src/cpu/x86/vm/vm_version_x86.cpp

Tue, 28 Jun 2011 15:04:39 -0700

author
kvn
date
Tue, 28 Jun 2011 15:04:39 -0700
changeset 2984
6ae7a1561b53
parent 2808
2a34a4fbc52c
child 3052
1af104d6cf99
child 3058
3be7439273c5
permissions
-rw-r--r--

6990015: Incorrect Icache line size is used for 64 bit x86
Summary: correct Icache::line_size for x64 and add verification code into vm_version_x86.
Reviewed-by: never, phh

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "runtime/java.hpp"
    29 #include "runtime/stubCodeGenerator.hpp"
    30 #include "vm_version_x86.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    42 int VM_Version::_cpu;
    43 int VM_Version::_model;
    44 int VM_Version::_stepping;
    45 int VM_Version::_cpuFeatures;
    46 const char*           VM_Version::_features_str = "";
    47 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    49 static BufferBlob* stub_blob;
    50 static const int stub_size = 400;
    52 extern "C" {
    53   typedef void (*getPsrInfo_stub_t)(void*);
    54 }
    55 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    58 class VM_Version_StubGenerator: public StubCodeGenerator {
    59  public:
    61   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    63   address generate_getPsrInfo() {
    64     // Flags to test CPU type.
    65     const uint32_t EFL_AC           = 0x40000;
    66     const uint32_t EFL_ID           = 0x200000;
    67     // Values for when we don't have a CPUID instruction.
    68     const int      CPU_FAMILY_SHIFT = 8;
    69     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    70     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    72     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    73     Label ext_cpuid1, ext_cpuid5, done;
    75     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    76 #   define __ _masm->
    78     address start = __ pc();
    80     //
    81     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    82     //
    83     // LP64: rcx and rdx are first and second argument registers on windows
    85     __ push(rbp);
    86 #ifdef _LP64
    87     __ mov(rbp, c_rarg0); // cpuid_info address
    88 #else
    89     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    90 #endif
    91     __ push(rbx);
    92     __ push(rsi);
    93     __ pushf();          // preserve rbx, and flags
    94     __ pop(rax);
    95     __ push(rax);
    96     __ mov(rcx, rax);
    97     //
    98     // if we are unable to change the AC flag, we have a 386
    99     //
   100     __ xorl(rax, EFL_AC);
   101     __ push(rax);
   102     __ popf();
   103     __ pushf();
   104     __ pop(rax);
   105     __ cmpptr(rax, rcx);
   106     __ jccb(Assembler::notEqual, detect_486);
   108     __ movl(rax, CPU_FAMILY_386);
   109     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   110     __ jmp(done);
   112     //
   113     // If we are unable to change the ID flag, we have a 486 which does
   114     // not support the "cpuid" instruction.
