src/share/vm/c1/c1_LinearScan.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6723
0bf37f737702
parent 1
2d8a650513c2
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "c1/c1_CFGPrinter.hpp"
    33 #include "c1/c1_CodeStubs.hpp"
    34 #include "c1/c1_Compilation.hpp"
    35 #include "c1/c1_FrameMap.hpp"
    36 #include "c1/c1_IR.hpp"
    37 #include "c1/c1_LIRGenerator.hpp"
    38 #include "c1/c1_LinearScan.hpp"
    39 #include "c1/c1_ValueStack.hpp"
    40 #include "utilities/bitMap.inline.hpp"
    41 #ifdef TARGET_ARCH_x86
    42 # include "vmreg_x86.inline.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_mips
    45 # include "vmreg_mips.inline.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_sparc
    48 # include "vmreg_sparc.inline.hpp"
    49 #endif
    50 #ifdef TARGET_ARCH_zero
    51 # include "vmreg_zero.inline.hpp"
    52 #endif
    53 #ifdef TARGET_ARCH_arm
    54 # include "vmreg_arm.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_ppc
    57 # include "vmreg_ppc.inline.hpp"
    58 #endif
    61 #ifndef PRODUCT
    63   static LinearScanStatistic _stat_before_alloc;
    64   static LinearScanStatistic _stat_after_asign;
    65   static LinearScanStatistic _stat_final;
    67   static LinearScanTimers _total_timer;
    69   // helper macro for short definition of timer
    70   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    72   // helper macro for short definition of trace-output inside code
    73   #define TRACE_LINEAR_SCAN(level, code)       \
    74     if (TraceLinearScanLevel >= level) {       \
    75       code;                                    \
    76     }
    78 #else
    80   #define TIME_LINEAR_SCAN(timer_name)
    81   #define TRACE_LINEAR_SCAN(level, code)
    83 #endif
    85 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    86 #ifdef _LP64
    87 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
    88 #else
    89 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
    90 #endif
    93 // Implementation of LinearScan
    95 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    96  : _compilation(ir->compilation())
    97  , _ir(ir)
    98  , _gen(gen)
    99  , _frame_map(frame_map)
   100  , _num_virtual_regs(gen->max_virtual_register_number())
   101  , _has_fpu_registers(false)
   102  , _num_calls(-1)
   103  , _max_spills(0)
   104  , _unused_spill_slot(-1)
   105  , _intervals(0)   // initialized later with correct length
   106  , _new_intervals_from_allocation(new IntervalList())
   107  , _sorted_intervals(NULL)
   108  , _needs_full_resort(false)
   109  , _lir_ops(0)     // initialized later with correct length
   110  , _block_of_op(0) // initialized later with correct length
   111  , _has_info(0)
   112  , _has_call(0)
   113  , _scope_value_cache(0) // initialized later with correct length
   114  , _interval_in_loop(0, 0) // initialized later with correct length
   115  , _cached_blocks(*ir->linear_scan_order())
   116 #ifdef X86
   117  , _fpu_stack_allocator(NULL)
   118 #endif
   119 {
   120   assert(this->ir() != NULL,          "check if valid");
   121   assert(this->compilation() != NULL, "check if valid");
   122   assert(this->gen() != NULL,         "check if valid");
   123   assert(this->frame_map() != NULL,   "check if valid");
   124 }
   127 // ********** functions for converting LIR-Operands to register numbers
   128 //
   129 // Emulate a flat register file comprising physical integer registers,
   130 // physical floating-point registers and virtual registers, in that order.
   131 // Virtual registers already have appropriate numbers, since V0 is
   132 // the number of physical registers.
   133 // Returns -1 for hi word if opr is a single word operand.
   134 //
   135 // Note: the inverse operation (calculating an operand for register numbers)
   136 //       is done in calc_operand_for_interval()
   138 int LinearScan::reg_num(LIR_Opr opr) {
   139   assert(opr->is_register(), "should not call this otherwise");
   141   if (opr->is_virtual_register()) {
   142     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   143     return opr->vreg_number();
   144   } else if (opr->is_single_cpu()) {
   145     return opr->cpu_regnr();
   146   } else if (opr->is_double_cpu()) {
   147     return opr->cpu_regnrLo();
   148 #ifdef X86
   149   } else if (opr->is_single_xmm()) {
   150     return opr->fpu_regnr() + pd_first_xmm_reg;
   151   } else if (opr->is_double_xmm()) {
   152     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   153 #endif
   154   } else if (opr->is_single_fpu()) {
   155     return opr->fpu_regnr() + pd_first_fpu_reg;
   156   } else if (opr->is_double_fpu()) {
   157     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   158   } else {
   159     ShouldNotReachHere();
   160     return -1;
   161   }
   162 }
   164 int LinearScan::reg_numHi(LIR_Opr opr) {
   165   assert(opr->is_register(), "should not call this otherwise");
   167   if (opr->is_virtual_register()) {
   168     return -1;
   169   } else if (opr->is_single_cpu()) {
   170     return -1;
   171   } else if (opr->is_double_cpu()) {
   172     return opr->cpu_regnrHi();
   173 #ifdef X86
   174   } else if (opr->is_single_xmm()) {
   175     return -1;
   176   } else if (opr->is_double_xmm()) {
   177     return -1;
   178 #endif
   179   } else if (opr->is_single_fpu()) {
   180     return -1;
   181   } else if (opr->is_double_fpu()) {
   182     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   183   } else {
   184     ShouldNotReachHere();
   185     return -1;
   186   }
   187 }
   190 // ********** functions for classification of intervals
   192 bool LinearScan::is_precolored_interval(const Interval* i) {
   193   return i->reg_num() < LinearScan::nof_regs;
   194 }
   196 bool LinearScan::is_virtual_interval(const Interval* i) {
   197   return i->reg_num() >= LIR_OprDesc::vreg_base;
   198 }
   200 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   201   return i->reg_num() < LinearScan::nof_cpu_regs;
   202 }
   204 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   205 #if defined(__SOFTFP__) || defined(E500V2)
   206   return i->reg_num() >= LIR_OprDesc::vreg_base;
   207 #else
   208   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   209 #endif // __SOFTFP__ or E500V2
   210 }
   212 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   213   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   214 }
   216 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   217 #if defined(__SOFTFP__) || defined(E500V2)
   218   return false;
   219 #else
   220   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   221 #endif // __SOFTFP__ or E500V2
   222 }
   224 bool LinearScan::is_in_fpu_register(const Interval* i) {
   225   // fixed intervals not needed for FPU stack allocation
   226   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   227 }
   229 bool LinearScan::is_oop_interval(const Interval* i) {
   230   // fixed intervals never contain oops
   231   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   232 }
   235 // ********** General helper functions
   237 // compute next unused stack index that can be used for spilling
   238 int LinearScan::allocate_spill_slot(bool double_word) {
   239   int spill_slot;
   240   if (double_word) {
   241     if ((_max_spills & 1) == 1) {
   242       // alignment of double-word values
   243       // the hole because of the alignment is filled with the next single-word value
   244       assert(_unused_spill_slot == -1, "wasting a spill slot");
   245       _unused_spill_slot = _max_spills;
   246       _max_spills++;
   247     }
   248     spill_slot = _max_spills;
   249     _max_spills += 2;
   251   } else if (_unused_spill_slot != -1) {
   252     // re-use hole that was the result of a previous double-word alignment
   253     spill_slot = _unused_spill_slot;
   254     _unused_spill_slot = -1;
   256   } else {
   257     spill_slot = _max_spills;
   258     _max_spills++;
   259   }
   261   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   263   // the class OopMapValue uses only 11 bits for storing the name of the
   264   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   265   // that is not reported in product builds. Prevent this by checking the
   266   // spill slot here (altough this value and the later used location name
   267   // are slightly different)
   268   if (result > 2000) {
   269     bailout("too many stack slots used");
   270   }
   272   return result;
   273 }
   275 void LinearScan::assign_spill_slot(Interval* it) {
   276   // assign the canonical spill slot of the parent (if a part of the interval
   277   // is already spilled) or allocate a new spill slot
   278   if (it->canonical_spill_slot() >= 0) {
   279     it->assign_reg(it->canonical_spill_slot());
   280   } else {
   281     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   282     it->set_canonical_spill_slot(spill);
   283     it->assign_reg(spill);
   284   }
   285 }
   287 void LinearScan::propagate_spill_slots() {
   288   if (!frame_map()->finalize_frame(max_spills())) {
   289     bailout("frame too large");
   290   }
   291 }
   293 // create a new interval with a predefined reg_num
   294 // (only used for parent intervals that are created during the building phase)
   295 Interval* LinearScan::create_interval(int reg_num) {
   296   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   298   Interval* interval = new Interval(reg_num);
   299   _intervals.at_put(reg_num, interval);
   301   // assign register number for precolored intervals
   302   if (reg_num < LIR_OprDesc::vreg_base) {
   303     interval->assign_reg(reg_num);
   304   }
   305   return interval;
   306 }
   308 // assign a new reg_num to the interval and append it to the list of intervals
   309 // (only used for child intervals that are created during register allocation)
   310 void LinearScan::append_interval(Interval* it) {
   311   it->set_reg_num(_intervals.length());
   312   _intervals.append(it);
   313   _new_intervals_from_allocation->append(it);
   314 }
   316 // copy the vreg-flags if an interval is split
   317 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   318   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   319     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   320   }
   321   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   322     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   323   }
   325   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   326   //       intervals (only the very beginning of the interval must be in memory)
   327 }
   330 // ********** spill move optimization
   331 // eliminate moves from register to stack if stack slot is known to be correct
   333 // called during building of intervals
   334 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   335   assert(interval->is_split_parent(), "can only be called for split parents");
   337   switch (interval->spill_state()) {
   338     case noDefinitionFound:
   339       assert(interval->spill_definition_pos() == -1, "must no be set before");
   340       interval->set_spill_definition_pos(def_pos);
   341       interval->set_spill_state(oneDefinitionFound);
   342       break;
   344     case oneDefinitionFound:
   345       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   346       if (def_pos < interval->spill_definition_pos() - 2) {
   347         // second definition found, so no spill optimization possible for this interval
   348         interval->set_spill_state(noOptimization);
   349       } else {
   350         // two consecutive definitions (because of two-operand LIR form)
   351         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   352       }
   353       break;
   355     case noOptimization:
   356       // nothing to do
   357       break;
   359     default:
   360       assert(false, "other states not allowed at this time");
   361   }
   362 }
   364 // called during register allocation
   365 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   366   switch (interval->spill_state()) {
   367     case oneDefinitionFound: {
   368       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   369       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   371       if (def_loop_depth < spill_loop_depth) {
   372         // the loop depth of the spilling position is higher then the loop depth
   373         // at the definition of the interval -> move write to memory out of loop
   374         // by storing at definitin of the interval
   375         interval->set_spill_state(storeAtDefinition);
   376       } else {
   377         // the interval is currently spilled only once, so for now there is no
   378         // reason to store the interval at the definition
   379         interval->set_spill_state(oneMoveInserted);
   380       }
   381       break;
   382     }
   384     case oneMoveInserted: {
   385       // the interval is spilled more then once, so it is better to store it to
   386       // memory at the definition
   387       interval->set_spill_state(storeAtDefinition);
   388       break;
   389     }
   391     case storeAtDefinition:
   392     case startInMemory:
   393     case noOptimization:
   394     case noDefinitionFound:
   395       // nothing to do
   396       break;
   398     default:
   399       assert(false, "other states not allowed at this time");
   400   }
   401 }
   404 bool LinearScan::must_store_at_definition(const Interval* i) {
   405   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   406 }
   408 // called once before asignment of register numbers
   409 void LinearScan::eliminate_spill_moves() {
   410   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   411   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   413   // collect all intervals that must be stored after their definion.
   414   // the list is sorted by Interval::spill_definition_pos
   415   Interval* interval;
   416   Interval* temp_list;
   417   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   419 #ifdef ASSERT
   420   Interval* prev = NULL;
   421   Interval* temp = interval;
   422   while (temp != Interval::end()) {
   423     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   424     if (prev != NULL) {
   425       assert(temp->from() >= prev->from(), "intervals not sorted");
   426       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   427     }
   429     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   430     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   431     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   433     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   435     temp = temp->next();
   436   }
   437 #endif
   439   LIR_InsertionBuffer insertion_buffer;
   440   int num_blocks = block_count();
   441   for (int i = 0; i < num_blocks; i++) {
   442     BlockBegin* block = block_at(i);
   443     LIR_OpList* instructions = block->lir()->instructions_list();
   444     int         num_inst = instructions->length();
   445     bool        has_new = false;
   447     // iterate all instructions of the block. skip the first because it is always a label
   448     for (int j = 1; j < num_inst; j++) {
   449       LIR_Op* op = instructions->at(j);
   450       int op_id = op->id();
   452       if (op_id == -1) {
   453         // remove move from register to stack if the stack slot is guaranteed to be correct.
   454         // only moves that have been inserted by LinearScan can be removed.
   455         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   456         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   457         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   459         LIR_Op1* op1 = (LIR_Op1*)op;
   460         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   462         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   463           // move target is a stack slot that is always correct, so eliminate instruction
   464           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   465           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   466         }
   468       } else {
   469         // insert move from register to stack just after the beginning of the interval
   470         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   471         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   473         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   474           if (!has_new) {
   475             // prepare insertion buffer (appended when all instructions of the block are processed)
   476             insertion_buffer.init(block->lir());
   477             has_new = true;
   478           }
   480           LIR_Opr from_opr = operand_for_interval(interval);
   481           LIR_Opr to_opr = canonical_spill_opr(interval);
   482           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   483           assert(to_opr->is_stack(), "to operand must be a stack slot");
   485           insertion_buffer.move(j, from_opr, to_opr);
   486           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   488           interval = interval->next();
   489         }
   490       }
   491     } // end of instruction iteration
   493     if (has_new) {
   494       block->lir()->append(&insertion_buffer);
   495     }
   496   } // end of block iteration
   498   assert(interval == Interval::end(), "missed an interval");
   499 }
   502 // ********** Phase 1: number all instructions in all blocks
   503 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   505 void LinearScan::number_instructions() {
   506   {
   507     // dummy-timer to measure the cost of the timer itself
   508     // (this time is then subtracted from all other timers to get the real value)
   509     TIME_LINEAR_SCAN(timer_do_nothing);
   510   }
   511   TIME_LINEAR_SCAN(timer_number_instructions);
   513   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   514   int num_blocks = block_count();
   515   int num_instructions = 0;
   516   int i;
   517   for (i = 0; i < num_blocks; i++) {
   518     num_instructions += block_at(i)->lir()->instructions_list()->length();
   519   }
   521   // initialize with correct length
   522   _lir_ops = LIR_OpArray(num_instructions);
   523   _block_of_op = BlockBeginArray(num_instructions);
   525   int op_id = 0;
   526   int idx = 0;
   528   for (i = 0; i < num_blocks; i++) {
   529     BlockBegin* block = block_at(i);
   530     block->set_first_lir_instruction_id(op_id);
   531     LIR_OpList* instructions = block->lir()->instructions_list();
   533     int num_inst = instructions->length();
   534     for (int j = 0; j < num_inst; j++) {
   535       LIR_Op* op = instructions->at(j);
   536       op->set_id(op_id);
   538       _lir_ops.at_put(idx, op);
   539       _block_of_op.at_put(idx, block);
   540       assert(lir_op_with_id(op_id) == op, "must match");
   542       idx++;
   543       op_id += 2; // numbering of lir_ops by two
   544     }
   545     block->set_last_lir_instruction_id(op_id - 2);
   546   }
   547   assert(idx == num_instructions, "must match");
   548   assert(idx * 2 == op_id, "must match");
   550   _has_call = BitMap(num_instructions); _has_call.clear();
   551   _has_info = BitMap(num_instructions); _has_info.clear();
   552 }
   555 // ********** Phase 2: compute local live sets separately for each block
   556 // (sets live_gen and live_kill for each block)
   558 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   559   LIR_Opr opr = value->operand();
   560   Constant* con = value->as_Constant();
   562   // check some asumptions about debug information
   563   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   564   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   565   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   567   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   568     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   569     int reg = opr->vreg_number();
   570     if (!live_kill.at(reg)) {
   571       live_gen.set_bit(reg);
   572       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   573     }
   574   }
   575 }
   578 void LinearScan::compute_local_live_sets() {
   579   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   581   int  num_blocks = block_count();
   582   int  live_size = live_set_size();
   583   bool local_has_fpu_registers = false;
   584   int  local_num_calls = 0;
   585   LIR_OpVisitState visitor;
   587   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   588   local_interval_in_loop.clear();
   590   // iterate all blocks
   591   for (int i = 0; i < num_blocks; i++) {
   592     BlockBegin* block = block_at(i);
   594     BitMap live_gen(live_size);  live_gen.clear();
   595     BitMap live_kill(live_size); live_kill.clear();
   597     if (block->is_set(BlockBegin::exception_entry_flag)) {
   598       // Phi functions at the begin of an exception handler are
   599       // implicitly defined (= killed) at the beginning of the block.
   600       for_each_phi_fun(block, phi,
   601         live_kill.set_bit(phi->operand()->vreg_number())
   602       );
   603     }
   605     LIR_OpList* instructions = block->lir()->instructions_list();
   606     int num_inst = instructions->length();
   608     // iterate all instructions of the block. skip the first because it is always a label
   609     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   610     for (int j = 1; j < num_inst; j++) {
   611       LIR_Op* op = instructions->at(j);
   613       // visit operation to collect all operands
   614       visitor.visit(op);
   616       if (visitor.has_call()) {
   617         _has_call.set_bit(op->id() >> 1);
   618         local_num_calls++;
   619       }
   620       if (visitor.info_count() > 0) {
   621         _has_info.set_bit(op->id() >> 1);
   622       }
   624       // iterate input operands of instruction
   625       int k, n, reg;
   626       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   627       for (k = 0; k < n; k++) {
   628         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   629         assert(opr->is_register(), "visitor should only return register operands");
   631         if (opr->is_virtual_register()) {
   632           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   633           reg = opr->vreg_number();
   634           if (!live_kill.at(reg)) {
   635             live_gen.set_bit(reg);
   636             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   637           }
   638           if (block->loop_index() >= 0) {
   639             local_interval_in_loop.set_bit(reg, block->loop_index());
   640           }
   641           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   642         }
   644 #ifdef ASSERT
   645         // fixed intervals are never live at block boundaries, so
   646         // they need not be processed in live sets.
   647         // this is checked by these assertions to be sure about it.
   648         // the entry block may have incoming values in registers, which is ok.
   649         if (!opr->is_virtual_register() && block != ir()->start()) {
   650           reg = reg_num(opr);
   651           if (is_processed_reg_num(reg)) {
   652             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   653           }
   654           reg = reg_numHi(opr);
   655           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   656             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   657           }
   658         }
   659 #endif
   660       }
   662       // Add uses of live locals from interpreter's point of view for proper debug information generation
   663       n = visitor.info_count();
   664       for (k = 0; k < n; k++) {
   665         CodeEmitInfo* info = visitor.info_at(k);
   666         ValueStack* stack = info->stack();
   667         for_each_state_value(stack, value,
   668           set_live_gen_kill(value, op, live_gen, live_kill)
   669         );
   670       }
   672       // iterate temp operands of instruction
   673       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   674       for (k = 0; k < n; k++) {
   675         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   676         assert(opr->is_register(), "visitor should only return register operands");
   678         if (opr->is_virtual_register()) {
   679           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   680           reg = opr->vreg_number();
   681           live_kill.set_bit(reg);
   682           if (block->loop_index() >= 0) {
   683             local_interval_in_loop.set_bit(reg, block->loop_index());
   684           }
   685           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   686         }
   688 #ifdef ASSERT
   689         // fixed intervals are never live at block boundaries, so
   690         // they need not be processed in live sets
   691         // process them only in debug mode so that this can be checked
   692         if (!opr->is_virtual_register()) {
   693           reg = reg_num(opr);
   694           if (is_processed_reg_num(reg)) {
   695             live_kill.set_bit(reg_num(opr));
   696           }
   697           reg = reg_numHi(opr);
   698           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   699             live_kill.set_bit(reg);
   700           }
   701         }
   702 #endif
   703       }
   705       // iterate output operands of instruction
   706       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   707       for (k = 0; k < n; k++) {
   708         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   709         assert(opr->is_register(), "visitor should only return register operands");
   711         if (opr->is_virtual_register()) {
   712           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   713           reg = opr->vreg_number();
   714           live_kill.set_bit(reg);
   715           if (block->loop_index() >= 0) {
   716             local_interval_in_loop.set_bit(reg, block->loop_index());
   717           }
   718           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   719         }
   721 #ifdef ASSERT
   722         // fixed intervals are never live at block boundaries, so
   723         // they need not be processed in live sets
   724         // process them only in debug mode so that this can be checked
   725         if (!opr->is_virtual_register()) {
   726           reg = reg_num(opr);
   727           if (is_processed_reg_num(reg)) {
   728             live_kill.set_bit(reg_num(opr));
   729           }
   730           reg = reg_numHi(opr);
   731           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   732             live_kill.set_bit(reg);
   733           }
   734         }
   735 #endif
   736       }
   737     } // end of instruction iteration
   739     block->set_live_gen (live_gen);
   740     block->set_live_kill(live_kill);
   741     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   742     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   744     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   745     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   746   } // end of block iteration
   748   // propagate local calculated information into LinearScan object
   749   _has_fpu_registers = local_has_fpu_registers;
   750   compilation()->set_has_fpu_code(local_has_fpu_registers);
   752   _num_calls = local_num_calls;
   753   _interval_in_loop = local_interval_in_loop;
   754 }
   757 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   758 // (sets live_in and live_out for each block)
   760 void LinearScan::compute_global_live_sets() {
   761   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   763   int  num_blocks = block_count();
   764   bool change_occurred;
   765   bool change_occurred_in_block;
   766   int  iteration_count = 0;
   767   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   769   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   770   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   771   // Exception handlers must be processed because not all live values are
   772   // present in the state array, e.g. because of global value numbering
   773   do {
   774     change_occurred = false;
   776     // iterate all blocks in reverse order
   777     for (int i = num_blocks - 1; i >= 0; i--) {
   778       BlockBegin* block = block_at(i);
   780       change_occurred_in_block = false;
   782       // live_out(block) is the union of live_in(sux), for successors sux of block
   783       int n = block->number_of_sux();
   784       int e = block->number_of_exception_handlers();
   785       if (n + e > 0) {
   786         // block has successors
   787         if (n > 0) {
   788           live_out.set_from(block->sux_at(0)->live_in());
   789           for (int j = 1; j < n; j++) {
   790             live_out.set_union(block->sux_at(j)->live_in());
   791           }
   792         } else {
   793           live_out.clear();
   794         }
   795         for (int j = 0; j < e; j++) {
   796           live_out.set_union(block->exception_handler_at(j)->live_in());
   797         }
   799         if (!block->live_out().is_same(live_out)) {
   800           // A change occurred.  Swap the old and new live out sets to avoid copying.
