src/share/vm/c1/c1_LinearScan.cpp

Tue, 01 Apr 2014 09:36:49 +0200

author
roland
date
Tue, 01 Apr 2014 09:36:49 +0200
changeset 6723
0bf37f737702
parent 6688
15766b73dc1d
child 6876
710a3c8b516e
child 6958
d04cb4166be7
permissions
-rw-r--r--

8032410: compiler/uncommontrap/TestStackBangRbp.java times out on Solaris-Sparc V9
Summary: make compiled code bang the stack by the worst case size of the interpreter frame at deoptimization points.
Reviewed-by: twisti, kvn

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_CFGPrinter.hpp"
    27 #include "c1/c1_CodeStubs.hpp"
    28 #include "c1/c1_Compilation.hpp"
    29 #include "c1/c1_FrameMap.hpp"
    30 #include "c1/c1_IR.hpp"
    31 #include "c1/c1_LIRGenerator.hpp"
    32 #include "c1/c1_LinearScan.hpp"
    33 #include "c1/c1_ValueStack.hpp"
    34 #include "utilities/bitMap.inline.hpp"
    35 #ifdef TARGET_ARCH_x86
    36 # include "vmreg_x86.inline.hpp"
    37 #endif
    38 #ifdef TARGET_ARCH_sparc
    39 # include "vmreg_sparc.inline.hpp"
    40 #endif
    41 #ifdef TARGET_ARCH_zero
    42 # include "vmreg_zero.inline.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_arm
    45 # include "vmreg_arm.inline.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_ppc
    48 # include "vmreg_ppc.inline.hpp"
    49 #endif
    52 #ifndef PRODUCT
    54   static LinearScanStatistic _stat_before_alloc;
    55   static LinearScanStatistic _stat_after_asign;
    56   static LinearScanStatistic _stat_final;
    58   static LinearScanTimers _total_timer;
    60   // helper macro for short definition of timer
    61   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
    63   // helper macro for short definition of trace-output inside code
    64   #define TRACE_LINEAR_SCAN(level, code)       \
    65     if (TraceLinearScanLevel >= level) {       \
    66       code;                                    \
    67     }
    69 #else
    71   #define TIME_LINEAR_SCAN(timer_name)
    72   #define TRACE_LINEAR_SCAN(level, code)
    74 #endif
    76 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
    77 #ifdef _LP64
    78 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
    79 #else
    80 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
    81 #endif
    84 // Implementation of LinearScan
    86 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
    87  : _compilation(ir->compilation())
    88  , _ir(ir)
    89  , _gen(gen)
    90  , _frame_map(frame_map)
    91  , _num_virtual_regs(gen->max_virtual_register_number())
    92  , _has_fpu_registers(false)
    93  , _num_calls(-1)
    94  , _max_spills(0)
    95  , _unused_spill_slot(-1)
    96  , _intervals(0)   // initialized later with correct length
    97  , _new_intervals_from_allocation(new IntervalList())
    98  , _sorted_intervals(NULL)
    99  , _needs_full_resort(false)
   100  , _lir_ops(0)     // initialized later with correct length
   101  , _block_of_op(0) // initialized later with correct length
   102  , _has_info(0)
   103  , _has_call(0)
   104  , _scope_value_cache(0) // initialized later with correct length
   105  , _interval_in_loop(0, 0) // initialized later with correct length
   106  , _cached_blocks(*ir->linear_scan_order())
   107 #ifdef X86
   108  , _fpu_stack_allocator(NULL)
   109 #endif
   110 {
   111   assert(this->ir() != NULL,          "check if valid");
   112   assert(this->compilation() != NULL, "check if valid");
   113   assert(this->gen() != NULL,         "check if valid");
   114   assert(this->frame_map() != NULL,   "check if valid");
   115 }
   118 // ********** functions for converting LIR-Operands to register numbers
   119 //
   120 // Emulate a flat register file comprising physical integer registers,
   121 // physical floating-point registers and virtual registers, in that order.
   122 // Virtual registers already have appropriate numbers, since V0 is
   123 // the number of physical registers.
   124 // Returns -1 for hi word if opr is a single word operand.
   125 //
   126 // Note: the inverse operation (calculating an operand for register numbers)
   127 //       is done in calc_operand_for_interval()
   129 int LinearScan::reg_num(LIR_Opr opr) {
   130   assert(opr->is_register(), "should not call this otherwise");
   132   if (opr->is_virtual_register()) {
   133     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
   134     return opr->vreg_number();
   135   } else if (opr->is_single_cpu()) {
   136     return opr->cpu_regnr();
   137   } else if (opr->is_double_cpu()) {
   138     return opr->cpu_regnrLo();
   139 #ifdef X86
   140   } else if (opr->is_single_xmm()) {
   141     return opr->fpu_regnr() + pd_first_xmm_reg;
   142   } else if (opr->is_double_xmm()) {
   143     return opr->fpu_regnrLo() + pd_first_xmm_reg;
   144 #endif
   145   } else if (opr->is_single_fpu()) {
   146     return opr->fpu_regnr() + pd_first_fpu_reg;
   147   } else if (opr->is_double_fpu()) {
   148     return opr->fpu_regnrLo() + pd_first_fpu_reg;
   149   } else {
   150     ShouldNotReachHere();
   151     return -1;
   152   }
   153 }
   155 int LinearScan::reg_numHi(LIR_Opr opr) {
   156   assert(opr->is_register(), "should not call this otherwise");
   158   if (opr->is_virtual_register()) {
   159     return -1;
   160   } else if (opr->is_single_cpu()) {
   161     return -1;
   162   } else if (opr->is_double_cpu()) {
   163     return opr->cpu_regnrHi();
   164 #ifdef X86
   165   } else if (opr->is_single_xmm()) {
   166     return -1;
   167   } else if (opr->is_double_xmm()) {
   168     return -1;
   169 #endif
   170   } else if (opr->is_single_fpu()) {
   171     return -1;
   172   } else if (opr->is_double_fpu()) {
   173     return opr->fpu_regnrHi() + pd_first_fpu_reg;
   174   } else {
   175     ShouldNotReachHere();
   176     return -1;
   177   }
   178 }
   181 // ********** functions for classification of intervals
   183 bool LinearScan::is_precolored_interval(const Interval* i) {
   184   return i->reg_num() < LinearScan::nof_regs;
   185 }
   187 bool LinearScan::is_virtual_interval(const Interval* i) {
   188   return i->reg_num() >= LIR_OprDesc::vreg_base;
   189 }
   191 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
   192   return i->reg_num() < LinearScan::nof_cpu_regs;
   193 }
   195 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
   196 #if defined(__SOFTFP__) || defined(E500V2)
   197   return i->reg_num() >= LIR_OprDesc::vreg_base;
   198 #else
   199   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
   200 #endif // __SOFTFP__ or E500V2
   201 }
   203 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
   204   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
   205 }
   207 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
   208 #if defined(__SOFTFP__) || defined(E500V2)
   209   return false;
   210 #else
   211   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
   212 #endif // __SOFTFP__ or E500V2
   213 }
   215 bool LinearScan::is_in_fpu_register(const Interval* i) {
   216   // fixed intervals not needed for FPU stack allocation
   217   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
   218 }
   220 bool LinearScan::is_oop_interval(const Interval* i) {
   221   // fixed intervals never contain oops
   222   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
   223 }
   226 // ********** General helper functions
   228 // compute next unused stack index that can be used for spilling
   229 int LinearScan::allocate_spill_slot(bool double_word) {
   230   int spill_slot;
   231   if (double_word) {
   232     if ((_max_spills & 1) == 1) {
   233       // alignment of double-word values
   234       // the hole because of the alignment is filled with the next single-word value
   235       assert(_unused_spill_slot == -1, "wasting a spill slot");
   236       _unused_spill_slot = _max_spills;
   237       _max_spills++;
   238     }
   239     spill_slot = _max_spills;
   240     _max_spills += 2;
   242   } else if (_unused_spill_slot != -1) {
   243     // re-use hole that was the result of a previous double-word alignment
   244     spill_slot = _unused_spill_slot;
   245     _unused_spill_slot = -1;
   247   } else {
   248     spill_slot = _max_spills;
   249     _max_spills++;
   250   }
   252   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
   254   // the class OopMapValue uses only 11 bits for storing the name of the
   255   // oop location. So a stack slot bigger than 2^11 leads to an overflow
   256   // that is not reported in product builds. Prevent this by checking the
   257   // spill slot here (altough this value and the later used location name
   258   // are slightly different)
   259   if (result > 2000) {
   260     bailout("too many stack slots used");
   261   }
   263   return result;
   264 }
   266 void LinearScan::assign_spill_slot(Interval* it) {
   267   // assign the canonical spill slot of the parent (if a part of the interval
   268   // is already spilled) or allocate a new spill slot
   269   if (it->canonical_spill_slot() >= 0) {
   270     it->assign_reg(it->canonical_spill_slot());
   271   } else {
   272     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
   273     it->set_canonical_spill_slot(spill);
   274     it->assign_reg(spill);
   275   }
   276 }
   278 void LinearScan::propagate_spill_slots() {
   279   if (!frame_map()->finalize_frame(max_spills())) {
   280     bailout("frame too large");
   281   }
   282 }
   284 // create a new interval with a predefined reg_num
   285 // (only used for parent intervals that are created during the building phase)
   286 Interval* LinearScan::create_interval(int reg_num) {
   287   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
   289   Interval* interval = new Interval(reg_num);
   290   _intervals.at_put(reg_num, interval);
   292   // assign register number for precolored intervals
   293   if (reg_num < LIR_OprDesc::vreg_base) {
   294     interval->assign_reg(reg_num);
   295   }
   296   return interval;
   297 }
   299 // assign a new reg_num to the interval and append it to the list of intervals
   300 // (only used for child intervals that are created during register allocation)
   301 void LinearScan::append_interval(Interval* it) {
   302   it->set_reg_num(_intervals.length());
   303   _intervals.append(it);
   304   _new_intervals_from_allocation->append(it);
   305 }
   307 // copy the vreg-flags if an interval is split
   308 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
   309   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
   310     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
   311   }
   312   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
   313     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
   314   }
   316   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
   317   //       intervals (only the very beginning of the interval must be in memory)
   318 }
   321 // ********** spill move optimization
   322 // eliminate moves from register to stack if stack slot is known to be correct
   324 // called during building of intervals
   325 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
   326   assert(interval->is_split_parent(), "can only be called for split parents");
   328   switch (interval->spill_state()) {
   329     case noDefinitionFound:
   330       assert(interval->spill_definition_pos() == -1, "must no be set before");
   331       interval->set_spill_definition_pos(def_pos);
   332       interval->set_spill_state(oneDefinitionFound);
   333       break;
   335     case oneDefinitionFound:
   336       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
   337       if (def_pos < interval->spill_definition_pos() - 2) {
   338         // second definition found, so no spill optimization possible for this interval
   339         interval->set_spill_state(noOptimization);
   340       } else {
   341         // two consecutive definitions (because of two-operand LIR form)
   342         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
   343       }
   344       break;
   346     case noOptimization:
   347       // nothing to do
   348       break;
   350     default:
   351       assert(false, "other states not allowed at this time");
   352   }
   353 }
   355 // called during register allocation
   356 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
   357   switch (interval->spill_state()) {
   358     case oneDefinitionFound: {
   359       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
   360       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
   362       if (def_loop_depth < spill_loop_depth) {
   363         // the loop depth of the spilling position is higher then the loop depth
   364         // at the definition of the interval -> move write to memory out of loop
   365         // by storing at definitin of the interval
   366         interval->set_spill_state(storeAtDefinition);
   367       } else {
   368         // the interval is currently spilled only once, so for now there is no
   369         // reason to store the interval at the definition
   370         interval->set_spill_state(oneMoveInserted);
   371       }
   372       break;
   373     }
   375     case oneMoveInserted: {
   376       // the interval is spilled more then once, so it is better to store it to
   377       // memory at the definition
   378       interval->set_spill_state(storeAtDefinition);
   379       break;
   380     }
   382     case storeAtDefinition:
   383     case startInMemory:
   384     case noOptimization:
   385     case noDefinitionFound:
   386       // nothing to do
   387       break;
   389     default:
   390       assert(false, "other states not allowed at this time");
   391   }
   392 }
   395 bool LinearScan::must_store_at_definition(const Interval* i) {
   396   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
   397 }
   399 // called once before asignment of register numbers
   400 void LinearScan::eliminate_spill_moves() {
   401   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
   402   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
   404   // collect all intervals that must be stored after their definion.
   405   // the list is sorted by Interval::spill_definition_pos
   406   Interval* interval;
   407   Interval* temp_list;
   408   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
   410 #ifdef ASSERT
   411   Interval* prev = NULL;
   412   Interval* temp = interval;
   413   while (temp != Interval::end()) {
   414     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
   415     if (prev != NULL) {
   416       assert(temp->from() >= prev->from(), "intervals not sorted");
   417       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
   418     }
   420     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
   421     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
   422     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
   424     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
   426     temp = temp->next();
   427   }
   428 #endif
   430   LIR_InsertionBuffer insertion_buffer;
   431   int num_blocks = block_count();
   432   for (int i = 0; i < num_blocks; i++) {
   433     BlockBegin* block = block_at(i);
   434     LIR_OpList* instructions = block->lir()->instructions_list();
   435     int         num_inst = instructions->length();
   436     bool        has_new = false;
   438     // iterate all instructions of the block. skip the first because it is always a label
   439     for (int j = 1; j < num_inst; j++) {
   440       LIR_Op* op = instructions->at(j);
   441       int op_id = op->id();
   443       if (op_id == -1) {
   444         // remove move from register to stack if the stack slot is guaranteed to be correct.
   445         // only moves that have been inserted by LinearScan can be removed.
   446         assert(op->code() == lir_move, "only moves can have a op_id of -1");
   447         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
   448         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
   450         LIR_Op1* op1 = (LIR_Op1*)op;
   451         Interval* interval = interval_at(op1->result_opr()->vreg_number());
   453         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
   454           // move target is a stack slot that is always correct, so eliminate instruction
   455           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
   456           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
   457         }
   459       } else {
   460         // insert move from register to stack just after the beginning of the interval
   461         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
   462         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
   464         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
   465           if (!has_new) {
   466             // prepare insertion buffer (appended when all instructions of the block are processed)
   467             insertion_buffer.init(block->lir());
   468             has_new = true;
   469           }
   471           LIR_Opr from_opr = operand_for_interval(interval);
   472           LIR_Opr to_opr = canonical_spill_opr(interval);
   473           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
   474           assert(to_opr->is_stack(), "to operand must be a stack slot");
   476           insertion_buffer.move(j, from_opr, to_opr);
   477           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
   479           interval = interval->next();
   480         }
   481       }
   482     } // end of instruction iteration
   484     if (has_new) {
   485       block->lir()->append(&insertion_buffer);
   486     }
   487   } // end of block iteration
   489   assert(interval == Interval::end(), "missed an interval");
   490 }
   493 // ********** Phase 1: number all instructions in all blocks
   494 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
   496 void LinearScan::number_instructions() {
   497   {
   498     // dummy-timer to measure the cost of the timer itself
   499     // (this time is then subtracted from all other timers to get the real value)
   500     TIME_LINEAR_SCAN(timer_do_nothing);
   501   }
   502   TIME_LINEAR_SCAN(timer_number_instructions);
   504   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
   505   int num_blocks = block_count();
   506   int num_instructions = 0;
   507   int i;
   508   for (i = 0; i < num_blocks; i++) {
   509     num_instructions += block_at(i)->lir()->instructions_list()->length();
   510   }
   512   // initialize with correct length
   513   _lir_ops = LIR_OpArray(num_instructions);
   514   _block_of_op = BlockBeginArray(num_instructions);
   516   int op_id = 0;
   517   int idx = 0;
   519   for (i = 0; i < num_blocks; i++) {
   520     BlockBegin* block = block_at(i);
   521     block->set_first_lir_instruction_id(op_id);
   522     LIR_OpList* instructions = block->lir()->instructions_list();
   524     int num_inst = instructions->length();
   525     for (int j = 0; j < num_inst; j++) {
   526       LIR_Op* op = instructions->at(j);
   527       op->set_id(op_id);
   529       _lir_ops.at_put(idx, op);
   530       _block_of_op.at_put(idx, block);
   531       assert(lir_op_with_id(op_id) == op, "must match");
   533       idx++;
   534       op_id += 2; // numbering of lir_ops by two
   535     }
   536     block->set_last_lir_instruction_id(op_id - 2);
   537   }
   538   assert(idx == num_instructions, "must match");
   539   assert(idx * 2 == op_id, "must match");
   541   _has_call = BitMap(num_instructions); _has_call.clear();
   542   _has_info = BitMap(num_instructions); _has_info.clear();
   543 }
   546 // ********** Phase 2: compute local live sets separately for each block
   547 // (sets live_gen and live_kill for each block)
   549 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
   550   LIR_Opr opr = value->operand();
   551   Constant* con = value->as_Constant();
   553   // check some asumptions about debug information
   554   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
   555   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
   556   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
   558   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   559     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   560     int reg = opr->vreg_number();
   561     if (!live_kill.at(reg)) {
   562       live_gen.set_bit(reg);
   563       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
   564     }
   565   }
   566 }
   569 void LinearScan::compute_local_live_sets() {
   570   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
   572   int  num_blocks = block_count();
   573   int  live_size = live_set_size();
   574   bool local_has_fpu_registers = false;
   575   int  local_num_calls = 0;
   576   LIR_OpVisitState visitor;
   578   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
   579   local_interval_in_loop.clear();
   581   // iterate all blocks
   582   for (int i = 0; i < num_blocks; i++) {
   583     BlockBegin* block = block_at(i);
   585     BitMap live_gen(live_size);  live_gen.clear();
   586     BitMap live_kill(live_size); live_kill.clear();
   588     if (block->is_set(BlockBegin::exception_entry_flag)) {
   589       // Phi functions at the begin of an exception handler are
   590       // implicitly defined (= killed) at the beginning of the block.
   591       for_each_phi_fun(block, phi,
   592         live_kill.set_bit(phi->operand()->vreg_number())
   593       );
   594     }
   596     LIR_OpList* instructions = block->lir()->instructions_list();
   597     int num_inst = instructions->length();
   599     // iterate all instructions of the block. skip the first because it is always a label
   600     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
   601     for (int j = 1; j < num_inst; j++) {
   602       LIR_Op* op = instructions->at(j);
   604       // visit operation to collect all operands
   605       visitor.visit(op);
   607       if (visitor.has_call()) {
   608         _has_call.set_bit(op->id() >> 1);
   609         local_num_calls++;
   610       }
   611       if (visitor.info_count() > 0) {
   612         _has_info.set_bit(op->id() >> 1);
   613       }
   615       // iterate input operands of instruction
   616       int k, n, reg;
   617       n = visitor.opr_count(LIR_OpVisitState::inputMode);
   618       for (k = 0; k < n; k++) {
   619         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
   620         assert(opr->is_register(), "visitor should only return register operands");
   622         if (opr->is_virtual_register()) {
   623           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   624           reg = opr->vreg_number();
   625           if (!live_kill.at(reg)) {
   626             live_gen.set_bit(reg);
   627             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
   628           }
   629           if (block->loop_index() >= 0) {
   630             local_interval_in_loop.set_bit(reg, block->loop_index());
   631           }
   632           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   633         }
   635 #ifdef ASSERT
   636         // fixed intervals are never live at block boundaries, so
   637         // they need not be processed in live sets.
   638         // this is checked by these assertions to be sure about it.
   639         // the entry block may have incoming values in registers, which is ok.
   640         if (!opr->is_virtual_register() && block != ir()->start()) {
   641           reg = reg_num(opr);
   642           if (is_processed_reg_num(reg)) {
   643             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   644           }
   645           reg = reg_numHi(opr);
   646           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   647             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
   648           }
   649         }
   650 #endif
   651       }
   653       // Add uses of live locals from interpreter's point of view for proper debug information generation
   654       n = visitor.info_count();
   655       for (k = 0; k < n; k++) {
   656         CodeEmitInfo* info = visitor.info_at(k);
   657         ValueStack* stack = info->stack();
   658         for_each_state_value(stack, value,
   659           set_live_gen_kill(value, op, live_gen, live_kill)
   660         );
   661       }
   663       // iterate temp operands of instruction
   664       n = visitor.opr_count(LIR_OpVisitState::tempMode);
   665       for (k = 0; k < n; k++) {
   666         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
   667         assert(opr->is_register(), "visitor should only return register operands");
   669         if (opr->is_virtual_register()) {
   670           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   671           reg = opr->vreg_number();
   672           live_kill.set_bit(reg);
   673           if (block->loop_index() >= 0) {
   674             local_interval_in_loop.set_bit(reg, block->loop_index());
   675           }
   676           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   677         }
   679 #ifdef ASSERT
   680         // fixed intervals are never live at block boundaries, so
   681         // they need not be processed in live sets
   682         // process them only in debug mode so that this can be checked
   683         if (!opr->is_virtual_register()) {
   684           reg = reg_num(opr);
   685           if (is_processed_reg_num(reg)) {
   686             live_kill.set_bit(reg_num(opr));
   687           }
   688           reg = reg_numHi(opr);
   689           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   690             live_kill.set_bit(reg);
   691           }
   692         }
   693 #endif
   694       }
   696       // iterate output operands of instruction
   697       n = visitor.opr_count(LIR_OpVisitState::outputMode);
   698       for (k = 0; k < n; k++) {
   699         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
   700         assert(opr->is_register(), "visitor should only return register operands");
   702         if (opr->is_virtual_register()) {
   703           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   704           reg = opr->vreg_number();
   705           live_kill.set_bit(reg);
   706           if (block->loop_index() >= 0) {
   707             local_interval_in_loop.set_bit(reg, block->loop_index());
   708           }
   709           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
   710         }
   712 #ifdef ASSERT
   713         // fixed intervals are never live at block boundaries, so
   714         // they need not be processed in live sets
   715         // process them only in debug mode so that this can be checked
   716         if (!opr->is_virtual_register()) {
   717           reg = reg_num(opr);
   718           if (is_processed_reg_num(reg)) {
   719             live_kill.set_bit(reg_num(opr));
   720           }
   721           reg = reg_numHi(opr);
   722           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   723             live_kill.set_bit(reg);
   724           }
   725         }
   726 #endif
   727       }
   728     } // end of instruction iteration
   730     block->set_live_gen (live_gen);
   731     block->set_live_kill(live_kill);
   732     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
   733     block->set_live_out (BitMap(live_size)); block->live_out().clear();
   735     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
   736     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
   737   } // end of block iteration
   739   // propagate local calculated information into LinearScan object
   740   _has_fpu_registers = local_has_fpu_registers;
   741   compilation()->set_has_fpu_code(local_has_fpu_registers);
   743   _num_calls = local_num_calls;
   744   _interval_in_loop = local_interval_in_loop;
   745 }
   748 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
   749 // (sets live_in and live_out for each block)
   751 void LinearScan::compute_global_live_sets() {
   752   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
   754   int  num_blocks = block_count();
   755   bool change_occurred;
   756   bool change_occurred_in_block;
   757   int  iteration_count = 0;
   758   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
   760   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
   761   // The loop is executed until a fixpoint is reached (no changes in an iteration)
   762   // Exception handlers must be processed because not all live values are
   763   // present in the state array, e.g. because of global value numbering
   764   do {
   765     change_occurred = false;
   767     // iterate all blocks in reverse order
   768     for (int i = num_blocks - 1; i >= 0; i--) {
   769       BlockBegin* block = block_at(i);
   771       change_occurred_in_block = false;
   773       // live_out(block) is the union of live_in(sux), for successors sux of block
   774       int n = block->number_of_sux();
   775       int e = block->number_of_exception_handlers();
   776       if (n + e > 0) {
   777         // block has successors
   778         if (n > 0) {
   779           live_out.set_from(block->sux_at(0)->live_in());
   780           for (int j = 1; j < n; j++) {
   781             live_out.set_union(block->sux_at(j)->live_in());
   782           }
   783         } else {
   784           live_out.clear();
   785         }
   786         for (int j = 0; j < e; j++) {
   787           live_out.set_union(block->exception_handler_at(j)->live_in());
   788         }
   790         if (!block->live_out().is_same(live_out)) {
   791           // A change occurred.  Swap the old and new live out sets to avoid copying.