   115     //
   116     __ bind(detect_486);
   117     __ mov(rax, rcx);
   118     __ xorl(rax, EFL_ID);
   119     __ push(rax);
   120     __ popf();
   121     __ pushf();
   122     __ pop(rax);
   123     __ cmpptr(rcx, rax);
   124     __ jccb(Assembler::notEqual, detect_586);
   126     __ bind(cpu486);
   127     __ movl(rax, CPU_FAMILY_486);
   128     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   129     __ jmp(done);
   131     //
   132     // At this point, we have a chip which supports the "cpuid" instruction
   133     //
   134     __ bind(detect_586);
   135     __ xorl(rax, rax);
   136     __ cpuid();
   137     __ orl(rax, rax);
   138     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   139                                         // value of at least 1, we give up and
   140                                         // assume a 486
   141     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   142     __ movl(Address(rsi, 0), rax);
   143     __ movl(Address(rsi, 4), rbx);
   144     __ movl(Address(rsi, 8), rcx);
   145     __ movl(Address(rsi,12), rdx);
   147     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   148     __ jccb(Assembler::belowEqual, std_cpuid4);
   150     //
   151     // cpuid(0xB) Processor Topology
   152     //
   153     __ movl(rax, 0xb);
   154     __ xorl(rcx, rcx);   // Threads level
   155     __ cpuid();
   157     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   158     __ movl(Address(rsi, 0), rax);
   159     __ movl(Address(rsi, 4), rbx);
   160     __ movl(Address(rsi, 8), rcx);
   161     __ movl(Address(rsi,12), rdx);
   163     __ movl(rax, 0xb);
   164     __ movl(rcx, 1);     // Cores level
   165     __ cpuid();
   166     __ push(rax);
   167     __ andl(rax, 0x1f);  // Determine if valid topology level
   168     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   169     __ andl(rax, 0xffff);
   170     __ pop(rax);
   171     __ jccb(Assembler::equal, std_cpuid4);
   173     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   174     __ movl(Address(rsi, 0), rax);
   175     __ movl(Address(rsi, 4), rbx);
   176     __ movl(Address(rsi, 8), rcx);
   177     __ movl(Address(rsi,12), rdx);
   179     __ movl(rax, 0xb);
   180     __ movl(rcx, 2);     // Packages level
   181     __ cpuid();
   182     __ push(rax);
   183     __ andl(rax, 0x1f);  // Determine if valid topology level
   184     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   185     __ andl(rax, 0xffff);
   186     __ pop(rax);
   187     __ jccb(Assembler::equal, std_cpuid4);
   189     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   190     __ movl(Address(rsi, 0), rax);
   191     __ movl(Address(rsi, 4), rbx);
   192     __ movl(Address(rsi, 8), rcx);
   193     __ movl(Address(rsi,12), rdx);
   195     //
   196     // cpuid(0x4) Deterministic cache params
   197     //
   198     __ bind(std_cpuid4);
   199     __ movl(rax, 4);
   200     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   201     __ jccb(Assembler::greater, std_cpuid1);
   203     __ xorl(rcx, rcx);   // L1 cache
   204     __ cpuid();
   205     __ push(rax);
   206     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   207     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   208     __ pop(rax);
   209     __ jccb(Assembler::equal, std_cpuid1);
   211     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   212     __ movl(Address(rsi, 0), rax);
   213     __ movl(Address(rsi, 4), rbx);
   214     __ movl(Address(rsi, 8), rcx);
   215     __ movl(Address(rsi,12), rdx);
   217     //
   218     // Standard cpuid(0x1)
   219     //
   220     __ bind(std_cpuid1);
   221     __ movl(rax, 1);
   222     __ cpuid();
   223     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   224     __ movl(Address(rsi, 0), rax);
   225     __ movl(Address(rsi, 4), rbx);
   226     __ movl(Address(rsi, 8), rcx);
   227     __ movl(Address(rsi,12), rdx);
   229     __ movl(rax, 0x80000000);
   230     __ cpuid();
   231     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   232     __ jcc(Assembler::belowEqual, done);
   233     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   234     __ jccb(Assembler::belowEqual, ext_cpuid1);
   235     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   236     __ jccb(Assembler::belowEqual, ext_cpuid5);
   237     //
   238     // Extended cpuid(0x80000008)
   239     //
   240     __ movl(rax, 0x80000008);
   241     __ cpuid();
   242     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   243     __ movl(Address(rsi, 0), rax);
   244     __ movl(Address(rsi, 4), rbx);
   245     __ movl(Address(rsi, 8), rcx);
   246     __ movl(Address(rsi,12), rdx);
   248     //
   249     // Extended cpuid(0x80000005)
   250     //
   251     __ bind(ext_cpuid5);
