src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 10 Jun 2011 13:16:40 -0400

author
tonyp
date
Fri, 10 Jun 2011 13:16:40 -0400
changeset 2963
c3f1170908be
parent 2961
053d84a76d3d
child 2969
6747fd0512e0
permissions
-rw-r--r--

7045330: G1: Simplify/fix the HeapRegionSeq class
7042285: G1: native memory leak during humongous object allocation
6804436: G1: heap region indices should be size_t
Summary: A series of fixes and improvements to the HeapRegionSeq class: a) replace the _regions growable array with a standard C array, b) avoid de-allocating / re-allocating HeapRegion instances when the heap shrinks / grows (fix for 7042285), c) introduce fast method to map address to HeapRegion via a "biased" array pointer, d) embed the _hrs object in G1CollectedHeap, instead of pointing to it via an indirection, e) assume that all the regions added to the HeapRegionSeq instance are contiguous, f) replace int's with size_t's for indexes (and expand that to HeapRegion as part of 6804436), g) remove unnecessary / unused methods, h) rename a couple of fields (_alloc_search_start and _seq_bottom), i) fix iterate_from() not to always start from index 0 irrespective of the region passed to it, j) add a verification method to check the HeapRegionSeq assumptions, k) always call the wrappers for _hrs.iterate(), _hrs_length(), and _hrs.at() from G1CollectedHeap, not those methods directly, and l) unify the code that expands the sequence (by either re-using or creating a new HeapRegion) and make it robust wrt to a HeapRegion allocation failing.
Reviewed-by: stefank, johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1RemSet.hpp"
    31 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.hpp"
    33 #include "gc_implementation/g1/heapRegionSets.hpp"
    34 #include "gc_implementation/shared/hSpaceCounters.hpp"
    35 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    36 #include "memory/barrierSet.hpp"
    37 #include "memory/memRegion.hpp"
    38 #include "memory/sharedHeap.hpp"
    40 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    41 // It uses the "Garbage First" heap organization and algorithm, which
    42 // may combine concurrent marking with parallel, incremental compaction of
    43 // heap subsets that will yield large amounts of garbage.
    45 class HeapRegion;
    46 class HRRSCleanupTask;
    47 class PermanentGenerationSpec;
    48 class GenerationSpec;
    49 class OopsInHeapRegionClosure;
    50 class G1ScanHeapEvacClosure;
    51 class ObjectClosure;
    52 class SpaceClosure;
    53 class CompactibleSpaceClosure;
    54 class Space;
    55 class G1CollectorPolicy;
    56 class GenRemSet;
    57 class G1RemSet;
    58 class HeapRegionRemSetIterator;
    59 class ConcurrentMark;
    60 class ConcurrentMarkThread;
    61 class ConcurrentG1Refine;
    62 class GenerationCounters;
    64 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    65 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    67 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    68 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    70 enum GCAllocPurpose {
    71   GCAllocForTenured,
    72   GCAllocForSurvived,
    73   GCAllocPurposeCount
    74 };
    76 class YoungList : public CHeapObj {
    77 private:
    78   G1CollectedHeap* _g1h;
    80   HeapRegion* _head;
    82   HeapRegion* _survivor_head;
    83   HeapRegion* _survivor_tail;
    85   HeapRegion* _curr;
    87   size_t      _length;
    88   size_t      _survivor_length;
    90   size_t      _last_sampled_rs_lengths;
    91   size_t      _sampled_rs_lengths;
    93   void         empty_list(HeapRegion* list);
    95 public:
    96   YoungList(G1CollectedHeap* g1h);
    98   void         push_region(HeapRegion* hr);
    99   void         add_survivor_region(HeapRegion* hr);
   101   void         empty_list();
   102   bool         is_empty() { return _length == 0; }
   103   size_t       length() { return _length; }
   104   size_t       survivor_length() { return _survivor_length; }
   106   // Currently we do not keep track of the used byte sum for the
   107   // young list and the survivors and it'd be quite a lot of work to
   108   // do so. When we'll eventually replace the young list with
   109   // instances of HeapRegionLinkedList we'll get that for free. So,
   110   // we'll report the more accurate information then.
   111   size_t       eden_used_bytes() {
   112     assert(length() >= survivor_length(), "invariant");
   113     return (length() - survivor_length()) * HeapRegion::GrainBytes;
   114   }
   115   size_t       survivor_used_bytes() {
   116     return survivor_length() * HeapRegion::GrainBytes;
   117   }
   119   void rs_length_sampling_init();
   120   bool rs_length_sampling_more();
   121   void rs_length_sampling_next();
   123   void reset_sampled_info() {
   124     _last_sampled_rs_lengths =   0;
   125   }
   126   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   128   // for development purposes
   129   void reset_auxilary_lists();
   130   void clear() { _head = NULL; _length = 0; }
   132   void clear_survivors() {
   133     _survivor_head    = NULL;
   134     _survivor_tail    = NULL;
   135     _survivor_length  = 0;
   136   }
   138   HeapRegion* first_region() { return _head; }
   139   HeapRegion* first_survivor_region() { return _survivor_head; }
   140   HeapRegion* last_survivor_region() { return _survivor_tail; }
   142   // debugging
   143   bool          check_list_well_formed();
   144   bool          check_list_empty(bool check_sample = true);
   145   void          print();
   146 };
   148 class MutatorAllocRegion : public G1AllocRegion {
   149 protected:
   150   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   151   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   152 public:
   153   MutatorAllocRegion()
   154     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   155 };
   157 class RefineCardTableEntryClosure;
   158 class G1CollectedHeap : public SharedHeap {
   159   friend class VM_G1CollectForAllocation;
   160   friend class VM_GenCollectForPermanentAllocation;
   161   friend class VM_G1CollectFull;
   162   friend class VM_G1IncCollectionPause;
   163   friend class VMStructs;
   164   friend class MutatorAllocRegion;
   166   // Closures used in implementation.
   167   friend class G1ParCopyHelper;
   168   friend class G1IsAliveClosure;
   169   friend class G1EvacuateFollowersClosure;
   170   friend class G1ParScanThreadState;
   171   friend class G1ParScanClosureSuper;
   172   friend class G1ParEvacuateFollowersClosure;
   173   friend class G1ParTask;
   174   friend class G1FreeGarbageRegionClosure;
   175   friend class RefineCardTableEntryClosure;
   176   friend class G1PrepareCompactClosure;
   177   friend class RegionSorter;
   178   friend class RegionResetter;
   179   friend class CountRCClosure;
   180   friend class EvacPopObjClosure;
   181   friend class G1ParCleanupCTTask;
   183   // Other related classes.
   184   friend class G1MarkSweep;
   186 private:
   187   // The one and only G1CollectedHeap, so static functions can find it.
   188   static G1CollectedHeap* _g1h;
   190   static size_t _humongous_object_threshold_in_words;
   192   // Storage for the G1 heap (excludes the permanent generation).
   193   VirtualSpace _g1_storage;
   194   MemRegion    _g1_reserved;
   196   // The part of _g1_storage that is currently committed.
   197   MemRegion _g1_committed;
   199   // The master free list. It will satisfy all new region allocations.
   200   MasterFreeRegionList      _free_list;
   202   // The secondary free list which contains regions that have been
   203   // freed up during the cleanup process. This will be appended to the
   204   // master free list when appropriate.
   205   SecondaryFreeRegionList   _secondary_free_list;
   207   // It keeps track of the humongous regions.
   208   MasterHumongousRegionSet  _humongous_set;
   210   // The number of regions we could create by expansion.
   211   size_t _expansion_regions;
   213   // The block offset table for the G1 heap.
   214   G1BlockOffsetSharedArray* _bot_shared;
   216   // Move all of the regions off the free lists, then rebuild those free
   217   // lists, before and after full GC.
   218   void tear_down_region_lists();
   219   void rebuild_region_lists();
   221   // The sequence of all heap regions in the heap.
   222   HeapRegionSeq _hrs;
   224   // Alloc region used to satisfy mutator allocation requests.
   225   MutatorAllocRegion _mutator_alloc_region;
   227   // It resets the mutator alloc region before new allocations can take place.
   228   void init_mutator_alloc_region();
   230   // It releases the mutator alloc region.
   231   void release_mutator_alloc_region();
   233   void abandon_gc_alloc_regions();
   235   // The to-space memory regions into which objects are being copied during
   236   // a GC.
   237   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   238   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   239   // These are the regions, one per GCAllocPurpose, that are half-full
   240   // at the end of a collection and that we want to reuse during the
   241   // next collection.
   242   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   243   // This specifies whether we will keep the last half-full region at
   244   // the end of a collection so that it can be reused during the next
   245   // collection (this is specified per GCAllocPurpose)
   246   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   248   // A list of the regions that have been set to be alloc regions in the
   249   // current collection.