   792           BitMap temp = block->live_out();
   793           block->set_live_out(live_out);
   794           live_out = temp;
   796           change_occurred = true;
   797           change_occurred_in_block = true;
   798         }
   799       }
   801       if (iteration_count == 0 || change_occurred_in_block) {
   802         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
   803         // note: live_in has to be computed only in first iteration or if live_out has changed!
   804         BitMap live_in = block->live_in();
   805         live_in.set_from(block->live_out());
   806         live_in.set_difference(block->live_kill());
   807         live_in.set_union(block->live_gen());
   808       }
   810 #ifndef PRODUCT
   811       if (TraceLinearScanLevel >= 4) {
   812         char c = ' ';
   813         if (iteration_count == 0 || change_occurred_in_block) {
   814           c = '*';
   815         }
   816         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
   817         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
   818       }
   819 #endif
   820     }
   821     iteration_count++;
   823     if (change_occurred && iteration_count > 50) {
   824       BAILOUT("too many iterations in compute_global_live_sets");
   825     }
   826   } while (change_occurred);
   829 #ifdef ASSERT
   830   // check that fixed intervals are not live at block boundaries
   831   // (live set must be empty at fixed intervals)
   832   for (int i = 0; i < num_blocks; i++) {
   833     BlockBegin* block = block_at(i);
   834     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
   835       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
   836       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
   837       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
   838     }
   839   }
   840 #endif
   842   // check that the live_in set of the first block is empty
   843   BitMap live_in_args(ir()->start()->live_in().size());
   844   live_in_args.clear();
   845   if (!ir()->start()->live_in().is_same(live_in_args)) {
   846 #ifdef ASSERT
   847     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
   848     tty->print_cr("affected registers:");
   849     print_bitmap(ir()->start()->live_in());
   851     // print some additional information to simplify debugging
   852     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
   853       if (ir()->start()->live_in().at(i)) {
   854         Instruction* instr = gen()->instruction_for_vreg(i);
   855         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
   857         for (int j = 0; j < num_blocks; j++) {
   858           BlockBegin* block = block_at(j);
   859           if (block->live_gen().at(i)) {
   860             tty->print_cr("  used in block B%d", block->block_id());
   861           }
   862           if (block->live_kill().at(i)) {
   863             tty->print_cr("  defined in block B%d", block->block_id());
   864           }
   865         }
   866       }
   867     }
   869 #endif
   870     // when this fails, virtual registers are used before they are defined.
   871     assert(false, "live_in set of first block must be empty");
   872     // bailout of if this occurs in product mode.
   873     bailout("live_in set of first block not empty");
   874   }
   875 }
   878 // ********** Phase 4: build intervals
   879 // (fills the list _intervals)
   881 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
   882   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
   883   LIR_Opr opr = value->operand();
   884   Constant* con = value->as_Constant();
   886   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
   887     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   888     add_use(opr, from, to, use_kind);
   889   }
   890 }
   893 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
   894   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
   895   assert(opr->is_register(), "should not be called otherwise");
   897   if (opr->is_virtual_register()) {
   898     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   899     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
   901   } else {
   902     int reg = reg_num(opr);
   903     if (is_processed_reg_num(reg)) {
   904       add_def(reg, def_pos, use_kind, opr->type_register());
   905     }
   906     reg = reg_numHi(opr);
   907     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   908       add_def(reg, def_pos, use_kind, opr->type_register());
   909     }
   910   }
   911 }
   913 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
   914   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
   915   assert(opr->is_register(), "should not be called otherwise");
   917   if (opr->is_virtual_register()) {
   918     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   919     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
   921   } else {
   922     int reg = reg_num(opr);
   923     if (is_processed_reg_num(reg)) {
   924       add_use(reg, from, to, use_kind, opr->type_register());
   925     }
   926     reg = reg_numHi(opr);
   927     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   928       add_use(reg, from, to, use_kind, opr->type_register());
   929     }
   930   }
   931 }
   933 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
   934   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
   935   assert(opr->is_register(), "should not be called otherwise");
   937   if (opr->is_virtual_register()) {
   938     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
   939     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
   941   } else {
   942     int reg = reg_num(opr);
   943     if (is_processed_reg_num(reg)) {
   944       add_temp(reg, temp_pos, use_kind, opr->type_register());
   945     }
   946     reg = reg_numHi(opr);
   947     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
   948       add_temp(reg, temp_pos, use_kind, opr->type_register());
   949     }
   950   }
   951 }
   954 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
   955   Interval* interval = interval_at(reg_num);
   956   if (interval != NULL) {
   957     assert(interval->reg_num() == reg_num, "wrong interval");
   959     if (type != T_ILLEGAL) {
   960       interval->set_type(type);
   961     }
   963     Range* r = interval->first();
   964     if (r->from() <= def_pos) {
   965       // Update the starting point (when a range is first created for a use, its
   966       // start is the beginning of the current block until a def is encountered.)
   967       r->set_from(def_pos);
   968       interval->add_use_pos(def_pos, use_kind);
   970     } else {
   971       // Dead value - make vacuous interval
   972       // also add use_kind for dead intervals
   973       interval->add_range(def_pos, def_pos + 1);
   974       interval->add_use_pos(def_pos, use_kind);
   975       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
   976     }
   978   } else {
   979     // Dead value - make vacuous interval
   980     // also add use_kind for dead intervals
   981     interval = create_interval(reg_num);
   982     if (type != T_ILLEGAL) {
   983       interval->set_type(type);
   984     }
   986     interval->add_range(def_pos, def_pos + 1);
   987     interval->add_use_pos(def_pos, use_kind);
   988     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
   989   }
   991   change_spill_definition_pos(interval, def_pos);
   992   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
   993         // detection of method-parameters and roundfp-results
   994         // TODO: move this directly to position where use-kind is computed
   995     interval->set_spill_state(startInMemory);
   996   }
   997 }
   999 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
  1000   Interval* interval = interval_at(reg_num);
  1001   if (interval == NULL) {
  1002     interval = create_interval(reg_num);
  1004   assert(interval->reg_num() == reg_num, "wrong interval");
  1006   if (type != T_ILLEGAL) {
  1007     interval->set_type(type);
  1010   interval->add_range(from, to);
  1011   interval->add_use_pos(to, use_kind);
  1014 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
  1015   Interval* interval = interval_at(reg_num);
  1016   if (interval == NULL) {
  1017     interval = create_interval(reg_num);
  1019   assert(interval->reg_num() == reg_num, "wrong interval");
  1021   if (type != T_ILLEGAL) {
  1022     interval->set_type(type);
  1025   interval->add_range(temp_pos, temp_pos + 1);
  1026   interval->add_use_pos(temp_pos, use_kind);
  1030 // the results of this functions are used for optimizing spilling and reloading
  1031 // if the functions return shouldHaveRegister and the interval is spilled,
  1032 // it is not reloaded to a register.
  1033 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
  1034   if (op->code() == lir_move) {
  1035     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1036     LIR_Op1* move = (LIR_Op1*)op;
  1037     LIR_Opr res = move->result_opr();
  1038     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1040     if (result_in_memory) {
  1041       // Begin of an interval with must_start_in_memory set.
  1042       // This interval will always get a stack slot first, so return noUse.
  1043       return noUse;
  1045     } else if (move->in_opr()->is_stack()) {
  1046       // method argument (condition must be equal to handle_method_arguments)
  1047       return noUse;
  1049     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1050       // Move from register to register
  1051       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1052         // special handling of phi-function moves inside osr-entry blocks
  1053         // input operand must have a register instead of output operand (leads to better register allocation)
  1054         return shouldHaveRegister;
  1059   if (opr->is_virtual() &&
  1060       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
  1061     // result is a stack-slot, so prevent immediate reloading
  1062     return noUse;
  1065   // all other operands require a register
  1066   return mustHaveRegister;
  1069 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
  1070   if (op->code() == lir_move) {
  1071     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
  1072     LIR_Op1* move = (LIR_Op1*)op;
  1073     LIR_Opr res = move->result_opr();
  1074     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
  1076     if (result_in_memory) {
  1077       // Move to an interval with must_start_in_memory set.
  1078       // To avoid moves from stack to stack (not allowed) force the input operand to a register
  1079       return mustHaveRegister;
  1081     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
  1082       // Move from register to register
  1083       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
  1084         // special handling of phi-function moves inside osr-entry blocks
  1085         // input operand must have a register instead of output operand (leads to better register allocation)
  1086         return mustHaveRegister;
  1089       // The input operand is not forced to a register (moves from stack to register are allowed),
  1090       // but it is faster if the input operand is in a register
  1091       return shouldHaveRegister;
  1096 #ifdef X86
  1097   if (op->code() == lir_cmove) {
  1098     // conditional moves can handle stack operands
  1099     assert(op->result_opr()->is_register(), "result must always be in a register");
  1100     return shouldHaveRegister;
  1103   // optimizations for second input operand of arithmehtic operations on Intel
  1104   // this operand is allowed to be on the stack in some cases
  1105   BasicType opr_type = opr->type_register();
  1106   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
  1107     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
  1108       // SSE float instruction (T_DOUBLE only supported with SSE2)
  1109       switch (op->code()) {
  1110         case lir_cmp:
  1111         case lir_add:
  1112         case lir_sub:
  1113         case lir_mul:
  1114         case lir_div:
  1116           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1117           LIR_Op2* op2 = (LIR_Op2*)op;
  1118           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1119             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1120             return shouldHaveRegister;
  1124     } else {
  1125       // FPU stack float instruction
  1126       switch (op->code()) {
  1127         case lir_add:
  1128         case lir_sub:
  1129         case lir_mul:
  1130         case lir_div:
  1132           assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1133           LIR_Op2* op2 = (LIR_Op2*)op;
  1134           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1135             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1136             return shouldHaveRegister;
  1141     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
  1142     // Since 64bit logical operations do not current support operands on stack, we have to make sure
  1143     // T_OBJECT doesn't get spilled along with T_LONG.
  1144   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
  1145     // integer instruction (note: long operands must always be in register)
  1146     switch (op->code()) {
  1147       case lir_cmp:
  1148       case lir_add:
  1149       case lir_sub:
  1150       case lir_logic_and:
  1151       case lir_logic_or:
  1152       case lir_logic_xor:
  1154         assert(op->as_Op2() != NULL, "must be LIR_Op2");
  1155         LIR_Op2* op2 = (LIR_Op2*)op;
  1156         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
  1157           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
  1158           return shouldHaveRegister;
  1163 #endif // X86
  1165   // all other operands require a register
  1166   return mustHaveRegister;
  1170 void LinearScan::handle_method_arguments(LIR_Op* op) {
  1171   // special handling for method arguments (moves from stack to virtual register):
  1172   // the interval gets no register assigned, but the stack slot.
  1173   // it is split before the first use by the register allocator.
  1175   if (op->code() == lir_move) {
  1176     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1177     LIR_Op1* move = (LIR_Op1*)op;
  1179     if (move->in_opr()->is_stack()) {
  1180 #ifdef ASSERT
  1181       int arg_size = compilation()->method()->arg_size();
  1182       LIR_Opr o = move->in_opr();
  1183       if (o->is_single_stack()) {
  1184         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
  1185       } else if (o->is_double_stack()) {
  1186         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
  1187       } else {
  1188         ShouldNotReachHere();
  1191       assert(move->id() > 0, "invalid id");
  1192       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
  1193       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
  1195       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
  1196 #endif
  1198       Interval* interval = interval_at(reg_num(move->result_opr()));
  1200       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
  1201       interval->set_canonical_spill_slot(stack_slot);
  1202       interval->assign_reg(stack_slot);
  1207 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
  1208   // special handling for doubleword move from memory to register:
  1209   // in this case the registers of the input address and the result
  1210   // registers must not overlap -> add a temp range for the input registers
  1211   if (op->code() == lir_move) {
  1212     assert(op->as_Op1() != NULL, "must be LIR_Op1");
  1213     LIR_Op1* move = (LIR_Op1*)op;
  1215     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
  1216       LIR_Address* address = move->in_opr()->as_address_ptr();
  1217       if (address != NULL) {
  1218         if (address->base()->is_valid()) {
  1219           add_temp(address->base(), op->id(), noUse);
  1221         if (address->index()->is_valid()) {
  1222           add_temp(address->index(), op->id(), noUse);
  1229 void LinearScan::add_register_hints(LIR_Op* op) {
  1230   switch (op->code()) {
  1231     case lir_move:      // fall through
  1232     case lir_convert: {
  1233       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
  1234       LIR_Op1* move = (LIR_Op1*)op;
  1236       LIR_Opr move_from = move->in_opr();
  1237       LIR_Opr move_to = move->result_opr();
  1239       if (move_to->is_register() && move_from->is_register()) {
  1240         Interval* from = interval_at(reg_num(move_from));
  1241         Interval* to = interval_at(reg_num(move_to));
  1242         if (from != NULL && to != NULL) {
  1243           to->set_register_hint(from);
  1244           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
  1247       break;
  1249     case lir_cmove: {
  1250       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
  1251       LIR_Op2* cmove = (LIR_Op2*)op;
  1253       LIR_Opr move_from = cmove->in_opr1();
  1254       LIR_Opr move_to = cmove->result_opr();
  1256       if (move_to->is_register() && move_from->is_register()) {
  1257         Interval* from = interval_at(reg_num(move_from));
  1258         Interval* to = interval_at(reg_num(move_to));
  1259         if (from != NULL && to != NULL) {
  1260           to->set_register_hint(from);
  1261           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
  1264       break;
  1270 void LinearScan::build_intervals() {
  1271   TIME_LINEAR_SCAN(timer_build_intervals);
  1273   // initialize interval list with expected number of intervals
  1274   // (32 is added to have some space for split children without having to resize the list)
  1275   _intervals = IntervalList(num_virtual_regs() + 32);
  1276   // initialize all slots that are used by build_intervals
  1277   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
  1279   // create a list with all caller-save registers (cpu, fpu, xmm)
  1280   // when an instruction is a call, a temp range is created for all these registers
  1281   int num_caller_save_registers = 0;
  1282   int caller_save_registers[LinearScan::nof_regs];
  1284   int i;
  1285   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
  1286     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
  1287     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1288     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1289     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1292   // temp ranges for fpu registers are only created when the method has
  1293   // virtual fpu operands. Otherwise no allocation for fpu registers is
  1294   // perfomed and so the temp ranges would be useless
  1295   if (has_fpu_registers()) {
  1296 #ifdef X86
  1297     if (UseSSE < 2) {
  1298 #endif
  1299       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
  1300         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
  1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1305 #ifdef X86
  1307     if (UseSSE > 0) {
  1308       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
  1309         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
  1310         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
  1311         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
  1312         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
  1315 #endif
  1317   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
  1320   LIR_OpVisitState visitor;
  1322   // iterate all blocks in reverse order
  1323   for (i = block_count() - 1; i >= 0; i--) {
  1324     BlockBegin* block = block_at(i);
  1325     LIR_OpList* instructions = block->lir()->instructions_list();
  1326     int         block_from =   block->first_lir_instruction_id();
  1327     int         block_to =     block->last_lir_instruction_id();
  1329     assert(block_from == instructions->at(0)->id(), "must be");
  1330     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
  1332     // Update intervals for registers live at the end of this block;
  1333     BitMap live = block->live_out();
  1334     int size = (int)live.size();
  1335     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
  1336       assert(live.at(number), "should not stop here otherwise");
  1337       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
  1338       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
  1340       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
  1342       // add special use positions for loop-end blocks when the
  1343       // interval is used anywhere inside this loop.  It's possible
  1344       // that the block was part of a non-natural loop, so it might
  1345       // have an invalid loop index.
  1346       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
  1347           block->loop_index() != -1 &&
  1348           is_interval_in_loop(number, block->loop_index())) {
  1349         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
  1353     // iterate all instructions of the block in reverse order.
  1354     // skip the first instruction because it is always a label
  1355     // definitions of intervals are processed before uses
  1356     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
  1357     for (int j = instructions->length() - 1; j >= 1; j--) {
  1358       LIR_Op* op = instructions->at(j);
  1359       int op_id = op->id();
  1361       // visit operation to collect all operands
  1362       visitor.visit(op);
  1364       // add a temp range for each register if operation destroys caller-save registers
  1365       if (visitor.has_call()) {
  1366         for (int k = 0; k < num_caller_save_registers; k++) {
  1367           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
  1369         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
  1372       // Add any platform dependent temps
  1373       pd_add_temps(op);
  1375       // visit definitions (output and temp operands)
  1376       int k, n;
  1377       n = visitor.opr_count(LIR_OpVisitState::outputMode);
  1378       for (k = 0; k < n; k++) {
  1379         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
  1380         assert(opr->is_register(), "visitor should only return register operands");
  1381         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
  1384       n = visitor.opr_count(LIR_OpVisitState::tempMode);
  1385       for (k = 0; k < n; k++) {
  1386         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
  1387         assert(opr->is_register(), "visitor should only return register operands");
  1388         add_temp(opr, op_id, mustHaveRegister);
  1391       // visit uses (input operands)
  1392       n = visitor.opr_count(LIR_OpVisitState::inputMode);
  1393       for (k = 0; k < n; k++) {
  1394         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
  1395         assert(opr->is_register(), "visitor should only return register operands");
  1396         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
  1399       // Add uses of live locals from interpreter's point of view for proper
  1400       // debug information generation
  1401       // Treat these operands as temp values (if the life range is extended
  1402       // to a call site, the value would be in a register at the call otherwise)
  1403       n = visitor.info_count();
  1404       for (k = 0; k < n; k++) {
  1405         CodeEmitInfo* info = visitor.info_at(k);
  1406         ValueStack* stack = info->stack();
  1407         for_each_state_value(stack, value,
  1408           add_use(value, block_from, op_id + 1, noUse);
  1409         );
  1412       // special steps for some instructions (especially moves)
  1413       handle_method_arguments(op);
  1414       handle_doubleword_moves(op);
  1415       add_register_hints(op);
  1417     } // end of instruction iteration
  1418   } // end of block iteration
  1421   // add the range [0, 1[ to all fixed intervals
  1422   // -> the register allocator need not handle unhandled fixed intervals
  1423   for (int n = 0; n < LinearScan::nof_regs; n++) {
  1424     Interval* interval = interval_at(n);
  1425     if (interval != NULL) {
  1426       interval->add_range(0, 1);
  1432 // ********** Phase 5: actual register allocation
  1434 int LinearScan::interval_cmp(Interval** a, Interval** b) {
  1435   if (*a != NULL) {
  1436     if (*b != NULL) {
  1437       return (*a)->from() - (*b)->from();
  1438     } else {
  1439       return -1;
  1441   } else {
  1442     if (*b != NULL) {
  1443       return 1;
  1444     } else {
  1445       return 0;
  1450 #ifndef PRODUCT
  1451 bool LinearScan::is_sorted(IntervalArray* intervals) {
  1452   int from = -1;
  1453   int i, j;
  1454   for (i = 0; i < intervals->length(); i ++) {
  1455     Interval* it = intervals->at(i);
  1456     if (it != NULL) {
  1457       if (from > it->from()) {
  1458         assert(false, "");
  1459         return false;
  1461       from = it->from();
  1465   // check in both directions if sorted list and unsorted list contain same intervals
  1466   for (i = 0; i < interval_count(); i++) {
  1467     if (interval_at(i) != NULL) {
  1468       int num_found = 0;
  1469       for (j = 0; j < intervals->length(); j++) {
  1470         if (interval_at(i) == intervals->at(j)) {
  1471           num_found++;
  1474       assert(num_found == 1, "lists do not contain same intervals");
  1477   for (j = 0; j < intervals->length(); j++) {
  1478     int num_found = 0;
  1479     for (i = 0; i < interval_count(); i++) {
  1480       if (interval_at(i) == intervals->at(j)) {
  1481         num_found++;
  1484     assert(num_found == 1, "lists do not contain same intervals");
  1487   return true;
  1489 #endif
  1491 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
  1492   if (*prev != NULL) {
  1493     (*prev)->set_next(interval);
  1494   } else {
  1495     *first = interval;
  1497   *prev = interval;
  1500 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
  1501   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
  1503   *list1 = *list2 = Interval::end();
  1505   Interval* list1_prev = NULL;
  1506   Interval* list2_prev = NULL;
  1507   Interval* v;
  1509   const int n = _sorted_intervals->length();
  1510   for (int i = 0; i < n; i++) {
  1511     v = _sorted_intervals->at(i);
  1512     if (v == NULL) continue;
  1514     if (is_list1(v)) {
  1515       add_to_list(list1, &list1_prev, v);
  1516     } else if (is_list2 == NULL || is_list2(v)) {
  1517       add_to_list(list2, &list2_prev, v);
  1521   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
  1522   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
  1524   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1525   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
  1529 void LinearScan::sort_intervals_before_allocation() {
  1530   TIME_LINEAR_SCAN(timer_sort_intervals_before);
  1532   if (_needs_full_resort) {
  1533     // There is no known reason why this should occur but just in case...