   252     __ movl(rax, 0x80000005);
   253     __ cpuid();
   254     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   255     __ movl(Address(rsi, 0), rax);
   256     __ movl(Address(rsi, 4), rbx);
   257     __ movl(Address(rsi, 8), rcx);
   258     __ movl(Address(rsi,12), rdx);
   260     //
   261     // Extended cpuid(0x80000001)
   262     //
   263     __ bind(ext_cpuid1);
   264     __ movl(rax, 0x80000001);
   265     __ cpuid();
   266     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   267     __ movl(Address(rsi, 0), rax);
   268     __ movl(Address(rsi, 4), rbx);
   269     __ movl(Address(rsi, 8), rcx);
   270     __ movl(Address(rsi,12), rdx);
   272     //
   273     // return
   274     //
   275     __ bind(done);
   276     __ popf();
   277     __ pop(rsi);
   278     __ pop(rbx);
   279     __ pop(rbp);
   280     __ ret(0);
   282 #   undef __
   284     return start;
   285   };
   286 };
   289 void VM_Version::get_processor_features() {
   291   _cpu = 4; // 486 by default
   292   _model = 0;
   293   _stepping = 0;
   294   _cpuFeatures = 0;
   295   _logical_processors_per_package = 1;
   297   if (!Use486InstrsOnly) {
   298     // Get raw processor info
   299     getPsrInfo_stub(&_cpuid_info);
   300     assert_is_initialized();
   301     _cpu = extended_cpu_family();
   302     _model = extended_cpu_model();
   303     _stepping = cpu_stepping();
   305     if (cpu_family() > 4) { // it supports CPUID
   306       _cpuFeatures = feature_flags();
   307       // Logical processors are only available on P4s and above,
   308       // and only if hyperthreading is available.
   309       _logical_processors_per_package = logical_processor_count();
   310     }
   311   }
   313   _supports_cx8 = supports_cmpxchg8();
   315 #ifdef _LP64
   316   // OS should support SSE for x64 and hardware should support at least SSE2.
   317   if (!VM_Version::supports_sse2()) {
   318     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   319   }
   320   // in 64 bit the use of SSE2 is the minimum
   321   if (UseSSE < 2) UseSSE = 2;
   322 #endif
   324 #ifdef AMD64
   325   // flush_icache_stub have to be generated first.
   326   // That is why Icache line size is hard coded in ICache class,
   327   // see icache_x86.hpp. It is also the reason why we can't use
   328   // clflush instruction in 32-bit VM since it could be running
   329   // on CPU which does not support it.
   330   //
   331   // The only thing we can do is to verify that flushed
   332   // ICache::line_size has correct value.
   333   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   334   // clflush_size is size in quadwords (8 bytes).
   335   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   336 #endif
   338   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   339   if (!os::supports_sse())
   340     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   342   if (UseSSE < 4) {
   343     _cpuFeatures &= ~CPU_SSE4_1;
   344     _cpuFeatures &= ~CPU_SSE4_2;
   345   }
   347   if (UseSSE < 3) {
   348     _cpuFeatures &= ~CPU_SSE3;
   349     _cpuFeatures &= ~CPU_SSSE3;
   350     _cpuFeatures &= ~CPU_SSE4A;
   351   }
   353   if (UseSSE < 2)
   354     _cpuFeatures &= ~CPU_SSE2;
   356   if (UseSSE < 1)
   357     _cpuFeatures &= ~CPU_SSE;
   359   if (logical_processors_per_package() == 1) {
   360     // HT processor could be installed on a system which doesn't support HT.
   361     _cpuFeatures &= ~CPU_HT;
   362   }
   364   char buf[256];
   365   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   366                cores_per_cpu(), threads_per_core(),
   367                cpu_family(), _model, _stepping,
   368                (supports_cmov() ? ", cmov" : ""),
   369                (supports_cmpxchg8() ? ", cx8" : ""),
   370                (supports_fxsr() ? ", fxsr" : ""),
   371                (supports_mmx()  ? ", mmx"  : ""),
   372                (supports_sse()  ? ", sse"  : ""),
   373                (supports_sse2() ? ", sse2" : ""),
   374                (supports_sse3() ? ", sse3" : ""),
   375                (supports_ssse3()? ", ssse3": ""),
   376                (supports_sse4_1() ? ", sse4.1" : ""),
   377                (supports_sse4_2() ? ", sse4.2" : ""),
   378                (supports_popcnt() ? ", popcnt" : ""),
   379                (supports_mmx_ext() ? ", mmxext" : ""),
   380                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   381                (supports_lzcnt()   ? ", lzcnt": ""),
   382                (supports_sse4a()   ? ", sse4a": ""),
   383                (supports_ht() ? ", ht": ""));
   384   _features_str = strdup(buf);
   386   // UseSSE is set to the smaller of what hardware supports and what
   387   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   388   // older Pentiums which do not support it.