   250   HeapRegion* _gc_alloc_region_list;
   252   // Helper for monitoring and management support.
   253   G1MonitoringSupport* _g1mm;
   255   // Determines PLAB size for a particular allocation purpose.
   256   static size_t desired_plab_sz(GCAllocPurpose purpose);
   258   // When called by par thread, requires the FreeList_lock to be held.
   259   void push_gc_alloc_region(HeapRegion* hr);
   261   // This should only be called single-threaded.  Undeclares all GC alloc
   262   // regions.
   263   void forget_alloc_region_list();
   265   // Should be used to set an alloc region, because there's other
   266   // associated bookkeeping.
   267   void set_gc_alloc_region(int purpose, HeapRegion* r);
   269   // Check well-formedness of alloc region list.
   270   bool check_gc_alloc_regions();
   272   // Outside of GC pauses, the number of bytes used in all regions other
   273   // than the current allocation region.
   274   size_t _summary_bytes_used;
   276   // This is used for a quick test on whether a reference points into
   277   // the collection set or not. Basically, we have an array, with one
   278   // byte per region, and that byte denotes whether the corresponding
   279   // region is in the collection set or not. The entry corresponding
   280   // the bottom of the heap, i.e., region 0, is pointed to by
   281   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   282   // biased so that it actually points to address 0 of the address
   283   // space, to make the test as fast as possible (we can simply shift
   284   // the address to address into it, instead of having to subtract the
   285   // bottom of the heap from the address before shifting it; basically
   286   // it works in the same way the card table works).
   287   bool* _in_cset_fast_test;
   289   // The allocated array used for the fast test on whether a reference
   290   // points into the collection set or not. This field is also used to
   291   // free the array.
   292   bool* _in_cset_fast_test_base;
   294   // The length of the _in_cset_fast_test_base array.
   295   size_t _in_cset_fast_test_length;
   297   volatile unsigned _gc_time_stamp;
   299   size_t* _surviving_young_words;
   301   void setup_surviving_young_words();
   302   void update_surviving_young_words(size_t* surv_young_words);
   303   void cleanup_surviving_young_words();
   305   // It decides whether an explicit GC should start a concurrent cycle
   306   // instead of doing a STW GC. Currently, a concurrent cycle is
   307   // explicitly started if:
   308   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   309   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   310   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   312   // Keeps track of how many "full collections" (i.e., Full GCs or
   313   // concurrent cycles) we have completed. The number of them we have
   314   // started is maintained in _total_full_collections in CollectedHeap.
   315   volatile unsigned int _full_collections_completed;
   317   // This is a non-product method that is helpful for testing. It is
   318   // called at the end of a GC and artificially expands the heap by
   319   // allocating a number of dead regions. This way we can induce very
   320   // frequent marking cycles and stress the cleanup / concurrent
   321   // cleanup code more (as all the regions that will be allocated by
   322   // this method will be found dead by the marking cycle).
   323   void allocate_dummy_regions() PRODUCT_RETURN;
   325   // These are macros so that, if the assert fires, we get the correct
   326   // line number, file, etc.
   328 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   329   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   330           (_extra_message_),                                                  \
   331           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   332           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   333           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   335 #define assert_heap_locked()                                                  \
   336   do {                                                                        \
   337     assert(Heap_lock->owned_by_self(),                                        \
   338            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   339   } while (0)
   341 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   342   do {                                                                        \
   343     assert(Heap_lock->owned_by_self() ||                                      \
   344            (SafepointSynchronize::is_at_safepoint() &&                        \
   345              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   346            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   347                                         "should be at a safepoint"));         \
   348   } while (0)
   350 #define assert_heap_locked_and_not_at_safepoint()                             \
   351   do {                                                                        \
   352     assert(Heap_lock->owned_by_self() &&                                      \
   353                                     !SafepointSynchronize::is_at_safepoint(), \
   354           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   355                                        "should not be at a safepoint"));      \
   356   } while (0)
   358 #define assert_heap_not_locked()                                              \
   359   do {                                                                        \
   360     assert(!Heap_lock->owned_by_self(),                                       \
   361         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   362   } while (0)
   364 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   365   do {                                                                        \
   366     assert(!Heap_lock->owned_by_self() &&                                     \
   367                                     !SafepointSynchronize::is_at_safepoint(), \
   368       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   369                                    "should not be at a safepoint"));          \
   370   } while (0)
   372 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   373   do {                                                                        \
   374     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   375               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   376            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   377   } while (0)
   379 #define assert_not_at_safepoint()                                             \
   380   do {                                                                        \
   381     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   382            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   383   } while (0)
   385 protected:
   387   // Returns "true" iff none of the gc alloc regions have any allocations
   388   // since the last call to "save_marks".
   389   bool all_alloc_regions_no_allocs_since_save_marks();
   390   // Perform finalization stuff on all allocation regions.
   391   void retire_all_alloc_regions();
   393   // The number of regions allocated to hold humongous objects.
   394   int         _num_humongous_regions;
   395   YoungList*  _young_list;
   397   // The current policy object for the collector.
   398   G1CollectorPolicy* _g1_policy;
   400   // This is the second level of trying to allocate a new region. If
   401   // new_region() didn't find a region on the free_list, this call will
   402   // check whether there's anything available on the
   403   // secondary_free_list and/or wait for more regions to appear on
   404   // that list, if _free_regions_coming is set.
   405   HeapRegion* new_region_try_secondary_free_list();
   407   // Try to allocate a single non-humongous HeapRegion sufficient for
   408   // an allocation of the given word_size. If do_expand is true,
   409   // attempt to expand the heap if necessary to satisfy the allocation
   410   // request.
   411   HeapRegion* new_region(size_t word_size, bool do_expand);
   413   // Try to allocate a new region to be used for allocation by
   414   // a GC thread. It will try to expand the heap if no region is
   415   // available.
   416   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   418   // Attempt to satisfy a humongous allocation request of the given
   419   // size by finding a contiguous set of free regions of num_regions
   420   // length and remove them from the master free list. Return the
   421   // index of the first region or G1_NULL_HRS_INDEX if the search
   422   // was unsuccessful.
   423   size_t humongous_obj_allocate_find_first(size_t num_regions,
   424                                            size_t word_size);
   426   // Initialize a contiguous set of free regions of length num_regions
   427   // and starting at index first so that they appear as a single
   428   // humongous region.
   429   HeapWord* humongous_obj_allocate_initialize_regions(size_t first,
   430                                                       size_t num_regions,
   431                                                       size_t word_size);
   433   // Attempt to allocate a humongous object of the given size. Return
   434   // NULL if unsuccessful.
   435   HeapWord* humongous_obj_allocate(size_t word_size);
   437   // The following two methods, allocate_new_tlab() and
   438   // mem_allocate(), are the two main entry points from the runtime
   439   // into the G1's allocation routines. They have the following
   440   // assumptions:
   441   //
   442   // * They should both be called outside safepoints.
   443   //
   444   // * They should both be called without holding the Heap_lock.
   445   //
   446   // * All allocation requests for new TLABs should go to
   447   //   allocate_new_tlab().
   448   //
   449   // * All non-TLAB allocation requests should go to mem_allocate()
   450   //   and mem_allocate() should never be called with is_tlab == true.
   451   //
   452   // * If either call cannot satisfy the allocation request using the
   453   //   current allocating region, they will try to get a new one. If
   454   //   this fails, they will attempt to do an evacuation pause and
   455   //   retry the allocation.
   456   //
   457   // * If all allocation attempts fail, even after trying to schedule
   458   //   an evacuation pause, allocate_new_tlab() will return NULL,
   459   //   whereas mem_allocate() will attempt a heap expansion and/or
   460   //   schedule a Full GC.
   461   //
   462   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   463   //   should never be called with word_size being humongous. All
   464   //   humongous allocation requests should go to mem_allocate() which
   465   //   will satisfy them with a special path.
   467   virtual HeapWord* allocate_new_tlab(size_t word_size);
   469   virtual HeapWord* mem_allocate(size_t word_size,
   470                                  bool   is_noref,
   471                                  bool   is_tlab, /* expected to be false */
   472                                  bool*  gc_overhead_limit_was_exceeded);
   474   // The following three methods take a gc_count_before_ret
   475   // parameter which is used to return the GC count if the method
   476   // returns NULL. Given that we are required to read the GC count
   477   // while holding the Heap_lock, and these paths will take the
   478   // Heap_lock at some point, it's easier to get them to read the GC
   479   // count while holding the Heap_lock before they return NULL instead
   480   // of the caller (namely: mem_allocate()) having to also take the
   481   // Heap_lock just to read the GC count.