  1534     assert(false, "should never occur");
  1535     // Re-sort existing interval list because an Interval::from() has changed
  1536     _sorted_intervals->sort(interval_cmp);
  1537     _needs_full_resort = false;
  1540   IntervalList* unsorted_list = &_intervals;
  1541   int unsorted_len = unsorted_list->length();
  1542   int sorted_len = 0;
  1543   int unsorted_idx;
  1544   int sorted_idx = 0;
  1545   int sorted_from_max = -1;
  1547   // calc number of items for sorted list (sorted list must not contain NULL values)
  1548   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1549     if (unsorted_list->at(unsorted_idx) != NULL) {
  1550       sorted_len++;
  1553   IntervalArray* sorted_list = new IntervalArray(sorted_len);
  1555   // special sorting algorithm: the original interval-list is almost sorted,
  1556   // only some intervals are swapped. So this is much faster than a complete QuickSort
  1557   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
  1558     Interval* cur_interval = unsorted_list->at(unsorted_idx);
  1560     if (cur_interval != NULL) {
  1561       int cur_from = cur_interval->from();
  1563       if (sorted_from_max <= cur_from) {
  1564         sorted_list->at_put(sorted_idx++, cur_interval);
  1565         sorted_from_max = cur_interval->from();
  1566       } else {
  1567         // the asumption that the intervals are already sorted failed,
  1568         // so this interval must be sorted in manually
  1569         int j;
  1570         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
  1571           sorted_list->at_put(j + 1, sorted_list->at(j));
  1573         sorted_list->at_put(j + 1, cur_interval);
  1574         sorted_idx++;
  1578   _sorted_intervals = sorted_list;
  1579   assert(is_sorted(_sorted_intervals), "intervals unsorted");
  1582 void LinearScan::sort_intervals_after_allocation() {
  1583   TIME_LINEAR_SCAN(timer_sort_intervals_after);
  1585   if (_needs_full_resort) {
  1586     // Re-sort existing interval list because an Interval::from() has changed
  1587     _sorted_intervals->sort(interval_cmp);
  1588     _needs_full_resort = false;
  1591   IntervalArray* old_list      = _sorted_intervals;
  1592   IntervalList*  new_list      = _new_intervals_from_allocation;
  1593   int old_len = old_list->length();
  1594   int new_len = new_list->length();
  1596   if (new_len == 0) {
  1597     // no intervals have been added during allocation, so sorted list is already up to date
  1598     assert(is_sorted(_sorted_intervals), "intervals unsorted");
  1599     return;
  1602   // conventional sort-algorithm for new intervals
  1603   new_list->sort(interval_cmp);
  1605   // merge old and new list (both already sorted) into one combined list
  1606   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
  1607   int old_idx = 0;
  1608   int new_idx = 0;
  1610   while (old_idx + new_idx < old_len + new_len) {
  1611     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
  1612       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
  1613       old_idx++;
  1614     } else {
  1615       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
  1616       new_idx++;
  1620   _sorted_intervals = combined_list;
  1621   assert(is_sorted(_sorted_intervals), "intervals unsorted");
  1625 void LinearScan::allocate_registers() {
  1626   TIME_LINEAR_SCAN(timer_allocate_registers);
  1628   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
  1629   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
  1631   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
  1632   if (has_fpu_registers()) {
  1633     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1634 #ifdef ASSERT
  1635   } else {
  1636     // fpu register allocation is omitted because no virtual fpu registers are present
  1637     // just check this again...
  1638     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
  1639     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
  1640 #endif
  1643   // allocate cpu registers
  1644   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
  1645   cpu_lsw.walk();
  1646   cpu_lsw.finish_allocation();
  1648   if (has_fpu_registers()) {
  1649     // allocate fpu registers
  1650     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
  1651     fpu_lsw.walk();
  1652     fpu_lsw.finish_allocation();
  1657 // ********** Phase 6: resolve data flow
  1658 // (insert moves at edges between blocks if intervals have been split)
  1660 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
  1661 // instead of returning NULL
  1662 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
  1663   Interval* result = interval->split_child_at_op_id(op_id, mode);
  1664   if (result != NULL) {
  1665     return result;
  1668   assert(false, "must find an interval, but do a clean bailout in product mode");
  1669   result = new Interval(LIR_OprDesc::vreg_base);
  1670   result->assign_reg(0);
  1671   result->set_type(T_INT);
  1672   BAILOUT_("LinearScan: interval is NULL", result);
  1676 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
  1677   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1678   assert(interval_at(reg_num) != NULL, "no interval found");
  1680   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
  1683 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
  1684   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1685   assert(interval_at(reg_num) != NULL, "no interval found");
  1687   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
  1690 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
  1691   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
  1692   assert(interval_at(reg_num) != NULL, "no interval found");
  1694   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
  1698 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1699   DEBUG_ONLY(move_resolver.check_empty());
  1701   const int num_regs = num_virtual_regs();
  1702   const int size = live_set_size();
  1703   const BitMap live_at_edge = to_block->live_in();
  1705   // visit all registers where the live_at_edge bit is set
  1706   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  1707     assert(r < num_regs, "live information set for not exisiting interval");
  1708     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
  1710     Interval* from_interval = interval_at_block_end(from_block, r);
  1711     Interval* to_interval = interval_at_block_begin(to_block, r);
  1713     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
  1714       // need to insert move instruction
  1715       move_resolver.add_mapping(from_interval, to_interval);
  1721 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
  1722   if (from_block->number_of_sux() <= 1) {
  1723     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
  1725     LIR_OpList* instructions = from_block->lir()->instructions_list();
  1726     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
  1727     if (branch != NULL) {
  1728       // insert moves before branch
  1729       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  1730       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
  1731     } else {
  1732       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
  1735   } else {
  1736     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
  1737 #ifdef ASSERT
  1738     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
  1740     // because the number of predecessor edges matches the number of
  1741     // successor edges, blocks which are reached by switch statements
  1742     // may have be more than one predecessor but it will be guaranteed
  1743     // that all predecessors will be the same.
  1744     for (int i = 0; i < to_block->number_of_preds(); i++) {
  1745       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
  1747 #endif
  1749     move_resolver.set_insert_position(to_block->lir(), 0);
  1754 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
  1755 void LinearScan::resolve_data_flow() {
  1756   TIME_LINEAR_SCAN(timer_resolve_data_flow);
  1758   int num_blocks = block_count();
  1759   MoveResolver move_resolver(this);
  1760   BitMap block_completed(num_blocks);  block_completed.clear();
  1761   BitMap already_resolved(num_blocks); already_resolved.clear();
  1763   int i;
  1764   for (i = 0; i < num_blocks; i++) {
  1765     BlockBegin* block = block_at(i);
  1767     // check if block has only one predecessor and only one successor
  1768     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
  1769       LIR_OpList* instructions = block->lir()->instructions_list();
  1770       assert(instructions->at(0)->code() == lir_label, "block must start with label");
  1771       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
  1772       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
  1774       // check if block is empty (only label and branch)
  1775       if (instructions->length() == 2) {
  1776         BlockBegin* pred = block->pred_at(0);
  1777         BlockBegin* sux = block->sux_at(0);
  1779         // prevent optimization of two consecutive blocks
  1780         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
  1781           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
  1782           block_completed.set_bit(block->linear_scan_number());
  1784           // directly resolve between pred and sux (without looking at the empty block between)
  1785           resolve_collect_mappings(pred, sux, move_resolver);
  1786           if (move_resolver.has_mappings()) {
  1787             move_resolver.set_insert_position(block->lir(), 0);
  1788             move_resolver.resolve_and_append_moves();
  1796   for (i = 0; i < num_blocks; i++) {
  1797     if (!block_completed.at(i)) {
  1798       BlockBegin* from_block = block_at(i);
  1799       already_resolved.set_from(block_completed);
  1801       int num_sux = from_block->number_of_sux();
  1802       for (int s = 0; s < num_sux; s++) {
  1803         BlockBegin* to_block = from_block->sux_at(s);
  1805         // check for duplicate edges between the same blocks (can happen with switch blocks)
  1806         if (!already_resolved.at(to_block->linear_scan_number())) {
  1807           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
  1808           already_resolved.set_bit(to_block->linear_scan_number());
  1810           // collect all intervals that have been split between from_block and to_block
  1811           resolve_collect_mappings(from_block, to_block, move_resolver);
  1812           if (move_resolver.has_mappings()) {
  1813             resolve_find_insert_pos(from_block, to_block, move_resolver);
  1814             move_resolver.resolve_and_append_moves();
  1823 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
  1824   if (interval_at(reg_num) == NULL) {
  1825     // if a phi function is never used, no interval is created -> ignore this
  1826     return;
  1829   Interval* interval = interval_at_block_begin(block, reg_num);
  1830   int reg = interval->assigned_reg();
  1831   int regHi = interval->assigned_regHi();
  1833   if ((reg < nof_regs && interval->always_in_memory()) ||
  1834       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
  1835     // the interval is split to get a short range that is located on the stack
  1836     // in the following two cases:
  1837     // * the interval started in memory (e.g. method parameter), but is currently in a register
  1838     //   this is an optimization for exception handling that reduces the number of moves that
  1839     //   are necessary for resolving the states when an exception uses this exception handler
  1840     // * the interval would be on the fpu stack at the begin of the exception handler
  1841     //   this is not allowed because of the complicated fpu stack handling on Intel
  1843     // range that will be spilled to memory
  1844     int from_op_id = block->first_lir_instruction_id();
  1845     int to_op_id = from_op_id + 1;  // short live range of length 1
  1846     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
  1847            "no split allowed between exception entry and first instruction");
  1849     if (interval->from() != from_op_id) {
  1850       // the part before from_op_id is unchanged
  1851       interval = interval->split(from_op_id);
  1852       interval->assign_reg(reg, regHi);
  1853       append_interval(interval);
  1854     } else {
  1855       _needs_full_resort = true;
  1857     assert(interval->from() == from_op_id, "must be true now");
  1859     Interval* spilled_part = interval;
  1860     if (interval->to() != to_op_id) {
  1861       // the part after to_op_id is unchanged
  1862       spilled_part = interval->split_from_start(to_op_id);
  1863       append_interval(spilled_part);
  1864       move_resolver.add_mapping(spilled_part, interval);
  1866     assign_spill_slot(spilled_part);
  1868     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
  1872 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
  1873   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
  1874   DEBUG_ONLY(move_resolver.check_empty());
  1876   // visit all registers where the live_in bit is set
  1877   int size = live_set_size();
  1878   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1879     resolve_exception_entry(block, r, move_resolver);
  1882   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1883   for_each_phi_fun(block, phi,
  1884     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
  1885   );
  1887   if (move_resolver.has_mappings()) {
  1888     // insert moves after first instruction
  1889     move_resolver.set_insert_position(block->lir(), 0);
  1890     move_resolver.resolve_and_append_moves();
  1895 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
  1896   if (interval_at(reg_num) == NULL) {
  1897     // if a phi function is never used, no interval is created -> ignore this
  1898     return;
  1901   // the computation of to_interval is equal to resolve_collect_mappings,
  1902   // but from_interval is more complicated because of phi functions
  1903   BlockBegin* to_block = handler->entry_block();
  1904   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
  1906   if (phi != NULL) {
  1907     // phi function of the exception entry block
  1908     // no moves are created for this phi function in the LIR_Generator, so the
  1909     // interval at the throwing instruction must be searched using the operands
  1910     // of the phi function
  1911     Value from_value = phi->operand_at(handler->phi_operand());
  1913     // with phi functions it can happen that the same from_value is used in
  1914     // multiple mappings, so notify move-resolver that this is allowed
  1915     move_resolver.set_multiple_reads_allowed();
  1917     Constant* con = from_value->as_Constant();
  1918     if (con != NULL && !con->is_pinned()) {
  1919       // unpinned constants may have no register, so add mapping from constant to interval
  1920       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
  1921     } else {
  1922       // search split child at the throwing op_id
  1923       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
  1924       move_resolver.add_mapping(from_interval, to_interval);
  1927   } else {
  1928     // no phi function, so use reg_num also for from_interval
  1929     // search split child at the throwing op_id
  1930     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
  1931     if (from_interval != to_interval) {
  1932       // optimization to reduce number of moves: when to_interval is on stack and
  1933       // the stack slot is known to be always correct, then no move is necessary
  1934       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
  1935         move_resolver.add_mapping(from_interval, to_interval);
  1941 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
  1942   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
  1944   DEBUG_ONLY(move_resolver.check_empty());
  1945   assert(handler->lir_op_id() == -1, "already processed this xhandler");
  1946   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
  1947   assert(handler->entry_code() == NULL, "code already present");
  1949   // visit all registers where the live_in bit is set
  1950   BlockBegin* block = handler->entry_block();
  1951   int size = live_set_size();
  1952   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
  1953     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
  1956   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
  1957   for_each_phi_fun(block, phi,
  1958     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
  1959   );
  1961   if (move_resolver.has_mappings()) {
  1962     LIR_List* entry_code = new LIR_List(compilation());
  1963     move_resolver.set_insert_position(entry_code, 0);
  1964     move_resolver.resolve_and_append_moves();
  1966     entry_code->jump(handler->entry_block());
  1967     handler->set_entry_code(entry_code);
  1972 void LinearScan::resolve_exception_handlers() {
  1973   MoveResolver move_resolver(this);
  1974   LIR_OpVisitState visitor;
  1975   int num_blocks = block_count();
  1977   int i;
  1978   for (i = 0; i < num_blocks; i++) {
  1979     BlockBegin* block = block_at(i);
  1980     if (block->is_set(BlockBegin::exception_entry_flag)) {
  1981       resolve_exception_entry(block, move_resolver);
  1985   for (i = 0; i < num_blocks; i++) {
  1986     BlockBegin* block = block_at(i);
  1987     LIR_List* ops = block->lir();
  1988     int num_ops = ops->length();
  1990     // iterate all instructions of the block. skip the first because it is always a label
  1991     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
  1992     for (int j = 1; j < num_ops; j++) {
  1993       LIR_Op* op = ops->at(j);
  1994       int op_id = op->id();
  1996       if (op_id != -1 && has_info(op_id)) {
  1997         // visit operation to collect all operands
  1998         visitor.visit(op);
  1999         assert(visitor.info_count() > 0, "should not visit otherwise");
  2001         XHandlers* xhandlers = visitor.all_xhandler();
  2002         int n = xhandlers->length();
  2003         for (int k = 0; k < n; k++) {
  2004           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
  2007 #ifdef ASSERT
  2008       } else {
  2009         visitor.visit(op);
  2010         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2011 #endif
  2018 // ********** Phase 7: assign register numbers back to LIR
  2019 // (includes computation of debug information and oop maps)
  2021 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
  2022   VMReg reg = interval->cached_vm_reg();
  2023   if (!reg->is_valid() ) {
  2024     reg = vm_reg_for_operand(operand_for_interval(interval));
  2025     interval->set_cached_vm_reg(reg);
  2027   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
  2028   return reg;
  2031 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
  2032   assert(opr->is_oop(), "currently only implemented for oop operands");
  2033   return frame_map()->regname(opr);
  2037 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
  2038   LIR_Opr opr = interval->cached_opr();
  2039   if (opr->is_illegal()) {
  2040     opr = calc_operand_for_interval(interval);
  2041     interval->set_cached_opr(opr);
  2044   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
  2045   return opr;
  2048 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
  2049   int assigned_reg = interval->assigned_reg();
  2050   BasicType type = interval->type();
  2052   if (assigned_reg >= nof_regs) {
  2053     // stack slot
  2054     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2055     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
  2057   } else {
  2058     // register
  2059     switch (type) {
  2060       case T_OBJECT: {
  2061         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2062         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2063         return LIR_OprFact::single_cpu_oop(assigned_reg);
  2066       case T_ADDRESS: {
  2067         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2068         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2069         return LIR_OprFact::single_cpu_address(assigned_reg);
  2072       case T_METADATA: {
  2073         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2074         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2075         return LIR_OprFact::single_cpu_metadata(assigned_reg);
  2078 #ifdef __SOFTFP__
  2079       case T_FLOAT:  // fall through
  2080 #endif // __SOFTFP__
  2081       case T_INT: {
  2082         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2083         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2084         return LIR_OprFact::single_cpu(assigned_reg);
  2087 #ifdef __SOFTFP__
  2088       case T_DOUBLE:  // fall through
  2089 #endif // __SOFTFP__
  2090       case T_LONG: {
  2091         int assigned_regHi = interval->assigned_regHi();
  2092         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
  2093         assert(num_physical_regs(T_LONG) == 1 ||
  2094                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
  2096         assert(assigned_reg != assigned_regHi, "invalid allocation");
  2097         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
  2098                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
  2099         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
  2100         if (requires_adjacent_regs(T_LONG)) {
  2101           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
  2104 #ifdef _LP64
  2105         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
  2106 #else
  2107 #if defined(SPARC) || defined(PPC)
  2108         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
  2109 #else
  2110         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
  2111 #endif // SPARC
  2112 #endif // LP64
  2115 #ifndef __SOFTFP__
  2116       case T_FLOAT: {
  2117 #ifdef X86
  2118         if (UseSSE >= 1) {
  2119           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2120           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2121           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
  2123 #endif
  2125         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2126         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
  2127         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
  2130       case T_DOUBLE: {
  2131 #ifdef X86
  2132         if (UseSSE >= 2) {
  2133           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
  2134           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
  2135           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
  2137 #endif
  2139 #ifdef SPARC
  2140         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2141         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2142         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2143         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
  2144 #elif defined(ARM)
  2145         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2146         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
  2147         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
  2148         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
  2149 #else
  2150         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
  2151         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
  2152         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
  2153 #endif
  2154         return result;
  2156 #endif // __SOFTFP__
  2158       default: {
  2159         ShouldNotReachHere();
  2160         return LIR_OprFact::illegalOpr;
  2166 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
  2167   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
  2168   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
  2171 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
  2172   assert(opr->is_virtual(), "should not call this otherwise");
  2174   Interval* interval = interval_at(opr->vreg_number());
  2175   assert(interval != NULL, "interval must exist");
  2177   if (op_id != -1) {
  2178 #ifdef ASSERT
  2179     BlockBegin* block = block_of_op_with_id(op_id);
  2180     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
  2181       // check if spill moves could have been appended at the end of this block, but
  2182       // before the branch instruction. So the split child information for this branch would
  2183       // be incorrect.
  2184       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
  2185       if (branch != NULL) {
  2186         if (block->live_out().at(opr->vreg_number())) {
  2187           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
  2188           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
  2192 #endif
  2194     // operands are not changed when an interval is split during allocation,
  2195     // so search the right interval here
  2196     interval = split_child_at_op_id(interval, op_id, mode);
  2199   LIR_Opr res = operand_for_interval(interval);
  2201 #ifdef X86
  2202   // new semantic for is_last_use: not only set on definite end of interval,
  2203   // but also before hole
  2204   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
  2205   // last use information is completely correct
  2206   // information is only needed for fpu stack allocation
  2207   if (res->is_fpu_register()) {
  2208     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
  2209       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
  2210       res = res->make_last_use();
  2213 #endif
  2215   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
  2217   return res;
  2221 #ifdef ASSERT
  2222 // some methods used to check correctness of debug information
  2224 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
  2225   if (values == NULL) {
  2226     return;
  2229   for (int i = 0; i < values->length(); i++) {
  2230     ScopeValue* value = values->at(i);
  2232     if (value->is_location()) {
  2233       Location location = ((LocationValue*)value)->location();
  2234       assert(location.where() == Location::on_stack, "value is in register");
  2239 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
  2240   if (values == NULL) {
  2241     return;
  2244   for (int i = 0; i < values->length(); i++) {
  2245     MonitorValue* value = values->at(i);
  2247     if (value->owner()->is_location()) {
  2248       Location location = ((LocationValue*)value->owner())->location();
  2249       assert(location.where() == Location::on_stack, "owner is in register");
  2251     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
  2255 void assert_equal(Location l1, Location l2) {
  2256   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
  2259 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
  2260   if (v1->is_location()) {
  2261     assert(v2->is_location(), "");
  2262     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
  2263   } else if (v1->is_constant_int()) {
  2264     assert(v2->is_constant_int(), "");
  2265     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
  2266   } else if (v1->is_constant_double()) {
  2267     assert(v2->is_constant_double(), "");
  2268     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
  2269   } else if (v1->is_constant_long()) {
  2270     assert(v2->is_constant_long(), "");
  2271     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
  2272   } else if (v1->is_constant_oop()) {
  2273     assert(v2->is_constant_oop(), "");
  2274     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
  2275   } else {
  2276     ShouldNotReachHere();
  2280 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
  2281   assert_equal(m1->owner(), m2->owner());
  2282   assert_equal(m1->basic_lock(), m2->basic_lock());
  2285 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
  2286   assert(d1->scope() == d2->scope(), "not equal");
  2287   assert(d1->bci() == d2->bci(), "not equal");
  2289   if (d1->locals() != NULL) {
  2290     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
  2291     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
  2292     for (int i = 0; i < d1->locals()->length(); i++) {
  2293       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
  2295   } else {
  2296     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
  2299   if (d1->expressions() != NULL) {
  2300     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
  2301     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
  2302     for (int i = 0; i < d1->expressions()->length(); i++) {
  2303       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
  2305   } else {
  2306     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
  2309   if (d1->monitors() != NULL) {
  2310     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
  2311     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
  2312     for (int i = 0; i < d1->monitors()->length(); i++) {
  2313       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
  2315   } else {
  2316     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
  2319   if (d1->caller() != NULL) {
  2320     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
  2321     assert_equal(d1->caller(), d2->caller());
  2322   } else {
  2323     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
  2327 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
  2328   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
  2329     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
  2330     switch (code) {
  2331       case Bytecodes::_ifnull    : // fall through
  2332       case Bytecodes::_ifnonnull : // fall through
  2333       case Bytecodes::_ifeq      : // fall through
  2334       case Bytecodes::_ifne      : // fall through
  2335       case Bytecodes::_iflt      : // fall through
  2336       case Bytecodes::_ifge      : // fall through
  2337       case Bytecodes::_ifgt      : // fall through
  2338       case Bytecodes::_ifle      : // fall through
  2339       case Bytecodes::_if_icmpeq : // fall through
  2340       case Bytecodes::_if_icmpne : // fall through
  2341       case Bytecodes::_if_icmplt : // fall through
  2342       case Bytecodes::_if_icmpge : // fall through
  2343       case Bytecodes::_if_icmpgt : // fall through
  2344       case Bytecodes::_if_icmple : // fall through
  2345       case Bytecodes::_if_acmpeq : // fall through
  2346       case Bytecodes::_if_acmpne :
  2347         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
  2348         break;
  2353 #endif // ASSERT
  2356 IntervalWalker* LinearScan::init_compute_oop_maps() {
  2357   // setup lists of potential oops for walking
  2358   Interval* oop_intervals;
  2359   Interval* non_oop_intervals;
  2361   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
  2363   // intervals that have no oops inside need not to be processed
  2364   // to ensure a walking until the last instruction id, add a dummy interval
  2365   // with a high operation id
  2366   non_oop_intervals = new Interval(any_reg);
  2367   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
  2369   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
  2373 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
  2374   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
  2376   // walk before the current operation -> intervals that start at
  2377   // the operation (= output operands of the operation) are not
  2378   // included in the oop map
  2379   iw->walk_before(op->id());
  2381   int frame_size = frame_map()->framesize();
  2382   int arg_count = frame_map()->oop_map_arg_count();
  2383   OopMap* map = new OopMap(frame_size, arg_count);
  2385   // Iterate through active intervals
  2386   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
  2387     int assigned_reg = interval->assigned_reg();
  2389     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
  2390     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
  2391     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
  2393     // Check if this range covers the instruction. Intervals that
  2394     // start or end at the current operation are not included in the
  2395     // oop map, except in the case of patching moves.  For patching
  2396     // moves, any intervals which end at this instruction are included
  2397     // in the oop map since we may safepoint while doing the patch
  2398     // before we've consumed the inputs.
