src/cpu/x86/vm/vm_version_x86.cpp

Tue, 19 Apr 2011 09:30:17 -0700

author
kvn
date
Tue, 19 Apr 2011 09:30:17 -0700
changeset 2808
2a34a4fbc52c
parent 2761
15c9a0e16269
child 2984
6ae7a1561b53
permissions
-rw-r--r--

7037812: few more defaults changes for new AMD processors
Summary: use PREFETCHW as default prefetch instruction, set UseXMMForArrayCopy and UseUnalignedLoadStores to true by default.
Reviewed-by: kvn
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "runtime/java.hpp"
    29 #include "runtime/stubCodeGenerator.hpp"
    30 #include "vm_version_x86.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    42 int VM_Version::_cpu;
    43 int VM_Version::_model;
    44 int VM_Version::_stepping;
    45 int VM_Version::_cpuFeatures;
    46 const char*           VM_Version::_features_str = "";
    47 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    49 static BufferBlob* stub_blob;
    50 static const int stub_size = 400;
    52 extern "C" {
    53   typedef void (*getPsrInfo_stub_t)(void*);
    54 }
    55 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    58 class VM_Version_StubGenerator: public StubCodeGenerator {
    59  public:
    61   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    63   address generate_getPsrInfo() {
    64     // Flags to test CPU type.
    65     const uint32_t EFL_AC           = 0x40000;
    66     const uint32_t EFL_ID           = 0x200000;
    67     // Values for when we don't have a CPUID instruction.
    68     const int      CPU_FAMILY_SHIFT = 8;
    69     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    70     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    72     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    73     Label ext_cpuid1, ext_cpuid5, done;
    75     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    76 #   define __ _masm->
    78     address start = __ pc();
    80     //
    81     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    82     //
    83     // LP64: rcx and rdx are first and second argument registers on windows
    85     __ push(rbp);
    86 #ifdef _LP64
    87     __ mov(rbp, c_rarg0); // cpuid_info address
    88 #else
    89     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    90 #endif
    91     __ push(rbx);
    92     __ push(rsi);
    93     __ pushf();          // preserve rbx, and flags
    94     __ pop(rax);
    95     __ push(rax);
    96     __ mov(rcx, rax);
    97     //
    98     // if we are unable to change the AC flag, we have a 386
    99     //
   100     __ xorl(rax, EFL_AC);
   101     __ push(rax);
   102     __ popf();
   103     __ pushf();
   104     __ pop(rax);
   105     __ cmpptr(rax, rcx);
   106     __ jccb(Assembler::notEqual, detect_486);
   108     __ movl(rax, CPU_FAMILY_386);
   109     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   110     __ jmp(done);
   112     //
   113     // If we are unable to change the ID flag, we have a 486 which does
   114     // not support the "cpuid" instruction.