   801           BitMap temp = block->live_out();
   802           block->set_live_out(live_out);
   803           live_out = temp;
   805           change_occurred = true;
   806           change_occurred_in_block = true;
   807         }
   808       }
   810       if (iteration_count == 0 || change_occurred_in_block) {
   811         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   812         // note: live_in has to be computed only in first iteration or if live_out has changed!
   813         BitMap live_in = block->live_in();
   814         live_in.set_from(block->live_out());
   815         live_in.set_difference(block->live_kill());
   816         live_in.set_union(block->live_gen());
   817       }
   819 #ifndef PRODUCT
   820       if (TraceLinearScanLevel >= 4) {
   821         char c = ' ';
   822         if (iteration_count == 0 || change_occurred_in_block) {
   823           c = '*';
   824         }
   825         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   826         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   827       }
   828 #endif
   829     }
   830     iteration_count++;
   832     if (change_occurred && iteration_count > 50) {
   833       BAILOUT("too many iterations in compute_global_live_sets");
   834     }
   835   } while (change_occurred);
   838 #ifdef ASSERT
   839   // check that fixed intervals are not live at block boundaries
   840   // (live set must be empty at fixed intervals)
   841   for (int i = 0; i < num_blocks; i++) {
   842     BlockBegin* block = block_at(i);
   843     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   844       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   845       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   846       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   847     }
   848   }
   849 #endif
   851   // check that the live_in set of the first block is empty
   852   BitMap live_in_args(ir()->start()->live_in().size());
   853   live_in_args.clear();
   854   if (!ir()->start()->live_in().is_same(live_in_args)) {
   855 #ifdef ASSERT
   856     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   857     tty->print_cr("affected registers:");
   858     print_bitmap(ir()->start()->live_in());
   860     // print some additional information to simplify debugging
   861     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   862       if (ir()->start()->live_in().at(i)) {
   863         Instruction* instr = gen()->instruction_for_vreg(i);
   864         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   866         for (int j = 0; j < num_blocks; j++) {
   867           BlockBegin* block = block_at(j);
   868           if (block->live_gen().at(i)) {
   869             tty->print_cr("  used in block B%d", block->block_id());
   870           }
   871           if (block->live_kill().at(i)) {
   872             tty->print_cr("  defined in block B%d", block->block_id());
   873           }
   874         }
   875       }
   876     }
   878 #endif
   879     // when this fails, virtual registers are used before they are defined.
   880     assert(false, "live_in set of first block must be empty");
   881     // bailout of if this occurs in product mode.
   882     bailout("live_in set of first block not empty");
   883   }
   884 }
   887 // ********** Phase 4: build intervals
   888 // (fills the list _intervals)
   890 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   891   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   892   LIR_Opr opr = value->operand();
   893   Constant* con = value->as_Constant();
   895   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   896     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   897     add_use(opr, from, to, use_kind);
   898   }
   899 }
   902 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   903   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   904   assert(opr->is_register(), "should not be called otherwise");
   906   if (opr->is_virtual_register()) {
   907     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   908     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   910   } else {
   911     int reg = reg_num(opr);
   912     if (is_processed_reg_num(reg)) {
   913       add_def(reg, def_pos, use_kind, opr->type_register());
   914     }
   915     reg = reg_numHi(opr);
   916     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   917       add_def(reg, def_pos, use_kind, opr->type_register());
   918     }
   919   }
   920 }
   922 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   923   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   924   assert(opr->is_register(), "should not be called otherwise");
   926   if (opr->is_virtual_register()) {
   927     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   928     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   930   } else {
   931     int reg = reg_num(opr);
   932     if (is_processed_reg_num(reg)) {
   933       add_use(reg, from, to, use_kind, opr->type_register());
   934     }
   935     reg = reg_numHi(opr);
   936     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   937       add_use(reg, from, to, use_kind, opr->type_register());
   938     }
   939   }
   940 }
   942 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   943   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   944   assert(opr->is_register(), "should not be called otherwise");
   946   if (opr->is_virtual_register()) {
   947     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   948     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   950   } else {
   951     int reg = reg_num(opr);
   952     if (is_processed_reg_num(reg)) {
   953       add_temp(reg, temp_pos, use_kind, opr->type_register());
   954     }
   955     reg = reg_numHi(opr);
   956     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   957       add_temp(reg, temp_pos, use_kind, opr->type_register());
   958     }
   959   }
   960 }
   963 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   964   Interval* interval = interval_at(reg_num);
   965   if (interval != NULL) {
   966     assert(interval->reg_num() == reg_num, "wrong interval");
   968     if (type != T_ILLEGAL) {
   969       interval->set_type(type);
   970     }
   972     Range* r = interval->first();
   973     if (r->from() <= def_pos) {
   974       // Update the starting point (when a range is first created for a use, its
   975       // start is the beginning of the current block until a def is encountered.)
   976       r->set_from(def_pos);
   977       interval->add_use_pos(def_pos, use_kind);
   979     } else {
   980       // Dead value - make vacuous interval
   981       // also add use_kind for dead intervals
   982       interval->add_range(def_pos, def_pos + 1);
   983       interval->add_use_pos(def_pos, use_kind);
   984       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   985     }
   987   } else {
   988     // Dead value - make vacuous interval
   989     // also add use_kind for dead intervals
   990     interval = create_interval(reg_num);
   991     if (type != T_ILLEGAL) {
   992       interval->set_type(type);
   993     }
   995     interval->add_range(def_pos, def_pos + 1);
   996     interval->add_use_pos(def_pos, use_kind);
   997     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   998   }
  1000   change_spill_definition_pos(interval, def_pos);
  1001   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
  1002         // detection of method-parameters and roundfp-results
  1003         // TODO: move this directly to position where use-kind is computed
  1004     interval->set_spill_state(startInMemory);
  1008 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
  1009   Interval* interval = interval_at(reg_num);
  1010   if (interval == NULL) {
  1011     interval = create_interval(reg_num);
  1013   assert(interval->reg_num() == reg_num, "wrong interval");
  1015   if (type != T_ILLEGAL) {
  1016     interval->set_type(type);
  1019   interval->add_range(from, to);
  1020   interval->add_use_pos(to, use_kind);
  1023 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
  1024   Interval* interval = interval_at(reg_num);
  1025   if (interval == NULL) {
  1026     interval = create_interval(reg_num);
  1028   assert(interval->reg_num() == reg_num, "wrong interval");
  1030   if (type != T_ILLEGAL) {
  1031     interval->set_type(type);
  1034   interval->add_range(temp_pos, temp_pos + 1);
  1035   interval->add_use_pos(temp_pos, use_kind);
  1039 // the results of this functions are used for optimizing spilling and reloading
  1040 // if the functions return shouldHaveRegister and the interval is spilled,
  1041 // it is not reloaded to a register.
  1042 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1043   if (op->code() == lir_move) {
  1044     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1045     LIR_Op1* move = (LIR_Op1*)op;
  1046     LIR_Opr res = move->result_opr();
  1047     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1049     if (result_in_memory) {
  1050       // Begin of an interval with must_start_in_memory set.
  1051       // This interval will always get a stack slot first, so return noUse.
  1052       return noUse;
  1054     } else if (move->in_opr()->is_stack()) {
  1055       // method argument (condition must be equal to handle_method_arguments)
  1056       return noUse;
  1058     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1059       // Move from register to register
  1060       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1061         // special handling of phi-function moves inside osr-entry blocks
  1062         // input operand must have a register instead of output operand (leads to better register allocation)
  1063         return shouldHaveRegister;
  1068   if (opr->is_virtual() &&
  1069       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1070     // result is a stack-slot, so prevent immediate reloading
  1071     return noUse;
  1074   // all other operands require a register
  1075   return mustHaveRegister;
  1078 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1079   if (op->code() == lir_move) {
  1080     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1081     LIR_Op1* move = (LIR_Op1*)op;
  1082     LIR_Opr res = move->result_opr();
  1083     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1085     if (result_in_memory) {
  1086       // Move to an interval with must_start_in_memory set.
  1087       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1088       return mustHaveRegister;
  1090     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1091       // Move from register to register
  1092       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1093         // special handling of phi-function moves inside osr-entry blocks
  1094         // input operand must have a register instead of output operand (leads to better register allocation)
  1095         return mustHaveRegister;
  1098       // The input operand is not forced to a register (moves from stack to register are allowed),
  1099       // but it is faster if the input operand is in a register
  1100       return shouldHaveRegister;
  1105 #ifdef X86
  1106   if (op->code() == lir_cmove) {
  1107     // conditional moves can handle stack operands
  1108     assert(op->result_opr()->is_register(), "result must always be in a register");
  1109     return shouldHaveRegister;
  1112   // optimizations for second input operand of arithmehtic operations on Intel
  1113   // this operand is allowed to be on the stack in some cases
  1114   BasicType opr_type = opr->type_register();
  1115   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1116     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1117       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1118       switch (op->code()) {
  1119         case lir_cmp:
  1120         case lir_add:
  1121         case lir_sub:
  1122         case lir_mul:
  1123         case lir_div:
  1125           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1126           LIR_Op2* op2 = (LIR_Op2*)op;
  1127           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1128             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1129             return shouldHaveRegister;
  1133     } else {
  1134       // FPU stack float instruction
  1135       switch (op->code()) {
  1136         case lir_add:
  1137         case lir_sub:
  1138         case lir_mul:
  1139         case lir_div:
  1141           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1142           LIR_Op2* op2 = (LIR_Op2*)op;
  1143           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1144             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1145             return shouldHaveRegister;
  1150     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
  1151     // Since 64bit logical operations do not current support operands on stack, we have to make sure
  1152     // T_OBJECT doesn't get spilled along with T_LONG.
  1153   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
  1154     // integer instruction (note: long operands must always be in register)
  1155     switch (op->code()) {
  1156       case lir_cmp:
  1157       case lir_add:
  1158       case lir_sub:
  1159       case lir_logic_and:
  1160       case lir_logic_or:
  1161       case lir_logic_xor:
  1163         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1164         LIR_Op2* op2 = (LIR_Op2*)op;
  1165         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1166           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1167           return shouldHaveRegister;
  1172 #endif // X86
  1174   // all other operands require a register
  1175   return mustHaveRegister;
  1179 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1180   // special handling for method arguments (moves from stack to virtual register):
  1181   // the interval gets no register assigned, but the stack slot.
  1182   // it is split before the first use by the register allocator.
  1184   if (op->code() == lir_move) {
  1185     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1186     LIR_Op1* move = (LIR_Op1*)op;
  1188     if (move->in_opr()->is_stack()) {
  1189 #ifdef ASSERT
  1190       int arg_size = compilation()->method()->arg_size();
  1191       LIR_Opr o = move->in_opr();
  1192       if (o->is_single_stack()) {
  1193         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1194       } else if (o->is_double_stack()) {
  1195         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1196       } else {
  1197         ShouldNotReachHere();
  1200       assert(move->id() > 0, "invalid id");
  1201       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1202       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1204       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1205 #endif
  1207       Interval* interval = interval_at(reg_num(move->result_opr()));
  1209       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1210       interval->set_canonical_spill_slot(stack_slot);
  1211       interval->assign_reg(stack_slot);
  1216 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1217   // special handling for doubleword move from memory to register:
  1218   // in this case the registers of the input address and the result
  1219   // registers must not overlap -> add a temp range for the input registers
  1220   if (op->code() == lir_move) {
  1221     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1222     LIR_Op1* move = (LIR_Op1*)op;
  1224     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1225       LIR_Address* address = move->in_opr()->as_address_ptr();
  1226       if (address != NULL) {
  1227         if (address->base()->is_valid()) {
  1228           add_temp(address->base(), op->id(), noUse);
  1230         if (address->index()->is_valid()) {
  1231           add_temp(address->index(), op->id(), noUse);
  1238 void LinearScan::add_register_hints(LIR_Op* op) {
  1239   switch (op->code()) {
  1240     case lir_move:      // fall through
  1241     case lir_convert: {
  1242       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1243       LIR_Op1* move = (LIR_Op1*)op;
  1245       LIR_Opr move_from = move->in_opr();
  1246       LIR_Opr move_to = move->result_opr();
  1248       if (move_to->is_register() && move_from->is_register()) {
  1249         Interval* from = interval_at(reg_num(move_from));
  1250         Interval* to = interval_at(reg_num(move_to));
  1251         if (from != NULL && to != NULL) {
  1252           to->set_register_hint(from);
  1253           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1256       break;
  1258     case lir_cmove: {
  1259       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1260       LIR_Op2* cmove = (LIR_Op2*)op;
  1262       LIR_Opr move_from = cmove->in_opr1();
  1263       LIR_Opr move_to = cmove->result_opr();
  1265       if (move_to->is_register() && move_from->is_register()) {
  1266         Interval* from = interval_at(reg_num(move_from));
  1267         Interval* to = interval_at(reg_num(move_to));
  1268         if (from != NULL && to != NULL) {
  1269           to->set_register_hint(from);
  1270           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1273       break;
  1279 void LinearScan::build_intervals() {
  1280   TIME_LINEAR_SCAN(timer_build_intervals);
  1282   // initialize interval list with expected number of intervals
  1283   // (32 is added to have some space for split children without having to resize the list)
  1284   _intervals = IntervalList(num_virtual_regs() + 32);
  1285   // initialize all slots that are used by build_intervals
  1286   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1288   // create a list with all caller-save registers (cpu, fpu, xmm)
  1289   // when an instruction is a call, a temp range is created for all these registers
  1290   int num_caller_save_registers = 0;
  1291   int caller_save_registers[LinearScan::nof_regs];
  1293   int i;
  1294   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
  1295     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1296     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1297     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1298     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1301   // temp ranges for fpu registers are only created when the method has
  1302   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1303   // perfomed and so the temp ranges would be useless
  1304   if (has_fpu_registers()) {
  1305 #ifdef X86
  1306     if (UseSSE < 2) {
  1307 #endif
  1308       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1309         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1310         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1311         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1312         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1314 #ifdef X86
  1316     if (UseSSE > 0) {
  1317       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1318         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1319         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1320         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1321         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1324 #endif
  1326   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1329   LIR_OpVisitState visitor;
  1331   // iterate all blocks in reverse order
  1332   for (i = block_count() - 1; i >= 0; i--) {
  1333     BlockBegin* block = block_at(i);
  1334     LIR_OpList* instructions = block->lir()->instructions_list();
  1335     int         block_from =   block->first_lir_instruction_id();
  1336     int         block_to =     block->last_lir_instruction_id();
  1338     assert(block_from == instructions->at(0)->id(), "must be");
  1339     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1341     // Update intervals for registers live at the end of this block;
  1342     BitMap live = block->live_out();
  1343     int size = (int)live.size();
  1344     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
  1345       assert(live.at(number), "should not stop here otherwise");
  1346       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1347       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1349       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1351       // add special use positions for loop-end blocks when the
  1352       // interval is used anywhere inside this loop.  It's possible
  1353       // that the block was part of a non-natural loop, so it might
  1354       // have an invalid loop index.
  1355       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1356           block->loop_index() != -1 &&
  1357           is_interval_in_loop(number, block->loop_index())) {
  1358         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1362     // iterate all instructions of the block in reverse order.
  1363     // skip the first instruction because it is always a label
  1364     // definitions of intervals are processed before uses
  1365     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1366     for (int j = instructions->length() - 1; j >= 1; j--) {
  1367       LIR_Op* op = instructions->at(j);
  1368       int op_id = op->id();
  1370       // visit operation to collect all operands
  1371       visitor.visit(op);
  1373       // add a temp range for each register if operation destroys caller-save registers
  1374       if (visitor.has_call()) {
  1375         for (int k = 0; k < num_caller_save_registers; k++) {
  1376           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1378         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1381       // Add any platform dependent temps
  1382       pd_add_temps(op);
  1384       // visit definitions (output and temp operands)
  1385       int k, n;
  1386       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1387       for (k = 0; k < n; k++) {
  1388         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1389         assert(opr->is_register(), "visitor should only return register operands");
  1390         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1393       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1394       for (k = 0; k < n; k++) {
  1395         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1396         assert(opr->is_register(), "visitor should only return register operands");
  1397         add_temp(opr, op_id, mustHaveRegister);
  1400       // visit uses (input operands)
  1401       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1402       for (k = 0; k < n; k++) {
  1403         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1404         assert(opr->is_register(), "visitor should only return register operands");
  1405         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1408       // Add uses of live locals from interpreter's point of view for proper
  1409       // debug information generation
  1410       // Treat these operands as temp values (if the life range is extended
  1411       // to a call site, the value would be in a register at the call otherwise)
  1412       n = visitor.info_count();
  1413       for (k = 0; k < n; k++) {
  1414         CodeEmitInfo* info = visitor.info_at(k);
  1415         ValueStack* stack = info->stack();
  1416         for_each_state_value(stack, value,
  1417           add_use(value, block_from, op_id + 1, noUse);
  1418         );
  1421       // special steps for some instructions (especially moves)
  1422       handle_method_arguments(op);
  1423       handle_doubleword_moves(op);
  1424       add_register_hints(op);
  1426     } // end of instruction iteration
  1427   } // end of block iteration
  1430   // add the range [0, 1[ to all fixed intervals
  1431   // -> the register allocator need not handle unhandled fixed intervals
  1432   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1433     Interval* interval = interval_at(n);
  1434     if (interval != NULL) {
  1435       interval->add_range(0, 1);
  1441 // ********** Phase 5: actual register allocation
  1443 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1444   if (*a != NULL) {
  1445     if (*b != NULL) {
  1446       return (*a)->from() - (*b)->from();
  1447     } else {
  1448       return -1;
  1450   } else {
  1451     if (*b != NULL) {
  1452       return 1;
  1453     } else {
  1454       return 0;
  1459 #ifndef PRODUCT
  1460 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1461   int from = -1;
  1462   int i, j;
  1463   for (i = 0; i < intervals->length(); i ++) {
  1464     Interval* it = intervals->at(i);
  1465     if (it != NULL) {
  1466       if (from > it->from()) {
  1467         assert(false, "");
  1468         return false;
  1470       from = it->from();
  1474   // check in both directions if sorted list and unsorted list contain same intervals
  1475   for (i = 0; i < interval_count(); i++) {
  1476     if (interval_at(i) != NULL) {
  1477       int num_found = 0;
  1478       for (j = 0; j < intervals->length(); j++) {
  1479         if (interval_at(i) == intervals->at(j)) {
  1480           num_found++;
  1483       assert(num_found == 1, "lists do not contain same intervals");
  1486   for (j = 0; j < intervals->length(); j++) {
  1487     int num_found = 0;
  1488     for (i = 0; i < interval_count(); i++) {
  1489       if (interval_at(i) == intervals->at(j)) {
  1490         num_found++;
  1493     assert(num_found == 1, "lists do not contain same intervals");
  1496   return true;
  1498 #endif
  1500 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1501   if (*prev != NULL) {
  1502     (*prev)->set_next(interval);
  1503   } else {
  1504     *first = interval;
  1506   *prev = interval;
  1509 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1510   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1512   *list1 = *list2 = Interval::end();
  1514   Interval* list1_prev = NULL;
  1515   Interval* list2_prev = NULL;
  1516   Interval* v;
  1518   const int n = _sorted_intervals->length();
  1519   for (int i = 0; i < n; i++) {
  1520     v = _sorted_intervals->at(i);
  1521     if (v == NULL) continue;
  1523     if (is_list1(v)) {
  1524       add_to_list(list1, &list1_prev, v);
  1525     } else if (is_list2 == NULL || is_list2(v)) {
  1526       add_to_list(list2, &list2_prev, v);
  1530   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1531   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1533   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1534   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1538 void LinearScan::sort_intervals_before_allocation() {
  1539   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1541   if (_needs_full_resort) {
  1542     // There is no known reason why this should occur but just in case...