  2399     if (op->is_patching() || op->id() < interval->current_to()) {
  2401       // caller-save registers must not be included into oop-maps at calls
  2402       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
  2404       VMReg name = vm_reg_for_interval(interval);
  2405       set_oop(map, name);
  2407       // Spill optimization: when the stack value is guaranteed to be always correct,
  2408       // then it must be added to the oop map even if the interval is currently in a register
  2409       if (interval->always_in_memory() &&
  2410           op->id() > interval->spill_definition_pos() &&
  2411           interval->assigned_reg() != interval->canonical_spill_slot()) {
  2412         assert(interval->spill_definition_pos() > 0, "position not set correctly");
  2413         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
  2414         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
  2416         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
  2421   // add oops from lock stack
  2422   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
  2423   int locks_count = info->stack()->total_locks_size();
  2424   for (int i = 0; i < locks_count; i++) {
  2425     set_oop(map, frame_map()->monitor_object_regname(i));
  2428   return map;
  2432 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
  2433   assert(visitor.info_count() > 0, "no oop map needed");
  2435   // compute oop_map only for first CodeEmitInfo
  2436   // because it is (in most cases) equal for all other infos of the same operation
  2437   CodeEmitInfo* first_info = visitor.info_at(0);
  2438   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
  2440   for (int i = 0; i < visitor.info_count(); i++) {
  2441     CodeEmitInfo* info = visitor.info_at(i);
  2442     OopMap* oop_map = first_oop_map;
  2444     // compute worst case interpreter size in case of a deoptimization
  2445     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
  2447     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
  2448       // this info has a different number of locks then the precomputed oop map
  2449       // (possible for lock and unlock instructions) -> compute oop map with
  2450       // correct lock information
  2451       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
  2454     if (info->_oop_map == NULL) {
  2455       info->_oop_map = oop_map;
  2456     } else {
  2457       // a CodeEmitInfo can not be shared between different LIR-instructions
  2458       // because interval splitting can occur anywhere between two instructions
  2459       // and so the oop maps must be different
  2460       // -> check if the already set oop_map is exactly the one calculated for this operation
  2461       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
  2467 // frequently used constants
  2468 // Allocate them with new so they are never destroyed (otherwise, a
  2469 // forced exit could destroy these objects while they are still in
  2470 // use).
  2471 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
  2472 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
  2473 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
  2474 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
  2475 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
  2476 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
  2478 void LinearScan::init_compute_debug_info() {
  2479   // cache for frequently used scope values
  2480   // (cpu registers and stack slots)
  2481   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
  2484 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
  2485   Location loc;
  2486   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
  2487     bailout("too large frame");
  2489   ScopeValue* object_scope_value = new LocationValue(loc);
  2491   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
  2492     bailout("too large frame");
  2494   return new MonitorValue(object_scope_value, loc);
  2497 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
  2498   Location loc;
  2499   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
  2500     bailout("too large frame");
  2502   return new LocationValue(loc);
  2506 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2507   assert(opr->is_constant(), "should not be called otherwise");
  2509   LIR_Const* c = opr->as_constant_ptr();
  2510   BasicType t = c->type();
  2511   switch (t) {
  2512     case T_OBJECT: {
  2513       jobject value = c->as_jobject();
  2514       if (value == NULL) {
  2515         scope_values->append(_oop_null_scope_value);
  2516       } else {
  2517         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
  2519       return 1;
  2522     case T_INT: // fall through
  2523     case T_FLOAT: {
  2524       int value = c->as_jint_bits();
  2525       switch (value) {
  2526         case -1: scope_values->append(_int_m1_scope_value); break;
  2527         case 0:  scope_values->append(_int_0_scope_value); break;
  2528         case 1:  scope_values->append(_int_1_scope_value); break;
  2529         case 2:  scope_values->append(_int_2_scope_value); break;
  2530         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
  2532       return 1;
  2535     case T_LONG: // fall through
  2536     case T_DOUBLE: {
  2537 #ifdef _LP64
  2538       scope_values->append(_int_0_scope_value);
  2539       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
  2540 #else
  2541       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
  2542         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2543         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2544       } else {
  2545         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
  2546         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
  2548 #endif
  2549       return 2;
  2552     case T_ADDRESS: {
  2553 #ifdef _LP64
  2554       scope_values->append(new ConstantLongValue(c->as_jint()));
  2555 #else
  2556       scope_values->append(new ConstantIntValue(c->as_jint()));
  2557 #endif
  2558       return 1;
  2561     default:
  2562       ShouldNotReachHere();
  2563       return -1;
  2567 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
  2568   if (opr->is_single_stack()) {
  2569     int stack_idx = opr->single_stack_ix();
  2570     bool is_oop = opr->is_oop_register();
  2571     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
  2573     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2574     if (sv == NULL) {
  2575       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
  2576       sv = location_for_name(stack_idx, loc_type);
  2577       _scope_value_cache.at_put(cache_idx, sv);
  2580     // check if cached value is correct
  2581     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
  2583     scope_values->append(sv);
  2584     return 1;
  2586   } else if (opr->is_single_cpu()) {
  2587     bool is_oop = opr->is_oop_register();
  2588     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
  2589     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
  2591     ScopeValue* sv = _scope_value_cache.at(cache_idx);
  2592     if (sv == NULL) {
  2593       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
  2594       VMReg rname = frame_map()->regname(opr);
  2595       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2596       _scope_value_cache.at_put(cache_idx, sv);
  2599     // check if cached value is correct
  2600     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
  2602     scope_values->append(sv);
  2603     return 1;
  2605 #ifdef X86
  2606   } else if (opr->is_single_xmm()) {
  2607     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
  2608     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
  2610     scope_values->append(sv);
  2611     return 1;
  2612 #endif
  2614   } else if (opr->is_single_fpu()) {
  2615 #ifdef X86
  2616     // the exact location of fpu stack values is only known
  2617     // during fpu stack allocation, so the stack allocator object
  2618     // must be present
  2619     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2620     assert(_fpu_stack_allocator != NULL, "must be present");
  2621     opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2622 #endif
  2624     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
  2625     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
  2626 #ifndef __SOFTFP__
  2627 #ifndef VM_LITTLE_ENDIAN
  2628     if (! float_saved_as_double) {
  2629       // On big endian system, we may have an issue if float registers use only
  2630       // the low half of the (same) double registers.
  2631       // Both the float and the double could have the same regnr but would correspond
  2632       // to two different addresses once saved.
  2634       // get next safely (no assertion checks)
  2635       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
  2636       if (next->is_reg() &&
  2637           (next->as_FloatRegister() == rname->as_FloatRegister())) {
  2638         // the back-end does use the same numbering for the double and the float
  2639         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
  2642 #endif
  2643 #endif
  2644     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
  2646     scope_values->append(sv);
  2647     return 1;
  2649   } else {
  2650     // double-size operands
  2652     ScopeValue* first;
  2653     ScopeValue* second;
  2655     if (opr->is_double_stack()) {
  2656 #ifdef _LP64
  2657       Location loc1;
  2658       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
  2659       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
  2660         bailout("too large frame");
  2662       // Does this reverse on x86 vs. sparc?
  2663       first =  new LocationValue(loc1);
  2664       second = _int_0_scope_value;
  2665 #else
  2666       Location loc1, loc2;
  2667       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
  2668         bailout("too large frame");
  2670       first =  new LocationValue(loc1);
  2671       second = new LocationValue(loc2);
  2672 #endif // _LP64
  2674     } else if (opr->is_double_cpu()) {
  2675 #ifdef _LP64
  2676       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2677       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
  2678       second = _int_0_scope_value;
  2679 #else
  2680       VMReg rname_first = opr->as_register_lo()->as_VMReg();
  2681       VMReg rname_second = opr->as_register_hi()->as_VMReg();
  2683       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
  2684         // lo/hi and swapped relative to first and second, so swap them
  2685         VMReg tmp = rname_first;
  2686         rname_first = rname_second;
  2687         rname_second = tmp;
  2690       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2691       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2692 #endif //_LP64
  2695 #ifdef X86
  2696     } else if (opr->is_double_xmm()) {
  2697       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
  2698       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
  2699 #  ifdef _LP64
  2700       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
  2701       second = _int_0_scope_value;
  2702 #  else
  2703       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2704       // %%% This is probably a waste but we'll keep things as they were for now
  2705       if (true) {
  2706         VMReg rname_second = rname_first->next();
  2707         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2709 #  endif
  2710 #endif
  2712     } else if (opr->is_double_fpu()) {
  2713       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
  2714       // the double as float registers in the native ordering. On X86,
  2715       // fpu_regnrLo is a FPU stack slot whose VMReg represents
  2716       // the low-order word of the double and fpu_regnrLo + 1 is the
  2717       // name for the other half.  *first and *second must represent the
  2718       // least and most significant words, respectively.
  2720 #ifdef X86
  2721       // the exact location of fpu stack values is only known
  2722       // during fpu stack allocation, so the stack allocator object
  2723       // must be present
  2724       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
  2725       assert(_fpu_stack_allocator != NULL, "must be present");
  2726       opr = _fpu_stack_allocator->to_fpu_stack(opr);
  2728       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
  2729 #endif
  2730 #ifdef SPARC
  2731       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
  2732 #endif
  2733 #ifdef ARM
  2734       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
  2735 #endif
  2736 #ifdef PPC
  2737       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
  2738 #endif
  2740 #ifdef VM_LITTLE_ENDIAN
  2741       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
  2742 #else
  2743       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
  2744 #endif
  2746 #ifdef _LP64
  2747       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
  2748       second = _int_0_scope_value;
  2749 #else
  2750       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
  2751       // %%% This is probably a waste but we'll keep things as they were for now
  2752       if (true) {
  2753         VMReg rname_second = rname_first->next();
  2754         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
  2756 #endif
  2758     } else {
  2759       ShouldNotReachHere();
  2760       first = NULL;
  2761       second = NULL;
  2764     assert(first != NULL && second != NULL, "must be set");
  2765     // The convention the interpreter uses is that the second local
  2766     // holds the first raw word of the native double representation.
  2767     // This is actually reasonable, since locals and stack arrays
  2768     // grow downwards in all implementations.
  2769     // (If, on some machine, the interpreter's Java locals or stack
  2770     // were to grow upwards, the embedded doubles would be word-swapped.)
  2771     scope_values->append(second);
  2772     scope_values->append(first);
  2773     return 2;
  2778 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
  2779   if (value != NULL) {
  2780     LIR_Opr opr = value->operand();
  2781     Constant* con = value->as_Constant();
  2783     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
  2784     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
  2786     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
  2787       // Unpinned constants may have a virtual operand for a part of the lifetime
  2788       // or may be illegal when it was optimized away,
  2789       // so always use a constant operand
  2790       opr = LIR_OprFact::value_type(con->type());
  2792     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
  2794     if (opr->is_virtual()) {
  2795       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
  2797       BlockBegin* block = block_of_op_with_id(op_id);
  2798       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
  2799         // generating debug information for the last instruction of a block.
  2800         // if this instruction is a branch, spill moves are inserted before this branch
  2801         // and so the wrong operand would be returned (spill moves at block boundaries are not
  2802         // considered in the live ranges of intervals)
  2803         // Solution: use the first op_id of the branch target block instead.
  2804         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
  2805           if (block->live_out().at(opr->vreg_number())) {
  2806             op_id = block->sux_at(0)->first_lir_instruction_id();
  2807             mode = LIR_OpVisitState::outputMode;
  2812       // Get current location of operand
  2813       // The operand must be live because debug information is considered when building the intervals
  2814       // if the interval is not live, color_lir_opr will cause an assertion failure
  2815       opr = color_lir_opr(opr, op_id, mode);
  2816       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
  2818       // Append to ScopeValue array
  2819       return append_scope_value_for_operand(opr, scope_values);
  2821     } else {
  2822       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
  2823       assert(opr->is_constant(), "operand must be constant");
  2825       return append_scope_value_for_constant(opr, scope_values);
  2827   } else {
  2828     // append a dummy value because real value not needed
  2829     scope_values->append(_illegal_value);
  2830     return 1;
  2835 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
  2836   IRScopeDebugInfo* caller_debug_info = NULL;
  2838   ValueStack* caller_state = cur_state->caller_state();
  2839   if (caller_state != NULL) {
  2840     // process recursively to compute outermost scope first
  2841     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
  2844   // initialize these to null.
  2845   // If we don't need deopt info or there are no locals, expressions or monitors,
  2846   // then these get recorded as no information and avoids the allocation of 0 length arrays.
  2847   GrowableArray<ScopeValue*>*   locals      = NULL;
  2848   GrowableArray<ScopeValue*>*   expressions = NULL;
  2849   GrowableArray<MonitorValue*>* monitors    = NULL;
  2851   // describe local variable values
  2852   int nof_locals = cur_state->locals_size();
  2853   if (nof_locals > 0) {
  2854     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2856     int pos = 0;
  2857     while (pos < nof_locals) {
  2858       assert(pos < cur_state->locals_size(), "why not?");
  2860       Value local = cur_state->local_at(pos);
  2861       pos += append_scope_value(op_id, local, locals);
  2863       assert(locals->length() == pos, "must match");
  2865     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
  2866     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
  2867   } else if (cur_scope->method()->max_locals() > 0) {
  2868     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
  2869     nof_locals = cur_scope->method()->max_locals();
  2870     locals = new GrowableArray<ScopeValue*>(nof_locals);
  2871     for(int i = 0; i < nof_locals; i++) {
  2872       locals->append(_illegal_value);
  2876   // describe expression stack
  2877   int nof_stack = cur_state->stack_size();
  2878   if (nof_stack > 0) {
  2879     expressions = new GrowableArray<ScopeValue*>(nof_stack);
  2881     int pos = 0;
  2882     while (pos < nof_stack) {
  2883       Value expression = cur_state->stack_at_inc(pos);
  2884       append_scope_value(op_id, expression, expressions);
  2886       assert(expressions->length() == pos, "must match");
  2888     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
  2891   // describe monitors
  2892   int nof_locks = cur_state->locks_size();
  2893   if (nof_locks > 0) {
  2894     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
  2895     monitors = new GrowableArray<MonitorValue*>(nof_locks);
  2896     for (int i = 0; i < nof_locks; i++) {
  2897       monitors->append(location_for_monitor_index(lock_offset + i));
  2901   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
  2905 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
  2906   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
  2908   IRScope* innermost_scope = info->scope();
  2909   ValueStack* innermost_state = info->stack();
  2911   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
  2913   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
  2915   if (info->_scope_debug_info == NULL) {
  2916     // compute debug information
  2917     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
  2918   } else {
  2919     // debug information already set. Check that it is correct from the current point of view
  2920     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
  2925 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
  2926   LIR_OpVisitState visitor;
  2927   int num_inst = instructions->length();
  2928   bool has_dead = false;
  2930   for (int j = 0; j < num_inst; j++) {
  2931     LIR_Op* op = instructions->at(j);
  2932     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
  2933       has_dead = true;
  2934       continue;
  2936     int op_id = op->id();
  2938     // visit instruction to get list of operands
  2939     visitor.visit(op);
  2941     // iterate all modes of the visitor and process all virtual operands
  2942     for_each_visitor_mode(mode) {
  2943       int n = visitor.opr_count(mode);
  2944       for (int k = 0; k < n; k++) {
  2945         LIR_Opr opr = visitor.opr_at(mode, k);
  2946         if (opr->is_virtual_register()) {
  2947           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
  2952     if (visitor.info_count() > 0) {
  2953       // exception handling
  2954       if (compilation()->has_exception_handlers()) {
  2955         XHandlers* xhandlers = visitor.all_xhandler();
  2956         int n = xhandlers->length();
  2957         for (int k = 0; k < n; k++) {
  2958           XHandler* handler = xhandlers->handler_at(k);
  2959           if (handler->entry_code() != NULL) {
  2960             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
  2963       } else {
  2964         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
  2967       // compute oop map
  2968       assert(iw != NULL, "needed for compute_oop_map");
  2969       compute_oop_map(iw, visitor, op);
  2971       // compute debug information
  2972       if (!use_fpu_stack_allocation()) {
  2973         // compute debug information if fpu stack allocation is not needed.
  2974         // when fpu stack allocation is needed, the debug information can not
  2975         // be computed here because the exact location of fpu operands is not known
  2976         // -> debug information is created inside the fpu stack allocator
  2977         int n = visitor.info_count();
  2978         for (int k = 0; k < n; k++) {
  2979           compute_debug_info(visitor.info_at(k), op_id);
  2984 #ifdef ASSERT
  2985     // make sure we haven't made the op invalid.
  2986     op->verify();
  2987 #endif
  2989     // remove useless moves
  2990     if (op->code() == lir_move) {
  2991       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  2992       LIR_Op1* move = (LIR_Op1*)op;
  2993       LIR_Opr src = move->in_opr();
  2994       LIR_Opr dst = move->result_opr();
  2995       if (dst == src ||
  2996           !dst->is_pointer() && !src->is_pointer() &&
  2997           src->is_same_register(dst)) {
  2998         instructions->at_put(j, NULL);
  2999         has_dead = true;
  3004   if (has_dead) {
  3005     // iterate all instructions of the block and remove all null-values.
  3006     int insert_point = 0;
  3007     for (int j = 0; j < num_inst; j++) {
  3008       LIR_Op* op = instructions->at(j);
  3009       if (op != NULL) {
  3010         if (insert_point != j) {
  3011           instructions->at_put(insert_point, op);
  3013         insert_point++;
  3016     instructions->truncate(insert_point);
  3020 void LinearScan::assign_reg_num() {
  3021   TIME_LINEAR_SCAN(timer_assign_reg_num);
  3023   init_compute_debug_info();
  3024   IntervalWalker* iw = init_compute_oop_maps();
  3026   int num_blocks = block_count();
  3027   for (int i = 0; i < num_blocks; i++) {
  3028     BlockBegin* block = block_at(i);
  3029     assign_reg_num(block->lir()->instructions_list(), iw);
  3034 void LinearScan::do_linear_scan() {
  3035   NOT_PRODUCT(_total_timer.begin_method());
  3037   number_instructions();
  3039   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
  3041   compute_local_live_sets();
  3042   compute_global_live_sets();
  3043   CHECK_BAILOUT();
  3045   build_intervals();
  3046   CHECK_BAILOUT();
  3047   sort_intervals_before_allocation();
  3049   NOT_PRODUCT(print_intervals("Before Register Allocation"));
  3050   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
  3052   allocate_registers();
  3053   CHECK_BAILOUT();
  3055   resolve_data_flow();
  3056   if (compilation()->has_exception_handlers()) {
  3057     resolve_exception_handlers();
  3059   // fill in number of spill slots into frame_map
  3060   propagate_spill_slots();
  3061   CHECK_BAILOUT();
  3063   NOT_PRODUCT(print_intervals("After Register Allocation"));
  3064   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
  3066   sort_intervals_after_allocation();
  3068   DEBUG_ONLY(verify());
  3070   eliminate_spill_moves();
  3071   assign_reg_num();
  3072   CHECK_BAILOUT();
  3074   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
  3075   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
  3077   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
  3079     if (use_fpu_stack_allocation()) {
  3080       allocate_fpu_stack(); // Only has effect on Intel
  3081       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
  3085   { TIME_LINEAR_SCAN(timer_optimize_lir);
  3087     EdgeMoveOptimizer::optimize(ir()->code());
  3088     ControlFlowOptimizer::optimize(ir()->code());
  3089     // check that cfg is still correct after optimizations
  3090     ir()->verify();
  3093   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
  3094   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
  3095   NOT_PRODUCT(_total_timer.end_method(this));
  3099 // ********** Printing functions
  3101 #ifndef PRODUCT
  3103 void LinearScan::print_timers(double total) {
  3104   _total_timer.print(total);
  3107 void LinearScan::print_statistics() {
  3108   _stat_before_alloc.print("before allocation");
  3109   _stat_after_asign.print("after assignment of register");
  3110   _stat_final.print("after optimization");
  3113 void LinearScan::print_bitmap(BitMap& b) {
  3114   for (unsigned int i = 0; i < b.size(); i++) {
  3115     if (b.at(i)) tty->print("%d ", i);
  3117   tty->cr();
  3120 void LinearScan::print_intervals(const char* label) {
  3121   if (TraceLinearScanLevel >= 1) {
  3122     int i;
  3123     tty->cr();
  3124     tty->print_cr("%s", label);
  3126     for (i = 0; i < interval_count(); i++) {
  3127       Interval* interval = interval_at(i);
  3128       if (interval != NULL) {
  3129         interval->print();
  3133     tty->cr();
  3134     tty->print_cr("--- Basic Blocks ---");
  3135     for (i = 0; i < block_count(); i++) {
  3136       BlockBegin* block = block_at(i);
  3137       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
  3139     tty->cr();
  3140     tty->cr();
  3143   if (PrintCFGToFile) {
  3144     CFGPrinter::print_intervals(&_intervals, label);
  3148 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
  3149   if (TraceLinearScanLevel >= level) {
  3150     tty->cr();
  3151     tty->print_cr("%s", label);
  3152     print_LIR(ir()->linear_scan_order());
  3153     tty->cr();
  3156   if (level == 1 && PrintCFGToFile) {
  3157     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
  3161 #endif //PRODUCT
  3164 // ********** verification functions for allocation
  3165 // (check that all intervals have a correct register and that no registers are overwritten)
  3166 #ifdef ASSERT
  3168 void LinearScan::verify() {
  3169   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
  3170   verify_intervals();
  3172   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
  3173   verify_no_oops_in_fixed_intervals();
  3175   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
  3176   verify_constants();
  3178   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
  3179   verify_registers();
  3181   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
  3184 void LinearScan::verify_intervals() {
  3185   int len = interval_count();
  3186   bool has_error = false;
  3188   for (int i = 0; i < len; i++) {
  3189     Interval* i1 = interval_at(i);
  3190     if (i1 == NULL) continue;
  3192     i1->check_split_children();
  3194     if (i1->reg_num() != i) {
  3195       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
  3196       has_error = true;
  3199     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
  3200       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
  3201       has_error = true;
  3204     if (i1->assigned_reg() == any_reg) {
  3205       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
  3206       has_error = true;
  3209     if (i1->assigned_reg() == i1->assigned_regHi()) {
  3210       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
  3211       has_error = true;
  3214     if (!is_processed_reg_num(i1->assigned_reg())) {
  3215       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
  3216       has_error = true;
  3219     if (i1->first() == Range::end()) {
  3220       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
  3221       has_error = true;
  3224     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
  3225       if (r->from() >= r->to()) {
  3226         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
  3227         has_error = true;
  3231     for (int j = i + 1; j < len; j++) {
  3232       Interval* i2 = interval_at(j);
  3233       if (i2 == NULL) continue;
  3235       // special intervals that are created in MoveResolver
  3236       // -> ignore them because the range information has no meaning there
  3237       if (i1->from() == 1 && i1->to() == 2) continue;
  3238       if (i2->from() == 1 && i2->to() == 2) continue;
  3240       int r1 = i1->assigned_reg();
  3241       int r1Hi = i1->assigned_regHi();
  3242       int r2 = i2->assigned_reg();
  3243       int r2Hi = i2->assigned_regHi();
  3244       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
  3245         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
  3246         i1->print(); tty->cr();
  3247         i2->print(); tty->cr();
  3248         has_error = true;
  3253   assert(has_error == false, "register allocation invalid");
  3257 void LinearScan::verify_no_oops_in_fixed_intervals() {
  3258   Interval* fixed_intervals;
  3259   Interval* other_intervals;
  3260   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
  3262   // to ensure a walking until the last instruction id, add a dummy interval
  3263   // with a high operation id
  3264   other_intervals = new Interval(any_reg);
  3265   other_intervals->add_range(max_jint - 2, max_jint - 1);
  3266   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
  3268   LIR_OpVisitState visitor;
  3269   for (int i = 0; i < block_count(); i++) {
  3270     BlockBegin* block = block_at(i);
  3272     LIR_OpList* instructions = block->lir()->instructions_list();
  3274     for (int j = 0; j < instructions->length(); j++) {
  3275       LIR_Op* op = instructions->at(j);
  3276       int op_id = op->id();
  3278       visitor.visit(op);
  3280       if (visitor.info_count() > 0) {
  3281         iw->walk_before(op->id());
  3282         bool check_live = true;
  3283         if (op->code() == lir_move) {
  3284           LIR_Op1* move = (LIR_Op1*)op;
  3285           check_live = (move->patch_code() == lir_patch_none);
  3287         LIR_OpBranch* branch = op->as_OpBranch();
  3288         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
  3289           // Don't bother checking the stub in this case since the
  3290           // exception stub will never return to normal control flow.