   115     //
   116     __ bind(detect_486);
   117     __ mov(rax, rcx);
   118     __ xorl(rax, EFL_ID);
   119     __ push(rax);
   120     __ popf();
   121     __ pushf();
   122     __ pop(rax);
   123     __ cmpptr(rcx, rax);
   124     __ jccb(Assembler::notEqual, detect_586);
   126     __ bind(cpu486);
   127     __ movl(rax, CPU_FAMILY_486);
   128     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   129     __ jmp(done);
   131     //
   132     // At this point, we have a chip which supports the "cpuid" instruction
   133     //
   134     __ bind(detect_586);
   135     __ xorl(rax, rax);
   136     __ cpuid();
   137     __ orl(rax, rax);
   138     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   139                                         // value of at least 1, we give up and
   140                                         // assume a 486
   141     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   142     __ movl(Address(rsi, 0), rax);
   143     __ movl(Address(rsi, 4), rbx);
   144     __ movl(Address(rsi, 8), rcx);
   145     __ movl(Address(rsi,12), rdx);
   147     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   148     __ jccb(Assembler::belowEqual, std_cpuid4);
   150     //
   151     // cpuid(0xB) Processor Topology
   152     //
   153     __ movl(rax, 0xb);
   154     __ xorl(rcx, rcx);   // Threads level
   155     __ cpuid();
   157     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   158     __ movl(Address(rsi, 0), rax);
   159     __ movl(Address(rsi, 4), rbx);
   160     __ movl(Address(rsi, 8), rcx);
   161     __ movl(Address(rsi,12), rdx);
   163     __ movl(rax, 0xb);
   164     __ movl(rcx, 1);     // Cores level
   165     __ cpuid();
   166     __ push(rax);
   167     __ andl(rax, 0x1f);  // Determine if valid topology level
   168     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   169     __ andl(rax, 0xffff);
   170     __ pop(rax);
   171     __ jccb(Assembler::equal, std_cpuid4);
   173     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   174     __ movl(Address(rsi, 0), rax);
   175     __ movl(Address(rsi, 4), rbx);
   176     __ movl(Address(rsi, 8), rcx);
   177     __ movl(Address(rsi,12), rdx);
   179     __ movl(rax, 0xb);
   180     __ movl(rcx, 2);     // Packages level
   181     __ cpuid();
   182     __ push(rax);
   183     __ andl(rax, 0x1f);  // Determine if valid topology level
   184     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   185     __ andl(rax, 0xffff);
   186     __ pop(rax);
   187     __ jccb(Assembler::equal, std_cpuid4);
   189     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   190     __ movl(Address(rsi, 0), rax);
   191     __ movl(Address(rsi, 4), rbx);
   192     __ movl(Address(rsi, 8), rcx);
   193     __ movl(Address(rsi,12), rdx);
   195     //
   196     // cpuid(0x4) Deterministic cache params
   197     //
   198     __ bind(std_cpuid4);
   199     __ movl(rax, 4);
   200     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   201     __ jccb(Assembler::greater, std_cpuid1);
   203     __ xorl(rcx, rcx);   // L1 cache
   204     __ cpuid();
   205     __ push(rax);
   206     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   207     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   208     __ pop(rax);
   209     __ jccb(Assembler::equal, std_cpuid1);
   211     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   212     __ movl(Address(rsi, 0), rax);
   213     __ movl(Address(rsi, 4), rbx);
   214     __ movl(Address(rsi, 8), rcx);
   215     __ movl(Address(rsi,12), rdx);
   217     //
   218     // Standard cpuid(0x1)
   219     //
   220     __ bind(std_cpuid1);
   221     __ movl(rax, 1);
   222     __ cpuid();
   223     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   224     __ movl(Address(rsi, 0), rax);
   225     __ movl(Address(rsi, 4), rbx);
   226     __ movl(Address(rsi, 8), rcx);
   227     __ movl(Address(rsi,12), rdx);
   229     __ movl(rax, 0x80000000);
   230     __ cpuid();
   231     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   232     __ jcc(Assembler::belowEqual, done);
   233     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   234     __ jccb(Assembler::belowEqual, ext_cpuid1);
   235     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   236     __ jccb(Assembler::belowEqual, ext_cpuid5);
   237     //
   238     // Extended cpuid(0x80000008)
   239     //
   240     __ movl(rax, 0x80000008);
   241     __ cpuid();
