vm_thread */);
  1679   verify_region_sets_optional();
  1681   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1682   ergo_verbose1(ErgoHeapSizing,
  1683                 "attempt heap expansion",
  1684                 ergo_format_reason("allocation request failed")
  1685                 ergo_format_byte("allocation request"),
  1686                 word_size * HeapWordSize);
  1687   if (expand(expand_bytes)) {
  1688     _hrs.verify_optional();
  1689     verify_region_sets_optional();
  1690     return attempt_allocation_at_safepoint(word_size,
  1691                                  false /* expect_null_mutator_alloc_region */);
  1693   return NULL;
  1696 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1697                                              HeapWord* new_end) {
  1698   assert(old_end != new_end, "don't call this otherwise");
  1699   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1701   // Update the committed mem region.
  1702   _g1_committed.set_end(new_end);
  1703   // Tell the card table about the update.
  1704   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1705   // Tell the BOT about the update.
  1706   _bot_shared->resize(_g1_committed.word_size());
  1709 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1710   size_t old_mem_size = _g1_storage.committed_size();
  1711   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1712   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1713                                        HeapRegion::GrainBytes);
  1714   ergo_verbose2(ErgoHeapSizing,
  1715                 "expand the heap",
  1716                 ergo_format_byte("requested expansion amount")
  1717                 ergo_format_byte("attempted expansion amount"),
  1718                 expand_bytes, aligned_expand_bytes);
  1720   // First commit the memory.
  1721   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1722   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1723   if (successful) {
  1724     // Then propagate this update to the necessary data structures.
  1725     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1726     update_committed_space(old_end, new_end);
  1728     FreeRegionList expansion_list("Local Expansion List");
  1729     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1730     assert(mr.start() == old_end, "post-condition");
  1731     // mr might be a smaller region than what was requested if
  1732     // expand_by() was unable to allocate the HeapRegion instances
  1733     assert(mr.end() <= new_end, "post-condition");
  1735     size_t actual_expand_bytes = mr.byte_size();
  1736     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1737     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1738            "post-condition");
  1739     if (actual_expand_bytes < aligned_expand_bytes) {
  1740       // We could not expand _hrs to the desired size. In this case we
  1741       // need to shrink the committed space accordingly.
  1742       assert(mr.end() < new_end, "invariant");
  1744       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1745       // First uncommit the memory.
  1746       _g1_storage.shrink_by(diff_bytes);
  1747       // Then propagate this update to the necessary data structures.
  1748       update_committed_space(new_end, mr.end());
  1750     _free_list.add_as_tail(&expansion_list);
  1752     if (_hr_printer.is_active()) {
  1753       HeapWord* curr = mr.start();
  1754       while (curr < mr.end()) {
  1755         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1756         _hr_printer.commit(curr, curr_end);
  1757         curr = curr_end;
  1759       assert(curr == mr.end(), "post-condition");
  1761     g1_policy()->record_new_heap_size(n_regions());
  1762   } else {
  1763     ergo_verbose0(ErgoHeapSizing,
  1764                   "did not expand the heap",
  1765                   ergo_format_reason("heap expansion operation failed"));
  1766     // The expansion of the virtual storage space was unsuccessful.
  1767     // Let's see if it was because we ran out of swap.
  1768     if (G1ExitOnExpansionFailure &&
  1769         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1770       // We had head room...
  1771       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1774   return successful;
  1777 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1778   size_t old_mem_size = _g1_storage.committed_size();
  1779   size_t aligned_shrink_bytes =
  1780     ReservedSpace::page_align_size_down(shrink_bytes);
  1781   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1782                                          HeapRegion::GrainBytes);
  1783   uint num_regions_deleted = 0;
  1784   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1785   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1786   assert(mr.end() == old_end, "post-condition");
  1788   ergo_verbose3(ErgoHeapSizing,
  1789                 "shrink the heap",
  1790                 ergo_format_byte("requested shrinking amount")
  1791                 ergo_format_byte("aligned shrinking amount")
  1792                 ergo_format_byte("attempted shrinking amount"),
  1793                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1794   if (mr.byte_size() > 0) {
  1795     if (_hr_printer.is_active()) {
  1796       HeapWord* curr = mr.end();
  1797       while (curr > mr.start()) {
  1798         HeapWord* curr_end = curr;
  1799         curr -= HeapRegion::GrainWords;
  1800         _hr_printer.uncommit(curr, curr_end);
  1802       assert(curr == mr.start(), "post-condition");
  1805     _g1_storage.shrink_by(mr.byte_size());
  1806     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1807     assert(mr.start() == new_end, "post-condition");
  1809     _expansion_regions += num_regions_deleted;
  1810     update_committed_space(old_end, new_end);
  1811     HeapRegionRemSet::shrink_heap(n_regions());
  1812     g1_policy()->record_new_heap_size(n_regions());
  1813   } else {
  1814     ergo_verbose0(ErgoHeapSizing,
  1815                   "did not shrink the heap",
  1816                   ergo_format_reason("heap shrinking operation failed"));
  1820 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1821   verify_region_sets_optional();
  1823   // We should only reach here at the end of a Full GC which means we
  1824   // should not not be holding to any GC alloc regions. The method
  1825   // below will make sure of that and do any remaining clean up.
  1826   abandon_gc_alloc_regions();
  1828   // Instead of tearing down / rebuilding the free lists here, we
  1829   // could instead use the remove_all_pending() method on free_list to
  1830   // remove only the ones that we need to remove.
  1831   tear_down_region_sets(true /* free_list_only */);
  1832   shrink_helper(shrink_bytes);
  1833   rebuild_region_sets(true /* free_list_only */);
  1835   _hrs.verify_optional();
  1836   verify_region_sets_optional();
  1839 // Public methods.
  1841 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1842 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1843 #endif // _MSC_VER
  1846 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1847   SharedHeap(policy_),
  1848   _g1_policy(policy_),
  1849   _dirty_card_queue_set(false),
  1850   _into_cset_dirty_card_queue_set(false),
  1851   _is_alive_closure_cm(this),
  1852   _is_alive_closure_stw(this),
  1853   _ref_processor_cm(NULL),
  1854   _ref_processor_stw(NULL),
  1855   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1856   _bot_shared(NULL),
  1857   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1858   _evac_failure_scan_stack(NULL) ,
  1859   _mark_in_progress(false),
  1860   _cg1r(NULL), _summary_bytes_used(0),
  1861   _g1mm(NULL),
  1862   _refine_cte_cl(NULL),
  1863   _full_collection(false),
  1864   _free_list("Master Free List"),
  1865   _secondary_free_list("Secondary Free List"),
  1866   _old_set("Old Set"),
  1867   _humongous_set("Master Humongous Set"),
  1868   _free_regions_coming(false),
  1869   _young_list(new YoungList(this)),
  1870   _gc_time_stamp(0),
  1871   _retained_old_gc_alloc_region(NULL),
  1872   _expand_heap_after_alloc_failure(true),
  1873   _surviving_young_words(NULL),
  1874   _full_collections_completed(0),
  1875   _in_cset_fast_test(NULL),
  1876   _in_cset_fast_test_base(NULL),
  1877   _dirty_cards_region_list(NULL),
  1878   _worker_cset_start_region(NULL),
  1879   _worker_cset_start_region_time_stamp(NULL) {
  1880   _g1h = this; // To catch bugs.
  1881   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1882     vm_exit_during_initialization("Failed necessary allocation.");
  1885   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1887   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1888   _task_queues = new RefToScanQueueSet(n_queues);
  1890   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1891   assert(n_rem_sets > 0, "Invariant.");
  1893   HeapRegionRemSetIterator** iter_arr =
  1894     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1895   for (int i = 0; i < n_queues; i++) {
  1896     iter_arr[i] = new HeapRegionRemSetIterator();
  1898   _rem_set_iterator = iter_arr;
  1900   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  1901   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
  1903   for (int i = 0; i < n_queues; i++) {
  1904     RefToScanQueue* q = new RefToScanQueue();
  1905     q->initialize();
  1906     _task_queues->register_queue(i, q);
  1909   clear_cset_start_regions();
  1911   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1914 jint G1CollectedHeap::initialize() {
  1915   CollectedHeap::pre_initialize();
  1916   os::enable_vtime();
  1918   G1Log::init();
  1920   // Necessary to satisfy locking discipline assertions.
  1922   MutexLocker x(Heap_lock);
  1924   // We have to initialize the printer before committing the heap, as
  1925   // it will be used then.
  1926   _hr_printer.set_active(G1PrintHeapRegions);
  1928   // While there are no constraints in the GC code that HeapWordSize
  1929   // be any particular value, there are multiple other areas in the
  1930   // system which believe this to be true (e.g. oop->object_size in some
  1931   // cases incorrectly returns the size in wordSize units rather than
  1932   // HeapWordSize).
  1933   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1935   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1936   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1938   // Ensure that the sizes are properly aligned.
  1939   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1940   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1942   _cg1r = new ConcurrentG1Refine();
  1944   // Reserve the maximum.
  1945   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1946   // Includes the perm-gen.
  1948   // When compressed oops are enabled, the preferred heap base
  1949   // is calculated by subtracting the requested size from the
  1950   // 32Gb boundary and using the result as the base address for
  1951   // heap reservation. If the requested size is not aligned to
  1952   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1953   // into the ReservedHeapSpace constructor) then the actual
  1954   // base of the reserved heap may end up differing from the
  1955   // address that was requested (i.e. the preferred heap base).
  1956   // If this happens then we could end up using a non-optimal
  1957   // compressed oops mode.
  1959   // Since max_byte_size is aligned to the size of a heap region (checked
  1960   // above), we also need to align the perm gen size as it might not be.
  1961   const size_t total_reserved = max_byte_size +
  1962                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1963   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1965   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1967   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1968                             UseLargePages, addr);
  1970   if (UseCompressedOops) {
  1971     if (addr != NULL && !heap_rs.is_reserved()) {
  1972       // Failed to reserve at specified address - the requested memory
  1973       // region is taken already, for example, by 'java' launcher.
  1974       // Try again to reserver heap higher.
  1975       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1977       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1978                                  UseLargePages, addr);
  1980       if (addr != NULL && !heap_rs0.is_reserved()) {
  1981         // Failed to reserve at specified address again - give up.
  1982         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1983         assert(addr == NULL, "");
  1985         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1986                                    UseLargePages, addr);
  1987         heap_rs = heap_rs1;
  1988       } else {
  1989         heap_rs = heap_rs0;
  1994   if (!heap_rs.is_reserved()) {
  1995     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1996     return JNI_ENOMEM;
  1999   // It is important to do this in a way such that concurrent readers can't
  2000   // temporarily think somethings in the heap.  (I've actually seen this
  2001   // happen in asserts: DLD.)
  2002   _reserved.set_word_size(0);
  2003   _reserved.set_start((HeapWord*)heap_rs.base());
  2004   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2006   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2008   // Create the gen rem set (and barrier set) for the entire reserved region.
  2009   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2010   set_barrier_set(rem_set()->bs());
  2011   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2012     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2013   } else {
  2014     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2015     return JNI_ENOMEM;
  2018   // Also create a G1 rem set.
  2019   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2020     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2021   } else {
  2022     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2023     return JNI_ENOMEM;
  2026   // Carve out the G1 part of the heap.
  2028   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2029   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2030                            g1_rs.size()/HeapWordSize);
  2031   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2033   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2035   _g1_storage.initialize(g1_rs, 0);
  2036   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2037   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2038                   (HeapWord*) _g1_reserved.end(),
  2039                   _expansion_regions);
  2041   // 6843694 - ensure that the maximum region index can fit
  2042   // in the remembered set structures.
  2043   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2044   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2046   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2047   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2048   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2049             "too many cards per region");
  2051   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2053   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2054                                              heap_word_size(init_byte_size));
  2056   _g1h = this;
  2058    _in_cset_fast_test_length = max_regions();
  2059    _in_cset_fast_test_base =
  2060                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
  2062    // We're biasing _in_cset_fast_test to avoid subtracting the
  2063    // beginning of the heap every time we want to index; basically
  2064    // it's the same with what we do with the card table.
  2065    _in_cset_fast_test = _in_cset_fast_test_base -
  2066                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2068    // Clear the _cset_fast_test bitmap in anticipation of adding
  2069    // regions to the incremental collection set for the first
  2070    // evacuation pause.
  2071    clear_cset_fast_test();
  2073   // Create the ConcurrentMark data structure and thread.
  2074   // (Must do this late, so that "max_regions" is defined.)
  2075   _cm       = new ConcurrentMark(heap_rs, max_regions());
  2076   _cmThread = _cm->cmThread();
  2078   // Initialize the from_card cache structure of HeapRegionRemSet.
  2079   HeapRegionRemSet::init_heap(max_regions());
  2081   // Now expand into the initial heap size.
  2082   if (!expand(init_byte_size)) {
  2083     vm_exit_during_initialization("Failed to allocate initial heap.");
  2084     return JNI_ENOMEM;
  2087   // Perform any initialization actions delegated to the policy.
  2088   g1_policy()->init();
  2090   _refine_cte_cl =
  2091     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2092                                     g1_rem_set(),
  2093                                     concurrent_g1_refine());
  2094   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2096   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2097                                                SATB_Q_FL_lock,
  2098                                                G1SATBProcessCompletedThreshold,
  2099                                                Shared_SATB_Q_lock);
  2101   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2102                                                 DirtyCardQ_FL_lock,
  2103                                                 concurrent_g1_refine()->yellow_zone(),
  2104                                                 concurrent_g1_refine()->red_zone(),
  2105                                                 Shared_DirtyCardQ_lock);
  2107   if (G1DeferredRSUpdate) {
  2108     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2109                                       DirtyCardQ_FL_lock,
  2110                                       -1, // never trigger processing
  2111                                       -1, // no limit on length
  2112                                       Shared_DirtyCardQ_lock,
  2113                                       &JavaThread::dirty_card_queue_set());
  2116   // Initialize the card queue set used to hold cards containing
  2117   // references into the collection set.
  2118   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2119                                              DirtyCardQ_FL_lock,
  2120                                              -1, // never trigger processing
  2121                                              -1, // no limit on length
  2122                                              Shared_DirtyCardQ_lock,
  2123                                              &JavaThread::dirty_card_queue_set());
  2125   // In case we're keeping closure specialization stats, initialize those
  2126   // counts and that mechanism.
  2127   SpecializationStats::clear();
  2129   // Do later initialization work for concurrent refinement.
  2130   _cg1r->init();
  2132   // Here we allocate the dummy full region that is required by the
  2133   // G1AllocRegion class. If we don't pass an address in the reserved
  2134   // space here, lots of asserts fire.
  2136   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2137                                              _g1_reserved.start());
  2138   // We'll re-use the same region whether the alloc region will
  2139   // require BOT updates or not and, if it doesn't, then a non-young
  2140   // region will complain that it cannot support allocations without
  2141   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2142   dummy_region->set_young();
  2143   // Make sure it's full.
  2144   dummy_region->set_top(dummy_region->end());
  2145   G1AllocRegion::setup(this, dummy_region);
  2147   init_mutator_alloc_region();
  2149   // Do create of the monitoring and management support so that
  2150   // values in the heap have been properly initialized.
  2151   _g1mm = new G1MonitoringSupport(this);
  2153   return JNI_OK;
  2156 void G1CollectedHeap::ref_processing_init() {
  2157   // Reference processing in G1 currently works as follows:
  2158   //
  2159   // * There are two reference processor instances. One is
  2160   //   used to record and process discovered references
  2161   //   during concurrent marking; the other is used to
  2162   //   record and process references during STW pauses
  2163   //   (both full and incremental).
  2164   // * Both ref processors need to 'span' the entire heap as
  2165   //   the regions in the collection set may be dotted around.
  2166   //
  2167   // * For the concurrent marking ref processor:
  2168   //   * Reference discovery is enabled at initial marking.
  2169   //   * Reference discovery is disabled and the discovered
  2170   //     references processed etc during remarking.
  2171   //   * Reference discovery is MT (see below).
  2172   //   * Reference discovery requires a barrier (see below).
  2173   //   * Reference processing may or may not be MT
  2174   //     (depending on the value of ParallelRefProcEnabled
  2175   //     and ParallelGCThreads).
  2176   //   * A full GC disables reference discovery by the CM
  2177   //     ref processor and abandons any entries on it's
  2178   //     discovered lists.
  2179   //
  2180   // * For the STW processor:
  2181   //   * Non MT discovery is enabled at the start of a full GC.
  2182   //   * Processing and enqueueing during a full GC is non-MT.
  2183   //   * During a full GC, references are processed after marking.
  2184   //
  2185   //   * Discovery (may or may not be MT) is enabled at the start
  2186   //     of an incremental evacuation pause.
  2187   //   * References are processed near the end of a STW evacuation pause.
  2188   //   * For both types of GC:
  2189   //     * Discovery is atomic - i.e. not concurrent.
  2190   //     * Reference discovery will not need a barrier.
  2192   SharedHeap::ref_processing_init();
  2193   MemRegion mr = reserved_region();
  2195   // Concurrent Mark ref processor
  2196   _ref_processor_cm =
  2197     new ReferenceProcessor(mr,    // span
  2198                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2199                                 // mt processing
  2200                            (int) ParallelGCThreads,
  2201                                 // degree of mt processing
  2202                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2203                                 // mt discovery
  2204                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2205                                 // degree of mt discovery
  2206                            false,
  2207                                 // Reference discovery is not atomic
  2208                            &_is_alive_closure_cm,
  2209                                 // is alive closure
  2210                                 // (for efficiency/performance)
  2211                            true);
  2212                                 // Setting next fields of discovered
  2213                                 // lists requires a barrier.