   483   // First-level mutator allocation attempt: try to allocate out of
   484   // the mutator alloc region without taking the Heap_lock. This
   485   // should only be used for non-humongous allocations.
   486   inline HeapWord* attempt_allocation(size_t word_size,
   487                                       unsigned int* gc_count_before_ret);
   489   // Second-level mutator allocation attempt: take the Heap_lock and
   490   // retry the allocation attempt, potentially scheduling a GC
   491   // pause. This should only be used for non-humongous allocations.
   492   HeapWord* attempt_allocation_slow(size_t word_size,
   493                                     unsigned int* gc_count_before_ret);
   495   // Takes the Heap_lock and attempts a humongous allocation. It can
   496   // potentially schedule a GC pause.
   497   HeapWord* attempt_allocation_humongous(size_t word_size,
   498                                          unsigned int* gc_count_before_ret);
   500   // Allocation attempt that should be called during safepoints (e.g.,
   501   // at the end of a successful GC). expect_null_mutator_alloc_region
   502   // specifies whether the mutator alloc region is expected to be NULL
   503   // or not.
   504   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   505                                        bool expect_null_mutator_alloc_region);
   507   // It dirties the cards that cover the block so that so that the post
   508   // write barrier never queues anything when updating objects on this
   509   // block. It is assumed (and in fact we assert) that the block
   510   // belongs to a young region.
   511   inline void dirty_young_block(HeapWord* start, size_t word_size);
   513   // Allocate blocks during garbage collection. Will ensure an
   514   // allocation region, either by picking one or expanding the
   515   // heap, and then allocate a block of the given size. The block
   516   // may not be a humongous - it must fit into a single heap region.
   517   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   519   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   520                                     HeapRegion*    alloc_region,
   521                                     bool           par,
   522                                     size_t         word_size);
   524   // Ensure that no further allocations can happen in "r", bearing in mind
   525   // that parallel threads might be attempting allocations.
   526   void par_allocate_remaining_space(HeapRegion* r);
   528   // Retires an allocation region when it is full or at the end of a
   529   // GC pause.
   530   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   532   // These two methods are the "callbacks" from the G1AllocRegion class.
   534   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   535   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   536                                    size_t allocated_bytes);
   538   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   539   //   inspection request and should collect the entire heap
   540   // - if clear_all_soft_refs is true, all soft references should be
   541   //   cleared during the GC
   542   // - if explicit_gc is false, word_size describes the allocation that
   543   //   the GC should attempt (at least) to satisfy
   544   // - it returns false if it is unable to do the collection due to the
   545   //   GC locker being active, true otherwise
   546   bool do_collection(bool explicit_gc,
   547                      bool clear_all_soft_refs,
   548                      size_t word_size);
   550   // Callback from VM_G1CollectFull operation.
   551   // Perform a full collection.
   552   void do_full_collection(bool clear_all_soft_refs);
   554   // Resize the heap if necessary after a full collection.  If this is
   555   // after a collect-for allocation, "word_size" is the allocation size,
   556   // and will be considered part of the used portion of the heap.
   557   void resize_if_necessary_after_full_collection(size_t word_size);
   559   // Callback from VM_G1CollectForAllocation operation.
   560   // This function does everything necessary/possible to satisfy a
   561   // failed allocation request (including collection, expansion, etc.)
   562   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   564   // Attempting to expand the heap sufficiently
   565   // to support an allocation of the given "word_size".  If
   566   // successful, perform the allocation and return the address of the
   567   // allocated block, or else "NULL".
   568   HeapWord* expand_and_allocate(size_t word_size);
   570 public:
   572   G1MonitoringSupport* g1mm() { return _g1mm; }
   574   // Expand the garbage-first heap by at least the given size (in bytes!).
   575   // Returns true if the heap was expanded by the requested amount;
   576   // false otherwise.
   577   // (Rounds up to a HeapRegion boundary.)
   578   bool expand(size_t expand_bytes);
   580   // Do anything common to GC's.
   581   virtual void gc_prologue(bool full);
   582   virtual void gc_epilogue(bool full);
   584   // We register a region with the fast "in collection set" test. We
   585   // simply set to true the array slot corresponding to this region.
   586   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   587     assert(_in_cset_fast_test_base != NULL, "sanity");
   588     assert(r->in_collection_set(), "invariant");
   589     size_t index = r->hrs_index();
   590     assert(index < _in_cset_fast_test_length, "invariant");
   591     assert(!_in_cset_fast_test_base[index], "invariant");
   592     _in_cset_fast_test_base[index] = true;
   593   }
   595   // This is a fast test on whether a reference points into the
   596   // collection set or not. It does not assume that the reference
   597   // points into the heap; if it doesn't, it will return false.
   598   bool in_cset_fast_test(oop obj) {
   599     assert(_in_cset_fast_test != NULL, "sanity");
   600     if (_g1_committed.contains((HeapWord*) obj)) {
   601       // no need to subtract the bottom of the heap from obj,
   602       // _in_cset_fast_test is biased
   603       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   604       bool ret = _in_cset_fast_test[index];
   605       // let's make sure the result is consistent with what the slower
   606       // test returns
   607       assert( ret || !obj_in_cs(obj), "sanity");
   608       assert(!ret ||  obj_in_cs(obj), "sanity");
   609       return ret;
   610     } else {
   611       return false;
   612     }
   613   }
   615   void clear_cset_fast_test() {
   616     assert(_in_cset_fast_test_base != NULL, "sanity");
   617     memset(_in_cset_fast_test_base, false,
   618         _in_cset_fast_test_length * sizeof(bool));
   619   }
   621   // This is called at the end of either a concurrent cycle or a Full
   622   // GC to update the number of full collections completed. Those two
   623   // can happen in a nested fashion, i.e., we start a concurrent
   624   // cycle, a Full GC happens half-way through it which ends first,
   625   // and then the cycle notices that a Full GC happened and ends
   626   // too. The concurrent parameter is a boolean to help us do a bit
   627   // tighter consistency checking in the method. If concurrent is
   628   // false, the caller is the inner caller in the nesting (i.e., the
   629   // Full GC). If concurrent is true, the caller is the outer caller
   630   // in this nesting (i.e., the concurrent cycle). Further nesting is
   631   // not currently supported. The end of the this call also notifies
   632   // the FullGCCount_lock in case a Java thread is waiting for a full
   633   // GC to happen (e.g., it called System.gc() with
   634   // +ExplicitGCInvokesConcurrent).
   635   void increment_full_collections_completed(bool concurrent);
   637   unsigned int full_collections_completed() {
   638     return _full_collections_completed;
   639   }
   641 protected:
   643   // Shrink the garbage-first heap by at most the given size (in bytes!).
   644   // (Rounds down to a HeapRegion boundary.)
   645   virtual void shrink(size_t expand_bytes);
   646   void shrink_helper(size_t expand_bytes);
   648   #if TASKQUEUE_STATS
   649   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   650   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   651   void reset_taskqueue_stats();
   652   #endif // TASKQUEUE_STATS
   654   // Schedule the VM operation that will do an evacuation pause to
   655   // satisfy an allocation request of word_size. *succeeded will
   656   // return whether the VM operation was successful (it did do an
   657   // evacuation pause) or not (another thread beat us to it or the GC
   658   // locker was active). Given that we should not be holding the
   659   // Heap_lock when we enter this method, we will pass the
   660   // gc_count_before (i.e., total_collections()) as a parameter since
   661   // it has to be read while holding the Heap_lock. Currently, both
   662   // methods that call do_collection_pause() release the Heap_lock
   663   // before the call, so it's easy to read gc_count_before just before.
   664   HeapWord* do_collection_pause(size_t       word_size,
   665                                 unsigned int gc_count_before,
   666                                 bool*        succeeded);
   668   // The guts of the incremental collection pause, executed by the vm
   669   // thread. It returns false if it is unable to do the collection due
   670   // to the GC locker being active, true otherwise
   671   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   673   // Actually do the work of evacuating the collection set.
   674   void evacuate_collection_set();
   676   // The g1 remembered set of the heap.
   677   G1RemSet* _g1_rem_set;
   678   // And it's mod ref barrier set, used to track updates for the above.
   679   ModRefBarrierSet* _mr_bs;
   681   // A set of cards that cover the objects for which the Rsets should be updated
   682   // concurrently after the collection.
   683   DirtyCardQueueSet _dirty_card_queue_set;
   685   // The Heap Region Rem Set Iterator.
   686   HeapRegionRemSetIterator** _rem_set_iterator;
   688   // The closure used to refine a single card.
   689   RefineCardTableEntryClosure* _refine_cte_cl;
   691   // A function to check the consistency of dirty card logs.