   242     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   243     __ movl(Address(rsi, 0), rax);
   244     __ movl(Address(rsi, 4), rbx);
   245     __ movl(Address(rsi, 8), rcx);
   246     __ movl(Address(rsi,12), rdx);
   248     //
   249     // Extended cpuid(0x80000005)
   250     //
   251     __ bind(ext_cpuid5);
   252     __ movl(rax, 0x80000005);
   253     __ cpuid();
   254     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   255     __ movl(Address(rsi, 0), rax);
   256     __ movl(Address(rsi, 4), rbx);
   257     __ movl(Address(rsi, 8), rcx);
   258     __ movl(Address(rsi,12), rdx);
   260     //
   261     // Extended cpuid(0x80000001)
   262     //
   263     __ bind(ext_cpuid1);
   264     __ movl(rax, 0x80000001);
   265     __ cpuid();
   266     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   267     __ movl(Address(rsi, 0), rax);
   268     __ movl(Address(rsi, 4), rbx);
   269     __ movl(Address(rsi, 8), rcx);
   270     __ movl(Address(rsi,12), rdx);
   272     //
   273     // return
   274     //
   275     __ bind(done);
   276     __ popf();
   277     __ pop(rsi);
   278     __ pop(rbx);
   279     __ pop(rbp);
   280     __ ret(0);
   282 #   undef __
   284     return start;
   285   };
   286 };
   289 void VM_Version::get_processor_features() {
   291   _cpu = 4; // 486 by default
   292   _model = 0;
   293   _stepping = 0;
   294   _cpuFeatures = 0;
   295   _logical_processors_per_package = 1;
   297   if (!Use486InstrsOnly) {
   298     // Get raw processor info
   299     getPsrInfo_stub(&_cpuid_info);
   300     assert_is_initialized();
   301     _cpu = extended_cpu_family();
   302     _model = extended_cpu_model();
   303     _stepping = cpu_stepping();
   305     if (cpu_family() > 4) { // it supports CPUID
   306       _cpuFeatures = feature_flags();
   307       // Logical processors are only available on P4s and above,
   308       // and only if hyperthreading is available.
   309       _logical_processors_per_package = logical_processor_count();
   310     }
   311   }
   313   _supports_cx8 = supports_cmpxchg8();
   315 #ifdef _LP64
   316   // OS should support SSE for x64 and hardware should support at least SSE2.
   317   if (!VM_Version::supports_sse2()) {
   318     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   319   }
   320   // in 64 bit the use of SSE2 is the minimum
   321   if (UseSSE < 2) UseSSE = 2;
   322 #endif
   324   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   325   if (!os::supports_sse())
   326     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   328   if (UseSSE < 4) {
   329     _cpuFeatures &= ~CPU_SSE4_1;
   330     _cpuFeatures &= ~CPU_SSE4_2;
   331   }
   333   if (UseSSE < 3) {
   334     _cpuFeatures &= ~CPU_SSE3;
   335     _cpuFeatures &= ~CPU_SSSE3;
   336     _cpuFeatures &= ~CPU_SSE4A;
   337   }
   339   if (UseSSE < 2)
   340     _cpuFeatures &= ~CPU_SSE2;
   342   if (UseSSE < 1)
   343     _cpuFeatures &= ~CPU_SSE;
   345   if (logical_processors_per_package() == 1) {
   346     // HT processor could be installed on a system which doesn't support HT.
   347     _cpuFeatures &= ~CPU_HT;
   348   }
   350   char buf[256];
   351   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   352                cores_per_cpu(), threads_per_core(),
   353                cpu_family(), _model, _stepping,
   354                (supports_cmov() ? ", cmov" : ""),
   355                (supports_cmpxchg8() ? ", cx8" : ""),
   356                (supports_fxsr() ? ", fxsr" : ""),
   357                (supports_mmx()  ? ", mmx"  : ""),
   358                (supports_sse()  ? ", sse"  : ""),
   359                (supports_sse2() ? ", sse2" : ""),
   360                (supports_sse3() ? ", sse3" : ""),
   361                (supports_ssse3()? ", ssse3": ""),
   362                (supports_sse4_1() ? ", sse4.1" : ""),
   363                (supports_sse4_2() ? ", sse4.2" : ""),
   364                (supports_popcnt() ? ", popcnt" : ""),
   365                (supports_mmx_ext() ? ", mmxext" : ""),
   366                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   367                (supports_lzcnt()   ? ", lzcnt": ""),
   368                (supports_sse4a()   ? ", sse4a": ""),
   369                (supports_ht() ? ", ht": ""));
   370   _features_str = strdup(buf);
   372   // UseSSE is set to the smaller of what hardware supports and what
   373   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   374   // older Pentiums which do not support it.