  2215   // STW ref processor
  2216   _ref_processor_stw =
  2217     new ReferenceProcessor(mr,    // span
  2218                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2219                                 // mt processing
  2220                            MAX2((int)ParallelGCThreads, 1),
  2221                                 // degree of mt processing
  2222                            (ParallelGCThreads > 1),
  2223                                 // mt discovery
  2224                            MAX2((int)ParallelGCThreads, 1),
  2225                                 // degree of mt discovery
  2226                            true,
  2227                                 // Reference discovery is atomic
  2228                            &_is_alive_closure_stw,
  2229                                 // is alive closure
  2230                                 // (for efficiency/performance)
  2231                            false);
  2232                                 // Setting next fields of discovered
  2233                                 // lists requires a barrier.
  2236 size_t G1CollectedHeap::capacity() const {
  2237   return _g1_committed.byte_size();
  2240 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2241                                                  DirtyCardQueue* into_cset_dcq,
  2242                                                  bool concurrent,
  2243                                                  int worker_i) {
  2244   // Clean cards in the hot card cache
  2245   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2247   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2248   int n_completed_buffers = 0;
  2249   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2250     n_completed_buffers++;
  2252   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2253                                                   (double) n_completed_buffers);
  2254   dcqs.clear_n_completed_buffers();
  2255   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2259 // Computes the sum of the storage used by the various regions.
  2261 size_t G1CollectedHeap::used() const {
  2262   assert(Heap_lock->owner() != NULL,
  2263          "Should be owned on this thread's behalf.");
  2264   size_t result = _summary_bytes_used;
  2265   // Read only once in case it is set to NULL concurrently
  2266   HeapRegion* hr = _mutator_alloc_region.get();
  2267   if (hr != NULL)
  2268     result += hr->used();
  2269   return result;
  2272 size_t G1CollectedHeap::used_unlocked() const {
  2273   size_t result = _summary_bytes_used;
  2274   return result;
  2277 class SumUsedClosure: public HeapRegionClosure {
  2278   size_t _used;
  2279 public:
  2280   SumUsedClosure() : _used(0) {}
  2281   bool doHeapRegion(HeapRegion* r) {
  2282     if (!r->continuesHumongous()) {
  2283       _used += r->used();
  2285     return false;
  2287   size_t result() { return _used; }
  2288 };
  2290 size_t G1CollectedHeap::recalculate_used() const {
  2291   SumUsedClosure blk;
  2292   heap_region_iterate(&blk);
  2293   return blk.result();
  2296 size_t G1CollectedHeap::unsafe_max_alloc() {
  2297   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2298   // otherwise, is there space in the current allocation region?
  2300   // We need to store the current allocation region in a local variable
  2301   // here. The problem is that this method doesn't take any locks and
  2302   // there may be other threads which overwrite the current allocation
  2303   // region field. attempt_allocation(), for example, sets it to NULL
  2304   // and this can happen *after* the NULL check here but before the call
  2305   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2306   // to be a problem in the optimized build, since the two loads of the
  2307   // current allocation region field are optimized away.
  2308   HeapRegion* hr = _mutator_alloc_region.get();
  2309   if (hr == NULL) {
  2310     return 0;
  2312   return hr->free();
  2315 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2316   switch (cause) {
  2317     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2318     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2319     case GCCause::_g1_humongous_allocation: return true;
  2320     default:                                return false;
  2324 #ifndef PRODUCT
  2325 void G1CollectedHeap::allocate_dummy_regions() {
  2326   // Let's fill up most of the region
  2327   size_t word_size = HeapRegion::GrainWords - 1024;
  2328   // And as a result the region we'll allocate will be humongous.
  2329   guarantee(isHumongous(word_size), "sanity");
  2331   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2332     // Let's use the existing mechanism for the allocation
  2333     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2334     if (dummy_obj != NULL) {
  2335       MemRegion mr(dummy_obj, word_size);
  2336       CollectedHeap::fill_with_object(mr);
  2337     } else {
  2338       // If we can't allocate once, we probably cannot allocate
  2339       // again. Let's get out of the loop.
  2340       break;
  2344 #endif // !PRODUCT
  2346 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2347   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2349   // We assume that if concurrent == true, then the caller is a
  2350   // concurrent thread that was joined the Suspendible Thread
  2351   // Set. If there's ever a cheap way to check this, we should add an
  2352   // assert here.
  2354   // We have already incremented _total_full_collections at the start
  2355   // of the GC, so total_full_collections() represents how many full
  2356   // collections have been started.
  2357   unsigned int full_collections_started = total_full_collections();
  2359   // Given that this method is called at the end of a Full GC or of a
  2360   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2361   // interrupt a concurrent cycle), the number of full collections
  2362   // completed should be either one (in the case where there was no
  2363   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2364   // behind the number of full collections started.
  2366   // This is the case for the inner caller, i.e. a Full GC.
  2367   assert(concurrent ||
  2368          (full_collections_started == _full_collections_completed + 1) ||
  2369          (full_collections_started == _full_collections_completed + 2),
  2370          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2371                  "is inconsistent with _full_collections_completed = %u",
  2372                  full_collections_started, _full_collections_completed));
  2374   // This is the case for the outer caller, i.e. the concurrent cycle.
  2375   assert(!concurrent ||
  2376          (full_collections_started == _full_collections_completed + 1),
  2377          err_msg("for outer caller (concurrent cycle): "
  2378                  "full_collections_started = %u "
  2379                  "is inconsistent with _full_collections_completed = %u",
  2380                  full_collections_started, _full_collections_completed));
  2382   _full_collections_completed += 1;
  2384   // We need to clear the "in_progress" flag in the CM thread before
  2385   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2386   // is set) so that if a waiter requests another System.gc() it doesn't
  2387   // incorrectly see that a marking cyle is still in progress.
  2388   if (concurrent) {
  2389     _cmThread->clear_in_progress();
  2392   // This notify_all() will ensure that a thread that called
  2393   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2394   // and it's waiting for a full GC to finish will be woken up. It is
  2395   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2396   FullGCCount_lock->notify_all();
  2399 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2400   assert_at_safepoint(true /* should_be_vm_thread */);
  2401   GCCauseSetter gcs(this, cause);
  2402   switch (cause) {
  2403     case GCCause::_heap_inspection:
  2404     case GCCause::_heap_dump: {
  2405       HandleMark hm;
  2406       do_full_collection(false);         // don't clear all soft refs
  2407       break;
  2409     default: // XXX FIX ME
  2410       ShouldNotReachHere(); // Unexpected use of this function
  2414 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2415   assert_heap_not_locked();
  2417   unsigned int gc_count_before;
  2418   unsigned int full_gc_count_before;
  2419   bool retry_gc;
  2421   do {
  2422     retry_gc = false;
  2425       MutexLocker ml(Heap_lock);
  2427       // Read the GC count while holding the Heap_lock
  2428       gc_count_before = total_collections();
  2429       full_gc_count_before = total_full_collections();
  2432     if (should_do_concurrent_full_gc(cause)) {
  2433       // Schedule an initial-mark evacuation pause that will start a
  2434       // concurrent cycle. We're setting word_size to 0 which means that
  2435       // we are not requesting a post-GC allocation.
  2436       VM_G1IncCollectionPause op(gc_count_before,
  2437                                  0,     /* word_size */
  2438                                  true,  /* should_initiate_conc_mark */
  2439                                  g1_policy()->max_pause_time_ms(),
  2440                                  cause);
  2442       VMThread::execute(&op);
  2443       if (!op.pause_succeeded()) {
  2444         if (full_gc_count_before == total_full_collections()) {
  2445           retry_gc = op.should_retry_gc();
  2446         } else {
  2447           // A Full GC happened while we were trying to schedule the
  2448           // initial-mark GC. No point in starting a new cycle given
  2449           // that the whole heap was collected anyway.
  2452         if (retry_gc) {
  2453           if (GC_locker::is_active_and_needs_gc()) {
  2454             GC_locker::stall_until_clear();
  2458     } else {
  2459       if (cause == GCCause::_gc_locker
  2460           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2462         // Schedule a standard evacuation pause. We're setting word_size
  2463         // to 0 which means that we are not requesting a post-GC allocation.
  2464         VM_G1IncCollectionPause op(gc_count_before,
  2465                                    0,     /* word_size */
  2466                                    false, /* should_initiate_conc_mark */
  2467                                    g1_policy()->max_pause_time_ms(),
  2468                                    cause);
  2469         VMThread::execute(&op);
  2470       } else {
  2471         // Schedule a Full GC.
  2472         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2473         VMThread::execute(&op);
  2476   } while (retry_gc);
  2479 bool G1CollectedHeap::is_in(const void* p) const {
  2480   if (_g1_committed.contains(p)) {
  2481     // Given that we know that p is in the committed space,
  2482     // heap_region_containing_raw() should successfully
  2483     // return the containing region.
  2484     HeapRegion* hr = heap_region_containing_raw(p);
  2485     return hr->is_in(p);
  2486   } else {
  2487     return _perm_gen->as_gen()->is_in(p);
  2491 // Iteration functions.
  2493 // Iterates an OopClosure over all ref-containing fields of objects
  2494 // within a HeapRegion.
  2496 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2497   MemRegion _mr;
  2498   OopClosure* _cl;
  2499 public:
  2500   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2501     : _mr(mr), _cl(cl) {}
  2502   bool doHeapRegion(HeapRegion* r) {
  2503     if (! r->continuesHumongous()) {
  2504       r->oop_iterate(_cl);
  2506     return false;
  2508 };
  2510 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2511   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2512   heap_region_iterate(&blk);
  2513   if (do_perm) {
  2514     perm_gen()->oop_iterate(cl);
  2518 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2519   IterateOopClosureRegionClosure blk(mr, cl);
  2520   heap_region_iterate(&blk);
  2521   if (do_perm) {
  2522     perm_gen()->oop_iterate(cl);
  2526 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2528 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2529   ObjectClosure* _cl;
  2530 public:
  2531   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2532   bool doHeapRegion(HeapRegion* r) {
  2533     if (! r->continuesHumongous()) {
  2534       r->object_iterate(_cl);
  2536     return false;
  2538 };
  2540 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2541   IterateObjectClosureRegionClosure blk(cl);
  2542   heap_region_iterate(&blk);
  2543   if (do_perm) {
  2544     perm_gen()->object_iterate(cl);
  2548 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2549   // FIXME: is this right?
  2550   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2553 // Calls a SpaceClosure on a HeapRegion.
  2555 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2556   SpaceClosure* _cl;
  2557 public:
  2558   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2559   bool doHeapRegion(HeapRegion* r) {
  2560     _cl->do_space(r);
  2561     return false;
  2563 };
  2565 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2566   SpaceClosureRegionClosure blk(cl);
  2567   heap_region_iterate(&blk);
  2570 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2571   _hrs.iterate(cl);
  2574 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2575                                                HeapRegionClosure* cl) const {
  2576   _hrs.iterate_from(r, cl);
  2579 void
  2580 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2581                                                  uint worker,
  2582                                                  uint no_of_par_workers,
  2583                                                  jint claim_value) {
  2584   const uint regions = n_regions();
  2585   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2586                              no_of_par_workers :
  2587                              1);
  2588   assert(UseDynamicNumberOfGCThreads ||
  2589          no_of_par_workers == workers()->total_workers(),
  2590          "Non dynamic should use fixed number of workers");
  2591   // try to spread out the starting points of the workers
  2592   const uint start_index = regions / max_workers * worker;
  2594   // each worker will actually look at all regions
  2595   for (uint count = 0; count < regions; ++count) {
  2596     const uint index = (start_index + count) % regions;
  2597     assert(0 <= index && index < regions, "sanity");
  2598     HeapRegion* r = region_at(index);
  2599     // we'll ignore "continues humongous" regions (we'll process them
  2600     // when we come across their corresponding "start humongous"
  2601     // region) and regions already claimed
  2602     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2603       continue;
  2605     // OK, try to claim it
  2606     if (r->claimHeapRegion(claim_value)) {
  2607       // success!
  2608       assert(!r->continuesHumongous(), "sanity");
  2609       if (r->startsHumongous()) {
  2610         // If the region is "starts humongous" we'll iterate over its
  2611         // "continues humongous" first; in fact we'll do them
  2612         // first. The order is important. In on case, calling the
  2613         // closure on the "starts humongous" region might de-allocate
  2614         // and clear all its "continues humongous" regions and, as a
  2615         // result, we might end up processing them twice. So, we'll do
  2616         // them first (notice: most closures will ignore them anyway) and
  2617         // then we'll do the "starts humongous" region.
  2618         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2619           HeapRegion* chr = region_at(ch_index);
  2621           // if the region has already been claimed or it's not
  2622           // "continues humongous" we're done
  2623           if (chr->claim_value() == claim_value ||
  2624               !chr->continuesHumongous()) {
  2625             break;
  2628           // Noone should have claimed it directly. We can given
  2629           // that we claimed its "starts humongous" region.
  2630           assert(chr->claim_value() != claim_value, "sanity");
  2631           assert(chr->humongous_start_region() == r, "sanity");
  2633           if (chr->claimHeapRegion(claim_value)) {
  2634             // we should always be able to claim it; noone else should
  2635             // be trying to claim this region
  2637             bool res2 = cl->doHeapRegion(chr);
  2638             assert(!res2, "Should not abort");
  2640             // Right now, this holds (i.e., no closure that actually
  2641             // does something with "continues humongous" regions
  2642             // clears them). We might have to weaken it in the future,
  2643             // but let's leave these two asserts here for extra safety.
  2644             assert(chr->continuesHumongous(), "should still be the case");
  2645             assert(chr->humongous_start_region() == r, "sanity");
  2646           } else {
  2647             guarantee(false, "we should not reach here");
  2652       assert(!r->continuesHumongous(), "sanity");
  2653       bool res = cl->doHeapRegion(r);
  2654       assert(!res, "Should not abort");
  2659 class ResetClaimValuesClosure: public HeapRegionClosure {
  2660 public:
  2661   bool doHeapRegion(HeapRegion* r) {
  2662     r->set_claim_value(HeapRegion::InitialClaimValue);
  2663     return false;
  2665 };
  2667 void G1CollectedHeap::reset_heap_region_claim_values() {
  2668   ResetClaimValuesClosure blk;
  2669   heap_region_iterate(&blk);
  2672 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2673   ResetClaimValuesClosure blk;
  2674   collection_set_iterate(&blk);
  2677 #ifdef ASSERT
  2678 // This checks whether all regions in the heap have the correct claim
  2679 // value. I also piggy-backed on this a check to ensure that the
  2680 // humongous_start_region() information on "continues humongous"
  2681 // regions is correct.
  2683 class CheckClaimValuesClosure : public HeapRegionClosure {
  2684 private:
  2685   jint _claim_value;
  2686   uint _failures;
  2687   HeapRegion* _sh_region;
  2689 public:
  2690   CheckClaimValuesClosure(jint claim_value) :
  2691     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2692   bool doHeapRegion(HeapRegion* r) {
  2693     if (r->claim_value() != _claim_value) {
  2694       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2695                              "claim value = %d, should be %d",
  2696                              HR_FORMAT_PARAMS(r),
  2697                              r->claim_value(), _claim_value);
  2698       ++_failures;
  2700     if (!r->isHumongous()) {
  2701       _sh_region = NULL;
  2702     } else if (r->startsHumongous()) {
  2703       _sh_region = r;
  2704     } else if (r->continuesHumongous()) {
  2705       if (r->humongous_start_region() != _sh_region) {
  2706         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2707                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2708                                HR_FORMAT_PARAMS(r),
  2709                                r->humongous_start_region(),
  2710                                _sh_region);
  2711         ++_failures;
  2714     return false;
  2716   uint failures() { return _failures; }
  2717 };
  2719 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2720   CheckClaimValuesClosure cl(claim_value);
  2721   heap_region_iterate(&cl);
  2722   return cl.failures() == 0;
  2725 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2726 private:
  2727   jint _claim_value;
  2728   uint _failures;
  2730 public:
  2731   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2732     _claim_value(claim_value), _failures(0) { }
  2734   uint failures() { return _failures; }
  2736   bool doHeapRegion(HeapRegion* hr) {
  2737     assert(hr->in_collection_set(), "how?");
  2738     assert(!hr->isHumongous(), "H-region in CSet");
  2739     if (hr->claim_value() != _claim_value) {
  2740       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2741                              "claim value = %d, should be %d",
  2742                              HR_FORMAT_PARAMS(hr),
  2743                              hr->claim_value(), _claim_value);
  2744       _failures += 1;
  2746     return false;
  2748 };
  2750 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2751   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2752   collection_set_iterate(&cl);
  2753   return cl.failures() == 0;
  2755 #endif // ASSERT
  2757 // Clear the cached CSet starting regions and (more importantly)
  2758 // the time stamps. Called when we reset the GC time stamp.
  2759 void G1CollectedHeap::clear_cset_start_regions() {
  2760   assert(_worker_cset_start_region != NULL, "sanity");
  2761   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2763   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2764   for (int i = 0; i < n_queues; i++) {
  2765     _worker_cset_start_region[i] = NULL;
  2766     _worker_cset_start_region_time_stamp[i] = 0;
  2770 // Given the id of a worker, obtain or calculate a suitable
  2771 // starting region for iterating over the current collection set.
  2772 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2773   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2775   HeapRegion* result = NULL;
  2776   unsigned gc_time_stamp = get_gc_time_stamp();
  2778   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2779     // Cached starting region for current worker was set
  2780     // during the current pause - so it's valid.
  2781     // Note: the cached starting heap region may be NULL
  2782     // (when the collection set is empty).
  2783     result = _worker_cset_start_region[worker_i];
  2784     assert(result == NULL || result->in_collection_set(), "sanity");
  2785     return result;
  2788   // The cached entry was not valid so let's calculate
  2789   // a suitable starting heap region for this worker.