  3291           check_live = false;
  3294         // Make sure none of the fixed registers is live across an
  3295         // oopmap since we can't handle that correctly.
  3296         if (check_live) {
  3297           for (Interval* interval = iw->active_first(fixedKind);
  3298                interval != Interval::end();
  3299                interval = interval->next()) {
  3300             if (interval->current_to() > op->id() + 1) {
  3301               // This interval is live out of this op so make sure
  3302               // that this interval represents some value that's
  3303               // referenced by this op either as an input or output.
  3304               bool ok = false;
  3305               for_each_visitor_mode(mode) {
  3306                 int n = visitor.opr_count(mode);
  3307                 for (int k = 0; k < n; k++) {
  3308                   LIR_Opr opr = visitor.opr_at(mode, k);
  3309                   if (opr->is_fixed_cpu()) {
  3310                     if (interval_at(reg_num(opr)) == interval) {
  3311                       ok = true;
  3312                       break;
  3314                     int hi = reg_numHi(opr);
  3315                     if (hi != -1 && interval_at(hi) == interval) {
  3316                       ok = true;
  3317                       break;
  3322               assert(ok, "fixed intervals should never be live across an oopmap point");
  3328       // oop-maps at calls do not contain registers, so check is not needed
  3329       if (!visitor.has_call()) {
  3331         for_each_visitor_mode(mode) {
  3332           int n = visitor.opr_count(mode);
  3333           for (int k = 0; k < n; k++) {
  3334             LIR_Opr opr = visitor.opr_at(mode, k);
  3336             if (opr->is_fixed_cpu() && opr->is_oop()) {
  3337               // operand is a non-virtual cpu register and contains an oop
  3338               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
  3340               Interval* interval = interval_at(reg_num(opr));
  3341               assert(interval != NULL, "no interval");
  3343               if (mode == LIR_OpVisitState::inputMode) {
  3344                 if (interval->to() >= op_id + 1) {
  3345                   assert(interval->to() < op_id + 2 ||
  3346                          interval->has_hole_between(op_id, op_id + 2),
  3347                          "oop input operand live after instruction");
  3349               } else if (mode == LIR_OpVisitState::outputMode) {
  3350                 if (interval->from() <= op_id - 1) {
  3351                   assert(interval->has_hole_between(op_id - 1, op_id),
  3352                          "oop input operand live after instruction");
  3364 void LinearScan::verify_constants() {
  3365   int num_regs = num_virtual_regs();
  3366   int size = live_set_size();
  3367   int num_blocks = block_count();
  3369   for (int i = 0; i < num_blocks; i++) {
  3370     BlockBegin* block = block_at(i);
  3371     BitMap live_at_edge = block->live_in();
  3373     // visit all registers where the live_at_edge bit is set
  3374     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
  3375       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
  3377       Value value = gen()->instruction_for_vreg(r);
  3379       assert(value != NULL, "all intervals live across block boundaries must have Value");
  3380       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
  3381       assert(value->operand()->vreg_number() == r, "register number must match");
  3382       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
  3388 class RegisterVerifier: public StackObj {
  3389  private:
  3390   LinearScan*   _allocator;
  3391   BlockList     _work_list;      // all blocks that must be processed
  3392   IntervalsList _saved_states;   // saved information of previous check
  3394   // simplified access to methods of LinearScan
  3395   Compilation*  compilation() const              { return _allocator->compilation(); }
  3396   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
  3397   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
  3399   // currently, only registers are processed
  3400   int           state_size()                     { return LinearScan::nof_regs; }
  3402   // accessors
  3403   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
  3404   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
  3405   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
  3407   // helper functions
  3408   IntervalList* copy(IntervalList* input_state);
  3409   void          state_put(IntervalList* input_state, int reg, Interval* interval);
  3410   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
  3412   void process_block(BlockBegin* block);
  3413   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
  3414   void process_successor(BlockBegin* block, IntervalList* input_state);
  3415   void process_operations(LIR_List* ops, IntervalList* input_state);
  3417  public:
  3418   RegisterVerifier(LinearScan* allocator)
  3419     : _allocator(allocator)
  3420     , _work_list(16)
  3421     , _saved_states(BlockBegin::number_of_blocks(), NULL)
  3422   { }
  3424   void verify(BlockBegin* start);
  3425 };
  3428 // entry function from LinearScan that starts the verification
  3429 void LinearScan::verify_registers() {
  3430   RegisterVerifier verifier(this);
  3431   verifier.verify(block_at(0));
  3435 void RegisterVerifier::verify(BlockBegin* start) {
  3436   // setup input registers (method arguments) for first block
  3437   IntervalList* input_state = new IntervalList(state_size(), NULL);
  3438   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  3439   for (int n = 0; n < args->length(); n++) {
  3440     LIR_Opr opr = args->at(n);
  3441     if (opr->is_register()) {
  3442       Interval* interval = interval_at(reg_num(opr));
  3444       if (interval->assigned_reg() < state_size()) {
  3445         input_state->at_put(interval->assigned_reg(), interval);
  3447       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
  3448         input_state->at_put(interval->assigned_regHi(), interval);
  3453   set_state_for_block(start, input_state);
  3454   add_to_work_list(start);
  3456   // main loop for verification
  3457   do {
  3458     BlockBegin* block = _work_list.at(0);
  3459     _work_list.remove_at(0);
  3461     process_block(block);
  3462   } while (!_work_list.is_empty());
  3465 void RegisterVerifier::process_block(BlockBegin* block) {
  3466   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
  3468   // must copy state because it is modified
  3469   IntervalList* input_state = copy(state_for_block(block));
  3471   if (TraceLinearScanLevel >= 4) {
  3472     tty->print_cr("Input-State of intervals:");
  3473     tty->print("    ");
  3474     for (int i = 0; i < state_size(); i++) {
  3475       if (input_state->at(i) != NULL) {
  3476         tty->print(" %4d", input_state->at(i)->reg_num());
  3477       } else {
  3478         tty->print("   __");
  3481     tty->cr();
  3482     tty->cr();
  3485   // process all operations of the block
  3486   process_operations(block->lir(), input_state);
  3488   // iterate all successors
  3489   for (int i = 0; i < block->number_of_sux(); i++) {
  3490     process_successor(block->sux_at(i), input_state);
  3494 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
  3495   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
  3497   // must copy state because it is modified
  3498   input_state = copy(input_state);
  3500   if (xhandler->entry_code() != NULL) {
  3501     process_operations(xhandler->entry_code(), input_state);
  3503   process_successor(xhandler->entry_block(), input_state);
  3506 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
  3507   IntervalList* saved_state = state_for_block(block);
  3509   if (saved_state != NULL) {
  3510     // this block was already processed before.
  3511     // check if new input_state is consistent with saved_state
  3513     bool saved_state_correct = true;
  3514     for (int i = 0; i < state_size(); i++) {
  3515       if (input_state->at(i) != saved_state->at(i)) {
  3516         // current input_state and previous saved_state assume a different
  3517         // interval in this register -> assume that this register is invalid
  3518         if (saved_state->at(i) != NULL) {
  3519           // invalidate old calculation only if it assumed that
  3520           // register was valid. when the register was already invalid,
  3521           // then the old calculation was correct.
  3522           saved_state_correct = false;
  3523           saved_state->at_put(i, NULL);
  3525           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
  3530     if (saved_state_correct) {
  3531       // already processed block with correct input_state
  3532       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
  3533     } else {
  3534       // must re-visit this block
  3535       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
  3536       add_to_work_list(block);
  3539   } else {
  3540     // block was not processed before, so set initial input_state
  3541     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
  3543     set_state_for_block(block, copy(input_state));
  3544     add_to_work_list(block);
  3549 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
  3550   IntervalList* copy_state = new IntervalList(input_state->length());
  3551   copy_state->push_all(input_state);
  3552   return copy_state;
  3555 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
  3556   if (reg != LinearScan::any_reg && reg < state_size()) {
  3557     if (interval != NULL) {
  3558       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
  3559     } else if (input_state->at(reg) != NULL) {
  3560       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
  3563     input_state->at_put(reg, interval);
  3567 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
  3568   if (reg != LinearScan::any_reg && reg < state_size()) {
  3569     if (input_state->at(reg) != interval) {
  3570       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
  3571       return true;
  3574   return false;
  3577 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
  3578   // visit all instructions of the block
  3579   LIR_OpVisitState visitor;
  3580   bool has_error = false;
  3582   for (int i = 0; i < ops->length(); i++) {
  3583     LIR_Op* op = ops->at(i);
  3584     visitor.visit(op);
  3586     TRACE_LINEAR_SCAN(4, op->print_on(tty));
  3588     // check if input operands are correct
  3589     int j;
  3590     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
  3591     for (j = 0; j < n; j++) {
  3592       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
  3593       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3594         Interval* interval = interval_at(reg_num(opr));
  3595         if (op->id() != -1) {
  3596           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
  3599         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
  3600         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
  3602         // When an operand is marked with is_last_use, then the fpu stack allocator
  3603         // removes the register from the fpu stack -> the register contains no value
  3604         if (opr->is_last_use()) {
  3605           state_put(input_state, interval->assigned_reg(),   NULL);
  3606           state_put(input_state, interval->assigned_regHi(), NULL);
  3611     // invalidate all caller save registers at calls
  3612     if (visitor.has_call()) {
  3613       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
  3614         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
  3616       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
  3617         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
  3620 #ifdef X86
  3621       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
  3622         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
  3624 #endif
  3627     // process xhandler before output and temp operands
  3628     XHandlers* xhandlers = visitor.all_xhandler();
  3629     n = xhandlers->length();
  3630     for (int k = 0; k < n; k++) {
  3631       process_xhandler(xhandlers->handler_at(k), input_state);
  3634     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
  3635     n = visitor.opr_count(LIR_OpVisitState::tempMode);
  3636     for (j = 0; j < n; j++) {
  3637       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
  3638       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3639         Interval* interval = interval_at(reg_num(opr));
  3640         if (op->id() != -1) {
  3641           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
  3644         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3645         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3649     // set output operands
  3650     n = visitor.opr_count(LIR_OpVisitState::outputMode);
  3651     for (j = 0; j < n; j++) {
  3652       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
  3653       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
  3654         Interval* interval = interval_at(reg_num(opr));
  3655         if (op->id() != -1) {
  3656           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
  3659         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
  3660         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
  3664   assert(has_error == false, "Error in register allocation");
  3667 #endif // ASSERT
  3671 // **** Implementation of MoveResolver ******************************
  3673 MoveResolver::MoveResolver(LinearScan* allocator) :
  3674   _allocator(allocator),
  3675   _multiple_reads_allowed(false),
  3676   _mapping_from(8),
  3677   _mapping_from_opr(8),
  3678   _mapping_to(8),
  3679   _insert_list(NULL),
  3680   _insert_idx(-1),
  3681   _insertion_buffer()
  3683   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3684     _register_blocked[i] = 0;
  3686   DEBUG_ONLY(check_empty());
  3690 #ifdef ASSERT
  3692 void MoveResolver::check_empty() {
  3693   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
  3694   for (int i = 0; i < LinearScan::nof_regs; i++) {
  3695     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
  3697   assert(_multiple_reads_allowed == false, "must have default value");
  3700 void MoveResolver::verify_before_resolve() {
  3701   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
  3702   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
  3703   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
  3705   int i, j;
  3706   if (!_multiple_reads_allowed) {
  3707     for (i = 0; i < _mapping_from.length(); i++) {
  3708       for (j = i + 1; j < _mapping_from.length(); j++) {
  3709         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
  3714   for (i = 0; i < _mapping_to.length(); i++) {
  3715     for (j = i + 1; j < _mapping_to.length(); j++) {
  3716       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
  3721   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
  3722   used_regs.clear();
  3723   if (!_multiple_reads_allowed) {
  3724     for (i = 0; i < _mapping_from.length(); i++) {
  3725       Interval* it = _mapping_from.at(i);
  3726       if (it != NULL) {
  3727         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
  3728         used_regs.set_bit(it->assigned_reg());
  3730         if (it->assigned_regHi() != LinearScan::any_reg) {
  3731           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
  3732           used_regs.set_bit(it->assigned_regHi());
  3738   used_regs.clear();
  3739   for (i = 0; i < _mapping_to.length(); i++) {
  3740     Interval* it = _mapping_to.at(i);
  3741     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
  3742     used_regs.set_bit(it->assigned_reg());
  3744     if (it->assigned_regHi() != LinearScan::any_reg) {
  3745       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
  3746       used_regs.set_bit(it->assigned_regHi());
  3750   used_regs.clear();
  3751   for (i = 0; i < _mapping_from.length(); i++) {
  3752     Interval* it = _mapping_from.at(i);
  3753     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
  3754       used_regs.set_bit(it->assigned_reg());
  3757   for (i = 0; i < _mapping_to.length(); i++) {
  3758     Interval* it = _mapping_to.at(i);
  3759     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
  3763 #endif // ASSERT
  3766 // mark assigned_reg and assigned_regHi of the interval as blocked
  3767 void MoveResolver::block_registers(Interval* it) {
  3768   int reg = it->assigned_reg();
  3769   if (reg < LinearScan::nof_regs) {
  3770     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3771     set_register_blocked(reg, 1);
  3773   reg = it->assigned_regHi();
  3774   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3775     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
  3776     set_register_blocked(reg, 1);
  3780 // mark assigned_reg and assigned_regHi of the interval as unblocked
  3781 void MoveResolver::unblock_registers(Interval* it) {
  3782   int reg = it->assigned_reg();
  3783   if (reg < LinearScan::nof_regs) {
  3784     assert(register_blocked(reg) > 0, "register already marked as unused");
  3785     set_register_blocked(reg, -1);
  3787   reg = it->assigned_regHi();
  3788   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3789     assert(register_blocked(reg) > 0, "register already marked as unused");
  3790     set_register_blocked(reg, -1);
  3794 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
  3795 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
  3796   int from_reg = -1;
  3797   int from_regHi = -1;
  3798   if (from != NULL) {
  3799     from_reg = from->assigned_reg();
  3800     from_regHi = from->assigned_regHi();
  3803   int reg = to->assigned_reg();
  3804   if (reg < LinearScan::nof_regs) {
  3805     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3806       return false;
  3809   reg = to->assigned_regHi();
  3810   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
  3811     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
  3812       return false;
  3816   return true;
  3820 void MoveResolver::create_insertion_buffer(LIR_List* list) {
  3821   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
  3822   _insertion_buffer.init(list);
  3825 void MoveResolver::append_insertion_buffer() {
  3826   if (_insertion_buffer.initialized()) {
  3827     _insertion_buffer.lir_list()->append(&_insertion_buffer);
  3829   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
  3831   _insert_list = NULL;
  3832   _insert_idx = -1;
  3835 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
  3836   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
  3837   assert(from_interval->type() == to_interval->type(), "move between different types");
  3838   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3839   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3841   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
  3842   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3844   if (!_multiple_reads_allowed) {
  3845     // the last_use flag is an optimization for FPU stack allocation. When the same
  3846     // input interval is used in more than one move, then it is too difficult to determine
  3847     // if this move is really the last use.
  3848     from_opr = from_opr->make_last_use();
  3850   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3852   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3855 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
  3856   assert(from_opr->type() == to_interval->type(), "move between different types");
  3857   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
  3858   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
  3860   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
  3861   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
  3863   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3867 void MoveResolver::resolve_mappings() {
  3868   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
  3869   DEBUG_ONLY(verify_before_resolve());
  3871   // Block all registers that are used as input operands of a move.
  3872   // When a register is blocked, no move to this register is emitted.
  3873   // This is necessary for detecting cycles in moves.
  3874   int i;
  3875   for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3876     Interval* from_interval = _mapping_from.at(i);
  3877     if (from_interval != NULL) {
  3878       block_registers(from_interval);
  3882   int spill_candidate = -1;
  3883   while (_mapping_from.length() > 0) {
  3884     bool processed_interval = false;
  3886     for (i = _mapping_from.length() - 1; i >= 0; i--) {
  3887       Interval* from_interval = _mapping_from.at(i);
  3888       Interval* to_interval = _mapping_to.at(i);
  3890       if (save_to_process_move(from_interval, to_interval)) {
  3891         // this inverval can be processed because target is free
  3892         if (from_interval != NULL) {
  3893           insert_move(from_interval, to_interval);
  3894           unblock_registers(from_interval);
  3895         } else {
  3896           insert_move(_mapping_from_opr.at(i), to_interval);
  3898         _mapping_from.remove_at(i);
  3899         _mapping_from_opr.remove_at(i);
  3900         _mapping_to.remove_at(i);
  3902         processed_interval = true;
  3903       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
  3904         // this interval cannot be processed now because target is not free
  3905         // it starts in a register, so it is a possible candidate for spilling
  3906         spill_candidate = i;
  3910     if (!processed_interval) {
  3911       // no move could be processed because there is a cycle in the move list
  3912       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
  3913       assert(spill_candidate != -1, "no interval in register for spilling found");
  3915       // create a new spill interval and assign a stack slot to it
  3916       Interval* from_interval = _mapping_from.at(spill_candidate);
  3917       Interval* spill_interval = new Interval(-1);
  3918       spill_interval->set_type(from_interval->type());
  3920       // add a dummy range because real position is difficult to calculate
  3921       // Note: this range is a special case when the integrity of the allocation is checked
  3922       spill_interval->add_range(1, 2);
  3924       //       do not allocate a new spill slot for temporary interval, but
  3925       //       use spill slot assigned to from_interval. Otherwise moves from
  3926       //       one stack slot to another can happen (not allowed by LIR_Assembler
  3927       int spill_slot = from_interval->canonical_spill_slot();
  3928       if (spill_slot < 0) {
  3929         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
  3930         from_interval->set_canonical_spill_slot(spill_slot);
  3932       spill_interval->assign_reg(spill_slot);
  3933       allocator()->append_interval(spill_interval);
  3935       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
  3937       // insert a move from register to stack and update the mapping
  3938       insert_move(from_interval, spill_interval);
  3939       _mapping_from.at_put(spill_candidate, spill_interval);
  3940       unblock_registers(from_interval);
  3944   // reset to default value
  3945   _multiple_reads_allowed = false;
  3947   // check that all intervals have been processed
  3948   DEBUG_ONLY(check_empty());
  3952 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
  3953   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3954   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
  3956   create_insertion_buffer(insert_list);
  3957   _insert_list = insert_list;
  3958   _insert_idx = insert_idx;
  3961 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
  3962   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
  3964   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
  3965     // insert position changed -> resolve current mappings
  3966     resolve_mappings();
  3969   if (insert_list != _insert_list) {
  3970     // block changed -> append insertion_buffer because it is
  3971     // bound to a specific block and create a new insertion_buffer
  3972     append_insertion_buffer();
  3973     create_insertion_buffer(insert_list);
  3976   _insert_list = insert_list;
  3977   _insert_idx = insert_idx;
  3980 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
  3981   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3983   _mapping_from.append(from_interval);
  3984   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
  3985   _mapping_to.append(to_interval);
  3989 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
  3990   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
  3991   assert(from_opr->is_constant(), "only for constants");
  3993   _mapping_from.append(NULL);
  3994   _mapping_from_opr.append(from_opr);
  3995   _mapping_to.append(to_interval);
  3998 void MoveResolver::resolve_and_append_moves() {
  3999   if (has_mappings()) {
  4000     resolve_mappings();
  4002   append_insertion_buffer();
  4007 // **** Implementation of Range *************************************
  4009 Range::Range(int from, int to, Range* next) :
  4010   _from(from),
  4011   _to(to),
  4012   _next(next)
  4016 // initialize sentinel
  4017 Range* Range::_end = NULL;
  4018 void Range::initialize(Arena* arena) {
  4019   _end = new (arena) Range(max_jint, max_jint, NULL);
  4022 int Range::intersects_at(Range* r2) const {
  4023   const Range* r1 = this;
  4025   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
  4026   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
  4028   do {
  4029     if (r1->from() < r2->from()) {
  4030       if (r1->to() <= r2->from()) {
  4031         r1 = r1->next(); if (r1 == _end) return -1;
  4032       } else {
  4033         return r2->from();
  4035     } else if (r2->from() < r1->from()) {
  4036       if (r2->to() <= r1->from()) {
  4037         r2 = r2->next(); if (r2 == _end) return -1;
  4038       } else {
  4039         return r1->from();
  4041     } else { // r1->from() == r2->from()
  4042       if (r1->from() == r1->to()) {
  4043         r1 = r1->next(); if (r1 == _end) return -1;
  4044       } else if (r2->from() == r2->to()) {
  4045         r2 = r2->next(); if (r2 == _end) return -1;
  4046       } else {
  4047         return r1->from();
  4050   } while (true);
  4053 #ifndef PRODUCT
  4054 void Range::print(outputStream* out) const {
  4055   out->print("[%d, %d[ ", _from, _to);
  4057 #endif
  4061 // **** Implementation of Interval **********************************
  4063 // initialize sentinel
  4064 Interval* Interval::_end = NULL;
  4065 void Interval::initialize(Arena* arena) {
  4066   Range::initialize(arena);
  4067   _end = new (arena) Interval(-1);
  4070 Interval::Interval(int reg_num) :
  4071   _reg_num(reg_num),
  4072   _type(T_ILLEGAL),
  4073   _first(Range::end()),
  4074   _use_pos_and_kinds(12),
  4075   _current(Range::end()),
  4076   _next(_end),
  4077   _state(invalidState),
  4078   _assigned_reg(LinearScan::any_reg),
  4079   _assigned_regHi(LinearScan::any_reg),
  4080   _cached_to(-1),
  4081   _cached_opr(LIR_OprFact::illegalOpr),
  4082   _cached_vm_reg(VMRegImpl::Bad()),
  4083   _split_children(0),
  4084   _canonical_spill_slot(-1),
  4085   _insert_move_when_activated(false),
  4086   _register_hint(NULL),
  4087   _spill_state(noDefinitionFound),
  4088   _spill_definition_pos(-1)
  4090   _split_parent = this;
  4091   _current_split_child = this;
  4094 int Interval::calc_to() {
  4095   assert(_first != Range::end(), "interval has no range");
  4097   Range* r = _first;
  4098   while (r->next() != Range::end()) {
  4099     r = r->next();
  4101   return r->to();
  4105 #ifdef ASSERT
  4106 // consistency check of split-children
  4107 void Interval::check_split_children() {
  4108   if (_split_children.length() > 0) {
  4109     assert(is_split_parent(), "only split parents can have children");
  4111     for (int i = 0; i < _split_children.length(); i++) {
  4112       Interval* i1 = _split_children.at(i);
  4114       assert(i1->split_parent() == this, "not a split child of this interval");
  4115       assert(i1->type() == type(), "must be equal for all split children");
  4116       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
  4118       for (int j = i + 1; j < _split_children.length(); j++) {
  4119         Interval* i2 = _split_children.at(j);
  4121         assert(i1->reg_num() != i2->reg_num(), "same register number");
  4123         if (i1->from() < i2->from()) {
  4124           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
  4125         } else {
  4126           assert(i2->from() < i1->from(), "intervals start at same op_id");
  4127           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
  4133 #endif // ASSERT
  4135 Interval* Interval::register_hint(bool search_split_child) const {
  4136   if (!search_split_child) {
  4137     return _register_hint;
  4140   if (_register_hint != NULL) {
  4141     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
  4143     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
  4144       return _register_hint;
  4146     } else if (_register_hint->_split_children.length() > 0) {
  4147       // search the first split child that has a register assigned
  4148       int len = _register_hint->_split_children.length();
  4149       for (int i = 0; i < len; i++) {
  4150         Interval* cur = _register_hint->_split_children.at(i);
  4152         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
  4153           return cur;
  4159   // no hint interval found that has a register assigned
  4160   return NULL;
  4164 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
  4165   assert(is_split_parent(), "can only be called for split parents");
  4166   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4168   Interval* result;
  4169   if (_split_children.length() == 0) {
  4170     result = this;
  4171   } else {
  4172     result = NULL;
  4173     int len = _split_children.length();
  4175     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
  4176     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
  4178     int i;
  4179     for (i = 0; i < len; i++) {
  4180       Interval* cur = _split_children.at(i);
  4181       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
  4182         if (i > 0) {
  4183           // exchange current split child to start of list (faster access for next call)
  4184           _split_children.at_put(i, _split_children.at(0));
  4185           _split_children.at_put(0, cur);
  4188         // interval found
  4189         result = cur;
  4190         break;
  4194 #ifdef ASSERT
  4195     for (i = 0; i < len; i++) {
  4196       Interval* tmp = _split_children.at(i);
  4197       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
  4198         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
  4199         result->print();
  4200         tmp->print();
  4201         assert(false, "two valid result intervals found");
  4204 #endif
  4207   assert(result != NULL, "no matching interval found");
  4208   assert(result->covers(op_id, mode), "op_id not covered by interval");
  4210   return result;
  4214 // returns the last split child that ends before the given op_id
  4215 Interval* Interval::split_child_before_op_id(int op_id) {
  4216   assert(op_id >= 0, "invalid op_id");
  4218   Interval* parent = split_parent();
  4219   Interval* result = NULL;
  4221   int len = parent->_split_children.length();
  4222   assert(len > 0, "no split children available");
  4224   for (int i = len - 1; i >= 0; i--) {
  4225     Interval* cur = parent->_split_children.at(i);
  4226     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
  4227       result = cur;
  4231   assert(result != NULL, "no split child found");
  4232   return result;
  4236 // checks if op_id is covered by any split child
  4237 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
  4238   assert(is_split_parent(), "can only be called for split parents");
  4239   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
  4241   if (_split_children.length() == 0) {
  4242     // simple case if interval was not split
  4243     return covers(op_id, mode);
  4245   } else {
  4246     // extended case: check all split children
  4247     int len = _split_children.length();
  4248     for (int i = 0; i < len; i++) {
  4249       Interval* cur = _split_children.at(i);
  4250       if (cur->covers(op_id, mode)) {
  4251         return true;
  4254     return false;
  4259 // Note: use positions are sorted descending -> first use has highest index
  4260 int Interval::first_usage(IntervalUseKind min_use_kind) const {
  4261   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4263   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4264     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4265       return _use_pos_and_kinds.at(i);
  4268   return max_jint;
  4271 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
  4272   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4274   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4275     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4276       return _use_pos_and_kinds.at(i);
  4279   return max_jint;
  4282 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
  4283   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4285   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4286     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
  4287       return _use_pos_and_kinds.at(i);
  4290   return max_jint;
  4293 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
  4294   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
  4296   int prev = 0;
  4297   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4298     if (_use_pos_and_kinds.at(i) > from) {
  4299       return prev;
  4301     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
  4302       prev = _use_pos_and_kinds.at(i);
  4305   return prev;
  4308 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
  4309   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
  4311   // do not add use positions for precolored intervals because
  4312   // they are never used
  4313   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
  4314 #ifdef ASSERT
  4315     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4316     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4317       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
  4318       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4319       if (i > 0) {
  4320         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
  4323 #endif
  4325     // Note: add_use is called in descending order, so list gets sorted
  4326     //       automatically by just appending new use positions
  4327     int len = _use_pos_and_kinds.length();
  4328     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
  4329       _use_pos_and_kinds.append(pos);
  4330       _use_pos_and_kinds.append(use_kind);
  4331     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
  4332       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
  4333       _use_pos_and_kinds.at_put(len - 1, use_kind);
  4338 void Interval::add_range(int from, int to) {
  4339   assert(from < to, "invalid range");
  4340   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
  4341   assert(from <= first()->to(), "not inserting at begin of interval");
  4343   if (first()->from() <= to) {
  4344     // join intersecting ranges
  4345     first()->set_from(MIN2(from, first()->from()));
  4346     first()->set_to  (MAX2(to,   first()->to()));
  4347   } else {
  4348     // insert new range
  4349     _first = new Range(from, to, first());
  4353 Interval* Interval::new_split_child() {
  4354   // allocate new interval
  4355   Interval* result = new Interval(-1);
  4356   result->set_type(type());
  4358   Interval* parent = split_parent();
  4359   result->_split_parent = parent;
  4360   result->set_register_hint(parent);
  4362   // insert new interval in children-list of parent
  4363   if (parent->_split_children.length() == 0) {
  4364     assert(is_split_parent(), "list must be initialized at first split");
  4366     parent->_split_children = IntervalList(4);
  4367     parent->_split_children.append(this);
  4369   parent->_split_children.append(result);
  4371   return result;
  4374 // split this interval at the specified position and return
  4375 // the remainder as a new interval.
