src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Thu, 30 May 2013 13:04:51 -0700

author
jcoomes
date
Thu, 30 May 2013 13:04:51 -0700
changeset 5201
5534bd30c151
parent 5161
10f759898d40
child 5237
f2110083203d
permissions
-rw-r--r--

6725714: par compact - add a table to speed up bitmap searches
Reviewed-by: jmasa, tschatzl

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
    30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
    31 #include "gc_implementation/shared/collectorCounters.hpp"
    32 #include "gc_implementation/shared/markSweep.hpp"
    33 #include "gc_implementation/shared/mutableSpace.hpp"
    34 #include "memory/sharedHeap.hpp"
    35 #include "oops/oop.hpp"
    37 class ParallelScavengeHeap;
    38 class PSAdaptiveSizePolicy;
    39 class PSYoungGen;
    40 class PSOldGen;
    41 class ParCompactionManager;
    42 class ParallelTaskTerminator;
    43 class PSParallelCompact;
    44 class GCTaskManager;
    45 class GCTaskQueue;
    46 class PreGCValues;
    47 class MoveAndUpdateClosure;
    48 class RefProcTaskExecutor;
    50 // The SplitInfo class holds the information needed to 'split' a source region
    51 // so that the live data can be copied to two destination *spaces*.  Normally,
    52 // all the live data in a region is copied to a single destination space (e.g.,
    53 // everything live in a region in eden is copied entirely into the old gen).
    54 // However, when the heap is nearly full, all the live data in eden may not fit
    55 // into the old gen.  Copying only some of the regions from eden to old gen
    56 // requires finding a region that does not contain a partial object (i.e., no
    57 // live object crosses the region boundary) somewhere near the last object that
    58 // does fit into the old gen.  Since it's not always possible to find such a
    59 // region, splitting is necessary for predictable behavior.
    60 //
    61 // A region is always split at the end of the partial object.  This avoids
    62 // additional tests when calculating the new location of a pointer, which is a
    63 // very hot code path.  The partial object and everything to its left will be
    64 // copied to another space (call it dest_space_1).  The live data to the right
    65 // of the partial object will be copied either within the space itself, or to a
    66 // different destination space (distinct from dest_space_1).
    67 //
    68 // Split points are identified during the summary phase, when region
    69 // destinations are computed:  data about the split, including the
    70 // partial_object_size, is recorded in a SplitInfo record and the
    71 // partial_object_size field in the summary data is set to zero.  The zeroing is
    72 // possible (and necessary) since the partial object will move to a different
    73 // destination space than anything to its right, thus the partial object should
    74 // not affect the locations of any objects to its right.
    75 //
    76 // The recorded data is used during the compaction phase, but only rarely:  when
    77 // the partial object on the split region will be copied across a destination
    78 // region boundary.  This test is made once each time a region is filled, and is
    79 // a simple address comparison, so the overhead is negligible (see
    80 // PSParallelCompact::first_src_addr()).
    81 //
    82 // Notes:
    83 //
    84 // Only regions with partial objects are split; a region without a partial
    85 // object does not need any extra bookkeeping.
    86 //
    87 // At most one region is split per space, so the amount of data required is
    88 // constant.
    89 //
    90 // A region is split only when the destination space would overflow.  Once that
    91 // happens, the destination space is abandoned and no other data (even from
    92 // other source spaces) is targeted to that destination space.  Abandoning the
    93 // destination space may leave a somewhat large unused area at the end, if a
    94 // large object caused the overflow.
    95 //
    96 // Future work:
    97 //
    98 // More bookkeeping would be required to continue to use the destination space.
    99 // The most general solution would allow data from regions in two different
   100 // source spaces to be "joined" in a single destination region.  At the very
   101 // least, additional code would be required in next_src_region() to detect the
   102 // join and skip to an out-of-order source region.  If the join region was also
   103 // the last destination region to which a split region was copied (the most
   104 // likely case), then additional work would be needed to get fill_region() to
   105 // stop iteration and switch to a new source region at the right point.  Basic
   106 // idea would be to use a fake value for the top of the source space.  It is
   107 // doable, if a bit tricky.
   108 //
   109 // A simpler (but less general) solution would fill the remainder of the
   110 // destination region with a dummy object and continue filling the next
   111 // destination region.
   113 class SplitInfo
   114 {
   115 public:
   116   // Return true if this split info is valid (i.e., if a split has been
   117   // recorded).  The very first region cannot have a partial object and thus is
   118   // never split, so 0 is the 'invalid' value.
   119   bool is_valid() const { return _src_region_idx > 0; }
   121   // Return true if this split holds data for the specified source region.
   122   inline bool is_split(size_t source_region) const;
   124   // The index of the split region, the size of the partial object on that
   125   // region and the destination of the partial object.
   126   size_t    src_region_idx() const   { return _src_region_idx; }
   127   size_t    partial_obj_size() const { return _partial_obj_size; }
   128   HeapWord* destination() const      { return _destination; }
   130   // The destination count of the partial object referenced by this split