  1543     assert(false, "should never occur");
  1544     // Re-sort existing interval list because an Interval::from() has changed
  1545     _sorted_intervals->sort(interval_cmp);
  1546     _needs_full_resort = false;
  1549   IntervalList* unsorted_list = &_intervals;
  1550   int unsorted_len = unsorted_list->length();
  1551   int sorted_len = 0;
  1552   int unsorted_idx;
  1553   int sorted_idx = 0;
  1554   int sorted_from_max = -1;
  1556   // calc number of items for sorted list (sorted list must not contain NULL values)
  1557   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1558     if (unsorted_list->at(unsorted_idx) != NULL) {
  1559       sorted_len++;
  1562   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1564   // special sorting algorithm: the original interval-list is almost sorted,
  1565   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1566   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1567     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1569     if (cur_interval != NULL) {
  1570       int cur_from = cur_interval->from();
  1572       if (sorted_from_max <= cur_from) {
  1573         sorted_list->at_put(sorted_idx++, cur_interval);
  1574         sorted_from_max = cur_interval->from();
  1575       } else {
  1576         // the asumption that the intervals are already sorted failed,
  1577         // so this interval must be sorted in manually
  1578         int j;
  1579         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1580           sorted_list->at_put(j + 1, sorted_list->at(j));
  1582         sorted_list->at_put(j + 1, cur_interval);
  1583         sorted_idx++;
  1587   _sorted_intervals = sorted_list;
  1588   assert(is_sorted(_sorted_intervals), "intervals unsorted");
  1591 void LinearScan::sort_intervals_after_allocation() {
  1592   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1594   if (_needs_full_resort) {
  1595     // Re-sort existing interval list because an Interval::from() has changed
  1596     _sorted_intervals->sort(interval_cmp);
  1597     _needs_full_resort = false;
  1600   IntervalArray* old_list      = _sorted_intervals;
  1601   IntervalList*  new_list      = _new_intervals_from_allocation;
  1602   int old_len = old_list->length();
  1603   int new_len = new_list->length();
  1605   if (new_len == 0) {
  1606     // no intervals have been added during allocation, so sorted list is already up to date
  1607     assert(is_sorted(_sorted_intervals), "intervals unsorted");
  1608     return;
  1611   // conventional sort-algorithm for new intervals
  1612   new_list->sort(interval_cmp);
  1614   // merge old and new list (both already sorted) into one combined list
  1615   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1616   int old_idx = 0;
  1617   int new_idx = 0;
  1619   while (old_idx + new_idx < old_len + new_len) {
  1620     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1621       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1622       old_idx++;
  1623     } else {
  1624       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1625       new_idx++;
  1629   _sorted_intervals = combined_list;
  1630   assert(is_sorted(_sorted_intervals), "intervals unsorted");
  1634 void LinearScan::allocate_registers() {
  1635   TIME_LINEAR_SCAN(timer_allocate_registers);
  1637   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1638   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1640   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1641   if (has_fpu_registers()) {
  1642     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1643 #ifdef ASSERT
  1644   } else {
  1645     // fpu register allocation is omitted because no virtual fpu registers are present
  1646     // just check this again...
  1647     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1648     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1649 #endif
  1652   // allocate cpu registers
  1653   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1654   cpu_lsw.walk();
  1655   cpu_lsw.finish_allocation();
  1657   if (has_fpu_registers()) {
  1658     // allocate fpu registers
  1659     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1660     fpu_lsw.walk();
  1661     fpu_lsw.finish_allocation();
  1666 // ********** Phase 6: resolve data flow
  1667 // (insert moves at edges between blocks if intervals have been split)
  1669 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1670 // instead of returning NULL
  1671 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1672   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1673   if (result != NULL) {
  1674     return result;
  1677   assert(false, "must find an interval, but do a clean bailout in product mode");
  1678   result = new Interval(LIR_OprDesc::vreg_base);
  1679   result->assign_reg(0);
  1680   result->set_type(T_INT);
  1681   BAILOUT_("LinearScan: interval is NULL", result);
  1685 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1686   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1687   assert(interval_at(reg_num) != NULL, "no interval found");
  1689   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1692 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1693   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1694   assert(interval_at(reg_num) != NULL, "no interval found");
  1696   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1699 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1700   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1701   assert(interval_at(reg_num) != NULL, "no interval found");
  1703   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1707 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1708   DEBUG_ONLY(move_resolver.check_empty());
  1710   const int num_regs = num_virtual_regs();
  1711   const int size = live_set_size();
  1712   const BitMap live_at_edge = to_block->live_in();
  1714   // visit all registers where the live_at_edge bit is set
  1715   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  1716     assert(r < num_regs, "live information set for not exisiting interval");
  1717     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1719     Interval* from_interval = interval_at_block_end(from_block, r);
  1720     Interval* to_interval = interval_at_block_begin(to_block, r);
  1722     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1723       // need to insert move instruction
  1724       move_resolver.add_mapping(from_interval, to_interval);
  1730 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1731   if (from_block->number_of_sux() <= 1) {
  1732     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1734     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1735     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1736     if (branch != NULL) {
  1737       // insert moves before branch
  1738       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1739       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1740     } else {
  1741       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1744   } else {
  1745     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1746 #ifdef ASSERT
  1747     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1749     // because the number of predecessor edges matches the number of
  1750     // successor edges, blocks which are reached by switch statements
  1751     // may have be more than one predecessor but it will be guaranteed
  1752     // that all predecessors will be the same.
  1753     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1754       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1756 #endif
  1758     move_resolver.set_insert_position(to_block->lir(), 0);
  1763 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1764 void LinearScan::resolve_data_flow() {
  1765   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1767   int num_blocks = block_count();
  1768   MoveResolver move_resolver(this);
  1769   BitMap block_completed(num_blocks);  block_completed.clear();
  1770   BitMap already_resolved(num_blocks); already_resolved.clear();
  1772   int i;
  1773   for (i = 0; i < num_blocks; i++) {
  1774     BlockBegin* block = block_at(i);
  1776     // check if block has only one predecessor and only one successor
  1777     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1778       LIR_OpList* instructions = block->lir()->instructions_list();
  1779       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1780       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1781       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1783       // check if block is empty (only label and branch)
  1784       if (instructions->length() == 2) {
  1785         BlockBegin* pred = block->pred_at(0);
  1786         BlockBegin* sux = block->sux_at(0);
  1788         // prevent optimization of two consecutive blocks
  1789         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1790           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1791           block_completed.set_bit(block->linear_scan_number());
  1793           // directly resolve between pred and sux (without looking at the empty block between)
  1794           resolve_collect_mappings(pred, sux, move_resolver);
  1795           if (move_resolver.has_mappings()) {
  1796             move_resolver.set_insert_position(block->lir(), 0);
  1797             move_resolver.resolve_and_append_moves();
  1805   for (i = 0; i < num_blocks; i++) {
  1806     if (!block_completed.at(i)) {
  1807       BlockBegin* from_block = block_at(i);
  1808       already_resolved.set_from(block_completed);
  1810       int num_sux = from_block->number_of_sux();
  1811       for (int s = 0; s < num_sux; s++) {
  1812         BlockBegin* to_block = from_block->sux_at(s);
  1814         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1815         if (!already_resolved.at(to_block->linear_scan_number())) {
  1816           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1817           already_resolved.set_bit(to_block->linear_scan_number());
  1819           // collect all intervals that have been split between from_block and to_block
  1820           resolve_collect_mappings(from_block, to_block, move_resolver);
  1821           if (move_resolver.has_mappings()) {
  1822             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1823             move_resolver.resolve_and_append_moves();
  1832 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1833   if (interval_at(reg_num) == NULL) {
  1834     // if a phi function is never used, no interval is created -> ignore this
  1835     return;
  1838   Interval* interval = interval_at_block_begin(block, reg_num);
  1839   int reg = interval->assigned_reg();
  1840   int regHi = interval->assigned_regHi();
  1842   if ((reg < nof_regs && interval->always_in_memory()) ||
  1843       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1844     // the interval is split to get a short range that is located on the stack
  1845     // in the following two cases:
  1846     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1847     //   this is an optimization for exception handling that reduces the number of moves that
  1848     //   are necessary for resolving the states when an exception uses this exception handler
  1849     // * the interval would be on the fpu stack at the begin of the exception handler
  1850     //   this is not allowed because of the complicated fpu stack handling on Intel
  1852     // range that will be spilled to memory
  1853     int from_op_id = block->first_lir_instruction_id();
  1854     int to_op_id = from_op_id + 1;  // short live range of length 1
  1855     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1856            "no split allowed between exception entry and first instruction");
  1858     if (interval->from() != from_op_id) {
  1859       // the part before from_op_id is unchanged
  1860       interval = interval->split(from_op_id);
  1861       interval->assign_reg(reg, regHi);
  1862       append_interval(interval);
  1863     } else {
  1864       _needs_full_resort = true;
  1866     assert(interval->from() == from_op_id, "must be true now");
  1868     Interval* spilled_part = interval;
  1869     if (interval->to() != to_op_id) {
  1870       // the part after to_op_id is unchanged
  1871       spilled_part = interval->split_from_start(to_op_id);
  1872       append_interval(spilled_part);
  1873       move_resolver.add_mapping(spilled_part, interval);
  1875     assign_spill_slot(spilled_part);
  1877     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1881 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1882   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1883   DEBUG_ONLY(move_resolver.check_empty());
  1885   // visit all registers where the live_in bit is set
  1886   int size = live_set_size();
  1887   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1888     resolve_exception_entry(block, r, move_resolver);
  1891   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1892   for_each_phi_fun(block, phi,
  1893     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1894   );
  1896   if (move_resolver.has_mappings()) {
  1897     // insert moves after first instruction
  1898     move_resolver.set_insert_position(block->lir(), 0);
  1899     move_resolver.resolve_and_append_moves();
  1904 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1905   if (interval_at(reg_num) == NULL) {
  1906     // if a phi function is never used, no interval is created -> ignore this
  1907     return;
  1910   // the computation of to_interval is equal to resolve_collect_mappings,
  1911   // but from_interval is more complicated because of phi functions
  1912   BlockBegin* to_block = handler->entry_block();
  1913   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1915   if (phi != NULL) {
  1916     // phi function of the exception entry block
  1917     // no moves are created for this phi function in the LIR_Generator, so the
  1918     // interval at the throwing instruction must be searched using the operands
  1919     // of the phi function
  1920     Value from_value = phi->operand_at(handler->phi_operand());
  1922     // with phi functions it can happen that the same from_value is used in
  1923     // multiple mappings, so notify move-resolver that this is allowed
  1924     move_resolver.set_multiple_reads_allowed();
  1926     Constant* con = from_value->as_Constant();
  1927     if (con != NULL && !con->is_pinned()) {
  1928       // unpinned constants may have no register, so add mapping from constant to interval
  1929       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1930     } else {
  1931       // search split child at the throwing op_id
  1932       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1933       move_resolver.add_mapping(from_interval, to_interval);
  1936   } else {
  1937     // no phi function, so use reg_num also for from_interval
  1938     // search split child at the throwing op_id
  1939     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1940     if (from_interval != to_interval) {
  1941       // optimization to reduce number of moves: when to_interval is on stack and
  1942       // the stack slot is known to be always correct, then no move is necessary
  1943       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1944         move_resolver.add_mapping(from_interval, to_interval);
  1950 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1951   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1953   DEBUG_ONLY(move_resolver.check_empty());
  1954   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1955   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1956   assert(handler->entry_code() == NULL, "code already present");
  1958   // visit all registers where the live_in bit is set
  1959   BlockBegin* block = handler->entry_block();
  1960   int size = live_set_size();
  1961   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1962     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1965   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1966   for_each_phi_fun(block, phi,
  1967     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1968   );
  1970   if (move_resolver.has_mappings()) {
  1971     LIR_List* entry_code = new LIR_List(compilation());
  1972     move_resolver.set_insert_position(entry_code, 0);
  1973     move_resolver.resolve_and_append_moves();
  1975     entry_code->jump(handler->entry_block());
  1976     handler->set_entry_code(entry_code);
  1981 void LinearScan::resolve_exception_handlers() {
  1982   MoveResolver move_resolver(this);
  1983   LIR_OpVisitState visitor;
  1984   int num_blocks = block_count();
  1986   int i;
  1987   for (i = 0; i < num_blocks; i++) {
  1988     BlockBegin* block = block_at(i);
  1989     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1990       resolve_exception_entry(block, move_resolver);
  1994   for (i = 0; i < num_blocks; i++) {
  1995     BlockBegin* block = block_at(i);
  1996     LIR_List* ops = block->lir();
  1997     int num_ops = ops->length();
  1999     // iterate all instructions of the block. skip the first because it is always a label
  2000     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  2001     for (int j = 1; j < num_ops; j++) {
  2002       LIR_Op* op = ops->at(j);
  2003       int op_id = op->id();
  2005       if (op_id != -1 && has_info(op_id)) {
  2006         // visit operation to collect all operands
  2007         visitor.visit(op);
  2008         assert(visitor.info_count() > 0, "should not visit otherwise");
  2010         XHandlers* xhandlers = visitor.all_xhandler();
  2011         int n = xhandlers->length();
  2012         for (int k = 0; k < n; k++) {
  2013           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  2016 #ifdef ASSERT
  2017       } else {
  2018         visitor.visit(op);
  2019         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2020 #endif
  2027 // ********** Phase 7: assign register numbers back to LIR
  2028 // (includes computation of debug information and oop maps)
  2030 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  2031   VMReg reg = interval->cached_vm_reg();
  2032   if (!reg->is_valid() ) {
  2033     reg = vm_reg_for_operand(operand_for_interval(interval));
  2034     interval->set_cached_vm_reg(reg);
  2036   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  2037   return reg;
  2040 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  2041   assert(opr->is_oop(), "currently only implemented for oop operands");
  2042   return frame_map()->regname(opr);
  2046 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  2047   LIR_Opr opr = interval->cached_opr();
  2048   if (opr->is_illegal()) {
  2049     opr = calc_operand_for_interval(interval);
  2050     interval->set_cached_opr(opr);
  2053   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  2054   return opr;
  2057 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  2058   int assigned_reg = interval->assigned_reg();
  2059   BasicType type = interval->type();
  2061   if (assigned_reg >= nof_regs) {
  2062     // stack slot
  2063     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2064     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2066   } else {
  2067     // register
  2068     switch (type) {
  2069       case T_OBJECT: {
  2070         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2071         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2072         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2075       case T_ADDRESS: {
  2076         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2077         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2078         return LIR_OprFact::single_cpu_address(assigned_reg);
  2081       case T_METADATA: {
  2082         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2083         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2084         return LIR_OprFact::single_cpu_metadata(assigned_reg);
  2087 #ifdef __SOFTFP__
  2088       case T_FLOAT:  // fall through
  2089 #endif // __SOFTFP__
  2090       case T_INT: {
  2091         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2092         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2093         return LIR_OprFact::single_cpu(assigned_reg);
  2096 #ifdef __SOFTFP__
  2097       case T_DOUBLE:  // fall through
  2098 #endif // __SOFTFP__
  2099       case T_LONG: {
  2100         int assigned_regHi = interval->assigned_regHi();
  2101         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2102         assert(num_physical_regs(T_LONG) == 1 ||
  2103                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2105         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2106         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2107                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2108         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2109         if (requires_adjacent_regs(T_LONG)) {
  2110           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2113 #ifdef _LP64
  2114         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2115 #else
  2116 #if defined(SPARC) || defined(PPC)
  2117         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2118 #else
  2119         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2120 #endif // SPARC
  2121 #endif // LP64
  2124 #ifndef __SOFTFP__
  2125       case T_FLOAT: {
  2126 #ifdef X86
  2127         if (UseSSE >= 1) {
  2128           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2129           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2130           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2132 #endif
  2134         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2135         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2136         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2139       case T_DOUBLE: {
  2140 #ifdef X86
  2141         if (UseSSE >= 2) {
  2142           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2143           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2144           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2146 #endif
  2148 #ifdef SPARC
  2149         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2150         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2151         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2152         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2153 #elif defined(ARM)
  2154         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2155         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2156         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2157         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
  2158 #else
  2159         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2160         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2161         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2162 #endif
  2163         return result;
  2165 #endif // __SOFTFP__
  2167       default: {
  2168         ShouldNotReachHere();
  2169         return LIR_OprFact::illegalOpr;
  2175 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2176   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2177   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2180 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2181   assert(opr->is_virtual(), "should not call this otherwise");
  2183   Interval* interval = interval_at(opr->vreg_number());
  2184   assert(interval != NULL, "interval must exist");
  2186   if (op_id != -1) {
  2187 #ifdef ASSERT
  2188     BlockBegin* block = block_of_op_with_id(op_id);
  2189     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2190       // check if spill moves could have been appended at the end of this block, but
  2191       // before the branch instruction. So the split child information for this branch would
  2192       // be incorrect.
  2193       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2194       if (branch != NULL) {
  2195         if (block->live_out().at(opr->vreg_number())) {
  2196           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2197           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2201 #endif
  2203     // operands are not changed when an interval is split during allocation,
  2204     // so search the right interval here
  2205     interval = split_child_at_op_id(interval, op_id, mode);
  2208   LIR_Opr res = operand_for_interval(interval);
  2210 #ifdef X86
  2211   // new semantic for is_last_use: not only set on definite end of interval,
  2212   // but also before hole
  2213   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2214   // last use information is completely correct
  2215   // information is only needed for fpu stack allocation
  2216   if (res->is_fpu_register()) {
  2217     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2218       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2219       res = res->make_last_use();
  2222 #endif
  2224   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2226   return res;
  2230 #ifdef ASSERT
  2231 // some methods used to check correctness of debug information
  2233 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2234   if (values == NULL) {
  2235     return;
  2238   for (int i = 0; i < values->length(); i++) {
  2239     ScopeValue* value = values->at(i);
  2241     if (value->is_location()) {
  2242       Location location = ((LocationValue*)value)->location();
  2243       assert(location.where() == Location::on_stack, "value is in register");
  2248 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2249   if (values == NULL) {
  2250     return;
  2253   for (int i = 0; i < values->length(); i++) {
  2254     MonitorValue* value = values->at(i);
  2256     if (value->owner()->is_location()) {
  2257       Location location = ((LocationValue*)value->owner())->location();
  2258       assert(location.where() == Location::on_stack, "owner is in register");
  2260     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2264 void assert_equal(Location l1, Location l2) {
  2265   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2268 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2269   if (v1->is_location()) {
  2270     assert(v2->is_location(), "");
  2271     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2272   } else if (v1->is_constant_int()) {
  2273     assert(v2->is_constant_int(), "");
  2274     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2275   } else if (v1->is_constant_double()) {
  2276     assert(v2->is_constant_double(), "");
  2277     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2278   } else if (v1->is_constant_long()) {
  2279     assert(v2->is_constant_long(), "");
  2280     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2281   } else if (v1->is_constant_oop()) {
  2282     assert(v2->is_constant_oop(), "");
  2283     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2284   } else {
  2285     ShouldNotReachHere();
  2289 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2290   assert_equal(m1->owner(), m2->owner());
  2291   assert_equal(m1->basic_lock(), m2->basic_lock());
  2294 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2295   assert(d1->scope() == d2->scope(), "not equal");
  2296   assert(d1->bci() == d2->bci(), "not equal");
  2298   if (d1->locals() != NULL) {
  2299     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2300     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2301     for (int i = 0; i < d1->locals()->length(); i++) {
  2302       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2304   } else {
  2305     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2308   if (d1->expressions() != NULL) {
  2309     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2310     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2311     for (int i = 0; i < d1->expressions()->length(); i++) {
  2312       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2314   } else {
  2315     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2318   if (d1->monitors() != NULL) {
  2319     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2320     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2321     for (int i = 0; i < d1->monitors()->length(); i++) {
  2322       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2324   } else {
  2325     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2328   if (d1->caller() != NULL) {
  2329     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2330     assert_equal(d1->caller(), d2->caller());
  2331   } else {
  2332     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2336 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2337   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2338     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
  2339     switch (code) {
  2340       case Bytecodes::_ifnull    : // fall through
  2341       case Bytecodes::_ifnonnull : // fall through
  2342       case Bytecodes::_ifeq      : // fall through
  2343       case Bytecodes::_ifne      : // fall through
  2344       case Bytecodes::_iflt      : // fall through
  2345       case Bytecodes::_ifge      : // fall through
  2346       case Bytecodes::_ifgt      : // fall through
  2347       case Bytecodes::_ifle      : // fall through
  2348       case Bytecodes::_if_icmpeq : // fall through
  2349       case Bytecodes::_if_icmpne : // fall through
  2350       case Bytecodes::_if_icmplt : // fall through
  2351       case Bytecodes::_if_icmpge : // fall through
  2352       case Bytecodes::_if_icmpgt : // fall through
  2353       case Bytecodes::_if_icmple : // fall through
  2354       case Bytecodes::_if_acmpeq : // fall through
  2355       case Bytecodes::_if_acmpne :
  2356         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2357         break;
  2362 #endif // ASSERT
  2365 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2366   // setup lists of potential oops for walking
  2367   Interval* oop_intervals;
  2368   Interval* non_oop_intervals;
  2370   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2372   // intervals that have no oops inside need not to be processed
  2373   // to ensure a walking until the last instruction id, add a dummy interval
  2374   // with a high operation id
  2375   non_oop_intervals = new Interval(any_reg);
  2376   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2378   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2382 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2383   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2385   // walk before the current operation -> intervals that start at
  2386   // the operation (= output operands of the operation) are not
  2387   // included in the oop map
  2388   iw->walk_before(op->id());
  2390   int frame_size = frame_map()->framesize();
  2391   int arg_count = frame_map()->oop_map_arg_count();
  2392   OopMap* map = new OopMap(frame_size, arg_count);
  2394   // Iterate through active intervals
  2395   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2396     int assigned_reg = interval->assigned_reg();
  2398     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2399     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2400     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2402     // Check if this range covers the instruction. Intervals that
  2403     // start or end at the current operation are not included in the
  2404     // oop map, except in the case of patching moves.  For patching
  2405     // moves, any intervals which end at this instruction are included
  2406     // in the oop map since we may safepoint while doing the patch
  2407     // before we've consumed the inputs.