  4376 //
  4377 // when an interval is split, a bi-directional link is established between the original interval
  4378 // (the split parent) and the intervals that are split off this interval (the split children)
  4379 // When a split child is split again, the new created interval is also a direct child
  4380 // of the original parent (there is no tree of split children stored, but a flat list)
  4381 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
  4382 //
  4383 // Note: The new interval has no valid reg_num
  4384 Interval* Interval::split(int split_pos) {
  4385   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4387   // allocate new interval
  4388   Interval* result = new_split_child();
  4390   // split the ranges
  4391   Range* prev = NULL;
  4392   Range* cur = _first;
  4393   while (cur != Range::end() && cur->to() <= split_pos) {
  4394     prev = cur;
  4395     cur = cur->next();
  4397   assert(cur != Range::end(), "split interval after end of last range");
  4399   if (cur->from() < split_pos) {
  4400     result->_first = new Range(split_pos, cur->to(), cur->next());
  4401     cur->set_to(split_pos);
  4402     cur->set_next(Range::end());
  4404   } else {
  4405     assert(prev != NULL, "split before start of first range");
  4406     result->_first = cur;
  4407     prev->set_next(Range::end());
  4409   result->_current = result->_first;
  4410   _cached_to = -1; // clear cached value
  4412   // split list of use positions
  4413   int total_len = _use_pos_and_kinds.length();
  4414   int start_idx = total_len - 2;
  4415   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
  4416     start_idx -= 2;
  4419   intStack new_use_pos_and_kinds(total_len - start_idx);
  4420   int i;
  4421   for (i = start_idx + 2; i < total_len; i++) {
  4422     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
  4425   _use_pos_and_kinds.truncate(start_idx + 2);
  4426   result->_use_pos_and_kinds = _use_pos_and_kinds;
  4427   _use_pos_and_kinds = new_use_pos_and_kinds;
  4429 #ifdef ASSERT
  4430   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4431   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
  4432   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
  4434   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
  4435     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
  4436     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4438   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
  4439     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
  4440     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4442 #endif
  4444   return result;
  4447 // split this interval at the specified position and return
  4448 // the head as a new interval (the original interval is the tail)
  4449 //
  4450 // Currently, only the first range can be split, and the new interval
  4451 // must not have split positions
  4452 Interval* Interval::split_from_start(int split_pos) {
  4453   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
  4454   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
  4455   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
  4456   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
  4458   // allocate new interval
  4459   Interval* result = new_split_child();
  4461   // the new created interval has only one range (checked by assertion above),
  4462   // so the splitting of the ranges is very simple
  4463   result->add_range(_first->from(), split_pos);
  4465   if (split_pos == _first->to()) {
  4466     assert(_first->next() != Range::end(), "must not be at end");
  4467     _first = _first->next();
  4468   } else {
  4469     _first->set_from(split_pos);
  4472   return result;
  4476 // returns true if the op_id is inside the interval
  4477 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
  4478   Range* cur  = _first;
  4480   while (cur != Range::end() && cur->to() < op_id) {
  4481     cur = cur->next();
  4483   if (cur != Range::end()) {
  4484     assert(cur->to() != cur->next()->from(), "ranges not separated");
  4486     if (mode == LIR_OpVisitState::outputMode) {
  4487       return cur->from() <= op_id && op_id < cur->to();
  4488     } else {
  4489       return cur->from() <= op_id && op_id <= cur->to();
  4492   return false;
  4495 // returns true if the interval has any hole between hole_from and hole_to
  4496 // (even if the hole has only the length 1)
  4497 bool Interval::has_hole_between(int hole_from, int hole_to) {
  4498   assert(hole_from < hole_to, "check");
  4499   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
  4501   Range* cur  = _first;
  4502   while (cur != Range::end()) {
  4503     assert(cur->to() < cur->next()->from(), "no space between ranges");
  4505     // hole-range starts before this range -> hole
  4506     if (hole_from < cur->from()) {
  4507       return true;
  4509     // hole-range completely inside this range -> no hole
  4510     } else if (hole_to <= cur->to()) {
  4511       return false;
  4513     // overlapping of hole-range with this range -> hole
  4514     } else if (hole_from <= cur->to()) {
  4515       return true;
  4518     cur = cur->next();
  4521   return false;
  4525 #ifndef PRODUCT
  4526 void Interval::print(outputStream* out) const {
  4527   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
  4528   const char* UseKind2Name[] = { "N", "L", "S", "M" };
  4530   const char* type_name;
  4531   LIR_Opr opr = LIR_OprFact::illegal();
  4532   if (reg_num() < LIR_OprDesc::vreg_base) {
  4533     type_name = "fixed";
  4534     // need a temporary operand for fixed intervals because type() cannot be called
  4535     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
  4536       opr = LIR_OprFact::single_cpu(assigned_reg());
  4537     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
  4538       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
  4539 #ifdef X86
  4540     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
  4541       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
  4542 #endif
  4543     } else {
  4544       ShouldNotReachHere();
  4546   } else {
  4547     type_name = type2name(type());
  4548     if (assigned_reg() != -1 &&
  4549         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
  4550       opr = LinearScan::calc_operand_for_interval(this);
  4554   out->print("%d %s ", reg_num(), type_name);
  4555   if (opr->is_valid()) {
  4556     out->print("\"");
  4557     opr->print(out);
  4558     out->print("\" ");
  4560   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
  4562   // print ranges
  4563   Range* cur = _first;
  4564   while (cur != Range::end()) {
  4565     cur->print(out);
  4566     cur = cur->next();
  4567     assert(cur != NULL, "range list not closed with range sentinel");
  4570   // print use positions
  4571   int prev = 0;
  4572   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
  4573   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
  4574     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
  4575     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
  4577     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
  4578     prev = _use_pos_and_kinds.at(i);
  4581   out->print(" \"%s\"", SpillState2Name[spill_state()]);
  4582   out->cr();
  4584 #endif
  4588 // **** Implementation of IntervalWalker ****************************
  4590 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4591  : _compilation(allocator->compilation())
  4592  , _allocator(allocator)
  4594   _unhandled_first[fixedKind] = unhandled_fixed_first;
  4595   _unhandled_first[anyKind]   = unhandled_any_first;
  4596   _active_first[fixedKind]    = Interval::end();
  4597   _inactive_first[fixedKind]  = Interval::end();
  4598   _active_first[anyKind]      = Interval::end();
  4599   _inactive_first[anyKind]    = Interval::end();
  4600   _current_position = -1;
  4601   _current = NULL;
  4602   next_interval();
  4606 // append interval at top of list
  4607 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
  4608   interval->set_next(*list); *list = interval;
  4612 // append interval in order of current range from()
  4613 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
  4614   Interval* prev = NULL;
  4615   Interval* cur  = *list;
  4616   while (cur->current_from() < interval->current_from()) {
  4617     prev = cur; cur = cur->next();
  4619   if (prev == NULL) {
  4620     *list = interval;
  4621   } else {
  4622     prev->set_next(interval);
  4624   interval->set_next(cur);
  4627 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
  4628   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
  4630   Interval* prev = NULL;
  4631   Interval* cur  = *list;
  4632   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
  4633     prev = cur; cur = cur->next();
  4635   if (prev == NULL) {
  4636     *list = interval;
  4637   } else {
  4638     prev->set_next(interval);
  4640   interval->set_next(cur);
  4644 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
  4645   while (*list != Interval::end() && *list != i) {
  4646     list = (*list)->next_addr();
  4648   if (*list != Interval::end()) {
  4649     assert(*list == i, "check");
  4650     *list = (*list)->next();
  4651     return true;
  4652   } else {
  4653     return false;
  4657 void IntervalWalker::remove_from_list(Interval* i) {
  4658   bool deleted;
  4660   if (i->state() == activeState) {
  4661     deleted = remove_from_list(active_first_addr(anyKind), i);
  4662   } else {
  4663     assert(i->state() == inactiveState, "invalid state");
  4664     deleted = remove_from_list(inactive_first_addr(anyKind), i);
  4667   assert(deleted, "interval has not been found in list");
  4671 void IntervalWalker::walk_to(IntervalState state, int from) {
  4672   assert (state == activeState || state == inactiveState, "wrong state");
  4673   for_each_interval_kind(kind) {
  4674     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
  4675     Interval* next   = *prev;
  4676     while (next->current_from() <= from) {
  4677       Interval* cur = next;
  4678       next = cur->next();
  4680       bool range_has_changed = false;
  4681       while (cur->current_to() <= from) {
  4682         cur->next_range();
  4683         range_has_changed = true;
  4686       // also handle move from inactive list to active list
  4687       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
  4689       if (range_has_changed) {
  4690         // remove cur from list
  4691         *prev = next;
  4692         if (cur->current_at_end()) {
  4693           // move to handled state (not maintained as a list)
  4694           cur->set_state(handledState);
  4695           interval_moved(cur, kind, state, handledState);
  4696         } else if (cur->current_from() <= from){
  4697           // sort into active list
  4698           append_sorted(active_first_addr(kind), cur);
  4699           cur->set_state(activeState);
  4700           if (*prev == cur) {
  4701             assert(state == activeState, "check");
  4702             prev = cur->next_addr();
  4704           interval_moved(cur, kind, state, activeState);
  4705         } else {
  4706           // sort into inactive list
  4707           append_sorted(inactive_first_addr(kind), cur);
  4708           cur->set_state(inactiveState);
  4709           if (*prev == cur) {
  4710             assert(state == inactiveState, "check");
  4711             prev = cur->next_addr();
  4713           interval_moved(cur, kind, state, inactiveState);
  4715       } else {
  4716         prev = cur->next_addr();
  4717         continue;
  4724 void IntervalWalker::next_interval() {
  4725   IntervalKind kind;
  4726   Interval* any   = _unhandled_first[anyKind];
  4727   Interval* fixed = _unhandled_first[fixedKind];
  4729   if (any != Interval::end()) {
  4730     // intervals may start at same position -> prefer fixed interval
  4731     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
  4733     assert (kind == fixedKind && fixed->from() <= any->from() ||
  4734             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
  4735     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
  4737   } else if (fixed != Interval::end()) {
  4738     kind = fixedKind;
  4739   } else {
  4740     _current = NULL; return;
  4742   _current_kind = kind;
  4743   _current = _unhandled_first[kind];
  4744   _unhandled_first[kind] = _current->next();
  4745   _current->set_next(Interval::end());
  4746   _current->rewind_range();
  4750 void IntervalWalker::walk_to(int lir_op_id) {
  4751   assert(_current_position <= lir_op_id, "can not walk backwards");
  4752   while (current() != NULL) {
  4753     bool is_active = current()->from() <= lir_op_id;
  4754     int id = is_active ? current()->from() : lir_op_id;
  4756     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
  4758     // set _current_position prior to call of walk_to
  4759     _current_position = id;
  4761     // call walk_to even if _current_position == id
  4762     walk_to(activeState, id);
  4763     walk_to(inactiveState, id);
  4765     if (is_active) {
  4766       current()->set_state(activeState);
  4767       if (activate_current()) {
  4768         append_sorted(active_first_addr(current_kind()), current());
  4769         interval_moved(current(), current_kind(), unhandledState, activeState);
  4772       next_interval();
  4773     } else {
  4774       return;
  4779 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
  4780 #ifndef PRODUCT
  4781   if (TraceLinearScanLevel >= 4) {
  4782     #define print_state(state) \
  4783     switch(state) {\
  4784       case unhandledState: tty->print("unhandled"); break;\
  4785       case activeState: tty->print("active"); break;\
  4786       case inactiveState: tty->print("inactive"); break;\
  4787       case handledState: tty->print("handled"); break;\
  4788       default: ShouldNotReachHere(); \
  4791     print_state(from); tty->print(" to "); print_state(to);
  4792     tty->fill_to(23);
  4793     interval->print();
  4795     #undef print_state
  4797 #endif
  4802 // **** Implementation of LinearScanWalker **************************
  4804 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
  4805   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
  4806   , _move_resolver(allocator)
  4808   for (int i = 0; i < LinearScan::nof_regs; i++) {
  4809     _spill_intervals[i] = new IntervalList(2);
  4814 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
  4815   for (int i = _first_reg; i <= _last_reg; i++) {
  4816     _use_pos[i] = max_jint;
  4818     if (!only_process_use_pos) {
  4819       _block_pos[i] = max_jint;
  4820       _spill_intervals[i]->clear();
  4825 inline void LinearScanWalker::exclude_from_use(int reg) {
  4826   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
  4827   if (reg >= _first_reg && reg <= _last_reg) {
  4828     _use_pos[reg] = 0;
  4831 inline void LinearScanWalker::exclude_from_use(Interval* i) {
  4832   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4834   exclude_from_use(i->assigned_reg());
  4835   exclude_from_use(i->assigned_regHi());
  4838 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
  4839   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
  4841   if (reg >= _first_reg && reg <= _last_reg) {
  4842     if (_use_pos[reg] > use_pos) {
  4843       _use_pos[reg] = use_pos;
  4845     if (!only_process_use_pos) {
  4846       _spill_intervals[reg]->append(i);
  4850 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
  4851   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4852   if (use_pos != -1) {
  4853     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
  4854     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
  4858 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
  4859   if (reg >= _first_reg && reg <= _last_reg) {
  4860     if (_block_pos[reg] > block_pos) {
  4861       _block_pos[reg] = block_pos;
  4863     if (_use_pos[reg] > block_pos) {
  4864       _use_pos[reg] = block_pos;
  4868 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
  4869   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
  4870   if (block_pos != -1) {
  4871     set_block_pos(i->assigned_reg(), i, block_pos);
  4872     set_block_pos(i->assigned_regHi(), i, block_pos);
  4877 void LinearScanWalker::free_exclude_active_fixed() {
  4878   Interval* list = active_first(fixedKind);
  4879   while (list != Interval::end()) {
  4880     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
  4881     exclude_from_use(list);
  4882     list = list->next();
  4886 void LinearScanWalker::free_exclude_active_any() {
  4887   Interval* list = active_first(anyKind);
  4888   while (list != Interval::end()) {
  4889     exclude_from_use(list);
  4890     list = list->next();
  4894 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
  4895   Interval* list = inactive_first(fixedKind);
  4896   while (list != Interval::end()) {
  4897     if (cur->to() <= list->current_from()) {
  4898       assert(list->current_intersects_at(cur) == -1, "must not intersect");
  4899       set_use_pos(list, list->current_from(), true);
  4900     } else {
  4901       set_use_pos(list, list->current_intersects_at(cur), true);
  4903     list = list->next();
  4907 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
  4908   Interval* list = inactive_first(anyKind);
  4909   while (list != Interval::end()) {
  4910     set_use_pos(list, list->current_intersects_at(cur), true);
  4911     list = list->next();
  4915 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
  4916   Interval* list = unhandled_first(kind);
  4917   while (list != Interval::end()) {
  4918     set_use_pos(list, list->intersects_at(cur), true);
  4919     if (kind == fixedKind && cur->to() <= list->from()) {
  4920       set_use_pos(list, list->from(), true);
  4922     list = list->next();
  4926 void LinearScanWalker::spill_exclude_active_fixed() {
  4927   Interval* list = active_first(fixedKind);
  4928   while (list != Interval::end()) {
  4929     exclude_from_use(list);
  4930     list = list->next();
  4934 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
  4935   Interval* list = unhandled_first(fixedKind);
  4936   while (list != Interval::end()) {
  4937     set_block_pos(list, list->intersects_at(cur));
  4938     list = list->next();
  4942 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
  4943   Interval* list = inactive_first(fixedKind);
  4944   while (list != Interval::end()) {
  4945     if (cur->to() > list->current_from()) {
  4946       set_block_pos(list, list->current_intersects_at(cur));
  4947     } else {
  4948       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
  4951     list = list->next();
  4955 void LinearScanWalker::spill_collect_active_any() {
  4956   Interval* list = active_first(anyKind);
  4957   while (list != Interval::end()) {
  4958     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4959     list = list->next();
  4963 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
  4964   Interval* list = inactive_first(anyKind);
  4965   while (list != Interval::end()) {
  4966     if (list->current_intersects(cur)) {
  4967       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
  4969     list = list->next();
  4974 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
  4975   // output all moves here. When source and target are equal, the move is
  4976   // optimized away later in assign_reg_nums
  4978   op_id = (op_id + 1) & ~1;
  4979   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
  4980   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
  4982   // calculate index of instruction inside instruction list of current block
  4983   // the minimal index (for a block with no spill moves) can be calculated because the
  4984   // numbering of instructions is known.
  4985   // When the block already contains spill moves, the index must be increased until the
  4986   // correct index is reached.
  4987   LIR_OpList* list = op_block->lir()->instructions_list();
  4988   int index = (op_id - list->at(0)->id()) / 2;
  4989   assert(list->at(index)->id() <= op_id, "error in calculation");
  4991   while (list->at(index)->id() != op_id) {
  4992     index++;
  4993     assert(0 <= index && index < list->length(), "index out of bounds");
  4995   assert(1 <= index && index < list->length(), "index out of bounds");
  4996   assert(list->at(index)->id() == op_id, "error in calculation");
  4998   // insert new instruction before instruction at position index
  4999   _move_resolver.move_insert_position(op_block->lir(), index - 1);
  5000   _move_resolver.add_mapping(src_it, dst_it);
  5004 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
  5005   int from_block_nr = min_block->linear_scan_number();
  5006   int to_block_nr = max_block->linear_scan_number();
  5008   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
  5009   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
  5010   assert(from_block_nr < to_block_nr, "must cross block boundary");
  5012   // Try to split at end of max_block. If this would be after
  5013   // max_split_pos, then use the begin of max_block
  5014   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
  5015   if (optimal_split_pos > max_split_pos) {
  5016     optimal_split_pos = max_block->first_lir_instruction_id();
  5019   int min_loop_depth = max_block->loop_depth();
  5020   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
  5021     BlockBegin* cur = block_at(i);
  5023     if (cur->loop_depth() < min_loop_depth) {
  5024       // block with lower loop-depth found -> split at the end of this block
  5025       min_loop_depth = cur->loop_depth();
  5026       optimal_split_pos = cur->last_lir_instruction_id() + 2;
  5029   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
  5031   return optimal_split_pos;
  5035 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
  5036   int optimal_split_pos = -1;
  5037   if (min_split_pos == max_split_pos) {
  5038     // trivial case, no optimization of split position possible
  5039     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
  5040     optimal_split_pos = min_split_pos;
  5042   } else {
  5043     assert(min_split_pos < max_split_pos, "must be true then");
  5044     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
  5046     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
  5047     // beginning of a block, then min_split_pos is also a possible split position.