  2791   // We want the parallel threads to start their collection
  2792   // set iteration at different collection set regions to
  2793   // avoid contention.
  2794   // If we have:
  2795   //          n collection set regions
  2796   //          p threads
  2797   // Then thread t will start at region floor ((t * n) / p)
  2799   result = g1_policy()->collection_set();
  2800   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2801     uint cs_size = g1_policy()->cset_region_length();
  2802     uint active_workers = workers()->active_workers();
  2803     assert(UseDynamicNumberOfGCThreads ||
  2804              active_workers == workers()->total_workers(),
  2805              "Unless dynamic should use total workers");
  2807     uint end_ind   = (cs_size * worker_i) / active_workers;
  2808     uint start_ind = 0;
  2810     if (worker_i > 0 &&
  2811         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2812       // Previous workers starting region is valid
  2813       // so let's iterate from there
  2814       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2815       result = _worker_cset_start_region[worker_i - 1];
  2818     for (uint i = start_ind; i < end_ind; i++) {
  2819       result = result->next_in_collection_set();
  2823   // Note: the calculated starting heap region may be NULL
  2824   // (when the collection set is empty).
  2825   assert(result == NULL || result->in_collection_set(), "sanity");
  2826   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2827          "should be updated only once per pause");
  2828   _worker_cset_start_region[worker_i] = result;
  2829   OrderAccess::storestore();
  2830   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2831   return result;
  2834 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2835   HeapRegion* r = g1_policy()->collection_set();
  2836   while (r != NULL) {
  2837     HeapRegion* next = r->next_in_collection_set();
  2838     if (cl->doHeapRegion(r)) {
  2839       cl->incomplete();
  2840       return;
  2842     r = next;
  2846 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2847                                                   HeapRegionClosure *cl) {
  2848   if (r == NULL) {
  2849     // The CSet is empty so there's nothing to do.
  2850     return;
  2853   assert(r->in_collection_set(),
  2854          "Start region must be a member of the collection set.");
  2855   HeapRegion* cur = r;
  2856   while (cur != NULL) {
  2857     HeapRegion* next = cur->next_in_collection_set();
  2858     if (cl->doHeapRegion(cur) && false) {
  2859       cl->incomplete();
  2860       return;
  2862     cur = next;
  2864   cur = g1_policy()->collection_set();
  2865   while (cur != r) {
  2866     HeapRegion* next = cur->next_in_collection_set();
  2867     if (cl->doHeapRegion(cur) && false) {
  2868       cl->incomplete();
  2869       return;
  2871     cur = next;
  2875 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2876   return n_regions() > 0 ? region_at(0) : NULL;
  2880 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2881   Space* res = heap_region_containing(addr);
  2882   if (res == NULL)
  2883     res = perm_gen()->space_containing(addr);
  2884   return res;
  2887 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2888   Space* sp = space_containing(addr);
  2889   if (sp != NULL) {
  2890     return sp->block_start(addr);
  2892   return NULL;
  2895 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2896   Space* sp = space_containing(addr);
  2897   assert(sp != NULL, "block_size of address outside of heap");
  2898   return sp->block_size(addr);
  2901 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2902   Space* sp = space_containing(addr);
  2903   return sp->block_is_obj(addr);
  2906 bool G1CollectedHeap::supports_tlab_allocation() const {
  2907   return true;
  2910 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2911   return HeapRegion::GrainBytes;
  2914 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2915   // Return the remaining space in the cur alloc region, but not less than
  2916   // the min TLAB size.
  2918   // Also, this value can be at most the humongous object threshold,
  2919   // since we can't allow tlabs to grow big enough to accomodate
  2920   // humongous objects.
  2922   HeapRegion* hr = _mutator_alloc_region.get();
  2923   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2924   if (hr == NULL) {
  2925     return max_tlab_size;
  2926   } else {
  2927     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2931 size_t G1CollectedHeap::max_capacity() const {
  2932   return _g1_reserved.byte_size();
  2935 jlong G1CollectedHeap::millis_since_last_gc() {
  2936   // assert(false, "NYI");
  2937   return 0;
  2940 void G1CollectedHeap::prepare_for_verify() {
  2941   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2942     ensure_parsability(false);
  2944   g1_rem_set()->prepare_for_verify();
  2947 class VerifyLivenessOopClosure: public OopClosure {
  2948   G1CollectedHeap* _g1h;
  2949   VerifyOption _vo;
  2950 public:
  2951   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2952     _g1h(g1h), _vo(vo)
  2953   { }
  2954   void do_oop(narrowOop *p) { do_oop_work(p); }
  2955   void do_oop(      oop *p) { do_oop_work(p); }
  2957   template <class T> void do_oop_work(T *p) {
  2958     oop obj = oopDesc::load_decode_heap_oop(p);
  2959     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2960               "Dead object referenced by a not dead object");
  2962 };
  2964 class VerifyObjsInRegionClosure: public ObjectClosure {
  2965 private:
  2966   G1CollectedHeap* _g1h;
  2967   size_t _live_bytes;
  2968   HeapRegion *_hr;
  2969   VerifyOption _vo;
  2970 public:
  2971   // _vo == UsePrevMarking -> use "prev" marking information,
  2972   // _vo == UseNextMarking -> use "next" marking information,
  2973   // _vo == UseMarkWord    -> use mark word from object header.
  2974   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2975     : _live_bytes(0), _hr(hr), _vo(vo) {
  2976     _g1h = G1CollectedHeap::heap();
  2978   void do_object(oop o) {
  2979     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2980     assert(o != NULL, "Huh?");
  2981     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2982       // If the object is alive according to the mark word,
  2983       // then verify that the marking information agrees.
  2984       // Note we can't verify the contra-positive of the
  2985       // above: if the object is dead (according to the mark
  2986       // word), it may not be marked, or may have been marked
  2987       // but has since became dead, or may have been allocated
  2988       // since the last marking.
  2989       if (_vo == VerifyOption_G1UseMarkWord) {
  2990         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2993       o->oop_iterate(&isLive);
  2994       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2995         size_t obj_size = o->size();    // Make sure we don't overflow
  2996         _live_bytes += (obj_size * HeapWordSize);
  3000   size_t live_bytes() { return _live_bytes; }
  3001 };
  3003 class PrintObjsInRegionClosure : public ObjectClosure {
  3004   HeapRegion *_hr;
  3005   G1CollectedHeap *_g1;
  3006 public:
  3007   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3008     _g1 = G1CollectedHeap::heap();
  3009   };
  3011   void do_object(oop o) {
  3012     if (o != NULL) {
  3013       HeapWord *start = (HeapWord *) o;
  3014       size_t word_sz = o->size();
  3015       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3016                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3017                           (void*) o, word_sz,
  3018                           _g1->isMarkedPrev(o),
  3019                           _g1->isMarkedNext(o),
  3020                           _hr->obj_allocated_since_prev_marking(o));
  3021       HeapWord *end = start + word_sz;
  3022       HeapWord *cur;
  3023       int *val;
  3024       for (cur = start; cur < end; cur++) {
  3025         val = (int *) cur;
  3026         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3030 };
  3032 class VerifyRegionClosure: public HeapRegionClosure {
  3033 private:
  3034   bool         _par;
  3035   VerifyOption _vo;
  3036   bool         _failures;
  3037 public:
  3038   // _vo == UsePrevMarking -> use "prev" marking information,
  3039   // _vo == UseNextMarking -> use "next" marking information,
  3040   // _vo == UseMarkWord    -> use mark word from object header.
  3041   VerifyRegionClosure(bool par, VerifyOption vo)
  3042     : _par(par),
  3043       _vo(vo),
  3044       _failures(false) {}
  3046   bool failures() {
  3047     return _failures;
  3050   bool doHeapRegion(HeapRegion* r) {
  3051     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  3052               "Should be unclaimed at verify points.");
  3053     if (!r->continuesHumongous()) {
  3054       bool failures = false;
  3055       r->verify(_vo, &failures);
  3056       if (failures) {
  3057         _failures = true;
  3058       } else {
  3059         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3060         r->object_iterate(&not_dead_yet_cl);
  3061         if (_vo != VerifyOption_G1UseNextMarking) {
  3062           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3063             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3064                                    "max_live_bytes "SIZE_FORMAT" "
  3065                                    "< calculated "SIZE_FORMAT,
  3066                                    r->bottom(), r->end(),
  3067                                    r->max_live_bytes(),
  3068                                  not_dead_yet_cl.live_bytes());
  3069             _failures = true;
  3071         } else {
  3072           // When vo == UseNextMarking we cannot currently do a sanity
  3073           // check on the live bytes as the calculation has not been
  3074           // finalized yet.
  3078     return false; // stop the region iteration if we hit a failure
  3080 };
  3082 class VerifyRootsClosure: public OopsInGenClosure {
  3083 private:
  3084   G1CollectedHeap* _g1h;
  3085   VerifyOption     _vo;
  3086   bool             _failures;
  3087 public:
  3088   // _vo == UsePrevMarking -> use "prev" marking information,
  3089   // _vo == UseNextMarking -> use "next" marking information,
  3090   // _vo == UseMarkWord    -> use mark word from object header.
  3091   VerifyRootsClosure(VerifyOption vo) :
  3092     _g1h(G1CollectedHeap::heap()),
  3093     _vo(vo),
  3094     _failures(false) { }
  3096   bool failures() { return _failures; }
  3098   template <class T> void do_oop_nv(T* p) {
  3099     T heap_oop = oopDesc::load_heap_oop(p);
  3100     if (!oopDesc::is_null(heap_oop)) {
  3101       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3102       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3103         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3104                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3105         if (_vo == VerifyOption_G1UseMarkWord) {
  3106           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3108         obj->print_on(gclog_or_tty);
  3109         _failures = true;
  3114   void do_oop(oop* p)       { do_oop_nv(p); }
  3115   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3116 };
  3118 // This is the task used for parallel heap verification.
  3120 class G1ParVerifyTask: public AbstractGangTask {
  3121 private:
  3122   G1CollectedHeap* _g1h;
  3123   VerifyOption     _vo;
  3124   bool             _failures;
  3126 public:
  3127   // _vo == UsePrevMarking -> use "prev" marking information,
  3128   // _vo == UseNextMarking -> use "next" marking information,
  3129   // _vo == UseMarkWord    -> use mark word from object header.
  3130   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3131     AbstractGangTask("Parallel verify task"),
  3132     _g1h(g1h),
  3133     _vo(vo),
  3134     _failures(false) { }
  3136   bool failures() {
  3137     return _failures;
  3140   void work(uint worker_id) {
  3141     HandleMark hm;
  3142     VerifyRegionClosure blk(true, _vo);
  3143     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3144                                           _g1h->workers()->active_workers(),
  3145                                           HeapRegion::ParVerifyClaimValue);
  3146     if (blk.failures()) {
  3147       _failures = true;
  3150 };
  3152 void G1CollectedHeap::verify(bool silent) {
  3153   verify(silent, VerifyOption_G1UsePrevMarking);
  3156 void G1CollectedHeap::verify(bool silent,
  3157                              VerifyOption vo) {
  3158   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3159     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3160     VerifyRootsClosure rootsCl(vo);
  3162     assert(Thread::current()->is_VM_thread(),
  3163       "Expected to be executed serially by the VM thread at this point");
  3165     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3167     // We apply the relevant closures to all the oops in the
  3168     // system dictionary, the string table and the code cache.
  3169     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3171     process_strong_roots(true,      // activate StrongRootsScope
  3172                          true,      // we set "collecting perm gen" to true,
  3173                                     // so we don't reset the dirty cards in the perm gen.
  3174                          ScanningOption(so),  // roots scanning options
  3175                          &rootsCl,
  3176                          &blobsCl,
  3177                          &rootsCl);
  3179     // If we're verifying after the marking phase of a Full GC then we can't
  3180     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3181     // the perm gen may be dead and hence not marked. If one of these dead
  3182     // objects is considered to be a root then we may end up with a false
  3183     // "Root location <x> points to dead ob <y>" failure.
  3184     if (vo != VerifyOption_G1UseMarkWord) {
  3185       // Since we used "collecting_perm_gen" == true above, we will not have
  3186       // checked the refs from perm into the G1-collected heap. We check those
  3187       // references explicitly below. Whether the relevant cards are dirty
  3188       // is checked further below in the rem set verification.
  3189       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3190       perm_gen()->oop_iterate(&rootsCl);
  3192     bool failures = rootsCl.failures();
  3194     if (vo != VerifyOption_G1UseMarkWord) {
  3195       // If we're verifying during a full GC then the region sets
  3196       // will have been torn down at the start of the GC. Therefore
  3197       // verifying the region sets will fail. So we only verify
  3198       // the region sets when not in a full GC.
  3199       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3200       verify_region_sets();
  3203     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3204     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3205       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3206              "sanity check");
  3208       G1ParVerifyTask task(this, vo);
  3209       assert(UseDynamicNumberOfGCThreads ||
  3210         workers()->active_workers() == workers()->total_workers(),
  3211         "If not dynamic should be using all the workers");
  3212       int n_workers = workers()->active_workers();
  3213       set_par_threads(n_workers);
  3214       workers()->run_task(&task);
  3215       set_par_threads(0);
  3216       if (task.failures()) {
  3217         failures = true;
  3220       // Checks that the expected amount of parallel work was done.
  3221       // The implication is that n_workers is > 0.
  3222       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3223              "sanity check");
  3225       reset_heap_region_claim_values();
  3227       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3228              "sanity check");
  3229     } else {
  3230       VerifyRegionClosure blk(false, vo);
  3231       heap_region_iterate(&blk);
  3232       if (blk.failures()) {
  3233         failures = true;
  3236     if (!silent) gclog_or_tty->print("RemSet ");
  3237     rem_set()->verify();
  3239     if (failures) {
  3240       gclog_or_tty->print_cr("Heap:");
  3241       // It helps to have the per-region information in the output to
  3242       // help us track down what went wrong. This is why we call
  3243       // print_extended_on() instead of print_on().
  3244       print_extended_on(gclog_or_tty);
  3245       gclog_or_tty->print_cr("");
  3246 #ifndef PRODUCT
  3247       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3248         concurrent_mark()->print_reachable("at-verification-failure",
  3249                                            vo, false /* all */);
  3251 #endif
  3252       gclog_or_tty->flush();
  3254     guarantee(!failures, "there should not have been any failures");
  3255   } else {
  3256     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3260 class PrintRegionClosure: public HeapRegionClosure {
  3261   outputStream* _st;
  3262 public:
  3263   PrintRegionClosure(outputStream* st) : _st(st) {}
  3264   bool doHeapRegion(HeapRegion* r) {
  3265     r->print_on(_st);
  3266     return false;
  3268 };
  3270 void G1CollectedHeap::print_on(outputStream* st) const {
  3271   st->print(" %-20s", "garbage-first heap");
  3272   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3273             capacity()/K, used_unlocked()/K);
  3274   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3275             _g1_storage.low_boundary(),
  3276             _g1_storage.high(),
  3277             _g1_storage.high_boundary());
  3278   st->cr();
  3279   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3280   uint young_regions = _young_list->length();
  3281   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3282             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3283   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3284   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3285             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3286   st->cr();
  3287   perm()->as_gen()->print_on(st);
  3290 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3291   print_on(st);
  3293   // Print the per-region information.
  3294   st->cr();
  3295   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3296                "HS=humongous(starts), HC=humongous(continues), "
  3297                "CS=collection set, F=free, TS=gc time stamp, "
  3298                "PTAMS=previous top-at-mark-start, "
  3299                "NTAMS=next top-at-mark-start)");
  3300   PrintRegionClosure blk(st);
  3301   heap_region_iterate(&blk);
  3304 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3305   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3306     workers()->print_worker_threads_on(st);
  3308   _cmThread->print_on(st);
  3309   st->cr();
  3310   _cm->print_worker_threads_on(st);
  3311   _cg1r->print_worker_threads_on(st);
  3312   st->cr();
  3315 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3316   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3317     workers()->threads_do(tc);
  3319   tc->do_thread(_cmThread);
  3320   _cg1r->threads_do(tc);
  3323 void G1CollectedHeap::print_tracing_info() const {
  3324   // We'll overload this to mean "trace GC pause statistics."
  3325   if (TraceGen0Time || TraceGen1Time) {
  3326     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3327     // to that.
  3328     g1_policy()->print_tracing_info();
  3330   if (G1SummarizeRSetStats) {
  3331     g1_rem_set()->print_summary_info();
  3333   if (G1SummarizeConcMark) {
  3334     concurrent_mark()->print_summary_info();
  3336   g1_policy()->print_yg_surv_rate_info();
  3337   SpecializationStats::print();
  3340 #ifndef PRODUCT
  3341 // Helpful for debugging RSet issues.