  2408     if (op->is_patching() || op->id() < interval->current_to()) {
  2410       // caller-save registers must not be included into oop-maps at calls
  2411       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2413       VMReg name = vm_reg_for_interval(interval);
  2414       set_oop(map, name);
  2416       // Spill optimization: when the stack value is guaranteed to be always correct,
  2417       // then it must be added to the oop map even if the interval is currently in a register
  2418       if (interval->always_in_memory() &&
  2419           op->id() > interval->spill_definition_pos() &&
  2420           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2421         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2422         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2423         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2425         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2430   // add oops from lock stack
  2431   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2432   int locks_count = info->stack()->total_locks_size();
  2433   for (int i = 0; i < locks_count; i++) {
  2434     set_oop(map, frame_map()->monitor_object_regname(i));
  2437   return map;
  2441 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2442   assert(visitor.info_count() > 0, "no oop map needed");
  2444   // compute oop_map only for first CodeEmitInfo
  2445   // because it is (in most cases) equal for all other infos of the same operation
  2446   CodeEmitInfo* first_info = visitor.info_at(0);
  2447   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2449   for (int i = 0; i < visitor.info_count(); i++) {
  2450     CodeEmitInfo* info = visitor.info_at(i);
  2451     OopMap* oop_map = first_oop_map;
  2453     // compute worst case interpreter size in case of a deoptimization
  2454     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
  2456     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2457       // this info has a different number of locks then the precomputed oop map
  2458       // (possible for lock and unlock instructions) -> compute oop map with
  2459       // correct lock information
  2460       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2463     if (info->_oop_map == NULL) {
  2464       info->_oop_map = oop_map;
  2465     } else {
  2466       // a CodeEmitInfo can not be shared between different LIR-instructions
  2467       // because interval splitting can occur anywhere between two instructions
  2468       // and so the oop maps must be different
  2469       // -> check if the already set oop_map is exactly the one calculated for this operation
  2470       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2476 // frequently used constants
  2477 // Allocate them with new so they are never destroyed (otherwise, a
  2478 // forced exit could destroy these objects while they are still in
  2479 // use).
  2480 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
  2481 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
  2482 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
  2483 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
  2484 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
  2485 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
  2487 void LinearScan::init_compute_debug_info() {
  2488   // cache for frequently used scope values
  2489   // (cpu registers and stack slots)
  2490   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2493 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2494   Location loc;
  2495   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2496     bailout("too large frame");
  2498   ScopeValue* object_scope_value = new LocationValue(loc);
  2500   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2501     bailout("too large frame");
  2503   return new MonitorValue(object_scope_value, loc);
  2506 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2507   Location loc;
  2508   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2509     bailout("too large frame");
  2511   return new LocationValue(loc);
  2515 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2516   assert(opr->is_constant(), "should not be called otherwise");
  2518   LIR_Const* c = opr->as_constant_ptr();
  2519   BasicType t = c->type();
  2520   switch (t) {
  2521     case T_OBJECT: {
  2522       jobject value = c->as_jobject();
  2523       if (value == NULL) {
  2524         scope_values->append(_oop_null_scope_value);
  2525       } else {
  2526         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2528       return 1;
  2531     case T_INT: // fall through
  2532     case T_FLOAT: {
  2533       int value = c->as_jint_bits();
  2534       switch (value) {
  2535         case -1: scope_values->append(_int_m1_scope_value); break;
  2536         case 0:  scope_values->append(_int_0_scope_value); break;
  2537         case 1:  scope_values->append(_int_1_scope_value); break;
  2538         case 2:  scope_values->append(_int_2_scope_value); break;
  2539         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2541       return 1;
  2544     case T_LONG: // fall through
  2545     case T_DOUBLE: {
  2546 #ifdef _LP64
  2547       scope_values->append(_int_0_scope_value);
  2548       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
  2549 #else
  2550       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2551         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2552         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2553       } else {
  2554         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2555         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2557 #endif
  2558       return 2;
  2561     case T_ADDRESS: {
  2562 #ifdef _LP64
  2563       scope_values->append(new ConstantLongValue(c->as_jint()));
  2564 #else
  2565       scope_values->append(new ConstantIntValue(c->as_jint()));
  2566 #endif
  2567       return 1;
  2570     default:
  2571       ShouldNotReachHere();
  2572       return -1;
  2576 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2577   if (opr->is_single_stack()) {
  2578     int stack_idx = opr->single_stack_ix();
  2579     bool is_oop = opr->is_oop_register();
  2580     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2582     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2583     if (sv == NULL) {
  2584       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2585       sv = location_for_name(stack_idx, loc_type);
  2586       _scope_value_cache.at_put(cache_idx, sv);
  2589     // check if cached value is correct
  2590     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2592     scope_values->append(sv);
  2593     return 1;
  2595   } else if (opr->is_single_cpu()) {
  2596     bool is_oop = opr->is_oop_register();
  2597     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2598     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
  2600     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2601     if (sv == NULL) {
  2602       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
  2603       VMReg rname = frame_map()->regname(opr);
  2604       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2605       _scope_value_cache.at_put(cache_idx, sv);
  2608     // check if cached value is correct
  2609     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
  2611     scope_values->append(sv);
  2612     return 1;
  2614 #ifdef X86
  2615   } else if (opr->is_single_xmm()) {
  2616     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2617     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2619     scope_values->append(sv);
  2620     return 1;
  2621 #endif
  2623   } else if (opr->is_single_fpu()) {
  2624 #ifdef X86
  2625     // the exact location of fpu stack values is only known
  2626     // during fpu stack allocation, so the stack allocator object
  2627     // must be present
  2628     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2629     assert(_fpu_stack_allocator != NULL, "must be present");
  2630     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2631 #endif
  2633     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2634     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2635 #ifndef __SOFTFP__
  2636 #ifndef VM_LITTLE_ENDIAN
  2637     if (! float_saved_as_double) {
  2638       // On big endian system, we may have an issue if float registers use only
  2639       // the low half of the (same) double registers.
  2640       // Both the float and the double could have the same regnr but would correspond
  2641       // to two different addresses once saved.
  2643       // get next safely (no assertion checks)
  2644       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
  2645       if (next->is_reg() &&
  2646           (next->as_FloatRegister() == rname->as_FloatRegister())) {
  2647         // the back-end does use the same numbering for the double and the float
  2648         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
  2651 #endif
  2652 #endif
  2653     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2655     scope_values->append(sv);
  2656     return 1;
  2658   } else {
  2659     // double-size operands
  2661     ScopeValue* first;
  2662     ScopeValue* second;
  2664     if (opr->is_double_stack()) {
  2665 #ifdef _LP64
  2666       Location loc1;
  2667       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
  2668       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
  2669         bailout("too large frame");
  2671       // Does this reverse on x86 vs. sparc?
  2672       first =  new LocationValue(loc1);
  2673       second = _int_0_scope_value;
  2674 #else
  2675       Location loc1, loc2;
  2676       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2677         bailout("too large frame");
  2679       first =  new LocationValue(loc1);
  2680       second = new LocationValue(loc2);
  2681 #endif // _LP64
  2683     } else if (opr->is_double_cpu()) {
  2684 #ifdef _LP64
  2685       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2686       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2687       second = _int_0_scope_value;
  2688 #else
  2689       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2690       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2692       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2693         // lo/hi and swapped relative to first and second, so swap them
  2694         VMReg tmp = rname_first;
  2695         rname_first = rname_second;
  2696         rname_second = tmp;
  2699       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2700       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2701 #endif //_LP64
  2704 #ifdef X86
  2705     } else if (opr->is_double_xmm()) {
  2706       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2707       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2708 #  ifdef _LP64
  2709       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
  2710       second = _int_0_scope_value;
  2711 #  else
  2712       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2713       // %%% This is probably a waste but we'll keep things as they were for now
  2714       if (true) {
  2715         VMReg rname_second = rname_first->next();
  2716         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2718 #  endif
  2719 #endif
  2721     } else if (opr->is_double_fpu()) {
  2722       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2723       // the double as float registers in the native ordering. On X86,
  2724       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2725       // the low-order word of the double and fpu_regnrLo + 1 is the
  2726       // name for the other half.  *first and *second must represent the
  2727       // least and most significant words, respectively.
  2729 #ifdef X86
  2730       // the exact location of fpu stack values is only known
  2731       // during fpu stack allocation, so the stack allocator object
  2732       // must be present
  2733       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2734       assert(_fpu_stack_allocator != NULL, "must be present");
  2735       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2737       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
  2738 #endif
  2739 #ifdef SPARC
  2740       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2741 #endif
  2742 #ifdef ARM
  2743       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
  2744 #endif
  2745 #ifdef PPC
  2746       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2747 #endif
  2749 #ifdef VM_LITTLE_ENDIAN
  2750       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
  2751 #else
  2752       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2753 #endif
  2755 #ifdef _LP64
  2756       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
  2757       second = _int_0_scope_value;
  2758 #else
  2759       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2760       // %%% This is probably a waste but we'll keep things as they were for now
  2761       if (true) {
  2762         VMReg rname_second = rname_first->next();
  2763         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2765 #endif
  2767     } else {
  2768       ShouldNotReachHere();
  2769       first = NULL;
  2770       second = NULL;
  2773     assert(first != NULL && second != NULL, "must be set");
  2774     // The convention the interpreter uses is that the second local
  2775     // holds the first raw word of the native double representation.
  2776     // This is actually reasonable, since locals and stack arrays
  2777     // grow downwards in all implementations.
  2778     // (If, on some machine, the interpreter's Java locals or stack
  2779     // were to grow upwards, the embedded doubles would be word-swapped.)
  2780     scope_values->append(second);
  2781     scope_values->append(first);
  2782     return 2;
  2787 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2788   if (value != NULL) {
  2789     LIR_Opr opr = value->operand();
  2790     Constant* con = value->as_Constant();
  2792     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2793     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2795     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2796       // Unpinned constants may have a virtual operand for a part of the lifetime
  2797       // or may be illegal when it was optimized away,
  2798       // so always use a constant operand
  2799       opr = LIR_OprFact::value_type(con->type());
  2801     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2803     if (opr->is_virtual()) {
  2804       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2806       BlockBegin* block = block_of_op_with_id(op_id);
  2807       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2808         // generating debug information for the last instruction of a block.
  2809         // if this instruction is a branch, spill moves are inserted before this branch
  2810         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2811         // considered in the live ranges of intervals)
  2812         // Solution: use the first op_id of the branch target block instead.
  2813         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2814           if (block->live_out().at(opr->vreg_number())) {
  2815             op_id = block->sux_at(0)->first_lir_instruction_id();
  2816             mode = LIR_OpVisitState::outputMode;
  2821       // Get current location of operand
  2822       // The operand must be live because debug information is considered when building the intervals
  2823       // if the interval is not live, color_lir_opr will cause an assertion failure
  2824       opr = color_lir_opr(opr, op_id, mode);
  2825       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2827       // Append to ScopeValue array
  2828       return append_scope_value_for_operand(opr, scope_values);
  2830     } else {
  2831       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2832       assert(opr->is_constant(), "operand must be constant");
  2834       return append_scope_value_for_constant(opr, scope_values);
  2836   } else {
  2837     // append a dummy value because real value not needed
  2838     scope_values->append(_illegal_value);
  2839     return 1;
  2844 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
  2845   IRScopeDebugInfo* caller_debug_info = NULL;
  2847   ValueStack* caller_state = cur_state->caller_state();
  2848   if (caller_state != NULL) {
  2849     // process recursively to compute outermost scope first
  2850     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
  2853   // initialize these to null.
  2854   // If we don't need deopt info or there are no locals, expressions or monitors,
  2855   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2856   GrowableArray<ScopeValue*>*   locals      = NULL;
  2857   GrowableArray<ScopeValue*>*   expressions = NULL;
  2858   GrowableArray<MonitorValue*>* monitors    = NULL;
  2860   // describe local variable values
  2861   int nof_locals = cur_state->locals_size();
  2862   if (nof_locals > 0) {
  2863     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2865     int pos = 0;
  2866     while (pos < nof_locals) {
  2867       assert(pos < cur_state->locals_size(), "why not?");
  2869       Value local = cur_state->local_at(pos);
  2870       pos += append_scope_value(op_id, local, locals);
  2872       assert(locals->length() == pos, "must match");
  2874     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2875     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2876   } else if (cur_scope->method()->max_locals() > 0) {
  2877     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
  2878     nof_locals = cur_scope->method()->max_locals();
  2879     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2880     for(int i = 0; i < nof_locals; i++) {
  2881       locals->append(_illegal_value);
  2885   // describe expression stack
  2886   int nof_stack = cur_state->stack_size();
  2887   if (nof_stack > 0) {
  2888     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2890     int pos = 0;
  2891     while (pos < nof_stack) {
  2892       Value expression = cur_state->stack_at_inc(pos);
  2893       append_scope_value(op_id, expression, expressions);
  2895       assert(expressions->length() == pos, "must match");
  2897     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
  2900   // describe monitors
  2901   int nof_locks = cur_state->locks_size();
  2902   if (nof_locks > 0) {
  2903     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
  2904     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2905     for (int i = 0; i < nof_locks; i++) {
  2906       monitors->append(location_for_monitor_index(lock_offset + i));
  2910   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
  2914 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2915   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2917   IRScope* innermost_scope = info->scope();
  2918   ValueStack* innermost_state = info->stack();
  2920   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2922   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
  2924   if (info->_scope_debug_info == NULL) {
  2925     // compute debug information
  2926     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
  2927   } else {
  2928     // debug information already set. Check that it is correct from the current point of view
  2929     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
  2934 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2935   LIR_OpVisitState visitor;
  2936   int num_inst = instructions->length();
  2937   bool has_dead = false;
  2939   for (int j = 0; j < num_inst; j++) {
  2940     LIR_Op* op = instructions->at(j);
  2941     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2942       has_dead = true;
  2943       continue;
  2945     int op_id = op->id();
  2947     // visit instruction to get list of operands
  2948     visitor.visit(op);
  2950     // iterate all modes of the visitor and process all virtual operands
  2951     for_each_visitor_mode(mode) {
  2952       int n = visitor.opr_count(mode);
  2953       for (int k = 0; k < n; k++) {
  2954         LIR_Opr opr = visitor.opr_at(mode, k);
  2955         if (opr->is_virtual_register()) {
  2956           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2961     if (visitor.info_count() > 0) {
  2962       // exception handling
  2963       if (compilation()->has_exception_handlers()) {
  2964         XHandlers* xhandlers = visitor.all_xhandler();
  2965         int n = xhandlers->length();
  2966         for (int k = 0; k < n; k++) {
  2967           XHandler* handler = xhandlers->handler_at(k);
  2968           if (handler->entry_code() != NULL) {
  2969             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2972       } else {
  2973         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2976       // compute oop map
  2977       assert(iw != NULL, "needed for compute_oop_map");
  2978       compute_oop_map(iw, visitor, op);
  2980       // compute debug information
  2981       if (!use_fpu_stack_allocation()) {
  2982         // compute debug information if fpu stack allocation is not needed.
  2983         // when fpu stack allocation is needed, the debug information can not
  2984         // be computed here because the exact location of fpu operands is not known
  2985         // -> debug information is created inside the fpu stack allocator
  2986         int n = visitor.info_count();
  2987         for (int k = 0; k < n; k++) {
  2988           compute_debug_info(visitor.info_at(k), op_id);
  2993 #ifdef ASSERT
  2994     // make sure we haven't made the op invalid.
  2995     op->verify();
  2996 #endif
  2998     // remove useless moves
  2999     if (op->code() == lir_move) {
  3000       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  3001       LIR_Op1* move = (LIR_Op1*)op;
  3002       LIR_Opr src = move->in_opr();
  3003       LIR_Opr dst = move->result_opr();
  3004       if (dst == src ||
  3005           !dst->is_pointer() && !src->is_pointer() &&
  3006           src->is_same_register(dst)) {
  3007         instructions->at_put(j, NULL);
  3008         has_dead = true;
  3013   if (has_dead) {
  3014     // iterate all instructions of the block and remove all null-values.
  3015     int insert_point = 0;
  3016     for (int j = 0; j < num_inst; j++) {
  3017       LIR_Op* op = instructions->at(j);
  3018       if (op != NULL) {
  3019         if (insert_point != j) {
  3020           instructions->at_put(insert_point, op);
  3022         insert_point++;
  3025     instructions->truncate(insert_point);
  3029 void LinearScan::assign_reg_num() {
  3030   TIME_LINEAR_SCAN(timer_assign_reg_num);
  3032   init_compute_debug_info();
  3033   IntervalWalker* iw = init_compute_oop_maps();
  3035   int num_blocks = block_count();
  3036   for (int i = 0; i < num_blocks; i++) {
  3037     BlockBegin* block = block_at(i);
  3038     assign_reg_num(block->lir()->instructions_list(), iw);
  3043 void LinearScan::do_linear_scan() {
  3044   NOT_PRODUCT(_total_timer.begin_method());
  3046   number_instructions();
  3048   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  3050   compute_local_live_sets();
  3051   compute_global_live_sets();
  3052   CHECK_BAILOUT();
  3054   build_intervals();
  3055   CHECK_BAILOUT();
  3056   sort_intervals_before_allocation();
  3058   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  3059   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  3061   allocate_registers();
  3062   CHECK_BAILOUT();
  3064   resolve_data_flow();
  3065   if (compilation()->has_exception_handlers()) {
  3066     resolve_exception_handlers();
  3068   // fill in number of spill slots into frame_map
  3069   propagate_spill_slots();
  3070   CHECK_BAILOUT();
  3072   NOT_PRODUCT(print_intervals("After Register Allocation"));
  3073   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  3075   sort_intervals_after_allocation();
  3077   DEBUG_ONLY(verify());
  3079   eliminate_spill_moves();
  3080   assign_reg_num();
  3081   CHECK_BAILOUT();
  3083   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  3084   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  3086   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  3088     if (use_fpu_stack_allocation()) {
  3089       allocate_fpu_stack(); // Only has effect on Intel
  3090       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  3094   { TIME_LINEAR_SCAN(timer_optimize_lir);
  3096     EdgeMoveOptimizer::optimize(ir()->code());
  3097     ControlFlowOptimizer::optimize(ir()->code());
  3098     // check that cfg is still correct after optimizations
  3099     ir()->verify();
  3102   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  3103   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  3104   NOT_PRODUCT(_total_timer.end_method(this));
  3108 // ********** Printing functions
  3110 #ifndef PRODUCT
  3112 void LinearScan::print_timers(double total) {
  3113   _total_timer.print(total);
  3116 void LinearScan::print_statistics() {
  3117   _stat_before_alloc.print("before allocation");
  3118   _stat_after_asign.print("after assignment of register");
  3119   _stat_final.print("after optimization");
  3122 void LinearScan::print_bitmap(BitMap& b) {
  3123   for (unsigned int i = 0; i < b.size(); i++) {
  3124     if (b.at(i)) tty->print("%d ", i);
  3126   tty->cr();
  3129 void LinearScan::print_intervals(const char* label) {
  3130   if (TraceLinearScanLevel >= 1) {
  3131     int i;
  3132     tty->cr();
  3133     tty->print_cr("%s", label);
  3135     for (i = 0; i < interval_count(); i++) {
  3136       Interval* interval = interval_at(i);
  3137       if (interval != NULL) {
  3138         interval->print();
  3142     tty->cr();
  3143     tty->print_cr("--- Basic Blocks ---");
  3144     for (i = 0; i < block_count(); i++) {
  3145       BlockBegin* block = block_at(i);
  3146       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3148     tty->cr();
  3149     tty->cr();
  3152   if (PrintCFGToFile) {
  3153     CFGPrinter::print_intervals(&_intervals, label);
  3157 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3158   if (TraceLinearScanLevel >= level) {
  3159     tty->cr();
  3160     tty->print_cr("%s", label);
  3161     print_LIR(ir()->linear_scan_order());
  3162     tty->cr();
  3165   if (level == 1 && PrintCFGToFile) {
  3166     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3170 #endif //PRODUCT
  3173 // ********** verification functions for allocation
  3174 // (check that all intervals have a correct register and that no registers are overwritten)
  3175 #ifdef ASSERT
  3177 void LinearScan::verify() {
  3178   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3179   verify_intervals();
  3181   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3182   verify_no_oops_in_fixed_intervals();
  3184   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3185   verify_constants();
  3187   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3188   verify_registers();
  3190   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3193 void LinearScan::verify_intervals() {
  3194   int len = interval_count();
  3195   bool has_error = false;
  3197   for (int i = 0; i < len; i++) {
  3198     Interval* i1 = interval_at(i);
  3199     if (i1 == NULL) continue;
  3201     i1->check_split_children();
  3203     if (i1->reg_num() != i) {
  3204       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3205       has_error = true;
  3208     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3209       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3210       has_error = true;
  3213     if (i1->assigned_reg() == any_reg) {
  3214       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3215       has_error = true;
  3218     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3219       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3220       has_error = true;
  3223     if (!is_processed_reg_num(i1->assigned_reg())) {
  3224       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3225       has_error = true;
  3228     if (i1->first() == Range::end()) {
  3229       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3230       has_error = true;
  3233     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3234       if (r->from() >= r->to()) {
  3235         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3236         has_error = true;
  3240     for (int j = i + 1; j < len; j++) {
  3241       Interval* i2 = interval_at(j);
  3242       if (i2 == NULL) continue;
  3244       // special intervals that are created in MoveResolver
  3245       // -> ignore them because the range information has no meaning there
  3246       if (i1->from() == 1 && i1->to() == 2) continue;
  3247       if (i2->from() == 1 && i2->to() == 2) continue;
  3249       int r1 = i1->assigned_reg();
  3250       int r1Hi = i1->assigned_regHi();
  3251       int r2 = i2->assigned_reg();
  3252       int r2Hi = i2->assigned_regHi();
  3253       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3254         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3255         i1->print(); tty->cr();
  3256         i2->print(); tty->cr();
  3257         has_error = true;
  3262   assert(has_error == false, "register allocation invalid");
  3266 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3267   Interval* fixed_intervals;
  3268   Interval* other_intervals;
  3269   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
  3271   // to ensure a walking until the last instruction id, add a dummy interval
  3272   // with a high operation id
  3273   other_intervals = new Interval(any_reg);
  3274   other_intervals->add_range(max_jint - 2, max_jint - 1);
  3275   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
  3277   LIR_OpVisitState visitor;
  3278   for (int i = 0; i < block_count(); i++) {
  3279     BlockBegin* block = block_at(i);
  3281     LIR_OpList* instructions = block->lir()->instructions_list();
  3283     for (int j = 0; j < instructions->length(); j++) {
  3284       LIR_Op* op = instructions->at(j);
  3285       int op_id = op->id();
  3287       visitor.visit(op);
  3289       if (visitor.info_count() > 0) {
  3290         iw->walk_before(op->id());
  3291         bool check_live = true;
  3292         if (op->code() == lir_move) {
  3293           LIR_Op1* move = (LIR_Op1*)op;
  3294           check_live = (move->patch_code() == lir_patch_none);
  3296         LIR_OpBranch* branch = op->as_OpBranch();
  3297         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
  3298           // Don't bother checking the stub in this case since the
  3299           // exception stub will never return to normal control flow.