   692   void check_ct_logs_at_safepoint();
   694   // A DirtyCardQueueSet that is used to hold cards that contain
   695   // references into the current collection set. This is used to
   696   // update the remembered sets of the regions in the collection
   697   // set in the event of an evacuation failure.
   698   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   700   // After a collection pause, make the regions in the CS into free
   701   // regions.
   702   void free_collection_set(HeapRegion* cs_head);
   704   // Abandon the current collection set without recording policy
   705   // statistics or updating free lists.
   706   void abandon_collection_set(HeapRegion* cs_head);
   708   // Applies "scan_non_heap_roots" to roots outside the heap,
   709   // "scan_rs" to roots inside the heap (having done "set_region" to
   710   // indicate the region in which the root resides), and does "scan_perm"
   711   // (setting the generation to the perm generation.)  If "scan_rs" is
   712   // NULL, then this step is skipped.  The "worker_i"
   713   // param is for use with parallel roots processing, and should be
   714   // the "i" of the calling parallel worker thread's work(i) function.
   715   // In the sequential case this param will be ignored.
   716   void g1_process_strong_roots(bool collecting_perm_gen,
   717                                SharedHeap::ScanningOption so,
   718                                OopClosure* scan_non_heap_roots,
   719                                OopsInHeapRegionClosure* scan_rs,
   720                                OopsInGenClosure* scan_perm,
   721                                int worker_i);
   723   // Apply "blk" to all the weak roots of the system.  These include
   724   // JNI weak roots, the code cache, system dictionary, symbol table,
   725   // string table, and referents of reachable weak refs.
   726   void g1_process_weak_roots(OopClosure* root_closure,
   727                              OopClosure* non_root_closure);
   729   // Invoke "save_marks" on all heap regions.
   730   void save_marks();
   732   // Frees a non-humongous region by initializing its contents and
   733   // adding it to the free list that's passed as a parameter (this is
   734   // usually a local list which will be appended to the master free
   735   // list later). The used bytes of freed regions are accumulated in
   736   // pre_used. If par is true, the region's RSet will not be freed
   737   // up. The assumption is that this will be done later.
   738   void free_region(HeapRegion* hr,
   739                    size_t* pre_used,
   740                    FreeRegionList* free_list,
   741                    bool par);
   743   // Frees a humongous region by collapsing it into individual regions
   744   // and calling free_region() for each of them. The freed regions
   745   // will be added to the free list that's passed as a parameter (this
   746   // is usually a local list which will be appended to the master free
   747   // list later). The used bytes of freed regions are accumulated in
   748   // pre_used. If par is true, the region's RSet will not be freed
   749   // up. The assumption is that this will be done later.
   750   void free_humongous_region(HeapRegion* hr,
   751                              size_t* pre_used,
   752                              FreeRegionList* free_list,
   753                              HumongousRegionSet* humongous_proxy_set,
   754                              bool par);
   756   // Notifies all the necessary spaces that the committed space has
   757   // been updated (either expanded or shrunk). It should be called
   758   // after _g1_storage is updated.
   759   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   761   // The concurrent marker (and the thread it runs in.)
   762   ConcurrentMark* _cm;
   763   ConcurrentMarkThread* _cmThread;
   764   bool _mark_in_progress;
   766   // The concurrent refiner.
   767   ConcurrentG1Refine* _cg1r;
   769   // The parallel task queues
   770   RefToScanQueueSet *_task_queues;
   772   // True iff a evacuation has failed in the current collection.
   773   bool _evacuation_failed;
   775   // Set the attribute indicating whether evacuation has failed in the
   776   // current collection.
   777   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   779   // Failed evacuations cause some logical from-space objects to have
   780   // forwarding pointers to themselves.  Reset them.
   781   void remove_self_forwarding_pointers();
   783   // When one is non-null, so is the other.  Together, they each pair is
   784   // an object with a preserved mark, and its mark value.
   785   GrowableArray<oop>*     _objs_with_preserved_marks;
   786   GrowableArray<markOop>* _preserved_marks_of_objs;
   788   // Preserve the mark of "obj", if necessary, in preparation for its mark
   789   // word being overwritten with a self-forwarding-pointer.
   790   void preserve_mark_if_necessary(oop obj, markOop m);
   792   // The stack of evac-failure objects left to be scanned.
   793   GrowableArray<oop>*    _evac_failure_scan_stack;
   794   // The closure to apply to evac-failure objects.
   796   OopsInHeapRegionClosure* _evac_failure_closure;
   797   // Set the field above.
   798   void
   799   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   800     _evac_failure_closure = evac_failure_closure;
   801   }
   803   // Push "obj" on the scan stack.
   804   void push_on_evac_failure_scan_stack(oop obj);
   805   // Process scan stack entries until the stack is empty.
   806   void drain_evac_failure_scan_stack();
   807   // True iff an invocation of "drain_scan_stack" is in progress; to
   808   // prevent unnecessary recursion.
   809   bool _drain_in_progress;
   811   // Do any necessary initialization for evacuation-failure handling.
   812   // "cl" is the closure that will be used to process evac-failure
   813   // objects.
   814   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   815   // Do any necessary cleanup for evacuation-failure handling data
   816   // structures.
   817   void finalize_for_evac_failure();
   819   // An attempt to evacuate "obj" has failed; take necessary steps.
   820   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   821   void handle_evacuation_failure_common(oop obj, markOop m);
   823   // Ensure that the relevant gc_alloc regions are set.
   824   void get_gc_alloc_regions();
   825   // We're done with GC alloc regions. We are going to tear down the
   826   // gc alloc list and remove the gc alloc tag from all the regions on
   827   // that list. However, we will also retain the last (i.e., the one
   828   // that is half-full) GC alloc region, per GCAllocPurpose, for
   829   // possible reuse during the next collection, provided
   830   // _retain_gc_alloc_region[] indicates that it should be the
   831   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   832   // array. If the parameter totally is set, we will not retain any
   833   // regions, irrespective of what _retain_gc_alloc_region[]
   834   // indicates.
   835   void release_gc_alloc_regions(bool totally);
   836 #ifndef PRODUCT
   837   // Useful for debugging.
   838   void print_gc_alloc_regions();
   839 #endif // !PRODUCT
   841   // Instance of the concurrent mark is_alive closure for embedding
   842   // into the reference processor as the is_alive_non_header. This
   843   // prevents unnecessary additions to the discovered lists during
   844   // concurrent discovery.
   845   G1CMIsAliveClosure _is_alive_closure;
   847   // ("Weak") Reference processing support
   848   ReferenceProcessor* _ref_processor;
   850   enum G1H_process_strong_roots_tasks {
   851     G1H_PS_mark_stack_oops_do,
   852     G1H_PS_refProcessor_oops_do,
   853     // Leave this one last.
   854     G1H_PS_NumElements
   855   };
   857   SubTasksDone* _process_strong_tasks;
   859   volatile bool _free_regions_coming;
   861 public:
   863   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   865   void set_refine_cte_cl_concurrency(bool concurrent);
   867   RefToScanQueue *task_queue(int i) const;
   869   // A set of cards where updates happened during the GC
   870   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   872   // A DirtyCardQueueSet that is used to hold cards that contain
   873   // references into the current collection set. This is used to
   874   // update the remembered sets of the regions in the collection
   875   // set in the event of an evacuation failure.
   876   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   877         { return _into_cset_dirty_card_queue_set; }
   879   // Create a G1CollectedHeap with the specified policy.
   880   // Must call the initialize method afterwards.
   881   // May not return if something goes wrong.
   882   G1CollectedHeap(G1CollectorPolicy* policy);
   884   // Initialize the G1CollectedHeap to have the initial and
   885   // maximum sizes, permanent generation, and remembered and barrier sets
   886   // specified by the policy object.
   887   jint initialize();
   889   virtual void ref_processing_init();
   891   void set_par_threads(int t) {
   892     SharedHeap::set_par_threads(t);
   893     _process_strong_tasks->set_n_threads(t);
   894   }
   896   virtual CollectedHeap::Name kind() const {
   897     return CollectedHeap::G1CollectedHeap;
   898   }
   900   // The current policy object for the collector.
   901   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   903   // Adaptive size policy.  No such thing for g1.
   904   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   906   // The rem set and barrier set.
   907   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   908   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   910   // The rem set iterator.
   911   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   912     return _rem_set_iterator[i];
   913   }
   915   HeapRegionRemSetIterator* rem_set_iterator() {
   916     return _rem_set_iterator[0];
   917   }
   919   unsigned get_gc_time_stamp() {
   920     return _gc_time_stamp;
   921   }
   923   void reset_gc_time_stamp() {
   924     _gc_time_stamp = 0;
   925     OrderAccess::fence();
   926   }
   928   void increment_gc_time_stamp() {
   929     ++_gc_time_stamp;
   930     OrderAccess::fence();
   931   }
   933   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   934                                   DirtyCardQueue* into_cset_dcq,
   935                                   bool concurrent, int worker_i);
   937   // The shared block offset table array.