  3343 class PrintRSetsClosure : public HeapRegionClosure {
  3344 private:
  3345   const char* _msg;
  3346   size_t _occupied_sum;
  3348 public:
  3349   bool doHeapRegion(HeapRegion* r) {
  3350     HeapRegionRemSet* hrrs = r->rem_set();
  3351     size_t occupied = hrrs->occupied();
  3352     _occupied_sum += occupied;
  3354     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3355                            HR_FORMAT_PARAMS(r));
  3356     if (occupied == 0) {
  3357       gclog_or_tty->print_cr("  RSet is empty");
  3358     } else {
  3359       hrrs->print();
  3361     gclog_or_tty->print_cr("----------");
  3362     return false;
  3365   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3366     gclog_or_tty->cr();
  3367     gclog_or_tty->print_cr("========================================");
  3368     gclog_or_tty->print_cr(msg);
  3369     gclog_or_tty->cr();
  3372   ~PrintRSetsClosure() {
  3373     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3374     gclog_or_tty->print_cr("========================================");
  3375     gclog_or_tty->cr();
  3377 };
  3379 void G1CollectedHeap::print_cset_rsets() {
  3380   PrintRSetsClosure cl("Printing CSet RSets");
  3381   collection_set_iterate(&cl);
  3384 void G1CollectedHeap::print_all_rsets() {
  3385   PrintRSetsClosure cl("Printing All RSets");;
  3386   heap_region_iterate(&cl);
  3388 #endif // PRODUCT
  3390 G1CollectedHeap* G1CollectedHeap::heap() {
  3391   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3392          "not a garbage-first heap");
  3393   return _g1h;
  3396 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3397   // always_do_update_barrier = false;
  3398   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3399   // Call allocation profiler
  3400   AllocationProfiler::iterate_since_last_gc();
  3401   // Fill TLAB's and such
  3402   ensure_parsability(true);
  3405 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3406   // FIXME: what is this about?
  3407   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3408   // is set.
  3409   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3410                         "derived pointer present"));
  3411   // always_do_update_barrier = true;
  3413   // We have just completed a GC. Update the soft reference
  3414   // policy with the new heap occupancy
  3415   Universe::update_heap_info_at_gc();
  3418 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3419                                                unsigned int gc_count_before,
  3420                                                bool* succeeded) {
  3421   assert_heap_not_locked_and_not_at_safepoint();
  3422   g1_policy()->record_stop_world_start();
  3423   VM_G1IncCollectionPause op(gc_count_before,
  3424                              word_size,
  3425                              false, /* should_initiate_conc_mark */
  3426                              g1_policy()->max_pause_time_ms(),
  3427                              GCCause::_g1_inc_collection_pause);
  3428   VMThread::execute(&op);
  3430   HeapWord* result = op.result();
  3431   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3432   assert(result == NULL || ret_succeeded,
  3433          "the result should be NULL if the VM did not succeed");
  3434   *succeeded = ret_succeeded;
  3436   assert_heap_not_locked();
  3437   return result;
  3440 void
  3441 G1CollectedHeap::doConcurrentMark() {
  3442   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3443   if (!_cmThread->in_progress()) {
  3444     _cmThread->set_started();
  3445     CGC_lock->notify();
  3449 size_t G1CollectedHeap::pending_card_num() {
  3450   size_t extra_cards = 0;
  3451   JavaThread *curr = Threads::first();
  3452   while (curr != NULL) {
  3453     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3454     extra_cards += dcq.size();
  3455     curr = curr->next();
  3457   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3458   size_t buffer_size = dcqs.buffer_size();
  3459   size_t buffer_num = dcqs.completed_buffers_num();
  3460   return buffer_size * buffer_num + extra_cards;
  3463 size_t G1CollectedHeap::max_pending_card_num() {
  3464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3465   size_t buffer_size = dcqs.buffer_size();
  3466   size_t buffer_num  = dcqs.completed_buffers_num();
  3467   int thread_num  = Threads::number_of_threads();
  3468   return (buffer_num + thread_num) * buffer_size;
  3471 size_t G1CollectedHeap::cards_scanned() {
  3472   return g1_rem_set()->cardsScanned();
  3475 void
  3476 G1CollectedHeap::setup_surviving_young_words() {
  3477   assert(_surviving_young_words == NULL, "pre-condition");
  3478   uint array_length = g1_policy()->young_cset_region_length();
  3479   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
  3480   if (_surviving_young_words == NULL) {
  3481     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3482                           "Not enough space for young surv words summary.");
  3484   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3485 #ifdef ASSERT
  3486   for (uint i = 0;  i < array_length; ++i) {
  3487     assert( _surviving_young_words[i] == 0, "memset above" );
  3489 #endif // !ASSERT
  3492 void
  3493 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3494   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3495   uint array_length = g1_policy()->young_cset_region_length();
  3496   for (uint i = 0; i < array_length; ++i) {
  3497     _surviving_young_words[i] += surv_young_words[i];
  3501 void
  3502 G1CollectedHeap::cleanup_surviving_young_words() {
  3503   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3504   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3505   _surviving_young_words = NULL;
  3508 #ifdef ASSERT
  3509 class VerifyCSetClosure: public HeapRegionClosure {
  3510 public:
  3511   bool doHeapRegion(HeapRegion* hr) {
  3512     // Here we check that the CSet region's RSet is ready for parallel
  3513     // iteration. The fields that we'll verify are only manipulated
  3514     // when the region is part of a CSet and is collected. Afterwards,
  3515     // we reset these fields when we clear the region's RSet (when the
  3516     // region is freed) so they are ready when the region is
  3517     // re-allocated. The only exception to this is if there's an
  3518     // evacuation failure and instead of freeing the region we leave
  3519     // it in the heap. In that case, we reset these fields during
  3520     // evacuation failure handling.
  3521     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3523     // Here's a good place to add any other checks we'd like to
  3524     // perform on CSet regions.
  3525     return false;
  3527 };
  3528 #endif // ASSERT
  3530 #if TASKQUEUE_STATS
  3531 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3532   st->print_raw_cr("GC Task Stats");
  3533   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3534   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3537 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3538   print_taskqueue_stats_hdr(st);
  3540   TaskQueueStats totals;
  3541   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3542   for (int i = 0; i < n; ++i) {
  3543     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3544     totals += task_queue(i)->stats;
  3546   st->print_raw("tot "); totals.print(st); st->cr();
  3548   DEBUG_ONLY(totals.verify());
  3551 void G1CollectedHeap::reset_taskqueue_stats() {
  3552   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3553   for (int i = 0; i < n; ++i) {
  3554     task_queue(i)->stats.reset();
  3557 #endif // TASKQUEUE_STATS
  3559 bool
  3560 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3561   assert_at_safepoint(true /* should_be_vm_thread */);
  3562   guarantee(!is_gc_active(), "collection is not reentrant");
  3564   if (GC_locker::check_active_before_gc()) {
  3565     return false;
  3568   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3569   ResourceMark rm;
  3571   print_heap_before_gc();
  3573   HRSPhaseSetter x(HRSPhaseEvacuation);
  3574   verify_region_sets_optional();
  3575   verify_dirty_young_regions();
  3577   // This call will decide whether this pause is an initial-mark
  3578   // pause. If it is, during_initial_mark_pause() will return true
  3579   // for the duration of this pause.
  3580   g1_policy()->decide_on_conc_mark_initiation();
  3582   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3583   assert(!g1_policy()->during_initial_mark_pause() ||
  3584           g1_policy()->gcs_are_young(), "sanity");
  3586   // We also do not allow mixed GCs during marking.
  3587   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3589   // Record whether this pause is an initial mark. When the current
  3590   // thread has completed its logging output and it's safe to signal
  3591   // the CM thread, the flag's value in the policy has been reset.
  3592   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3594   // Inner scope for scope based logging, timers, and stats collection
  3596     char verbose_str[128];
  3597     sprintf(verbose_str, "GC pause ");
  3598     if (g1_policy()->gcs_are_young()) {
  3599       strcat(verbose_str, "(young)");
  3600     } else {
  3601       strcat(verbose_str, "(mixed)");
  3603     if (g1_policy()->during_initial_mark_pause()) {
  3604       strcat(verbose_str, " (initial-mark)");
  3605       // We are about to start a marking cycle, so we increment the
  3606       // full collection counter.
  3607       increment_total_full_collections();
  3610     // if the log level is "finer" is on, we'll print long statistics information
  3611     // in the collector policy code, so let's not print this as the output
  3612     // is messy if we do.
  3613     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  3614     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3615     TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
  3617     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3618     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3620     // If the secondary_free_list is not empty, append it to the
  3621     // free_list. No need to wait for the cleanup operation to finish;
  3622     // the region allocation code will check the secondary_free_list
  3623     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3624     // set, skip this step so that the region allocation code has to
  3625     // get entries from the secondary_free_list.
  3626     if (!G1StressConcRegionFreeing) {
  3627       append_secondary_free_list_if_not_empty_with_lock();
  3630     assert(check_young_list_well_formed(),
  3631       "young list should be well formed");
  3633     // Don't dynamically change the number of GC threads this early.  A value of
  3634     // 0 is used to indicate serial work.  When parallel work is done,
  3635     // it will be set.
  3637     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3638       IsGCActiveMark x;
  3640       gc_prologue(false);
  3641       increment_total_collections(false /* full gc */);
  3642       increment_gc_time_stamp();
  3644       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3645         HandleMark hm;  // Discard invalid handles created during verification
  3646         gclog_or_tty->print(" VerifyBeforeGC:");
  3647         prepare_for_verify();
  3648         Universe::verify(/* silent      */ false,
  3649                          /* option      */ VerifyOption_G1UsePrevMarking);
  3652       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3654       // Please see comment in g1CollectedHeap.hpp and
  3655       // G1CollectedHeap::ref_processing_init() to see how
  3656       // reference processing currently works in G1.
  3658       // Enable discovery in the STW reference processor
  3659       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3660                                             true /*verify_no_refs*/);
  3663         // We want to temporarily turn off discovery by the
  3664         // CM ref processor, if necessary, and turn it back on
  3665         // on again later if we do. Using a scoped
  3666         // NoRefDiscovery object will do this.
  3667         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3669         // Forget the current alloc region (we might even choose it to be part
  3670         // of the collection set!).
  3671         release_mutator_alloc_region();
  3673         // We should call this after we retire the mutator alloc
  3674         // region(s) so that all the ALLOC / RETIRE events are generated
  3675         // before the start GC event.
  3676         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3678         // The elapsed time induced by the start time below deliberately elides
  3679         // the possible verification above.
  3680         double start_time_sec = os::elapsedTime();
  3681         size_t start_used_bytes = used();
  3683 #if YOUNG_LIST_VERBOSE
  3684         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3685         _young_list->print();
  3686         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3687 #endif // YOUNG_LIST_VERBOSE
  3689         g1_policy()->record_collection_pause_start(start_time_sec,
  3690                                                    start_used_bytes);
  3692         double scan_wait_start = os::elapsedTime();
  3693         // We have to wait until the CM threads finish scanning the
  3694         // root regions as it's the only way to ensure that all the
  3695         // objects on them have been correctly scanned before we start
  3696         // moving them during the GC.
  3697         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3698         if (waited) {
  3699           double scan_wait_end = os::elapsedTime();
  3700           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3701           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
  3704 #if YOUNG_LIST_VERBOSE
  3705         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3706         _young_list->print();
  3707 #endif // YOUNG_LIST_VERBOSE
  3709         if (g1_policy()->during_initial_mark_pause()) {
  3710           concurrent_mark()->checkpointRootsInitialPre();
  3712         perm_gen()->save_marks();
  3714 #if YOUNG_LIST_VERBOSE
  3715         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3716         _young_list->print();
  3717         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3718 #endif // YOUNG_LIST_VERBOSE
  3720         g1_policy()->finalize_cset(target_pause_time_ms);
  3722         _cm->note_start_of_gc();
  3723         // We should not verify the per-thread SATB buffers given that
  3724         // we have not filtered them yet (we'll do so during the
  3725         // GC). We also call this after finalize_cset() to
  3726         // ensure that the CSet has been finalized.
  3727         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3728                                  true  /* verify_enqueued_buffers */,
  3729                                  false /* verify_thread_buffers */,
  3730                                  true  /* verify_fingers */);
  3732         if (_hr_printer.is_active()) {
  3733           HeapRegion* hr = g1_policy()->collection_set();
  3734           while (hr != NULL) {
  3735             G1HRPrinter::RegionType type;
  3736             if (!hr->is_young()) {
  3737               type = G1HRPrinter::Old;
  3738             } else if (hr->is_survivor()) {
  3739               type = G1HRPrinter::Survivor;
  3740             } else {
  3741               type = G1HRPrinter::Eden;
  3743             _hr_printer.cset(hr);
  3744             hr = hr->next_in_collection_set();
  3748 #ifdef ASSERT
  3749         VerifyCSetClosure cl;
  3750         collection_set_iterate(&cl);
  3751 #endif // ASSERT
  3753         setup_surviving_young_words();
  3755         // Initialize the GC alloc regions.
  3756         init_gc_alloc_regions();
  3758         // Actually do the work...
  3759         evacuate_collection_set();
  3761         // We do this to mainly verify the per-thread SATB buffers
  3762         // (which have been filtered by now) since we didn't verify
  3763         // them earlier. No point in re-checking the stacks / enqueued
  3764         // buffers given that the CSet has not changed since last time
  3765         // we checked.
  3766         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3767                                  false /* verify_enqueued_buffers */,
  3768                                  true  /* verify_thread_buffers */,
  3769                                  true  /* verify_fingers */);
  3771         free_collection_set(g1_policy()->collection_set());
  3772         g1_policy()->clear_collection_set();
  3774         cleanup_surviving_young_words();
  3776         // Start a new incremental collection set for the next pause.
  3777         g1_policy()->start_incremental_cset_building();
  3779         // Clear the _cset_fast_test bitmap in anticipation of adding
  3780         // regions to the incremental collection set for the next
  3781         // evacuation pause.
  3782         clear_cset_fast_test();
  3784         _young_list->reset_sampled_info();
  3786         // Don't check the whole heap at this point as the
  3787         // GC alloc regions from this pause have been tagged
  3788         // as survivors and moved on to the survivor list.
  3789         // Survivor regions will fail the !is_young() check.
  3790         assert(check_young_list_empty(false /* check_heap */),
  3791           "young list should be empty");
  3793 #if YOUNG_LIST_VERBOSE
  3794         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3795         _young_list->print();
  3796 #endif // YOUNG_LIST_VERBOSE
  3798         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3799                                             _young_list->first_survivor_region(),
  3800                                             _young_list->last_survivor_region());
  3802         _young_list->reset_auxilary_lists();
  3804         if (evacuation_failed()) {
  3805           _summary_bytes_used = recalculate_used();
  3806         } else {
  3807           // The "used" of the the collection set have already been subtracted
  3808           // when they were freed.  Add in the bytes evacuated.
  3809           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3812         if (g1_policy()->during_initial_mark_pause()) {
  3813           // We have to do this before we notify the CM threads that
  3814           // they can start working to make sure that all the
  3815           // appropriate initialization is done on the CM object.
  3816           concurrent_mark()->checkpointRootsInitialPost();
  3817           set_marking_started();
  3818           // Note that we don't actually trigger the CM thread at
  3819           // this point. We do that later when we're sure that
  3820           // the current thread has completed its logging output.
  3823         allocate_dummy_regions();
  3825 #if YOUNG_LIST_VERBOSE
  3826         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3827         _young_list->print();
  3828         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3829 #endif // YOUNG_LIST_VERBOSE
  3831         init_mutator_alloc_region();
  3834           size_t expand_bytes = g1_policy()->expansion_amount();
  3835           if (expand_bytes > 0) {
  3836             size_t bytes_before = capacity();
  3837             // No need for an ergo verbose message here,
  3838             // expansion_amount() does this when it returns a value > 0.
  3839             if (!expand(expand_bytes)) {
  3840               // We failed to expand the heap so let's verify that
  3841               // committed/uncommitted amount match the backing store
  3842               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3843               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3848         // We redo the verificaiton but now wrt to the new CSet which
  3849         // has just got initialized after the previous CSet was freed.
  3850         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3851                                  true  /* verify_enqueued_buffers */,
  3852                                  true  /* verify_thread_buffers */,
  3853                                  true  /* verify_fingers */);
  3854         _cm->note_end_of_gc();
  3856         double end_time_sec = os::elapsedTime();
  3857         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3858         g1_policy()->record_pause_time_ms(pause_time_ms);
  3859         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3860                                 workers()->active_workers() : 1);
  3861         g1_policy()->record_collection_pause_end(active_workers);
  3863         MemoryService::track_memory_usage();
  3865         // In prepare_for_verify() below we'll need to scan the deferred
  3866         // update buffers to bring the RSets up-to-date if
  3867         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3868         // the update buffers we'll probably need to scan cards on the
  3869         // regions we just allocated to (i.e., the GC alloc
  3870         // regions). However, during the last GC we called
  3871         // set_saved_mark() on all the GC alloc regions, so card
  3872         // scanning might skip the [saved_mark_word()...top()] area of
  3873         // those regions (i.e., the area we allocated objects into
  3874         // during the last GC). But it shouldn't. Given that
  3875         // saved_mark_word() is conditional on whether the GC time stamp
  3876         // on the region is current or not, by incrementing the GC time
  3877         // stamp here we invalidate all the GC time stamps on all the
  3878         // regions and saved_mark_word() will simply return top() for
  3879         // all the regions. This is a nicer way of ensuring this rather
  3880         // than iterating over the regions and fixing them. In fact, the
  3881         // GC time stamp increment here also ensures that
  3882         // saved_mark_word() will return top() between pauses, i.e.,
  3883         // during concurrent refinement. So we don't need the
  3884         // is_gc_active() check to decided which top to use when
  3885         // scanning cards (see CR 7039627).
  3886         increment_gc_time_stamp();
  3888         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3889           HandleMark hm;  // Discard invalid handles created during verification
  3890           gclog_or_tty->print(" VerifyAfterGC:");
  3891           prepare_for_verify();
  3892           Universe::verify(/* silent      */ false,
  3893                            /* option      */ VerifyOption_G1UsePrevMarking);
  3896         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3897         ref_processor_stw()->verify_no_references_recorded();
  3899         // CM reference discovery will be re-enabled if necessary.
  3902       // We should do this after we potentially expand the heap so
  3903       // that all the COMMIT events are generated before the end GC
  3904       // event, and after we retire the GC alloc regions so that all
  3905       // RETIRE events are generated before the end GC event.