   375   if( UseSSE > 4 ) UseSSE=4;
   376   if( UseSSE < 0 ) UseSSE=0;
   377   if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
   378     UseSSE = MIN2((intx)3,UseSSE);
   379   if( !supports_sse3() ) // Drop to 2 if no SSE3 support
   380     UseSSE = MIN2((intx)2,UseSSE);
   381   if( !supports_sse2() ) // Drop to 1 if no SSE2 support
   382     UseSSE = MIN2((intx)1,UseSSE);
   383   if( !supports_sse () ) // Drop to 0 if no SSE  support
   384     UseSSE = 0;
   386   // On new cpus instructions which update whole XMM register should be used
   387   // to prevent partial register stall due to dependencies on high half.
   388   //
   389   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   390   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   391   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   392   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   394   if( is_amd() ) { // AMD cpus specific settings
   395     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   396       // Use it on new AMD cpus starting from Opteron.
   397       UseAddressNop = true;
   398     }
   399     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   400       // Use it on new AMD cpus starting from Opteron.
   401       UseNewLongLShift = true;
   402     }
   403     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   404       if( supports_sse4a() ) {
   405         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   406       } else {
   407         UseXmmLoadAndClearUpper = false;
   408       }
   409     }
   410     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   411       if( supports_sse4a() ) {
   412         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   413       } else {
   414         UseXmmRegToRegMoveAll = false;
   415       }
   416     }
   417     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   418       if( supports_sse4a() ) {
   419         UseXmmI2F = true;
   420       } else {
   421         UseXmmI2F = false;
   422       }
   423     }
   424     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   425       if( supports_sse4a() ) {
   426         UseXmmI2D = true;
   427       } else {
   428         UseXmmI2D = false;
   429       }
   430     }
   431     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   432       if( supports_sse4_2() && UseSSE >= 4 ) {
   433         UseSSE42Intrinsics = true;
   434       }
   435     }
   437     // Use count leading zeros count instruction if available.
   438     if (supports_lzcnt()) {
   439       if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   440         UseCountLeadingZerosInstruction = true;
   441       }
   442     }
   444     // some defaults for AMD family 15h
   445     if ( cpu_family() == 0x15 ) {
   446       // On family 15h processors default is no sw prefetch
   447       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   448         AllocatePrefetchStyle = 0;
   449       }
   450       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   451       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   452         AllocatePrefetchInstr = 3;
   453       }
   454       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   455       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   456         UseXMMForArrayCopy = true;
   457       }
   458       if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   459         UseUnalignedLoadStores = true;
   460       }
   461     }
   463   }
   465   if( is_intel() ) { // Intel cpus specific settings
   466     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   467       UseStoreImmI16 = false; // don't use it on Intel cpus
   468     }
   469     if( cpu_family() == 6 || cpu_family() == 15 ) {
   470       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   471         // Use it on all Intel cpus starting from PentiumPro
   472         UseAddressNop = true;
   473       }
   474     }
   475     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   476       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   477     }
   478     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   479       if( supports_sse3() ) {
   480         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   481       } else {
   482         UseXmmRegToRegMoveAll = false;
   483       }
   484     }
   485     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   486 #ifdef COMPILER2
   487       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   488         // For new Intel cpus do the next optimization:
   489         // don't align the beginning of a loop if there are enough instructions
   490         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   491         // in current fetch line (OptoLoopAlignment) or the padding
   492         // is big (> MaxLoopPad).