  5048     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
  5049     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
  5051     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
  5052     // when an interval ends at the end of the last block of the method
  5053     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
  5054     // block at this op_id)
  5055     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
  5057     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
  5058     if (min_block == max_block) {
  5059       // split position cannot be moved to block boundary, so split as late as possible
  5060       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
  5061       optimal_split_pos = max_split_pos;
  5063     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
  5064       // Do not move split position if the interval has a hole before max_split_pos.
  5065       // Intervals resulting from Phi-Functions have more than one definition (marked
  5066       // as mustHaveRegister) with a hole before each definition. When the register is needed
  5067       // for the second definition, an earlier reloading is unnecessary.
  5068       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
  5069       optimal_split_pos = max_split_pos;
  5071     } else {
  5072       // seach optimal block boundary between min_split_pos and max_split_pos
  5073       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
  5075       if (do_loop_optimization) {
  5076         // Loop optimization: if a loop-end marker is found between min- and max-position,
  5077         // then split before this loop
  5078         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
  5079         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
  5081         assert(loop_end_pos > min_split_pos, "invalid order");
  5082         if (loop_end_pos < max_split_pos) {
  5083           // loop-end marker found between min- and max-position
  5084           // if it is not the end marker for the same loop as the min-position, then move
  5085           // the max-position to this loop block.
  5086           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
  5087           // of the interval (normally, only mustHaveRegister causes a reloading)
  5088           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
  5090           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
  5091           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
  5093           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
  5094           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
  5095             optimal_split_pos = -1;
  5096             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
  5097           } else {
  5098             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
  5103       if (optimal_split_pos == -1) {
  5104         // not calculated by loop optimization
  5105         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
  5109   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
  5111   return optimal_split_pos;
  5115 /*
  5116   split an interval at the optimal position between min_split_pos and
  5117   max_split_pos in two parts:
  5118   1) the left part has already a location assigned
  5119   2) the right part is sorted into to the unhandled-list
  5120 */
  5121 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
  5122   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
  5123   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5125   assert(it->from() < min_split_pos,         "cannot split at start of interval");
  5126   assert(current_position() < min_split_pos, "cannot split before current position");
  5127   assert(min_split_pos <= max_split_pos,     "invalid order");
  5128   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
  5130   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
  5132   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5133   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
  5134   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
  5136   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
  5137     // the split position would be just before the end of the interval
  5138     // -> no split at all necessary
  5139     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
  5140     return;
  5143   // must calculate this before the actual split is performed and before split position is moved to odd op_id
  5144   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
  5146   if (!allocator()->is_block_begin(optimal_split_pos)) {
  5147     // move position before actual instruction (odd op_id)
  5148     optimal_split_pos = (optimal_split_pos - 1) | 1;
  5151   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5152   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5153   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5155   Interval* split_part = it->split(optimal_split_pos);
  5157   allocator()->append_interval(split_part);
  5158   allocator()->copy_register_flags(it, split_part);
  5159   split_part->set_insert_move_when_activated(move_necessary);
  5160   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
  5162   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
  5163   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5164   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
  5167 /*
  5168   split an interval at the optimal position between min_split_pos and
  5169   max_split_pos in two parts:
  5170   1) the left part has already a location assigned
  5171   2) the right part is always on the stack and therefore ignored in further processing
  5172 */
  5173 void LinearScanWalker::split_for_spilling(Interval* it) {
  5174   // calculate allowed range of splitting position
  5175   int max_split_pos = current_position();
  5176   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
  5178   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
  5179   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
  5181   assert(it->state() == activeState,     "why spill interval that is not active?");
  5182   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
  5183   assert(min_split_pos <= max_split_pos, "invalid order");
  5184   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
  5185   assert(current_position() < it->to(),  "interval must not end before current position");
  5187   if (min_split_pos == it->from()) {
  5188     // the whole interval is never used, so spill it entirely to memory
  5189     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
  5190     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
  5192     allocator()->assign_spill_slot(it);
  5193     allocator()->change_spill_state(it, min_split_pos);
  5195     // Also kick parent intervals out of register to memory when they have no use
  5196     // position. This avoids short interval in register surrounded by intervals in
  5197     // memory -> avoid useless moves from memory to register and back
  5198     Interval* parent = it;
  5199     while (parent != NULL && parent->is_split_child()) {
  5200       parent = parent->split_child_before_op_id(parent->from());
  5202       if (parent->assigned_reg() < LinearScan::nof_regs) {
  5203         if (parent->first_usage(shouldHaveRegister) == max_jint) {
  5204           // parent is never used, so kick it out of its assigned register
  5205           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
  5206           allocator()->assign_spill_slot(parent);
  5207         } else {
  5208           // do not go further back because the register is actually used by the interval
  5209           parent = NULL;
  5214   } else {
  5215     // search optimal split pos, split interval and spill only the right hand part
  5216     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
  5218     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
  5219     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
  5220     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
  5222     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5223       // move position before actual instruction (odd op_id)
  5224       optimal_split_pos = (optimal_split_pos - 1) | 1;
  5227     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
  5228     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
  5229     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
  5231     Interval* spilled_part = it->split(optimal_split_pos);
  5232     allocator()->append_interval(spilled_part);
  5233     allocator()->assign_spill_slot(spilled_part);
  5234     allocator()->change_spill_state(spilled_part, optimal_split_pos);
  5236     if (!allocator()->is_block_begin(optimal_split_pos)) {
  5237       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
  5238       insert_move(optimal_split_pos, it, spilled_part);
  5241     // the current_split_child is needed later when moves are inserted for reloading
  5242     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
  5243     spilled_part->make_current_split_child();
  5245     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
  5246     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
  5247     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
  5252 void LinearScanWalker::split_stack_interval(Interval* it) {
  5253   int min_split_pos = current_position() + 1;
  5254   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
  5256   split_before_usage(it, min_split_pos, max_split_pos);
  5259 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
  5260   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
  5261   int max_split_pos = register_available_until;
  5263   split_before_usage(it, min_split_pos, max_split_pos);
  5266 void LinearScanWalker::split_and_spill_interval(Interval* it) {
  5267   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
  5269   int current_pos = current_position();
  5270   if (it->state() == inactiveState) {
  5271     // the interval is currently inactive, so no spill slot is needed for now.
  5272     // when the split part is activated, the interval has a new chance to get a register,
  5273     // so in the best case no stack slot is necessary
  5274     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
  5275     split_before_usage(it, current_pos + 1, current_pos + 1);
  5277   } else {
  5278     // search the position where the interval must have a register and split
  5279     // at the optimal position before.
  5280     // The new created part is added to the unhandled list and will get a register
  5281     // when it is activated
  5282     int min_split_pos = current_pos + 1;
  5283     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
  5285     split_before_usage(it, min_split_pos, max_split_pos);
  5287     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
  5288     split_for_spilling(it);
  5293 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5294   int min_full_reg = any_reg;
  5295   int max_partial_reg = any_reg;
  5297   for (int i = _first_reg; i <= _last_reg; i++) {
  5298     if (i == ignore_reg) {
  5299       // this register must be ignored
  5301     } else if (_use_pos[i] >= interval_to) {
  5302       // this register is free for the full interval
  5303       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5304         min_full_reg = i;
  5306     } else if (_use_pos[i] > reg_needed_until) {
  5307       // this register is at least free until reg_needed_until
  5308       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5309         max_partial_reg = i;
  5314   if (min_full_reg != any_reg) {
  5315     return min_full_reg;
  5316   } else if (max_partial_reg != any_reg) {
  5317     *need_split = true;
  5318     return max_partial_reg;
  5319   } else {
  5320     return any_reg;
  5324 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5325   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5327   int min_full_reg = any_reg;
  5328   int max_partial_reg = any_reg;
  5330   for (int i = _first_reg; i < _last_reg; i+=2) {
  5331     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
  5332       // this register is free for the full interval
  5333       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
  5334         min_full_reg = i;
  5336     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5337       // this register is at least free until reg_needed_until
  5338       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
  5339         max_partial_reg = i;
  5344   if (min_full_reg != any_reg) {
  5345     return min_full_reg;
  5346   } else if (max_partial_reg != any_reg) {
  5347     *need_split = true;
  5348     return max_partial_reg;
  5349   } else {
  5350     return any_reg;
  5355 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
  5356   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
  5358   init_use_lists(true);
  5359   free_exclude_active_fixed();
  5360   free_exclude_active_any();
  5361   free_collect_inactive_fixed(cur);
  5362   free_collect_inactive_any(cur);
  5363 //  free_collect_unhandled(fixedKind, cur);
  5364   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5366   // _use_pos contains the start of the next interval that has this register assigned
  5367   // (either as a fixed register or a normal allocated register in the past)
  5368   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
  5369   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
  5370   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
  5372   int hint_reg, hint_regHi;
  5373   Interval* register_hint = cur->register_hint();
  5374   if (register_hint != NULL) {
  5375     hint_reg = register_hint->assigned_reg();
  5376     hint_regHi = register_hint->assigned_regHi();
  5378     if (allocator()->is_precolored_cpu_interval(register_hint)) {
  5379       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
  5380       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
  5382     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
  5384   } else {
  5385     hint_reg = any_reg;
  5386     hint_regHi = any_reg;
  5388   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
  5389   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
  5391   // the register must be free at least until this position
  5392   int reg_needed_until = cur->from() + 1;
  5393   int interval_to = cur->to();
  5395   bool need_split = false;
  5396   int split_pos = -1;
  5397   int reg = any_reg;
  5398   int regHi = any_reg;
  5400   if (_adjacent_regs) {
  5401     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
  5402     regHi = reg + 1;
  5403     if (reg == any_reg) {
  5404       return false;
  5406     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5408   } else {
  5409     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
  5410     if (reg == any_reg) {
  5411       return false;
  5413     split_pos = _use_pos[reg];
  5415     if (_num_phys_regs == 2) {
  5416       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
  5418       if (_use_pos[reg] < interval_to && regHi == any_reg) {
  5419         // do not split interval if only one register can be assigned until the split pos
  5420         // (when one register is found for the whole interval, split&spill is only
  5421         // performed for the hi register)
  5422         return false;
  5424       } else if (regHi != any_reg) {
  5425         split_pos = MIN2(split_pos, _use_pos[regHi]);
  5427         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5428         if (reg > regHi) {
  5429           int temp = reg;
  5430           reg = regHi;
  5431           regHi = temp;
  5437   cur->assign_reg(reg, regHi);
  5438   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
  5440   assert(split_pos > 0, "invalid split_pos");
  5441   if (need_split) {
  5442     // register not available for full interval, so split it
  5443     split_when_partial_register_available(cur, split_pos);
  5446   // only return true if interval is completely assigned
  5447   return _num_phys_regs == 1 || regHi != any_reg;
  5451 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
  5452   int max_reg = any_reg;
  5454   for (int i = _first_reg; i <= _last_reg; i++) {
  5455     if (i == ignore_reg) {
  5456       // this register must be ignored
  5458     } else if (_use_pos[i] > reg_needed_until) {
  5459       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
  5460         max_reg = i;
  5465   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
  5466     *need_split = true;
  5469   return max_reg;
  5472 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
  5473   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
  5475   int max_reg = any_reg;
  5477   for (int i = _first_reg; i < _last_reg; i+=2) {
  5478     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
  5479       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
  5480         max_reg = i;
  5485   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
  5486     *need_split = true;
  5489   return max_reg;
  5492 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
  5493   assert(reg != any_reg, "no register assigned");
  5495   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
  5496     Interval* it = _spill_intervals[reg]->at(i);
  5497     remove_from_list(it);
  5498     split_and_spill_interval(it);
  5501   if (regHi != any_reg) {
  5502     IntervalList* processed = _spill_intervals[reg];
  5503     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
  5504       Interval* it = _spill_intervals[regHi]->at(i);
  5505       if (processed->index_of(it) == -1) {
  5506         remove_from_list(it);
  5507         split_and_spill_interval(it);
  5514 // Split an Interval and spill it to memory so that cur can be placed in a register
  5515 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
  5516   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
  5518   // collect current usage of registers
  5519   init_use_lists(false);
  5520   spill_exclude_active_fixed();
  5521 //  spill_block_unhandled_fixed(cur);
  5522   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
  5523   spill_block_inactive_fixed(cur);
  5524   spill_collect_active_any();
  5525   spill_collect_inactive_any(cur);
  5527 #ifndef PRODUCT
  5528   if (TraceLinearScanLevel >= 4) {
  5529     tty->print_cr("      state of registers:");
  5530     for (int i = _first_reg; i <= _last_reg; i++) {
  5531       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
  5532       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
  5533         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
  5535       tty->cr();
  5538 #endif
  5540   // the register must be free at least until this position
  5541   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
  5542   int interval_to = cur->to();
  5543   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
  5545   int split_pos = 0;
  5546   int use_pos = 0;
  5547   bool need_split = false;
  5548   int reg, regHi;
  5550   if (_adjacent_regs) {
  5551     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
  5552     regHi = reg + 1;
  5554     if (reg != any_reg) {
  5555       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
  5556       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
  5558   } else {
  5559     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
  5560     regHi = any_reg;
  5562     if (reg != any_reg) {
  5563       use_pos = _use_pos[reg];
  5564       split_pos = _block_pos[reg];
  5566       if (_num_phys_regs == 2) {
  5567         if (cur->assigned_reg() != any_reg) {
  5568           regHi = reg;
  5569           reg = cur->assigned_reg();
  5570         } else {
  5571           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
  5572           if (regHi != any_reg) {
  5573             use_pos = MIN2(use_pos, _use_pos[regHi]);
  5574             split_pos = MIN2(split_pos, _block_pos[regHi]);
  5578         if (regHi != any_reg && reg > regHi) {
  5579           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
  5580           int temp = reg;
  5581           reg = regHi;
  5582           regHi = temp;
  5588   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
  5589     // the first use of cur is later than the spilling position -> spill cur
  5590     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
  5592     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
  5593       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
  5594       // assign a reasonable register and do a bailout in product mode to avoid errors
  5595       allocator()->assign_spill_slot(cur);
  5596       BAILOUT("LinearScan: no register found");
  5599     split_and_spill_interval(cur);
  5600   } else {
  5601     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
  5602     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
  5603     assert(split_pos > 0, "invalid split_pos");
  5604     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
  5606     cur->assign_reg(reg, regHi);
  5607     if (need_split) {
  5608       // register not available for full interval, so split it
  5609       split_when_partial_register_available(cur, split_pos);
  5612     // perform splitting and spilling for all affected intervalls
  5613     split_and_spill_intersecting_intervals(reg, regHi);
  5617 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
  5618 #ifdef X86
  5619   // fast calculation of intervals that can never get a register because the
  5620   // the next instruction is a call that blocks all registers
  5621   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
  5623   // check if this interval is the result of a split operation
  5624   // (an interval got a register until this position)
  5625   int pos = cur->from();
  5626   if ((pos & 1) == 1) {
  5627     // the current instruction is a call that blocks all registers
  5628     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
  5629       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
  5631       // safety check that there is really no register available
  5632       assert(alloc_free_reg(cur) == false, "found a register for this interval");
  5633       return true;
  5637 #endif
  5638   return false;
  5641 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
  5642   BasicType type = cur->type();
  5643   _num_phys_regs = LinearScan::num_physical_regs(type);
  5644   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
  5646   if (pd_init_regs_for_alloc(cur)) {
  5647     // the appropriate register range was selected.
  5648   } else if (type == T_FLOAT || type == T_DOUBLE) {
  5649     _first_reg = pd_first_fpu_reg;
  5650     _last_reg = pd_last_fpu_reg;
  5651   } else {
  5652     _first_reg = pd_first_cpu_reg;
  5653     _last_reg = FrameMap::last_cpu_reg();
  5656   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
  5657   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
  5661 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
  5662   if (op->code() != lir_move) {
  5663     return false;
  5665   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
  5667   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
  5668   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
  5669   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
  5672 // optimization (especially for phi functions of nested loops):
  5673 // assign same spill slot to non-intersecting intervals
  5674 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
  5675   if (cur->is_split_child()) {
  5676     // optimization is only suitable for split parents
  5677     return;
  5680   Interval* register_hint = cur->register_hint(false);
  5681   if (register_hint == NULL) {
  5682     // cur is not the target of a move, otherwise register_hint would be set
  5683     return;
  5685   assert(register_hint->is_split_parent(), "register hint must be split parent");
  5687   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
  5688     // combining the stack slots for intervals where spill move optimization is applied
  5689     // is not benefitial and would cause problems
  5690     return;
  5693   int begin_pos = cur->from();
  5694   int end_pos = cur->to();
  5695   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
  5696     // safety check that lir_op_with_id is allowed
  5697     return;
  5700   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
  5701     // cur and register_hint are not connected with two moves
  5702     return;
  5705   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
  5706   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
  5707   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
  5708     // register_hint must be split, otherwise the re-writing of use positions does not work
  5709     return;
  5712   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
  5713   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
  5714   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
  5715   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
  5717   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
  5718     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
  5719     return;
  5721   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
  5723   // modify intervals such that cur gets the same stack slot as register_hint
  5724   // delete use positions to prevent the intervals to get a register at beginning
  5725   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
  5726   cur->remove_first_use_pos();
  5727   end_hint->remove_first_use_pos();
  5731 // allocate a physical register or memory location to an interval
  5732 bool LinearScanWalker::activate_current() {
  5733   Interval* cur = current();
  5734   bool result = true;
  5736   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
  5737   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
  5739   if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5740     // activating an interval that has a stack slot assigned -> split it at first use position
  5741     // used for method parameters
  5742     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
  5744     split_stack_interval(cur);
  5745     result = false;
  5747   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
  5748     // activating an interval that must start in a stack slot, but may get a register later
  5749     // used for lir_roundfp: rounding is done by store to stack and reload later
  5750     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
  5751     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
  5753     allocator()->assign_spill_slot(cur);
  5754     split_stack_interval(cur);
  5755     result = false;
  5757   } else if (cur->assigned_reg() == any_reg) {
  5758     // interval has not assigned register -> normal allocation
  5759     // (this is the normal case for most intervals)
  5760     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
  5762     // assign same spill slot to non-intersecting intervals
  5763     combine_spilled_intervals(cur);
  5765     init_vars_for_alloc(cur);
  5766     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
  5767       // no empty register available.
  5768       // split and spill another interval so that this interval gets a register
  5769       alloc_locked_reg(cur);
  5772     // spilled intervals need not be move to active-list
  5773     if (cur->assigned_reg() >= LinearScan::nof_regs) {
  5774       result = false;
  5778   // load spilled values that become active from stack slot to register
  5779   if (cur->insert_move_when_activated()) {
  5780     assert(cur->is_split_child(), "must be");
  5781     assert(cur->current_split_child() != NULL, "must be");
  5782     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
  5783     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
  5785     insert_move(cur->from(), cur->current_split_child(), cur);
  5787   cur->make_current_split_child();
  5789   return result; // true = interval is moved to active list
  5793 // Implementation of EdgeMoveOptimizer
  5795 EdgeMoveOptimizer::EdgeMoveOptimizer() :
  5796   _edge_instructions(4),
  5797   _edge_instructions_idx(4)
  5801 void EdgeMoveOptimizer::optimize(BlockList* code) {
  5802   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
  5804   // ignore the first block in the list (index 0 is not processed)
  5805   for (int i = code->length() - 1; i >= 1; i--) {
  5806     BlockBegin* block = code->at(i);
  5808     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
  5809       optimizer.optimize_moves_at_block_end(block);
  5811     if (block->number_of_sux() == 2) {
  5812       optimizer.optimize_moves_at_block_begin(block);
  5818 // clear all internal data structures
  5819 void EdgeMoveOptimizer::init_instructions() {
  5820   _edge_instructions.clear();
  5821   _edge_instructions_idx.clear();
  5824 // append a lir-instruction-list and the index of the current operation in to the list
  5825 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
  5826   _edge_instructions.append(instructions);
  5827   _edge_instructions_idx.append(instructions_idx);
  5830 // return the current operation of the given edge (predecessor or successor)
  5831 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
  5832   LIR_OpList* instructions = _edge_instructions.at(edge);
  5833   int idx = _edge_instructions_idx.at(edge);
  5835   if (idx < instructions->length()) {
  5836     return instructions->at(idx);
  5837   } else {
  5838     return NULL;
  5842 // removes the current operation of the given edge (predecessor or successor)
  5843 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
  5844   LIR_OpList* instructions = _edge_instructions.at(edge);
  5845   int idx = _edge_instructions_idx.at(edge);
  5846   instructions->remove_at(idx);
  5848   if (decrement_index) {
  5849     _edge_instructions_idx.at_put(edge, idx - 1);
  5854 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
  5855   if (op1 == NULL || op2 == NULL) {
  5856     // at least one block is already empty -> no optimization possible
  5857     return true;
  5860   if (op1->code() == lir_move && op2->code() == lir_move) {
  5861     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
  5862     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
  5863     LIR_Op1* move1 = (LIR_Op1*)op1;
  5864     LIR_Op1* move2 = (LIR_Op1*)op2;
  5865     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
  5866       // these moves are exactly equal and can be optimized
  5867       return false;
  5870   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
  5871     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
  5872     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
  5873     LIR_Op1* fxch1 = (LIR_Op1*)op1;
  5874     LIR_Op1* fxch2 = (LIR_Op1*)op2;
  5875     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
  5876       // equal FPU stack operations can be optimized
  5877       return false;
  5880   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
  5881     // equal FPU stack operations can be optimized
  5882     return false;
  5885   // no optimization possible
  5886   return true;
  5889 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
  5890   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
  5892   if (block->is_predecessor(block)) {
  5893     // currently we can't handle this correctly.
  5894     return;
  5897   init_instructions();
  5898   int num_preds = block->number_of_preds();
  5899   assert(num_preds > 1, "do not call otherwise");
  5900   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  5902   // setup a list with the lir-instructions of all predecessors
  5903   int i;
  5904   for (i = 0; i < num_preds; i++) {
  5905     BlockBegin* pred = block->pred_at(i);
  5906     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  5908     if (pred->number_of_sux() != 1) {
  5909       // this can happen with switch-statements where multiple edges are between
  5910       // the same blocks.
  5911       return;
  5914     assert(pred->number_of_sux() == 1, "can handle only one successor");
  5915     assert(pred->sux_at(0) == block, "invalid control flow");
  5916     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5917     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5918     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5920     if (pred_instructions->last()->info() != NULL) {
  5921       // can not optimize instructions when debug info is needed
  5922       return;
  5925     // ignore the unconditional branch at the end of the block
  5926     append_instructions(pred_instructions, pred_instructions->length() - 2);
  5930   // process lir-instructions while all predecessors end with the same instruction
  5931   while (true) {
  5932     LIR_Op* op = instruction_at(0);
  5933     for (i = 1; i < num_preds; i++) {
  5934       if (operations_different(op, instruction_at(i))) {
  5935         // these instructions are different and cannot be optimized ->
  5936         // no further optimization possible
  5937         return;
  5941     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
  5943     // insert the instruction at the beginning of the current block
  5944     block->lir()->insert_before(1, op);
  5946     // delete the instruction at the end of all predecessors
  5947     for (i = 0; i < num_preds; i++) {
  5948       remove_cur_instruction(i, true);
  5954 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
  5955   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
  5957   init_instructions();
  5958   int num_sux = block->number_of_sux();
  5960   LIR_OpList* cur_instructions = block->lir()->instructions_list();
  5962   assert(num_sux == 2, "method should not be called otherwise");
  5963   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
  5964   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  5965   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
  5967   if (cur_instructions->last()->info() != NULL) {
  5968     // can no optimize instructions when debug info is needed
  5969     return;
  5972   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
  5973   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
  5974     // not a valid case for optimization
  5975     // currently, only blocks that end with two branches (conditional branch followed
  5976     // by unconditional branch) are optimized
  5977     return;
  5980   // now it is guaranteed that the block ends with two branch instructions.