  3906       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3908       // We have to do this after we decide whether to expand the heap or not.
  3909       g1_policy()->print_heap_transition();
  3911       if (mark_in_progress()) {
  3912         concurrent_mark()->update_g1_committed();
  3915 #ifdef TRACESPINNING
  3916       ParallelTaskTerminator::print_termination_counts();
  3917 #endif
  3919       gc_epilogue(false);
  3922     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3923       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3924       print_tracing_info();
  3925       vm_exit(-1);
  3929   // The closing of the inner scope, immediately above, will complete
  3930   // logging at the "fine" level. The record_collection_pause_end() call
  3931   // above will complete logging at the "finer" level.
  3932   //
  3933   // It is not yet to safe, however, to tell the concurrent mark to
  3934   // start as we have some optional output below. We don't want the
  3935   // output from the concurrent mark thread interfering with this
  3936   // logging output either.
  3938   _hrs.verify_optional();
  3939   verify_region_sets_optional();
  3941   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3942   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3944   print_heap_after_gc();
  3945   g1mm()->update_sizes();
  3947   if (G1SummarizeRSetStats &&
  3948       (G1SummarizeRSetStatsPeriod > 0) &&
  3949       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3950     g1_rem_set()->print_summary_info();
  3953   // It should now be safe to tell the concurrent mark thread to start
  3954   // without its logging output interfering with the logging output
  3955   // that came from the pause.
  3957   if (should_start_conc_mark) {
  3958     // CAUTION: after the doConcurrentMark() call below,
  3959     // the concurrent marking thread(s) could be running
  3960     // concurrently with us. Make sure that anything after
  3961     // this point does not assume that we are the only GC thread
  3962     // running. Note: of course, the actual marking work will
  3963     // not start until the safepoint itself is released in
  3964     // ConcurrentGCThread::safepoint_desynchronize().
  3965     doConcurrentMark();
  3968   return true;
  3971 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3973   size_t gclab_word_size;
  3974   switch (purpose) {
  3975     case GCAllocForSurvived:
  3976       gclab_word_size = YoungPLABSize;
  3977       break;
  3978     case GCAllocForTenured:
  3979       gclab_word_size = OldPLABSize;
  3980       break;
  3981     default:
  3982       assert(false, "unknown GCAllocPurpose");
  3983       gclab_word_size = OldPLABSize;
  3984       break;
  3986   return gclab_word_size;
  3989 void G1CollectedHeap::init_mutator_alloc_region() {
  3990   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3991   _mutator_alloc_region.init();
  3994 void G1CollectedHeap::release_mutator_alloc_region() {
  3995   _mutator_alloc_region.release();
  3996   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3999 void G1CollectedHeap::init_gc_alloc_regions() {
  4000   assert_at_safepoint(true /* should_be_vm_thread */);
  4002   _survivor_gc_alloc_region.init();
  4003   _old_gc_alloc_region.init();
  4004   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4005   _retained_old_gc_alloc_region = NULL;
  4007   // We will discard the current GC alloc region if:
  4008   // a) it's in the collection set (it can happen!),
  4009   // b) it's already full (no point in using it),
  4010   // c) it's empty (this means that it was emptied during
  4011   // a cleanup and it should be on the free list now), or
  4012   // d) it's humongous (this means that it was emptied
  4013   // during a cleanup and was added to the free list, but
  4014   // has been subseqently used to allocate a humongous
  4015   // object that may be less than the region size).
  4016   if (retained_region != NULL &&
  4017       !retained_region->in_collection_set() &&
  4018       !(retained_region->top() == retained_region->end()) &&
  4019       !retained_region->is_empty() &&
  4020       !retained_region->isHumongous()) {
  4021     retained_region->set_saved_mark();
  4022     // The retained region was added to the old region set when it was
  4023     // retired. We have to remove it now, since we don't allow regions
  4024     // we allocate to in the region sets. We'll re-add it later, when
  4025     // it's retired again.
  4026     _old_set.remove(retained_region);
  4027     bool during_im = g1_policy()->during_initial_mark_pause();
  4028     retained_region->note_start_of_copying(during_im);
  4029     _old_gc_alloc_region.set(retained_region);
  4030     _hr_printer.reuse(retained_region);
  4034 void G1CollectedHeap::release_gc_alloc_regions() {
  4035   _survivor_gc_alloc_region.release();
  4036   // If we have an old GC alloc region to release, we'll save it in
  4037   // _retained_old_gc_alloc_region. If we don't
  4038   // _retained_old_gc_alloc_region will become NULL. This is what we
  4039   // want either way so no reason to check explicitly for either
  4040   // condition.
  4041   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4044 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4045   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4046   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4047   _retained_old_gc_alloc_region = NULL;
  4050 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4051   _drain_in_progress = false;
  4052   set_evac_failure_closure(cl);
  4053   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4056 void G1CollectedHeap::finalize_for_evac_failure() {
  4057   assert(_evac_failure_scan_stack != NULL &&
  4058          _evac_failure_scan_stack->length() == 0,
  4059          "Postcondition");
  4060   assert(!_drain_in_progress, "Postcondition");
  4061   delete _evac_failure_scan_stack;
  4062   _evac_failure_scan_stack = NULL;
  4065 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4066   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4068   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4070   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4071     set_par_threads();
  4072     workers()->run_task(&rsfp_task);
  4073     set_par_threads(0);
  4074   } else {
  4075     rsfp_task.work(0);
  4078   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4080   // Reset the claim values in the regions in the collection set.
  4081   reset_cset_heap_region_claim_values();
  4083   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4085   // Now restore saved marks, if any.
  4086   if (_objs_with_preserved_marks != NULL) {
  4087     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4088     guarantee(_objs_with_preserved_marks->length() ==
  4089               _preserved_marks_of_objs->length(), "Both or none.");
  4090     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4091       oop obj   = _objs_with_preserved_marks->at(i);
  4092       markOop m = _preserved_marks_of_objs->at(i);
  4093       obj->set_mark(m);
  4096     // Delete the preserved marks growable arrays (allocated on the C heap).
  4097     delete _objs_with_preserved_marks;
  4098     delete _preserved_marks_of_objs;
  4099     _objs_with_preserved_marks = NULL;
  4100     _preserved_marks_of_objs = NULL;
  4104 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4105   _evac_failure_scan_stack->push(obj);
  4108 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4109   assert(_evac_failure_scan_stack != NULL, "precondition");
  4111   while (_evac_failure_scan_stack->length() > 0) {
  4112      oop obj = _evac_failure_scan_stack->pop();
  4113      _evac_failure_closure->set_region(heap_region_containing(obj));
  4114      obj->oop_iterate_backwards(_evac_failure_closure);
  4118 oop
  4119 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4120                                                oop old) {
  4121   assert(obj_in_cs(old),
  4122          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4123                  (HeapWord*) old));
  4124   markOop m = old->mark();
  4125   oop forward_ptr = old->forward_to_atomic(old);
  4126   if (forward_ptr == NULL) {
  4127     // Forward-to-self succeeded.
  4129     if (_evac_failure_closure != cl) {
  4130       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4131       assert(!_drain_in_progress,
  4132              "Should only be true while someone holds the lock.");
  4133       // Set the global evac-failure closure to the current thread's.
  4134       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4135       set_evac_failure_closure(cl);
  4136       // Now do the common part.
  4137       handle_evacuation_failure_common(old, m);
  4138       // Reset to NULL.
  4139       set_evac_failure_closure(NULL);
  4140     } else {
  4141       // The lock is already held, and this is recursive.
  4142       assert(_drain_in_progress, "This should only be the recursive case.");
  4143       handle_evacuation_failure_common(old, m);
  4145     return old;
  4146   } else {
  4147     // Forward-to-self failed. Either someone else managed to allocate
  4148     // space for this object (old != forward_ptr) or they beat us in
  4149     // self-forwarding it (old == forward_ptr).
  4150     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4151            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4152                    "should not be in the CSet",
  4153                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4154     return forward_ptr;
  4158 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4159   set_evacuation_failed(true);
  4161   preserve_mark_if_necessary(old, m);
  4163   HeapRegion* r = heap_region_containing(old);
  4164   if (!r->evacuation_failed()) {
  4165     r->set_evacuation_failed(true);
  4166     _hr_printer.evac_failure(r);
  4169   push_on_evac_failure_scan_stack(old);
  4171   if (!_drain_in_progress) {
  4172     // prevent recursion in copy_to_survivor_space()
  4173     _drain_in_progress = true;
  4174     drain_evac_failure_scan_stack();
  4175     _drain_in_progress = false;
  4179 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4180   assert(evacuation_failed(), "Oversaving!");
  4181   // We want to call the "for_promotion_failure" version only in the
  4182   // case of a promotion failure.
  4183   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4184     if (_objs_with_preserved_marks == NULL) {
  4185       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4186       _objs_with_preserved_marks =
  4187         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4188       _preserved_marks_of_objs =
  4189         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4191     _objs_with_preserved_marks->push(obj);
  4192     _preserved_marks_of_objs->push(m);
  4196 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4197                                                   size_t word_size) {
  4198   if (purpose == GCAllocForSurvived) {
  4199     HeapWord* result = survivor_attempt_allocation(word_size);
  4200     if (result != NULL) {
  4201       return result;
  4202     } else {
  4203       // Let's try to allocate in the old gen in case we can fit the
  4204       // object there.
  4205       return old_attempt_allocation(word_size);
  4207   } else {
  4208     assert(purpose ==  GCAllocForTenured, "sanity");
  4209     HeapWord* result = old_attempt_allocation(word_size);
  4210     if (result != NULL) {
  4211       return result;
  4212     } else {
  4213       // Let's try to allocate in the survivors in case we can fit the
  4214       // object there.
  4215       return survivor_attempt_allocation(word_size);
  4219   ShouldNotReachHere();
  4220   // Trying to keep some compilers happy.
  4221   return NULL;
  4224 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4225   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4227 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4228   : _g1h(g1h),
  4229     _refs(g1h->task_queue(queue_num)),
  4230     _dcq(&g1h->dirty_card_queue_set()),
  4231     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4232     _g1_rem(g1h->g1_rem_set()),
  4233     _hash_seed(17), _queue_num(queue_num),
  4234     _term_attempts(0),
  4235     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4236     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4237     _age_table(false),
  4238     _strong_roots_time(0), _term_time(0),
  4239     _alloc_buffer_waste(0), _undo_waste(0) {
  4240   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4241   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4242   // non-young regions (where the age is -1)
  4243   // We also add a few elements at the beginning and at the end in
  4244   // an attempt to eliminate cache contention
  4245   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4246   uint array_length = PADDING_ELEM_NUM +
  4247                       real_length +
  4248                       PADDING_ELEM_NUM;
  4249   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4250   if (_surviving_young_words_base == NULL)
  4251     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4252                           "Not enough space for young surv histo.");
  4253   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4254   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4256   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4257   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4259   _start = os::elapsedTime();
  4262 void
  4263 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4265   st->print_raw_cr("GC Termination Stats");
  4266   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4267                    " ------waste (KiB)------");
  4268   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4269                    "  total   alloc    undo");
  4270   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4271                    " ------- ------- -------");
  4274 void
  4275 G1ParScanThreadState::print_termination_stats(int i,
  4276                                               outputStream* const st) const
  4278   const double elapsed_ms = elapsed_time() * 1000.0;
  4279   const double s_roots_ms = strong_roots_time() * 1000.0;
  4280   const double term_ms    = term_time() * 1000.0;
  4281   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4282                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4283                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4284                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4285                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4286                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4287                alloc_buffer_waste() * HeapWordSize / K,
  4288                undo_waste() * HeapWordSize / K);
  4291 #ifdef ASSERT
  4292 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4293   assert(ref != NULL, "invariant");
  4294   assert(UseCompressedOops, "sanity");
  4295   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4296   oop p = oopDesc::load_decode_heap_oop(ref);
  4297   assert(_g1h->is_in_g1_reserved(p),
  4298          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4299   return true;
  4302 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4303   assert(ref != NULL, "invariant");
  4304   if (has_partial_array_mask(ref)) {
  4305     // Must be in the collection set--it's already been copied.
  4306     oop p = clear_partial_array_mask(ref);
  4307     assert(_g1h->obj_in_cs(p),
  4308            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4309   } else {
  4310     oop p = oopDesc::load_decode_heap_oop(ref);
  4311     assert(_g1h->is_in_g1_reserved(p),
  4312            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4314   return true;
  4317 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4318   if (ref.is_narrow()) {
  4319     return verify_ref((narrowOop*) ref);
  4320   } else {
  4321     return verify_ref((oop*) ref);
  4324 #endif // ASSERT
  4326 void G1ParScanThreadState::trim_queue() {
  4327   assert(_evac_cl != NULL, "not set");
  4328   assert(_evac_failure_cl != NULL, "not set");
  4329   assert(_partial_scan_cl != NULL, "not set");
  4331   StarTask ref;
  4332   do {
  4333     // Drain the overflow stack first, so other threads can steal.
  4334     while (refs()->pop_overflow(ref)) {
  4335       deal_with_reference(ref);
  4338     while (refs()->pop_local(ref)) {
  4339       deal_with_reference(ref);
  4341   } while (!refs()->is_empty());
  4344 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4345                                      G1ParScanThreadState* par_scan_state) :
  4346   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4347   _par_scan_state(par_scan_state),
  4348   _worker_id(par_scan_state->queue_num()),
  4349   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4350   _mark_in_progress(_g1->mark_in_progress()) { }
  4352 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4353 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4354 #ifdef ASSERT
  4355   HeapRegion* hr = _g1->heap_region_containing(obj);
  4356   assert(hr != NULL, "sanity");
  4357   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4358 #endif // ASSERT
  4360   // We know that the object is not moving so it's safe to read its size.
  4361   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4364 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4365 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4366   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4367 #ifdef ASSERT
  4368   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4369   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4370   assert(from_obj != to_obj, "should not be self-forwarded");
  4372   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4373   assert(from_hr != NULL, "sanity");
  4374   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4376   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4377   assert(to_hr != NULL, "sanity");
  4378   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4379 #endif // ASSERT
  4381   // The object might be in the process of being copied by another
  4382   // worker so we cannot trust that its to-space image is
  4383   // well-formed. So we have to read its size from its from-space
  4384   // image which we know should not be changing.
  4385   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4388 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4389 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4390   ::copy_to_survivor_space(oop old) {
  4391   size_t word_sz = old->size();
  4392   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4393   // +1 to make the -1 indexes valid...
  4394   int       young_index = from_region->young_index_in_cset()+1;
  4395   assert( (from_region->is_young() && young_index >  0) ||
  4396          (!from_region->is_young() && young_index == 0), "invariant" );
  4397   G1CollectorPolicy* g1p = _g1->g1_policy();
  4398   markOop m = old->mark();
  4399   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4400                                            : m->age();
  4401   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4402                                                              word_sz);
  4403   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4404   oop       obj     = oop(obj_ptr);
  4406   if (obj_ptr == NULL) {
  4407     // This will either forward-to-self, or detect that someone else has
  4408     // installed a forwarding pointer.
  4409     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4410     return _g1->handle_evacuation_failure_par(cl, old);
  4413   // We're going to allocate linearly, so might as well prefetch ahead.
  4414   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4416   oop forward_ptr = old->forward_to_atomic(obj);
  4417   if (forward_ptr == NULL) {
  4418     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4419     if (g1p->track_object_age(alloc_purpose)) {
  4420       // We could simply do obj->incr_age(). However, this causes a
  4421       // performance issue. obj->incr_age() will first check whether
  4422       // the object has a displaced mark by checking its mark word;
  4423       // getting the mark word from the new location of the object
  4424       // stalls. So, given that we already have the mark word and we
  4425       // are about to install it anyway, it's better to increase the
  4426       // age on the mark word, when the object does not have a
  4427       // displaced mark word. We're not expecting many objects to have
  4428       // a displaced marked word, so that case is not optimized
  4429       // further (it could be...) and we simply call obj->incr_age().
  4431       if (m->has_displaced_mark_helper()) {
  4432         // in this case, we have to install the mark word first,
  4433         // otherwise obj looks to be forwarded (the old mark word,
  4434         // which contains the forward pointer, was copied)
  4435         obj->set_mark(m);
  4436         obj->incr_age();
  4437       } else {
  4438         m = m->incr_age();
  4439         obj->set_mark(m);
  4441       _par_scan_state->age_table()->add(obj, word_sz);
  4442     } else {
  4443       obj->set_mark(m);
  4446     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4447     surv_young_words[young_index] += word_sz;
  4449     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4450       // We keep track of the next start index in the length field of
  4451       // the to-space object. The actual length can be found in the
  4452       // length field of the from-space object.
  4453       arrayOop(obj)->set_length(0);
  4454       oop* old_p = set_partial_array_mask(old);
  4455       _par_scan_state->push_on_queue(old_p);
  4456     } else {
  4457       // No point in using the slower heap_region_containing() method,
  4458       // given that we know obj is in the heap.
  4459       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4460       obj->oop_iterate_backwards(&_scanner);
  4462   } else {
  4463     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4464     obj = forward_ptr;
  4466   return obj;
  4469 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4470 template <class T>
  4471 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4472 ::do_oop_work(T* p) {
  4473   oop obj = oopDesc::load_decode_heap_oop(p);
  4474   assert(barrier != G1BarrierRS || obj != NULL,
  4475          "Precondition: G1BarrierRS implies obj is non-NULL");
  4477   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4479   // here the null check is implicit in the cset_fast_test() test
  4480   if (_g1->in_cset_fast_test(obj)) {
  4481     oop forwardee;
  4482     if (obj->is_forwarded()) {
  4483       forwardee = obj->forwardee();
  4484     } else {
  4485       forwardee = copy_to_survivor_space(obj);
  4487     assert(forwardee != NULL, "forwardee should not be NULL");
  4488     oopDesc::encode_store_heap_oop(p, forwardee);
  4489     if (do_mark_object && forwardee != obj) {
  4490       // If the object is self-forwarded we don't need to explicitly
  4491       // mark it, the evacuation failure protocol will do so.