   938   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   940   // Reference Processing accessor
   941   ReferenceProcessor* ref_processor() { return _ref_processor; }
   943   virtual size_t capacity() const;
   944   virtual size_t used() const;
   945   // This should be called when we're not holding the heap lock. The
   946   // result might be a bit inaccurate.
   947   size_t used_unlocked() const;
   948   size_t recalculate_used() const;
   949 #ifndef PRODUCT
   950   size_t recalculate_used_regions() const;
   951 #endif // PRODUCT
   953   // These virtual functions do the actual allocation.
   954   // Some heaps may offer a contiguous region for shared non-blocking
   955   // allocation, via inlined code (by exporting the address of the top and
   956   // end fields defining the extent of the contiguous allocation region.)
   957   // But G1CollectedHeap doesn't yet support this.
   959   // Return an estimate of the maximum allocation that could be performed
   960   // without triggering any collection or expansion activity.  In a
   961   // generational collector, for example, this is probably the largest
   962   // allocation that could be supported (without expansion) in the youngest
   963   // generation.  It is "unsafe" because no locks are taken; the result
   964   // should be treated as an approximation, not a guarantee, for use in
   965   // heuristic resizing decisions.
   966   virtual size_t unsafe_max_alloc();
   968   virtual bool is_maximal_no_gc() const {
   969     return _g1_storage.uncommitted_size() == 0;
   970   }
   972   // The total number of regions in the heap.
   973   size_t n_regions() { return _hrs.length(); }
   975   // The max number of regions in the heap.
   976   size_t max_regions() { return _hrs.max_length(); }
   978   // The number of regions that are completely free.
   979   size_t free_regions() { return _free_list.length(); }
   981   // The number of regions that are not completely free.
   982   size_t used_regions() { return n_regions() - free_regions(); }
   984   // The number of regions available for "regular" expansion.
   985   size_t expansion_regions() { return _expansion_regions; }
   987   // Factory method for HeapRegion instances. It will return NULL if
   988   // the allocation fails.
   989   HeapRegion* new_heap_region(size_t hrs_index, HeapWord* bottom);
   991   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   992   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
   993   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
   994   void verify_dirty_young_regions() PRODUCT_RETURN;
   996   // verify_region_sets() performs verification over the region
   997   // lists. It will be compiled in the product code to be used when
   998   // necessary (i.e., during heap verification).
   999   void verify_region_sets();
  1001   // verify_region_sets_optional() is planted in the code for
  1002   // list verification in non-product builds (and it can be enabled in
  1003   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1004 #if HEAP_REGION_SET_FORCE_VERIFY
  1005   void verify_region_sets_optional() {
  1006     verify_region_sets();
  1008 #else // HEAP_REGION_SET_FORCE_VERIFY
  1009   void verify_region_sets_optional() { }
  1010 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1012 #ifdef ASSERT
  1013   bool is_on_master_free_list(HeapRegion* hr) {
  1014     return hr->containing_set() == &_free_list;
  1017   bool is_in_humongous_set(HeapRegion* hr) {
  1018     return hr->containing_set() == &_humongous_set;
  1020 #endif // ASSERT
  1022   // Wrapper for the region list operations that can be called from
  1023   // methods outside this class.
  1025   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1026     _secondary_free_list.add_as_tail(list);
  1029   void append_secondary_free_list() {
  1030     _free_list.add_as_head(&_secondary_free_list);
  1033   void append_secondary_free_list_if_not_empty_with_lock() {
  1034     // If the secondary free list looks empty there's no reason to
  1035     // take the lock and then try to append it.
  1036     if (!_secondary_free_list.is_empty()) {
  1037       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1038       append_secondary_free_list();
  1042   void set_free_regions_coming();
  1043   void reset_free_regions_coming();
  1044   bool free_regions_coming() { return _free_regions_coming; }
  1045   void wait_while_free_regions_coming();
  1047   // Perform a collection of the heap; intended for use in implementing
  1048   // "System.gc".  This probably implies as full a collection as the
  1049   // "CollectedHeap" supports.
  1050   virtual void collect(GCCause::Cause cause);
  1052   // The same as above but assume that the caller holds the Heap_lock.
  1053   void collect_locked(GCCause::Cause cause);
  1055   // This interface assumes that it's being called by the
  1056   // vm thread. It collects the heap assuming that the
  1057   // heap lock is already held and that we are executing in
  1058   // the context of the vm thread.
  1059   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1061   // True iff a evacuation has failed in the most-recent collection.
  1062   bool evacuation_failed() { return _evacuation_failed; }
  1064   // It will free a region if it has allocated objects in it that are
  1065   // all dead. It calls either free_region() or
  1066   // free_humongous_region() depending on the type of the region that
  1067   // is passed to it.
  1068   void free_region_if_empty(HeapRegion* hr,
  1069                             size_t* pre_used,
  1070                             FreeRegionList* free_list,
  1071                             HumongousRegionSet* humongous_proxy_set,
  1072                             HRRSCleanupTask* hrrs_cleanup_task,
  1073                             bool par);
  1075   // It appends the free list to the master free list and updates the
  1076   // master humongous list according to the contents of the proxy
  1077   // list. It also adjusts the total used bytes according to pre_used
  1078   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1079   void update_sets_after_freeing_regions(size_t pre_used,
  1080                                        FreeRegionList* free_list,
  1081                                        HumongousRegionSet* humongous_proxy_set,
  1082                                        bool par);
  1084   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1085   virtual bool is_in(const void* p) const;
  1087   // Return "TRUE" iff the given object address is within the collection
  1088   // set.
  1089   inline bool obj_in_cs(oop obj);
  1091   // Return "TRUE" iff the given object address is in the reserved
  1092   // region of g1 (excluding the permanent generation).
  1093   bool is_in_g1_reserved(const void* p) const {
  1094     return _g1_reserved.contains(p);
  1097   // Returns a MemRegion that corresponds to the space that has been
  1098   // reserved for the heap
  1099   MemRegion g1_reserved() {
  1100     return _g1_reserved;
  1103   // Returns a MemRegion that corresponds to the space that has been
  1104   // committed in the heap
  1105   MemRegion g1_committed() {
  1106     return _g1_committed;
  1109   virtual bool is_in_closed_subset(const void* p) const;
  1111   // Dirty card table entries covering a list of young regions.
  1112   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1114   // This resets the card table to all zeros.  It is used after
  1115   // a collection pause which used the card table to claim cards.
  1116   void cleanUpCardTable();
  1118   // Iteration functions.
  1120   // Iterate over all the ref-containing fields of all objects, calling
  1121   // "cl.do_oop" on each.
  1122   virtual void oop_iterate(OopClosure* cl) {
  1123     oop_iterate(cl, true);
  1125   void oop_iterate(OopClosure* cl, bool do_perm);
  1127   // Same as above, restricted to a memory region.
  1128   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1129     oop_iterate(mr, cl, true);
  1131   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1133   // Iterate over all objects, calling "cl.do_object" on each.
  1134   virtual void object_iterate(ObjectClosure* cl) {
  1135     object_iterate(cl, true);
  1137   virtual void safe_object_iterate(ObjectClosure* cl) {
  1138     object_iterate(cl, true);
  1140   void object_iterate(ObjectClosure* cl, bool do_perm);
  1142   // Iterate over all objects allocated since the last collection, calling
  1143   // "cl.do_object" on each.  The heap must have been initialized properly
  1144   // to support this function, or else this call will fail.
  1145   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1147   // Iterate over all spaces in use in the heap, in ascending address order.
  1148   virtual void space_iterate(SpaceClosure* cl);
  1150   // Iterate over heap regions, in address order, terminating the
  1151   // iteration early if the "doHeapRegion" method returns "true".
  1152   void heap_region_iterate(HeapRegionClosure* blk) const;
  1154   // Iterate over heap regions starting with r (or the first region if "r"
  1155   // is NULL), in address order, terminating early if the "doHeapRegion"
  1156   // method returns "true".
  1157   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk) const;
  1159   // Return the region with the given index. It assumes the index is valid.
  1160   HeapRegion* region_at(size_t index) const { return _hrs.at(index); }
  1162   // Divide the heap region sequence into "chunks" of some size (the number
  1163   // of regions divided by the number of parallel threads times some
  1164   // overpartition factor, currently 4).  Assumes that this will be called
  1165   // in parallel by ParallelGCThreads worker threads with discinct worker
  1166   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1167   // calls will use the same "claim_value", and that that claim value is
  1168   // different from the claim_value of any heap region before the start of
  1169   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1170   // attempting to claim the first region in each chunk, and, if
  1171   // successful, applying the closure to each region in the chunk (and
  1172   // setting the claim value of the second and subsequent regions of the
  1173   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1174   // i.e., that a closure never attempt to abort a traversal.