   389   if( UseSSE > 4 ) UseSSE=4;
   390   if( UseSSE < 0 ) UseSSE=0;
   391   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
   392     UseSSE = MIN2((intx)3,UseSSE);
   393   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
   394     UseSSE = MIN2((intx)2,UseSSE);
   395   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
   396     UseSSE = MIN2((intx)1,UseSSE);
   397   if( !supports_sse () ) // Drop to 0 if no SSE  support
   398     UseSSE = 0;
   400   // On new cpus instructions which update whole XMM register should be used
   401   // to prevent partial register stall due to dependencies on high half.
   402   //
   403   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   404   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   405   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   406   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   408   if( is_amd() ) { // AMD cpus specific settings
   409     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   410       // Use it on new AMD cpus starting from Opteron.
   411       UseAddressNop = true;
   412     }
   413     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   414       // Use it on new AMD cpus starting from Opteron.
   415       UseNewLongLShift = true;
   416     }
   417     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   418       if( supports_sse4a() ) {
   419         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   420       } else {
   421         UseXmmLoadAndClearUpper = false;
   422       }
   423     }
   424     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   425       if( supports_sse4a() ) {
   426         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   427       } else {
   428         UseXmmRegToRegMoveAll = false;
   429       }
   430     }
   431     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   432       if( supports_sse4a() ) {
   433         UseXmmI2F = true;
   434       } else {
   435         UseXmmI2F = false;
   436       }
   437     }
   438     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   439       if( supports_sse4a() ) {
   440         UseXmmI2D = true;
   441       } else {
   442         UseXmmI2D = false;
   443       }
   444     }
   445     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   446       if( supports_sse4_2() && UseSSE >= 4 ) {
   447         UseSSE42Intrinsics = true;
   448       }
   449     }
   451     // Use count leading zeros count instruction if available.
   452     if (supports_lzcnt()) {
   453       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   454         UseCountLeadingZerosInstruction = true;
   455       }
   456     }
   458     // some defaults for AMD family 15h
   459     if ( cpu_family() == 0x15 ) {
   460       // On family 15h processors default is no sw prefetch
   461       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   462         AllocatePrefetchStyle = 0;
   463       }
   464       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   465       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   466         AllocatePrefetchInstr = 3;
   467       }
   468       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   469       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   470         UseXMMForArrayCopy = true;
   471       }
   472       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   473         UseUnalignedLoadStores = true;
   474       }
   475     }
   477   }
   479   if( is_intel() ) { // Intel cpus specific settings
   480     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   481       UseStoreImmI16 = false; // don't use it on Intel cpus
   482     }
   483     if( cpu_family() == 6 || cpu_family() == 15 ) {
   484       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   485         // Use it on all Intel cpus starting from PentiumPro
   486         UseAddressNop = true;
   487       }
   488     }
   489     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   490       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   491     }
   492     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   493       if( supports_sse3() ) {
   494         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   495       } else {
   496         UseXmmRegToRegMoveAll = false;
   497       }
   498     }
   499     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   500 #ifdef COMPILER2
   501       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   502         // For new Intel cpus do the next optimization:
   503         // don't align the beginning of a loop if there are enough instructions
   504         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   505         // in current fetch line (OptoLoopAlignment) or the padding
   506         // is big (> MaxLoopPad).