  4492       mark_forwarded_object(obj, forwardee);
  4495     // When scanning the RS, we only care about objs in CS.
  4496     if (barrier == G1BarrierRS) {
  4497       _par_scan_state->update_rs(_from, p, _worker_id);
  4499   } else {
  4500     // The object is not in collection set. If we're a root scanning
  4501     // closure during an initial mark pause (i.e. do_mark_object will
  4502     // be true) then attempt to mark the object.
  4503     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4504       mark_object(obj);
  4508   if (barrier == G1BarrierEvac && obj != NULL) {
  4509     _par_scan_state->update_rs(_from, p, _worker_id);
  4512   if (do_gen_barrier && obj != NULL) {
  4513     par_do_barrier(p);
  4517 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4518 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4520 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4521   assert(has_partial_array_mask(p), "invariant");
  4522   oop from_obj = clear_partial_array_mask(p);
  4524   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4525   assert(from_obj->is_objArray(), "must be obj array");
  4526   objArrayOop from_obj_array = objArrayOop(from_obj);
  4527   // The from-space object contains the real length.
  4528   int length                 = from_obj_array->length();
  4530   assert(from_obj->is_forwarded(), "must be forwarded");
  4531   oop to_obj                 = from_obj->forwardee();
  4532   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4533   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4534   // We keep track of the next start index in the length field of the
  4535   // to-space object.
  4536   int next_index             = to_obj_array->length();
  4537   assert(0 <= next_index && next_index < length,
  4538          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4540   int start                  = next_index;
  4541   int end                    = length;
  4542   int remainder              = end - start;
  4543   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4544   if (remainder > 2 * ParGCArrayScanChunk) {
  4545     end = start + ParGCArrayScanChunk;
  4546     to_obj_array->set_length(end);
  4547     // Push the remainder before we process the range in case another
  4548     // worker has run out of things to do and can steal it.
  4549     oop* from_obj_p = set_partial_array_mask(from_obj);
  4550     _par_scan_state->push_on_queue(from_obj_p);
  4551   } else {
  4552     assert(length == end, "sanity");
  4553     // We'll process the final range for this object. Restore the length
  4554     // so that the heap remains parsable in case of evacuation failure.
  4555     to_obj_array->set_length(end);
  4557   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4558   // Process indexes [start,end). It will also process the header
  4559   // along with the first chunk (i.e., the chunk with start == 0).
  4560   // Note that at this point the length field of to_obj_array is not
  4561   // correct given that we are using it to keep track of the next
  4562   // start index. oop_iterate_range() (thankfully!) ignores the length
  4563   // field and only relies on the start / end parameters.  It does
  4564   // however return the size of the object which will be incorrect. So
  4565   // we have to ignore it even if we wanted to use it.
  4566   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4569 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4570 protected:
  4571   G1CollectedHeap*              _g1h;
  4572   G1ParScanThreadState*         _par_scan_state;
  4573   RefToScanQueueSet*            _queues;
  4574   ParallelTaskTerminator*       _terminator;
  4576   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4577   RefToScanQueueSet*      queues()         { return _queues; }
  4578   ParallelTaskTerminator* terminator()     { return _terminator; }
  4580 public:
  4581   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4582                                 G1ParScanThreadState* par_scan_state,
  4583                                 RefToScanQueueSet* queues,
  4584                                 ParallelTaskTerminator* terminator)
  4585     : _g1h(g1h), _par_scan_state(par_scan_state),
  4586       _queues(queues), _terminator(terminator) {}
  4588   void do_void();
  4590 private:
  4591   inline bool offer_termination();
  4592 };
  4594 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4595   G1ParScanThreadState* const pss = par_scan_state();
  4596   pss->start_term_time();
  4597   const bool res = terminator()->offer_termination();
  4598   pss->end_term_time();
  4599   return res;
  4602 void G1ParEvacuateFollowersClosure::do_void() {
  4603   StarTask stolen_task;
  4604   G1ParScanThreadState* const pss = par_scan_state();
  4605   pss->trim_queue();
  4607   do {
  4608     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4609       assert(pss->verify_task(stolen_task), "sanity");
  4610       if (stolen_task.is_narrow()) {
  4611         pss->deal_with_reference((narrowOop*) stolen_task);
  4612       } else {
  4613         pss->deal_with_reference((oop*) stolen_task);
  4616       // We've just processed a reference and we might have made
  4617       // available new entries on the queues. So we have to make sure
  4618       // we drain the queues as necessary.
  4619       pss->trim_queue();
  4621   } while (!offer_termination());
  4623   pss->retire_alloc_buffers();
  4626 class G1ParTask : public AbstractGangTask {
  4627 protected:
  4628   G1CollectedHeap*       _g1h;
  4629   RefToScanQueueSet      *_queues;
  4630   ParallelTaskTerminator _terminator;
  4631   uint _n_workers;
  4633   Mutex _stats_lock;
  4634   Mutex* stats_lock() { return &_stats_lock; }
  4636   size_t getNCards() {
  4637     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4638       / G1BlockOffsetSharedArray::N_bytes;
  4641 public:
  4642   G1ParTask(G1CollectedHeap* g1h,
  4643             RefToScanQueueSet *task_queues)
  4644     : AbstractGangTask("G1 collection"),
  4645       _g1h(g1h),
  4646       _queues(task_queues),
  4647       _terminator(0, _queues),
  4648       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4649   {}
  4651   RefToScanQueueSet* queues() { return _queues; }
  4653   RefToScanQueue *work_queue(int i) {
  4654     return queues()->queue(i);
  4657   ParallelTaskTerminator* terminator() { return &_terminator; }
  4659   virtual void set_for_termination(int active_workers) {
  4660     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4661     // in the young space (_par_seq_tasks) in the G1 heap
  4662     // for SequentialSubTasksDone.
  4663     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4664     // both of which need setting by set_n_termination().
  4665     _g1h->SharedHeap::set_n_termination(active_workers);
  4666     _g1h->set_n_termination(active_workers);
  4667     terminator()->reset_for_reuse(active_workers);
  4668     _n_workers = active_workers;
  4671   void work(uint worker_id) {
  4672     if (worker_id >= _n_workers) return;  // no work needed this round
  4674     double start_time_ms = os::elapsedTime() * 1000.0;
  4675     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
  4678       ResourceMark rm;
  4679       HandleMark   hm;
  4681       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4683       G1ParScanThreadState            pss(_g1h, worker_id);
  4684       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4685       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4686       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4688       pss.set_evac_closure(&scan_evac_cl);
  4689       pss.set_evac_failure_closure(&evac_failure_cl);
  4690       pss.set_partial_scan_closure(&partial_scan_cl);
  4692       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4693       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4695       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4696       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4698       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4699       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4701       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4702         // We also need to mark copied objects.
  4703         scan_root_cl = &scan_mark_root_cl;
  4704         scan_perm_cl = &scan_mark_perm_cl;
  4707       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4709       pss.start_strong_roots();
  4710       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4711                                     SharedHeap::SO_AllClasses,
  4712                                     scan_root_cl,
  4713                                     &push_heap_rs_cl,
  4714                                     scan_perm_cl,
  4715                                     worker_id);
  4716       pss.end_strong_roots();
  4719         double start = os::elapsedTime();
  4720         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4721         evac.do_void();
  4722         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4723         double term_ms = pss.term_time()*1000.0;
  4724         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4725         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
  4727       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4728       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4730       // Clean up any par-expanded rem sets.
  4731       HeapRegionRemSet::par_cleanup();
  4733       if (ParallelGCVerbose) {
  4734         MutexLocker x(stats_lock());
  4735         pss.print_termination_stats(worker_id);
  4738       assert(pss.refs()->is_empty(), "should be empty");
  4740       // Close the inner scope so that the ResourceMark and HandleMark
  4741       // destructors are executed here and are included as part of the
  4742       // "GC Worker Time".
  4745     double end_time_ms = os::elapsedTime() * 1000.0;
  4746     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
  4748 };
  4750 // *** Common G1 Evacuation Stuff
  4752 // Closures that support the filtering of CodeBlobs scanned during
  4753 // external root scanning.
  4755 // Closure applied to reference fields in code blobs (specifically nmethods)
  4756 // to determine whether an nmethod contains references that point into
  4757 // the collection set. Used as a predicate when walking code roots so
  4758 // that only nmethods that point into the collection set are added to the
  4759 // 'marked' list.
  4761 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4763   class G1PointsIntoCSOopClosure : public OopClosure {
  4764     G1CollectedHeap* _g1;
  4765     bool _points_into_cs;
  4766   public:
  4767     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4768       _g1(g1), _points_into_cs(false) { }
  4770     bool points_into_cs() const { return _points_into_cs; }
  4772     template <class T>
  4773     void do_oop_nv(T* p) {
  4774       if (!_points_into_cs) {
  4775         T heap_oop = oopDesc::load_heap_oop(p);
  4776         if (!oopDesc::is_null(heap_oop) &&
  4777             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4778           _points_into_cs = true;
  4783     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4784     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4785   };
  4787   G1CollectedHeap* _g1;
  4789 public:
  4790   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4791     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4793   virtual void do_code_blob(CodeBlob* cb) {
  4794     nmethod* nm = cb->as_nmethod_or_null();
  4795     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4796       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4797       nm->oops_do(&predicate_cl);
  4799       if (predicate_cl.points_into_cs()) {
  4800         // At least one of the reference fields or the oop relocations
  4801         // in the nmethod points into the collection set. We have to
  4802         // 'mark' this nmethod.
  4803         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4804         // or MarkingCodeBlobClosure::do_code_blob() change.
  4805         if (!nm->test_set_oops_do_mark()) {
  4806           do_newly_marked_nmethod(nm);
  4811 };
  4813 // This method is run in a GC worker.
  4815 void
  4816 G1CollectedHeap::
  4817 g1_process_strong_roots(bool collecting_perm_gen,
  4818                         ScanningOption so,
  4819                         OopClosure* scan_non_heap_roots,
  4820                         OopsInHeapRegionClosure* scan_rs,
  4821                         OopsInGenClosure* scan_perm,
  4822                         int worker_i) {
  4824   // First scan the strong roots, including the perm gen.
  4825   double ext_roots_start = os::elapsedTime();
  4826   double closure_app_time_sec = 0.0;
  4828   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4829   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4830   buf_scan_perm.set_generation(perm_gen());
  4832   // Walk the code cache w/o buffering, because StarTask cannot handle
  4833   // unaligned oop locations.
  4834   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  4836   process_strong_roots(false, // no scoping; this is parallel code
  4837                        collecting_perm_gen, so,
  4838                        &buf_scan_non_heap_roots,
  4839                        &eager_scan_code_roots,
  4840                        &buf_scan_perm);
  4842   // Now the CM ref_processor roots.
  4843   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4844     // We need to treat the discovered reference lists of the
  4845     // concurrent mark ref processor as roots and keep entries
  4846     // (which are added by the marking threads) on them live
  4847     // until they can be processed at the end of marking.
  4848     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4851   // Finish up any enqueued closure apps (attributed as object copy time).
  4852   buf_scan_non_heap_roots.done();
  4853   buf_scan_perm.done();
  4855   double ext_roots_end = os::elapsedTime();
  4857   g1_policy()->reset_obj_copy_time(worker_i);
  4858   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4859                                 buf_scan_non_heap_roots.closure_app_seconds();
  4860   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4862   double ext_root_time_ms =
  4863     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4865   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4867   // During conc marking we have to filter the per-thread SATB buffers
  4868   // to make sure we remove any oops into the CSet (which will show up
  4869   // as implicitly live).
  4870   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4871     if (mark_in_progress()) {
  4872       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4875   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4876   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4878   // Now scan the complement of the collection set.
  4879   if (scan_rs != NULL) {
  4880     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4883   _process_strong_tasks->all_tasks_completed();
  4886 void
  4887 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4888                                        OopClosure* non_root_closure) {
  4889   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4890   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4893 // Weak Reference Processing support
  4895 // An always "is_alive" closure that is used to preserve referents.
  4896 // If the object is non-null then it's alive.  Used in the preservation
  4897 // of referent objects that are pointed to by reference objects
  4898 // discovered by the CM ref processor.
  4899 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4900   G1CollectedHeap* _g1;
  4901 public:
  4902   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4903   void do_object(oop p) { assert(false, "Do not call."); }
  4904   bool do_object_b(oop p) {
  4905     if (p != NULL) {
  4906       return true;
  4908     return false;
  4910 };
  4912 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4913   // An object is reachable if it is outside the collection set,
  4914   // or is inside and copied.
  4915   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4918 // Non Copying Keep Alive closure
  4919 class G1KeepAliveClosure: public OopClosure {
  4920   G1CollectedHeap* _g1;
  4921 public:
  4922   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4923   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4924   void do_oop(      oop* p) {
  4925     oop obj = *p;
  4927     if (_g1->obj_in_cs(obj)) {
  4928       assert( obj->is_forwarded(), "invariant" );
  4929       *p = obj->forwardee();
  4932 };
  4934 // Copying Keep Alive closure - can be called from both
  4935 // serial and parallel code as long as different worker
  4936 // threads utilize different G1ParScanThreadState instances
  4937 // and different queues.
  4939 class G1CopyingKeepAliveClosure: public OopClosure {
  4940   G1CollectedHeap*         _g1h;
  4941   OopClosure*              _copy_non_heap_obj_cl;
  4942   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4943   G1ParScanThreadState*    _par_scan_state;
  4945 public:
  4946   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4947                             OopClosure* non_heap_obj_cl,
  4948                             OopsInHeapRegionClosure* perm_obj_cl,
  4949                             G1ParScanThreadState* pss):
  4950     _g1h(g1h),
  4951     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4952     _copy_perm_obj_cl(perm_obj_cl),
  4953     _par_scan_state(pss)
  4954   {}
  4956   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4957   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4959   template <class T> void do_oop_work(T* p) {
  4960     oop obj = oopDesc::load_decode_heap_oop(p);
  4962     if (_g1h->obj_in_cs(obj)) {
  4963       // If the referent object has been forwarded (either copied
  4964       // to a new location or to itself in the event of an
  4965       // evacuation failure) then we need to update the reference
  4966       // field and, if both reference and referent are in the G1
  4967       // heap, update the RSet for the referent.
  4968       //
  4969       // If the referent has not been forwarded then we have to keep
  4970       // it alive by policy. Therefore we have copy the referent.
  4971       //
  4972       // If the reference field is in the G1 heap then we can push
  4973       // on the PSS queue. When the queue is drained (after each
  4974       // phase of reference processing) the object and it's followers
  4975       // will be copied, the reference field set to point to the
  4976       // new location, and the RSet updated. Otherwise we need to
  4977       // use the the non-heap or perm closures directly to copy
  4978       // the refernt object and update the pointer, while avoiding
  4979       // updating the RSet.
  4981       if (_g1h->is_in_g1_reserved(p)) {
  4982         _par_scan_state->push_on_queue(p);
  4983       } else {
  4984         // The reference field is not in the G1 heap.
  4985         if (_g1h->perm_gen()->is_in(p)) {
  4986           _copy_perm_obj_cl->do_oop(p);
  4987         } else {
  4988           _copy_non_heap_obj_cl->do_oop(p);
  4993 };
  4995 // Serial drain queue closure. Called as the 'complete_gc'
  4996 // closure for each discovered list in some of the
  4997 // reference processing phases.
  4999 class G1STWDrainQueueClosure: public VoidClosure {
  5000 protected:
  5001   G1CollectedHeap* _g1h;
  5002   G1ParScanThreadState* _par_scan_state;
  5004   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5006 public:
  5007   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5008     _g1h(g1h),
  5009     _par_scan_state(pss)
  5010   { }
  5012   void do_void() {
  5013     G1ParScanThreadState* const pss = par_scan_state();
  5014     pss->trim_queue();
  5016 };
  5018 // Parallel Reference Processing closures
  5020 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5021 // processing during G1 evacuation pauses.
  5023 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5024 private:
  5025   G1CollectedHeap*   _g1h;
  5026   RefToScanQueueSet* _queues;
  5027   FlexibleWorkGang*  _workers;
  5028   int                _active_workers;
  5030 public:
  5031   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5032                         FlexibleWorkGang* workers,
  5033                         RefToScanQueueSet *task_queues,
  5034                         int n_workers) :
  5035     _g1h(g1h),
  5036     _queues(task_queues),
  5037     _workers(workers),
  5038     _active_workers(n_workers)
  5040     assert(n_workers > 0, "shouldn't call this otherwise");
  5043   // Executes the given task using concurrent marking worker threads.
  5044   virtual void execute(ProcessTask& task);
  5045   virtual void execute(EnqueueTask& task);
  5046 };
  5048 // Gang task for possibly parallel reference processing
  5050 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5051   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5052   ProcessTask&     _proc_task;
  5053   G1CollectedHeap* _g1h;
  5054   RefToScanQueueSet *_task_queues;
  5055   ParallelTaskTerminator* _terminator;
  5057 public:
  5058   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5059                      G1CollectedHeap* g1h,
  5060                      RefToScanQueueSet *task_queues,
  5061                      ParallelTaskTerminator* terminator) :
  5062     AbstractGangTask("Process reference objects in parallel"),
  5063     _proc_task(proc_task),
  5064     _g1h(g1h),
  5065     _task_queues(task_queues),
  5066     _terminator(terminator)
  5067   {}
  5069   virtual void work(uint worker_id) {
  5070     // The reference processing task executed by a single worker.