  3300           check_live = false;
  3303         // Make sure none of the fixed registers is live across an
  3304         // oopmap since we can't handle that correctly.
  3305         if (check_live) {
  3306           for (Interval* interval = iw->active_first(fixedKind);
  3307                interval != Interval::end();
  3308                interval = interval->next()) {
  3309             if (interval->current_to() > op->id() + 1) {
  3310               // This interval is live out of this op so make sure
  3311               // that this interval represents some value that's
  3312               // referenced by this op either as an input or output.
  3313               bool ok = false;
  3314               for_each_visitor_mode(mode) {
  3315                 int n = visitor.opr_count(mode);
  3316                 for (int k = 0; k < n; k++) {
  3317                   LIR_Opr opr = visitor.opr_at(mode, k);
  3318                   if (opr->is_fixed_cpu()) {
  3319                     if (interval_at(reg_num(opr)) == interval) {
  3320                       ok = true;
  3321                       break;
  3323                     int hi = reg_numHi(opr);
  3324                     if (hi != -1 && interval_at(hi) == interval) {
  3325                       ok = true;
  3326                       break;
  3331               assert(ok, "fixed intervals should never be live across an oopmap point");
  3337       // oop-maps at calls do not contain registers, so check is not needed
  3338       if (!visitor.has_call()) {
  3340         for_each_visitor_mode(mode) {
  3341           int n = visitor.opr_count(mode);
  3342           for (int k = 0; k < n; k++) {
  3343             LIR_Opr opr = visitor.opr_at(mode, k);
  3345             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3346               // operand is a non-virtual cpu register and contains an oop
  3347               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3349               Interval* interval = interval_at(reg_num(opr));
  3350               assert(interval != NULL, "no interval");
  3352               if (mode == LIR_OpVisitState::inputMode) {
  3353                 if (interval->to() >= op_id + 1) {
  3354                   assert(interval->to() < op_id + 2 ||
  3355                          interval->has_hole_between(op_id, op_id + 2),
  3356                          "oop input operand live after instruction");
  3358               } else if (mode == LIR_OpVisitState::outputMode) {
  3359                 if (interval->from() <= op_id - 1) {
  3360                   assert(interval->has_hole_between(op_id - 1, op_id),
  3361                          "oop input operand live after instruction");
  3373 void LinearScan::verify_constants() {
  3374   int num_regs = num_virtual_regs();
  3375   int size = live_set_size();
  3376   int num_blocks = block_count();
  3378   for (int i = 0; i < num_blocks; i++) {
  3379     BlockBegin* block = block_at(i);
  3380     BitMap live_at_edge = block->live_in();
  3382     // visit all registers where the live_at_edge bit is set
  3383     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  3384       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3386       Value value = gen()->instruction_for_vreg(r);
  3388       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3389       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3390       assert(value->operand()->vreg_number() == r, "register number must match");
  3391       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3397 class RegisterVerifier: public StackObj {
  3398  private:
  3399   LinearScan*   _allocator;
  3400   BlockList     _work_list;      // all blocks that must be processed
  3401   IntervalsList _saved_states;   // saved information of previous check
  3403   // simplified access to methods of LinearScan
  3404   Compilation*  compilation() const              { return _allocator->compilation(); }
  3405   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3406   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3408   // currently, only registers are processed
  3409   int           state_size()                     { return LinearScan::nof_regs; }
  3411   // accessors
  3412   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3413   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3414   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3416   // helper functions
  3417   IntervalList* copy(IntervalList* input_state);
  3418   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3419   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3421   void process_block(BlockBegin* block);
  3422   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3423   void process_successor(BlockBegin* block, IntervalList* input_state);
  3424   void process_operations(LIR_List* ops, IntervalList* input_state);
  3426  public:
  3427   RegisterVerifier(LinearScan* allocator)
  3428     : _allocator(allocator)
  3429     , _work_list(16)
  3430     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3431   { }
  3433   void verify(BlockBegin* start);
  3434 };
  3437 // entry function from LinearScan that starts the verification
  3438 void LinearScan::verify_registers() {
  3439   RegisterVerifier verifier(this);
  3440   verifier.verify(block_at(0));
  3444 void RegisterVerifier::verify(BlockBegin* start) {
  3445   // setup input registers (method arguments) for first block
  3446   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3447   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3448   for (int n = 0; n < args->length(); n++) {
  3449     LIR_Opr opr = args->at(n);
  3450     if (opr->is_register()) {
  3451       Interval* interval = interval_at(reg_num(opr));
  3453       if (interval->assigned_reg() < state_size()) {
  3454         input_state->at_put(interval->assigned_reg(), interval);
  3456       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3457         input_state->at_put(interval->assigned_regHi(), interval);
  3462   set_state_for_block(start, input_state);
  3463   add_to_work_list(start);
  3465   // main loop for verification
  3466   do {
  3467     BlockBegin* block = _work_list.at(0);
  3468     _work_list.remove_at(0);
  3470     process_block(block);
  3471   } while (!_work_list.is_empty());
  3474 void RegisterVerifier::process_block(BlockBegin* block) {
  3475   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3477   // must copy state because it is modified
  3478   IntervalList* input_state = copy(state_for_block(block));
  3480   if (TraceLinearScanLevel >= 4) {
  3481     tty->print_cr("Input-State of intervals:");
  3482     tty->print("    ");
  3483     for (int i = 0; i < state_size(); i++) {
  3484       if (input_state->at(i) != NULL) {
  3485         tty->print(" %4d", input_state->at(i)->reg_num());
  3486       } else {
  3487         tty->print("   __");
  3490     tty->cr();
  3491     tty->cr();
  3494   // process all operations of the block
  3495   process_operations(block->lir(), input_state);
  3497   // iterate all successors
  3498   for (int i = 0; i < block->number_of_sux(); i++) {
  3499     process_successor(block->sux_at(i), input_state);
  3503 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3504   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3506   // must copy state because it is modified
  3507   input_state = copy(input_state);
  3509   if (xhandler->entry_code() != NULL) {
  3510     process_operations(xhandler->entry_code(), input_state);
  3512   process_successor(xhandler->entry_block(), input_state);
  3515 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3516   IntervalList* saved_state = state_for_block(block);
  3518   if (saved_state != NULL) {
  3519     // this block was already processed before.
  3520     // check if new input_state is consistent with saved_state
  3522     bool saved_state_correct = true;
  3523     for (int i = 0; i < state_size(); i++) {
  3524       if (input_state->at(i) != saved_state->at(i)) {
  3525         // current input_state and previous saved_state assume a different
  3526         // interval in this register -> assume that this register is invalid
  3527         if (saved_state->at(i) != NULL) {
  3528           // invalidate old calculation only if it assumed that
  3529           // register was valid. when the register was already invalid,
  3530           // then the old calculation was correct.
  3531           saved_state_correct = false;
  3532           saved_state->at_put(i, NULL);
  3534           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3539     if (saved_state_correct) {
  3540       // already processed block with correct input_state
  3541       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3542     } else {
  3543       // must re-visit this block
  3544       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3545       add_to_work_list(block);
  3548   } else {
  3549     // block was not processed before, so set initial input_state
  3550     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3552     set_state_for_block(block, copy(input_state));
  3553     add_to_work_list(block);
  3558 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3559   IntervalList* copy_state = new IntervalList(input_state->length());
  3560   copy_state->push_all(input_state);
  3561   return copy_state;
  3564 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3565   if (reg != LinearScan::any_reg && reg < state_size()) {
  3566     if (interval != NULL) {
  3567       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3568     } else if (input_state->at(reg) != NULL) {
  3569       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3572     input_state->at_put(reg, interval);
  3576 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3577   if (reg != LinearScan::any_reg && reg < state_size()) {
  3578     if (input_state->at(reg) != interval) {
  3579       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3580       return true;
  3583   return false;
  3586 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3587   // visit all instructions of the block
  3588   LIR_OpVisitState visitor;
  3589   bool has_error = false;
  3591   for (int i = 0; i < ops->length(); i++) {
  3592     LIR_Op* op = ops->at(i);
  3593     visitor.visit(op);
  3595     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3597     // check if input operands are correct
  3598     int j;
  3599     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3600     for (j = 0; j < n; j++) {
  3601       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3602       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3603         Interval* interval = interval_at(reg_num(opr));
  3604         if (op->id() != -1) {
  3605           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3608         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3609         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3611         // When an operand is marked with is_last_use, then the fpu stack allocator
  3612         // removes the register from the fpu stack -> the register contains no value
  3613         if (opr->is_last_use()) {
  3614           state_put(input_state, interval->assigned_reg(),   NULL);
  3615           state_put(input_state, interval->assigned_regHi(), NULL);
  3620     // invalidate all caller save registers at calls
  3621     if (visitor.has_call()) {
  3622       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
  3623         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3625       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3626         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3629 #ifdef X86
  3630       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3631         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3633 #endif
  3636     // process xhandler before output and temp operands
  3637     XHandlers* xhandlers = visitor.all_xhandler();
  3638     n = xhandlers->length();
  3639     for (int k = 0; k < n; k++) {
  3640       process_xhandler(xhandlers->handler_at(k), input_state);
  3643     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3644     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3645     for (j = 0; j < n; j++) {
  3646       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3647       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3648         Interval* interval = interval_at(reg_num(opr));
  3649         if (op->id() != -1) {
  3650           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3653         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3654         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3658     // set output operands
  3659     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3660     for (j = 0; j < n; j++) {
  3661       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3662       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3663         Interval* interval = interval_at(reg_num(opr));
  3664         if (op->id() != -1) {
  3665           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3668         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3669         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3673   assert(has_error == false, "Error in register allocation");
  3676 #endif // ASSERT
  3680 // **** Implementation of MoveResolver ******************************
  3682 MoveResolver::MoveResolver(LinearScan* allocator) :
  3683   _allocator(allocator),
  3684   _multiple_reads_allowed(false),
  3685   _mapping_from(8),
  3686   _mapping_from_opr(8),
  3687   _mapping_to(8),
  3688   _insert_list(NULL),
  3689   _insert_idx(-1),
  3690   _insertion_buffer()
  3692   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3693     _register_blocked[i] = 0;
  3695   DEBUG_ONLY(check_empty());
  3699 #ifdef ASSERT
  3701 void MoveResolver::check_empty() {
  3702   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3703   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3704     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3706   assert(_multiple_reads_allowed == false, "must have default value");
  3709 void MoveResolver::verify_before_resolve() {
  3710   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3711   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3712   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3714   int i, j;
  3715   if (!_multiple_reads_allowed) {
  3716     for (i = 0; i < _mapping_from.length(); i++) {
  3717       for (j = i + 1; j < _mapping_from.length(); j++) {
  3718         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3723   for (i = 0; i < _mapping_to.length(); i++) {
  3724     for (j = i + 1; j < _mapping_to.length(); j++) {
  3725       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3730   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3731   used_regs.clear();
  3732   if (!_multiple_reads_allowed) {
  3733     for (i = 0; i < _mapping_from.length(); i++) {
  3734       Interval* it = _mapping_from.at(i);
  3735       if (it != NULL) {
  3736         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3737         used_regs.set_bit(it->assigned_reg());
  3739         if (it->assigned_regHi() != LinearScan::any_reg) {
  3740           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3741           used_regs.set_bit(it->assigned_regHi());
  3747   used_regs.clear();
  3748   for (i = 0; i < _mapping_to.length(); i++) {
  3749     Interval* it = _mapping_to.at(i);
  3750     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3751     used_regs.set_bit(it->assigned_reg());
  3753     if (it->assigned_regHi() != LinearScan::any_reg) {
  3754       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3755       used_regs.set_bit(it->assigned_regHi());
  3759   used_regs.clear();
  3760   for (i = 0; i < _mapping_from.length(); i++) {
  3761     Interval* it = _mapping_from.at(i);
  3762     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3763       used_regs.set_bit(it->assigned_reg());
  3766   for (i = 0; i < _mapping_to.length(); i++) {
  3767     Interval* it = _mapping_to.at(i);
  3768     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3772 #endif // ASSERT
  3775 // mark assigned_reg and assigned_regHi of the interval as blocked
  3776 void MoveResolver::block_registers(Interval* it) {
  3777   int reg = it->assigned_reg();
  3778   if (reg < LinearScan::nof_regs) {
  3779     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3780     set_register_blocked(reg, 1);
  3782   reg = it->assigned_regHi();
  3783   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3784     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3785     set_register_blocked(reg, 1);
  3789 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3790 void MoveResolver::unblock_registers(Interval* it) {
  3791   int reg = it->assigned_reg();
  3792   if (reg < LinearScan::nof_regs) {
  3793     assert(register_blocked(reg) > 0, "register already marked as unused");
  3794     set_register_blocked(reg, -1);
  3796   reg = it->assigned_regHi();
  3797   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3798     assert(register_blocked(reg) > 0, "register already marked as unused");
  3799     set_register_blocked(reg, -1);
  3803 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3804 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3805   int from_reg = -1;
  3806   int from_regHi = -1;
  3807   if (from != NULL) {
  3808     from_reg = from->assigned_reg();
  3809     from_regHi = from->assigned_regHi();
  3812   int reg = to->assigned_reg();
  3813   if (reg < LinearScan::nof_regs) {
  3814     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3815       return false;
  3818   reg = to->assigned_regHi();
  3819   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3820     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3821       return false;
  3825   return true;
  3829 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3830   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3831   _insertion_buffer.init(list);
  3834 void MoveResolver::append_insertion_buffer() {
  3835   if (_insertion_buffer.initialized()) {
  3836     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3838   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3840   _insert_list = NULL;
  3841   _insert_idx = -1;
  3844 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3845   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3846   assert(from_interval->type() == to_interval->type(), "move between different types");
  3847   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3848   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3850   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3851   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3853   if (!_multiple_reads_allowed) {
  3854     // the last_use flag is an optimization for FPU stack allocation. When the same
  3855     // input interval is used in more than one move, then it is too difficult to determine
  3856     // if this move is really the last use.
  3857     from_opr = from_opr->make_last_use();
  3859   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3861   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3864 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3865   assert(from_opr->type() == to_interval->type(), "move between different types");
  3866   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3867   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3869   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3870   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3872   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3876 void MoveResolver::resolve_mappings() {
  3877   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3878   DEBUG_ONLY(verify_before_resolve());
  3880   // Block all registers that are used as input operands of a move.
  3881   // When a register is blocked, no move to this register is emitted.
  3882   // This is necessary for detecting cycles in moves.
  3883   int i;
  3884   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3885     Interval* from_interval = _mapping_from.at(i);
  3886     if (from_interval != NULL) {
  3887       block_registers(from_interval);
  3891   int spill_candidate = -1;
  3892   while (_mapping_from.length() > 0) {
  3893     bool processed_interval = false;
  3895     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3896       Interval* from_interval = _mapping_from.at(i);
  3897       Interval* to_interval = _mapping_to.at(i);
  3899       if (save_to_process_move(from_interval, to_interval)) {
  3900         // this inverval can be processed because target is free
  3901         if (from_interval != NULL) {
  3902           insert_move(from_interval, to_interval);
  3903           unblock_registers(from_interval);
  3904         } else {
  3905           insert_move(_mapping_from_opr.at(i), to_interval);
  3907         _mapping_from.remove_at(i);
  3908         _mapping_from_opr.remove_at(i);
  3909         _mapping_to.remove_at(i);
  3911         processed_interval = true;
  3912       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3913         // this interval cannot be processed now because target is not free
  3914         // it starts in a register, so it is a possible candidate for spilling
  3915         spill_candidate = i;
  3919     if (!processed_interval) {
  3920       // no move could be processed because there is a cycle in the move list
  3921       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3922       assert(spill_candidate != -1, "no interval in register for spilling found");
  3924       // create a new spill interval and assign a stack slot to it
  3925       Interval* from_interval = _mapping_from.at(spill_candidate);
  3926       Interval* spill_interval = new Interval(-1);
  3927       spill_interval->set_type(from_interval->type());
  3929       // add a dummy range because real position is difficult to calculate
  3930       // Note: this range is a special case when the integrity of the allocation is checked
  3931       spill_interval->add_range(1, 2);
  3933       //       do not allocate a new spill slot for temporary interval, but
  3934       //       use spill slot assigned to from_interval. Otherwise moves from
  3935       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3936       int spill_slot = from_interval->canonical_spill_slot();
  3937       if (spill_slot < 0) {
  3938         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3939         from_interval->set_canonical_spill_slot(spill_slot);
  3941       spill_interval->assign_reg(spill_slot);
  3942       allocator()->append_interval(spill_interval);
  3944       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3946       // insert a move from register to stack and update the mapping
  3947       insert_move(from_interval, spill_interval);
  3948       _mapping_from.at_put(spill_candidate, spill_interval);
  3949       unblock_registers(from_interval);
  3953   // reset to default value
  3954   _multiple_reads_allowed = false;
  3956   // check that all intervals have been processed
  3957   DEBUG_ONLY(check_empty());
  3961 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3962   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3963   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3965   create_insertion_buffer(insert_list);
  3966   _insert_list = insert_list;
  3967   _insert_idx = insert_idx;
  3970 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3971   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3973   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3974     // insert position changed -> resolve current mappings
  3975     resolve_mappings();
  3978   if (insert_list != _insert_list) {
  3979     // block changed -> append insertion_buffer because it is
  3980     // bound to a specific block and create a new insertion_buffer
  3981     append_insertion_buffer();
  3982     create_insertion_buffer(insert_list);
  3985   _insert_list = insert_list;
  3986   _insert_idx = insert_idx;
  3989 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3990   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3992   _mapping_from.append(from_interval);
  3993   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3994   _mapping_to.append(to_interval);
  3998 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3999   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  4000   assert(from_opr->is_constant(), "only for constants");
  4002   _mapping_from.append(NULL);
  4003   _mapping_from_opr.append(from_opr);
  4004   _mapping_to.append(to_interval);
  4007 void MoveResolver::resolve_and_append_moves() {
  4008   if (has_mappings()) {
  4009     resolve_mappings();
  4011   append_insertion_buffer();
  4016 // **** Implementation of Range *************************************
  4018 Range::Range(int from, int to, Range* next) :
  4019   _from(from),
  4020   _to(to),
  4021   _next(next)
  4025 // initialize sentinel
  4026 Range* Range::_end = NULL;
  4027 void Range::initialize(Arena* arena) {
  4028   _end = new (arena) Range(max_jint, max_jint, NULL);
  4031 int Range::intersects_at(Range* r2) const {
  4032   const Range* r1 = this;
  4034   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  4035   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  4037   do {
  4038     if (r1->from() < r2->from()) {
  4039       if (r1->to() <= r2->from()) {
  4040         r1 = r1->next(); if (r1 == _end) return -1;
  4041       } else {
  4042         return r2->from();
  4044     } else if (r2->from() < r1->from()) {
  4045       if (r2->to() <= r1->from()) {
  4046         r2 = r2->next(); if (r2 == _end) return -1;
  4047       } else {
  4048         return r1->from();
  4050     } else { // r1->from() == r2->from()
  4051       if (r1->from() == r1->to()) {
  4052         r1 = r1->next(); if (r1 == _end) return -1;
  4053       } else if (r2->from() == r2->to()) {
  4054         r2 = r2->next(); if (r2 == _end) return -1;
  4055       } else {
  4056         return r1->from();
  4059   } while (true);
  4062 #ifndef PRODUCT
  4063 void Range::print(outputStream* out) const {
  4064   out->print("[%d, %d[ ", _from, _to);
  4066 #endif
  4070 // **** Implementation of Interval **********************************
  4072 // initialize sentinel
  4073 Interval* Interval::_end = NULL;
  4074 void Interval::initialize(Arena* arena) {
  4075   Range::initialize(arena);
  4076   _end = new (arena) Interval(-1);
  4079 Interval::Interval(int reg_num) :
  4080   _reg_num(reg_num),
  4081   _type(T_ILLEGAL),
  4082   _first(Range::end()),
  4083   _use_pos_and_kinds(12),
  4084   _current(Range::end()),
  4085   _next(_end),
  4086   _state(invalidState),
  4087   _assigned_reg(LinearScan::any_reg),
  4088   _assigned_regHi(LinearScan::any_reg),
  4089   _cached_to(-1),
  4090   _cached_opr(LIR_OprFact::illegalOpr),
  4091   _cached_vm_reg(VMRegImpl::Bad()),
  4092   _split_children(0),
  4093   _canonical_spill_slot(-1),
  4094   _insert_move_when_activated(false),
  4095   _register_hint(NULL),
  4096   _spill_state(noDefinitionFound),
  4097   _spill_definition_pos(-1)
  4099   _split_parent = this;
  4100   _current_split_child = this;
  4103 int Interval::calc_to() {
  4104   assert(_first != Range::end(), "interval has no range");
  4106   Range* r = _first;
  4107   while (r->next() != Range::end()) {
  4108     r = r->next();
  4110   return r->to();
  4114 #ifdef ASSERT
  4115 // consistency check of split-children
  4116 void Interval::check_split_children() {
  4117   if (_split_children.length() > 0) {
  4118     assert(is_split_parent(), "only split parents can have children");
  4120     for (int i = 0; i < _split_children.length(); i++) {
  4121       Interval* i1 = _split_children.at(i);
  4123       assert(i1->split_parent() == this, "not a split child of this interval");
  4124       assert(i1->type() == type(), "must be equal for all split children");
  4125       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  4127       for (int j = i + 1; j < _split_children.length(); j++) {
  4128         Interval* i2 = _split_children.at(j);
  4130         assert(i1->reg_num() != i2->reg_num(), "same register number");
  4132         if (i1->from() < i2->from()) {
  4133           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  4134         } else {
  4135           assert(i2->from() < i1->from(), "intervals start at same op_id");
  4136           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  4142 #endif // ASSERT
  4144 Interval* Interval::register_hint(bool search_split_child) const {
  4145   if (!search_split_child) {
  4146     return _register_hint;
  4149   if (_register_hint != NULL) {
  4150     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  4152     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  4153       return _register_hint;
  4155     } else if (_register_hint->_split_children.length() > 0) {
  4156       // search the first split child that has a register assigned
  4157       int len = _register_hint->_split_children.length();
  4158       for (int i = 0; i < len; i++) {
  4159         Interval* cur = _register_hint->_split_children.at(i);
  4161         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  4162           return cur;
  4168   // no hint interval found that has a register assigned
  4169   return NULL;
  4173 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  4174   assert(is_split_parent(), "can only be called for split parents");
  4175   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4177   Interval* result;
  4178   if (_split_children.length() == 0) {
  4179     result = this;
  4180   } else {
  4181     result = NULL;
  4182     int len = _split_children.length();
  4184     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  4185     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  4187     int i;
  4188     for (i = 0; i < len; i++) {
  4189       Interval* cur = _split_children.at(i);
  4190       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4191         if (i > 0) {
  4192           // exchange current split child to start of list (faster access for next call)
  4193           _split_children.at_put(i, _split_children.at(0));
  4194           _split_children.at_put(0, cur);
  4197         // interval found
  4198         result = cur;
  4199         break;
  4203 #ifdef ASSERT
  4204     for (i = 0; i < len; i++) {
  4205       Interval* tmp = _split_children.at(i);
  4206       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4207         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4208         result->print();
  4209         tmp->print();
  4210         assert(false, "two valid result intervals found");
  4213 #endif
  4216   assert(result != NULL, "no matching interval found");
  4217   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4219   return result;
  4223 // returns the last split child that ends before the given op_id
  4224 Interval* Interval::split_child_before_op_id(int op_id) {
  4225   assert(op_id >= 0, "invalid op_id");
  4227   Interval* parent = split_parent();
  4228   Interval* result = NULL;
  4230   int len = parent->_split_children.length();
  4231   assert(len > 0, "no split children available");
  4233   for (int i = len - 1; i >= 0; i--) {
  4234     Interval* cur = parent->_split_children.at(i);
  4235     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4236       result = cur;
  4240   assert(result != NULL, "no split child found");
  4241   return result;
  4245 // checks if op_id is covered by any split child
  4246 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4247   assert(is_split_parent(), "can only be called for split parents");
  4248   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4250   if (_split_children.length() == 0) {
  4251     // simple case if interval was not split
  4252     return covers(op_id, mode);
  4254   } else {
  4255     // extended case: check all split children
  4256     int len = _split_children.length();
  4257     for (int i = 0; i < len; i++) {
  4258       Interval* cur = _split_children.at(i);
  4259       if (cur->covers(op_id, mode)) {
  4260         return true;
  4263     return false;
  4268 // Note: use positions are sorted descending -> first use has highest index
  4269 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4270   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4272   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4273     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4274       return _use_pos_and_kinds.at(i);
  4277   return max_jint;
  4280 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4281   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4283   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4284     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4285       return _use_pos_and_kinds.at(i);
  4288   return max_jint;
  4291 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4292   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4294   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4295     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4296       return _use_pos_and_kinds.at(i);
  4299   return max_jint;
  4302 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4303   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4305   int prev = 0;
  4306   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4307     if (_use_pos_and_kinds.at(i) > from) {
  4308       return prev;
  4310     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4311       prev = _use_pos_and_kinds.at(i);
  4314   return prev;
  4317 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4318   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4320   // do not add use positions for precolored intervals because
  4321   // they are never used
  4322   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4323 #ifdef ASSERT
  4324     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4325     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4326       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4327       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4328       if (i > 0) {
  4329         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4332 #endif
  4334     // Note: add_use is called in descending order, so list gets sorted
  4335     //       automatically by just appending new use positions
  4336     int len = _use_pos_and_kinds.length();
  4337     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4338       _use_pos_and_kinds.append(pos);
  4339       _use_pos_and_kinds.append(use_kind);
  4340     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4341       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4342       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4347 void Interval::add_range(int from, int to) {
  4348   assert(from < to, "invalid range");
  4349   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4350   assert(from <= first()->to(), "not inserting at begin of interval");
  4352   if (first()->from() <= to) {
  4353     // join intersecting ranges
  4354     first()->set_from(MIN2(from, first()->from()));
  4355     first()->set_to  (MAX2(to,   first()->to()));
  4356   } else {
  4357     // insert new range
  4358     _first = new Range(from, to, first());
  4362 Interval* Interval::new_split_child() {
  4363   // allocate new interval
  4364   Interval* result = new Interval(-1);
  4365   result->set_type(type());
  4367   Interval* parent = split_parent();
  4368   result->_split_parent = parent;
  4369   result->set_register_hint(parent);
  4371   // insert new interval in children-list of parent
  4372   if (parent->_split_children.length() == 0) {
  4373     assert(is_split_parent(), "list must be initialized at first split");
  4375     parent->_split_children = IntervalList(4);
  4376     parent->_split_children.append(this);
  4378   parent->_split_children.append(result);
  4380   return result;
  4383 // split this interval at the specified position and return
  4384 // the remainder as a new interval.