   507         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   508         // generated NOP instructions. 11 is the largest size of one
   509         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   510         MaxLoopPad = 11;
   511       }
   512 #endif // COMPILER2
   513       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   514         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   515       }
   516       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   517         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   518           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   519         }
   520       }
   521       if( supports_sse4_2() && UseSSE >= 4 ) {
   522         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   523           UseSSE42Intrinsics = true;
   524         }
   525       }
   526     }
   527   }
   529   // Use population count instruction if available.
   530   if (supports_popcnt()) {
   531     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   532       UsePopCountInstruction = true;
   533     }
   534   }
   536 #ifdef COMPILER2
   537   if (UseFPUForSpilling) {
   538     if (UseSSE < 2) {
   539       // Only supported with SSE2+
   540       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   541     }
   542   }
   543 #endif
   545   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   546   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   548   // set valid Prefetch instruction
   549   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   550   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   551   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   552   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   554   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   555   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   556   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   557   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   559   // Allocation prefetch settings
   560   intx cache_line_size = L1_data_cache_line_size();
   561   if( cache_line_size > AllocatePrefetchStepSize )
   562     AllocatePrefetchStepSize = cache_line_size;
   563   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
   564     AllocatePrefetchLines = 3; // Optimistic value
   565   assert(AllocatePrefetchLines > 0, "invalid value");
   566   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
   567     AllocatePrefetchLines = 1; // Conservative value
   569   AllocatePrefetchDistance = allocate_prefetch_distance();
   570   AllocatePrefetchStyle    = allocate_prefetch_style();
   572   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   573     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   574 #ifdef _LP64
   575       AllocatePrefetchDistance = 384;
   576 #else
   577       AllocatePrefetchDistance = 320;
   578 #endif
   579     }
   580     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   581       AllocatePrefetchDistance = 192;
   582       AllocatePrefetchLines = 4;
   583 #ifdef COMPILER2
   584       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   585         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   586       }
   587 #endif
   588     }
   589   }
   590   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   592 #ifdef _LP64
   593   // Prefetch settings
   594   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   595   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   596   PrefetchFieldsAhead         = prefetch_fields_ahead();
   597 #endif
   599 #ifndef PRODUCT
   600   if (PrintMiscellaneous && Verbose) {
   601     tty->print_cr("Logical CPUs per core: %u",
   602                   logical_processors_per_package());
   603     tty->print_cr("UseSSE=%d",UseSSE);
   604     tty->print("Allocation: ");
   605     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   606       tty->print_cr("no prefetching");
   607     } else {
   608       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   609         tty->print("PREFETCHW");
   610       } else if (UseSSE >= 1) {
   611         if (AllocatePrefetchInstr == 0) {
   612           tty->print("PREFETCHNTA");
   613         } else if (AllocatePrefetchInstr == 1) {
   614           tty->print("PREFETCHT0");
   615         } else if (AllocatePrefetchInstr == 2) {
   616           tty->print("PREFETCHT2");
   617         } else if (AllocatePrefetchInstr == 3) {
   618           tty->print("PREFETCHW");
   619         }
   620       }
   621       if (AllocatePrefetchLines > 1) {
   622         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   623       } else {
   624         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
   625       }
   626     }
   628     if (PrefetchCopyIntervalInBytes > 0) {
   629       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   630     }
   631     if (PrefetchScanIntervalInBytes > 0) {
   632       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   633     }
   634     if (PrefetchFieldsAhead > 0) {
   635       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   636     }
   637   }
   638 #endif // !PRODUCT
   639 }
   641 void VM_Version::initialize() {
   642   ResourceMark rm;
   643   // Making this stub must be FIRST use of assembler
   645   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   646   if (stub_blob == NULL) {
   647     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   648   }
   649   CodeBuffer c(stub_blob);
   650   VM_Version_StubGenerator g(&c);
   651   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   652                                    g.generate_getPsrInfo());
   654   get_processor_features();
   655 }

mercurial