  5071     ResourceMark rm;
  5072     HandleMark   hm;
  5074     G1STWIsAliveClosure is_alive(_g1h);
  5076     G1ParScanThreadState pss(_g1h, worker_id);
  5078     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5079     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5080     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5082     pss.set_evac_closure(&scan_evac_cl);
  5083     pss.set_evac_failure_closure(&evac_failure_cl);
  5084     pss.set_partial_scan_closure(&partial_scan_cl);
  5086     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5087     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5089     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5090     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5092     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5093     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5095     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5096       // We also need to mark copied objects.
  5097       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5098       copy_perm_cl = &copy_mark_perm_cl;
  5101     // Keep alive closure.
  5102     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5104     // Complete GC closure
  5105     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5107     // Call the reference processing task's work routine.
  5108     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5110     // Note we cannot assert that the refs array is empty here as not all
  5111     // of the processing tasks (specifically phase2 - pp2_work) execute
  5112     // the complete_gc closure (which ordinarily would drain the queue) so
  5113     // the queue may not be empty.
  5115 };
  5117 // Driver routine for parallel reference processing.
  5118 // Creates an instance of the ref processing gang
  5119 // task and has the worker threads execute it.
  5120 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5121   assert(_workers != NULL, "Need parallel worker threads.");
  5123   ParallelTaskTerminator terminator(_active_workers, _queues);
  5124   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5126   _g1h->set_par_threads(_active_workers);
  5127   _workers->run_task(&proc_task_proxy);
  5128   _g1h->set_par_threads(0);
  5131 // Gang task for parallel reference enqueueing.
  5133 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5134   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5135   EnqueueTask& _enq_task;
  5137 public:
  5138   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5139     AbstractGangTask("Enqueue reference objects in parallel"),
  5140     _enq_task(enq_task)
  5141   { }
  5143   virtual void work(uint worker_id) {
  5144     _enq_task.work(worker_id);
  5146 };
  5148 // Driver routine for parallel reference enqueing.
  5149 // Creates an instance of the ref enqueueing gang
  5150 // task and has the worker threads execute it.
  5152 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5153   assert(_workers != NULL, "Need parallel worker threads.");
  5155   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5157   _g1h->set_par_threads(_active_workers);
  5158   _workers->run_task(&enq_task_proxy);
  5159   _g1h->set_par_threads(0);
  5162 // End of weak reference support closures
  5164 // Abstract task used to preserve (i.e. copy) any referent objects
  5165 // that are in the collection set and are pointed to by reference
  5166 // objects discovered by the CM ref processor.
  5168 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5169 protected:
  5170   G1CollectedHeap* _g1h;
  5171   RefToScanQueueSet      *_queues;
  5172   ParallelTaskTerminator _terminator;
  5173   uint _n_workers;
  5175 public:
  5176   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5177     AbstractGangTask("ParPreserveCMReferents"),
  5178     _g1h(g1h),
  5179     _queues(task_queues),
  5180     _terminator(workers, _queues),
  5181     _n_workers(workers)
  5182   { }
  5184   void work(uint worker_id) {
  5185     ResourceMark rm;
  5186     HandleMark   hm;
  5188     G1ParScanThreadState            pss(_g1h, worker_id);
  5189     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5190     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5191     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5193     pss.set_evac_closure(&scan_evac_cl);
  5194     pss.set_evac_failure_closure(&evac_failure_cl);
  5195     pss.set_partial_scan_closure(&partial_scan_cl);
  5197     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5200     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5201     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5203     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5204     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5206     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5207     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5209     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5210       // We also need to mark copied objects.
  5211       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5212       copy_perm_cl = &copy_mark_perm_cl;
  5215     // Is alive closure
  5216     G1AlwaysAliveClosure always_alive(_g1h);
  5218     // Copying keep alive closure. Applied to referent objects that need
  5219     // to be copied.
  5220     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5222     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5224     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5225     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5227     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5228     // So this must be true - but assert just in case someone decides to
  5229     // change the worker ids.
  5230     assert(0 <= worker_id && worker_id < limit, "sanity");
  5231     assert(!rp->discovery_is_atomic(), "check this code");
  5233     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5234     for (uint idx = worker_id; idx < limit; idx += stride) {
  5235       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5237       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5238       while (iter.has_next()) {
  5239         // Since discovery is not atomic for the CM ref processor, we
  5240         // can see some null referent objects.
  5241         iter.load_ptrs(DEBUG_ONLY(true));
  5242         oop ref = iter.obj();
  5244         // This will filter nulls.
  5245         if (iter.is_referent_alive()) {
  5246           iter.make_referent_alive();
  5248         iter.move_to_next();
  5252     // Drain the queue - which may cause stealing
  5253     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5254     drain_queue.do_void();
  5255     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5256     assert(pss.refs()->is_empty(), "should be");
  5258 };
  5260 // Weak Reference processing during an evacuation pause (part 1).
  5261 void G1CollectedHeap::process_discovered_references() {
  5262   double ref_proc_start = os::elapsedTime();
  5264   ReferenceProcessor* rp = _ref_processor_stw;
  5265   assert(rp->discovery_enabled(), "should have been enabled");
  5267   // Any reference objects, in the collection set, that were 'discovered'
  5268   // by the CM ref processor should have already been copied (either by
  5269   // applying the external root copy closure to the discovered lists, or
  5270   // by following an RSet entry).
  5271   //
  5272   // But some of the referents, that are in the collection set, that these
  5273   // reference objects point to may not have been copied: the STW ref
  5274   // processor would have seen that the reference object had already
  5275   // been 'discovered' and would have skipped discovering the reference,
  5276   // but would not have treated the reference object as a regular oop.
  5277   // As a reult the copy closure would not have been applied to the
  5278   // referent object.
  5279   //
  5280   // We need to explicitly copy these referent objects - the references
  5281   // will be processed at the end of remarking.
  5282   //
  5283   // We also need to do this copying before we process the reference
  5284   // objects discovered by the STW ref processor in case one of these
  5285   // referents points to another object which is also referenced by an
  5286   // object discovered by the STW ref processor.
  5288   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5289                         workers()->active_workers() : 1);
  5291   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5292            active_workers == workers()->active_workers(),
  5293            "Need to reset active_workers");
  5295   set_par_threads(active_workers);
  5296   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5298   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5299     workers()->run_task(&keep_cm_referents);
  5300   } else {
  5301     keep_cm_referents.work(0);
  5304   set_par_threads(0);
  5306   // Closure to test whether a referent is alive.
  5307   G1STWIsAliveClosure is_alive(this);
  5309   // Even when parallel reference processing is enabled, the processing
  5310   // of JNI refs is serial and performed serially by the current thread
  5311   // rather than by a worker. The following PSS will be used for processing
  5312   // JNI refs.
  5314   // Use only a single queue for this PSS.
  5315   G1ParScanThreadState pss(this, 0);
  5317   // We do not embed a reference processor in the copying/scanning
  5318   // closures while we're actually processing the discovered
  5319   // reference objects.
  5320   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5321   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5322   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5324   pss.set_evac_closure(&scan_evac_cl);
  5325   pss.set_evac_failure_closure(&evac_failure_cl);
  5326   pss.set_partial_scan_closure(&partial_scan_cl);
  5328   assert(pss.refs()->is_empty(), "pre-condition");
  5330   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5331   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5333   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5334   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5336   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5337   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5339   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5340     // We also need to mark copied objects.
  5341     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5342     copy_perm_cl = &copy_mark_perm_cl;
  5345   // Keep alive closure.
  5346   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5348   // Serial Complete GC closure
  5349   G1STWDrainQueueClosure drain_queue(this, &pss);
  5351   // Setup the soft refs policy...
  5352   rp->setup_policy(false);
  5354   if (!rp->processing_is_mt()) {
  5355     // Serial reference processing...
  5356     rp->process_discovered_references(&is_alive,
  5357                                       &keep_alive,
  5358                                       &drain_queue,
  5359                                       NULL);
  5360   } else {
  5361     // Parallel reference processing
  5362     assert(rp->num_q() == active_workers, "sanity");
  5363     assert(active_workers <= rp->max_num_q(), "sanity");
  5365     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5366     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5369   // We have completed copying any necessary live referent objects
  5370   // (that were not copied during the actual pause) so we can
  5371   // retire any active alloc buffers
  5372   pss.retire_alloc_buffers();
  5373   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5375   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5376   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5379 // Weak Reference processing during an evacuation pause (part 2).
  5380 void G1CollectedHeap::enqueue_discovered_references() {
  5381   double ref_enq_start = os::elapsedTime();
  5383   ReferenceProcessor* rp = _ref_processor_stw;
  5384   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5386   // Now enqueue any remaining on the discovered lists on to
  5387   // the pending list.
  5388   if (!rp->processing_is_mt()) {
  5389     // Serial reference processing...
  5390     rp->enqueue_discovered_references();
  5391   } else {
  5392     // Parallel reference enqueuing
  5394     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5395     assert(active_workers == workers()->active_workers(),
  5396            "Need to reset active_workers");
  5397     assert(rp->num_q() == active_workers, "sanity");
  5398     assert(active_workers <= rp->max_num_q(), "sanity");
  5400     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5401     rp->enqueue_discovered_references(&par_task_executor);
  5404   rp->verify_no_references_recorded();
  5405   assert(!rp->discovery_enabled(), "should have been disabled");
  5407   // FIXME
  5408   // CM's reference processing also cleans up the string and symbol tables.
  5409   // Should we do that here also? We could, but it is a serial operation
  5410   // and could signicantly increase the pause time.
  5412   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5413   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5416 void G1CollectedHeap::evacuate_collection_set() {
  5417   _expand_heap_after_alloc_failure = true;
  5418   set_evacuation_failed(false);
  5420   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5421   concurrent_g1_refine()->set_use_cache(false);
  5422   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5424   uint n_workers;
  5425   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5426     n_workers =
  5427       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5428                                      workers()->active_workers(),
  5429                                      Threads::number_of_non_daemon_threads());
  5430     assert(UseDynamicNumberOfGCThreads ||
  5431            n_workers == workers()->total_workers(),
  5432            "If not dynamic should be using all the  workers");
  5433     workers()->set_active_workers(n_workers);
  5434     set_par_threads(n_workers);
  5435   } else {
  5436     assert(n_par_threads() == 0,
  5437            "Should be the original non-parallel value");
  5438     n_workers = 1;
  5441   G1ParTask g1_par_task(this, _task_queues);
  5443   init_for_evac_failure(NULL);
  5445   rem_set()->prepare_for_younger_refs_iterate(true);
  5447   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5448   double start_par_time_sec = os::elapsedTime();
  5449   double end_par_time_sec;
  5452     StrongRootsScope srs(this);
  5454     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5455       // The individual threads will set their evac-failure closures.
  5456       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5457       // These tasks use ShareHeap::_process_strong_tasks
  5458       assert(UseDynamicNumberOfGCThreads ||
  5459              workers()->active_workers() == workers()->total_workers(),
  5460              "If not dynamic should be using all the  workers");
  5461       workers()->run_task(&g1_par_task);
  5462     } else {
  5463       g1_par_task.set_for_termination(n_workers);
  5464       g1_par_task.work(0);
  5466     end_par_time_sec = os::elapsedTime();
  5468     // Closing the inner scope will execute the destructor
  5469     // for the StrongRootsScope object. We record the current
  5470     // elapsed time before closing the scope so that time
  5471     // taken for the SRS destructor is NOT included in the
  5472     // reported parallel time.
  5475   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5476   g1_policy()->record_par_time(par_time_ms);
  5478   double code_root_fixup_time_ms =
  5479         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5480   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5482   set_par_threads(0);
  5484   // Process any discovered reference objects - we have
  5485   // to do this _before_ we retire the GC alloc regions
  5486   // as we may have to copy some 'reachable' referent
  5487   // objects (and their reachable sub-graphs) that were
  5488   // not copied during the pause.
  5489   process_discovered_references();
  5491   // Weak root processing.
  5492   // Note: when JSR 292 is enabled and code blobs can contain
  5493   // non-perm oops then we will need to process the code blobs
  5494   // here too.
  5496     G1STWIsAliveClosure is_alive(this);
  5497     G1KeepAliveClosure keep_alive(this);
  5498     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5501   release_gc_alloc_regions();
  5502   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5504   concurrent_g1_refine()->clear_hot_cache();
  5505   concurrent_g1_refine()->set_use_cache(true);
  5507   finalize_for_evac_failure();
  5509   if (evacuation_failed()) {
  5510     remove_self_forwarding_pointers();
  5511     if (G1Log::finer()) {
  5512       gclog_or_tty->print(" (to-space overflow)");
  5513     } else if (G1Log::fine()) {
  5514       gclog_or_tty->print("--");
  5518   // Enqueue any remaining references remaining on the STW
  5519   // reference processor's discovered lists. We need to do
  5520   // this after the card table is cleaned (and verified) as
  5521   // the act of enqueuing entries on to the pending list
  5522   // will log these updates (and dirty their associated
  5523   // cards). We need these updates logged to update any
  5524   // RSets.
  5525   enqueue_discovered_references();
  5527   if (G1DeferredRSUpdate) {
  5528     RedirtyLoggedCardTableEntryFastClosure redirty;
  5529     dirty_card_queue_set().set_closure(&redirty);
  5530     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5532     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5533     dcq.merge_bufferlists(&dirty_card_queue_set());
  5534     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5536   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5539 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5540                                      size_t* pre_used,
  5541                                      FreeRegionList* free_list,
  5542                                      OldRegionSet* old_proxy_set,
  5543                                      HumongousRegionSet* humongous_proxy_set,
  5544                                      HRRSCleanupTask* hrrs_cleanup_task,
  5545                                      bool par) {
  5546   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5547     if (hr->isHumongous()) {
  5548       assert(hr->startsHumongous(), "we should only see starts humongous");
  5549       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5550     } else {
  5551       _old_set.remove_with_proxy(hr, old_proxy_set);
  5552       free_region(hr, pre_used, free_list, par);
  5554   } else {
  5555     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5559 void G1CollectedHeap::free_region(HeapRegion* hr,
  5560                                   size_t* pre_used,
  5561                                   FreeRegionList* free_list,
  5562                                   bool par) {
  5563   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5564   assert(!hr->is_empty(), "the region should not be empty");
  5565   assert(free_list != NULL, "pre-condition");
  5567   *pre_used += hr->used();
  5568   hr->hr_clear(par, true /* clear_space */);
  5569   free_list->add_as_head(hr);
  5572 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5573                                      size_t* pre_used,
  5574                                      FreeRegionList* free_list,
  5575                                      HumongousRegionSet* humongous_proxy_set,
  5576                                      bool par) {
  5577   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5578   assert(free_list != NULL, "pre-condition");
  5579   assert(humongous_proxy_set != NULL, "pre-condition");
  5581   size_t hr_used = hr->used();
  5582   size_t hr_capacity = hr->capacity();
  5583   size_t hr_pre_used = 0;
  5584   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5585   hr->set_notHumongous();
  5586   free_region(hr, &hr_pre_used, free_list, par);
  5588   uint i = hr->hrs_index() + 1;
  5589   uint num = 1;
  5590   while (i < n_regions()) {
  5591     HeapRegion* curr_hr = region_at(i);
  5592     if (!curr_hr->continuesHumongous()) {
  5593       break;
  5595     curr_hr->set_notHumongous();
  5596     free_region(curr_hr, &hr_pre_used, free_list, par);
  5597     num += 1;
  5598     i += 1;
  5600   assert(hr_pre_used == hr_used,
  5601          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5602                  "should be the same", hr_pre_used, hr_used));
  5603   *pre_used += hr_pre_used;
  5606 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5607                                        FreeRegionList* free_list,
  5608                                        OldRegionSet* old_proxy_set,
  5609                                        HumongousRegionSet* humongous_proxy_set,
  5610                                        bool par) {
  5611   if (pre_used > 0) {
  5612     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5613     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5614     assert(_summary_bytes_used >= pre_used,
  5615            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5616                    "should be >= pre_used: "SIZE_FORMAT,
  5617                    _summary_bytes_used, pre_used));
  5618     _summary_bytes_used -= pre_used;
  5620   if (free_list != NULL && !free_list->is_empty()) {
  5621     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5622     _free_list.add_as_head(free_list);
  5624   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5625     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5626     _old_set.update_from_proxy(old_proxy_set);
  5628   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5629     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5630     _humongous_set.update_from_proxy(humongous_proxy_set);
  5634 class G1ParCleanupCTTask : public AbstractGangTask {
  5635   CardTableModRefBS* _ct_bs;
  5636   G1CollectedHeap* _g1h;
  5637   HeapRegion* volatile _su_head;
  5638 public:
  5639   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5640                      G1CollectedHeap* g1h) :
  5641     AbstractGangTask("G1 Par Cleanup CT Task"),
  5642     _ct_bs(ct_bs), _g1h(g1h) { }
  5644   void work(uint worker_id) {
  5645     HeapRegion* r;
  5646     while (r = _g1h->pop_dirty_cards_region()) {
  5647       clear_cards(r);
  5651   void clear_cards(HeapRegion* r) {
  5652     // Cards of the survivors should have already been dirtied.
  5653     if (!r->is_survivor()) {
  5654       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5657 };
  5659 #ifndef PRODUCT
  5660 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5661   G1CollectedHeap* _g1h;
  5662   CardTableModRefBS* _ct_bs;
  5663 public:
  5664   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5665     : _g1h(g1h), _ct_bs(ct_bs) { }
  5666   virtual bool doHeapRegion(HeapRegion* r) {
  5667     if (r->is_survivor()) {
  5668       _g1h->verify_dirty_region(r);
  5669     } else {
  5670       _g1h->verify_not_dirty_region(r);
  5672     return false;
  5674 };
  5676 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5677   // All of the region should be clean.