   493         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   494         // generated NOP instructions. 11 is the largest size of one
   495         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   496         MaxLoopPad = 11;
   497       }
   498 #endif // COMPILER2
   499       if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
   500         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   501       }
   502       if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
   503         if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
   504           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   505         }
   506       }
   507       if( supports_sse4_2() && UseSSE >= 4 ) {
   508         if( FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   509           UseSSE42Intrinsics = true;
   510         }
   511       }
   512     }
   513   }
   515   // Use population count instruction if available.
   516   if (supports_popcnt()) {
   517     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   518       UsePopCountInstruction = true;
   519     }
   520   }
   522 #ifdef COMPILER2
   523   if (UseFPUForSpilling) {
   524     if (UseSSE < 2) {
   525       // Only supported with SSE2+
   526       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   527     }
   528   }
   529 #endif
   531   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   532   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   534   // set valid Prefetch instruction
   535   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   536   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   537   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   538   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   540   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   541   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   542   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   543   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   545   // Allocation prefetch settings
   546   intx cache_line_size = L1_data_cache_line_size();
   547   if( cache_line_size > AllocatePrefetchStepSize )
   548     AllocatePrefetchStepSize = cache_line_size;
   549   if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
   550     AllocatePrefetchLines = 3; // Optimistic value
   551   assert(AllocatePrefetchLines > 0, "invalid value");
   552   if( AllocatePrefetchLines < 1 ) // set valid value in product VM
   553     AllocatePrefetchLines = 1; // Conservative value
   555   AllocatePrefetchDistance = allocate_prefetch_distance();
   556   AllocatePrefetchStyle    = allocate_prefetch_style();
   558   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   559     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   560 #ifdef _LP64
   561       AllocatePrefetchDistance = 384;
   562 #else
   563       AllocatePrefetchDistance = 320;
   564 #endif
   565     }
   566     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   567       AllocatePrefetchDistance = 192;
   568       AllocatePrefetchLines = 4;
   569 #ifdef COMPILER2
   570       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   571         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   572       }
   573 #endif
   574     }
   575   }
   576   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   578 #ifdef _LP64
   579   // Prefetch settings
   580   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   581   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   582   PrefetchFieldsAhead         = prefetch_fields_ahead();
   583 #endif
   585 #ifndef PRODUCT
   586   if (PrintMiscellaneous && Verbose) {
   587     tty->print_cr("Logical CPUs per core: %u",
   588                   logical_processors_per_package());
   589     tty->print_cr("UseSSE=%d",UseSSE);
   590     tty->print("Allocation: ");
   591     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   592       tty->print_cr("no prefetching");
   593     } else {
   594       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   595         tty->print("PREFETCHW");
   596       } else if (UseSSE >= 1) {
   597         if (AllocatePrefetchInstr == 0) {
   598           tty->print("PREFETCHNTA");
   599         } else if (AllocatePrefetchInstr == 1) {
   600           tty->print("PREFETCHT0");
   601         } else if (AllocatePrefetchInstr == 2) {
   602           tty->print("PREFETCHT2");
   603         } else if (AllocatePrefetchInstr == 3) {
   604           tty->print("PREFETCHW");
   605         }
   606       }
   607       if (AllocatePrefetchLines > 1) {
   608         tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   609       } else {
   610         tty->print_cr(" %d, one line", AllocatePrefetchDistance);
   611       }
   612     }
   614     if (PrefetchCopyIntervalInBytes > 0) {
   615       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   616     }
   617     if (PrefetchScanIntervalInBytes > 0) {
   618       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   619     }
   620     if (PrefetchFieldsAhead > 0) {
   621       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   622     }
   623   }
   624 #endif // !PRODUCT
   625 }
   627 void VM_Version::initialize() {
   628   ResourceMark rm;
   629   // Making this stub must be FIRST use of assembler
   631   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   632   if (stub_blob == NULL) {
   633     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   634   }
   635   CodeBuffer c(stub_blob);
   636   VM_Version_StubGenerator g(&c);
   637   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   638                                    g.generate_getPsrInfo());
   640   get_processor_features();
   641 }

mercurial