  1175   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1176                                        int worker,
  1177                                        jint claim_value);
  1179   // It resets all the region claim values to the default.
  1180   void reset_heap_region_claim_values();
  1182 #ifdef ASSERT
  1183   bool check_heap_region_claim_values(jint claim_value);
  1184 #endif // ASSERT
  1186   // Iterate over the regions (if any) in the current collection set.
  1187   void collection_set_iterate(HeapRegionClosure* blk);
  1189   // As above but starting from region r
  1190   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1192   // Returns the first (lowest address) compactible space in the heap.
  1193   virtual CompactibleSpace* first_compactible_space();
  1195   // A CollectedHeap will contain some number of spaces.  This finds the
  1196   // space containing a given address, or else returns NULL.
  1197   virtual Space* space_containing(const void* addr) const;
  1199   // A G1CollectedHeap will contain some number of heap regions.  This
  1200   // finds the region containing a given address, or else returns NULL.
  1201   template <class T>
  1202   inline HeapRegion* heap_region_containing(const T addr) const;
  1204   // Like the above, but requires "addr" to be in the heap (to avoid a
  1205   // null-check), and unlike the above, may return an continuing humongous
  1206   // region.
  1207   template <class T>
  1208   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1210   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1211   // each address in the (reserved) heap is a member of exactly
  1212   // one block.  The defining characteristic of a block is that it is
  1213   // possible to find its size, and thus to progress forward to the next
  1214   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1215   // represent Java objects, or they might be free blocks in a
  1216   // free-list-based heap (or subheap), as long as the two kinds are
  1217   // distinguishable and the size of each is determinable.
  1219   // Returns the address of the start of the "block" that contains the
  1220   // address "addr".  We say "blocks" instead of "object" since some heaps
  1221   // may not pack objects densely; a chunk may either be an object or a
  1222   // non-object.
  1223   virtual HeapWord* block_start(const void* addr) const;
  1225   // Requires "addr" to be the start of a chunk, and returns its size.
  1226   // "addr + size" is required to be the start of a new chunk, or the end
  1227   // of the active area of the heap.
  1228   virtual size_t block_size(const HeapWord* addr) const;
  1230   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1231   // the block is an object.
  1232   virtual bool block_is_obj(const HeapWord* addr) const;
  1234   // Does this heap support heap inspection? (+PrintClassHistogram)
  1235   virtual bool supports_heap_inspection() const { return true; }
  1237   // Section on thread-local allocation buffers (TLABs)
  1238   // See CollectedHeap for semantics.
  1240   virtual bool supports_tlab_allocation() const;
  1241   virtual size_t tlab_capacity(Thread* thr) const;
  1242   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1244   // Can a compiler initialize a new object without store barriers?
  1245   // This permission only extends from the creation of a new object
  1246   // via a TLAB up to the first subsequent safepoint. If such permission
  1247   // is granted for this heap type, the compiler promises to call
  1248   // defer_store_barrier() below on any slow path allocation of
  1249   // a new object for which such initializing store barriers will
  1250   // have been elided. G1, like CMS, allows this, but should be
  1251   // ready to provide a compensating write barrier as necessary
  1252   // if that storage came out of a non-young region. The efficiency
  1253   // of this implementation depends crucially on being able to
  1254   // answer very efficiently in constant time whether a piece of
  1255   // storage in the heap comes from a young region or not.
  1256   // See ReduceInitialCardMarks.
  1257   virtual bool can_elide_tlab_store_barriers() const {
  1258     // 6920090: Temporarily disabled, because of lingering
  1259     // instabilities related to RICM with G1. In the
  1260     // interim, the option ReduceInitialCardMarksForG1
  1261     // below is left solely as a debugging device at least
  1262     // until 6920109 fixes the instabilities.
  1263     return ReduceInitialCardMarksForG1;
  1266   virtual bool card_mark_must_follow_store() const {
  1267     return true;
  1270   bool is_in_young(const oop obj) {
  1271     HeapRegion* hr = heap_region_containing(obj);
  1272     return hr != NULL && hr->is_young();
  1275 #ifdef ASSERT
  1276   virtual bool is_in_partial_collection(const void* p);
  1277 #endif
  1279   virtual bool is_scavengable(const void* addr);
  1281   // We don't need barriers for initializing stores to objects
  1282   // in the young gen: for the SATB pre-barrier, there is no
  1283   // pre-value that needs to be remembered; for the remembered-set
  1284   // update logging post-barrier, we don't maintain remembered set
  1285   // information for young gen objects. Note that non-generational
  1286   // G1 does not have any "young" objects, should not elide
  1287   // the rs logging barrier and so should always answer false below.
  1288   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1289   // bit-rotted so was not tested below.
  1290   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1291     // Re 6920090, 6920109 above.
  1292     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1293     assert(G1Gen || !is_in_young(new_obj),
  1294            "Non-generational G1 should never return true below");
  1295     return is_in_young(new_obj);
  1298   // Can a compiler elide a store barrier when it writes
  1299   // a permanent oop into the heap?  Applies when the compiler
  1300   // is storing x to the heap, where x->is_perm() is true.
  1301   virtual bool can_elide_permanent_oop_store_barriers() const {
  1302     // At least until perm gen collection is also G1-ified, at
  1303     // which point this should return false.
  1304     return true;
  1307   // The boundary between a "large" and "small" array of primitives, in
  1308   // words.
  1309   virtual size_t large_typearray_limit();
  1311   // Returns "true" iff the given word_size is "very large".
  1312   static bool isHumongous(size_t word_size) {
  1313     // Note this has to be strictly greater-than as the TLABs
  1314     // are capped at the humongous thresold and we want to
  1315     // ensure that we don't try to allocate a TLAB as
  1316     // humongous and that we don't allocate a humongous
  1317     // object in a TLAB.
  1318     return word_size > _humongous_object_threshold_in_words;
  1321   // Update mod union table with the set of dirty cards.
  1322   void updateModUnion();
  1324   // Set the mod union bits corresponding to the given memRegion.  Note
  1325   // that this is always a safe operation, since it doesn't clear any
  1326   // bits.
  1327   void markModUnionRange(MemRegion mr);
  1329   // Records the fact that a marking phase is no longer in progress.
  1330   void set_marking_complete() {
  1331     _mark_in_progress = false;
  1333   void set_marking_started() {
  1334     _mark_in_progress = true;
  1336   bool mark_in_progress() {
  1337     return _mark_in_progress;
  1340   // Print the maximum heap capacity.
  1341   virtual size_t max_capacity() const;
  1343   virtual jlong millis_since_last_gc();
  1345   // Perform any cleanup actions necessary before allowing a verification.
  1346   virtual void prepare_for_verify();
  1348   // Perform verification.
  1350   // use_prev_marking == true  -> use "prev" marking information,
  1351   // use_prev_marking == false -> use "next" marking information
  1352   // NOTE: Only the "prev" marking information is guaranteed to be
  1353   // consistent most of the time, so most calls to this should use
  1354   // use_prev_marking == true. Currently, there is only one case where
  1355   // this is called with use_prev_marking == false, which is to verify
  1356   // the "next" marking information at the end of remark.
  1357   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1359   // Override; it uses the "prev" marking information
  1360   virtual void verify(bool allow_dirty, bool silent);
  1361   // Default behavior by calling print(tty);
  1362   virtual void print() const;
  1363   // This calls print_on(st, PrintHeapAtGCExtended).
  1364   virtual void print_on(outputStream* st) const;
  1365   // If extended is true, it will print out information for all
  1366   // regions in the heap by calling print_on_extended(st).
  1367   virtual void print_on(outputStream* st, bool extended) const;
  1368   virtual void print_on_extended(outputStream* st) const;
  1370   virtual void print_gc_threads_on(outputStream* st) const;
  1371   virtual void gc_threads_do(ThreadClosure* tc) const;
  1373   // Override
  1374   void print_tracing_info() const;
  1376   // Convenience function to be used in situations where the heap type can be
  1377   // asserted to be this type.
  1378   static G1CollectedHeap* heap();
  1380   void empty_young_list();
  1382   void set_region_short_lived_locked(HeapRegion* hr);
  1383   // add appropriate methods for any other surv rate groups
  1385   YoungList* young_list() { return _young_list; }
  1387   // debugging
  1388   bool check_young_list_well_formed() {
  1389     return _young_list->check_list_well_formed();
  1392   bool check_young_list_empty(bool check_heap,
  1393                               bool check_sample = true);
  1395   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1396   // many of these need to be public.