  4385 //
  4386 // when an interval is split, a bi-directional link is established between the original interval
  4387 // (the split parent) and the intervals that are split off this interval (the split children)
  4388 // When a split child is split again, the new created interval is also a direct child
  4389 // of the original parent (there is no tree of split children stored, but a flat list)
  4390 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4391 //
  4392 // Note: The new interval has no valid reg_num
  4393 Interval* Interval::split(int split_pos) {
  4394   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4396   // allocate new interval
  4397   Interval* result = new_split_child();
  4399   // split the ranges
  4400   Range* prev = NULL;
  4401   Range* cur = _first;
  4402   while (cur != Range::end() && cur->to() <= split_pos) {
  4403     prev = cur;
  4404     cur = cur->next();
  4406   assert(cur != Range::end(), "split interval after end of last range");
  4408   if (cur->from() < split_pos) {
  4409     result->_first = new Range(split_pos, cur->to(), cur->next());
  4410     cur->set_to(split_pos);
  4411     cur->set_next(Range::end());
  4413   } else {
  4414     assert(prev != NULL, "split before start of first range");
  4415     result->_first = cur;
  4416     prev->set_next(Range::end());
  4418   result->_current = result->_first;
  4419   _cached_to = -1; // clear cached value
  4421   // split list of use positions
  4422   int total_len = _use_pos_and_kinds.length();
  4423   int start_idx = total_len - 2;
  4424   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4425     start_idx -= 2;
  4428   intStack new_use_pos_and_kinds(total_len - start_idx);
  4429   int i;
  4430   for (i = start_idx + 2; i < total_len; i++) {
  4431     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4434   _use_pos_and_kinds.truncate(start_idx + 2);
  4435   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4436   _use_pos_and_kinds = new_use_pos_and_kinds;
  4438 #ifdef ASSERT
  4439   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4440   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4441   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4443   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4444     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4445     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4447   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4448     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4449     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4451 #endif
  4453   return result;
  4456 // split this interval at the specified position and return
  4457 // the head as a new interval (the original interval is the tail)
  4458 //
  4459 // Currently, only the first range can be split, and the new interval
  4460 // must not have split positions
  4461 Interval* Interval::split_from_start(int split_pos) {
  4462   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4463   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4464   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4465   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4467   // allocate new interval
  4468   Interval* result = new_split_child();
  4470   // the new created interval has only one range (checked by assertion above),
  4471   // so the splitting of the ranges is very simple
  4472   result->add_range(_first->from(), split_pos);
  4474   if (split_pos == _first->to()) {
  4475     assert(_first->next() != Range::end(), "must not be at end");
  4476     _first = _first->next();
  4477   } else {
  4478     _first->set_from(split_pos);
  4481   return result;
  4485 // returns true if the op_id is inside the interval
  4486 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4487   Range* cur  = _first;
  4489   while (cur != Range::end() && cur->to() < op_id) {
  4490     cur = cur->next();
  4492   if (cur != Range::end()) {
  4493     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4495     if (mode == LIR_OpVisitState::outputMode) {
  4496       return cur->from() <= op_id && op_id < cur->to();
  4497     } else {
  4498       return cur->from() <= op_id && op_id <= cur->to();
  4501   return false;
  4504 // returns true if the interval has any hole between hole_from and hole_to
  4505 // (even if the hole has only the length 1)
  4506 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4507   assert(hole_from < hole_to, "check");
  4508   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4510   Range* cur  = _first;
  4511   while (cur != Range::end()) {
  4512     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4514     // hole-range starts before this range -> hole
  4515     if (hole_from < cur->from()) {
  4516       return true;
  4518     // hole-range completely inside this range -> no hole
  4519     } else if (hole_to <= cur->to()) {
  4520       return false;
  4522     // overlapping of hole-range with this range -> hole
  4523     } else if (hole_from <= cur->to()) {
  4524       return true;
  4527     cur = cur->next();
  4530   return false;
  4534 #ifndef PRODUCT
  4535 void Interval::print(outputStream* out) const {
  4536   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4537   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4539   const char* type_name;
  4540   LIR_Opr opr = LIR_OprFact::illegal();
  4541   if (reg_num() < LIR_OprDesc::vreg_base) {
  4542     type_name = "fixed";
  4543     // need a temporary operand for fixed intervals because type() cannot be called
  4544     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4545       opr = LIR_OprFact::single_cpu(assigned_reg());
  4546     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4547       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4548 #ifdef X86
  4549     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4550       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4551 #endif
  4552     } else {
  4553       ShouldNotReachHere();
  4555   } else {
  4556     type_name = type2name(type());
  4557     if (assigned_reg() != -1 &&
  4558         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
  4559       opr = LinearScan::calc_operand_for_interval(this);
  4563   out->print("%d %s ", reg_num(), type_name);
  4564   if (opr->is_valid()) {
  4565     out->print("\"");
  4566     opr->print(out);
  4567     out->print("\" ");
  4569   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4571   // print ranges
  4572   Range* cur = _first;
  4573   while (cur != Range::end()) {
  4574     cur->print(out);
  4575     cur = cur->next();
  4576     assert(cur != NULL, "range list not closed with range sentinel");
  4579   // print use positions
  4580   int prev = 0;
  4581   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4582   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4583     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4584     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4586     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4587     prev = _use_pos_and_kinds.at(i);
  4590   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4591   out->cr();
  4593 #endif
  4597 // **** Implementation of IntervalWalker ****************************
  4599 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4600  : _compilation(allocator->compilation())
  4601  , _allocator(allocator)
  4603   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4604   _unhandled_first[anyKind]   = unhandled_any_first;
  4605   _active_first[fixedKind]    = Interval::end();
  4606   _inactive_first[fixedKind]  = Interval::end();
  4607   _active_first[anyKind]      = Interval::end();
  4608   _inactive_first[anyKind]    = Interval::end();
  4609   _current_position = -1;
  4610   _current = NULL;
  4611   next_interval();
  4615 // append interval at top of list
  4616 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4617   interval->set_next(*list); *list = interval;
  4621 // append interval in order of current range from()
  4622 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4623   Interval* prev = NULL;
  4624   Interval* cur  = *list;
  4625   while (cur->current_from() < interval->current_from()) {
  4626     prev = cur; cur = cur->next();
  4628   if (prev == NULL) {
  4629     *list = interval;
  4630   } else {
  4631     prev->set_next(interval);
  4633   interval->set_next(cur);
  4636 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4637   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4639   Interval* prev = NULL;
  4640   Interval* cur  = *list;
  4641   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4642     prev = cur; cur = cur->next();
  4644   if (prev == NULL) {
  4645     *list = interval;
  4646   } else {
  4647     prev->set_next(interval);
  4649   interval->set_next(cur);
  4653 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4654   while (*list != Interval::end() && *list != i) {
  4655     list = (*list)->next_addr();
  4657   if (*list != Interval::end()) {
  4658     assert(*list == i, "check");
  4659     *list = (*list)->next();
  4660     return true;
  4661   } else {
  4662     return false;
  4666 void IntervalWalker::remove_from_list(Interval* i) {
  4667   bool deleted;
  4669   if (i->state() == activeState) {
  4670     deleted = remove_from_list(active_first_addr(anyKind), i);
  4671   } else {
  4672     assert(i->state() == inactiveState, "invalid state");
  4673     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4676   assert(deleted, "interval has not been found in list");
  4680 void IntervalWalker::walk_to(IntervalState state, int from) {
  4681   assert (state == activeState || state == inactiveState, "wrong state");
  4682   for_each_interval_kind(kind) {
  4683     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4684     Interval* next   = *prev;
  4685     while (next->current_from() <= from) {
  4686       Interval* cur = next;
  4687       next = cur->next();
  4689       bool range_has_changed = false;
  4690       while (cur->current_to() <= from) {
  4691         cur->next_range();
  4692         range_has_changed = true;
  4695       // also handle move from inactive list to active list
  4696       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4698       if (range_has_changed) {
  4699         // remove cur from list
  4700         *prev = next;
  4701         if (cur->current_at_end()) {
  4702           // move to handled state (not maintained as a list)
  4703           cur->set_state(handledState);
  4704           interval_moved(cur, kind, state, handledState);
  4705         } else if (cur->current_from() <= from){
  4706           // sort into active list
  4707           append_sorted(active_first_addr(kind), cur);
  4708           cur->set_state(activeState);
  4709           if (*prev == cur) {
  4710             assert(state == activeState, "check");
  4711             prev = cur->next_addr();
  4713           interval_moved(cur, kind, state, activeState);
  4714         } else {
  4715           // sort into inactive list
  4716           append_sorted(inactive_first_addr(kind), cur);
  4717           cur->set_state(inactiveState);
  4718           if (*prev == cur) {
  4719             assert(state == inactiveState, "check");
  4720             prev = cur->next_addr();
  4722           interval_moved(cur, kind, state, inactiveState);
  4724       } else {
  4725         prev = cur->next_addr();
  4726         continue;
  4733 void IntervalWalker::next_interval() {
  4734   IntervalKind kind;
  4735   Interval* any   = _unhandled_first[anyKind];
  4736   Interval* fixed = _unhandled_first[fixedKind];
  4738   if (any != Interval::end()) {
  4739     // intervals may start at same position -> prefer fixed interval
  4740     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4742     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4743             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4744     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4746   } else if (fixed != Interval::end()) {
  4747     kind = fixedKind;
  4748   } else {
  4749     _current = NULL; return;
  4751   _current_kind = kind;
  4752   _current = _unhandled_first[kind];
  4753   _unhandled_first[kind] = _current->next();
  4754   _current->set_next(Interval::end());
  4755   _current->rewind_range();
  4759 void IntervalWalker::walk_to(int lir_op_id) {
  4760   assert(_current_position <= lir_op_id, "can not walk backwards");
  4761   while (current() != NULL) {
  4762     bool is_active = current()->from() <= lir_op_id;
  4763     int id = is_active ? current()->from() : lir_op_id;
  4765     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4767     // set _current_position prior to call of walk_to
  4768     _current_position = id;
  4770     // call walk_to even if _current_position == id
  4771     walk_to(activeState, id);
  4772     walk_to(inactiveState, id);
  4774     if (is_active) {
  4775       current()->set_state(activeState);
  4776       if (activate_current()) {
  4777         append_sorted(active_first_addr(current_kind()), current());
  4778         interval_moved(current(), current_kind(), unhandledState, activeState);
  4781       next_interval();
  4782     } else {
  4783       return;
  4788 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4789 #ifndef PRODUCT
  4790   if (TraceLinearScanLevel >= 4) {
  4791     #define print_state(state) \
  4792     switch(state) {\
  4793       case unhandledState: tty->print("unhandled"); break;\
  4794       case activeState: tty->print("active"); break;\
  4795       case inactiveState: tty->print("inactive"); break;\
  4796       case handledState: tty->print("handled"); break;\
  4797       default: ShouldNotReachHere(); \
  4800     print_state(from); tty->print(" to "); print_state(to);
  4801     tty->fill_to(23);
  4802     interval->print();
  4804     #undef print_state
  4806 #endif
  4811 // **** Implementation of LinearScanWalker **************************
  4813 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4814   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4815   , _move_resolver(allocator)
  4817   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4818     _spill_intervals[i] = new IntervalList(2);
  4823 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4824   for (int i = _first_reg; i <= _last_reg; i++) {
  4825     _use_pos[i] = max_jint;
  4827     if (!only_process_use_pos) {
  4828       _block_pos[i] = max_jint;
  4829       _spill_intervals[i]->clear();
  4834 inline void LinearScanWalker::exclude_from_use(int reg) {
  4835   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4836   if (reg >= _first_reg && reg <= _last_reg) {
  4837     _use_pos[reg] = 0;
  4840 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4841   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4843   exclude_from_use(i->assigned_reg());
  4844   exclude_from_use(i->assigned_regHi());
  4847 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4848   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4850   if (reg >= _first_reg && reg <= _last_reg) {
  4851     if (_use_pos[reg] > use_pos) {
  4852       _use_pos[reg] = use_pos;
  4854     if (!only_process_use_pos) {
  4855       _spill_intervals[reg]->append(i);
  4859 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4860   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4861   if (use_pos != -1) {
  4862     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4863     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4867 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4868   if (reg >= _first_reg && reg <= _last_reg) {
  4869     if (_block_pos[reg] > block_pos) {
  4870       _block_pos[reg] = block_pos;
  4872     if (_use_pos[reg] > block_pos) {
  4873       _use_pos[reg] = block_pos;
  4877 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4878   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4879   if (block_pos != -1) {
  4880     set_block_pos(i->assigned_reg(), i, block_pos);
  4881     set_block_pos(i->assigned_regHi(), i, block_pos);
  4886 void LinearScanWalker::free_exclude_active_fixed() {
  4887   Interval* list = active_first(fixedKind);
  4888   while (list != Interval::end()) {
  4889     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4890     exclude_from_use(list);
  4891     list = list->next();
  4895 void LinearScanWalker::free_exclude_active_any() {
  4896   Interval* list = active_first(anyKind);
  4897   while (list != Interval::end()) {
  4898     exclude_from_use(list);
  4899     list = list->next();
  4903 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4904   Interval* list = inactive_first(fixedKind);
  4905   while (list != Interval::end()) {
  4906     if (cur->to() <= list->current_from()) {
  4907       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4908       set_use_pos(list, list->current_from(), true);
  4909     } else {
  4910       set_use_pos(list, list->current_intersects_at(cur), true);
  4912     list = list->next();
  4916 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4917   Interval* list = inactive_first(anyKind);
  4918   while (list != Interval::end()) {
  4919     set_use_pos(list, list->current_intersects_at(cur), true);
  4920     list = list->next();
  4924 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4925   Interval* list = unhandled_first(kind);
  4926   while (list != Interval::end()) {
  4927     set_use_pos(list, list->intersects_at(cur), true);
  4928     if (kind == fixedKind && cur->to() <= list->from()) {
  4929       set_use_pos(list, list->from(), true);
  4931     list = list->next();
  4935 void LinearScanWalker::spill_exclude_active_fixed() {
  4936   Interval* list = active_first(fixedKind);
  4937   while (list != Interval::end()) {
  4938     exclude_from_use(list);
  4939     list = list->next();
  4943 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4944   Interval* list = unhandled_first(fixedKind);
  4945   while (list != Interval::end()) {
  4946     set_block_pos(list, list->intersects_at(cur));
  4947     list = list->next();
  4951 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4952   Interval* list = inactive_first(fixedKind);
  4953   while (list != Interval::end()) {
  4954     if (cur->to() > list->current_from()) {
  4955       set_block_pos(list, list->current_intersects_at(cur));
  4956     } else {
  4957       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4960     list = list->next();
  4964 void LinearScanWalker::spill_collect_active_any() {
  4965   Interval* list = active_first(anyKind);
  4966   while (list != Interval::end()) {
  4967     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4968     list = list->next();
  4972 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4973   Interval* list = inactive_first(anyKind);
  4974   while (list != Interval::end()) {
  4975     if (list->current_intersects(cur)) {
  4976       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4978     list = list->next();
  4983 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4984   // output all moves here. When source and target are equal, the move is
  4985   // optimized away later in assign_reg_nums
  4987   op_id = (op_id + 1) & ~1;
  4988   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4989   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4991   // calculate index of instruction inside instruction list of current block
  4992   // the minimal index (for a block with no spill moves) can be calculated because the
  4993   // numbering of instructions is known.
  4994   // When the block already contains spill moves, the index must be increased until the
  4995   // correct index is reached.
  4996   LIR_OpList* list = op_block->lir()->instructions_list();
  4997   int index = (op_id - list->at(0)->id()) / 2;
  4998   assert(list->at(index)->id() <= op_id, "error in calculation");
  5000   while (list->at(index)->id() != op_id) {
  5001     index++;
  5002     assert(0 <= index && index < list->length(), "index out of bounds");
  5004   assert(1 <= index && index < list->length(), "index out of bounds");
  5005   assert(list->at(index)->id() == op_id, "error in calculation");
  5007   // insert new instruction before instruction at position index
  5008   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  5009   _move_resolver.add_mapping(src_it, dst_it);
  5013 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  5014   int from_block_nr = min_block->linear_scan_number();
  5015   int to_block_nr = max_block->linear_scan_number();
  5017   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  5018   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  5019   assert(from_block_nr < to_block_nr, "must cross block boundary");
  5021   // Try to split at end of max_block. If this would be after
  5022   // max_split_pos, then use the begin of max_block
  5023   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  5024   if (optimal_split_pos > max_split_pos) {
  5025     optimal_split_pos = max_block->first_lir_instruction_id();
  5028   int min_loop_depth = max_block->loop_depth();
  5029   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  5030     BlockBegin* cur = block_at(i);
  5032     if (cur->loop_depth() < min_loop_depth) {
  5033       // block with lower loop-depth found -> split at the end of this block
  5034       min_loop_depth = cur->loop_depth();
  5035       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  5038   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  5040   return optimal_split_pos;
  5044 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  5045   int optimal_split_pos = -1;
  5046   if (min_split_pos == max_split_pos) {
  5047     // trivial case, no optimization of split position possible
  5048     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  5049     optimal_split_pos = min_split_pos;
  5051   } else {
  5052     assert(min_split_pos < max_split_pos, "must be true then");
  5053     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  5055     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  5056     // beginning of a block, then min_split_pos is also a possible split position.