  5678   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5679   MemRegion mr(hr->bottom(), hr->end());
  5680   ct_bs->verify_not_dirty_region(mr);
  5683 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5684   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5685   // dirty allocated blocks as they allocate them. The thread that
  5686   // retires each region and replaces it with a new one will do a
  5687   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5688   // not dirty that area (one less thing to have to do while holding
  5689   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5690   // is dirty.
  5691   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5692   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5693   ct_bs->verify_dirty_region(mr);
  5696 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5697   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5698   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5699     verify_dirty_region(hr);
  5703 void G1CollectedHeap::verify_dirty_young_regions() {
  5704   verify_dirty_young_list(_young_list->first_region());
  5705   verify_dirty_young_list(_young_list->first_survivor_region());
  5707 #endif
  5709 void G1CollectedHeap::cleanUpCardTable() {
  5710   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5711   double start = os::elapsedTime();
  5714     // Iterate over the dirty cards region list.
  5715     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5717     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5718       set_par_threads();
  5719       workers()->run_task(&cleanup_task);
  5720       set_par_threads(0);
  5721     } else {
  5722       while (_dirty_cards_region_list) {
  5723         HeapRegion* r = _dirty_cards_region_list;
  5724         cleanup_task.clear_cards(r);
  5725         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5726         if (_dirty_cards_region_list == r) {
  5727           // The last region.
  5728           _dirty_cards_region_list = NULL;
  5730         r->set_next_dirty_cards_region(NULL);
  5733 #ifndef PRODUCT
  5734     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5735       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5736       heap_region_iterate(&cleanup_verifier);
  5738 #endif
  5741   double elapsed = os::elapsedTime() - start;
  5742   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5745 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5746   size_t pre_used = 0;
  5747   FreeRegionList local_free_list("Local List for CSet Freeing");
  5749   double young_time_ms     = 0.0;
  5750   double non_young_time_ms = 0.0;
  5752   // Since the collection set is a superset of the the young list,
  5753   // all we need to do to clear the young list is clear its
  5754   // head and length, and unlink any young regions in the code below
  5755   _young_list->clear();
  5757   G1CollectorPolicy* policy = g1_policy();
  5759   double start_sec = os::elapsedTime();
  5760   bool non_young = true;
  5762   HeapRegion* cur = cs_head;
  5763   int age_bound = -1;
  5764   size_t rs_lengths = 0;
  5766   while (cur != NULL) {
  5767     assert(!is_on_master_free_list(cur), "sanity");
  5768     if (non_young) {
  5769       if (cur->is_young()) {
  5770         double end_sec = os::elapsedTime();
  5771         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5772         non_young_time_ms += elapsed_ms;
  5774         start_sec = os::elapsedTime();
  5775         non_young = false;
  5777     } else {
  5778       if (!cur->is_young()) {
  5779         double end_sec = os::elapsedTime();
  5780         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5781         young_time_ms += elapsed_ms;
  5783         start_sec = os::elapsedTime();
  5784         non_young = true;
  5788     rs_lengths += cur->rem_set()->occupied();
  5790     HeapRegion* next = cur->next_in_collection_set();
  5791     assert(cur->in_collection_set(), "bad CS");
  5792     cur->set_next_in_collection_set(NULL);
  5793     cur->set_in_collection_set(false);
  5795     if (cur->is_young()) {
  5796       int index = cur->young_index_in_cset();
  5797       assert(index != -1, "invariant");
  5798       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5799       size_t words_survived = _surviving_young_words[index];
  5800       cur->record_surv_words_in_group(words_survived);
  5802       // At this point the we have 'popped' cur from the collection set
  5803       // (linked via next_in_collection_set()) but it is still in the
  5804       // young list (linked via next_young_region()). Clear the
  5805       // _next_young_region field.
  5806       cur->set_next_young_region(NULL);
  5807     } else {
  5808       int index = cur->young_index_in_cset();
  5809       assert(index == -1, "invariant");
  5812     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5813             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5814             "invariant" );
  5816     if (!cur->evacuation_failed()) {
  5817       MemRegion used_mr = cur->used_region();
  5819       // And the region is empty.
  5820       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5821       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5822     } else {
  5823       cur->uninstall_surv_rate_group();
  5824       if (cur->is_young()) {
  5825         cur->set_young_index_in_cset(-1);
  5827       cur->set_not_young();
  5828       cur->set_evacuation_failed(false);
  5829       // The region is now considered to be old.
  5830       _old_set.add(cur);
  5832     cur = next;
  5835   policy->record_max_rs_lengths(rs_lengths);
  5836   policy->cset_regions_freed();
  5838   double end_sec = os::elapsedTime();
  5839   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5841   if (non_young) {
  5842     non_young_time_ms += elapsed_ms;
  5843   } else {
  5844     young_time_ms += elapsed_ms;
  5847   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5848                                     NULL /* old_proxy_set */,
  5849                                     NULL /* humongous_proxy_set */,
  5850                                     false /* par */);
  5851   policy->record_young_free_cset_time_ms(young_time_ms);
  5852   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5855 // This routine is similar to the above but does not record
  5856 // any policy statistics or update free lists; we are abandoning
  5857 // the current incremental collection set in preparation of a
  5858 // full collection. After the full GC we will start to build up
  5859 // the incremental collection set again.
  5860 // This is only called when we're doing a full collection
  5861 // and is immediately followed by the tearing down of the young list.
  5863 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5864   HeapRegion* cur = cs_head;
  5866   while (cur != NULL) {
  5867     HeapRegion* next = cur->next_in_collection_set();
  5868     assert(cur->in_collection_set(), "bad CS");
  5869     cur->set_next_in_collection_set(NULL);
  5870     cur->set_in_collection_set(false);
  5871     cur->set_young_index_in_cset(-1);
  5872     cur = next;
  5876 void G1CollectedHeap::set_free_regions_coming() {
  5877   if (G1ConcRegionFreeingVerbose) {
  5878     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5879                            "setting free regions coming");
  5882   assert(!free_regions_coming(), "pre-condition");
  5883   _free_regions_coming = true;
  5886 void G1CollectedHeap::reset_free_regions_coming() {
  5887   assert(free_regions_coming(), "pre-condition");
  5890     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5891     _free_regions_coming = false;
  5892     SecondaryFreeList_lock->notify_all();
  5895   if (G1ConcRegionFreeingVerbose) {
  5896     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5897                            "reset free regions coming");
  5901 void G1CollectedHeap::wait_while_free_regions_coming() {
  5902   // Most of the time we won't have to wait, so let's do a quick test
  5903   // first before we take the lock.
  5904   if (!free_regions_coming()) {
  5905     return;
  5908   if (G1ConcRegionFreeingVerbose) {
  5909     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5910                            "waiting for free regions");
  5914     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5915     while (free_regions_coming()) {
  5916       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5920   if (G1ConcRegionFreeingVerbose) {
  5921     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5922                            "done waiting for free regions");
  5926 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5927   assert(heap_lock_held_for_gc(),
  5928               "the heap lock should already be held by or for this thread");
  5929   _young_list->push_region(hr);
  5932 class NoYoungRegionsClosure: public HeapRegionClosure {
  5933 private:
  5934   bool _success;
  5935 public:
  5936   NoYoungRegionsClosure() : _success(true) { }
  5937   bool doHeapRegion(HeapRegion* r) {
  5938     if (r->is_young()) {
  5939       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5940                              r->bottom(), r->end());
  5941       _success = false;
  5943     return false;
  5945   bool success() { return _success; }
  5946 };
  5948 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5949   bool ret = _young_list->check_list_empty(check_sample);
  5951   if (check_heap) {
  5952     NoYoungRegionsClosure closure;
  5953     heap_region_iterate(&closure);
  5954     ret = ret && closure.success();
  5957   return ret;
  5960 class TearDownRegionSetsClosure : public HeapRegionClosure {
  5961 private:
  5962   OldRegionSet *_old_set;
  5964 public:
  5965   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  5967   bool doHeapRegion(HeapRegion* r) {
  5968     if (r->is_empty()) {
  5969       // We ignore empty regions, we'll empty the free list afterwards
  5970     } else if (r->is_young()) {
  5971       // We ignore young regions, we'll empty the young list afterwards
  5972     } else if (r->isHumongous()) {
  5973       // We ignore humongous regions, we're not tearing down the
  5974       // humongous region set
  5975     } else {
  5976       // The rest should be old
  5977       _old_set->remove(r);
  5979     return false;
  5982   ~TearDownRegionSetsClosure() {
  5983     assert(_old_set->is_empty(), "post-condition");
  5985 };
  5987 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  5988   assert_at_safepoint(true /* should_be_vm_thread */);
  5990   if (!free_list_only) {
  5991     TearDownRegionSetsClosure cl(&_old_set);
  5992     heap_region_iterate(&cl);
  5994     // Need to do this after the heap iteration to be able to
  5995     // recognize the young regions and ignore them during the iteration.
  5996     _young_list->empty_list();
  5998   _free_list.remove_all();
  6001 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6002 private:
  6003   bool            _free_list_only;
  6004   OldRegionSet*   _old_set;
  6005   FreeRegionList* _free_list;
  6006   size_t          _total_used;
  6008 public:
  6009   RebuildRegionSetsClosure(bool free_list_only,
  6010                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6011     _free_list_only(free_list_only),
  6012     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6013     assert(_free_list->is_empty(), "pre-condition");
  6014     if (!free_list_only) {
  6015       assert(_old_set->is_empty(), "pre-condition");
  6019   bool doHeapRegion(HeapRegion* r) {
  6020     if (r->continuesHumongous()) {
  6021       return false;
  6024     if (r->is_empty()) {
  6025       // Add free regions to the free list
  6026       _free_list->add_as_tail(r);
  6027     } else if (!_free_list_only) {
  6028       assert(!r->is_young(), "we should not come across young regions");
  6030       if (r->isHumongous()) {
  6031         // We ignore humongous regions, we left the humongous set unchanged
  6032       } else {
  6033         // The rest should be old, add them to the old set
  6034         _old_set->add(r);
  6036       _total_used += r->used();
  6039     return false;
  6042   size_t total_used() {
  6043     return _total_used;
  6045 };
  6047 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6048   assert_at_safepoint(true /* should_be_vm_thread */);
  6050   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6051   heap_region_iterate(&cl);
  6053   if (!free_list_only) {
  6054     _summary_bytes_used = cl.total_used();
  6056   assert(_summary_bytes_used == recalculate_used(),
  6057          err_msg("inconsistent _summary_bytes_used, "
  6058                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6059                  _summary_bytes_used, recalculate_used()));
  6062 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6063   _refine_cte_cl->set_concurrent(concurrent);
  6066 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6067   HeapRegion* hr = heap_region_containing(p);
  6068   if (hr == NULL) {
  6069     return is_in_permanent(p);
  6070   } else {
  6071     return hr->is_in(p);
  6075 // Methods for the mutator alloc region
  6077 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6078                                                       bool force) {
  6079   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6080   assert(!force || g1_policy()->can_expand_young_list(),
  6081          "if force is true we should be able to expand the young list");
  6082   bool young_list_full = g1_policy()->is_young_list_full();
  6083   if (force || !young_list_full) {
  6084     HeapRegion* new_alloc_region = new_region(word_size,
  6085                                               false /* do_expand */);
  6086     if (new_alloc_region != NULL) {
  6087       set_region_short_lived_locked(new_alloc_region);
  6088       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6089       return new_alloc_region;
  6092   return NULL;
  6095 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6096                                                   size_t allocated_bytes) {
  6097   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6098   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6100   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6101   _summary_bytes_used += allocated_bytes;
  6102   _hr_printer.retire(alloc_region);
  6103   // We update the eden sizes here, when the region is retired,
  6104   // instead of when it's allocated, since this is the point that its
  6105   // used space has been recored in _summary_bytes_used.
  6106   g1mm()->update_eden_size();
  6109 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6110                                                     bool force) {
  6111   return _g1h->new_mutator_alloc_region(word_size, force);
  6114 void G1CollectedHeap::set_par_threads() {
  6115   // Don't change the number of workers.  Use the value previously set
  6116   // in the workgroup.
  6117   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6118   uint n_workers = workers()->active_workers();
  6119   assert(UseDynamicNumberOfGCThreads ||
  6120            n_workers == workers()->total_workers(),
  6121       "Otherwise should be using the total number of workers");
  6122   if (n_workers == 0) {
  6123     assert(false, "Should have been set in prior evacuation pause.");
  6124     n_workers = ParallelGCThreads;
  6125     workers()->set_active_workers(n_workers);
  6127   set_par_threads(n_workers);
  6130 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6131                                        size_t allocated_bytes) {
  6132   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6135 // Methods for the GC alloc regions
  6137 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6138                                                  uint count,
  6139                                                  GCAllocPurpose ap) {
  6140   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6142   if (count < g1_policy()->max_regions(ap)) {
  6143     HeapRegion* new_alloc_region = new_region(word_size,
  6144                                               true /* do_expand */);
  6145     if (new_alloc_region != NULL) {
  6146       // We really only need to do this for old regions given that we
  6147       // should never scan survivors. But it doesn't hurt to do it
  6148       // for survivors too.
  6149       new_alloc_region->set_saved_mark();
  6150       if (ap == GCAllocForSurvived) {
  6151         new_alloc_region->set_survivor();
  6152         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6153       } else {
  6154         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6156       bool during_im = g1_policy()->during_initial_mark_pause();
  6157       new_alloc_region->note_start_of_copying(during_im);
  6158       return new_alloc_region;
  6159     } else {
  6160       g1_policy()->note_alloc_region_limit_reached(ap);
  6163   return NULL;
  6166 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6167                                              size_t allocated_bytes,
  6168                                              GCAllocPurpose ap) {
  6169   bool during_im = g1_policy()->during_initial_mark_pause();
  6170   alloc_region->note_end_of_copying(during_im);
  6171   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6172   if (ap == GCAllocForSurvived) {
  6173     young_list()->add_survivor_region(alloc_region);
  6174   } else {
  6175     _old_set.add(alloc_region);
  6177   _hr_printer.retire(alloc_region);
  6180 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6181                                                        bool force) {
  6182   assert(!force, "not supported for GC alloc regions");
  6183   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6186 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6187                                           size_t allocated_bytes) {
  6188   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6189                                GCAllocForSurvived);
  6192 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6193                                                   bool force) {
  6194   assert(!force, "not supported for GC alloc regions");
  6195   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6198 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6199                                      size_t allocated_bytes) {
  6200   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6201                                GCAllocForTenured);
  6203 // Heap region set verification
  6205 class VerifyRegionListsClosure : public HeapRegionClosure {
  6206 private:
  6207   FreeRegionList*     _free_list;
  6208   OldRegionSet*       _old_set;
  6209   HumongousRegionSet* _humongous_set;
  6210   uint                _region_count;
  6212 public:
  6213   VerifyRegionListsClosure(OldRegionSet* old_set,
  6214                            HumongousRegionSet* humongous_set,
  6215                            FreeRegionList* free_list) :
  6216     _old_set(old_set), _humongous_set(humongous_set),
  6217     _free_list(free_list), _region_count(0) { }
  6219   uint region_count() { return _region_count; }
  6221   bool doHeapRegion(HeapRegion* hr) {
  6222     _region_count += 1;
  6224     if (hr->continuesHumongous()) {
  6225       return false;
  6228     if (hr->is_young()) {
  6229       // TODO
  6230     } else if (hr->startsHumongous()) {
  6231       _humongous_set->verify_next_region(hr);
  6232     } else if (hr->is_empty()) {
  6233       _free_list->verify_next_region(hr);
  6234     } else {
  6235       _old_set->verify_next_region(hr);
  6237     return false;
  6239 };
  6241 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6242                                              HeapWord* bottom) {
  6243   HeapWord* end = bottom + HeapRegion::GrainWords;
  6244   MemRegion mr(bottom, end);
  6245   assert(_g1_reserved.contains(mr), "invariant");
  6246   // This might return NULL if the allocation fails
  6247   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6250 void G1CollectedHeap::verify_region_sets() {
  6251   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6253   // First, check the explicit lists.
  6254   _free_list.verify();
  6256     // Given that a concurrent operation might be adding regions to
  6257     // the secondary free list we have to take the lock before
  6258     // verifying it.
  6259     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6260     _secondary_free_list.verify();
  6262   _old_set.verify();
  6263   _humongous_set.verify();
  6265   // If a concurrent region freeing operation is in progress it will
  6266   // be difficult to correctly attributed any free regions we come
  6267   // across to the correct free list given that they might belong to
  6268   // one of several (free_list, secondary_free_list, any local lists,
  6269   // etc.). So, if that's the case we will skip the rest of the
  6270   // verification operation. Alternatively, waiting for the concurrent
  6271   // operation to complete will have a non-trivial effect on the GC's
  6272   // operation (no concurrent operation will last longer than the
  6273   // interval between two calls to verification) and it might hide
  6274   // any issues that we would like to catch during testing.
  6275   if (free_regions_coming()) {
  6276     return;
  6279   // Make sure we append the secondary_free_list on the free_list so
  6280   // that all free regions we will come across can be safely
  6281   // attributed to the free_list.
  6282   append_secondary_free_list_if_not_empty_with_lock();
  6284   // Finally, make sure that the region accounting in the lists is
  6285   // consistent with what we see in the heap.
  6286   _old_set.verify_start();
  6287   _humongous_set.verify_start();
  6288   _free_list.verify_start();
  6290   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6291   heap_region_iterate(&cl);
  6293   _old_set.verify_end();
  6294   _humongous_set.verify_end();
  6295   _free_list.verify_end();

mercurial