  1398   // The functions below are helper functions that a subclass of
  1399   // "CollectedHeap" can use in the implementation of its virtual
  1400   // functions.
  1401   // This performs a concurrent marking of the live objects in a
  1402   // bitmap off to the side.
  1403   void doConcurrentMark();
  1405   // This is called from the marksweep collector which then does
  1406   // a concurrent mark and verifies that the results agree with
  1407   // the stop the world marking.
  1408   void checkConcurrentMark();
  1409   void do_sync_mark();
  1411   bool isMarkedPrev(oop obj) const;
  1412   bool isMarkedNext(oop obj) const;
  1414   // use_prev_marking == true  -> use "prev" marking information,
  1415   // use_prev_marking == false -> use "next" marking information
  1416   bool is_obj_dead_cond(const oop obj,
  1417                         const HeapRegion* hr,
  1418                         const bool use_prev_marking) const {
  1419     if (use_prev_marking) {
  1420       return is_obj_dead(obj, hr);
  1421     } else {
  1422       return is_obj_ill(obj, hr);
  1426   // Determine if an object is dead, given the object and also
  1427   // the region to which the object belongs. An object is dead
  1428   // iff a) it was not allocated since the last mark and b) it
  1429   // is not marked.
  1431   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1432     return
  1433       !hr->obj_allocated_since_prev_marking(obj) &&
  1434       !isMarkedPrev(obj);
  1437   // This is used when copying an object to survivor space.
  1438   // If the object is marked live, then we mark the copy live.
  1439   // If the object is allocated since the start of this mark
  1440   // cycle, then we mark the copy live.
  1441   // If the object has been around since the previous mark
  1442   // phase, and hasn't been marked yet during this phase,
  1443   // then we don't mark it, we just wait for the
  1444   // current marking cycle to get to it.
  1446   // This function returns true when an object has been
  1447   // around since the previous marking and hasn't yet
  1448   // been marked during this marking.
  1450   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1451     return
  1452       !hr->obj_allocated_since_next_marking(obj) &&
  1453       !isMarkedNext(obj);
  1456   // Determine if an object is dead, given only the object itself.
  1457   // This will find the region to which the object belongs and
  1458   // then call the region version of the same function.
  1460   // Added if it is in permanent gen it isn't dead.
  1461   // Added if it is NULL it isn't dead.
  1463   // use_prev_marking == true  -> use "prev" marking information,
  1464   // use_prev_marking == false -> use "next" marking information
  1465   bool is_obj_dead_cond(const oop obj,
  1466                         const bool use_prev_marking) {
  1467     if (use_prev_marking) {
  1468       return is_obj_dead(obj);
  1469     } else {
  1470       return is_obj_ill(obj);
  1474   bool is_obj_dead(const oop obj) {
  1475     const HeapRegion* hr = heap_region_containing(obj);
  1476     if (hr == NULL) {
  1477       if (Universe::heap()->is_in_permanent(obj))
  1478         return false;
  1479       else if (obj == NULL) return false;
  1480       else return true;
  1482     else return is_obj_dead(obj, hr);
  1485   bool is_obj_ill(const oop obj) {
  1486     const HeapRegion* hr = heap_region_containing(obj);
  1487     if (hr == NULL) {
  1488       if (Universe::heap()->is_in_permanent(obj))
  1489         return false;
  1490       else if (obj == NULL) return false;
  1491       else return true;
  1493     else return is_obj_ill(obj, hr);
  1496   // The following is just to alert the verification code
  1497   // that a full collection has occurred and that the
  1498   // remembered sets are no longer up to date.
  1499   bool _full_collection;
  1500   void set_full_collection() { _full_collection = true;}
  1501   void clear_full_collection() {_full_collection = false;}
  1502   bool full_collection() {return _full_collection;}
  1504   ConcurrentMark* concurrent_mark() const { return _cm; }
  1505   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1507   // The dirty cards region list is used to record a subset of regions
  1508   // whose cards need clearing. The list if populated during the
  1509   // remembered set scanning and drained during the card table
  1510   // cleanup. Although the methods are reentrant, population/draining
  1511   // phases must not overlap. For synchronization purposes the last
  1512   // element on the list points to itself.
  1513   HeapRegion* _dirty_cards_region_list;
  1514   void push_dirty_cards_region(HeapRegion* hr);
  1515   HeapRegion* pop_dirty_cards_region();
  1517 public:
  1518   void stop_conc_gc_threads();
  1520   // <NEW PREDICTION>
  1522   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1523   void check_if_region_is_too_expensive(double predicted_time_ms);
  1524   size_t pending_card_num();
  1525   size_t max_pending_card_num();
  1526   size_t cards_scanned();
  1528   // </NEW PREDICTION>
  1530 protected:
  1531   size_t _max_heap_capacity;
  1532 };
  1534 #define use_local_bitmaps         1
  1535 #define verify_local_bitmaps      0
  1536 #define oop_buffer_length       256
  1538 #ifndef PRODUCT
  1539 class GCLabBitMap;
  1540 class GCLabBitMapClosure: public BitMapClosure {
  1541 private:
  1542   ConcurrentMark* _cm;
  1543   GCLabBitMap*    _bitmap;
  1545 public:
  1546   GCLabBitMapClosure(ConcurrentMark* cm,
  1547                      GCLabBitMap* bitmap) {
  1548     _cm     = cm;
  1549     _bitmap = bitmap;
  1552   virtual bool do_bit(size_t offset);
  1553 };
  1554 #endif // !PRODUCT
  1556 class GCLabBitMap: public BitMap {
  1557 private:
  1558   ConcurrentMark* _cm;
  1560   int       _shifter;
  1561   size_t    _bitmap_word_covers_words;
  1563   // beginning of the heap
  1564   HeapWord* _heap_start;
  1566   // this is the actual start of the GCLab
  1567   HeapWord* _real_start_word;
  1569   // this is the actual end of the GCLab
  1570   HeapWord* _real_end_word;
  1572   // this is the first word, possibly located before the actual start
  1573   // of the GCLab, that corresponds to the first bit of the bitmap
  1574   HeapWord* _start_word;
  1576   // size of a GCLab in words
  1577   size_t _gclab_word_size;
  1579   static int shifter() {
  1580     return MinObjAlignment - 1;
  1583   // how many heap words does a single bitmap word corresponds to?
  1584   static size_t bitmap_word_covers_words() {
  1585     return BitsPerWord << shifter();
  1588   size_t gclab_word_size() const {
  1589     return _gclab_word_size;
  1592   // Calculates actual GCLab size in words
  1593   size_t gclab_real_word_size() const {
  1594     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1595            / BitsPerWord;
  1598   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1599     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1600     // We are going to ensure that the beginning of a word in this
  1601     // bitmap also corresponds to the beginning of a word in the
  1602     // global marking bitmap. To handle the case where a GCLab
  1603     // starts from the middle of the bitmap, we need to add enough
  1604     // space (i.e. up to a bitmap word) to ensure that we have
  1605     // enough bits in the bitmap.