  5981   // the instructions are inserted at the end of the block before these two branches
  5982   int insert_idx = cur_instructions->length() - 2;
  5984   int i;
  5985 #ifdef ASSERT
  5986   for (i = insert_idx - 1; i >= 0; i--) {
  5987     LIR_Op* op = cur_instructions->at(i);
  5988     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
  5989       assert(false, "block with two successors can have only two branch instructions");
  5992 #endif
  5994   // setup a list with the lir-instructions of all successors
  5995   for (i = 0; i < num_sux; i++) {
  5996     BlockBegin* sux = block->sux_at(i);
  5997     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
  5999     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
  6001     if (sux->number_of_preds() != 1) {
  6002       // this can happen with switch-statements where multiple edges are between
  6003       // the same blocks.
  6004       return;
  6006     assert(sux->pred_at(0) == block, "invalid control flow");
  6007     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
  6009     // ignore the label at the beginning of the block
  6010     append_instructions(sux_instructions, 1);
  6013   // process lir-instructions while all successors begin with the same instruction
  6014   while (true) {
  6015     LIR_Op* op = instruction_at(0);
  6016     for (i = 1; i < num_sux; i++) {
  6017       if (operations_different(op, instruction_at(i))) {
  6018         // these instructions are different and cannot be optimized ->
  6019         // no further optimization possible
  6020         return;
  6024     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
  6026     // insert instruction at end of current block
  6027     block->lir()->insert_before(insert_idx, op);
  6028     insert_idx++;
  6030     // delete the instructions at the beginning of all successors
  6031     for (i = 0; i < num_sux; i++) {
  6032       remove_cur_instruction(i, false);
  6038 // Implementation of ControlFlowOptimizer
  6040 ControlFlowOptimizer::ControlFlowOptimizer() :
  6041   _original_preds(4)
  6045 void ControlFlowOptimizer::optimize(BlockList* code) {
  6046   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
  6048   // push the OSR entry block to the end so that we're not jumping over it.
  6049   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
  6050   if (osr_entry) {
  6051     int index = osr_entry->linear_scan_number();
  6052     assert(code->at(index) == osr_entry, "wrong index");
  6053     code->remove_at(index);
  6054     code->append(osr_entry);
  6057   optimizer.reorder_short_loops(code);
  6058   optimizer.delete_empty_blocks(code);
  6059   optimizer.delete_unnecessary_jumps(code);
  6060   optimizer.delete_jumps_to_return(code);
  6063 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
  6064   int i = header_idx + 1;
  6065   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
  6066   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
  6067     i++;
  6070   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
  6071     int end_idx = i - 1;
  6072     BlockBegin* end_block = code->at(end_idx);
  6074     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
  6075       // short loop from header_idx to end_idx found -> reorder blocks such that
  6076       // the header_block is the last block instead of the first block of the loop
  6077       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
  6078                                          end_idx - header_idx + 1,
  6079                                          header_block->block_id(), end_block->block_id()));
  6081       for (int j = header_idx; j < end_idx; j++) {
  6082         code->at_put(j, code->at(j + 1));
  6084       code->at_put(end_idx, header_block);
  6086       // correct the flags so that any loop alignment occurs in the right place.
  6087       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
  6088       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
  6089       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
  6094 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
  6095   for (int i = code->length() - 1; i >= 0; i--) {
  6096     BlockBegin* block = code->at(i);
  6098     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  6099       reorder_short_loop(code, block, i);
  6103   DEBUG_ONLY(verify(code));
  6106 // only blocks with exactly one successor can be deleted. Such blocks
  6107 // must always end with an unconditional branch to this successor
  6108 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
  6109   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
  6110     return false;
  6113   LIR_OpList* instructions = block->lir()->instructions_list();
  6115   assert(instructions->length() >= 2, "block must have label and branch");
  6116   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6117   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
  6118   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
  6119   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
  6121   // block must have exactly one successor
  6123   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
  6124     return true;
  6126   return false;
  6129 // substitute branch targets in all branch-instructions of this blocks
  6130 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
  6131   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
  6133   LIR_OpList* instructions = block->lir()->instructions_list();
  6135   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6136   for (int i = instructions->length() - 1; i >= 1; i--) {
  6137     LIR_Op* op = instructions->at(i);
  6139     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
  6140       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6141       LIR_OpBranch* branch = (LIR_OpBranch*)op;
  6143       if (branch->block() == target_from) {
  6144         branch->change_block(target_to);
  6146       if (branch->ublock() == target_from) {
  6147         branch->change_ublock(target_to);
  6153 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
  6154   int old_pos = 0;
  6155   int new_pos = 0;
  6156   int num_blocks = code->length();
  6158   while (old_pos < num_blocks) {
  6159     BlockBegin* block = code->at(old_pos);
  6161     if (can_delete_block(block)) {
  6162       BlockBegin* new_target = block->sux_at(0);
  6164       // propagate backward branch target flag for correct code alignment
  6165       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
  6166         new_target->set(BlockBegin::backward_branch_target_flag);
  6169       // collect a list with all predecessors that contains each predecessor only once
  6170       // the predecessors of cur are changed during the substitution, so a copy of the
  6171       // predecessor list is necessary
  6172       int j;
  6173       _original_preds.clear();
  6174       for (j = block->number_of_preds() - 1; j >= 0; j--) {
  6175         BlockBegin* pred = block->pred_at(j);
  6176         if (_original_preds.index_of(pred) == -1) {
  6177           _original_preds.append(pred);
  6181       for (j = _original_preds.length() - 1; j >= 0; j--) {
  6182         BlockBegin* pred = _original_preds.at(j);
  6183         substitute_branch_target(pred, block, new_target);
  6184         pred->substitute_sux(block, new_target);
  6186     } else {
  6187       // adjust position of this block in the block list if blocks before
  6188       // have been deleted
  6189       if (new_pos != old_pos) {
  6190         code->at_put(new_pos, code->at(old_pos));
  6192       new_pos++;
  6194     old_pos++;
  6196   code->truncate(new_pos);
  6198   DEBUG_ONLY(verify(code));
  6201 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
  6202   // skip the last block because there a branch is always necessary
  6203   for (int i = code->length() - 2; i >= 0; i--) {
  6204     BlockBegin* block = code->at(i);
  6205     LIR_OpList* instructions = block->lir()->instructions_list();
  6207     LIR_Op* last_op = instructions->last();
  6208     if (last_op->code() == lir_branch) {
  6209       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6210       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
  6212       assert(last_branch->block() != NULL, "last branch must always have a block as target");
  6213       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
  6215       if (last_branch->info() == NULL) {
  6216         if (last_branch->block() == code->at(i + 1)) {
  6218           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
  6220           // delete last branch instruction
  6221           instructions->truncate(instructions->length() - 1);
  6223         } else {
  6224           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
  6225           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
  6226             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
  6227             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
  6229             if (prev_branch->stub() == NULL) {
  6231               LIR_Op2* prev_cmp = NULL;
  6233               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
  6234                 prev_op = instructions->at(j);
  6235                 if (prev_op->code() == lir_cmp) {
  6236                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
  6237                   prev_cmp = (LIR_Op2*)prev_op;
  6238                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
  6241               assert(prev_cmp != NULL, "should have found comp instruction for branch");
  6242               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
  6244                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
  6246                 // eliminate a conditional branch to the immediate successor
  6247                 prev_branch->change_block(last_branch->block());
  6248                 prev_branch->negate_cond();
  6249                 prev_cmp->set_condition(prev_branch->cond());
  6250                 instructions->truncate(instructions->length() - 1);
  6259   DEBUG_ONLY(verify(code));
  6262 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
  6263 #ifdef ASSERT
  6264   BitMap return_converted(BlockBegin::number_of_blocks());
  6265   return_converted.clear();
  6266 #endif
  6268   for (int i = code->length() - 1; i >= 0; i--) {
  6269     BlockBegin* block = code->at(i);
  6270     LIR_OpList* cur_instructions = block->lir()->instructions_list();
  6271     LIR_Op*     cur_last_op = cur_instructions->last();
  6273     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
  6274     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
  6275       // the block contains only a label and a return
  6276       // if a predecessor ends with an unconditional jump to this block, then the jump
  6277       // can be replaced with a return instruction
  6278       //
  6279       // Note: the original block with only a return statement cannot be deleted completely
  6280       //       because the predecessors might have other (conditional) jumps to this block
  6281       //       -> this may lead to unnecesary return instructions in the final code
  6283       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
  6284       assert(block->number_of_sux() == 0 ||
  6285              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
  6286              "blocks that end with return must not have successors");
  6288       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
  6289       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
  6291       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
  6292         BlockBegin* pred = block->pred_at(j);
  6293         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
  6294         LIR_Op*     pred_last_op = pred_instructions->last();
  6296         if (pred_last_op->code() == lir_branch) {
  6297           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
  6298           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
  6300           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
  6301             // replace the jump to a return with a direct return
  6302             // Note: currently the edge between the blocks is not deleted
  6303             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
  6304 #ifdef ASSERT
  6305             return_converted.set_bit(pred->block_id());
  6306 #endif
  6315 #ifdef ASSERT
  6316 void ControlFlowOptimizer::verify(BlockList* code) {
  6317   for (int i = 0; i < code->length(); i++) {
  6318     BlockBegin* block = code->at(i);
  6319     LIR_OpList* instructions = block->lir()->instructions_list();
  6321     int j;
  6322     for (j = 0; j < instructions->length(); j++) {
  6323       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
  6325       if (op_branch != NULL) {
  6326         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
  6327         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
  6331     for (j = 0; j < block->number_of_sux() - 1; j++) {
  6332       BlockBegin* sux = block->sux_at(j);
  6333       assert(code->index_of(sux) != -1, "successor not valid");
  6336     for (j = 0; j < block->number_of_preds() - 1; j++) {
  6337       BlockBegin* pred = block->pred_at(j);
  6338       assert(code->index_of(pred) != -1, "successor not valid");
  6342 #endif
  6345 #ifndef PRODUCT
  6347 // Implementation of LinearStatistic
  6349 const char* LinearScanStatistic::counter_name(int counter_idx) {
  6350   switch (counter_idx) {
  6351     case counter_method:          return "compiled methods";
  6352     case counter_fpu_method:      return "methods using fpu";
  6353     case counter_loop_method:     return "methods with loops";
  6354     case counter_exception_method:return "methods with xhandler";
  6356     case counter_loop:            return "loops";
  6357     case counter_block:           return "blocks";
  6358     case counter_loop_block:      return "blocks inside loop";
  6359     case counter_exception_block: return "exception handler entries";
  6360     case counter_interval:        return "intervals";
  6361     case counter_fixed_interval:  return "fixed intervals";
  6362     case counter_range:           return "ranges";
  6363     case counter_fixed_range:     return "fixed ranges";
  6364     case counter_use_pos:         return "use positions";
  6365     case counter_fixed_use_pos:   return "fixed use positions";
  6366     case counter_spill_slots:     return "spill slots";
  6368     // counter for classes of lir instructions
  6369     case counter_instruction:     return "total instructions";
  6370     case counter_label:           return "labels";
  6371     case counter_entry:           return "method entries";
  6372     case counter_return:          return "method returns";
  6373     case counter_call:            return "method calls";
  6374     case counter_move:            return "moves";
  6375     case counter_cmp:             return "compare";
  6376     case counter_cond_branch:     return "conditional branches";
  6377     case counter_uncond_branch:   return "unconditional branches";
  6378     case counter_stub_branch:     return "branches to stub";
  6379     case counter_alu:             return "artithmetic + logic";
  6380     case counter_alloc:           return "allocations";
  6381     case counter_sync:            return "synchronisation";
  6382     case counter_throw:           return "throw";
  6383     case counter_unwind:          return "unwind";
  6384     case counter_typecheck:       return "type+null-checks";
  6385     case counter_fpu_stack:       return "fpu-stack";
  6386     case counter_misc_inst:       return "other instructions";
  6387     case counter_other_inst:      return "misc. instructions";
  6389     // counter for different types of moves
  6390     case counter_move_total:      return "total moves";
  6391     case counter_move_reg_reg:    return "register->register";
  6392     case counter_move_reg_stack:  return "register->stack";
  6393     case counter_move_stack_reg:  return "stack->register";
  6394     case counter_move_stack_stack:return "stack->stack";
  6395     case counter_move_reg_mem:    return "register->memory";
  6396     case counter_move_mem_reg:    return "memory->register";
  6397     case counter_move_const_any:  return "constant->any";
  6399     case blank_line_1:            return "";
  6400     case blank_line_2:            return "";
  6402     default: ShouldNotReachHere(); return "";
  6406 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
  6407   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
  6408     return counter_method;
  6409   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
  6410     return counter_block;
  6411   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
  6412     return counter_instruction;
  6413   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
  6414     return counter_move_total;
  6416   return invalid_counter;
  6419 LinearScanStatistic::LinearScanStatistic() {
  6420   for (int i = 0; i < number_of_counters; i++) {
  6421     _counters_sum[i] = 0;
  6422     _counters_max[i] = -1;
  6427 // add the method-local numbers to the total sum
  6428 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
  6429   for (int i = 0; i < number_of_counters; i++) {
  6430     _counters_sum[i] += method_statistic._counters_sum[i];
  6431     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
  6435 void LinearScanStatistic::print(const char* title) {
  6436   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6437     tty->cr();
  6438     tty->print_cr("***** LinearScan statistic - %s *****", title);
  6440     for (int i = 0; i < number_of_counters; i++) {
  6441       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
  6442         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
  6444         if (base_counter(i) != invalid_counter) {
  6445           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
  6446         } else {
  6447           tty->print("           ");
  6450         if (_counters_max[i] >= 0) {
  6451           tty->print("%8d", _counters_max[i]);
  6454       tty->cr();
  6459 void LinearScanStatistic::collect(LinearScan* allocator) {
  6460   inc_counter(counter_method);
  6461   if (allocator->has_fpu_registers()) {
  6462     inc_counter(counter_fpu_method);
  6464   if (allocator->num_loops() > 0) {
  6465     inc_counter(counter_loop_method);
  6467   inc_counter(counter_loop, allocator->num_loops());
  6468   inc_counter(counter_spill_slots, allocator->max_spills());
  6470   int i;
  6471   for (i = 0; i < allocator->interval_count(); i++) {
  6472     Interval* cur = allocator->interval_at(i);
  6474     if (cur != NULL) {
  6475       inc_counter(counter_interval);
  6476       inc_counter(counter_use_pos, cur->num_use_positions());
  6477       if (LinearScan::is_precolored_interval(cur)) {
  6478         inc_counter(counter_fixed_interval);
  6479         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
  6482       Range* range = cur->first();
  6483       while (range != Range::end()) {
  6484         inc_counter(counter_range);
  6485         if (LinearScan::is_precolored_interval(cur)) {
  6486           inc_counter(counter_fixed_range);
  6488         range = range->next();
  6493   bool has_xhandlers = false;
  6494   // Note: only count blocks that are in code-emit order
  6495   for (i = 0; i < allocator->ir()->code()->length(); i++) {
  6496     BlockBegin* cur = allocator->ir()->code()->at(i);
  6498     inc_counter(counter_block);
  6499     if (cur->loop_depth() > 0) {
  6500       inc_counter(counter_loop_block);
  6502     if (cur->is_set(BlockBegin::exception_entry_flag)) {
  6503       inc_counter(counter_exception_block);
  6504       has_xhandlers = true;
  6507     LIR_OpList* instructions = cur->lir()->instructions_list();
  6508     for (int j = 0; j < instructions->length(); j++) {
  6509       LIR_Op* op = instructions->at(j);
  6511       inc_counter(counter_instruction);
  6513       switch (op->code()) {
  6514         case lir_label:           inc_counter(counter_label); break;
  6515         case lir_std_entry:
  6516         case lir_osr_entry:       inc_counter(counter_entry); break;
  6517         case lir_return:          inc_counter(counter_return); break;
  6519         case lir_rtcall:
  6520         case lir_static_call:
  6521         case lir_optvirtual_call:
  6522         case lir_virtual_call:    inc_counter(counter_call); break;
  6524         case lir_move: {
  6525           inc_counter(counter_move);
  6526           inc_counter(counter_move_total);
  6528           LIR_Opr in = op->as_Op1()->in_opr();
  6529           LIR_Opr res = op->as_Op1()->result_opr();
  6530           if (in->is_register()) {
  6531             if (res->is_register()) {
  6532               inc_counter(counter_move_reg_reg);
  6533             } else if (res->is_stack()) {
  6534               inc_counter(counter_move_reg_stack);
  6535             } else if (res->is_address()) {
  6536               inc_counter(counter_move_reg_mem);
  6537             } else {
  6538               ShouldNotReachHere();
  6540           } else if (in->is_stack()) {
  6541             if (res->is_register()) {
  6542               inc_counter(counter_move_stack_reg);
  6543             } else {
  6544               inc_counter(counter_move_stack_stack);
  6546           } else if (in->is_address()) {
  6547             assert(res->is_register(), "must be");
  6548             inc_counter(counter_move_mem_reg);
  6549           } else if (in->is_constant()) {
  6550             inc_counter(counter_move_const_any);
  6551           } else {
  6552             ShouldNotReachHere();
  6554           break;
  6557         case lir_cmp:             inc_counter(counter_cmp); break;
  6559         case lir_branch:
  6560         case lir_cond_float_branch: {
  6561           LIR_OpBranch* branch = op->as_OpBranch();
  6562           if (branch->block() == NULL) {
  6563             inc_counter(counter_stub_branch);
  6564           } else if (branch->cond() == lir_cond_always) {
  6565             inc_counter(counter_uncond_branch);
  6566           } else {
  6567             inc_counter(counter_cond_branch);
  6569           break;
  6572         case lir_neg:
  6573         case lir_add:
  6574         case lir_sub:
  6575         case lir_mul:
  6576         case lir_mul_strictfp:
  6577         case lir_div:
  6578         case lir_div_strictfp:
  6579         case lir_rem:
  6580         case lir_sqrt:
  6581         case lir_sin:
  6582         case lir_cos:
  6583         case lir_abs:
  6584         case lir_log10:
  6585         case lir_log:
  6586         case lir_pow:
  6587         case lir_exp:
  6588         case lir_logic_and:
  6589         case lir_logic_or:
  6590         case lir_logic_xor:
  6591         case lir_shl:
  6592         case lir_shr:
  6593         case lir_ushr:            inc_counter(counter_alu); break;
  6595         case lir_alloc_object:
  6596         case lir_alloc_array:     inc_counter(counter_alloc); break;
  6598         case lir_monaddr:
  6599         case lir_lock:
  6600         case lir_unlock:          inc_counter(counter_sync); break;
  6602         case lir_throw:           inc_counter(counter_throw); break;
  6604         case lir_unwind:          inc_counter(counter_unwind); break;
  6606         case lir_null_check:
  6607         case lir_leal:
  6608         case lir_instanceof:
  6609         case lir_checkcast:
  6610         case lir_store_check:     inc_counter(counter_typecheck); break;
  6612         case lir_fpop_raw:
  6613         case lir_fxch:
  6614         case lir_fld:             inc_counter(counter_fpu_stack); break;
  6616         case lir_nop:
  6617         case lir_push:
  6618         case lir_pop:
  6619         case lir_convert:
  6620         case lir_roundfp:
  6621         case lir_cmove:           inc_counter(counter_misc_inst); break;
  6623         default:                  inc_counter(counter_other_inst); break;
  6628   if (has_xhandlers) {
  6629     inc_counter(counter_exception_method);
  6633 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
  6634   if (CountLinearScan || TraceLinearScanLevel > 0) {
  6636     LinearScanStatistic local_statistic = LinearScanStatistic();
  6638     local_statistic.collect(allocator);
  6639     global_statistic.sum_up(local_statistic);
  6641     if (TraceLinearScanLevel > 2) {
  6642       local_statistic.print("current local statistic");
  6648 // Implementation of LinearTimers
  6650 LinearScanTimers::LinearScanTimers() {
  6651   for (int i = 0; i < number_of_timers; i++) {
  6652     timer(i)->reset();
  6656 const char* LinearScanTimers::timer_name(int idx) {
  6657   switch (idx) {
  6658     case timer_do_nothing:               return "Nothing (Time Check)";
  6659     case timer_number_instructions:      return "Number Instructions";
  6660     case timer_compute_local_live_sets:  return "Local Live Sets";
  6661     case timer_compute_global_live_sets: return "Global Live Sets";
  6662     case timer_build_intervals:          return "Build Intervals";
  6663     case timer_sort_intervals_before:    return "Sort Intervals Before";
  6664     case timer_allocate_registers:       return "Allocate Registers";
  6665     case timer_resolve_data_flow:        return "Resolve Data Flow";
  6666     case timer_sort_intervals_after:     return "Sort Intervals After";
  6667     case timer_eliminate_spill_moves:    return "Spill optimization";
  6668     case timer_assign_reg_num:           return "Assign Reg Num";
  6669     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
  6670     case timer_optimize_lir:             return "Optimize LIR";
  6671     default: ShouldNotReachHere();       return "";
  6675 void LinearScanTimers::begin_method() {
  6676   if (TimeEachLinearScan) {
  6677     // reset all timers to measure only current method
  6678     for (int i = 0; i < number_of_timers; i++) {
  6679       timer(i)->reset();
  6684 void LinearScanTimers::end_method(LinearScan* allocator) {
  6685   if (TimeEachLinearScan) {
  6687     double c = timer(timer_do_nothing)->seconds();
  6688     double total = 0;
  6689     for (int i = 1; i < number_of_timers; i++) {
  6690       total += timer(i)->seconds() - c;
  6693     if (total >= 0.0005) {
  6694       // print all information in one line for automatic processing
  6695       tty->print("@"); allocator->compilation()->method()->print_name();
  6697       tty->print("@ %d ", allocator->compilation()->method()->code_size());
  6698       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
  6699       tty->print("@ %d ", allocator->block_count());
  6700       tty->print("@ %d ", allocator->num_virtual_regs());
  6701       tty->print("@ %d ", allocator->interval_count());
  6702       tty->print("@ %d ", allocator->_num_calls);
  6703       tty->print("@ %d ", allocator->num_loops());
  6705       tty->print("@ %6.6f ", total);
  6706       for (int i = 1; i < number_of_timers; i++) {
  6707         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
  6709       tty->cr();
  6714 void LinearScanTimers::print(double total_time) {
  6715   if (TimeLinearScan) {
  6716     // correction value: sum of dummy-timer that only measures the time that
  6717     // is necesary to start and stop itself
  6718     double c = timer(timer_do_nothing)->seconds();
  6720     for (int i = 0; i < number_of_timers; i++) {
  6721       double t = timer(i)->seconds();
  6722       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
  6727 #endif // #ifndef PRODUCT

mercurial