  5057     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  5058     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  5060     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  5061     // when an interval ends at the end of the last block of the method
  5062     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  5063     // block at this op_id)
  5064     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  5066     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  5067     if (min_block == max_block) {
  5068       // split position cannot be moved to block boundary, so split as late as possible
  5069       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  5070       optimal_split_pos = max_split_pos;
  5072     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  5073       // Do not move split position if the interval has a hole before max_split_pos.
  5074       // Intervals resulting from Phi-Functions have more than one definition (marked
  5075       // as mustHaveRegister) with a hole before each definition. When the register is needed
  5076       // for the second definition, an earlier reloading is unnecessary.
  5077       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  5078       optimal_split_pos = max_split_pos;
  5080     } else {
  5081       // seach optimal block boundary between min_split_pos and max_split_pos
  5082       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  5084       if (do_loop_optimization) {
  5085         // Loop optimization: if a loop-end marker is found between min- and max-position,
  5086         // then split before this loop
  5087         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  5088         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  5090         assert(loop_end_pos > min_split_pos, "invalid order");
  5091         if (loop_end_pos < max_split_pos) {
  5092           // loop-end marker found between min- and max-position
  5093           // if it is not the end marker for the same loop as the min-position, then move
  5094           // the max-position to this loop block.
  5095           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  5096           // of the interval (normally, only mustHaveRegister causes a reloading)
  5097           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  5099           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  5100           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  5102           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  5103           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  5104             optimal_split_pos = -1;
  5105             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  5106           } else {
  5107             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  5112       if (optimal_split_pos == -1) {
  5113         // not calculated by loop optimization
  5114         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  5118   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  5120   return optimal_split_pos;
  5124 /*
  5125   split an interval at the optimal position between min_split_pos and
  5126   max_split_pos in two parts:
  5127   1) the left part has already a location assigned
  5128   2) the right part is sorted into to the unhandled-list
  5129 */
  5130 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  5131   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  5132   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5134   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  5135   assert(current_position() < min_split_pos, "cannot split before current position");
  5136   assert(min_split_pos <= max_split_pos,     "invalid order");
  5137   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  5139   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  5141   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5142   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  5143   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  5145   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  5146     // the split position would be just before the end of the interval
  5147     // -> no split at all necessary
  5148     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  5149     return;
  5152   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  5153   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  5155   if (!allocator()->is_block_begin(optimal_split_pos)) {
  5156     // move position before actual instruction (odd op_id)
  5157     optimal_split_pos = (optimal_split_pos - 1) | 1;
  5160   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5161   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5162   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5164   Interval* split_part = it->split(optimal_split_pos);
  5166   allocator()->append_interval(split_part);
  5167   allocator()->copy_register_flags(it, split_part);
  5168   split_part->set_insert_move_when_activated(move_necessary);
  5169   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  5171   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  5172   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5173   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  5176 /*
  5177   split an interval at the optimal position between min_split_pos and
  5178   max_split_pos in two parts:
  5179   1) the left part has already a location assigned
  5180   2) the right part is always on the stack and therefore ignored in further processing
  5181 */
  5182 void LinearScanWalker::split_for_spilling(Interval* it) {
  5183   // calculate allowed range of splitting position
  5184   int max_split_pos = current_position();
  5185   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  5187   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  5188   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5190   assert(it->state() == activeState,     "why spill interval that is not active?");
  5191   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5192   assert(min_split_pos <= max_split_pos, "invalid order");
  5193   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5194   assert(current_position() < it->to(),  "interval must not end before current position");
  5196   if (min_split_pos == it->from()) {
  5197     // the whole interval is never used, so spill it entirely to memory
  5198     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5199     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5201     allocator()->assign_spill_slot(it);
  5202     allocator()->change_spill_state(it, min_split_pos);
  5204     // Also kick parent intervals out of register to memory when they have no use
  5205     // position. This avoids short interval in register surrounded by intervals in
  5206     // memory -> avoid useless moves from memory to register and back
  5207     Interval* parent = it;
  5208     while (parent != NULL && parent->is_split_child()) {
  5209       parent = parent->split_child_before_op_id(parent->from());
  5211       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5212         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5213           // parent is never used, so kick it out of its assigned register
  5214           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5215           allocator()->assign_spill_slot(parent);
  5216         } else {
  5217           // do not go further back because the register is actually used by the interval
  5218           parent = NULL;
  5223   } else {
  5224     // search optimal split pos, split interval and spill only the right hand part
  5225     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5227     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5228     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5229     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5231     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5232       // move position before actual instruction (odd op_id)
  5233       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5236     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5237     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5238     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5240     Interval* spilled_part = it->split(optimal_split_pos);
  5241     allocator()->append_interval(spilled_part);
  5242     allocator()->assign_spill_slot(spilled_part);
  5243     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5245     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5246       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5247       insert_move(optimal_split_pos, it, spilled_part);
  5250     // the current_split_child is needed later when moves are inserted for reloading
  5251     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5252     spilled_part->make_current_split_child();
  5254     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5255     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5256     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5261 void LinearScanWalker::split_stack_interval(Interval* it) {
  5262   int min_split_pos = current_position() + 1;
  5263   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5265   split_before_usage(it, min_split_pos, max_split_pos);
  5268 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5269   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5270   int max_split_pos = register_available_until;
  5272   split_before_usage(it, min_split_pos, max_split_pos);
  5275 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5276   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5278   int current_pos = current_position();
  5279   if (it->state() == inactiveState) {
  5280     // the interval is currently inactive, so no spill slot is needed for now.
  5281     // when the split part is activated, the interval has a new chance to get a register,
  5282     // so in the best case no stack slot is necessary
  5283     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5284     split_before_usage(it, current_pos + 1, current_pos + 1);
  5286   } else {
  5287     // search the position where the interval must have a register and split
  5288     // at the optimal position before.
  5289     // The new created part is added to the unhandled list and will get a register
  5290     // when it is activated
  5291     int min_split_pos = current_pos + 1;
  5292     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5294     split_before_usage(it, min_split_pos, max_split_pos);
  5296     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5297     split_for_spilling(it);
  5302 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5303   int min_full_reg = any_reg;
  5304   int max_partial_reg = any_reg;
  5306   for (int i = _first_reg; i <= _last_reg; i++) {
  5307     if (i == ignore_reg) {
  5308       // this register must be ignored
  5310     } else if (_use_pos[i] >= interval_to) {
  5311       // this register is free for the full interval
  5312       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5313         min_full_reg = i;
  5315     } else if (_use_pos[i] > reg_needed_until) {
  5316       // this register is at least free until reg_needed_until
  5317       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5318         max_partial_reg = i;
  5323   if (min_full_reg != any_reg) {
  5324     return min_full_reg;
  5325   } else if (max_partial_reg != any_reg) {
  5326     *need_split = true;
  5327     return max_partial_reg;
  5328   } else {
  5329     return any_reg;
  5333 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5334   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5336   int min_full_reg = any_reg;
  5337   int max_partial_reg = any_reg;
  5339   for (int i = _first_reg; i < _last_reg; i+=2) {
  5340     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5341       // this register is free for the full interval
  5342       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5343         min_full_reg = i;
  5345     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5346       // this register is at least free until reg_needed_until
  5347       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5348         max_partial_reg = i;
  5353   if (min_full_reg != any_reg) {
  5354     return min_full_reg;
  5355   } else if (max_partial_reg != any_reg) {
  5356     *need_split = true;
  5357     return max_partial_reg;
  5358   } else {
  5359     return any_reg;
  5364 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5365   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5367   init_use_lists(true);
  5368   free_exclude_active_fixed();
  5369   free_exclude_active_any();
  5370   free_collect_inactive_fixed(cur);
  5371   free_collect_inactive_any(cur);
  5372 //  free_collect_unhandled(fixedKind, cur);
  5373   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5375   // _use_pos contains the start of the next interval that has this register assigned
  5376   // (either as a fixed register or a normal allocated register in the past)
  5377   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5378   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5379   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5381   int hint_reg, hint_regHi;
  5382   Interval* register_hint = cur->register_hint();
  5383   if (register_hint != NULL) {
  5384     hint_reg = register_hint->assigned_reg();
  5385     hint_regHi = register_hint->assigned_regHi();
  5387     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5388       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5389       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5391     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5393   } else {
  5394     hint_reg = any_reg;
  5395     hint_regHi = any_reg;
  5397   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5398   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5400   // the register must be free at least until this position
  5401   int reg_needed_until = cur->from() + 1;
  5402   int interval_to = cur->to();
  5404   bool need_split = false;
  5405   int split_pos = -1;
  5406   int reg = any_reg;
  5407   int regHi = any_reg;
  5409   if (_adjacent_regs) {
  5410     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5411     regHi = reg + 1;
  5412     if (reg == any_reg) {
  5413       return false;
  5415     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5417   } else {
  5418     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5419     if (reg == any_reg) {
  5420       return false;
  5422     split_pos = _use_pos[reg];
  5424     if (_num_phys_regs == 2) {
  5425       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5427       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5428         // do not split interval if only one register can be assigned until the split pos
  5429         // (when one register is found for the whole interval, split&spill is only
  5430         // performed for the hi register)
  5431         return false;
  5433       } else if (regHi != any_reg) {
  5434         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5436         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5437         if (reg > regHi) {
  5438           int temp = reg;
  5439           reg = regHi;
  5440           regHi = temp;
  5446   cur->assign_reg(reg, regHi);
  5447   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5449   assert(split_pos > 0, "invalid split_pos");
  5450   if (need_split) {
  5451     // register not available for full interval, so split it
  5452     split_when_partial_register_available(cur, split_pos);
  5455   // only return true if interval is completely assigned
  5456   return _num_phys_regs == 1 || regHi != any_reg;
  5460 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5461   int max_reg = any_reg;
  5463   for (int i = _first_reg; i <= _last_reg; i++) {
  5464     if (i == ignore_reg) {
  5465       // this register must be ignored
  5467     } else if (_use_pos[i] > reg_needed_until) {
  5468       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5469         max_reg = i;
  5474   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5475     *need_split = true;
  5478   return max_reg;
  5481 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5482   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5484   int max_reg = any_reg;
  5486   for (int i = _first_reg; i < _last_reg; i+=2) {
  5487     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5488       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5489         max_reg = i;
  5494   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5495     *need_split = true;
  5498   return max_reg;
  5501 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5502   assert(reg != any_reg, "no register assigned");
  5504   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5505     Interval* it = _spill_intervals[reg]->at(i);
  5506     remove_from_list(it);
  5507     split_and_spill_interval(it);
  5510   if (regHi != any_reg) {
  5511     IntervalList* processed = _spill_intervals[reg];
  5512     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5513       Interval* it = _spill_intervals[regHi]->at(i);
  5514       if (processed->index_of(it) == -1) {
  5515         remove_from_list(it);
  5516         split_and_spill_interval(it);
  5523 // Split an Interval and spill it to memory so that cur can be placed in a register
  5524 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5525   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5527   // collect current usage of registers
  5528   init_use_lists(false);
  5529   spill_exclude_active_fixed();
  5530 //  spill_block_unhandled_fixed(cur);
  5531   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5532   spill_block_inactive_fixed(cur);
  5533   spill_collect_active_any();
  5534   spill_collect_inactive_any(cur);
  5536 #ifndef PRODUCT
  5537   if (TraceLinearScanLevel >= 4) {
  5538     tty->print_cr("      state of registers:");
  5539     for (int i = _first_reg; i <= _last_reg; i++) {
  5540       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5541       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5542         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5544       tty->cr();
  5547 #endif
  5549   // the register must be free at least until this position
  5550   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5551   int interval_to = cur->to();
  5552   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5554   int split_pos = 0;
  5555   int use_pos = 0;
  5556   bool need_split = false;
  5557   int reg, regHi;
  5559   if (_adjacent_regs) {
  5560     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5561     regHi = reg + 1;
  5563     if (reg != any_reg) {
  5564       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5565       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5567   } else {
  5568     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5569     regHi = any_reg;
  5571     if (reg != any_reg) {
  5572       use_pos = _use_pos[reg];
  5573       split_pos = _block_pos[reg];
  5575       if (_num_phys_regs == 2) {
  5576         if (cur->assigned_reg() != any_reg) {
  5577           regHi = reg;
  5578           reg = cur->assigned_reg();
  5579         } else {
  5580           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5581           if (regHi != any_reg) {
  5582             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5583             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5587         if (regHi != any_reg && reg > regHi) {
  5588           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5589           int temp = reg;
  5590           reg = regHi;
  5591           regHi = temp;
  5597   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5598     // the first use of cur is later than the spilling position -> spill cur
  5599     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5601     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5602       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5603       // assign a reasonable register and do a bailout in product mode to avoid errors
  5604       allocator()->assign_spill_slot(cur);
  5605       BAILOUT("LinearScan: no register found");
  5608     split_and_spill_interval(cur);
  5609   } else {
  5610     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5611     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5612     assert(split_pos > 0, "invalid split_pos");
  5613     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5615     cur->assign_reg(reg, regHi);
  5616     if (need_split) {
  5617       // register not available for full interval, so split it
  5618       split_when_partial_register_available(cur, split_pos);
  5621     // perform splitting and spilling for all affected intervalls
  5622     split_and_spill_intersecting_intervals(reg, regHi);
  5626 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5627 #ifdef X86
  5628   // fast calculation of intervals that can never get a register because the
  5629   // the next instruction is a call that blocks all registers
  5630   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5632   // check if this interval is the result of a split operation
  5633   // (an interval got a register until this position)
  5634   int pos = cur->from();
  5635   if ((pos & 1) == 1) {
  5636     // the current instruction is a call that blocks all registers
  5637     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5638       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5640       // safety check that there is really no register available
  5641       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5642       return true;
  5646 #endif
  5647   return false;
  5650 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5651   BasicType type = cur->type();
  5652   _num_phys_regs = LinearScan::num_physical_regs(type);
  5653   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5655   if (pd_init_regs_for_alloc(cur)) {
  5656     // the appropriate register range was selected.
  5657   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5658     _first_reg = pd_first_fpu_reg;
  5659     _last_reg = pd_last_fpu_reg;
  5660   } else {
  5661     _first_reg = pd_first_cpu_reg;
  5662     _last_reg = FrameMap::last_cpu_reg();
  5665   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5666   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5670 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5671   if (op->code() != lir_move) {
  5672     return false;
  5674   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5676   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5677   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5678   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5681 // optimization (especially for phi functions of nested loops):
  5682 // assign same spill slot to non-intersecting intervals
  5683 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5684   if (cur->is_split_child()) {
  5685     // optimization is only suitable for split parents
  5686     return;
  5689   Interval* register_hint = cur->register_hint(false);
  5690   if (register_hint == NULL) {
  5691     // cur is not the target of a move, otherwise register_hint would be set
  5692     return;
  5694   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5696   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5697     // combining the stack slots for intervals where spill move optimization is applied
  5698     // is not benefitial and would cause problems
  5699     return;
  5702   int begin_pos = cur->from();
  5703   int end_pos = cur->to();
  5704   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5705     // safety check that lir_op_with_id is allowed
  5706     return;
  5709   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5710     // cur and register_hint are not connected with two moves
  5711     return;
  5714   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5715   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5716   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5717     // register_hint must be split, otherwise the re-writing of use positions does not work
  5718     return;
  5721   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5722   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5723   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5724   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5726   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5727     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5728     return;
  5730   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5732   // modify intervals such that cur gets the same stack slot as register_hint
  5733   // delete use positions to prevent the intervals to get a register at beginning
  5734   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5735   cur->remove_first_use_pos();
  5736   end_hint->remove_first_use_pos();
  5740 // allocate a physical register or memory location to an interval
  5741 bool LinearScanWalker::activate_current() {
  5742   Interval* cur = current();
  5743   bool result = true;
  5745   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5746   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5748   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5749     // activating an interval that has a stack slot assigned -> split it at first use position
  5750     // used for method parameters
  5751     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5753     split_stack_interval(cur);
  5754     result = false;
  5756   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5757     // activating an interval that must start in a stack slot, but may get a register later
  5758     // used for lir_roundfp: rounding is done by store to stack and reload later
  5759     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5760     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5762     allocator()->assign_spill_slot(cur);
  5763     split_stack_interval(cur);
  5764     result = false;
  5766   } else if (cur->assigned_reg() == any_reg) {
  5767     // interval has not assigned register -> normal allocation
  5768     // (this is the normal case for most intervals)
  5769     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5771     // assign same spill slot to non-intersecting intervals
  5772     combine_spilled_intervals(cur);
  5774     init_vars_for_alloc(cur);
  5775     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5776       // no empty register available.
  5777       // split and spill another interval so that this interval gets a register
  5778       alloc_locked_reg(cur);
  5781     // spilled intervals need not be move to active-list
  5782     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5783       result = false;
  5787   // load spilled values that become active from stack slot to register
  5788   if (cur->insert_move_when_activated()) {
  5789     assert(cur->is_split_child(), "must be");
  5790     assert(cur->current_split_child() != NULL, "must be");
  5791     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5792     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5794     insert_move(cur->from(), cur->current_split_child(), cur);
  5796   cur->make_current_split_child();
  5798   return result; // true = interval is moved to active list
  5802 // Implementation of EdgeMoveOptimizer
  5804 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5805   _edge_instructions(4),
  5806   _edge_instructions_idx(4)
  5810 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5811   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5813   // ignore the first block in the list (index 0 is not processed)
  5814   for (int i = code->length() - 1; i >= 1; i--) {
  5815     BlockBegin* block = code->at(i);
  5817     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5818       optimizer.optimize_moves_at_block_end(block);
  5820     if (block->number_of_sux() == 2) {
  5821       optimizer.optimize_moves_at_block_begin(block);
  5827 // clear all internal data structures
  5828 void EdgeMoveOptimizer::init_instructions() {
  5829   _edge_instructions.clear();
  5830   _edge_instructions_idx.clear();
  5833 // append a lir-instruction-list and the index of the current operation in to the list
  5834 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5835   _edge_instructions.append(instructions);
  5836   _edge_instructions_idx.append(instructions_idx);
  5839 // return the current operation of the given edge (predecessor or successor)
  5840 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5841   LIR_OpList* instructions = _edge_instructions.at(edge);
  5842   int idx = _edge_instructions_idx.at(edge);
  5844   if (idx < instructions->length()) {
  5845     return instructions->at(idx);
  5846   } else {
  5847     return NULL;
  5851 // removes the current operation of the given edge (predecessor or successor)
  5852 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5853   LIR_OpList* instructions = _edge_instructions.at(edge);
  5854   int idx = _edge_instructions_idx.at(edge);
  5855   instructions->remove_at(idx);
  5857   if (decrement_index) {
  5858     _edge_instructions_idx.at_put(edge, idx - 1);
  5863 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5864   if (op1 == NULL || op2 == NULL) {
  5865     // at least one block is already empty -> no optimization possible
  5866     return true;
  5869   if (op1->code() == lir_move && op2->code() == lir_move) {
  5870     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5871     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5872     LIR_Op1* move1 = (LIR_Op1*)op1;
  5873     LIR_Op1* move2 = (LIR_Op1*)op2;
  5874     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5875       // these moves are exactly equal and can be optimized
  5876       return false;
  5879   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5880     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5881     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5882     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5883     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5884     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5885       // equal FPU stack operations can be optimized
  5886       return false;
  5889   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5890     // equal FPU stack operations can be optimized
  5891     return false;
  5894   // no optimization possible
  5895   return true;
  5898 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5899   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5901   if (block->is_predecessor(block)) {
  5902     // currently we can't handle this correctly.
  5903     return;
  5906   init_instructions();
  5907   int num_preds = block->number_of_preds();
  5908   assert(num_preds > 1, "do not call otherwise");
  5909   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5911   // setup a list with the lir-instructions of all predecessors
  5912   int i;
  5913   for (i = 0; i < num_preds; i++) {
  5914     BlockBegin* pred = block->pred_at(i);
  5915     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5917     if (pred->number_of_sux() != 1) {
  5918       // this can happen with switch-statements where multiple edges are between
  5919       // the same blocks.
  5920       return;
  5923     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5924     assert(pred->sux_at(0) == block, "invalid control flow");
  5925     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5926     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5927     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5929     if (pred_instructions->last()->info() != NULL) {
  5930       // can not optimize instructions when debug info is needed
  5931       return;
  5934     // ignore the unconditional branch at the end of the block
  5935     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5939   // process lir-instructions while all predecessors end with the same instruction
  5940   while (true) {
  5941     LIR_Op* op = instruction_at(0);
  5942     for (i = 1; i < num_preds; i++) {
  5943       if (operations_different(op, instruction_at(i))) {
  5944         // these instructions are different and cannot be optimized ->
  5945         // no further optimization possible
  5946         return;
  5950     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5952     // insert the instruction at the beginning of the current block
  5953     block->lir()->insert_before(1, op);
  5955     // delete the instruction at the end of all predecessors
  5956     for (i = 0; i < num_preds; i++) {
  5957       remove_cur_instruction(i, true);
  5963 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5964   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5966   init_instructions();
  5967   int num_sux = block->number_of_sux();
  5969   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5971   assert(num_sux == 2, "method should not be called otherwise");
  5972   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5973   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5974   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5976   if (cur_instructions->last()->info() != NULL) {
  5977     // can no optimize instructions when debug info is needed
  5978     return;
  5981   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5982   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5983     // not a valid case for optimization
  5984     // currently, only blocks that end with two branches (conditional branch followed
  5985     // by unconditional branch) are optimized
  5986     return;
  5989   // now it is guaranteed that the block ends with two branch instructions.
  5990   // the instructions are inserted at the end of the block before these two branches
  5991   int insert_idx = cur_instructions->length() - 2;
  5993   int i;
  5994 #ifdef ASSERT
  5995   for (i = insert_idx - 1; i >= 0; i--) {
  5996     LIR_Op* op = cur_instructions->at(i);
  5997     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5998       assert(false, "block with two successors can have only two branch instructions");
  6001 #endif
  6003   // setup a list with the lir-instructions of all successors
  6004   for (i = 0; i < num_sux; i++) {
  6005     BlockBegin* sux = block->sux_at(i);
  6006     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  6008     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  6010     if (sux->number_of_preds() != 1) {
  6011       // this can happen with switch-statements where multiple edges are between
  6012       // the same blocks.
  6013       return;
  6015     assert(sux->pred_at(0) == block, "invalid control flow");
  6016     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  6018     // ignore the label at the beginning of the block
  6019     append_instructions(sux_instructions, 1);
  6022   // process lir-instructions while all successors begin with the same instruction
  6023   while (true) {
  6024     LIR_Op* op = instruction_at(0);
  6025     for (i = 1; i < num_sux; i++) {
  6026       if (operations_different(op, instruction_at(i))) {
  6027         // these instructions are different and cannot be optimized ->
  6028         // no further optimization possible
  6029         return;
  6033     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  6035     // insert instruction at end of current block
  6036     block->lir()->insert_before(insert_idx, op);
  6037     insert_idx++;
  6039     // delete the instructions at the beginning of all successors
  6040     for (i = 0; i < num_sux; i++) {
  6041       remove_cur_instruction(i, false);
  6047 // Implementation of ControlFlowOptimizer
  6049 ControlFlowOptimizer::ControlFlowOptimizer() :
  6050   _original_preds(4)
  6054 void ControlFlowOptimizer::optimize(BlockList* code) {
  6055   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  6057   // push the OSR entry block to the end so that we're not jumping over it.
  6058   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  6059   if (osr_entry) {
  6060     int index = osr_entry->linear_scan_number();
  6061     assert(code->at(index) == osr_entry, "wrong index");
  6062     code->remove_at(index);
  6063     code->append(osr_entry);
  6066   optimizer.reorder_short_loops(code);
  6067   optimizer.delete_empty_blocks(code);
  6068   optimizer.delete_unnecessary_jumps(code);
  6069   optimizer.delete_jumps_to_return(code);
  6072 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  6073   int i = header_idx + 1;
  6074   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  6075   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  6076     i++;
  6079   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  6080     int end_idx = i - 1;
  6081     BlockBegin* end_block = code->at(end_idx);
  6083     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  6084       // short loop from header_idx to end_idx found -> reorder blocks such that
  6085       // the header_block is the last block instead of the first block of the loop
  6086       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  6087                                          end_idx - header_idx + 1,
  6088                                          header_block->block_id(), end_block->block_id()));
  6090       for (int j = header_idx; j < end_idx; j++) {
  6091         code->at_put(j, code->at(j + 1));
  6093       code->at_put(end_idx, header_block);
  6095       // correct the flags so that any loop alignment occurs in the right place.
  6096       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  6097       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  6098       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  6103 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  6104   for (int i = code->length() - 1; i >= 0; i--) {
  6105     BlockBegin* block = code->at(i);
  6107     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  6108       reorder_short_loop(code, block, i);
  6112   DEBUG_ONLY(verify(code));
  6115 // only blocks with exactly one successor can be deleted. Such blocks
  6116 // must always end with an unconditional branch to this successor
  6117 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  6118   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  6119     return false;
  6122   LIR_OpList* instructions = block->lir()->instructions_list();
  6124   assert(instructions->length() >= 2, "block must have label and branch");
  6125   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6126   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  6127   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  6128   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  6130   // block must have exactly one successor
  6132   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  6133     return true;
  6135   return false;
  6138 // substitute branch targets in all branch-instructions of this blocks
  6139 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  6140   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  6142   LIR_OpList* instructions = block->lir()->instructions_list();
  6144   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6145   for (int i = instructions->length() - 1; i >= 1; i--) {
  6146     LIR_Op* op = instructions->at(i);
  6148     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  6149       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6150       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  6152       if (branch->block() == target_from) {
  6153         branch->change_block(target_to);
  6155       if (branch->ublock() == target_from) {
  6156         branch->change_ublock(target_to);
  6162 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  6163   int old_pos = 0;
  6164   int new_pos = 0;
  6165   int num_blocks = code->length();
  6167   while (old_pos < num_blocks) {
  6168     BlockBegin* block = code->at(old_pos);
  6170     if (can_delete_block(block)) {
  6171       BlockBegin* new_target = block->sux_at(0);
  6173       // propagate backward branch target flag for correct code alignment
  6174       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  6175         new_target->set(BlockBegin::backward_branch_target_flag);
  6178       // collect a list with all predecessors that contains each predecessor only once
  6179       // the predecessors of cur are changed during the substitution, so a copy of the
  6180       // predecessor list is necessary
  6181       int j;
  6182       _original_preds.clear();
  6183       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  6184         BlockBegin* pred = block->pred_at(j);
  6185         if (_original_preds.index_of(pred) == -1) {
  6186           _original_preds.append(pred);
  6190       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6191         BlockBegin* pred = _original_preds.at(j);
  6192         substitute_branch_target(pred, block, new_target);
  6193         pred->substitute_sux(block, new_target);
  6195     } else {
  6196       // adjust position of this block in the block list if blocks before
  6197       // have been deleted
  6198       if (new_pos != old_pos) {
  6199         code->at_put(new_pos, code->at(old_pos));
  6201       new_pos++;
  6203     old_pos++;
  6205   code->truncate(new_pos);
  6207   DEBUG_ONLY(verify(code));
  6210 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6211   // skip the last block because there a branch is always necessary
  6212   for (int i = code->length() - 2; i >= 0; i--) {
  6213     BlockBegin* block = code->at(i);
  6214     LIR_OpList* instructions = block->lir()->instructions_list();
  6216     LIR_Op* last_op = instructions->last();
  6217     if (last_op->code() == lir_branch) {
  6218       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6219       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6221       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6222       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6224       if (last_branch->info() == NULL) {
  6225         if (last_branch->block() == code->at(i + 1)) {
  6227           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6229           // delete last branch instruction
  6230           instructions->truncate(instructions->length() - 1);
  6232         } else {
  6233           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6234           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6235             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6236             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6238             if (prev_branch->stub() == NULL) {
  6240 #ifndef MIPS64  //MIPS64 not support lir_cmp. same as openjdk6.
  6241               LIR_Op2* prev_cmp = NULL;
  6243               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
  6244                 prev_op = instructions->at(j);
  6245                 if (prev_op->code() == lir_cmp) {
  6246                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
  6247                   prev_cmp = (LIR_Op2*)prev_op;
  6248                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
  6251               assert(prev_cmp != NULL, "should have found comp instruction for branch");
  6252 #endif
  6253               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6255                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6257                 // eliminate a conditional branch to the immediate successor
  6258                 prev_branch->change_block(last_branch->block());
  6259                 prev_branch->negate_cond();
  6260 #ifndef MIPS64 //MIPS64 not support lir_cmp. same as openjdk6.
  6261                 prev_cmp->set_condition(prev_branch->cond());
  6262 #endif
  6263                 instructions->truncate(instructions->length() - 1);
  6272   DEBUG_ONLY(verify(code));
  6275 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6276 #ifdef ASSERT
  6277   BitMap return_converted(BlockBegin::number_of_blocks());
  6278   return_converted.clear();
  6279 #endif
  6281   for (int i = code->length() - 1; i >= 0; i--) {
  6282     BlockBegin* block = code->at(i);
  6283     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6284     LIR_Op*     cur_last_op = cur_instructions->last();
  6286     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6287     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6288       // the block contains only a label and a return
  6289       // if a predecessor ends with an unconditional jump to this block, then the jump
  6290       // can be replaced with a return instruction
  6291       //
  6292       // Note: the original block with only a return statement cannot be deleted completely
  6293       //       because the predecessors might have other (conditional) jumps to this block
  6294       //       -> this may lead to unnecesary return instructions in the final code
  6296       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6297       assert(block->number_of_sux() == 0 ||
  6298              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6299              "blocks that end with return must not have successors");
  6301       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6302       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6304       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6305         BlockBegin* pred = block->pred_at(j);
  6306         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6307         LIR_Op*     pred_last_op = pred_instructions->last();
  6309         if (pred_last_op->code() == lir_branch) {
  6310           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6311           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6313           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6314             // replace the jump to a return with a direct return
  6315             // Note: currently the edge between the blocks is not deleted
  6316             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6317 #ifdef ASSERT
  6318             return_converted.set_bit(pred->block_id());
  6319 #endif
  6328 #ifdef ASSERT
  6329 void ControlFlowOptimizer::verify(BlockList* code) {
  6330   for (int i = 0; i < code->length(); i++) {
  6331     BlockBegin* block = code->at(i);
  6332     LIR_OpList* instructions = block->lir()->instructions_list();
  6334     int j;
  6335     for (j = 0; j < instructions->length(); j++) {
  6336       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6338       if (op_branch != NULL) {
  6339         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6340         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6344     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6345       BlockBegin* sux = block->sux_at(j);
  6346       assert(code->index_of(sux) != -1, "successor not valid");
  6349     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6350       BlockBegin* pred = block->pred_at(j);
  6351       assert(code->index_of(pred) != -1, "successor not valid");
  6355 #endif
  6358 #ifndef PRODUCT
  6360 // Implementation of LinearStatistic
  6362 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6363   switch (counter_idx) {
  6364     case counter_method:          return "compiled methods";
  6365     case counter_fpu_method:      return "methods using fpu";
  6366     case counter_loop_method:     return "methods with loops";
  6367     case counter_exception_method:return "methods with xhandler";
  6369     case counter_loop:            return "loops";
  6370     case counter_block:           return "blocks";
  6371     case counter_loop_block:      return "blocks inside loop";
  6372     case counter_exception_block: return "exception handler entries";
  6373     case counter_interval:        return "intervals";
  6374     case counter_fixed_interval:  return "fixed intervals";
  6375     case counter_range:           return "ranges";
  6376     case counter_fixed_range:     return "fixed ranges";
  6377     case counter_use_pos:         return "use positions";
  6378     case counter_fixed_use_pos:   return "fixed use positions";
  6379     case counter_spill_slots:     return "spill slots";
  6381     // counter for classes of lir instructions
  6382     case counter_instruction:     return "total instructions";
  6383     case counter_label:           return "labels";
  6384     case counter_entry:           return "method entries";
  6385     case counter_return:          return "method returns";
  6386     case counter_call:            return "method calls";
  6387     case counter_move:            return "moves";
  6388     case counter_cmp:             return "compare";
  6389     case counter_cond_branch:     return "conditional branches";
  6390     case counter_uncond_branch:   return "unconditional branches";
  6391     case counter_stub_branch:     return "branches to stub";
  6392     case counter_alu:             return "artithmetic + logic";
  6393     case counter_alloc:           return "allocations";
  6394     case counter_sync:            return "synchronisation";
  6395     case counter_throw:           return "throw";
  6396     case counter_unwind:          return "unwind";
  6397     case counter_typecheck:       return "type+null-checks";
  6398     case counter_fpu_stack:       return "fpu-stack";
  6399     case counter_misc_inst:       return "other instructions";
  6400     case counter_other_inst:      return "misc. instructions";
  6402     // counter for different types of moves
  6403     case counter_move_total:      return "total moves";
  6404     case counter_move_reg_reg:    return "register->register";
  6405     case counter_move_reg_stack:  return "register->stack";
  6406     case counter_move_stack_reg:  return "stack->register";
  6407     case counter_move_stack_stack:return "stack->stack";
  6408     case counter_move_reg_mem:    return "register->memory";
  6409     case counter_move_mem_reg:    return "memory->register";
  6410     case counter_move_const_any:  return "constant->any";
  6412     case blank_line_1:            return "";
  6413     case blank_line_2:            return "";
  6415     default: ShouldNotReachHere(); return "";
  6419 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6420   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6421     return counter_method;
  6422   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6423     return counter_block;
  6424   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6425     return counter_instruction;
  6426   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6427     return counter_move_total;
  6429   return invalid_counter;
  6432 LinearScanStatistic::LinearScanStatistic() {
  6433   for (int i = 0; i < number_of_counters; i++) {
  6434     _counters_sum[i] = 0;
  6435     _counters_max[i] = -1;
  6440 // add the method-local numbers to the total sum
  6441 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6442   for (int i = 0; i < number_of_counters; i++) {
  6443     _counters_sum[i] += method_statistic._counters_sum[i];
  6444     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6448 void LinearScanStatistic::print(const char* title) {
  6449   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6450     tty->cr();
  6451     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6453     for (int i = 0; i < number_of_counters; i++) {
  6454       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6455         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6457         if (base_counter(i) != invalid_counter) {
  6458           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6459         } else {
  6460           tty->print("           ");
  6463         if (_counters_max[i] >= 0) {
  6464           tty->print("%8d", _counters_max[i]);
  6467       tty->cr();
  6472 void LinearScanStatistic::collect(LinearScan* allocator) {
  6473   inc_counter(counter_method);
  6474   if (allocator->has_fpu_registers()) {
  6475     inc_counter(counter_fpu_method);
  6477   if (allocator->num_loops() > 0) {
  6478     inc_counter(counter_loop_method);
  6480   inc_counter(counter_loop, allocator->num_loops());
  6481   inc_counter(counter_spill_slots, allocator->max_spills());
  6483   int i;
  6484   for (i = 0; i < allocator->interval_count(); i++) {
  6485     Interval* cur = allocator->interval_at(i);
  6487     if (cur != NULL) {
  6488       inc_counter(counter_interval);
  6489       inc_counter(counter_use_pos, cur->num_use_positions());
  6490       if (LinearScan::is_precolored_interval(cur)) {
  6491         inc_counter(counter_fixed_interval);
  6492         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6495       Range* range = cur->first();
  6496       while (range != Range::end()) {
  6497         inc_counter(counter_range);
  6498         if (LinearScan::is_precolored_interval(cur)) {
  6499           inc_counter(counter_fixed_range);
  6501         range = range->next();
  6506   bool has_xhandlers = false;
  6507   // Note: only count blocks that are in code-emit order
  6508   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6509     BlockBegin* cur = allocator->ir()->code()->at(i);
  6511     inc_counter(counter_block);
  6512     if (cur->loop_depth() > 0) {
  6513       inc_counter(counter_loop_block);
  6515     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6516       inc_counter(counter_exception_block);
  6517       has_xhandlers = true;
  6520     LIR_OpList* instructions = cur->lir()->instructions_list();
  6521     for (int j = 0; j < instructions->length(); j++) {
  6522       LIR_Op* op = instructions->at(j);
  6524       inc_counter(counter_instruction);
  6526       switch (op->code()) {
  6527         case lir_label:           inc_counter(counter_label); break;
  6528         case lir_std_entry:
  6529         case lir_osr_entry:       inc_counter(counter_entry); break;
  6530         case lir_return:          inc_counter(counter_return); break;
  6532         case lir_rtcall:
  6533         case lir_static_call:
  6534         case lir_optvirtual_call:
  6535         case lir_virtual_call:    inc_counter(counter_call); break;
  6537         case lir_move: {
  6538           inc_counter(counter_move);
  6539           inc_counter(counter_move_total);
  6541           LIR_Opr in = op->as_Op1()->in_opr();
  6542           LIR_Opr res = op->as_Op1()->result_opr();
  6543           if (in->is_register()) {
  6544             if (res->is_register()) {
  6545               inc_counter(counter_move_reg_reg);
  6546             } else if (res->is_stack()) {
  6547               inc_counter(counter_move_reg_stack);
  6548             } else if (res->is_address()) {
  6549               inc_counter(counter_move_reg_mem);
  6550             } else {
  6551               ShouldNotReachHere();
  6553           } else if (in->is_stack()) {
  6554             if (res->is_register()) {
  6555               inc_counter(counter_move_stack_reg);
  6556             } else {
  6557               inc_counter(counter_move_stack_stack);
  6559           } else if (in->is_address()) {
  6560             assert(res->is_register(), "must be");
  6561             inc_counter(counter_move_mem_reg);
  6562           } else if (in->is_constant()) {
  6563             inc_counter(counter_move_const_any);
  6564           } else {
  6565             ShouldNotReachHere();
  6567           break;
  6570 #ifndef MIPS64
  6571         case lir_cmp:             inc_counter(counter_cmp); break;
  6573 #endif
  6574         case lir_branch:
  6575         case lir_cond_float_branch: {
  6576           LIR_OpBranch* branch = op->as_OpBranch();
  6577           if (branch->block() == NULL) {
  6578             inc_counter(counter_stub_branch);
  6579           } else if (branch->cond() == lir_cond_always) {
  6580             inc_counter(counter_uncond_branch);
  6581           } else {
  6582             inc_counter(counter_cond_branch);
  6584           break;
  6587         case lir_neg:
  6588         case lir_add:
  6589         case lir_sub:
  6590         case lir_mul:
  6591         case lir_mul_strictfp:
  6592         case lir_div:
  6593         case lir_div_strictfp:
  6594         case lir_rem:
  6595         case lir_sqrt:
  6596         case lir_sin:
  6597         case lir_cos:
  6598         case lir_abs:
  6599         case lir_log10:
  6600         case lir_log:
  6601         case lir_pow:
  6602         case lir_exp:
  6603         case lir_logic_and:
  6604         case lir_logic_or:
  6605         case lir_logic_xor:
  6606         case lir_shl:
  6607         case lir_shr:
  6608         case lir_ushr:            inc_counter(counter_alu); break;
  6610         case lir_alloc_object:
  6611         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6613         case lir_monaddr:
  6614         case lir_lock:
  6615         case lir_unlock:          inc_counter(counter_sync); break;
  6617         case lir_throw:           inc_counter(counter_throw); break;
  6619         case lir_unwind:          inc_counter(counter_unwind); break;
  6621         case lir_null_check:
  6622         case lir_leal:
  6623         case lir_instanceof:
  6624         case lir_checkcast:
  6625         case lir_store_check:     inc_counter(counter_typecheck); break;
  6627         case lir_fpop_raw:
  6628         case lir_fxch:
  6629         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6631         case lir_nop:
  6632         case lir_push:
  6633         case lir_pop:
  6634         case lir_convert:
  6635         case lir_roundfp:
  6636         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6638         default:                  inc_counter(counter_other_inst); break;
  6643   if (has_xhandlers) {
  6644     inc_counter(counter_exception_method);
  6648 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6649   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6651     LinearScanStatistic local_statistic = LinearScanStatistic();
  6653     local_statistic.collect(allocator);
  6654     global_statistic.sum_up(local_statistic);
  6656     if (TraceLinearScanLevel > 2) {
  6657       local_statistic.print("current local statistic");
  6663 // Implementation of LinearTimers
  6665 LinearScanTimers::LinearScanTimers() {
  6666   for (int i = 0; i < number_of_timers; i++) {
  6667     timer(i)->reset();
  6671 const char* LinearScanTimers::timer_name(int idx) {
  6672   switch (idx) {
  6673     case timer_do_nothing:               return "Nothing (Time Check)";
  6674     case timer_number_instructions:      return "Number Instructions";
  6675     case timer_compute_local_live_sets:  return "Local Live Sets";
  6676     case timer_compute_global_live_sets: return "Global Live Sets";
  6677     case timer_build_intervals:          return "Build Intervals";
  6678     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6679     case timer_allocate_registers:       return "Allocate Registers";
  6680     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6681     case timer_sort_intervals_after:     return "Sort Intervals After";
  6682     case timer_eliminate_spill_moves:    return "Spill optimization";
  6683     case timer_assign_reg_num:           return "Assign Reg Num";
  6684     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6685     case timer_optimize_lir:             return "Optimize LIR";
  6686     default: ShouldNotReachHere();       return "";
  6690 void LinearScanTimers::begin_method() {
  6691   if (TimeEachLinearScan) {
  6692     // reset all timers to measure only current method
  6693     for (int i = 0; i < number_of_timers; i++) {
  6694       timer(i)->reset();
  6699 void LinearScanTimers::end_method(LinearScan* allocator) {
  6700   if (TimeEachLinearScan) {
  6702     double c = timer(timer_do_nothing)->seconds();
  6703     double total = 0;
  6704     for (int i = 1; i < number_of_timers; i++) {
  6705       total += timer(i)->seconds() - c;
  6708     if (total >= 0.0005) {
  6709       // print all information in one line for automatic processing
  6710       tty->print("@"); allocator->compilation()->method()->print_name();
  6712       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6713       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6714       tty->print("@ %d ", allocator->block_count());
  6715       tty->print("@ %d ", allocator->num_virtual_regs());
  6716       tty->print("@ %d ", allocator->interval_count());
  6717       tty->print("@ %d ", allocator->_num_calls);
  6718       tty->print("@ %d ", allocator->num_loops());
  6720       tty->print("@ %6.6f ", total);
  6721       for (int i = 1; i < number_of_timers; i++) {
  6722         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6724       tty->cr();
  6729 void LinearScanTimers::print(double total_time) {
  6730   if (TimeLinearScan) {
  6731     // correction value: sum of dummy-timer that only measures the time that
  6732     // is necesary to start and stop itself
  6733     double c = timer(timer_do_nothing)->seconds();
  6735     for (int i = 0; i < number_of_timers; i++) {
  6736       double t = timer(i)->seconds();
  6737       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6742 #endif // #ifndef PRODUCT

mercurial