  1606     return bits_in_bitmap + BitsPerWord - 1;
  1608 public:
  1609   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1610     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1611       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1612       _shifter(shifter()),
  1613       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1614       _heap_start(heap_start),
  1615       _gclab_word_size(gclab_word_size),
  1616       _real_start_word(NULL),
  1617       _real_end_word(NULL),
  1618       _start_word(NULL)
  1620     guarantee( size_in_words() >= bitmap_size_in_words(),
  1621                "just making sure");
  1624   inline unsigned heapWordToOffset(HeapWord* addr) {
  1625     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1626     assert(offset < size(), "offset should be within bounds");
  1627     return offset;
  1630   inline HeapWord* offsetToHeapWord(size_t offset) {
  1631     HeapWord* addr =  _start_word + (offset << _shifter);
  1632     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1633     return addr;
  1636   bool fields_well_formed() {
  1637     bool ret1 = (_real_start_word == NULL) &&
  1638                 (_real_end_word == NULL) &&
  1639                 (_start_word == NULL);
  1640     if (ret1)
  1641       return true;
  1643     bool ret2 = _real_start_word >= _start_word &&
  1644       _start_word < _real_end_word &&
  1645       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1646       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1647                                                               > _real_end_word;
  1648     return ret2;
  1651   inline bool mark(HeapWord* addr) {
  1652     guarantee(use_local_bitmaps, "invariant");
  1653     assert(fields_well_formed(), "invariant");
  1655     if (addr >= _real_start_word && addr < _real_end_word) {
  1656       assert(!isMarked(addr), "should not have already been marked");
  1658       // first mark it on the bitmap
  1659       at_put(heapWordToOffset(addr), true);
  1661       return true;
  1662     } else {
  1663       return false;
  1667   inline bool isMarked(HeapWord* addr) {
  1668     guarantee(use_local_bitmaps, "invariant");
  1669     assert(fields_well_formed(), "invariant");
  1671     return at(heapWordToOffset(addr));
  1674   void set_buffer(HeapWord* start) {
  1675     guarantee(use_local_bitmaps, "invariant");
  1676     clear();
  1678     assert(start != NULL, "invariant");
  1679     _real_start_word = start;
  1680     _real_end_word   = start + _gclab_word_size;
  1682     size_t diff =
  1683       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1684     _start_word = start - diff;
  1686     assert(fields_well_formed(), "invariant");
  1689 #ifndef PRODUCT
  1690   void verify() {
  1691     // verify that the marks have been propagated
  1692     GCLabBitMapClosure cl(_cm, this);
  1693     iterate(&cl);
  1695 #endif // PRODUCT
  1697   void retire() {
  1698     guarantee(use_local_bitmaps, "invariant");
  1699     assert(fields_well_formed(), "invariant");
  1701     if (_start_word != NULL) {
  1702       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1704       // this means that the bitmap was set up for the GCLab
  1705       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1707       mark_bitmap->mostly_disjoint_range_union(this,
  1708                                 0, // always start from the start of the bitmap
  1709                                 _start_word,
  1710                                 gclab_real_word_size());
  1711       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1713 #ifndef PRODUCT
  1714       if (use_local_bitmaps && verify_local_bitmaps)
  1715         verify();
  1716 #endif // PRODUCT
  1717     } else {
  1718       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1722   size_t bitmap_size_in_words() const {
  1723     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1726 };
  1728 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1729 private:
  1730   bool        _retired;
  1731   bool        _during_marking;
  1732   GCLabBitMap _bitmap;
  1734 public:
  1735   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1736     ParGCAllocBuffer(gclab_word_size),
  1737     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1738     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1739     _retired(false)
  1740   { }
  1742   inline bool mark(HeapWord* addr) {
  1743     guarantee(use_local_bitmaps, "invariant");
  1744     assert(_during_marking, "invariant");
  1745     return _bitmap.mark(addr);
  1748   inline void set_buf(HeapWord* buf) {
  1749     if (use_local_bitmaps && _during_marking)
  1750       _bitmap.set_buffer(buf);
  1751     ParGCAllocBuffer::set_buf(buf);
  1752     _retired = false;
  1755   inline void retire(bool end_of_gc, bool retain) {
  1756     if (_retired)
  1757       return;
  1758     if (use_local_bitmaps && _during_marking) {
  1759       _bitmap.retire();
  1761     ParGCAllocBuffer::retire(end_of_gc, retain);
  1762     _retired = true;
  1764 };
  1766 class G1ParScanThreadState : public StackObj {
  1767 protected:
  1768   G1CollectedHeap* _g1h;
  1769   RefToScanQueue*  _refs;
  1770   DirtyCardQueue   _dcq;
  1771   CardTableModRefBS* _ct_bs;
  1772   G1RemSet* _g1_rem;
  1774   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1775   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1776   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1777   ageTable            _age_table;
  1779   size_t           _alloc_buffer_waste;
  1780   size_t           _undo_waste;
  1782   OopsInHeapRegionClosure*      _evac_failure_cl;
  1783   G1ParScanHeapEvacClosure*     _evac_cl;
  1784   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1786   int _hash_seed;
  1787   int _queue_num;
  1789   size_t _term_attempts;
  1791   double _start;
  1792   double _start_strong_roots;
  1793   double _strong_roots_time;
  1794   double _start_term;
  1795   double _term_time;
  1797   // Map from young-age-index (0 == not young, 1 is youngest) to
  1798   // surviving words. base is what we get back from the malloc call
  1799   size_t* _surviving_young_words_base;
  1800   // this points into the array, as we use the first few entries for padding
  1801   size_t* _surviving_young_words;
  1803 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1805   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1807   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1809   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1810   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1812   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1813     if (!from->is_survivor()) {
  1814       _g1_rem->par_write_ref(from, p, tid);
  1818   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1819     // If the new value of the field points to the same region or
  1820     // is the to-space, we don't need to include it in the Rset updates.
  1821     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1822       size_t card_index = ctbs()->index_for(p);
  1823       // If the card hasn't been added to the buffer, do it.
  1824       if (ctbs()->mark_card_deferred(card_index)) {
  1825         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1830 public:
  1831   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1833   ~G1ParScanThreadState() {
  1834     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1837   RefToScanQueue*   refs()            { return _refs;             }
  1838   ageTable*         age_table()       { return &_age_table;       }
  1840   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1841     return _alloc_buffers[purpose];
  1844   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1845   size_t undo_waste() const                      { return _undo_waste; }
  1847 #ifdef ASSERT
  1848   bool verify_ref(narrowOop* ref) const;
  1849   bool verify_ref(oop* ref) const;
  1850   bool verify_task(StarTask ref) const;
  1851 #endif // ASSERT
  1853   template <class T> void push_on_queue(T* ref) {
  1854     assert(verify_ref(ref), "sanity");
  1855     refs()->push(ref);
  1858   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1859     if (G1DeferredRSUpdate) {
  1860       deferred_rs_update(from, p, tid);
  1861     } else {
  1862       immediate_rs_update(from, p, tid);
  1866   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1868     HeapWord* obj = NULL;
  1869     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1870     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1871       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1872       assert(gclab_word_size == alloc_buf->word_sz(),
  1873              "dynamic resizing is not supported");
  1874       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1875       alloc_buf->retire(false, false);
  1877       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1878       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1879       // Otherwise.
  1880       alloc_buf->set_buf(buf);
  1882       obj = alloc_buf->allocate(word_sz);
  1883       assert(obj != NULL, "buffer was definitely big enough...");
  1884     } else {
  1885       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1887     return obj;
  1890   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1891     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1892     if (obj != NULL) return obj;
  1893     return allocate_slow(purpose, word_sz);
  1896   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1897     if (alloc_buffer(purpose)->contains(obj)) {
  1898       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1899              "should contain whole object");
  1900       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1901     } else {
  1902       CollectedHeap::fill_with_object(obj, word_sz);
  1903       add_to_undo_waste(word_sz);
  1907   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1908     _evac_failure_cl = evac_failure_cl;
  1910   OopsInHeapRegionClosure* evac_failure_closure() {
  1911     return _evac_failure_cl;
  1914   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1915     _evac_cl = evac_cl;
  1918   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1919     _partial_scan_cl = partial_scan_cl;
  1922   int* hash_seed() { return &_hash_seed; }
  1923   int  queue_num() { return _queue_num; }
  1925   size_t term_attempts() const  { return _term_attempts; }
  1926   void note_term_attempt() { _term_attempts++; }
  1928   void start_strong_roots() {
  1929     _start_strong_roots = os::elapsedTime();
  1931   void end_strong_roots() {
  1932     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1934   double strong_roots_time() const { return _strong_roots_time; }
  1936   void start_term_time() {
  1937     note_term_attempt();
  1938     _start_term = os::elapsedTime();
  1940   void end_term_time() {
  1941     _term_time += (os::elapsedTime() - _start_term);
  1943   double term_time() const { return _term_time; }
  1945   double elapsed_time() const {
  1946     return os::elapsedTime() - _start;
  1949   static void
  1950     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1951   void
  1952     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1954   size_t* surviving_young_words() {
  1955     // We add on to hide entry 0 which accumulates surviving words for
  1956     // age -1 regions (i.e. non-young ones)
  1957     return _surviving_young_words;
  1960   void retire_alloc_buffers() {
  1961     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1962       size_t waste = _alloc_buffers[ap]->words_remaining();
  1963       add_to_alloc_buffer_waste(waste);
  1964       _alloc_buffers[ap]->retire(true, false);
  1968   template <class T> void deal_with_reference(T* ref_to_scan) {
  1969     if (has_partial_array_mask(ref_to_scan)) {
  1970       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1971     } else {
  1972       // Note: we can use "raw" versions of "region_containing" because
  1973       // "obj_to_scan" is definitely in the heap, and is not in a
  1974       // humongous region.
  1975       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1976       _evac_cl->set_region(r);
  1977       _evac_cl->do_oop_nv(ref_to_scan);
  1981   void deal_with_reference(StarTask ref) {
  1982     assert(verify_task(ref), "sanity");
  1983     if (ref.is_narrow()) {
  1984       deal_with_reference((narrowOop*)ref);
  1985     } else {
  1986       deal_with_reference((oop*)ref);
  1990 public:
  1991   void trim_queue();
  1992 };
  1994 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial