src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 25 Apr 2012 12:36:37 +0200

author
brutisso
date
Wed, 25 Apr 2012 12:36:37 +0200
changeset 3734
48fac5d60c3c
parent 3731
8a2e5a6a19a4
child 3762
3a22b77e755a
permissions
-rw-r--r--

7163848: G1: Log GC Cause for a GC
Reviewed-by: johnc, jwilhelm, jmasa

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1Log.hpp"
    37 #include "gc_implementation/g1/g1MarkSweep.hpp"
    38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    40 #include "gc_implementation/g1/heapRegion.inline.hpp"
    41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    43 #include "gc_implementation/g1/vm_operations_g1.hpp"
    44 #include "gc_implementation/shared/isGCActiveMark.hpp"
    45 #include "memory/gcLocker.inline.hpp"
    46 #include "memory/genOopClosures.inline.hpp"
    47 #include "memory/generationSpec.hpp"
    48 #include "memory/referenceProcessor.hpp"
    49 #include "oops/oop.inline.hpp"
    50 #include "oops/oop.pcgc.inline.hpp"
    51 #include "runtime/aprofiler.hpp"
    52 #include "runtime/vmThread.hpp"
    54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    56 // turn it on so that the contents of the young list (scan-only /
    57 // to-be-collected) are printed at "strategic" points before / during
    58 // / after the collection --- this is useful for debugging
    59 #define YOUNG_LIST_VERBOSE 0
    60 // CURRENT STATUS
    61 // This file is under construction.  Search for "FIXME".
    63 // INVARIANTS/NOTES
    64 //
    65 // All allocation activity covered by the G1CollectedHeap interface is
    66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    67 // and allocate_new_tlab, which are the "entry" points to the
    68 // allocation code from the rest of the JVM.  (Note that this does not
    69 // apply to TLAB allocation, which is not part of this interface: it
    70 // is done by clients of this interface.)
    72 // Notes on implementation of parallelism in different tasks.
    73 //
    74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    76 // It does use run_task() which sets _n_workers in the task.
    77 // G1ParTask executes g1_process_strong_roots() ->
    78 // SharedHeap::process_strong_roots() which calls eventuall to
    79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    82 //
    84 // Local to this file.
    86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    87   SuspendibleThreadSet* _sts;
    88   G1RemSet* _g1rs;
    89   ConcurrentG1Refine* _cg1r;
    90   bool _concurrent;
    91 public:
    92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    93                               G1RemSet* g1rs,
    94                               ConcurrentG1Refine* cg1r) :
    95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    96   {}
    97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    99     // This path is executed by the concurrent refine or mutator threads,
   100     // concurrently, and so we do not care if card_ptr contains references
   101     // that point into the collection set.
   102     assert(!oops_into_cset, "should be");
   104     if (_concurrent && _sts->should_yield()) {
   105       // Caller will actually yield.
   106       return false;
   107     }
   108     // Otherwise, we finished successfully; return true.
   109     return true;
   110   }
   111   void set_concurrent(bool b) { _concurrent = b; }
   112 };
   115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   116   int _calls;
   117   G1CollectedHeap* _g1h;
   118   CardTableModRefBS* _ctbs;
   119   int _histo[256];
   120 public:
   121   ClearLoggedCardTableEntryClosure() :
   122     _calls(0)
   123   {
   124     _g1h = G1CollectedHeap::heap();
   125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   126     for (int i = 0; i < 256; i++) _histo[i] = 0;
   127   }
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   130       _calls++;
   131       unsigned char* ujb = (unsigned char*)card_ptr;
   132       int ind = (int)(*ujb);
   133       _histo[ind]++;
   134       *card_ptr = -1;
   135     }
   136     return true;
   137   }
   138   int calls() { return _calls; }
   139   void print_histo() {
   140     gclog_or_tty->print_cr("Card table value histogram:");
   141     for (int i = 0; i < 256; i++) {
   142       if (_histo[i] != 0) {
   143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   144       }
   145     }
   146   }
   147 };
   149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   150   int _calls;
   151   G1CollectedHeap* _g1h;
   152   CardTableModRefBS* _ctbs;
   153 public:
   154   RedirtyLoggedCardTableEntryClosure() :
   155     _calls(0)
   156   {
   157     _g1h = G1CollectedHeap::heap();
   158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   159   }
   160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   162       _calls++;
   163       *card_ptr = 0;
   164     }
   165     return true;
   166   }
   167   int calls() { return _calls; }
   168 };
   170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   171 public:
   172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   173     *card_ptr = CardTableModRefBS::dirty_card_val();
   174     return true;
   175   }
   176 };
   178 YoungList::YoungList(G1CollectedHeap* g1h) :
   179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   181   guarantee(check_list_empty(false), "just making sure...");
   182 }
   184 void YoungList::push_region(HeapRegion *hr) {
   185   assert(!hr->is_young(), "should not already be young");
   186   assert(hr->get_next_young_region() == NULL, "cause it should!");
   188   hr->set_next_young_region(_head);
   189   _head = hr;
   191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   192   ++_length;
   193 }
   195 void YoungList::add_survivor_region(HeapRegion* hr) {
   196   assert(hr->is_survivor(), "should be flagged as survivor region");
   197   assert(hr->get_next_young_region() == NULL, "cause it should!");
   199   hr->set_next_young_region(_survivor_head);
   200   if (_survivor_head == NULL) {
   201     _survivor_tail = hr;
   202   }
   203   _survivor_head = hr;
   204   ++_survivor_length;
   205 }
   207 void YoungList::empty_list(HeapRegion* list) {
   208   while (list != NULL) {
   209     HeapRegion* next = list->get_next_young_region();
   210     list->set_next_young_region(NULL);
   211     list->uninstall_surv_rate_group();
   212     list->set_not_young();
   213     list = next;
   214   }
   215 }
   217 void YoungList::empty_list() {
   218   assert(check_list_well_formed(), "young list should be well formed");
   220   empty_list(_head);
   221   _head = NULL;
   222   _length = 0;
   224   empty_list(_survivor_head);
   225   _survivor_head = NULL;
   226   _survivor_tail = NULL;
   227   _survivor_length = 0;
   229   _last_sampled_rs_lengths = 0;
   231   assert(check_list_empty(false), "just making sure...");
   232 }
   234 bool YoungList::check_list_well_formed() {
   235   bool ret = true;
   237   uint length = 0;
   238   HeapRegion* curr = _head;
   239   HeapRegion* last = NULL;
   240   while (curr != NULL) {
   241     if (!curr->is_young()) {
   242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   243                              "incorrectly tagged (y: %d, surv: %d)",
   244                              curr->bottom(), curr->end(),
   245                              curr->is_young(), curr->is_survivor());
   246       ret = false;
   247     }
   248     ++length;
   249     last = curr;
   250     curr = curr->get_next_young_region();
   251   }
   252   ret = ret && (length == _length);
   254   if (!ret) {
   255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   257                            length, _length);
   258   }
   260   return ret;
   261 }
   263 bool YoungList::check_list_empty(bool check_sample) {
   264   bool ret = true;
   266   if (_length != 0) {
   267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   268                   _length);
   269     ret = false;
   270   }
   271   if (check_sample && _last_sampled_rs_lengths != 0) {
   272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   273     ret = false;
   274   }
   275   if (_head != NULL) {
   276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   277     ret = false;
   278   }
   279   if (!ret) {
   280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   281   }
   283   return ret;
   284 }
   286 void
   287 YoungList::rs_length_sampling_init() {
   288   _sampled_rs_lengths = 0;
   289   _curr               = _head;
   290 }
   292 bool
   293 YoungList::rs_length_sampling_more() {
   294   return _curr != NULL;
   295 }
   297 void
   298 YoungList::rs_length_sampling_next() {
   299   assert( _curr != NULL, "invariant" );
   300   size_t rs_length = _curr->rem_set()->occupied();
   302   _sampled_rs_lengths += rs_length;
   304   // The current region may not yet have been added to the
   305   // incremental collection set (it gets added when it is
   306   // retired as the current allocation region).
   307   if (_curr->in_collection_set()) {
   308     // Update the collection set policy information for this region
   309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   310   }
   312   _curr = _curr->get_next_young_region();
   313   if (_curr == NULL) {
   314     _last_sampled_rs_lengths = _sampled_rs_lengths;
   315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   316   }
   317 }
   319 void
   320 YoungList::reset_auxilary_lists() {
   321   guarantee( is_empty(), "young list should be empty" );
   322   assert(check_list_well_formed(), "young list should be well formed");
   324   // Add survivor regions to SurvRateGroup.
   325   _g1h->g1_policy()->note_start_adding_survivor_regions();
   326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   328   int young_index_in_cset = 0;
   329   for (HeapRegion* curr = _survivor_head;
   330        curr != NULL;
   331        curr = curr->get_next_young_region()) {
   332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   334     // The region is a non-empty survivor so let's add it to
   335     // the incremental collection set for the next evacuation
   336     // pause.
   337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   338     young_index_in_cset += 1;
   339   }
   340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   343   _head   = _survivor_head;
   344   _length = _survivor_length;
   345   if (_survivor_head != NULL) {
   346     assert(_survivor_tail != NULL, "cause it shouldn't be");
   347     assert(_survivor_length > 0, "invariant");
   348     _survivor_tail->set_next_young_region(NULL);
   349   }
   351   // Don't clear the survivor list handles until the start of
   352   // the next evacuation pause - we need it in order to re-tag
   353   // the survivor regions from this evacuation pause as 'young'
   354   // at the start of the next.
   356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   358   assert(check_list_well_formed(), "young list should be well formed");
   359 }
   361 void YoungList::print() {
   362   HeapRegion* lists[] = {_head,   _survivor_head};
   363   const char* names[] = {"YOUNG", "SURVIVOR"};
   365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   367     HeapRegion *curr = lists[list];
   368     if (curr == NULL)
   369       gclog_or_tty->print_cr("  empty");
   370     while (curr != NULL) {
   371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   372                              HR_FORMAT_PARAMS(curr),
   373                              curr->prev_top_at_mark_start(),
   374                              curr->next_top_at_mark_start(),
   375                              curr->age_in_surv_rate_group_cond());
   376       curr = curr->get_next_young_region();
   377     }
   378   }
   380   gclog_or_tty->print_cr("");
   381 }
   383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   384 {
   385   // Claim the right to put the region on the dirty cards region list
   386   // by installing a self pointer.
   387   HeapRegion* next = hr->get_next_dirty_cards_region();
   388   if (next == NULL) {
   389     HeapRegion* res = (HeapRegion*)
   390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   391                           NULL);
   392     if (res == NULL) {
   393       HeapRegion* head;
   394       do {
   395         // Put the region to the dirty cards region list.
   396         head = _dirty_cards_region_list;
   397         next = (HeapRegion*)
   398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   399         if (next == head) {
   400           assert(hr->get_next_dirty_cards_region() == hr,
   401                  "hr->get_next_dirty_cards_region() != hr");
   402           if (next == NULL) {
   403             // The last region in the list points to itself.
   404             hr->set_next_dirty_cards_region(hr);
   405           } else {
   406             hr->set_next_dirty_cards_region(next);
   407           }
   408         }
   409       } while (next != head);
   410     }
   411   }
   412 }
   414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   415 {
   416   HeapRegion* head;
   417   HeapRegion* hr;
   418   do {
   419     head = _dirty_cards_region_list;
   420     if (head == NULL) {
   421       return NULL;
   422     }
   423     HeapRegion* new_head = head->get_next_dirty_cards_region();
   424     if (head == new_head) {
   425       // The last region.
   426       new_head = NULL;
   427     }
   428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   429                                           head);
   430   } while (hr != head);
   431   assert(hr != NULL, "invariant");
   432   hr->set_next_dirty_cards_region(NULL);
   433   return hr;
   434 }
   436 void G1CollectedHeap::stop_conc_gc_threads() {
   437   _cg1r->stop();
   438   _cmThread->stop();
   439 }
   441 #ifdef ASSERT
   442 // A region is added to the collection set as it is retired
   443 // so an address p can point to a region which will be in the
   444 // collection set but has not yet been retired.  This method
   445 // therefore is only accurate during a GC pause after all
   446 // regions have been retired.  It is used for debugging
   447 // to check if an nmethod has references to objects that can
   448 // be move during a partial collection.  Though it can be
   449 // inaccurate, it is sufficient for G1 because the conservative
   450 // implementation of is_scavengable() for G1 will indicate that
   451 // all nmethods must be scanned during a partial collection.
   452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   453   HeapRegion* hr = heap_region_containing(p);
   454   return hr != NULL && hr->in_collection_set();
   455 }
   456 #endif
   458 // Returns true if the reference points to an object that
   459 // can move in an incremental collecction.
   460 bool G1CollectedHeap::is_scavengable(const void* p) {
   461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   462   G1CollectorPolicy* g1p = g1h->g1_policy();
   463   HeapRegion* hr = heap_region_containing(p);
   464   if (hr == NULL) {
   465      // perm gen (or null)
   466      return false;
   467   } else {
   468     return !hr->isHumongous();
   469   }
   470 }
   472 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   473   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   474   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   476   // Count the dirty cards at the start.
   477   CountNonCleanMemRegionClosure count1(this);
   478   ct_bs->mod_card_iterate(&count1);
   479   int orig_count = count1.n();
   481   // First clear the logged cards.
   482   ClearLoggedCardTableEntryClosure clear;
   483   dcqs.set_closure(&clear);
   484   dcqs.apply_closure_to_all_completed_buffers();
   485   dcqs.iterate_closure_all_threads(false);
   486   clear.print_histo();
   488   // Now ensure that there's no dirty cards.
   489   CountNonCleanMemRegionClosure count2(this);
   490   ct_bs->mod_card_iterate(&count2);
   491   if (count2.n() != 0) {
   492     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   493                            count2.n(), orig_count);
   494   }
   495   guarantee(count2.n() == 0, "Card table should be clean.");
   497   RedirtyLoggedCardTableEntryClosure redirty;
   498   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   499   dcqs.apply_closure_to_all_completed_buffers();
   500   dcqs.iterate_closure_all_threads(false);
   501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   502                          clear.calls(), orig_count);
   503   guarantee(redirty.calls() == clear.calls(),
   504             "Or else mechanism is broken.");
   506   CountNonCleanMemRegionClosure count3(this);
   507   ct_bs->mod_card_iterate(&count3);
   508   if (count3.n() != orig_count) {
   509     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   510                            orig_count, count3.n());
   511     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   512   }
   514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   515 }
   517 // Private class members.
   519 G1CollectedHeap* G1CollectedHeap::_g1h;
   521 // Private methods.
   523 HeapRegion*
   524 G1CollectedHeap::new_region_try_secondary_free_list() {
   525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   527     if (!_secondary_free_list.is_empty()) {
   528       if (G1ConcRegionFreeingVerbose) {
   529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   530                                "secondary_free_list has %u entries",
   531                                _secondary_free_list.length());
   532       }
   533       // It looks as if there are free regions available on the
   534       // secondary_free_list. Let's move them to the free_list and try
   535       // again to allocate from it.
   536       append_secondary_free_list();
   538       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   539              "empty we should have moved at least one entry to the free_list");
   540       HeapRegion* res = _free_list.remove_head();
   541       if (G1ConcRegionFreeingVerbose) {
   542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   543                                "allocated "HR_FORMAT" from secondary_free_list",
   544                                HR_FORMAT_PARAMS(res));
   545       }
   546       return res;
   547     }
   549     // Wait here until we get notifed either when (a) there are no
   550     // more free regions coming or (b) some regions have been moved on
   551     // the secondary_free_list.
   552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   553   }
   555   if (G1ConcRegionFreeingVerbose) {
   556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   557                            "could not allocate from secondary_free_list");
   558   }
   559   return NULL;
   560 }
   562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   563   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   564          "the only time we use this to allocate a humongous region is "
   565          "when we are allocating a single humongous region");
   567   HeapRegion* res;
   568   if (G1StressConcRegionFreeing) {
   569     if (!_secondary_free_list.is_empty()) {
   570       if (G1ConcRegionFreeingVerbose) {
   571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   572                                "forced to look at the secondary_free_list");
   573       }
   574       res = new_region_try_secondary_free_list();
   575       if (res != NULL) {
   576         return res;
   577       }
   578     }
   579   }
   580   res = _free_list.remove_head_or_null();
   581   if (res == NULL) {
   582     if (G1ConcRegionFreeingVerbose) {
   583       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   584                              "res == NULL, trying the secondary_free_list");
   585     }
   586     res = new_region_try_secondary_free_list();
   587   }
   588   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   589     // Currently, only attempts to allocate GC alloc regions set
   590     // do_expand to true. So, we should only reach here during a
   591     // safepoint. If this assumption changes we might have to
   592     // reconsider the use of _expand_heap_after_alloc_failure.
   593     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   595     ergo_verbose1(ErgoHeapSizing,
   596                   "attempt heap expansion",
   597                   ergo_format_reason("region allocation request failed")
   598                   ergo_format_byte("allocation request"),
   599                   word_size * HeapWordSize);
   600     if (expand(word_size * HeapWordSize)) {
   601       // Given that expand() succeeded in expanding the heap, and we
   602       // always expand the heap by an amount aligned to the heap
   603       // region size, the free list should in theory not be empty. So
   604       // it would probably be OK to use remove_head(). But the extra
   605       // check for NULL is unlikely to be a performance issue here (we
   606       // just expanded the heap!) so let's just be conservative and
   607       // use remove_head_or_null().
   608       res = _free_list.remove_head_or_null();
   609     } else {
   610       _expand_heap_after_alloc_failure = false;
   611     }
   612   }
   613   return res;
   614 }
   616 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   617                                                         size_t word_size) {
   618   assert(isHumongous(word_size), "word_size should be humongous");
   619   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   621   uint first = G1_NULL_HRS_INDEX;
   622   if (num_regions == 1) {
   623     // Only one region to allocate, no need to go through the slower
   624     // path. The caller will attempt the expasion if this fails, so
   625     // let's not try to expand here too.
   626     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   627     if (hr != NULL) {
   628       first = hr->hrs_index();
   629     } else {
   630       first = G1_NULL_HRS_INDEX;
   631     }
   632   } else {
   633     // We can't allocate humongous regions while cleanupComplete() is
   634     // running, since some of the regions we find to be empty might not
   635     // yet be added to the free list and it is not straightforward to
   636     // know which list they are on so that we can remove them. Note
   637     // that we only need to do this if we need to allocate more than
   638     // one region to satisfy the current humongous allocation
   639     // request. If we are only allocating one region we use the common
   640     // region allocation code (see above).
   641     wait_while_free_regions_coming();
   642     append_secondary_free_list_if_not_empty_with_lock();
   644     if (free_regions() >= num_regions) {
   645       first = _hrs.find_contiguous(num_regions);
   646       if (first != G1_NULL_HRS_INDEX) {
   647         for (uint i = first; i < first + num_regions; ++i) {
   648           HeapRegion* hr = region_at(i);
   649           assert(hr->is_empty(), "sanity");
   650           assert(is_on_master_free_list(hr), "sanity");
   651           hr->set_pending_removal(true);
   652         }
   653         _free_list.remove_all_pending(num_regions);
   654       }
   655     }
   656   }
   657   return first;
   658 }
   660 HeapWord*
   661 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   662                                                            uint num_regions,
   663                                                            size_t word_size) {
   664   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   665   assert(isHumongous(word_size), "word_size should be humongous");
   666   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   668   // Index of last region in the series + 1.
   669   uint last = first + num_regions;
   671   // We need to initialize the region(s) we just discovered. This is
   672   // a bit tricky given that it can happen concurrently with
   673   // refinement threads refining cards on these regions and
   674   // potentially wanting to refine the BOT as they are scanning
   675   // those cards (this can happen shortly after a cleanup; see CR
   676   // 6991377). So we have to set up the region(s) carefully and in
   677   // a specific order.
   679   // The word size sum of all the regions we will allocate.
   680   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   681   assert(word_size <= word_size_sum, "sanity");
   683   // This will be the "starts humongous" region.
   684   HeapRegion* first_hr = region_at(first);
   685   // The header of the new object will be placed at the bottom of
   686   // the first region.
   687   HeapWord* new_obj = first_hr->bottom();
   688   // This will be the new end of the first region in the series that
   689   // should also match the end of the last region in the seriers.
   690   HeapWord* new_end = new_obj + word_size_sum;
   691   // This will be the new top of the first region that will reflect
   692   // this allocation.
   693   HeapWord* new_top = new_obj + word_size;
   695   // First, we need to zero the header of the space that we will be
   696   // allocating. When we update top further down, some refinement
   697   // threads might try to scan the region. By zeroing the header we
   698   // ensure that any thread that will try to scan the region will
   699   // come across the zero klass word and bail out.
   700   //
   701   // NOTE: It would not have been correct to have used
   702   // CollectedHeap::fill_with_object() and make the space look like
   703   // an int array. The thread that is doing the allocation will
   704   // later update the object header to a potentially different array
   705   // type and, for a very short period of time, the klass and length
   706   // fields will be inconsistent. This could cause a refinement
   707   // thread to calculate the object size incorrectly.
   708   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   710   // We will set up the first region as "starts humongous". This
   711   // will also update the BOT covering all the regions to reflect
   712   // that there is a single object that starts at the bottom of the
   713   // first region.
   714   first_hr->set_startsHumongous(new_top, new_end);
   716   // Then, if there are any, we will set up the "continues
   717   // humongous" regions.
   718   HeapRegion* hr = NULL;
   719   for (uint i = first + 1; i < last; ++i) {
   720     hr = region_at(i);
   721     hr->set_continuesHumongous(first_hr);
   722   }
   723   // If we have "continues humongous" regions (hr != NULL), then the
   724   // end of the last one should match new_end.
   725   assert(hr == NULL || hr->end() == new_end, "sanity");
   727   // Up to this point no concurrent thread would have been able to
   728   // do any scanning on any region in this series. All the top
   729   // fields still point to bottom, so the intersection between
   730   // [bottom,top] and [card_start,card_end] will be empty. Before we
   731   // update the top fields, we'll do a storestore to make sure that
   732   // no thread sees the update to top before the zeroing of the
   733   // object header and the BOT initialization.
   734   OrderAccess::storestore();
   736   // Now that the BOT and the object header have been initialized,
   737   // we can update top of the "starts humongous" region.
   738   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   739          "new_top should be in this region");
   740   first_hr->set_top(new_top);
   741   if (_hr_printer.is_active()) {
   742     HeapWord* bottom = first_hr->bottom();
   743     HeapWord* end = first_hr->orig_end();
   744     if ((first + 1) == last) {
   745       // the series has a single humongous region
   746       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   747     } else {
   748       // the series has more than one humongous regions
   749       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   750     }
   751   }
   753   // Now, we will update the top fields of the "continues humongous"
   754   // regions. The reason we need to do this is that, otherwise,
   755   // these regions would look empty and this will confuse parts of
   756   // G1. For example, the code that looks for a consecutive number
   757   // of empty regions will consider them empty and try to
   758   // re-allocate them. We can extend is_empty() to also include
   759   // !continuesHumongous(), but it is easier to just update the top
   760   // fields here. The way we set top for all regions (i.e., top ==
   761   // end for all regions but the last one, top == new_top for the
   762   // last one) is actually used when we will free up the humongous
   763   // region in free_humongous_region().
   764   hr = NULL;
   765   for (uint i = first + 1; i < last; ++i) {
   766     hr = region_at(i);
   767     if ((i + 1) == last) {
   768       // last continues humongous region
   769       assert(hr->bottom() < new_top && new_top <= hr->end(),
   770              "new_top should fall on this region");
   771       hr->set_top(new_top);
   772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   773     } else {
   774       // not last one
   775       assert(new_top > hr->end(), "new_top should be above this region");
   776       hr->set_top(hr->end());
   777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   778     }
   779   }
   780   // If we have continues humongous regions (hr != NULL), then the
   781   // end of the last one should match new_end and its top should
   782   // match new_top.
   783   assert(hr == NULL ||
   784          (hr->end() == new_end && hr->top() == new_top), "sanity");
   786   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   787   _summary_bytes_used += first_hr->used();
   788   _humongous_set.add(first_hr);
   790   return new_obj;
   791 }
   793 // If could fit into free regions w/o expansion, try.
   794 // Otherwise, if can expand, do so.
   795 // Otherwise, if using ex regions might help, try with ex given back.
   796 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   797   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   799   verify_region_sets_optional();
   801   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   802   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   803   uint x_num = expansion_regions();
   804   uint fs = _hrs.free_suffix();
   805   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   806   if (first == G1_NULL_HRS_INDEX) {
   807     // The only thing we can do now is attempt expansion.
   808     if (fs + x_num >= num_regions) {
   809       // If the number of regions we're trying to allocate for this
   810       // object is at most the number of regions in the free suffix,
   811       // then the call to humongous_obj_allocate_find_first() above
   812       // should have succeeded and we wouldn't be here.
   813       //
   814       // We should only be trying to expand when the free suffix is
   815       // not sufficient for the object _and_ we have some expansion
   816       // room available.
   817       assert(num_regions > fs, "earlier allocation should have succeeded");
   819       ergo_verbose1(ErgoHeapSizing,
   820                     "attempt heap expansion",
   821                     ergo_format_reason("humongous allocation request failed")
   822                     ergo_format_byte("allocation request"),
   823                     word_size * HeapWordSize);
   824       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   825         // Even though the heap was expanded, it might not have
   826         // reached the desired size. So, we cannot assume that the
   827         // allocation will succeed.
   828         first = humongous_obj_allocate_find_first(num_regions, word_size);
   829       }
   830     }
   831   }
   833   HeapWord* result = NULL;
   834   if (first != G1_NULL_HRS_INDEX) {
   835     result =
   836       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   837     assert(result != NULL, "it should always return a valid result");
   839     // A successful humongous object allocation changes the used space
   840     // information of the old generation so we need to recalculate the
   841     // sizes and update the jstat counters here.
   842     g1mm()->update_sizes();
   843   }
   845   verify_region_sets_optional();
   847   return result;
   848 }
   850 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   851   assert_heap_not_locked_and_not_at_safepoint();
   852   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   854   unsigned int dummy_gc_count_before;
   855   return attempt_allocation(word_size, &dummy_gc_count_before);
   856 }
   858 HeapWord*
   859 G1CollectedHeap::mem_allocate(size_t word_size,
   860                               bool*  gc_overhead_limit_was_exceeded) {
   861   assert_heap_not_locked_and_not_at_safepoint();
   863   // Loop until the allocation is satisified, or unsatisfied after GC.
   864   for (int try_count = 1; /* we'll return */; try_count += 1) {
   865     unsigned int gc_count_before;
   867     HeapWord* result = NULL;
   868     if (!isHumongous(word_size)) {
   869       result = attempt_allocation(word_size, &gc_count_before);
   870     } else {
   871       result = attempt_allocation_humongous(word_size, &gc_count_before);
   872     }
   873     if (result != NULL) {
   874       return result;
   875     }
   877     // Create the garbage collection operation...
   878     VM_G1CollectForAllocation op(gc_count_before, word_size);
   879     // ...and get the VM thread to execute it.
   880     VMThread::execute(&op);
   882     if (op.prologue_succeeded() && op.pause_succeeded()) {
   883       // If the operation was successful we'll return the result even
   884       // if it is NULL. If the allocation attempt failed immediately
   885       // after a Full GC, it's unlikely we'll be able to allocate now.
   886       HeapWord* result = op.result();
   887       if (result != NULL && !isHumongous(word_size)) {
   888         // Allocations that take place on VM operations do not do any
   889         // card dirtying and we have to do it here. We only have to do
   890         // this for non-humongous allocations, though.
   891         dirty_young_block(result, word_size);
   892       }
   893       return result;
   894     } else {
   895       assert(op.result() == NULL,
   896              "the result should be NULL if the VM op did not succeed");
   897     }
   899     // Give a warning if we seem to be looping forever.
   900     if ((QueuedAllocationWarningCount > 0) &&
   901         (try_count % QueuedAllocationWarningCount == 0)) {
   902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   903     }
   904   }
   906   ShouldNotReachHere();
   907   return NULL;
   908 }
   910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   911                                            unsigned int *gc_count_before_ret) {
   912   // Make sure you read the note in attempt_allocation_humongous().
   914   assert_heap_not_locked_and_not_at_safepoint();
   915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   916          "be called for humongous allocation requests");
   918   // We should only get here after the first-level allocation attempt
   919   // (attempt_allocation()) failed to allocate.
   921   // We will loop until a) we manage to successfully perform the
   922   // allocation or b) we successfully schedule a collection which
   923   // fails to perform the allocation. b) is the only case when we'll
   924   // return NULL.
   925   HeapWord* result = NULL;
   926   for (int try_count = 1; /* we'll return */; try_count += 1) {
   927     bool should_try_gc;
   928     unsigned int gc_count_before;
   930     {
   931       MutexLockerEx x(Heap_lock);
   933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   934                                                       false /* bot_updates */);
   935       if (result != NULL) {
   936         return result;
   937       }
   939       // If we reach here, attempt_allocation_locked() above failed to
   940       // allocate a new region. So the mutator alloc region should be NULL.
   941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   943       if (GC_locker::is_active_and_needs_gc()) {
   944         if (g1_policy()->can_expand_young_list()) {
   945           // No need for an ergo verbose message here,
   946           // can_expand_young_list() does this when it returns true.
   947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   948                                                       false /* bot_updates */);
   949           if (result != NULL) {
   950             return result;
   951           }
   952         }
   953         should_try_gc = false;
   954       } else {
   955         // Read the GC count while still holding the Heap_lock.
   956         gc_count_before = total_collections();
   957         should_try_gc = true;
   958       }
   959     }
   961     if (should_try_gc) {
   962       bool succeeded;
   963       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   964       if (result != NULL) {
   965         assert(succeeded, "only way to get back a non-NULL result");
   966         return result;
   967       }
   969       if (succeeded) {
   970         // If we get here we successfully scheduled a collection which
   971         // failed to allocate. No point in trying to allocate
   972         // further. We'll just return NULL.
   973         MutexLockerEx x(Heap_lock);
   974         *gc_count_before_ret = total_collections();
   975         return NULL;
   976       }
   977     } else {
   978       GC_locker::stall_until_clear();
   979     }
   981     // We can reach here if we were unsuccessul in scheduling a
   982     // collection (because another thread beat us to it) or if we were
   983     // stalled due to the GC locker. In either can we should retry the
   984     // allocation attempt in case another thread successfully
   985     // performed a collection and reclaimed enough space. We do the
   986     // first attempt (without holding the Heap_lock) here and the
   987     // follow-on attempt will be at the start of the next loop
   988     // iteration (after taking the Heap_lock).
   989     result = _mutator_alloc_region.attempt_allocation(word_size,
   990                                                       false /* bot_updates */);
   991     if (result != NULL) {
   992       return result;
   993     }
   995     // Give a warning if we seem to be looping forever.
   996     if ((QueuedAllocationWarningCount > 0) &&
   997         (try_count % QueuedAllocationWarningCount == 0)) {
   998       warning("G1CollectedHeap::attempt_allocation_slow() "
   999               "retries %d times", try_count);
  1003   ShouldNotReachHere();
  1004   return NULL;
  1007 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1008                                           unsigned int * gc_count_before_ret) {
  1009   // The structure of this method has a lot of similarities to
  1010   // attempt_allocation_slow(). The reason these two were not merged
  1011   // into a single one is that such a method would require several "if
  1012   // allocation is not humongous do this, otherwise do that"
  1013   // conditional paths which would obscure its flow. In fact, an early
  1014   // version of this code did use a unified method which was harder to
  1015   // follow and, as a result, it had subtle bugs that were hard to
  1016   // track down. So keeping these two methods separate allows each to
  1017   // be more readable. It will be good to keep these two in sync as
  1018   // much as possible.
  1020   assert_heap_not_locked_and_not_at_safepoint();
  1021   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1022          "should only be called for humongous allocations");
  1024   // Humongous objects can exhaust the heap quickly, so we should check if we
  1025   // need to start a marking cycle at each humongous object allocation. We do
  1026   // the check before we do the actual allocation. The reason for doing it
  1027   // before the allocation is that we avoid having to keep track of the newly
  1028   // allocated memory while we do a GC.
  1029   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1030                                            word_size)) {
  1031     collect(GCCause::_g1_humongous_allocation);
  1034   // We will loop until a) we manage to successfully perform the
  1035   // allocation or b) we successfully schedule a collection which
  1036   // fails to perform the allocation. b) is the only case when we'll
  1037   // return NULL.
  1038   HeapWord* result = NULL;
  1039   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1040     bool should_try_gc;
  1041     unsigned int gc_count_before;
  1044       MutexLockerEx x(Heap_lock);
  1046       // Given that humongous objects are not allocated in young
  1047       // regions, we'll first try to do the allocation without doing a
  1048       // collection hoping that there's enough space in the heap.
  1049       result = humongous_obj_allocate(word_size);
  1050       if (result != NULL) {
  1051         return result;
  1054       if (GC_locker::is_active_and_needs_gc()) {
  1055         should_try_gc = false;
  1056       } else {
  1057         // Read the GC count while still holding the Heap_lock.
  1058         gc_count_before = total_collections();
  1059         should_try_gc = true;
  1063     if (should_try_gc) {
  1064       // If we failed to allocate the humongous object, we should try to
  1065       // do a collection pause (if we're allowed) in case it reclaims
  1066       // enough space for the allocation to succeed after the pause.
  1068       bool succeeded;
  1069       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1070       if (result != NULL) {
  1071         assert(succeeded, "only way to get back a non-NULL result");
  1072         return result;
  1075       if (succeeded) {
  1076         // If we get here we successfully scheduled a collection which
  1077         // failed to allocate. No point in trying to allocate
  1078         // further. We'll just return NULL.
  1079         MutexLockerEx x(Heap_lock);
  1080         *gc_count_before_ret = total_collections();
  1081         return NULL;
  1083     } else {
  1084       GC_locker::stall_until_clear();
  1087     // We can reach here if we were unsuccessul in scheduling a
  1088     // collection (because another thread beat us to it) or if we were
  1089     // stalled due to the GC locker. In either can we should retry the
  1090     // allocation attempt in case another thread successfully
  1091     // performed a collection and reclaimed enough space.  Give a
  1092     // warning if we seem to be looping forever.
  1094     if ((QueuedAllocationWarningCount > 0) &&
  1095         (try_count % QueuedAllocationWarningCount == 0)) {
  1096       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1097               "retries %d times", try_count);
  1101   ShouldNotReachHere();
  1102   return NULL;
  1105 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1106                                        bool expect_null_mutator_alloc_region) {
  1107   assert_at_safepoint(true /* should_be_vm_thread */);
  1108   assert(_mutator_alloc_region.get() == NULL ||
  1109                                              !expect_null_mutator_alloc_region,
  1110          "the current alloc region was unexpectedly found to be non-NULL");
  1112   if (!isHumongous(word_size)) {
  1113     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1114                                                       false /* bot_updates */);
  1115   } else {
  1116     HeapWord* result = humongous_obj_allocate(word_size);
  1117     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1118       g1_policy()->set_initiate_conc_mark_if_possible();
  1120     return result;
  1123   ShouldNotReachHere();
  1126 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1127   ModRefBarrierSet* _mr_bs;
  1128 public:
  1129   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1130   bool doHeapRegion(HeapRegion* r) {
  1131     r->reset_gc_time_stamp();
  1132     if (r->continuesHumongous())
  1133       return false;
  1134     HeapRegionRemSet* hrrs = r->rem_set();
  1135     if (hrrs != NULL) hrrs->clear();
  1136     // You might think here that we could clear just the cards
  1137     // corresponding to the used region.  But no: if we leave a dirty card
  1138     // in a region we might allocate into, then it would prevent that card
  1139     // from being enqueued, and cause it to be missed.
  1140     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1141     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1142     return false;
  1144 };
  1147 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1148   ModRefBarrierSet* _mr_bs;
  1149 public:
  1150   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1151   bool doHeapRegion(HeapRegion* r) {
  1152     if (r->continuesHumongous()) return false;
  1153     if (r->used_region().word_size() != 0) {
  1154       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1156     return false;
  1158 };
  1160 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1161   G1CollectedHeap*   _g1h;
  1162   UpdateRSOopClosure _cl;
  1163   int                _worker_i;
  1164 public:
  1165   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1166     _cl(g1->g1_rem_set(), worker_i),
  1167     _worker_i(worker_i),
  1168     _g1h(g1)
  1169   { }
  1171   bool doHeapRegion(HeapRegion* r) {
  1172     if (!r->continuesHumongous()) {
  1173       _cl.set_from(r);
  1174       r->oop_iterate(&_cl);
  1176     return false;
  1178 };
  1180 class ParRebuildRSTask: public AbstractGangTask {
  1181   G1CollectedHeap* _g1;
  1182 public:
  1183   ParRebuildRSTask(G1CollectedHeap* g1)
  1184     : AbstractGangTask("ParRebuildRSTask"),
  1185       _g1(g1)
  1186   { }
  1188   void work(uint worker_id) {
  1189     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1190     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1191                                           _g1->workers()->active_workers(),
  1192                                          HeapRegion::RebuildRSClaimValue);
  1194 };
  1196 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1197 private:
  1198   G1HRPrinter* _hr_printer;
  1199 public:
  1200   bool doHeapRegion(HeapRegion* hr) {
  1201     assert(!hr->is_young(), "not expecting to find young regions");
  1202     // We only generate output for non-empty regions.
  1203     if (!hr->is_empty()) {
  1204       if (!hr->isHumongous()) {
  1205         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1206       } else if (hr->startsHumongous()) {
  1207         if (hr->capacity() == HeapRegion::GrainBytes) {
  1208           // single humongous region
  1209           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1210         } else {
  1211           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1213       } else {
  1214         assert(hr->continuesHumongous(), "only way to get here");
  1215         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1218     return false;
  1221   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1222     : _hr_printer(hr_printer) { }
  1223 };
  1225 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1226                                     bool clear_all_soft_refs,
  1227                                     size_t word_size) {
  1228   assert_at_safepoint(true /* should_be_vm_thread */);
  1230   if (GC_locker::check_active_before_gc()) {
  1231     return false;
  1234   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1235   ResourceMark rm;
  1237   print_heap_before_gc();
  1239   HRSPhaseSetter x(HRSPhaseFullGC);
  1240   verify_region_sets_optional();
  1242   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1243                            collector_policy()->should_clear_all_soft_refs();
  1245   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1248     IsGCActiveMark x;
  1250     // Timing
  1251     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1252     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1253     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1255     char verbose_str[128];
  1256     sprintf(verbose_str, "Full GC (%s)", GCCause::to_string(gc_cause()));
  1257     TraceTime t(verbose_str, G1Log::fine(), true, gclog_or_tty);
  1259     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1260     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1262     double start = os::elapsedTime();
  1263     g1_policy()->record_full_collection_start();
  1265     // Note: When we have a more flexible GC logging framework that
  1266     // allows us to add optional attributes to a GC log record we
  1267     // could consider timing and reporting how long we wait in the
  1268     // following two methods.
  1269     wait_while_free_regions_coming();
  1270     // If we start the compaction before the CM threads finish
  1271     // scanning the root regions we might trip them over as we'll
  1272     // be moving objects / updating references. So let's wait until
  1273     // they are done. By telling them to abort, they should complete
  1274     // early.
  1275     _cm->root_regions()->abort();
  1276     _cm->root_regions()->wait_until_scan_finished();
  1277     append_secondary_free_list_if_not_empty_with_lock();
  1279     gc_prologue(true);
  1280     increment_total_collections(true /* full gc */);
  1282     size_t g1h_prev_used = used();
  1283     assert(used() == recalculate_used(), "Should be equal");
  1285     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1286       HandleMark hm;  // Discard invalid handles created during verification
  1287       gclog_or_tty->print(" VerifyBeforeGC:");
  1288       prepare_for_verify();
  1289       Universe::verify(/* silent      */ false,
  1290                        /* option      */ VerifyOption_G1UsePrevMarking);
  1293     pre_full_gc_dump();
  1295     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1297     // Disable discovery and empty the discovered lists
  1298     // for the CM ref processor.
  1299     ref_processor_cm()->disable_discovery();
  1300     ref_processor_cm()->abandon_partial_discovery();
  1301     ref_processor_cm()->verify_no_references_recorded();
  1303     // Abandon current iterations of concurrent marking and concurrent
  1304     // refinement, if any are in progress. We have to do this before
  1305     // wait_until_scan_finished() below.
  1306     concurrent_mark()->abort();
  1308     // Make sure we'll choose a new allocation region afterwards.
  1309     release_mutator_alloc_region();
  1310     abandon_gc_alloc_regions();
  1311     g1_rem_set()->cleanupHRRS();
  1313     // We should call this after we retire any currently active alloc
  1314     // regions so that all the ALLOC / RETIRE events are generated
  1315     // before the start GC event.
  1316     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1318     // We may have added regions to the current incremental collection
  1319     // set between the last GC or pause and now. We need to clear the
  1320     // incremental collection set and then start rebuilding it afresh
  1321     // after this full GC.
  1322     abandon_collection_set(g1_policy()->inc_cset_head());
  1323     g1_policy()->clear_incremental_cset();
  1324     g1_policy()->stop_incremental_cset_building();
  1326     tear_down_region_sets(false /* free_list_only */);
  1327     g1_policy()->set_gcs_are_young(true);
  1329     // See the comments in g1CollectedHeap.hpp and
  1330     // G1CollectedHeap::ref_processing_init() about
  1331     // how reference processing currently works in G1.
  1333     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1334     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1336     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1337     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1339     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1340     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1342     // Do collection work
  1344       HandleMark hm;  // Discard invalid handles created during gc
  1345       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1348     assert(free_regions() == 0, "we should not have added any free regions");
  1349     rebuild_region_sets(false /* free_list_only */);
  1351     // Enqueue any discovered reference objects that have
  1352     // not been removed from the discovered lists.
  1353     ref_processor_stw()->enqueue_discovered_references();
  1355     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1357     MemoryService::track_memory_usage();
  1359     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1360       HandleMark hm;  // Discard invalid handles created during verification
  1361       gclog_or_tty->print(" VerifyAfterGC:");
  1362       prepare_for_verify();
  1363       Universe::verify(/* silent      */ false,
  1364                        /* option      */ VerifyOption_G1UsePrevMarking);
  1368     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1369     ref_processor_stw()->verify_no_references_recorded();
  1371     // Note: since we've just done a full GC, concurrent
  1372     // marking is no longer active. Therefore we need not
  1373     // re-enable reference discovery for the CM ref processor.
  1374     // That will be done at the start of the next marking cycle.
  1375     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1376     ref_processor_cm()->verify_no_references_recorded();
  1378     reset_gc_time_stamp();
  1379     // Since everything potentially moved, we will clear all remembered
  1380     // sets, and clear all cards.  Later we will rebuild remebered
  1381     // sets. We will also reset the GC time stamps of the regions.
  1382     PostMCRemSetClearClosure rs_clear(mr_bs());
  1383     heap_region_iterate(&rs_clear);
  1385     // Resize the heap if necessary.
  1386     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1388     if (_hr_printer.is_active()) {
  1389       // We should do this after we potentially resize the heap so
  1390       // that all the COMMIT / UNCOMMIT events are generated before
  1391       // the end GC event.
  1393       PostCompactionPrinterClosure cl(hr_printer());
  1394       heap_region_iterate(&cl);
  1396       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1399     if (_cg1r->use_cache()) {
  1400       _cg1r->clear_and_record_card_counts();
  1401       _cg1r->clear_hot_cache();
  1404     // Rebuild remembered sets of all regions.
  1405     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1406       uint n_workers =
  1407         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1408                                        workers()->active_workers(),
  1409                                        Threads::number_of_non_daemon_threads());
  1410       assert(UseDynamicNumberOfGCThreads ||
  1411              n_workers == workers()->total_workers(),
  1412              "If not dynamic should be using all the  workers");
  1413       workers()->set_active_workers(n_workers);
  1414       // Set parallel threads in the heap (_n_par_threads) only
  1415       // before a parallel phase and always reset it to 0 after
  1416       // the phase so that the number of parallel threads does
  1417       // no get carried forward to a serial phase where there
  1418       // may be code that is "possibly_parallel".
  1419       set_par_threads(n_workers);
  1421       ParRebuildRSTask rebuild_rs_task(this);
  1422       assert(check_heap_region_claim_values(
  1423              HeapRegion::InitialClaimValue), "sanity check");
  1424       assert(UseDynamicNumberOfGCThreads ||
  1425              workers()->active_workers() == workers()->total_workers(),
  1426         "Unless dynamic should use total workers");
  1427       // Use the most recent number of  active workers
  1428       assert(workers()->active_workers() > 0,
  1429         "Active workers not properly set");
  1430       set_par_threads(workers()->active_workers());
  1431       workers()->run_task(&rebuild_rs_task);
  1432       set_par_threads(0);
  1433       assert(check_heap_region_claim_values(
  1434              HeapRegion::RebuildRSClaimValue), "sanity check");
  1435       reset_heap_region_claim_values();
  1436     } else {
  1437       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1438       heap_region_iterate(&rebuild_rs);
  1441     if (G1Log::fine()) {
  1442       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1445     if (true) { // FIXME
  1446       // Ask the permanent generation to adjust size for full collections
  1447       perm()->compute_new_size();
  1450     // Start a new incremental collection set for the next pause
  1451     assert(g1_policy()->collection_set() == NULL, "must be");
  1452     g1_policy()->start_incremental_cset_building();
  1454     // Clear the _cset_fast_test bitmap in anticipation of adding
  1455     // regions to the incremental collection set for the next
  1456     // evacuation pause.
  1457     clear_cset_fast_test();
  1459     init_mutator_alloc_region();
  1461     double end = os::elapsedTime();
  1462     g1_policy()->record_full_collection_end();
  1464 #ifdef TRACESPINNING
  1465     ParallelTaskTerminator::print_termination_counts();
  1466 #endif
  1468     gc_epilogue(true);
  1470     // Discard all rset updates
  1471     JavaThread::dirty_card_queue_set().abandon_logs();
  1472     assert(!G1DeferredRSUpdate
  1473            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1476   _young_list->reset_sampled_info();
  1477   // At this point there should be no regions in the
  1478   // entire heap tagged as young.
  1479   assert( check_young_list_empty(true /* check_heap */),
  1480     "young list should be empty at this point");
  1482   // Update the number of full collections that have been completed.
  1483   increment_full_collections_completed(false /* concurrent */);
  1485   _hrs.verify_optional();
  1486   verify_region_sets_optional();
  1488   print_heap_after_gc();
  1489   g1mm()->update_sizes();
  1490   post_full_gc_dump();
  1492   return true;
  1495 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1496   // do_collection() will return whether it succeeded in performing
  1497   // the GC. Currently, there is no facility on the
  1498   // do_full_collection() API to notify the caller than the collection
  1499   // did not succeed (e.g., because it was locked out by the GC
  1500   // locker). So, right now, we'll ignore the return value.
  1501   bool dummy = do_collection(true,                /* explicit_gc */
  1502                              clear_all_soft_refs,
  1503                              0                    /* word_size */);
  1506 // This code is mostly copied from TenuredGeneration.
  1507 void
  1508 G1CollectedHeap::
  1509 resize_if_necessary_after_full_collection(size_t word_size) {
  1510   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1512   // Include the current allocation, if any, and bytes that will be
  1513   // pre-allocated to support collections, as "used".
  1514   const size_t used_after_gc = used();
  1515   const size_t capacity_after_gc = capacity();
  1516   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1518   // This is enforced in arguments.cpp.
  1519   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1520          "otherwise the code below doesn't make sense");
  1522   // We don't have floating point command-line arguments
  1523   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1524   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1525   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1526   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1528   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1529   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1531   // We have to be careful here as these two calculations can overflow
  1532   // 32-bit size_t's.
  1533   double used_after_gc_d = (double) used_after_gc;
  1534   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1535   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1537   // Let's make sure that they are both under the max heap size, which
  1538   // by default will make them fit into a size_t.
  1539   double desired_capacity_upper_bound = (double) max_heap_size;
  1540   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1541                                     desired_capacity_upper_bound);
  1542   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1543                                     desired_capacity_upper_bound);
  1545   // We can now safely turn them into size_t's.
  1546   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1547   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1549   // This assert only makes sense here, before we adjust them
  1550   // with respect to the min and max heap size.
  1551   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1552          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1553                  "maximum_desired_capacity = "SIZE_FORMAT,
  1554                  minimum_desired_capacity, maximum_desired_capacity));
  1556   // Should not be greater than the heap max size. No need to adjust
  1557   // it with respect to the heap min size as it's a lower bound (i.e.,
  1558   // we'll try to make the capacity larger than it, not smaller).
  1559   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1560   // Should not be less than the heap min size. No need to adjust it
  1561   // with respect to the heap max size as it's an upper bound (i.e.,
  1562   // we'll try to make the capacity smaller than it, not greater).
  1563   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1565   if (capacity_after_gc < minimum_desired_capacity) {
  1566     // Don't expand unless it's significant
  1567     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1568     ergo_verbose4(ErgoHeapSizing,
  1569                   "attempt heap expansion",
  1570                   ergo_format_reason("capacity lower than "
  1571                                      "min desired capacity after Full GC")
  1572                   ergo_format_byte("capacity")
  1573                   ergo_format_byte("occupancy")
  1574                   ergo_format_byte_perc("min desired capacity"),
  1575                   capacity_after_gc, used_after_gc,
  1576                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1577     expand(expand_bytes);
  1579     // No expansion, now see if we want to shrink
  1580   } else if (capacity_after_gc > maximum_desired_capacity) {
  1581     // Capacity too large, compute shrinking size
  1582     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1583     ergo_verbose4(ErgoHeapSizing,
  1584                   "attempt heap shrinking",
  1585                   ergo_format_reason("capacity higher than "
  1586                                      "max desired capacity after Full GC")
  1587                   ergo_format_byte("capacity")
  1588                   ergo_format_byte("occupancy")
  1589                   ergo_format_byte_perc("max desired capacity"),
  1590                   capacity_after_gc, used_after_gc,
  1591                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1592     shrink(shrink_bytes);
  1597 HeapWord*
  1598 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1599                                            bool* succeeded) {
  1600   assert_at_safepoint(true /* should_be_vm_thread */);
  1602   *succeeded = true;
  1603   // Let's attempt the allocation first.
  1604   HeapWord* result =
  1605     attempt_allocation_at_safepoint(word_size,
  1606                                  false /* expect_null_mutator_alloc_region */);
  1607   if (result != NULL) {
  1608     assert(*succeeded, "sanity");
  1609     return result;
  1612   // In a G1 heap, we're supposed to keep allocation from failing by
  1613   // incremental pauses.  Therefore, at least for now, we'll favor
  1614   // expansion over collection.  (This might change in the future if we can
  1615   // do something smarter than full collection to satisfy a failed alloc.)
  1616   result = expand_and_allocate(word_size);
  1617   if (result != NULL) {
  1618     assert(*succeeded, "sanity");
  1619     return result;
  1622   // Expansion didn't work, we'll try to do a Full GC.
  1623   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1624                                     false, /* clear_all_soft_refs */
  1625                                     word_size);
  1626   if (!gc_succeeded) {
  1627     *succeeded = false;
  1628     return NULL;
  1631   // Retry the allocation
  1632   result = attempt_allocation_at_safepoint(word_size,
  1633                                   true /* expect_null_mutator_alloc_region */);
  1634   if (result != NULL) {
  1635     assert(*succeeded, "sanity");
  1636     return result;
  1639   // Then, try a Full GC that will collect all soft references.
  1640   gc_succeeded = do_collection(false, /* explicit_gc */
  1641                                true,  /* clear_all_soft_refs */
  1642                                word_size);
  1643   if (!gc_succeeded) {
  1644     *succeeded = false;
  1645     return NULL;
  1648   // Retry the allocation once more
  1649   result = attempt_allocation_at_safepoint(word_size,
  1650                                   true /* expect_null_mutator_alloc_region */);
  1651   if (result != NULL) {
  1652     assert(*succeeded, "sanity");
  1653     return result;
  1656   assert(!collector_policy()->should_clear_all_soft_refs(),
  1657          "Flag should have been handled and cleared prior to this point");
  1659   // What else?  We might try synchronous finalization later.  If the total
  1660   // space available is large enough for the allocation, then a more
  1661   // complete compaction phase than we've tried so far might be
  1662   // appropriate.
  1663   assert(*succeeded, "sanity");
  1664   return NULL;
  1667 // Attempting to expand the heap sufficiently
  1668 // to support an allocation of the given "word_size".  If
  1669 // successful, perform the allocation and return the address of the
  1670 // allocated block, or else "NULL".
  1672 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1673   assert_at_safepoint(true /* should_be_vm_thread */);
  1675   verify_region_sets_optional();
  1677   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1678   ergo_verbose1(ErgoHeapSizing,
  1679                 "attempt heap expansion",
  1680                 ergo_format_reason("allocation request failed")
  1681                 ergo_format_byte("allocation request"),
  1682                 word_size * HeapWordSize);
  1683   if (expand(expand_bytes)) {
  1684     _hrs.verify_optional();
  1685     verify_region_sets_optional();
  1686     return attempt_allocation_at_safepoint(word_size,
  1687                                  false /* expect_null_mutator_alloc_region */);
  1689   return NULL;
  1692 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1693                                              HeapWord* new_end) {
  1694   assert(old_end != new_end, "don't call this otherwise");
  1695   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1697   // Update the committed mem region.
  1698   _g1_committed.set_end(new_end);
  1699   // Tell the card table about the update.
  1700   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1701   // Tell the BOT about the update.
  1702   _bot_shared->resize(_g1_committed.word_size());
  1705 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1706   size_t old_mem_size = _g1_storage.committed_size();
  1707   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1708   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1709                                        HeapRegion::GrainBytes);
  1710   ergo_verbose2(ErgoHeapSizing,
  1711                 "expand the heap",
  1712                 ergo_format_byte("requested expansion amount")
  1713                 ergo_format_byte("attempted expansion amount"),
  1714                 expand_bytes, aligned_expand_bytes);
  1716   // First commit the memory.
  1717   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1718   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1719   if (successful) {
  1720     // Then propagate this update to the necessary data structures.
  1721     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1722     update_committed_space(old_end, new_end);
  1724     FreeRegionList expansion_list("Local Expansion List");
  1725     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1726     assert(mr.start() == old_end, "post-condition");
  1727     // mr might be a smaller region than what was requested if
  1728     // expand_by() was unable to allocate the HeapRegion instances
  1729     assert(mr.end() <= new_end, "post-condition");
  1731     size_t actual_expand_bytes = mr.byte_size();
  1732     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1733     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1734            "post-condition");
  1735     if (actual_expand_bytes < aligned_expand_bytes) {
  1736       // We could not expand _hrs to the desired size. In this case we
  1737       // need to shrink the committed space accordingly.
  1738       assert(mr.end() < new_end, "invariant");
  1740       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1741       // First uncommit the memory.
  1742       _g1_storage.shrink_by(diff_bytes);
  1743       // Then propagate this update to the necessary data structures.
  1744       update_committed_space(new_end, mr.end());
  1746     _free_list.add_as_tail(&expansion_list);
  1748     if (_hr_printer.is_active()) {
  1749       HeapWord* curr = mr.start();
  1750       while (curr < mr.end()) {
  1751         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1752         _hr_printer.commit(curr, curr_end);
  1753         curr = curr_end;
  1755       assert(curr == mr.end(), "post-condition");
  1757     g1_policy()->record_new_heap_size(n_regions());
  1758   } else {
  1759     ergo_verbose0(ErgoHeapSizing,
  1760                   "did not expand the heap",
  1761                   ergo_format_reason("heap expansion operation failed"));
  1762     // The expansion of the virtual storage space was unsuccessful.
  1763     // Let's see if it was because we ran out of swap.
  1764     if (G1ExitOnExpansionFailure &&
  1765         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1766       // We had head room...
  1767       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1770   return successful;
  1773 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1774   size_t old_mem_size = _g1_storage.committed_size();
  1775   size_t aligned_shrink_bytes =
  1776     ReservedSpace::page_align_size_down(shrink_bytes);
  1777   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1778                                          HeapRegion::GrainBytes);
  1779   uint num_regions_deleted = 0;
  1780   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1781   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1782   assert(mr.end() == old_end, "post-condition");
  1784   ergo_verbose3(ErgoHeapSizing,
  1785                 "shrink the heap",
  1786                 ergo_format_byte("requested shrinking amount")
  1787                 ergo_format_byte("aligned shrinking amount")
  1788                 ergo_format_byte("attempted shrinking amount"),
  1789                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1790   if (mr.byte_size() > 0) {
  1791     if (_hr_printer.is_active()) {
  1792       HeapWord* curr = mr.end();
  1793       while (curr > mr.start()) {
  1794         HeapWord* curr_end = curr;
  1795         curr -= HeapRegion::GrainWords;
  1796         _hr_printer.uncommit(curr, curr_end);
  1798       assert(curr == mr.start(), "post-condition");
  1801     _g1_storage.shrink_by(mr.byte_size());
  1802     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1803     assert(mr.start() == new_end, "post-condition");
  1805     _expansion_regions += num_regions_deleted;
  1806     update_committed_space(old_end, new_end);
  1807     HeapRegionRemSet::shrink_heap(n_regions());
  1808     g1_policy()->record_new_heap_size(n_regions());
  1809   } else {
  1810     ergo_verbose0(ErgoHeapSizing,
  1811                   "did not shrink the heap",
  1812                   ergo_format_reason("heap shrinking operation failed"));
  1816 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1817   verify_region_sets_optional();
  1819   // We should only reach here at the end of a Full GC which means we
  1820   // should not not be holding to any GC alloc regions. The method
  1821   // below will make sure of that and do any remaining clean up.
  1822   abandon_gc_alloc_regions();
  1824   // Instead of tearing down / rebuilding the free lists here, we
  1825   // could instead use the remove_all_pending() method on free_list to
  1826   // remove only the ones that we need to remove.
  1827   tear_down_region_sets(true /* free_list_only */);
  1828   shrink_helper(shrink_bytes);
  1829   rebuild_region_sets(true /* free_list_only */);
  1831   _hrs.verify_optional();
  1832   verify_region_sets_optional();
  1835 // Public methods.
  1837 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1838 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1839 #endif // _MSC_VER
  1842 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1843   SharedHeap(policy_),
  1844   _g1_policy(policy_),
  1845   _dirty_card_queue_set(false),
  1846   _into_cset_dirty_card_queue_set(false),
  1847   _is_alive_closure_cm(this),
  1848   _is_alive_closure_stw(this),
  1849   _ref_processor_cm(NULL),
  1850   _ref_processor_stw(NULL),
  1851   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1852   _bot_shared(NULL),
  1853   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1854   _evac_failure_scan_stack(NULL) ,
  1855   _mark_in_progress(false),
  1856   _cg1r(NULL), _summary_bytes_used(0),
  1857   _g1mm(NULL),
  1858   _refine_cte_cl(NULL),
  1859   _full_collection(false),
  1860   _free_list("Master Free List"),
  1861   _secondary_free_list("Secondary Free List"),
  1862   _old_set("Old Set"),
  1863   _humongous_set("Master Humongous Set"),
  1864   _free_regions_coming(false),
  1865   _young_list(new YoungList(this)),
  1866   _gc_time_stamp(0),
  1867   _retained_old_gc_alloc_region(NULL),
  1868   _expand_heap_after_alloc_failure(true),
  1869   _surviving_young_words(NULL),
  1870   _full_collections_completed(0),
  1871   _in_cset_fast_test(NULL),
  1872   _in_cset_fast_test_base(NULL),
  1873   _dirty_cards_region_list(NULL),
  1874   _worker_cset_start_region(NULL),
  1875   _worker_cset_start_region_time_stamp(NULL) {
  1876   _g1h = this; // To catch bugs.
  1877   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1878     vm_exit_during_initialization("Failed necessary allocation.");
  1881   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1883   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1884   _task_queues = new RefToScanQueueSet(n_queues);
  1886   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1887   assert(n_rem_sets > 0, "Invariant.");
  1889   HeapRegionRemSetIterator** iter_arr =
  1890     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1891   for (int i = 0; i < n_queues; i++) {
  1892     iter_arr[i] = new HeapRegionRemSetIterator();
  1894   _rem_set_iterator = iter_arr;
  1896   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  1897   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
  1899   for (int i = 0; i < n_queues; i++) {
  1900     RefToScanQueue* q = new RefToScanQueue();
  1901     q->initialize();
  1902     _task_queues->register_queue(i, q);
  1905   clear_cset_start_regions();
  1907   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1910 jint G1CollectedHeap::initialize() {
  1911   CollectedHeap::pre_initialize();
  1912   os::enable_vtime();
  1914   G1Log::init();
  1916   // Necessary to satisfy locking discipline assertions.
  1918   MutexLocker x(Heap_lock);
  1920   // We have to initialize the printer before committing the heap, as
  1921   // it will be used then.
  1922   _hr_printer.set_active(G1PrintHeapRegions);
  1924   // While there are no constraints in the GC code that HeapWordSize
  1925   // be any particular value, there are multiple other areas in the
  1926   // system which believe this to be true (e.g. oop->object_size in some
  1927   // cases incorrectly returns the size in wordSize units rather than
  1928   // HeapWordSize).
  1929   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1931   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1932   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1934   // Ensure that the sizes are properly aligned.
  1935   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1936   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1938   _cg1r = new ConcurrentG1Refine();
  1940   // Reserve the maximum.
  1941   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1942   // Includes the perm-gen.
  1944   // When compressed oops are enabled, the preferred heap base
  1945   // is calculated by subtracting the requested size from the
  1946   // 32Gb boundary and using the result as the base address for
  1947   // heap reservation. If the requested size is not aligned to
  1948   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1949   // into the ReservedHeapSpace constructor) then the actual
  1950   // base of the reserved heap may end up differing from the
  1951   // address that was requested (i.e. the preferred heap base).
  1952   // If this happens then we could end up using a non-optimal
  1953   // compressed oops mode.
  1955   // Since max_byte_size is aligned to the size of a heap region (checked
  1956   // above), we also need to align the perm gen size as it might not be.
  1957   const size_t total_reserved = max_byte_size +
  1958                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1959   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1961   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1963   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1964                             UseLargePages, addr);
  1966   if (UseCompressedOops) {
  1967     if (addr != NULL && !heap_rs.is_reserved()) {
  1968       // Failed to reserve at specified address - the requested memory
  1969       // region is taken already, for example, by 'java' launcher.
  1970       // Try again to reserver heap higher.
  1971       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1973       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1974                                  UseLargePages, addr);
  1976       if (addr != NULL && !heap_rs0.is_reserved()) {
  1977         // Failed to reserve at specified address again - give up.
  1978         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1979         assert(addr == NULL, "");
  1981         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1982                                    UseLargePages, addr);
  1983         heap_rs = heap_rs1;
  1984       } else {
  1985         heap_rs = heap_rs0;
  1990   if (!heap_rs.is_reserved()) {
  1991     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1992     return JNI_ENOMEM;
  1995   // It is important to do this in a way such that concurrent readers can't
  1996   // temporarily think somethings in the heap.  (I've actually seen this
  1997   // happen in asserts: DLD.)
  1998   _reserved.set_word_size(0);
  1999   _reserved.set_start((HeapWord*)heap_rs.base());
  2000   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2002   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2004   // Create the gen rem set (and barrier set) for the entire reserved region.
  2005   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2006   set_barrier_set(rem_set()->bs());
  2007   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2008     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2009   } else {
  2010     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2011     return JNI_ENOMEM;
  2014   // Also create a G1 rem set.
  2015   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2016     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2017   } else {
  2018     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2019     return JNI_ENOMEM;
  2022   // Carve out the G1 part of the heap.
  2024   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2025   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2026                            g1_rs.size()/HeapWordSize);
  2027   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2029   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2031   _g1_storage.initialize(g1_rs, 0);
  2032   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2033   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2034                   (HeapWord*) _g1_reserved.end(),
  2035                   _expansion_regions);
  2037   // 6843694 - ensure that the maximum region index can fit
  2038   // in the remembered set structures.
  2039   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2040   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2042   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2043   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2044   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2045             "too many cards per region");
  2047   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2049   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2050                                              heap_word_size(init_byte_size));
  2052   _g1h = this;
  2054    _in_cset_fast_test_length = max_regions();
  2055    _in_cset_fast_test_base =
  2056                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
  2058    // We're biasing _in_cset_fast_test to avoid subtracting the
  2059    // beginning of the heap every time we want to index; basically
  2060    // it's the same with what we do with the card table.
  2061    _in_cset_fast_test = _in_cset_fast_test_base -
  2062                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2064    // Clear the _cset_fast_test bitmap in anticipation of adding
  2065    // regions to the incremental collection set for the first
  2066    // evacuation pause.
  2067    clear_cset_fast_test();
  2069   // Create the ConcurrentMark data structure and thread.
  2070   // (Must do this late, so that "max_regions" is defined.)
  2071   _cm       = new ConcurrentMark(heap_rs, max_regions());
  2072   _cmThread = _cm->cmThread();
  2074   // Initialize the from_card cache structure of HeapRegionRemSet.
  2075   HeapRegionRemSet::init_heap(max_regions());
  2077   // Now expand into the initial heap size.
  2078   if (!expand(init_byte_size)) {
  2079     vm_exit_during_initialization("Failed to allocate initial heap.");
  2080     return JNI_ENOMEM;
  2083   // Perform any initialization actions delegated to the policy.
  2084   g1_policy()->init();
  2086   _refine_cte_cl =
  2087     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2088                                     g1_rem_set(),
  2089                                     concurrent_g1_refine());
  2090   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2092   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2093                                                SATB_Q_FL_lock,
  2094                                                G1SATBProcessCompletedThreshold,
  2095                                                Shared_SATB_Q_lock);
  2097   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2098                                                 DirtyCardQ_FL_lock,
  2099                                                 concurrent_g1_refine()->yellow_zone(),
  2100                                                 concurrent_g1_refine()->red_zone(),
  2101                                                 Shared_DirtyCardQ_lock);
  2103   if (G1DeferredRSUpdate) {
  2104     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2105                                       DirtyCardQ_FL_lock,
  2106                                       -1, // never trigger processing
  2107                                       -1, // no limit on length
  2108                                       Shared_DirtyCardQ_lock,
  2109                                       &JavaThread::dirty_card_queue_set());
  2112   // Initialize the card queue set used to hold cards containing
  2113   // references into the collection set.
  2114   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2115                                              DirtyCardQ_FL_lock,
  2116                                              -1, // never trigger processing
  2117                                              -1, // no limit on length
  2118                                              Shared_DirtyCardQ_lock,
  2119                                              &JavaThread::dirty_card_queue_set());
  2121   // In case we're keeping closure specialization stats, initialize those
  2122   // counts and that mechanism.
  2123   SpecializationStats::clear();
  2125   // Do later initialization work for concurrent refinement.
  2126   _cg1r->init();
  2128   // Here we allocate the dummy full region that is required by the
  2129   // G1AllocRegion class. If we don't pass an address in the reserved
  2130   // space here, lots of asserts fire.
  2132   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2133                                              _g1_reserved.start());
  2134   // We'll re-use the same region whether the alloc region will
  2135   // require BOT updates or not and, if it doesn't, then a non-young
  2136   // region will complain that it cannot support allocations without
  2137   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2138   dummy_region->set_young();
  2139   // Make sure it's full.
  2140   dummy_region->set_top(dummy_region->end());
  2141   G1AllocRegion::setup(this, dummy_region);
  2143   init_mutator_alloc_region();
  2145   // Do create of the monitoring and management support so that
  2146   // values in the heap have been properly initialized.
  2147   _g1mm = new G1MonitoringSupport(this);
  2149   return JNI_OK;
  2152 void G1CollectedHeap::ref_processing_init() {
  2153   // Reference processing in G1 currently works as follows:
  2154   //
  2155   // * There are two reference processor instances. One is
  2156   //   used to record and process discovered references
  2157   //   during concurrent marking; the other is used to
  2158   //   record and process references during STW pauses
  2159   //   (both full and incremental).
  2160   // * Both ref processors need to 'span' the entire heap as
  2161   //   the regions in the collection set may be dotted around.
  2162   //
  2163   // * For the concurrent marking ref processor:
  2164   //   * Reference discovery is enabled at initial marking.
  2165   //   * Reference discovery is disabled and the discovered
  2166   //     references processed etc during remarking.
  2167   //   * Reference discovery is MT (see below).
  2168   //   * Reference discovery requires a barrier (see below).
  2169   //   * Reference processing may or may not be MT
  2170   //     (depending on the value of ParallelRefProcEnabled
  2171   //     and ParallelGCThreads).
  2172   //   * A full GC disables reference discovery by the CM
  2173   //     ref processor and abandons any entries on it's
  2174   //     discovered lists.
  2175   //
  2176   // * For the STW processor:
  2177   //   * Non MT discovery is enabled at the start of a full GC.
  2178   //   * Processing and enqueueing during a full GC is non-MT.
  2179   //   * During a full GC, references are processed after marking.
  2180   //
  2181   //   * Discovery (may or may not be MT) is enabled at the start
  2182   //     of an incremental evacuation pause.
  2183   //   * References are processed near the end of a STW evacuation pause.
  2184   //   * For both types of GC:
  2185   //     * Discovery is atomic - i.e. not concurrent.
  2186   //     * Reference discovery will not need a barrier.
  2188   SharedHeap::ref_processing_init();
  2189   MemRegion mr = reserved_region();
  2191   // Concurrent Mark ref processor
  2192   _ref_processor_cm =
  2193     new ReferenceProcessor(mr,    // span
  2194                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2195                                 // mt processing
  2196                            (int) ParallelGCThreads,
  2197                                 // degree of mt processing
  2198                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2199                                 // mt discovery
  2200                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2201                                 // degree of mt discovery
  2202                            false,
  2203                                 // Reference discovery is not atomic
  2204                            &_is_alive_closure_cm,
  2205                                 // is alive closure
  2206                                 // (for efficiency/performance)
  2207                            true);
  2208                                 // Setting next fields of discovered
  2209                                 // lists requires a barrier.
  2211   // STW ref processor
  2212   _ref_processor_stw =
  2213     new ReferenceProcessor(mr,    // span
  2214                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2215                                 // mt processing
  2216                            MAX2((int)ParallelGCThreads, 1),
  2217                                 // degree of mt processing
  2218                            (ParallelGCThreads > 1),
  2219                                 // mt discovery
  2220                            MAX2((int)ParallelGCThreads, 1),
  2221                                 // degree of mt discovery
  2222                            true,
  2223                                 // Reference discovery is atomic
  2224                            &_is_alive_closure_stw,
  2225                                 // is alive closure
  2226                                 // (for efficiency/performance)
  2227                            false);
  2228                                 // Setting next fields of discovered
  2229                                 // lists requires a barrier.
  2232 size_t G1CollectedHeap::capacity() const {
  2233   return _g1_committed.byte_size();
  2236 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2237                                                  DirtyCardQueue* into_cset_dcq,
  2238                                                  bool concurrent,
  2239                                                  int worker_i) {
  2240   // Clean cards in the hot card cache
  2241   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2243   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2244   int n_completed_buffers = 0;
  2245   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2246     n_completed_buffers++;
  2248   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2249                                                   (double) n_completed_buffers);
  2250   dcqs.clear_n_completed_buffers();
  2251   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2255 // Computes the sum of the storage used by the various regions.
  2257 size_t G1CollectedHeap::used() const {
  2258   assert(Heap_lock->owner() != NULL,
  2259          "Should be owned on this thread's behalf.");
  2260   size_t result = _summary_bytes_used;
  2261   // Read only once in case it is set to NULL concurrently
  2262   HeapRegion* hr = _mutator_alloc_region.get();
  2263   if (hr != NULL)
  2264     result += hr->used();
  2265   return result;
  2268 size_t G1CollectedHeap::used_unlocked() const {
  2269   size_t result = _summary_bytes_used;
  2270   return result;
  2273 class SumUsedClosure: public HeapRegionClosure {
  2274   size_t _used;
  2275 public:
  2276   SumUsedClosure() : _used(0) {}
  2277   bool doHeapRegion(HeapRegion* r) {
  2278     if (!r->continuesHumongous()) {
  2279       _used += r->used();
  2281     return false;
  2283   size_t result() { return _used; }
  2284 };
  2286 size_t G1CollectedHeap::recalculate_used() const {
  2287   SumUsedClosure blk;
  2288   heap_region_iterate(&blk);
  2289   return blk.result();
  2292 size_t G1CollectedHeap::unsafe_max_alloc() {
  2293   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2294   // otherwise, is there space in the current allocation region?
  2296   // We need to store the current allocation region in a local variable
  2297   // here. The problem is that this method doesn't take any locks and
  2298   // there may be other threads which overwrite the current allocation
  2299   // region field. attempt_allocation(), for example, sets it to NULL
  2300   // and this can happen *after* the NULL check here but before the call
  2301   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2302   // to be a problem in the optimized build, since the two loads of the
  2303   // current allocation region field are optimized away.
  2304   HeapRegion* hr = _mutator_alloc_region.get();
  2305   if (hr == NULL) {
  2306     return 0;
  2308   return hr->free();
  2311 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2312   switch (cause) {
  2313     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2314     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2315     case GCCause::_g1_humongous_allocation: return true;
  2316     default:                                return false;
  2320 #ifndef PRODUCT
  2321 void G1CollectedHeap::allocate_dummy_regions() {
  2322   // Let's fill up most of the region
  2323   size_t word_size = HeapRegion::GrainWords - 1024;
  2324   // And as a result the region we'll allocate will be humongous.
  2325   guarantee(isHumongous(word_size), "sanity");
  2327   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2328     // Let's use the existing mechanism for the allocation
  2329     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2330     if (dummy_obj != NULL) {
  2331       MemRegion mr(dummy_obj, word_size);
  2332       CollectedHeap::fill_with_object(mr);
  2333     } else {
  2334       // If we can't allocate once, we probably cannot allocate
  2335       // again. Let's get out of the loop.
  2336       break;
  2340 #endif // !PRODUCT
  2342 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2343   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2345   // We assume that if concurrent == true, then the caller is a
  2346   // concurrent thread that was joined the Suspendible Thread
  2347   // Set. If there's ever a cheap way to check this, we should add an
  2348   // assert here.
  2350   // We have already incremented _total_full_collections at the start
  2351   // of the GC, so total_full_collections() represents how many full
  2352   // collections have been started.
  2353   unsigned int full_collections_started = total_full_collections();
  2355   // Given that this method is called at the end of a Full GC or of a
  2356   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2357   // interrupt a concurrent cycle), the number of full collections
  2358   // completed should be either one (in the case where there was no
  2359   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2360   // behind the number of full collections started.
  2362   // This is the case for the inner caller, i.e. a Full GC.
  2363   assert(concurrent ||
  2364          (full_collections_started == _full_collections_completed + 1) ||
  2365          (full_collections_started == _full_collections_completed + 2),
  2366          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2367                  "is inconsistent with _full_collections_completed = %u",
  2368                  full_collections_started, _full_collections_completed));
  2370   // This is the case for the outer caller, i.e. the concurrent cycle.
  2371   assert(!concurrent ||
  2372          (full_collections_started == _full_collections_completed + 1),
  2373          err_msg("for outer caller (concurrent cycle): "
  2374                  "full_collections_started = %u "
  2375                  "is inconsistent with _full_collections_completed = %u",
  2376                  full_collections_started, _full_collections_completed));
  2378   _full_collections_completed += 1;
  2380   // We need to clear the "in_progress" flag in the CM thread before
  2381   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2382   // is set) so that if a waiter requests another System.gc() it doesn't
  2383   // incorrectly see that a marking cyle is still in progress.
  2384   if (concurrent) {
  2385     _cmThread->clear_in_progress();
  2388   // This notify_all() will ensure that a thread that called
  2389   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2390   // and it's waiting for a full GC to finish will be woken up. It is
  2391   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2392   FullGCCount_lock->notify_all();
  2395 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2396   assert_at_safepoint(true /* should_be_vm_thread */);
  2397   GCCauseSetter gcs(this, cause);
  2398   switch (cause) {
  2399     case GCCause::_heap_inspection:
  2400     case GCCause::_heap_dump: {
  2401       HandleMark hm;
  2402       do_full_collection(false);         // don't clear all soft refs
  2403       break;
  2405     default: // XXX FIX ME
  2406       ShouldNotReachHere(); // Unexpected use of this function
  2410 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2411   assert_heap_not_locked();
  2413   unsigned int gc_count_before;
  2414   unsigned int full_gc_count_before;
  2415   bool retry_gc;
  2417   do {
  2418     retry_gc = false;
  2421       MutexLocker ml(Heap_lock);
  2423       // Read the GC count while holding the Heap_lock
  2424       gc_count_before = total_collections();
  2425       full_gc_count_before = total_full_collections();
  2428     if (should_do_concurrent_full_gc(cause)) {
  2429       // Schedule an initial-mark evacuation pause that will start a
  2430       // concurrent cycle. We're setting word_size to 0 which means that
  2431       // we are not requesting a post-GC allocation.
  2432       VM_G1IncCollectionPause op(gc_count_before,
  2433                                  0,     /* word_size */
  2434                                  true,  /* should_initiate_conc_mark */
  2435                                  g1_policy()->max_pause_time_ms(),
  2436                                  cause);
  2438       VMThread::execute(&op);
  2439       if (!op.pause_succeeded()) {
  2440         if (full_gc_count_before == total_full_collections()) {
  2441           retry_gc = op.should_retry_gc();
  2442         } else {
  2443           // A Full GC happened while we were trying to schedule the
  2444           // initial-mark GC. No point in starting a new cycle given
  2445           // that the whole heap was collected anyway.
  2448         if (retry_gc) {
  2449           if (GC_locker::is_active_and_needs_gc()) {
  2450             GC_locker::stall_until_clear();
  2454     } else {
  2455       if (cause == GCCause::_gc_locker
  2456           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2458         // Schedule a standard evacuation pause. We're setting word_size
  2459         // to 0 which means that we are not requesting a post-GC allocation.
  2460         VM_G1IncCollectionPause op(gc_count_before,
  2461                                    0,     /* word_size */
  2462                                    false, /* should_initiate_conc_mark */
  2463                                    g1_policy()->max_pause_time_ms(),
  2464                                    cause);
  2465         VMThread::execute(&op);
  2466       } else {
  2467         // Schedule a Full GC.
  2468         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2469         VMThread::execute(&op);
  2472   } while (retry_gc);
  2475 bool G1CollectedHeap::is_in(const void* p) const {
  2476   if (_g1_committed.contains(p)) {
  2477     // Given that we know that p is in the committed space,
  2478     // heap_region_containing_raw() should successfully
  2479     // return the containing region.
  2480     HeapRegion* hr = heap_region_containing_raw(p);
  2481     return hr->is_in(p);
  2482   } else {
  2483     return _perm_gen->as_gen()->is_in(p);
  2487 // Iteration functions.
  2489 // Iterates an OopClosure over all ref-containing fields of objects
  2490 // within a HeapRegion.
  2492 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2493   MemRegion _mr;
  2494   OopClosure* _cl;
  2495 public:
  2496   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2497     : _mr(mr), _cl(cl) {}
  2498   bool doHeapRegion(HeapRegion* r) {
  2499     if (! r->continuesHumongous()) {
  2500       r->oop_iterate(_cl);
  2502     return false;
  2504 };
  2506 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2507   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2508   heap_region_iterate(&blk);
  2509   if (do_perm) {
  2510     perm_gen()->oop_iterate(cl);
  2514 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2515   IterateOopClosureRegionClosure blk(mr, cl);
  2516   heap_region_iterate(&blk);
  2517   if (do_perm) {
  2518     perm_gen()->oop_iterate(cl);
  2522 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2524 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2525   ObjectClosure* _cl;
  2526 public:
  2527   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2528   bool doHeapRegion(HeapRegion* r) {
  2529     if (! r->continuesHumongous()) {
  2530       r->object_iterate(_cl);
  2532     return false;
  2534 };
  2536 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2537   IterateObjectClosureRegionClosure blk(cl);
  2538   heap_region_iterate(&blk);
  2539   if (do_perm) {
  2540     perm_gen()->object_iterate(cl);
  2544 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2545   // FIXME: is this right?
  2546   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2549 // Calls a SpaceClosure on a HeapRegion.
  2551 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2552   SpaceClosure* _cl;
  2553 public:
  2554   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2555   bool doHeapRegion(HeapRegion* r) {
  2556     _cl->do_space(r);
  2557     return false;
  2559 };
  2561 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2562   SpaceClosureRegionClosure blk(cl);
  2563   heap_region_iterate(&blk);
  2566 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2567   _hrs.iterate(cl);
  2570 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2571                                                HeapRegionClosure* cl) const {
  2572   _hrs.iterate_from(r, cl);
  2575 void
  2576 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2577                                                  uint worker,
  2578                                                  uint no_of_par_workers,
  2579                                                  jint claim_value) {
  2580   const uint regions = n_regions();
  2581   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2582                              no_of_par_workers :
  2583                              1);
  2584   assert(UseDynamicNumberOfGCThreads ||
  2585          no_of_par_workers == workers()->total_workers(),
  2586          "Non dynamic should use fixed number of workers");
  2587   // try to spread out the starting points of the workers
  2588   const uint start_index = regions / max_workers * worker;
  2590   // each worker will actually look at all regions
  2591   for (uint count = 0; count < regions; ++count) {
  2592     const uint index = (start_index + count) % regions;
  2593     assert(0 <= index && index < regions, "sanity");
  2594     HeapRegion* r = region_at(index);
  2595     // we'll ignore "continues humongous" regions (we'll process them
  2596     // when we come across their corresponding "start humongous"
  2597     // region) and regions already claimed
  2598     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2599       continue;
  2601     // OK, try to claim it
  2602     if (r->claimHeapRegion(claim_value)) {
  2603       // success!
  2604       assert(!r->continuesHumongous(), "sanity");
  2605       if (r->startsHumongous()) {
  2606         // If the region is "starts humongous" we'll iterate over its
  2607         // "continues humongous" first; in fact we'll do them
  2608         // first. The order is important. In on case, calling the
  2609         // closure on the "starts humongous" region might de-allocate
  2610         // and clear all its "continues humongous" regions and, as a
  2611         // result, we might end up processing them twice. So, we'll do
  2612         // them first (notice: most closures will ignore them anyway) and
  2613         // then we'll do the "starts humongous" region.
  2614         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2615           HeapRegion* chr = region_at(ch_index);
  2617           // if the region has already been claimed or it's not
  2618           // "continues humongous" we're done
  2619           if (chr->claim_value() == claim_value ||
  2620               !chr->continuesHumongous()) {
  2621             break;
  2624           // Noone should have claimed it directly. We can given
  2625           // that we claimed its "starts humongous" region.
  2626           assert(chr->claim_value() != claim_value, "sanity");
  2627           assert(chr->humongous_start_region() == r, "sanity");
  2629           if (chr->claimHeapRegion(claim_value)) {
  2630             // we should always be able to claim it; noone else should
  2631             // be trying to claim this region
  2633             bool res2 = cl->doHeapRegion(chr);
  2634             assert(!res2, "Should not abort");
  2636             // Right now, this holds (i.e., no closure that actually
  2637             // does something with "continues humongous" regions
  2638             // clears them). We might have to weaken it in the future,
  2639             // but let's leave these two asserts here for extra safety.
  2640             assert(chr->continuesHumongous(), "should still be the case");
  2641             assert(chr->humongous_start_region() == r, "sanity");
  2642           } else {
  2643             guarantee(false, "we should not reach here");
  2648       assert(!r->continuesHumongous(), "sanity");
  2649       bool res = cl->doHeapRegion(r);
  2650       assert(!res, "Should not abort");
  2655 class ResetClaimValuesClosure: public HeapRegionClosure {
  2656 public:
  2657   bool doHeapRegion(HeapRegion* r) {
  2658     r->set_claim_value(HeapRegion::InitialClaimValue);
  2659     return false;
  2661 };
  2663 void G1CollectedHeap::reset_heap_region_claim_values() {
  2664   ResetClaimValuesClosure blk;
  2665   heap_region_iterate(&blk);
  2668 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2669   ResetClaimValuesClosure blk;
  2670   collection_set_iterate(&blk);
  2673 #ifdef ASSERT
  2674 // This checks whether all regions in the heap have the correct claim
  2675 // value. I also piggy-backed on this a check to ensure that the
  2676 // humongous_start_region() information on "continues humongous"
  2677 // regions is correct.
  2679 class CheckClaimValuesClosure : public HeapRegionClosure {
  2680 private:
  2681   jint _claim_value;
  2682   uint _failures;
  2683   HeapRegion* _sh_region;
  2685 public:
  2686   CheckClaimValuesClosure(jint claim_value) :
  2687     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2688   bool doHeapRegion(HeapRegion* r) {
  2689     if (r->claim_value() != _claim_value) {
  2690       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2691                              "claim value = %d, should be %d",
  2692                              HR_FORMAT_PARAMS(r),
  2693                              r->claim_value(), _claim_value);
  2694       ++_failures;
  2696     if (!r->isHumongous()) {
  2697       _sh_region = NULL;
  2698     } else if (r->startsHumongous()) {
  2699       _sh_region = r;
  2700     } else if (r->continuesHumongous()) {
  2701       if (r->humongous_start_region() != _sh_region) {
  2702         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2703                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2704                                HR_FORMAT_PARAMS(r),
  2705                                r->humongous_start_region(),
  2706                                _sh_region);
  2707         ++_failures;
  2710     return false;
  2712   uint failures() { return _failures; }
  2713 };
  2715 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2716   CheckClaimValuesClosure cl(claim_value);
  2717   heap_region_iterate(&cl);
  2718   return cl.failures() == 0;
  2721 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2722 private:
  2723   jint _claim_value;
  2724   uint _failures;
  2726 public:
  2727   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2728     _claim_value(claim_value), _failures(0) { }
  2730   uint failures() { return _failures; }
  2732   bool doHeapRegion(HeapRegion* hr) {
  2733     assert(hr->in_collection_set(), "how?");
  2734     assert(!hr->isHumongous(), "H-region in CSet");
  2735     if (hr->claim_value() != _claim_value) {
  2736       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2737                              "claim value = %d, should be %d",
  2738                              HR_FORMAT_PARAMS(hr),
  2739                              hr->claim_value(), _claim_value);
  2740       _failures += 1;
  2742     return false;
  2744 };
  2746 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2747   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2748   collection_set_iterate(&cl);
  2749   return cl.failures() == 0;
  2751 #endif // ASSERT
  2753 // Clear the cached CSet starting regions and (more importantly)
  2754 // the time stamps. Called when we reset the GC time stamp.
  2755 void G1CollectedHeap::clear_cset_start_regions() {
  2756   assert(_worker_cset_start_region != NULL, "sanity");
  2757   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2759   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2760   for (int i = 0; i < n_queues; i++) {
  2761     _worker_cset_start_region[i] = NULL;
  2762     _worker_cset_start_region_time_stamp[i] = 0;
  2766 // Given the id of a worker, obtain or calculate a suitable
  2767 // starting region for iterating over the current collection set.
  2768 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2769   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2771   HeapRegion* result = NULL;
  2772   unsigned gc_time_stamp = get_gc_time_stamp();
  2774   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2775     // Cached starting region for current worker was set
  2776     // during the current pause - so it's valid.
  2777     // Note: the cached starting heap region may be NULL
  2778     // (when the collection set is empty).
  2779     result = _worker_cset_start_region[worker_i];
  2780     assert(result == NULL || result->in_collection_set(), "sanity");
  2781     return result;
  2784   // The cached entry was not valid so let's calculate
  2785   // a suitable starting heap region for this worker.
  2787   // We want the parallel threads to start their collection
  2788   // set iteration at different collection set regions to
  2789   // avoid contention.
  2790   // If we have:
  2791   //          n collection set regions
  2792   //          p threads
  2793   // Then thread t will start at region floor ((t * n) / p)
  2795   result = g1_policy()->collection_set();
  2796   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2797     uint cs_size = g1_policy()->cset_region_length();
  2798     uint active_workers = workers()->active_workers();
  2799     assert(UseDynamicNumberOfGCThreads ||
  2800              active_workers == workers()->total_workers(),
  2801              "Unless dynamic should use total workers");
  2803     uint end_ind   = (cs_size * worker_i) / active_workers;
  2804     uint start_ind = 0;
  2806     if (worker_i > 0 &&
  2807         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2808       // Previous workers starting region is valid
  2809       // so let's iterate from there
  2810       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2811       result = _worker_cset_start_region[worker_i - 1];
  2814     for (uint i = start_ind; i < end_ind; i++) {
  2815       result = result->next_in_collection_set();
  2819   // Note: the calculated starting heap region may be NULL
  2820   // (when the collection set is empty).
  2821   assert(result == NULL || result->in_collection_set(), "sanity");
  2822   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2823          "should be updated only once per pause");
  2824   _worker_cset_start_region[worker_i] = result;
  2825   OrderAccess::storestore();
  2826   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2827   return result;
  2830 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2831   HeapRegion* r = g1_policy()->collection_set();
  2832   while (r != NULL) {
  2833     HeapRegion* next = r->next_in_collection_set();
  2834     if (cl->doHeapRegion(r)) {
  2835       cl->incomplete();
  2836       return;
  2838     r = next;
  2842 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2843                                                   HeapRegionClosure *cl) {
  2844   if (r == NULL) {
  2845     // The CSet is empty so there's nothing to do.
  2846     return;
  2849   assert(r->in_collection_set(),
  2850          "Start region must be a member of the collection set.");
  2851   HeapRegion* cur = r;
  2852   while (cur != NULL) {
  2853     HeapRegion* next = cur->next_in_collection_set();
  2854     if (cl->doHeapRegion(cur) && false) {
  2855       cl->incomplete();
  2856       return;
  2858     cur = next;
  2860   cur = g1_policy()->collection_set();
  2861   while (cur != r) {
  2862     HeapRegion* next = cur->next_in_collection_set();
  2863     if (cl->doHeapRegion(cur) && false) {
  2864       cl->incomplete();
  2865       return;
  2867     cur = next;
  2871 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2872   return n_regions() > 0 ? region_at(0) : NULL;
  2876 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2877   Space* res = heap_region_containing(addr);
  2878   if (res == NULL)
  2879     res = perm_gen()->space_containing(addr);
  2880   return res;
  2883 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2884   Space* sp = space_containing(addr);
  2885   if (sp != NULL) {
  2886     return sp->block_start(addr);
  2888   return NULL;
  2891 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2892   Space* sp = space_containing(addr);
  2893   assert(sp != NULL, "block_size of address outside of heap");
  2894   return sp->block_size(addr);
  2897 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2898   Space* sp = space_containing(addr);
  2899   return sp->block_is_obj(addr);
  2902 bool G1CollectedHeap::supports_tlab_allocation() const {
  2903   return true;
  2906 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2907   return HeapRegion::GrainBytes;
  2910 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2911   // Return the remaining space in the cur alloc region, but not less than
  2912   // the min TLAB size.
  2914   // Also, this value can be at most the humongous object threshold,
  2915   // since we can't allow tlabs to grow big enough to accomodate
  2916   // humongous objects.
  2918   HeapRegion* hr = _mutator_alloc_region.get();
  2919   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2920   if (hr == NULL) {
  2921     return max_tlab_size;
  2922   } else {
  2923     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2927 size_t G1CollectedHeap::max_capacity() const {
  2928   return _g1_reserved.byte_size();
  2931 jlong G1CollectedHeap::millis_since_last_gc() {
  2932   // assert(false, "NYI");
  2933   return 0;
  2936 void G1CollectedHeap::prepare_for_verify() {
  2937   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2938     ensure_parsability(false);
  2940   g1_rem_set()->prepare_for_verify();
  2943 class VerifyLivenessOopClosure: public OopClosure {
  2944   G1CollectedHeap* _g1h;
  2945   VerifyOption _vo;
  2946 public:
  2947   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2948     _g1h(g1h), _vo(vo)
  2949   { }
  2950   void do_oop(narrowOop *p) { do_oop_work(p); }
  2951   void do_oop(      oop *p) { do_oop_work(p); }
  2953   template <class T> void do_oop_work(T *p) {
  2954     oop obj = oopDesc::load_decode_heap_oop(p);
  2955     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2956               "Dead object referenced by a not dead object");
  2958 };
  2960 class VerifyObjsInRegionClosure: public ObjectClosure {
  2961 private:
  2962   G1CollectedHeap* _g1h;
  2963   size_t _live_bytes;
  2964   HeapRegion *_hr;
  2965   VerifyOption _vo;
  2966 public:
  2967   // _vo == UsePrevMarking -> use "prev" marking information,
  2968   // _vo == UseNextMarking -> use "next" marking information,
  2969   // _vo == UseMarkWord    -> use mark word from object header.
  2970   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2971     : _live_bytes(0), _hr(hr), _vo(vo) {
  2972     _g1h = G1CollectedHeap::heap();
  2974   void do_object(oop o) {
  2975     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2976     assert(o != NULL, "Huh?");
  2977     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2978       // If the object is alive according to the mark word,
  2979       // then verify that the marking information agrees.
  2980       // Note we can't verify the contra-positive of the
  2981       // above: if the object is dead (according to the mark
  2982       // word), it may not be marked, or may have been marked
  2983       // but has since became dead, or may have been allocated
  2984       // since the last marking.
  2985       if (_vo == VerifyOption_G1UseMarkWord) {
  2986         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2989       o->oop_iterate(&isLive);
  2990       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2991         size_t obj_size = o->size();    // Make sure we don't overflow
  2992         _live_bytes += (obj_size * HeapWordSize);
  2996   size_t live_bytes() { return _live_bytes; }
  2997 };
  2999 class PrintObjsInRegionClosure : public ObjectClosure {
  3000   HeapRegion *_hr;
  3001   G1CollectedHeap *_g1;
  3002 public:
  3003   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3004     _g1 = G1CollectedHeap::heap();
  3005   };
  3007   void do_object(oop o) {
  3008     if (o != NULL) {
  3009       HeapWord *start = (HeapWord *) o;
  3010       size_t word_sz = o->size();
  3011       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3012                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3013                           (void*) o, word_sz,
  3014                           _g1->isMarkedPrev(o),
  3015                           _g1->isMarkedNext(o),
  3016                           _hr->obj_allocated_since_prev_marking(o));
  3017       HeapWord *end = start + word_sz;
  3018       HeapWord *cur;
  3019       int *val;
  3020       for (cur = start; cur < end; cur++) {
  3021         val = (int *) cur;
  3022         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3026 };
  3028 class VerifyRegionClosure: public HeapRegionClosure {
  3029 private:
  3030   bool         _par;
  3031   VerifyOption _vo;
  3032   bool         _failures;
  3033 public:
  3034   // _vo == UsePrevMarking -> use "prev" marking information,
  3035   // _vo == UseNextMarking -> use "next" marking information,
  3036   // _vo == UseMarkWord    -> use mark word from object header.
  3037   VerifyRegionClosure(bool par, VerifyOption vo)
  3038     : _par(par),
  3039       _vo(vo),
  3040       _failures(false) {}
  3042   bool failures() {
  3043     return _failures;
  3046   bool doHeapRegion(HeapRegion* r) {
  3047     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  3048               "Should be unclaimed at verify points.");
  3049     if (!r->continuesHumongous()) {
  3050       bool failures = false;
  3051       r->verify(_vo, &failures);
  3052       if (failures) {
  3053         _failures = true;
  3054       } else {
  3055         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3056         r->object_iterate(&not_dead_yet_cl);
  3057         if (_vo != VerifyOption_G1UseNextMarking) {
  3058           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3059             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3060                                    "max_live_bytes "SIZE_FORMAT" "
  3061                                    "< calculated "SIZE_FORMAT,
  3062                                    r->bottom(), r->end(),
  3063                                    r->max_live_bytes(),
  3064                                  not_dead_yet_cl.live_bytes());
  3065             _failures = true;
  3067         } else {
  3068           // When vo == UseNextMarking we cannot currently do a sanity
  3069           // check on the live bytes as the calculation has not been
  3070           // finalized yet.
  3074     return false; // stop the region iteration if we hit a failure
  3076 };
  3078 class VerifyRootsClosure: public OopsInGenClosure {
  3079 private:
  3080   G1CollectedHeap* _g1h;
  3081   VerifyOption     _vo;
  3082   bool             _failures;
  3083 public:
  3084   // _vo == UsePrevMarking -> use "prev" marking information,
  3085   // _vo == UseNextMarking -> use "next" marking information,
  3086   // _vo == UseMarkWord    -> use mark word from object header.
  3087   VerifyRootsClosure(VerifyOption vo) :
  3088     _g1h(G1CollectedHeap::heap()),
  3089     _vo(vo),
  3090     _failures(false) { }
  3092   bool failures() { return _failures; }
  3094   template <class T> void do_oop_nv(T* p) {
  3095     T heap_oop = oopDesc::load_heap_oop(p);
  3096     if (!oopDesc::is_null(heap_oop)) {
  3097       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3098       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3099         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3100                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3101         if (_vo == VerifyOption_G1UseMarkWord) {
  3102           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3104         obj->print_on(gclog_or_tty);
  3105         _failures = true;
  3110   void do_oop(oop* p)       { do_oop_nv(p); }
  3111   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3112 };
  3114 // This is the task used for parallel heap verification.
  3116 class G1ParVerifyTask: public AbstractGangTask {
  3117 private:
  3118   G1CollectedHeap* _g1h;
  3119   VerifyOption     _vo;
  3120   bool             _failures;
  3122 public:
  3123   // _vo == UsePrevMarking -> use "prev" marking information,
  3124   // _vo == UseNextMarking -> use "next" marking information,
  3125   // _vo == UseMarkWord    -> use mark word from object header.
  3126   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3127     AbstractGangTask("Parallel verify task"),
  3128     _g1h(g1h),
  3129     _vo(vo),
  3130     _failures(false) { }
  3132   bool failures() {
  3133     return _failures;
  3136   void work(uint worker_id) {
  3137     HandleMark hm;
  3138     VerifyRegionClosure blk(true, _vo);
  3139     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3140                                           _g1h->workers()->active_workers(),
  3141                                           HeapRegion::ParVerifyClaimValue);
  3142     if (blk.failures()) {
  3143       _failures = true;
  3146 };
  3148 void G1CollectedHeap::verify(bool silent) {
  3149   verify(silent, VerifyOption_G1UsePrevMarking);
  3152 void G1CollectedHeap::verify(bool silent,
  3153                              VerifyOption vo) {
  3154   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3155     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3156     VerifyRootsClosure rootsCl(vo);
  3158     assert(Thread::current()->is_VM_thread(),
  3159       "Expected to be executed serially by the VM thread at this point");
  3161     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3163     // We apply the relevant closures to all the oops in the
  3164     // system dictionary, the string table and the code cache.
  3165     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3167     process_strong_roots(true,      // activate StrongRootsScope
  3168                          true,      // we set "collecting perm gen" to true,
  3169                                     // so we don't reset the dirty cards in the perm gen.
  3170                          ScanningOption(so),  // roots scanning options
  3171                          &rootsCl,
  3172                          &blobsCl,
  3173                          &rootsCl);
  3175     // If we're verifying after the marking phase of a Full GC then we can't
  3176     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3177     // the perm gen may be dead and hence not marked. If one of these dead
  3178     // objects is considered to be a root then we may end up with a false
  3179     // "Root location <x> points to dead ob <y>" failure.
  3180     if (vo != VerifyOption_G1UseMarkWord) {
  3181       // Since we used "collecting_perm_gen" == true above, we will not have
  3182       // checked the refs from perm into the G1-collected heap. We check those
  3183       // references explicitly below. Whether the relevant cards are dirty
  3184       // is checked further below in the rem set verification.
  3185       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3186       perm_gen()->oop_iterate(&rootsCl);
  3188     bool failures = rootsCl.failures();
  3190     if (vo != VerifyOption_G1UseMarkWord) {
  3191       // If we're verifying during a full GC then the region sets
  3192       // will have been torn down at the start of the GC. Therefore
  3193       // verifying the region sets will fail. So we only verify
  3194       // the region sets when not in a full GC.
  3195       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3196       verify_region_sets();
  3199     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3200     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3201       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3202              "sanity check");
  3204       G1ParVerifyTask task(this, vo);
  3205       assert(UseDynamicNumberOfGCThreads ||
  3206         workers()->active_workers() == workers()->total_workers(),
  3207         "If not dynamic should be using all the workers");
  3208       int n_workers = workers()->active_workers();
  3209       set_par_threads(n_workers);
  3210       workers()->run_task(&task);
  3211       set_par_threads(0);
  3212       if (task.failures()) {
  3213         failures = true;
  3216       // Checks that the expected amount of parallel work was done.
  3217       // The implication is that n_workers is > 0.
  3218       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3219              "sanity check");
  3221       reset_heap_region_claim_values();
  3223       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3224              "sanity check");
  3225     } else {
  3226       VerifyRegionClosure blk(false, vo);
  3227       heap_region_iterate(&blk);
  3228       if (blk.failures()) {
  3229         failures = true;
  3232     if (!silent) gclog_or_tty->print("RemSet ");
  3233     rem_set()->verify();
  3235     if (failures) {
  3236       gclog_or_tty->print_cr("Heap:");
  3237       // It helps to have the per-region information in the output to
  3238       // help us track down what went wrong. This is why we call
  3239       // print_extended_on() instead of print_on().
  3240       print_extended_on(gclog_or_tty);
  3241       gclog_or_tty->print_cr("");
  3242 #ifndef PRODUCT
  3243       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3244         concurrent_mark()->print_reachable("at-verification-failure",
  3245                                            vo, false /* all */);
  3247 #endif
  3248       gclog_or_tty->flush();
  3250     guarantee(!failures, "there should not have been any failures");
  3251   } else {
  3252     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3256 class PrintRegionClosure: public HeapRegionClosure {
  3257   outputStream* _st;
  3258 public:
  3259   PrintRegionClosure(outputStream* st) : _st(st) {}
  3260   bool doHeapRegion(HeapRegion* r) {
  3261     r->print_on(_st);
  3262     return false;
  3264 };
  3266 void G1CollectedHeap::print_on(outputStream* st) const {
  3267   st->print(" %-20s", "garbage-first heap");
  3268   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3269             capacity()/K, used_unlocked()/K);
  3270   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3271             _g1_storage.low_boundary(),
  3272             _g1_storage.high(),
  3273             _g1_storage.high_boundary());
  3274   st->cr();
  3275   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3276   uint young_regions = _young_list->length();
  3277   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3278             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3279   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3280   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3281             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3282   st->cr();
  3283   perm()->as_gen()->print_on(st);
  3286 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3287   print_on(st);
  3289   // Print the per-region information.
  3290   st->cr();
  3291   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3292                "HS=humongous(starts), HC=humongous(continues), "
  3293                "CS=collection set, F=free, TS=gc time stamp, "
  3294                "PTAMS=previous top-at-mark-start, "
  3295                "NTAMS=next top-at-mark-start)");
  3296   PrintRegionClosure blk(st);
  3297   heap_region_iterate(&blk);
  3300 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3301   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3302     workers()->print_worker_threads_on(st);
  3304   _cmThread->print_on(st);
  3305   st->cr();
  3306   _cm->print_worker_threads_on(st);
  3307   _cg1r->print_worker_threads_on(st);
  3308   st->cr();
  3311 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3312   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3313     workers()->threads_do(tc);
  3315   tc->do_thread(_cmThread);
  3316   _cg1r->threads_do(tc);
  3319 void G1CollectedHeap::print_tracing_info() const {
  3320   // We'll overload this to mean "trace GC pause statistics."
  3321   if (TraceGen0Time || TraceGen1Time) {
  3322     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3323     // to that.
  3324     g1_policy()->print_tracing_info();
  3326   if (G1SummarizeRSetStats) {
  3327     g1_rem_set()->print_summary_info();
  3329   if (G1SummarizeConcMark) {
  3330     concurrent_mark()->print_summary_info();
  3332   g1_policy()->print_yg_surv_rate_info();
  3333   SpecializationStats::print();
  3336 #ifndef PRODUCT
  3337 // Helpful for debugging RSet issues.
  3339 class PrintRSetsClosure : public HeapRegionClosure {
  3340 private:
  3341   const char* _msg;
  3342   size_t _occupied_sum;
  3344 public:
  3345   bool doHeapRegion(HeapRegion* r) {
  3346     HeapRegionRemSet* hrrs = r->rem_set();
  3347     size_t occupied = hrrs->occupied();
  3348     _occupied_sum += occupied;
  3350     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3351                            HR_FORMAT_PARAMS(r));
  3352     if (occupied == 0) {
  3353       gclog_or_tty->print_cr("  RSet is empty");
  3354     } else {
  3355       hrrs->print();
  3357     gclog_or_tty->print_cr("----------");
  3358     return false;
  3361   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3362     gclog_or_tty->cr();
  3363     gclog_or_tty->print_cr("========================================");
  3364     gclog_or_tty->print_cr(msg);
  3365     gclog_or_tty->cr();
  3368   ~PrintRSetsClosure() {
  3369     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3370     gclog_or_tty->print_cr("========================================");
  3371     gclog_or_tty->cr();
  3373 };
  3375 void G1CollectedHeap::print_cset_rsets() {
  3376   PrintRSetsClosure cl("Printing CSet RSets");
  3377   collection_set_iterate(&cl);
  3380 void G1CollectedHeap::print_all_rsets() {
  3381   PrintRSetsClosure cl("Printing All RSets");;
  3382   heap_region_iterate(&cl);
  3384 #endif // PRODUCT
  3386 G1CollectedHeap* G1CollectedHeap::heap() {
  3387   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3388          "not a garbage-first heap");
  3389   return _g1h;
  3392 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3393   // always_do_update_barrier = false;
  3394   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3395   // Call allocation profiler
  3396   AllocationProfiler::iterate_since_last_gc();
  3397   // Fill TLAB's and such
  3398   ensure_parsability(true);
  3401 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3402   // FIXME: what is this about?
  3403   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3404   // is set.
  3405   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3406                         "derived pointer present"));
  3407   // always_do_update_barrier = true;
  3409   // We have just completed a GC. Update the soft reference
  3410   // policy with the new heap occupancy
  3411   Universe::update_heap_info_at_gc();
  3414 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3415                                                unsigned int gc_count_before,
  3416                                                bool* succeeded) {
  3417   assert_heap_not_locked_and_not_at_safepoint();
  3418   g1_policy()->record_stop_world_start();
  3419   VM_G1IncCollectionPause op(gc_count_before,
  3420                              word_size,
  3421                              false, /* should_initiate_conc_mark */
  3422                              g1_policy()->max_pause_time_ms(),
  3423                              GCCause::_g1_inc_collection_pause);
  3424   VMThread::execute(&op);
  3426   HeapWord* result = op.result();
  3427   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3428   assert(result == NULL || ret_succeeded,
  3429          "the result should be NULL if the VM did not succeed");
  3430   *succeeded = ret_succeeded;
  3432   assert_heap_not_locked();
  3433   return result;
  3436 void
  3437 G1CollectedHeap::doConcurrentMark() {
  3438   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3439   if (!_cmThread->in_progress()) {
  3440     _cmThread->set_started();
  3441     CGC_lock->notify();
  3445 size_t G1CollectedHeap::pending_card_num() {
  3446   size_t extra_cards = 0;
  3447   JavaThread *curr = Threads::first();
  3448   while (curr != NULL) {
  3449     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3450     extra_cards += dcq.size();
  3451     curr = curr->next();
  3453   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3454   size_t buffer_size = dcqs.buffer_size();
  3455   size_t buffer_num = dcqs.completed_buffers_num();
  3456   return buffer_size * buffer_num + extra_cards;
  3459 size_t G1CollectedHeap::max_pending_card_num() {
  3460   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3461   size_t buffer_size = dcqs.buffer_size();
  3462   size_t buffer_num  = dcqs.completed_buffers_num();
  3463   int thread_num  = Threads::number_of_threads();
  3464   return (buffer_num + thread_num) * buffer_size;
  3467 size_t G1CollectedHeap::cards_scanned() {
  3468   return g1_rem_set()->cardsScanned();
  3471 void
  3472 G1CollectedHeap::setup_surviving_young_words() {
  3473   assert(_surviving_young_words == NULL, "pre-condition");
  3474   uint array_length = g1_policy()->young_cset_region_length();
  3475   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
  3476   if (_surviving_young_words == NULL) {
  3477     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3478                           "Not enough space for young surv words summary.");
  3480   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3481 #ifdef ASSERT
  3482   for (uint i = 0;  i < array_length; ++i) {
  3483     assert( _surviving_young_words[i] == 0, "memset above" );
  3485 #endif // !ASSERT
  3488 void
  3489 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3490   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3491   uint array_length = g1_policy()->young_cset_region_length();
  3492   for (uint i = 0; i < array_length; ++i) {
  3493     _surviving_young_words[i] += surv_young_words[i];
  3497 void
  3498 G1CollectedHeap::cleanup_surviving_young_words() {
  3499   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3500   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3501   _surviving_young_words = NULL;
  3504 #ifdef ASSERT
  3505 class VerifyCSetClosure: public HeapRegionClosure {
  3506 public:
  3507   bool doHeapRegion(HeapRegion* hr) {
  3508     // Here we check that the CSet region's RSet is ready for parallel
  3509     // iteration. The fields that we'll verify are only manipulated
  3510     // when the region is part of a CSet and is collected. Afterwards,
  3511     // we reset these fields when we clear the region's RSet (when the
  3512     // region is freed) so they are ready when the region is
  3513     // re-allocated. The only exception to this is if there's an
  3514     // evacuation failure and instead of freeing the region we leave
  3515     // it in the heap. In that case, we reset these fields during
  3516     // evacuation failure handling.
  3517     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3519     // Here's a good place to add any other checks we'd like to
  3520     // perform on CSet regions.
  3521     return false;
  3523 };
  3524 #endif // ASSERT
  3526 #if TASKQUEUE_STATS
  3527 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3528   st->print_raw_cr("GC Task Stats");
  3529   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3530   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3533 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3534   print_taskqueue_stats_hdr(st);
  3536   TaskQueueStats totals;
  3537   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3538   for (int i = 0; i < n; ++i) {
  3539     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3540     totals += task_queue(i)->stats;
  3542   st->print_raw("tot "); totals.print(st); st->cr();
  3544   DEBUG_ONLY(totals.verify());
  3547 void G1CollectedHeap::reset_taskqueue_stats() {
  3548   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3549   for (int i = 0; i < n; ++i) {
  3550     task_queue(i)->stats.reset();
  3553 #endif // TASKQUEUE_STATS
  3555 bool
  3556 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3557   assert_at_safepoint(true /* should_be_vm_thread */);
  3558   guarantee(!is_gc_active(), "collection is not reentrant");
  3560   if (GC_locker::check_active_before_gc()) {
  3561     return false;
  3564   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3565   ResourceMark rm;
  3567   print_heap_before_gc();
  3569   HRSPhaseSetter x(HRSPhaseEvacuation);
  3570   verify_region_sets_optional();
  3571   verify_dirty_young_regions();
  3573   // This call will decide whether this pause is an initial-mark
  3574   // pause. If it is, during_initial_mark_pause() will return true
  3575   // for the duration of this pause.
  3576   g1_policy()->decide_on_conc_mark_initiation();
  3578   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3579   assert(!g1_policy()->during_initial_mark_pause() ||
  3580           g1_policy()->gcs_are_young(), "sanity");
  3582   // We also do not allow mixed GCs during marking.
  3583   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3585   // Record whether this pause is an initial mark. When the current
  3586   // thread has completed its logging output and it's safe to signal
  3587   // the CM thread, the flag's value in the policy has been reset.
  3588   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3590   // Inner scope for scope based logging, timers, and stats collection
  3592     if (g1_policy()->during_initial_mark_pause()) {
  3593       // We are about to start a marking cycle, so we increment the
  3594       // full collection counter.
  3595       increment_total_full_collections();
  3597     // if the log level is "finer" is on, we'll print long statistics information
  3598     // in the collector policy code, so let's not print this as the output
  3599     // is messy if we do.
  3600     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  3601     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3603     char verbose_str[128];
  3604     sprintf(verbose_str, "GC pause (%s) (%s)%s",
  3605       GCCause::to_string(gc_cause()),
  3606       g1_policy()->gcs_are_young() ? "young" : "mixed",
  3607       g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3608     TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
  3610     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3611     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3613     // If the secondary_free_list is not empty, append it to the
  3614     // free_list. No need to wait for the cleanup operation to finish;
  3615     // the region allocation code will check the secondary_free_list
  3616     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3617     // set, skip this step so that the region allocation code has to
  3618     // get entries from the secondary_free_list.
  3619     if (!G1StressConcRegionFreeing) {
  3620       append_secondary_free_list_if_not_empty_with_lock();
  3623     assert(check_young_list_well_formed(),
  3624       "young list should be well formed");
  3626     // Don't dynamically change the number of GC threads this early.  A value of
  3627     // 0 is used to indicate serial work.  When parallel work is done,
  3628     // it will be set.
  3630     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3631       IsGCActiveMark x;
  3633       gc_prologue(false);
  3634       increment_total_collections(false /* full gc */);
  3635       increment_gc_time_stamp();
  3637       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3638         HandleMark hm;  // Discard invalid handles created during verification
  3639         gclog_or_tty->print(" VerifyBeforeGC:");
  3640         prepare_for_verify();
  3641         Universe::verify(/* silent      */ false,
  3642                          /* option      */ VerifyOption_G1UsePrevMarking);
  3645       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3647       // Please see comment in g1CollectedHeap.hpp and
  3648       // G1CollectedHeap::ref_processing_init() to see how
  3649       // reference processing currently works in G1.
  3651       // Enable discovery in the STW reference processor
  3652       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3653                                             true /*verify_no_refs*/);
  3656         // We want to temporarily turn off discovery by the
  3657         // CM ref processor, if necessary, and turn it back on
  3658         // on again later if we do. Using a scoped
  3659         // NoRefDiscovery object will do this.
  3660         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3662         // Forget the current alloc region (we might even choose it to be part
  3663         // of the collection set!).
  3664         release_mutator_alloc_region();
  3666         // We should call this after we retire the mutator alloc
  3667         // region(s) so that all the ALLOC / RETIRE events are generated
  3668         // before the start GC event.
  3669         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3671         // The elapsed time induced by the start time below deliberately elides
  3672         // the possible verification above.
  3673         double start_time_sec = os::elapsedTime();
  3674         size_t start_used_bytes = used();
  3676 #if YOUNG_LIST_VERBOSE
  3677         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3678         _young_list->print();
  3679         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3680 #endif // YOUNG_LIST_VERBOSE
  3682         g1_policy()->record_collection_pause_start(start_time_sec,
  3683                                                    start_used_bytes);
  3685         double scan_wait_start = os::elapsedTime();
  3686         // We have to wait until the CM threads finish scanning the
  3687         // root regions as it's the only way to ensure that all the
  3688         // objects on them have been correctly scanned before we start
  3689         // moving them during the GC.
  3690         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3691         if (waited) {
  3692           double scan_wait_end = os::elapsedTime();
  3693           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3694           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
  3697 #if YOUNG_LIST_VERBOSE
  3698         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3699         _young_list->print();
  3700 #endif // YOUNG_LIST_VERBOSE
  3702         if (g1_policy()->during_initial_mark_pause()) {
  3703           concurrent_mark()->checkpointRootsInitialPre();
  3705         perm_gen()->save_marks();
  3707 #if YOUNG_LIST_VERBOSE
  3708         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3709         _young_list->print();
  3710         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3711 #endif // YOUNG_LIST_VERBOSE
  3713         g1_policy()->finalize_cset(target_pause_time_ms);
  3715         _cm->note_start_of_gc();
  3716         // We should not verify the per-thread SATB buffers given that
  3717         // we have not filtered them yet (we'll do so during the
  3718         // GC). We also call this after finalize_cset() to
  3719         // ensure that the CSet has been finalized.
  3720         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3721                                  true  /* verify_enqueued_buffers */,
  3722                                  false /* verify_thread_buffers */,
  3723                                  true  /* verify_fingers */);
  3725         if (_hr_printer.is_active()) {
  3726           HeapRegion* hr = g1_policy()->collection_set();
  3727           while (hr != NULL) {
  3728             G1HRPrinter::RegionType type;
  3729             if (!hr->is_young()) {
  3730               type = G1HRPrinter::Old;
  3731             } else if (hr->is_survivor()) {
  3732               type = G1HRPrinter::Survivor;
  3733             } else {
  3734               type = G1HRPrinter::Eden;
  3736             _hr_printer.cset(hr);
  3737             hr = hr->next_in_collection_set();
  3741 #ifdef ASSERT
  3742         VerifyCSetClosure cl;
  3743         collection_set_iterate(&cl);
  3744 #endif // ASSERT
  3746         setup_surviving_young_words();
  3748         // Initialize the GC alloc regions.
  3749         init_gc_alloc_regions();
  3751         // Actually do the work...
  3752         evacuate_collection_set();
  3754         // We do this to mainly verify the per-thread SATB buffers
  3755         // (which have been filtered by now) since we didn't verify
  3756         // them earlier. No point in re-checking the stacks / enqueued
  3757         // buffers given that the CSet has not changed since last time
  3758         // we checked.
  3759         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3760                                  false /* verify_enqueued_buffers */,
  3761                                  true  /* verify_thread_buffers */,
  3762                                  true  /* verify_fingers */);
  3764         free_collection_set(g1_policy()->collection_set());
  3765         g1_policy()->clear_collection_set();
  3767         cleanup_surviving_young_words();
  3769         // Start a new incremental collection set for the next pause.
  3770         g1_policy()->start_incremental_cset_building();
  3772         // Clear the _cset_fast_test bitmap in anticipation of adding
  3773         // regions to the incremental collection set for the next
  3774         // evacuation pause.
  3775         clear_cset_fast_test();
  3777         _young_list->reset_sampled_info();
  3779         // Don't check the whole heap at this point as the
  3780         // GC alloc regions from this pause have been tagged
  3781         // as survivors and moved on to the survivor list.
  3782         // Survivor regions will fail the !is_young() check.
  3783         assert(check_young_list_empty(false /* check_heap */),
  3784           "young list should be empty");
  3786 #if YOUNG_LIST_VERBOSE
  3787         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3788         _young_list->print();
  3789 #endif // YOUNG_LIST_VERBOSE
  3791         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3792                                             _young_list->first_survivor_region(),
  3793                                             _young_list->last_survivor_region());
  3795         _young_list->reset_auxilary_lists();
  3797         if (evacuation_failed()) {
  3798           _summary_bytes_used = recalculate_used();
  3799         } else {
  3800           // The "used" of the the collection set have already been subtracted
  3801           // when they were freed.  Add in the bytes evacuated.
  3802           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3805         if (g1_policy()->during_initial_mark_pause()) {
  3806           // We have to do this before we notify the CM threads that
  3807           // they can start working to make sure that all the
  3808           // appropriate initialization is done on the CM object.
  3809           concurrent_mark()->checkpointRootsInitialPost();
  3810           set_marking_started();
  3811           // Note that we don't actually trigger the CM thread at
  3812           // this point. We do that later when we're sure that
  3813           // the current thread has completed its logging output.
  3816         allocate_dummy_regions();
  3818 #if YOUNG_LIST_VERBOSE
  3819         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3820         _young_list->print();
  3821         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3822 #endif // YOUNG_LIST_VERBOSE
  3824         init_mutator_alloc_region();
  3827           size_t expand_bytes = g1_policy()->expansion_amount();
  3828           if (expand_bytes > 0) {
  3829             size_t bytes_before = capacity();
  3830             // No need for an ergo verbose message here,
  3831             // expansion_amount() does this when it returns a value > 0.
  3832             if (!expand(expand_bytes)) {
  3833               // We failed to expand the heap so let's verify that
  3834               // committed/uncommitted amount match the backing store
  3835               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3836               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3841         // We redo the verificaiton but now wrt to the new CSet which
  3842         // has just got initialized after the previous CSet was freed.
  3843         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3844                                  true  /* verify_enqueued_buffers */,
  3845                                  true  /* verify_thread_buffers */,
  3846                                  true  /* verify_fingers */);
  3847         _cm->note_end_of_gc();
  3849         double end_time_sec = os::elapsedTime();
  3850         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3851         g1_policy()->record_pause_time_ms(pause_time_ms);
  3852         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3853                                 workers()->active_workers() : 1);
  3854         g1_policy()->record_collection_pause_end(active_workers);
  3856         MemoryService::track_memory_usage();
  3858         // In prepare_for_verify() below we'll need to scan the deferred
  3859         // update buffers to bring the RSets up-to-date if
  3860         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3861         // the update buffers we'll probably need to scan cards on the
  3862         // regions we just allocated to (i.e., the GC alloc
  3863         // regions). However, during the last GC we called
  3864         // set_saved_mark() on all the GC alloc regions, so card
  3865         // scanning might skip the [saved_mark_word()...top()] area of
  3866         // those regions (i.e., the area we allocated objects into
  3867         // during the last GC). But it shouldn't. Given that
  3868         // saved_mark_word() is conditional on whether the GC time stamp
  3869         // on the region is current or not, by incrementing the GC time
  3870         // stamp here we invalidate all the GC time stamps on all the
  3871         // regions and saved_mark_word() will simply return top() for
  3872         // all the regions. This is a nicer way of ensuring this rather
  3873         // than iterating over the regions and fixing them. In fact, the
  3874         // GC time stamp increment here also ensures that
  3875         // saved_mark_word() will return top() between pauses, i.e.,
  3876         // during concurrent refinement. So we don't need the
  3877         // is_gc_active() check to decided which top to use when
  3878         // scanning cards (see CR 7039627).
  3879         increment_gc_time_stamp();
  3881         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3882           HandleMark hm;  // Discard invalid handles created during verification
  3883           gclog_or_tty->print(" VerifyAfterGC:");
  3884           prepare_for_verify();
  3885           Universe::verify(/* silent      */ false,
  3886                            /* option      */ VerifyOption_G1UsePrevMarking);
  3889         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3890         ref_processor_stw()->verify_no_references_recorded();
  3892         // CM reference discovery will be re-enabled if necessary.
  3895       // We should do this after we potentially expand the heap so
  3896       // that all the COMMIT events are generated before the end GC
  3897       // event, and after we retire the GC alloc regions so that all
  3898       // RETIRE events are generated before the end GC event.
  3899       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3901       // We have to do this after we decide whether to expand the heap or not.
  3902       g1_policy()->print_heap_transition();
  3904       if (mark_in_progress()) {
  3905         concurrent_mark()->update_g1_committed();
  3908 #ifdef TRACESPINNING
  3909       ParallelTaskTerminator::print_termination_counts();
  3910 #endif
  3912       gc_epilogue(false);
  3915     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3916       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3917       print_tracing_info();
  3918       vm_exit(-1);
  3922   // The closing of the inner scope, immediately above, will complete
  3923   // logging at the "fine" level. The record_collection_pause_end() call
  3924   // above will complete logging at the "finer" level.
  3925   //
  3926   // It is not yet to safe, however, to tell the concurrent mark to
  3927   // start as we have some optional output below. We don't want the
  3928   // output from the concurrent mark thread interfering with this
  3929   // logging output either.
  3931   _hrs.verify_optional();
  3932   verify_region_sets_optional();
  3934   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3935   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3937   print_heap_after_gc();
  3938   g1mm()->update_sizes();
  3940   if (G1SummarizeRSetStats &&
  3941       (G1SummarizeRSetStatsPeriod > 0) &&
  3942       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3943     g1_rem_set()->print_summary_info();
  3946   // It should now be safe to tell the concurrent mark thread to start
  3947   // without its logging output interfering with the logging output
  3948   // that came from the pause.
  3950   if (should_start_conc_mark) {
  3951     // CAUTION: after the doConcurrentMark() call below,
  3952     // the concurrent marking thread(s) could be running
  3953     // concurrently with us. Make sure that anything after
  3954     // this point does not assume that we are the only GC thread
  3955     // running. Note: of course, the actual marking work will
  3956     // not start until the safepoint itself is released in
  3957     // ConcurrentGCThread::safepoint_desynchronize().
  3958     doConcurrentMark();
  3961   return true;
  3964 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3966   size_t gclab_word_size;
  3967   switch (purpose) {
  3968     case GCAllocForSurvived:
  3969       gclab_word_size = YoungPLABSize;
  3970       break;
  3971     case GCAllocForTenured:
  3972       gclab_word_size = OldPLABSize;
  3973       break;
  3974     default:
  3975       assert(false, "unknown GCAllocPurpose");
  3976       gclab_word_size = OldPLABSize;
  3977       break;
  3979   return gclab_word_size;
  3982 void G1CollectedHeap::init_mutator_alloc_region() {
  3983   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3984   _mutator_alloc_region.init();
  3987 void G1CollectedHeap::release_mutator_alloc_region() {
  3988   _mutator_alloc_region.release();
  3989   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3992 void G1CollectedHeap::init_gc_alloc_regions() {
  3993   assert_at_safepoint(true /* should_be_vm_thread */);
  3995   _survivor_gc_alloc_region.init();
  3996   _old_gc_alloc_region.init();
  3997   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  3998   _retained_old_gc_alloc_region = NULL;
  4000   // We will discard the current GC alloc region if:
  4001   // a) it's in the collection set (it can happen!),
  4002   // b) it's already full (no point in using it),
  4003   // c) it's empty (this means that it was emptied during
  4004   // a cleanup and it should be on the free list now), or
  4005   // d) it's humongous (this means that it was emptied
  4006   // during a cleanup and was added to the free list, but
  4007   // has been subseqently used to allocate a humongous
  4008   // object that may be less than the region size).
  4009   if (retained_region != NULL &&
  4010       !retained_region->in_collection_set() &&
  4011       !(retained_region->top() == retained_region->end()) &&
  4012       !retained_region->is_empty() &&
  4013       !retained_region->isHumongous()) {
  4014     retained_region->set_saved_mark();
  4015     // The retained region was added to the old region set when it was
  4016     // retired. We have to remove it now, since we don't allow regions
  4017     // we allocate to in the region sets. We'll re-add it later, when
  4018     // it's retired again.
  4019     _old_set.remove(retained_region);
  4020     bool during_im = g1_policy()->during_initial_mark_pause();
  4021     retained_region->note_start_of_copying(during_im);
  4022     _old_gc_alloc_region.set(retained_region);
  4023     _hr_printer.reuse(retained_region);
  4027 void G1CollectedHeap::release_gc_alloc_regions() {
  4028   _survivor_gc_alloc_region.release();
  4029   // If we have an old GC alloc region to release, we'll save it in
  4030   // _retained_old_gc_alloc_region. If we don't
  4031   // _retained_old_gc_alloc_region will become NULL. This is what we
  4032   // want either way so no reason to check explicitly for either
  4033   // condition.
  4034   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4037 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4038   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4039   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4040   _retained_old_gc_alloc_region = NULL;
  4043 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4044   _drain_in_progress = false;
  4045   set_evac_failure_closure(cl);
  4046   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4049 void G1CollectedHeap::finalize_for_evac_failure() {
  4050   assert(_evac_failure_scan_stack != NULL &&
  4051          _evac_failure_scan_stack->length() == 0,
  4052          "Postcondition");
  4053   assert(!_drain_in_progress, "Postcondition");
  4054   delete _evac_failure_scan_stack;
  4055   _evac_failure_scan_stack = NULL;
  4058 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4059   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4061   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4063   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4064     set_par_threads();
  4065     workers()->run_task(&rsfp_task);
  4066     set_par_threads(0);
  4067   } else {
  4068     rsfp_task.work(0);
  4071   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4073   // Reset the claim values in the regions in the collection set.
  4074   reset_cset_heap_region_claim_values();
  4076   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4078   // Now restore saved marks, if any.
  4079   if (_objs_with_preserved_marks != NULL) {
  4080     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4081     guarantee(_objs_with_preserved_marks->length() ==
  4082               _preserved_marks_of_objs->length(), "Both or none.");
  4083     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4084       oop obj   = _objs_with_preserved_marks->at(i);
  4085       markOop m = _preserved_marks_of_objs->at(i);
  4086       obj->set_mark(m);
  4089     // Delete the preserved marks growable arrays (allocated on the C heap).
  4090     delete _objs_with_preserved_marks;
  4091     delete _preserved_marks_of_objs;
  4092     _objs_with_preserved_marks = NULL;
  4093     _preserved_marks_of_objs = NULL;
  4097 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4098   _evac_failure_scan_stack->push(obj);
  4101 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4102   assert(_evac_failure_scan_stack != NULL, "precondition");
  4104   while (_evac_failure_scan_stack->length() > 0) {
  4105      oop obj = _evac_failure_scan_stack->pop();
  4106      _evac_failure_closure->set_region(heap_region_containing(obj));
  4107      obj->oop_iterate_backwards(_evac_failure_closure);
  4111 oop
  4112 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4113                                                oop old) {
  4114   assert(obj_in_cs(old),
  4115          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4116                  (HeapWord*) old));
  4117   markOop m = old->mark();
  4118   oop forward_ptr = old->forward_to_atomic(old);
  4119   if (forward_ptr == NULL) {
  4120     // Forward-to-self succeeded.
  4122     if (_evac_failure_closure != cl) {
  4123       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4124       assert(!_drain_in_progress,
  4125              "Should only be true while someone holds the lock.");
  4126       // Set the global evac-failure closure to the current thread's.
  4127       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4128       set_evac_failure_closure(cl);
  4129       // Now do the common part.
  4130       handle_evacuation_failure_common(old, m);
  4131       // Reset to NULL.
  4132       set_evac_failure_closure(NULL);
  4133     } else {
  4134       // The lock is already held, and this is recursive.
  4135       assert(_drain_in_progress, "This should only be the recursive case.");
  4136       handle_evacuation_failure_common(old, m);
  4138     return old;
  4139   } else {
  4140     // Forward-to-self failed. Either someone else managed to allocate
  4141     // space for this object (old != forward_ptr) or they beat us in
  4142     // self-forwarding it (old == forward_ptr).
  4143     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4144            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4145                    "should not be in the CSet",
  4146                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4147     return forward_ptr;
  4151 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4152   set_evacuation_failed(true);
  4154   preserve_mark_if_necessary(old, m);
  4156   HeapRegion* r = heap_region_containing(old);
  4157   if (!r->evacuation_failed()) {
  4158     r->set_evacuation_failed(true);
  4159     _hr_printer.evac_failure(r);
  4162   push_on_evac_failure_scan_stack(old);
  4164   if (!_drain_in_progress) {
  4165     // prevent recursion in copy_to_survivor_space()
  4166     _drain_in_progress = true;
  4167     drain_evac_failure_scan_stack();
  4168     _drain_in_progress = false;
  4172 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4173   assert(evacuation_failed(), "Oversaving!");
  4174   // We want to call the "for_promotion_failure" version only in the
  4175   // case of a promotion failure.
  4176   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4177     if (_objs_with_preserved_marks == NULL) {
  4178       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4179       _objs_with_preserved_marks =
  4180         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4181       _preserved_marks_of_objs =
  4182         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4184     _objs_with_preserved_marks->push(obj);
  4185     _preserved_marks_of_objs->push(m);
  4189 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4190                                                   size_t word_size) {
  4191   if (purpose == GCAllocForSurvived) {
  4192     HeapWord* result = survivor_attempt_allocation(word_size);
  4193     if (result != NULL) {
  4194       return result;
  4195     } else {
  4196       // Let's try to allocate in the old gen in case we can fit the
  4197       // object there.
  4198       return old_attempt_allocation(word_size);
  4200   } else {
  4201     assert(purpose ==  GCAllocForTenured, "sanity");
  4202     HeapWord* result = old_attempt_allocation(word_size);
  4203     if (result != NULL) {
  4204       return result;
  4205     } else {
  4206       // Let's try to allocate in the survivors in case we can fit the
  4207       // object there.
  4208       return survivor_attempt_allocation(word_size);
  4212   ShouldNotReachHere();
  4213   // Trying to keep some compilers happy.
  4214   return NULL;
  4217 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4218   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4220 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4221   : _g1h(g1h),
  4222     _refs(g1h->task_queue(queue_num)),
  4223     _dcq(&g1h->dirty_card_queue_set()),
  4224     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4225     _g1_rem(g1h->g1_rem_set()),
  4226     _hash_seed(17), _queue_num(queue_num),
  4227     _term_attempts(0),
  4228     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4229     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4230     _age_table(false),
  4231     _strong_roots_time(0), _term_time(0),
  4232     _alloc_buffer_waste(0), _undo_waste(0) {
  4233   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4234   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4235   // non-young regions (where the age is -1)
  4236   // We also add a few elements at the beginning and at the end in
  4237   // an attempt to eliminate cache contention
  4238   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4239   uint array_length = PADDING_ELEM_NUM +
  4240                       real_length +
  4241                       PADDING_ELEM_NUM;
  4242   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4243   if (_surviving_young_words_base == NULL)
  4244     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4245                           "Not enough space for young surv histo.");
  4246   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4247   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4249   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4250   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4252   _start = os::elapsedTime();
  4255 void
  4256 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4258   st->print_raw_cr("GC Termination Stats");
  4259   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4260                    " ------waste (KiB)------");
  4261   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4262                    "  total   alloc    undo");
  4263   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4264                    " ------- ------- -------");
  4267 void
  4268 G1ParScanThreadState::print_termination_stats(int i,
  4269                                               outputStream* const st) const
  4271   const double elapsed_ms = elapsed_time() * 1000.0;
  4272   const double s_roots_ms = strong_roots_time() * 1000.0;
  4273   const double term_ms    = term_time() * 1000.0;
  4274   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4275                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4276                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4277                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4278                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4279                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4280                alloc_buffer_waste() * HeapWordSize / K,
  4281                undo_waste() * HeapWordSize / K);
  4284 #ifdef ASSERT
  4285 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4286   assert(ref != NULL, "invariant");
  4287   assert(UseCompressedOops, "sanity");
  4288   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4289   oop p = oopDesc::load_decode_heap_oop(ref);
  4290   assert(_g1h->is_in_g1_reserved(p),
  4291          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4292   return true;
  4295 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4296   assert(ref != NULL, "invariant");
  4297   if (has_partial_array_mask(ref)) {
  4298     // Must be in the collection set--it's already been copied.
  4299     oop p = clear_partial_array_mask(ref);
  4300     assert(_g1h->obj_in_cs(p),
  4301            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4302   } else {
  4303     oop p = oopDesc::load_decode_heap_oop(ref);
  4304     assert(_g1h->is_in_g1_reserved(p),
  4305            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4307   return true;
  4310 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4311   if (ref.is_narrow()) {
  4312     return verify_ref((narrowOop*) ref);
  4313   } else {
  4314     return verify_ref((oop*) ref);
  4317 #endif // ASSERT
  4319 void G1ParScanThreadState::trim_queue() {
  4320   assert(_evac_cl != NULL, "not set");
  4321   assert(_evac_failure_cl != NULL, "not set");
  4322   assert(_partial_scan_cl != NULL, "not set");
  4324   StarTask ref;
  4325   do {
  4326     // Drain the overflow stack first, so other threads can steal.
  4327     while (refs()->pop_overflow(ref)) {
  4328       deal_with_reference(ref);
  4331     while (refs()->pop_local(ref)) {
  4332       deal_with_reference(ref);
  4334   } while (!refs()->is_empty());
  4337 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4338                                      G1ParScanThreadState* par_scan_state) :
  4339   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4340   _par_scan_state(par_scan_state),
  4341   _worker_id(par_scan_state->queue_num()),
  4342   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4343   _mark_in_progress(_g1->mark_in_progress()) { }
  4345 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4346 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4347 #ifdef ASSERT
  4348   HeapRegion* hr = _g1->heap_region_containing(obj);
  4349   assert(hr != NULL, "sanity");
  4350   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4351 #endif // ASSERT
  4353   // We know that the object is not moving so it's safe to read its size.
  4354   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4357 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4358 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4359   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4360 #ifdef ASSERT
  4361   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4362   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4363   assert(from_obj != to_obj, "should not be self-forwarded");
  4365   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4366   assert(from_hr != NULL, "sanity");
  4367   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4369   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4370   assert(to_hr != NULL, "sanity");
  4371   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4372 #endif // ASSERT
  4374   // The object might be in the process of being copied by another
  4375   // worker so we cannot trust that its to-space image is
  4376   // well-formed. So we have to read its size from its from-space
  4377   // image which we know should not be changing.
  4378   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4381 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4382 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4383   ::copy_to_survivor_space(oop old) {
  4384   size_t word_sz = old->size();
  4385   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4386   // +1 to make the -1 indexes valid...
  4387   int       young_index = from_region->young_index_in_cset()+1;
  4388   assert( (from_region->is_young() && young_index >  0) ||
  4389          (!from_region->is_young() && young_index == 0), "invariant" );
  4390   G1CollectorPolicy* g1p = _g1->g1_policy();
  4391   markOop m = old->mark();
  4392   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4393                                            : m->age();
  4394   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4395                                                              word_sz);
  4396   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4397   oop       obj     = oop(obj_ptr);
  4399   if (obj_ptr == NULL) {
  4400     // This will either forward-to-self, or detect that someone else has
  4401     // installed a forwarding pointer.
  4402     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4403     return _g1->handle_evacuation_failure_par(cl, old);
  4406   // We're going to allocate linearly, so might as well prefetch ahead.
  4407   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4409   oop forward_ptr = old->forward_to_atomic(obj);
  4410   if (forward_ptr == NULL) {
  4411     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4412     if (g1p->track_object_age(alloc_purpose)) {
  4413       // We could simply do obj->incr_age(). However, this causes a
  4414       // performance issue. obj->incr_age() will first check whether
  4415       // the object has a displaced mark by checking its mark word;
  4416       // getting the mark word from the new location of the object
  4417       // stalls. So, given that we already have the mark word and we
  4418       // are about to install it anyway, it's better to increase the
  4419       // age on the mark word, when the object does not have a
  4420       // displaced mark word. We're not expecting many objects to have
  4421       // a displaced marked word, so that case is not optimized
  4422       // further (it could be...) and we simply call obj->incr_age().
  4424       if (m->has_displaced_mark_helper()) {
  4425         // in this case, we have to install the mark word first,
  4426         // otherwise obj looks to be forwarded (the old mark word,
  4427         // which contains the forward pointer, was copied)
  4428         obj->set_mark(m);
  4429         obj->incr_age();
  4430       } else {
  4431         m = m->incr_age();
  4432         obj->set_mark(m);
  4434       _par_scan_state->age_table()->add(obj, word_sz);
  4435     } else {
  4436       obj->set_mark(m);
  4439     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4440     surv_young_words[young_index] += word_sz;
  4442     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4443       // We keep track of the next start index in the length field of
  4444       // the to-space object. The actual length can be found in the
  4445       // length field of the from-space object.
  4446       arrayOop(obj)->set_length(0);
  4447       oop* old_p = set_partial_array_mask(old);
  4448       _par_scan_state->push_on_queue(old_p);
  4449     } else {
  4450       // No point in using the slower heap_region_containing() method,
  4451       // given that we know obj is in the heap.
  4452       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4453       obj->oop_iterate_backwards(&_scanner);
  4455   } else {
  4456     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4457     obj = forward_ptr;
  4459   return obj;
  4462 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4463 template <class T>
  4464 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4465 ::do_oop_work(T* p) {
  4466   oop obj = oopDesc::load_decode_heap_oop(p);
  4467   assert(barrier != G1BarrierRS || obj != NULL,
  4468          "Precondition: G1BarrierRS implies obj is non-NULL");
  4470   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4472   // here the null check is implicit in the cset_fast_test() test
  4473   if (_g1->in_cset_fast_test(obj)) {
  4474     oop forwardee;
  4475     if (obj->is_forwarded()) {
  4476       forwardee = obj->forwardee();
  4477     } else {
  4478       forwardee = copy_to_survivor_space(obj);
  4480     assert(forwardee != NULL, "forwardee should not be NULL");
  4481     oopDesc::encode_store_heap_oop(p, forwardee);
  4482     if (do_mark_object && forwardee != obj) {
  4483       // If the object is self-forwarded we don't need to explicitly
  4484       // mark it, the evacuation failure protocol will do so.
  4485       mark_forwarded_object(obj, forwardee);
  4488     // When scanning the RS, we only care about objs in CS.
  4489     if (barrier == G1BarrierRS) {
  4490       _par_scan_state->update_rs(_from, p, _worker_id);
  4492   } else {
  4493     // The object is not in collection set. If we're a root scanning
  4494     // closure during an initial mark pause (i.e. do_mark_object will
  4495     // be true) then attempt to mark the object.
  4496     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4497       mark_object(obj);
  4501   if (barrier == G1BarrierEvac && obj != NULL) {
  4502     _par_scan_state->update_rs(_from, p, _worker_id);
  4505   if (do_gen_barrier && obj != NULL) {
  4506     par_do_barrier(p);
  4510 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4511 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4513 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4514   assert(has_partial_array_mask(p), "invariant");
  4515   oop from_obj = clear_partial_array_mask(p);
  4517   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4518   assert(from_obj->is_objArray(), "must be obj array");
  4519   objArrayOop from_obj_array = objArrayOop(from_obj);
  4520   // The from-space object contains the real length.
  4521   int length                 = from_obj_array->length();
  4523   assert(from_obj->is_forwarded(), "must be forwarded");
  4524   oop to_obj                 = from_obj->forwardee();
  4525   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4526   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4527   // We keep track of the next start index in the length field of the
  4528   // to-space object.
  4529   int next_index             = to_obj_array->length();
  4530   assert(0 <= next_index && next_index < length,
  4531          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4533   int start                  = next_index;
  4534   int end                    = length;
  4535   int remainder              = end - start;
  4536   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4537   if (remainder > 2 * ParGCArrayScanChunk) {
  4538     end = start + ParGCArrayScanChunk;
  4539     to_obj_array->set_length(end);
  4540     // Push the remainder before we process the range in case another
  4541     // worker has run out of things to do and can steal it.
  4542     oop* from_obj_p = set_partial_array_mask(from_obj);
  4543     _par_scan_state->push_on_queue(from_obj_p);
  4544   } else {
  4545     assert(length == end, "sanity");
  4546     // We'll process the final range for this object. Restore the length
  4547     // so that the heap remains parsable in case of evacuation failure.
  4548     to_obj_array->set_length(end);
  4550   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4551   // Process indexes [start,end). It will also process the header
  4552   // along with the first chunk (i.e., the chunk with start == 0).
  4553   // Note that at this point the length field of to_obj_array is not
  4554   // correct given that we are using it to keep track of the next
  4555   // start index. oop_iterate_range() (thankfully!) ignores the length
  4556   // field and only relies on the start / end parameters.  It does
  4557   // however return the size of the object which will be incorrect. So
  4558   // we have to ignore it even if we wanted to use it.
  4559   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4562 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4563 protected:
  4564   G1CollectedHeap*              _g1h;
  4565   G1ParScanThreadState*         _par_scan_state;
  4566   RefToScanQueueSet*            _queues;
  4567   ParallelTaskTerminator*       _terminator;
  4569   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4570   RefToScanQueueSet*      queues()         { return _queues; }
  4571   ParallelTaskTerminator* terminator()     { return _terminator; }
  4573 public:
  4574   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4575                                 G1ParScanThreadState* par_scan_state,
  4576                                 RefToScanQueueSet* queues,
  4577                                 ParallelTaskTerminator* terminator)
  4578     : _g1h(g1h), _par_scan_state(par_scan_state),
  4579       _queues(queues), _terminator(terminator) {}
  4581   void do_void();
  4583 private:
  4584   inline bool offer_termination();
  4585 };
  4587 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4588   G1ParScanThreadState* const pss = par_scan_state();
  4589   pss->start_term_time();
  4590   const bool res = terminator()->offer_termination();
  4591   pss->end_term_time();
  4592   return res;
  4595 void G1ParEvacuateFollowersClosure::do_void() {
  4596   StarTask stolen_task;
  4597   G1ParScanThreadState* const pss = par_scan_state();
  4598   pss->trim_queue();
  4600   do {
  4601     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4602       assert(pss->verify_task(stolen_task), "sanity");
  4603       if (stolen_task.is_narrow()) {
  4604         pss->deal_with_reference((narrowOop*) stolen_task);
  4605       } else {
  4606         pss->deal_with_reference((oop*) stolen_task);
  4609       // We've just processed a reference and we might have made
  4610       // available new entries on the queues. So we have to make sure
  4611       // we drain the queues as necessary.
  4612       pss->trim_queue();
  4614   } while (!offer_termination());
  4616   pss->retire_alloc_buffers();
  4619 class G1ParTask : public AbstractGangTask {
  4620 protected:
  4621   G1CollectedHeap*       _g1h;
  4622   RefToScanQueueSet      *_queues;
  4623   ParallelTaskTerminator _terminator;
  4624   uint _n_workers;
  4626   Mutex _stats_lock;
  4627   Mutex* stats_lock() { return &_stats_lock; }
  4629   size_t getNCards() {
  4630     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4631       / G1BlockOffsetSharedArray::N_bytes;
  4634 public:
  4635   G1ParTask(G1CollectedHeap* g1h,
  4636             RefToScanQueueSet *task_queues)
  4637     : AbstractGangTask("G1 collection"),
  4638       _g1h(g1h),
  4639       _queues(task_queues),
  4640       _terminator(0, _queues),
  4641       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4642   {}
  4644   RefToScanQueueSet* queues() { return _queues; }
  4646   RefToScanQueue *work_queue(int i) {
  4647     return queues()->queue(i);
  4650   ParallelTaskTerminator* terminator() { return &_terminator; }
  4652   virtual void set_for_termination(int active_workers) {
  4653     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4654     // in the young space (_par_seq_tasks) in the G1 heap
  4655     // for SequentialSubTasksDone.
  4656     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4657     // both of which need setting by set_n_termination().
  4658     _g1h->SharedHeap::set_n_termination(active_workers);
  4659     _g1h->set_n_termination(active_workers);
  4660     terminator()->reset_for_reuse(active_workers);
  4661     _n_workers = active_workers;
  4664   void work(uint worker_id) {
  4665     if (worker_id >= _n_workers) return;  // no work needed this round
  4667     double start_time_ms = os::elapsedTime() * 1000.0;
  4668     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
  4671       ResourceMark rm;
  4672       HandleMark   hm;
  4674       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4676       G1ParScanThreadState            pss(_g1h, worker_id);
  4677       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4678       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4679       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4681       pss.set_evac_closure(&scan_evac_cl);
  4682       pss.set_evac_failure_closure(&evac_failure_cl);
  4683       pss.set_partial_scan_closure(&partial_scan_cl);
  4685       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4686       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4688       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4689       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4691       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4692       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4694       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4695         // We also need to mark copied objects.
  4696         scan_root_cl = &scan_mark_root_cl;
  4697         scan_perm_cl = &scan_mark_perm_cl;
  4700       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4702       pss.start_strong_roots();
  4703       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4704                                     SharedHeap::SO_AllClasses,
  4705                                     scan_root_cl,
  4706                                     &push_heap_rs_cl,
  4707                                     scan_perm_cl,
  4708                                     worker_id);
  4709       pss.end_strong_roots();
  4712         double start = os::elapsedTime();
  4713         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4714         evac.do_void();
  4715         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4716         double term_ms = pss.term_time()*1000.0;
  4717         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4718         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
  4720       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4721       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4723       // Clean up any par-expanded rem sets.
  4724       HeapRegionRemSet::par_cleanup();
  4726       if (ParallelGCVerbose) {
  4727         MutexLocker x(stats_lock());
  4728         pss.print_termination_stats(worker_id);
  4731       assert(pss.refs()->is_empty(), "should be empty");
  4733       // Close the inner scope so that the ResourceMark and HandleMark
  4734       // destructors are executed here and are included as part of the
  4735       // "GC Worker Time".
  4738     double end_time_ms = os::elapsedTime() * 1000.0;
  4739     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
  4741 };
  4743 // *** Common G1 Evacuation Stuff
  4745 // Closures that support the filtering of CodeBlobs scanned during
  4746 // external root scanning.
  4748 // Closure applied to reference fields in code blobs (specifically nmethods)
  4749 // to determine whether an nmethod contains references that point into
  4750 // the collection set. Used as a predicate when walking code roots so
  4751 // that only nmethods that point into the collection set are added to the
  4752 // 'marked' list.
  4754 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4756   class G1PointsIntoCSOopClosure : public OopClosure {
  4757     G1CollectedHeap* _g1;
  4758     bool _points_into_cs;
  4759   public:
  4760     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4761       _g1(g1), _points_into_cs(false) { }
  4763     bool points_into_cs() const { return _points_into_cs; }
  4765     template <class T>
  4766     void do_oop_nv(T* p) {
  4767       if (!_points_into_cs) {
  4768         T heap_oop = oopDesc::load_heap_oop(p);
  4769         if (!oopDesc::is_null(heap_oop) &&
  4770             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4771           _points_into_cs = true;
  4776     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4777     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4778   };
  4780   G1CollectedHeap* _g1;
  4782 public:
  4783   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4784     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4786   virtual void do_code_blob(CodeBlob* cb) {
  4787     nmethod* nm = cb->as_nmethod_or_null();
  4788     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4789       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4790       nm->oops_do(&predicate_cl);
  4792       if (predicate_cl.points_into_cs()) {
  4793         // At least one of the reference fields or the oop relocations
  4794         // in the nmethod points into the collection set. We have to
  4795         // 'mark' this nmethod.
  4796         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4797         // or MarkingCodeBlobClosure::do_code_blob() change.
  4798         if (!nm->test_set_oops_do_mark()) {
  4799           do_newly_marked_nmethod(nm);
  4804 };
  4806 // This method is run in a GC worker.
  4808 void
  4809 G1CollectedHeap::
  4810 g1_process_strong_roots(bool collecting_perm_gen,
  4811                         ScanningOption so,
  4812                         OopClosure* scan_non_heap_roots,
  4813                         OopsInHeapRegionClosure* scan_rs,
  4814                         OopsInGenClosure* scan_perm,
  4815                         int worker_i) {
  4817   // First scan the strong roots, including the perm gen.
  4818   double ext_roots_start = os::elapsedTime();
  4819   double closure_app_time_sec = 0.0;
  4821   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4822   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4823   buf_scan_perm.set_generation(perm_gen());
  4825   // Walk the code cache w/o buffering, because StarTask cannot handle
  4826   // unaligned oop locations.
  4827   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  4829   process_strong_roots(false, // no scoping; this is parallel code
  4830                        collecting_perm_gen, so,
  4831                        &buf_scan_non_heap_roots,
  4832                        &eager_scan_code_roots,
  4833                        &buf_scan_perm);
  4835   // Now the CM ref_processor roots.
  4836   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4837     // We need to treat the discovered reference lists of the
  4838     // concurrent mark ref processor as roots and keep entries
  4839     // (which are added by the marking threads) on them live
  4840     // until they can be processed at the end of marking.
  4841     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4844   // Finish up any enqueued closure apps (attributed as object copy time).
  4845   buf_scan_non_heap_roots.done();
  4846   buf_scan_perm.done();
  4848   double ext_roots_end = os::elapsedTime();
  4850   g1_policy()->reset_obj_copy_time(worker_i);
  4851   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4852                                 buf_scan_non_heap_roots.closure_app_seconds();
  4853   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4855   double ext_root_time_ms =
  4856     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4858   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4860   // During conc marking we have to filter the per-thread SATB buffers
  4861   // to make sure we remove any oops into the CSet (which will show up
  4862   // as implicitly live).
  4863   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4864     if (mark_in_progress()) {
  4865       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4868   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4869   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4871   // Now scan the complement of the collection set.
  4872   if (scan_rs != NULL) {
  4873     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4876   _process_strong_tasks->all_tasks_completed();
  4879 void
  4880 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4881                                        OopClosure* non_root_closure) {
  4882   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4883   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4886 // Weak Reference Processing support
  4888 // An always "is_alive" closure that is used to preserve referents.
  4889 // If the object is non-null then it's alive.  Used in the preservation
  4890 // of referent objects that are pointed to by reference objects
  4891 // discovered by the CM ref processor.
  4892 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4893   G1CollectedHeap* _g1;
  4894 public:
  4895   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4896   void do_object(oop p) { assert(false, "Do not call."); }
  4897   bool do_object_b(oop p) {
  4898     if (p != NULL) {
  4899       return true;
  4901     return false;
  4903 };
  4905 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4906   // An object is reachable if it is outside the collection set,
  4907   // or is inside and copied.
  4908   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4911 // Non Copying Keep Alive closure
  4912 class G1KeepAliveClosure: public OopClosure {
  4913   G1CollectedHeap* _g1;
  4914 public:
  4915   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4916   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4917   void do_oop(      oop* p) {
  4918     oop obj = *p;
  4920     if (_g1->obj_in_cs(obj)) {
  4921       assert( obj->is_forwarded(), "invariant" );
  4922       *p = obj->forwardee();
  4925 };
  4927 // Copying Keep Alive closure - can be called from both
  4928 // serial and parallel code as long as different worker
  4929 // threads utilize different G1ParScanThreadState instances
  4930 // and different queues.
  4932 class G1CopyingKeepAliveClosure: public OopClosure {
  4933   G1CollectedHeap*         _g1h;
  4934   OopClosure*              _copy_non_heap_obj_cl;
  4935   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4936   G1ParScanThreadState*    _par_scan_state;
  4938 public:
  4939   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4940                             OopClosure* non_heap_obj_cl,
  4941                             OopsInHeapRegionClosure* perm_obj_cl,
  4942                             G1ParScanThreadState* pss):
  4943     _g1h(g1h),
  4944     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4945     _copy_perm_obj_cl(perm_obj_cl),
  4946     _par_scan_state(pss)
  4947   {}
  4949   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4950   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4952   template <class T> void do_oop_work(T* p) {
  4953     oop obj = oopDesc::load_decode_heap_oop(p);
  4955     if (_g1h->obj_in_cs(obj)) {
  4956       // If the referent object has been forwarded (either copied
  4957       // to a new location or to itself in the event of an
  4958       // evacuation failure) then we need to update the reference
  4959       // field and, if both reference and referent are in the G1
  4960       // heap, update the RSet for the referent.
  4961       //
  4962       // If the referent has not been forwarded then we have to keep
  4963       // it alive by policy. Therefore we have copy the referent.
  4964       //
  4965       // If the reference field is in the G1 heap then we can push
  4966       // on the PSS queue. When the queue is drained (after each
  4967       // phase of reference processing) the object and it's followers
  4968       // will be copied, the reference field set to point to the
  4969       // new location, and the RSet updated. Otherwise we need to
  4970       // use the the non-heap or perm closures directly to copy
  4971       // the refernt object and update the pointer, while avoiding
  4972       // updating the RSet.
  4974       if (_g1h->is_in_g1_reserved(p)) {
  4975         _par_scan_state->push_on_queue(p);
  4976       } else {
  4977         // The reference field is not in the G1 heap.
  4978         if (_g1h->perm_gen()->is_in(p)) {
  4979           _copy_perm_obj_cl->do_oop(p);
  4980         } else {
  4981           _copy_non_heap_obj_cl->do_oop(p);
  4986 };
  4988 // Serial drain queue closure. Called as the 'complete_gc'
  4989 // closure for each discovered list in some of the
  4990 // reference processing phases.
  4992 class G1STWDrainQueueClosure: public VoidClosure {
  4993 protected:
  4994   G1CollectedHeap* _g1h;
  4995   G1ParScanThreadState* _par_scan_state;
  4997   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4999 public:
  5000   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5001     _g1h(g1h),
  5002     _par_scan_state(pss)
  5003   { }
  5005   void do_void() {
  5006     G1ParScanThreadState* const pss = par_scan_state();
  5007     pss->trim_queue();
  5009 };
  5011 // Parallel Reference Processing closures
  5013 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5014 // processing during G1 evacuation pauses.
  5016 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5017 private:
  5018   G1CollectedHeap*   _g1h;
  5019   RefToScanQueueSet* _queues;
  5020   FlexibleWorkGang*  _workers;
  5021   int                _active_workers;
  5023 public:
  5024   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5025                         FlexibleWorkGang* workers,
  5026                         RefToScanQueueSet *task_queues,
  5027                         int n_workers) :
  5028     _g1h(g1h),
  5029     _queues(task_queues),
  5030     _workers(workers),
  5031     _active_workers(n_workers)
  5033     assert(n_workers > 0, "shouldn't call this otherwise");
  5036   // Executes the given task using concurrent marking worker threads.
  5037   virtual void execute(ProcessTask& task);
  5038   virtual void execute(EnqueueTask& task);
  5039 };
  5041 // Gang task for possibly parallel reference processing
  5043 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5044   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5045   ProcessTask&     _proc_task;
  5046   G1CollectedHeap* _g1h;
  5047   RefToScanQueueSet *_task_queues;
  5048   ParallelTaskTerminator* _terminator;
  5050 public:
  5051   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5052                      G1CollectedHeap* g1h,
  5053                      RefToScanQueueSet *task_queues,
  5054                      ParallelTaskTerminator* terminator) :
  5055     AbstractGangTask("Process reference objects in parallel"),
  5056     _proc_task(proc_task),
  5057     _g1h(g1h),
  5058     _task_queues(task_queues),
  5059     _terminator(terminator)
  5060   {}
  5062   virtual void work(uint worker_id) {
  5063     // The reference processing task executed by a single worker.
  5064     ResourceMark rm;
  5065     HandleMark   hm;
  5067     G1STWIsAliveClosure is_alive(_g1h);
  5069     G1ParScanThreadState pss(_g1h, worker_id);
  5071     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5072     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5073     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5075     pss.set_evac_closure(&scan_evac_cl);
  5076     pss.set_evac_failure_closure(&evac_failure_cl);
  5077     pss.set_partial_scan_closure(&partial_scan_cl);
  5079     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5080     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5082     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5083     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5085     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5086     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5088     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5089       // We also need to mark copied objects.
  5090       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5091       copy_perm_cl = &copy_mark_perm_cl;
  5094     // Keep alive closure.
  5095     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5097     // Complete GC closure
  5098     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5100     // Call the reference processing task's work routine.
  5101     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5103     // Note we cannot assert that the refs array is empty here as not all
  5104     // of the processing tasks (specifically phase2 - pp2_work) execute
  5105     // the complete_gc closure (which ordinarily would drain the queue) so
  5106     // the queue may not be empty.
  5108 };
  5110 // Driver routine for parallel reference processing.
  5111 // Creates an instance of the ref processing gang
  5112 // task and has the worker threads execute it.
  5113 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5114   assert(_workers != NULL, "Need parallel worker threads.");
  5116   ParallelTaskTerminator terminator(_active_workers, _queues);
  5117   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5119   _g1h->set_par_threads(_active_workers);
  5120   _workers->run_task(&proc_task_proxy);
  5121   _g1h->set_par_threads(0);
  5124 // Gang task for parallel reference enqueueing.
  5126 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5127   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5128   EnqueueTask& _enq_task;
  5130 public:
  5131   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5132     AbstractGangTask("Enqueue reference objects in parallel"),
  5133     _enq_task(enq_task)
  5134   { }
  5136   virtual void work(uint worker_id) {
  5137     _enq_task.work(worker_id);
  5139 };
  5141 // Driver routine for parallel reference enqueing.
  5142 // Creates an instance of the ref enqueueing gang
  5143 // task and has the worker threads execute it.
  5145 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5146   assert(_workers != NULL, "Need parallel worker threads.");
  5148   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5150   _g1h->set_par_threads(_active_workers);
  5151   _workers->run_task(&enq_task_proxy);
  5152   _g1h->set_par_threads(0);
  5155 // End of weak reference support closures
  5157 // Abstract task used to preserve (i.e. copy) any referent objects
  5158 // that are in the collection set and are pointed to by reference
  5159 // objects discovered by the CM ref processor.
  5161 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5162 protected:
  5163   G1CollectedHeap* _g1h;
  5164   RefToScanQueueSet      *_queues;
  5165   ParallelTaskTerminator _terminator;
  5166   uint _n_workers;
  5168 public:
  5169   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5170     AbstractGangTask("ParPreserveCMReferents"),
  5171     _g1h(g1h),
  5172     _queues(task_queues),
  5173     _terminator(workers, _queues),
  5174     _n_workers(workers)
  5175   { }
  5177   void work(uint worker_id) {
  5178     ResourceMark rm;
  5179     HandleMark   hm;
  5181     G1ParScanThreadState            pss(_g1h, worker_id);
  5182     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5183     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5184     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5186     pss.set_evac_closure(&scan_evac_cl);
  5187     pss.set_evac_failure_closure(&evac_failure_cl);
  5188     pss.set_partial_scan_closure(&partial_scan_cl);
  5190     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5193     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5194     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5196     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5197     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5199     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5200     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5202     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5203       // We also need to mark copied objects.
  5204       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5205       copy_perm_cl = &copy_mark_perm_cl;
  5208     // Is alive closure
  5209     G1AlwaysAliveClosure always_alive(_g1h);
  5211     // Copying keep alive closure. Applied to referent objects that need
  5212     // to be copied.
  5213     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5215     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5217     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5218     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5220     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5221     // So this must be true - but assert just in case someone decides to
  5222     // change the worker ids.
  5223     assert(0 <= worker_id && worker_id < limit, "sanity");
  5224     assert(!rp->discovery_is_atomic(), "check this code");
  5226     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5227     for (uint idx = worker_id; idx < limit; idx += stride) {
  5228       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5230       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5231       while (iter.has_next()) {
  5232         // Since discovery is not atomic for the CM ref processor, we
  5233         // can see some null referent objects.
  5234         iter.load_ptrs(DEBUG_ONLY(true));
  5235         oop ref = iter.obj();
  5237         // This will filter nulls.
  5238         if (iter.is_referent_alive()) {
  5239           iter.make_referent_alive();
  5241         iter.move_to_next();
  5245     // Drain the queue - which may cause stealing
  5246     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5247     drain_queue.do_void();
  5248     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5249     assert(pss.refs()->is_empty(), "should be");
  5251 };
  5253 // Weak Reference processing during an evacuation pause (part 1).
  5254 void G1CollectedHeap::process_discovered_references() {
  5255   double ref_proc_start = os::elapsedTime();
  5257   ReferenceProcessor* rp = _ref_processor_stw;
  5258   assert(rp->discovery_enabled(), "should have been enabled");
  5260   // Any reference objects, in the collection set, that were 'discovered'
  5261   // by the CM ref processor should have already been copied (either by
  5262   // applying the external root copy closure to the discovered lists, or
  5263   // by following an RSet entry).
  5264   //
  5265   // But some of the referents, that are in the collection set, that these
  5266   // reference objects point to may not have been copied: the STW ref
  5267   // processor would have seen that the reference object had already
  5268   // been 'discovered' and would have skipped discovering the reference,
  5269   // but would not have treated the reference object as a regular oop.
  5270   // As a reult the copy closure would not have been applied to the
  5271   // referent object.
  5272   //
  5273   // We need to explicitly copy these referent objects - the references
  5274   // will be processed at the end of remarking.
  5275   //
  5276   // We also need to do this copying before we process the reference
  5277   // objects discovered by the STW ref processor in case one of these
  5278   // referents points to another object which is also referenced by an
  5279   // object discovered by the STW ref processor.
  5281   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5282                         workers()->active_workers() : 1);
  5284   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5285            active_workers == workers()->active_workers(),
  5286            "Need to reset active_workers");
  5288   set_par_threads(active_workers);
  5289   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5291   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5292     workers()->run_task(&keep_cm_referents);
  5293   } else {
  5294     keep_cm_referents.work(0);
  5297   set_par_threads(0);
  5299   // Closure to test whether a referent is alive.
  5300   G1STWIsAliveClosure is_alive(this);
  5302   // Even when parallel reference processing is enabled, the processing
  5303   // of JNI refs is serial and performed serially by the current thread
  5304   // rather than by a worker. The following PSS will be used for processing
  5305   // JNI refs.
  5307   // Use only a single queue for this PSS.
  5308   G1ParScanThreadState pss(this, 0);
  5310   // We do not embed a reference processor in the copying/scanning
  5311   // closures while we're actually processing the discovered
  5312   // reference objects.
  5313   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5314   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5315   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5317   pss.set_evac_closure(&scan_evac_cl);
  5318   pss.set_evac_failure_closure(&evac_failure_cl);
  5319   pss.set_partial_scan_closure(&partial_scan_cl);
  5321   assert(pss.refs()->is_empty(), "pre-condition");
  5323   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5324   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5326   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5327   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5329   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5330   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5332   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5333     // We also need to mark copied objects.
  5334     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5335     copy_perm_cl = &copy_mark_perm_cl;
  5338   // Keep alive closure.
  5339   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5341   // Serial Complete GC closure
  5342   G1STWDrainQueueClosure drain_queue(this, &pss);
  5344   // Setup the soft refs policy...
  5345   rp->setup_policy(false);
  5347   if (!rp->processing_is_mt()) {
  5348     // Serial reference processing...
  5349     rp->process_discovered_references(&is_alive,
  5350                                       &keep_alive,
  5351                                       &drain_queue,
  5352                                       NULL);
  5353   } else {
  5354     // Parallel reference processing
  5355     assert(rp->num_q() == active_workers, "sanity");
  5356     assert(active_workers <= rp->max_num_q(), "sanity");
  5358     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5359     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5362   // We have completed copying any necessary live referent objects
  5363   // (that were not copied during the actual pause) so we can
  5364   // retire any active alloc buffers
  5365   pss.retire_alloc_buffers();
  5366   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5368   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5369   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5372 // Weak Reference processing during an evacuation pause (part 2).
  5373 void G1CollectedHeap::enqueue_discovered_references() {
  5374   double ref_enq_start = os::elapsedTime();
  5376   ReferenceProcessor* rp = _ref_processor_stw;
  5377   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5379   // Now enqueue any remaining on the discovered lists on to
  5380   // the pending list.
  5381   if (!rp->processing_is_mt()) {
  5382     // Serial reference processing...
  5383     rp->enqueue_discovered_references();
  5384   } else {
  5385     // Parallel reference enqueuing
  5387     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5388     assert(active_workers == workers()->active_workers(),
  5389            "Need to reset active_workers");
  5390     assert(rp->num_q() == active_workers, "sanity");
  5391     assert(active_workers <= rp->max_num_q(), "sanity");
  5393     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5394     rp->enqueue_discovered_references(&par_task_executor);
  5397   rp->verify_no_references_recorded();
  5398   assert(!rp->discovery_enabled(), "should have been disabled");
  5400   // FIXME
  5401   // CM's reference processing also cleans up the string and symbol tables.
  5402   // Should we do that here also? We could, but it is a serial operation
  5403   // and could signicantly increase the pause time.
  5405   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5406   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5409 void G1CollectedHeap::evacuate_collection_set() {
  5410   _expand_heap_after_alloc_failure = true;
  5411   set_evacuation_failed(false);
  5413   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5414   concurrent_g1_refine()->set_use_cache(false);
  5415   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5417   uint n_workers;
  5418   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5419     n_workers =
  5420       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5421                                      workers()->active_workers(),
  5422                                      Threads::number_of_non_daemon_threads());
  5423     assert(UseDynamicNumberOfGCThreads ||
  5424            n_workers == workers()->total_workers(),
  5425            "If not dynamic should be using all the  workers");
  5426     workers()->set_active_workers(n_workers);
  5427     set_par_threads(n_workers);
  5428   } else {
  5429     assert(n_par_threads() == 0,
  5430            "Should be the original non-parallel value");
  5431     n_workers = 1;
  5434   G1ParTask g1_par_task(this, _task_queues);
  5436   init_for_evac_failure(NULL);
  5438   rem_set()->prepare_for_younger_refs_iterate(true);
  5440   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5441   double start_par_time_sec = os::elapsedTime();
  5442   double end_par_time_sec;
  5445     StrongRootsScope srs(this);
  5447     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5448       // The individual threads will set their evac-failure closures.
  5449       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5450       // These tasks use ShareHeap::_process_strong_tasks
  5451       assert(UseDynamicNumberOfGCThreads ||
  5452              workers()->active_workers() == workers()->total_workers(),
  5453              "If not dynamic should be using all the  workers");
  5454       workers()->run_task(&g1_par_task);
  5455     } else {
  5456       g1_par_task.set_for_termination(n_workers);
  5457       g1_par_task.work(0);
  5459     end_par_time_sec = os::elapsedTime();
  5461     // Closing the inner scope will execute the destructor
  5462     // for the StrongRootsScope object. We record the current
  5463     // elapsed time before closing the scope so that time
  5464     // taken for the SRS destructor is NOT included in the
  5465     // reported parallel time.
  5468   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5469   g1_policy()->record_par_time(par_time_ms);
  5471   double code_root_fixup_time_ms =
  5472         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5473   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5475   set_par_threads(0);
  5477   // Process any discovered reference objects - we have
  5478   // to do this _before_ we retire the GC alloc regions
  5479   // as we may have to copy some 'reachable' referent
  5480   // objects (and their reachable sub-graphs) that were
  5481   // not copied during the pause.
  5482   process_discovered_references();
  5484   // Weak root processing.
  5485   // Note: when JSR 292 is enabled and code blobs can contain
  5486   // non-perm oops then we will need to process the code blobs
  5487   // here too.
  5489     G1STWIsAliveClosure is_alive(this);
  5490     G1KeepAliveClosure keep_alive(this);
  5491     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5494   release_gc_alloc_regions();
  5495   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5497   concurrent_g1_refine()->clear_hot_cache();
  5498   concurrent_g1_refine()->set_use_cache(true);
  5500   finalize_for_evac_failure();
  5502   if (evacuation_failed()) {
  5503     remove_self_forwarding_pointers();
  5504     if (G1Log::finer()) {
  5505       gclog_or_tty->print(" (to-space overflow)");
  5506     } else if (G1Log::fine()) {
  5507       gclog_or_tty->print("--");
  5511   // Enqueue any remaining references remaining on the STW
  5512   // reference processor's discovered lists. We need to do
  5513   // this after the card table is cleaned (and verified) as
  5514   // the act of enqueuing entries on to the pending list
  5515   // will log these updates (and dirty their associated
  5516   // cards). We need these updates logged to update any
  5517   // RSets.
  5518   enqueue_discovered_references();
  5520   if (G1DeferredRSUpdate) {
  5521     RedirtyLoggedCardTableEntryFastClosure redirty;
  5522     dirty_card_queue_set().set_closure(&redirty);
  5523     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5525     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5526     dcq.merge_bufferlists(&dirty_card_queue_set());
  5527     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5529   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5532 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5533                                      size_t* pre_used,
  5534                                      FreeRegionList* free_list,
  5535                                      OldRegionSet* old_proxy_set,
  5536                                      HumongousRegionSet* humongous_proxy_set,
  5537                                      HRRSCleanupTask* hrrs_cleanup_task,
  5538                                      bool par) {
  5539   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5540     if (hr->isHumongous()) {
  5541       assert(hr->startsHumongous(), "we should only see starts humongous");
  5542       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5543     } else {
  5544       _old_set.remove_with_proxy(hr, old_proxy_set);
  5545       free_region(hr, pre_used, free_list, par);
  5547   } else {
  5548     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5552 void G1CollectedHeap::free_region(HeapRegion* hr,
  5553                                   size_t* pre_used,
  5554                                   FreeRegionList* free_list,
  5555                                   bool par) {
  5556   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5557   assert(!hr->is_empty(), "the region should not be empty");
  5558   assert(free_list != NULL, "pre-condition");
  5560   *pre_used += hr->used();
  5561   hr->hr_clear(par, true /* clear_space */);
  5562   free_list->add_as_head(hr);
  5565 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5566                                      size_t* pre_used,
  5567                                      FreeRegionList* free_list,
  5568                                      HumongousRegionSet* humongous_proxy_set,
  5569                                      bool par) {
  5570   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5571   assert(free_list != NULL, "pre-condition");
  5572   assert(humongous_proxy_set != NULL, "pre-condition");
  5574   size_t hr_used = hr->used();
  5575   size_t hr_capacity = hr->capacity();
  5576   size_t hr_pre_used = 0;
  5577   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5578   hr->set_notHumongous();
  5579   free_region(hr, &hr_pre_used, free_list, par);
  5581   uint i = hr->hrs_index() + 1;
  5582   uint num = 1;
  5583   while (i < n_regions()) {
  5584     HeapRegion* curr_hr = region_at(i);
  5585     if (!curr_hr->continuesHumongous()) {
  5586       break;
  5588     curr_hr->set_notHumongous();
  5589     free_region(curr_hr, &hr_pre_used, free_list, par);
  5590     num += 1;
  5591     i += 1;
  5593   assert(hr_pre_used == hr_used,
  5594          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5595                  "should be the same", hr_pre_used, hr_used));
  5596   *pre_used += hr_pre_used;
  5599 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5600                                        FreeRegionList* free_list,
  5601                                        OldRegionSet* old_proxy_set,
  5602                                        HumongousRegionSet* humongous_proxy_set,
  5603                                        bool par) {
  5604   if (pre_used > 0) {
  5605     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5606     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5607     assert(_summary_bytes_used >= pre_used,
  5608            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5609                    "should be >= pre_used: "SIZE_FORMAT,
  5610                    _summary_bytes_used, pre_used));
  5611     _summary_bytes_used -= pre_used;
  5613   if (free_list != NULL && !free_list->is_empty()) {
  5614     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5615     _free_list.add_as_head(free_list);
  5617   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5618     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5619     _old_set.update_from_proxy(old_proxy_set);
  5621   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5622     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5623     _humongous_set.update_from_proxy(humongous_proxy_set);
  5627 class G1ParCleanupCTTask : public AbstractGangTask {
  5628   CardTableModRefBS* _ct_bs;
  5629   G1CollectedHeap* _g1h;
  5630   HeapRegion* volatile _su_head;
  5631 public:
  5632   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5633                      G1CollectedHeap* g1h) :
  5634     AbstractGangTask("G1 Par Cleanup CT Task"),
  5635     _ct_bs(ct_bs), _g1h(g1h) { }
  5637   void work(uint worker_id) {
  5638     HeapRegion* r;
  5639     while (r = _g1h->pop_dirty_cards_region()) {
  5640       clear_cards(r);
  5644   void clear_cards(HeapRegion* r) {
  5645     // Cards of the survivors should have already been dirtied.
  5646     if (!r->is_survivor()) {
  5647       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5650 };
  5652 #ifndef PRODUCT
  5653 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5654   G1CollectedHeap* _g1h;
  5655   CardTableModRefBS* _ct_bs;
  5656 public:
  5657   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5658     : _g1h(g1h), _ct_bs(ct_bs) { }
  5659   virtual bool doHeapRegion(HeapRegion* r) {
  5660     if (r->is_survivor()) {
  5661       _g1h->verify_dirty_region(r);
  5662     } else {
  5663       _g1h->verify_not_dirty_region(r);
  5665     return false;
  5667 };
  5669 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5670   // All of the region should be clean.
  5671   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5672   MemRegion mr(hr->bottom(), hr->end());
  5673   ct_bs->verify_not_dirty_region(mr);
  5676 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5677   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5678   // dirty allocated blocks as they allocate them. The thread that
  5679   // retires each region and replaces it with a new one will do a
  5680   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5681   // not dirty that area (one less thing to have to do while holding
  5682   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5683   // is dirty.
  5684   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5685   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5686   ct_bs->verify_dirty_region(mr);
  5689 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5690   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5691   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5692     verify_dirty_region(hr);
  5696 void G1CollectedHeap::verify_dirty_young_regions() {
  5697   verify_dirty_young_list(_young_list->first_region());
  5698   verify_dirty_young_list(_young_list->first_survivor_region());
  5700 #endif
  5702 void G1CollectedHeap::cleanUpCardTable() {
  5703   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5704   double start = os::elapsedTime();
  5707     // Iterate over the dirty cards region list.
  5708     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5710     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5711       set_par_threads();
  5712       workers()->run_task(&cleanup_task);
  5713       set_par_threads(0);
  5714     } else {
  5715       while (_dirty_cards_region_list) {
  5716         HeapRegion* r = _dirty_cards_region_list;
  5717         cleanup_task.clear_cards(r);
  5718         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5719         if (_dirty_cards_region_list == r) {
  5720           // The last region.
  5721           _dirty_cards_region_list = NULL;
  5723         r->set_next_dirty_cards_region(NULL);
  5726 #ifndef PRODUCT
  5727     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5728       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5729       heap_region_iterate(&cleanup_verifier);
  5731 #endif
  5734   double elapsed = os::elapsedTime() - start;
  5735   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5738 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5739   size_t pre_used = 0;
  5740   FreeRegionList local_free_list("Local List for CSet Freeing");
  5742   double young_time_ms     = 0.0;
  5743   double non_young_time_ms = 0.0;
  5745   // Since the collection set is a superset of the the young list,
  5746   // all we need to do to clear the young list is clear its
  5747   // head and length, and unlink any young regions in the code below
  5748   _young_list->clear();
  5750   G1CollectorPolicy* policy = g1_policy();
  5752   double start_sec = os::elapsedTime();
  5753   bool non_young = true;
  5755   HeapRegion* cur = cs_head;
  5756   int age_bound = -1;
  5757   size_t rs_lengths = 0;
  5759   while (cur != NULL) {
  5760     assert(!is_on_master_free_list(cur), "sanity");
  5761     if (non_young) {
  5762       if (cur->is_young()) {
  5763         double end_sec = os::elapsedTime();
  5764         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5765         non_young_time_ms += elapsed_ms;
  5767         start_sec = os::elapsedTime();
  5768         non_young = false;
  5770     } else {
  5771       if (!cur->is_young()) {
  5772         double end_sec = os::elapsedTime();
  5773         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5774         young_time_ms += elapsed_ms;
  5776         start_sec = os::elapsedTime();
  5777         non_young = true;
  5781     rs_lengths += cur->rem_set()->occupied();
  5783     HeapRegion* next = cur->next_in_collection_set();
  5784     assert(cur->in_collection_set(), "bad CS");
  5785     cur->set_next_in_collection_set(NULL);
  5786     cur->set_in_collection_set(false);
  5788     if (cur->is_young()) {
  5789       int index = cur->young_index_in_cset();
  5790       assert(index != -1, "invariant");
  5791       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5792       size_t words_survived = _surviving_young_words[index];
  5793       cur->record_surv_words_in_group(words_survived);
  5795       // At this point the we have 'popped' cur from the collection set
  5796       // (linked via next_in_collection_set()) but it is still in the
  5797       // young list (linked via next_young_region()). Clear the
  5798       // _next_young_region field.
  5799       cur->set_next_young_region(NULL);
  5800     } else {
  5801       int index = cur->young_index_in_cset();
  5802       assert(index == -1, "invariant");
  5805     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5806             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5807             "invariant" );
  5809     if (!cur->evacuation_failed()) {
  5810       MemRegion used_mr = cur->used_region();
  5812       // And the region is empty.
  5813       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5814       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5815     } else {
  5816       cur->uninstall_surv_rate_group();
  5817       if (cur->is_young()) {
  5818         cur->set_young_index_in_cset(-1);
  5820       cur->set_not_young();
  5821       cur->set_evacuation_failed(false);
  5822       // The region is now considered to be old.
  5823       _old_set.add(cur);
  5825     cur = next;
  5828   policy->record_max_rs_lengths(rs_lengths);
  5829   policy->cset_regions_freed();
  5831   double end_sec = os::elapsedTime();
  5832   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5834   if (non_young) {
  5835     non_young_time_ms += elapsed_ms;
  5836   } else {
  5837     young_time_ms += elapsed_ms;
  5840   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5841                                     NULL /* old_proxy_set */,
  5842                                     NULL /* humongous_proxy_set */,
  5843                                     false /* par */);
  5844   policy->record_young_free_cset_time_ms(young_time_ms);
  5845   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5848 // This routine is similar to the above but does not record
  5849 // any policy statistics or update free lists; we are abandoning
  5850 // the current incremental collection set in preparation of a
  5851 // full collection. After the full GC we will start to build up
  5852 // the incremental collection set again.
  5853 // This is only called when we're doing a full collection
  5854 // and is immediately followed by the tearing down of the young list.
  5856 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5857   HeapRegion* cur = cs_head;
  5859   while (cur != NULL) {
  5860     HeapRegion* next = cur->next_in_collection_set();
  5861     assert(cur->in_collection_set(), "bad CS");
  5862     cur->set_next_in_collection_set(NULL);
  5863     cur->set_in_collection_set(false);
  5864     cur->set_young_index_in_cset(-1);
  5865     cur = next;
  5869 void G1CollectedHeap::set_free_regions_coming() {
  5870   if (G1ConcRegionFreeingVerbose) {
  5871     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5872                            "setting free regions coming");
  5875   assert(!free_regions_coming(), "pre-condition");
  5876   _free_regions_coming = true;
  5879 void G1CollectedHeap::reset_free_regions_coming() {
  5880   assert(free_regions_coming(), "pre-condition");
  5883     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5884     _free_regions_coming = false;
  5885     SecondaryFreeList_lock->notify_all();
  5888   if (G1ConcRegionFreeingVerbose) {
  5889     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5890                            "reset free regions coming");
  5894 void G1CollectedHeap::wait_while_free_regions_coming() {
  5895   // Most of the time we won't have to wait, so let's do a quick test
  5896   // first before we take the lock.
  5897   if (!free_regions_coming()) {
  5898     return;
  5901   if (G1ConcRegionFreeingVerbose) {
  5902     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5903                            "waiting for free regions");
  5907     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5908     while (free_regions_coming()) {
  5909       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5913   if (G1ConcRegionFreeingVerbose) {
  5914     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5915                            "done waiting for free regions");
  5919 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5920   assert(heap_lock_held_for_gc(),
  5921               "the heap lock should already be held by or for this thread");
  5922   _young_list->push_region(hr);
  5925 class NoYoungRegionsClosure: public HeapRegionClosure {
  5926 private:
  5927   bool _success;
  5928 public:
  5929   NoYoungRegionsClosure() : _success(true) { }
  5930   bool doHeapRegion(HeapRegion* r) {
  5931     if (r->is_young()) {
  5932       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5933                              r->bottom(), r->end());
  5934       _success = false;
  5936     return false;
  5938   bool success() { return _success; }
  5939 };
  5941 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5942   bool ret = _young_list->check_list_empty(check_sample);
  5944   if (check_heap) {
  5945     NoYoungRegionsClosure closure;
  5946     heap_region_iterate(&closure);
  5947     ret = ret && closure.success();
  5950   return ret;
  5953 class TearDownRegionSetsClosure : public HeapRegionClosure {
  5954 private:
  5955   OldRegionSet *_old_set;
  5957 public:
  5958   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  5960   bool doHeapRegion(HeapRegion* r) {
  5961     if (r->is_empty()) {
  5962       // We ignore empty regions, we'll empty the free list afterwards
  5963     } else if (r->is_young()) {
  5964       // We ignore young regions, we'll empty the young list afterwards
  5965     } else if (r->isHumongous()) {
  5966       // We ignore humongous regions, we're not tearing down the
  5967       // humongous region set
  5968     } else {
  5969       // The rest should be old
  5970       _old_set->remove(r);
  5972     return false;
  5975   ~TearDownRegionSetsClosure() {
  5976     assert(_old_set->is_empty(), "post-condition");
  5978 };
  5980 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  5981   assert_at_safepoint(true /* should_be_vm_thread */);
  5983   if (!free_list_only) {
  5984     TearDownRegionSetsClosure cl(&_old_set);
  5985     heap_region_iterate(&cl);
  5987     // Need to do this after the heap iteration to be able to
  5988     // recognize the young regions and ignore them during the iteration.
  5989     _young_list->empty_list();
  5991   _free_list.remove_all();
  5994 class RebuildRegionSetsClosure : public HeapRegionClosure {
  5995 private:
  5996   bool            _free_list_only;
  5997   OldRegionSet*   _old_set;
  5998   FreeRegionList* _free_list;
  5999   size_t          _total_used;
  6001 public:
  6002   RebuildRegionSetsClosure(bool free_list_only,
  6003                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6004     _free_list_only(free_list_only),
  6005     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6006     assert(_free_list->is_empty(), "pre-condition");
  6007     if (!free_list_only) {
  6008       assert(_old_set->is_empty(), "pre-condition");
  6012   bool doHeapRegion(HeapRegion* r) {
  6013     if (r->continuesHumongous()) {
  6014       return false;
  6017     if (r->is_empty()) {
  6018       // Add free regions to the free list
  6019       _free_list->add_as_tail(r);
  6020     } else if (!_free_list_only) {
  6021       assert(!r->is_young(), "we should not come across young regions");
  6023       if (r->isHumongous()) {
  6024         // We ignore humongous regions, we left the humongous set unchanged
  6025       } else {
  6026         // The rest should be old, add them to the old set
  6027         _old_set->add(r);
  6029       _total_used += r->used();
  6032     return false;
  6035   size_t total_used() {
  6036     return _total_used;
  6038 };
  6040 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6041   assert_at_safepoint(true /* should_be_vm_thread */);
  6043   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6044   heap_region_iterate(&cl);
  6046   if (!free_list_only) {
  6047     _summary_bytes_used = cl.total_used();
  6049   assert(_summary_bytes_used == recalculate_used(),
  6050          err_msg("inconsistent _summary_bytes_used, "
  6051                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6052                  _summary_bytes_used, recalculate_used()));
  6055 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6056   _refine_cte_cl->set_concurrent(concurrent);
  6059 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6060   HeapRegion* hr = heap_region_containing(p);
  6061   if (hr == NULL) {
  6062     return is_in_permanent(p);
  6063   } else {
  6064     return hr->is_in(p);
  6068 // Methods for the mutator alloc region
  6070 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6071                                                       bool force) {
  6072   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6073   assert(!force || g1_policy()->can_expand_young_list(),
  6074          "if force is true we should be able to expand the young list");
  6075   bool young_list_full = g1_policy()->is_young_list_full();
  6076   if (force || !young_list_full) {
  6077     HeapRegion* new_alloc_region = new_region(word_size,
  6078                                               false /* do_expand */);
  6079     if (new_alloc_region != NULL) {
  6080       set_region_short_lived_locked(new_alloc_region);
  6081       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6082       return new_alloc_region;
  6085   return NULL;
  6088 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6089                                                   size_t allocated_bytes) {
  6090   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6091   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6093   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6094   _summary_bytes_used += allocated_bytes;
  6095   _hr_printer.retire(alloc_region);
  6096   // We update the eden sizes here, when the region is retired,
  6097   // instead of when it's allocated, since this is the point that its
  6098   // used space has been recored in _summary_bytes_used.
  6099   g1mm()->update_eden_size();
  6102 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6103                                                     bool force) {
  6104   return _g1h->new_mutator_alloc_region(word_size, force);
  6107 void G1CollectedHeap::set_par_threads() {
  6108   // Don't change the number of workers.  Use the value previously set
  6109   // in the workgroup.
  6110   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6111   uint n_workers = workers()->active_workers();
  6112   assert(UseDynamicNumberOfGCThreads ||
  6113            n_workers == workers()->total_workers(),
  6114       "Otherwise should be using the total number of workers");
  6115   if (n_workers == 0) {
  6116     assert(false, "Should have been set in prior evacuation pause.");
  6117     n_workers = ParallelGCThreads;
  6118     workers()->set_active_workers(n_workers);
  6120   set_par_threads(n_workers);
  6123 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6124                                        size_t allocated_bytes) {
  6125   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6128 // Methods for the GC alloc regions
  6130 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6131                                                  uint count,
  6132                                                  GCAllocPurpose ap) {
  6133   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6135   if (count < g1_policy()->max_regions(ap)) {
  6136     HeapRegion* new_alloc_region = new_region(word_size,
  6137                                               true /* do_expand */);
  6138     if (new_alloc_region != NULL) {
  6139       // We really only need to do this for old regions given that we
  6140       // should never scan survivors. But it doesn't hurt to do it
  6141       // for survivors too.
  6142       new_alloc_region->set_saved_mark();
  6143       if (ap == GCAllocForSurvived) {
  6144         new_alloc_region->set_survivor();
  6145         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6146       } else {
  6147         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6149       bool during_im = g1_policy()->during_initial_mark_pause();
  6150       new_alloc_region->note_start_of_copying(during_im);
  6151       return new_alloc_region;
  6152     } else {
  6153       g1_policy()->note_alloc_region_limit_reached(ap);
  6156   return NULL;
  6159 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6160                                              size_t allocated_bytes,
  6161                                              GCAllocPurpose ap) {
  6162   bool during_im = g1_policy()->during_initial_mark_pause();
  6163   alloc_region->note_end_of_copying(during_im);
  6164   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6165   if (ap == GCAllocForSurvived) {
  6166     young_list()->add_survivor_region(alloc_region);
  6167   } else {
  6168     _old_set.add(alloc_region);
  6170   _hr_printer.retire(alloc_region);
  6173 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6174                                                        bool force) {
  6175   assert(!force, "not supported for GC alloc regions");
  6176   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6179 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6180                                           size_t allocated_bytes) {
  6181   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6182                                GCAllocForSurvived);
  6185 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6186                                                   bool force) {
  6187   assert(!force, "not supported for GC alloc regions");
  6188   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6191 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6192                                      size_t allocated_bytes) {
  6193   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6194                                GCAllocForTenured);
  6196 // Heap region set verification
  6198 class VerifyRegionListsClosure : public HeapRegionClosure {
  6199 private:
  6200   FreeRegionList*     _free_list;
  6201   OldRegionSet*       _old_set;
  6202   HumongousRegionSet* _humongous_set;
  6203   uint                _region_count;
  6205 public:
  6206   VerifyRegionListsClosure(OldRegionSet* old_set,
  6207                            HumongousRegionSet* humongous_set,
  6208                            FreeRegionList* free_list) :
  6209     _old_set(old_set), _humongous_set(humongous_set),
  6210     _free_list(free_list), _region_count(0) { }
  6212   uint region_count() { return _region_count; }
  6214   bool doHeapRegion(HeapRegion* hr) {
  6215     _region_count += 1;
  6217     if (hr->continuesHumongous()) {
  6218       return false;
  6221     if (hr->is_young()) {
  6222       // TODO
  6223     } else if (hr->startsHumongous()) {
  6224       _humongous_set->verify_next_region(hr);
  6225     } else if (hr->is_empty()) {
  6226       _free_list->verify_next_region(hr);
  6227     } else {
  6228       _old_set->verify_next_region(hr);
  6230     return false;
  6232 };
  6234 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6235                                              HeapWord* bottom) {
  6236   HeapWord* end = bottom + HeapRegion::GrainWords;
  6237   MemRegion mr(bottom, end);
  6238   assert(_g1_reserved.contains(mr), "invariant");
  6239   // This might return NULL if the allocation fails
  6240   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6243 void G1CollectedHeap::verify_region_sets() {
  6244   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6246   // First, check the explicit lists.
  6247   _free_list.verify();
  6249     // Given that a concurrent operation might be adding regions to
  6250     // the secondary free list we have to take the lock before
  6251     // verifying it.
  6252     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6253     _secondary_free_list.verify();
  6255   _old_set.verify();
  6256   _humongous_set.verify();
  6258   // If a concurrent region freeing operation is in progress it will
  6259   // be difficult to correctly attributed any free regions we come
  6260   // across to the correct free list given that they might belong to
  6261   // one of several (free_list, secondary_free_list, any local lists,
  6262   // etc.). So, if that's the case we will skip the rest of the
  6263   // verification operation. Alternatively, waiting for the concurrent
  6264   // operation to complete will have a non-trivial effect on the GC's
  6265   // operation (no concurrent operation will last longer than the
  6266   // interval between two calls to verification) and it might hide
  6267   // any issues that we would like to catch during testing.
  6268   if (free_regions_coming()) {
  6269     return;
  6272   // Make sure we append the secondary_free_list on the free_list so
  6273   // that all free regions we will come across can be safely
  6274   // attributed to the free_list.
  6275   append_secondary_free_list_if_not_empty_with_lock();
  6277   // Finally, make sure that the region accounting in the lists is
  6278   // consistent with what we see in the heap.
  6279   _old_set.verify_start();
  6280   _humongous_set.verify_start();
  6281   _free_list.verify_start();
  6283   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6284   heap_region_iterate(&cl);
  6286   _old_set.verify_end();
  6287   _humongous_set.verify_end();
  6288   _free_list.verify_end();

mercurial