   131   // (either 1 or 2).  This must be added to the destination count of the
   132   // remainder of the source region.
   133   unsigned int destination_count() const { return _destination_count; }
   135   // If a word within the partial object will be written to the first word of a
   136   // destination region, this is the address of the destination region;
   137   // otherwise this is NULL.
   138   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
   140   // If a word within the partial object will be written to the first word of a
   141   // destination region, this is the address of that word within the partial
   142   // object; otherwise this is NULL.
   143   HeapWord* first_src_addr() const       { return _first_src_addr; }
   145   // Record the data necessary to split the region src_region_idx.
   146   void record(size_t src_region_idx, size_t partial_obj_size,
   147               HeapWord* destination);
   149   void clear();
   151   DEBUG_ONLY(void verify_clear();)
   153 private:
   154   size_t       _src_region_idx;
   155   size_t       _partial_obj_size;
   156   HeapWord*    _destination;
   157   unsigned int _destination_count;
   158   HeapWord*    _dest_region_addr;
   159   HeapWord*    _first_src_addr;
   160 };
   162 inline bool SplitInfo::is_split(size_t region_idx) const
   163 {
   164   return _src_region_idx == region_idx && is_valid();
   165 }
   167 class SpaceInfo
   168 {
   169  public:
   170   MutableSpace* space() const { return _space; }
   172   // Where the free space will start after the collection.  Valid only after the
   173   // summary phase completes.
   174   HeapWord* new_top() const { return _new_top; }
   176   // Allows new_top to be set.
   177   HeapWord** new_top_addr() { return &_new_top; }
   179   // Where the smallest allowable dense prefix ends (used only for perm gen).
   180   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
   182   // Where the dense prefix ends, or the compacted region begins.
   183   HeapWord* dense_prefix() const { return _dense_prefix; }
   185   // The start array for the (generation containing the) space, or NULL if there
   186   // is no start array.
   187   ObjectStartArray* start_array() const { return _start_array; }
   189   SplitInfo& split_info() { return _split_info; }
   191   void set_space(MutableSpace* s)           { _space = s; }
   192   void set_new_top(HeapWord* addr)          { _new_top = addr; }
   193   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
   194   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
   195   void set_start_array(ObjectStartArray* s) { _start_array = s; }
   197   void publish_new_top() const              { _space->set_top(_new_top); }
   199  private:
   200   MutableSpace*     _space;
   201   HeapWord*         _new_top;
   202   HeapWord*         _min_dense_prefix;
   203   HeapWord*         _dense_prefix;
   204   ObjectStartArray* _start_array;
   205   SplitInfo         _split_info;
   206 };
   208 class ParallelCompactData
   209 {
   210 public:
   211   // Sizes are in HeapWords, unless indicated otherwise.
   212   static const size_t Log2RegionSize;
   213   static const size_t RegionSize;
   214   static const size_t RegionSizeBytes;
   216   // Mask for the bits in a size_t to get an offset within a region.
   217   static const size_t RegionSizeOffsetMask;
   218   // Mask for the bits in a pointer to get an offset within a region.
   219   static const size_t RegionAddrOffsetMask;
   220   // Mask for the bits in a pointer to get the address of the start of a region.
   221   static const size_t RegionAddrMask;
   223   static const size_t Log2BlockSize;
   224   static const size_t BlockSize;
   225   static const size_t BlockSizeBytes;
   227   static const size_t BlockSizeOffsetMask;
   228   static const size_t BlockAddrOffsetMask;
   229   static const size_t BlockAddrMask;
   231   static const size_t BlocksPerRegion;
   232   static const size_t Log2BlocksPerRegion;
   234   class RegionData
   235   {
   236   public:
   237     // Destination address of the region.
   238     HeapWord* destination() const { return _destination; }
   240     // The first region containing data destined for this region.
   241     size_t source_region() const { return _source_region; }
   243     // The object (if any) starting in this region and ending in a different
   244     // region that could not be updated during the main (parallel) compaction
   245     // phase.  This is different from _partial_obj_addr, which is an object that
   246     // extends onto a source region.  However, the two uses do not overlap in
   247     // time, so the same field is used to save space.
   248     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   250     // The starting address of the partial object extending onto the region.
   251     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   253     // Size of the partial object extending onto the region (words).
   254     size_t partial_obj_size() const { return _partial_obj_size; }
   256     // Size of live data that lies within this region due to objects that start
   257     // in this region (words).  This does not include the partial object
   258     // extending onto the region (if any), or the part of an object that extends
   259     // onto the next region (if any).
   260     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   262     // Total live data that lies within the region (words).
   263     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   265     // The destination_count is the number of other regions to which data from
   266     // this region will be copied.  At the end of the summary phase, the valid
   267     // values of destination_count are
   268     //
   269     // 0 - data from the region will be compacted completely into itself, or the
   270     //     region is empty.  The region can be claimed and then filled.
   271     // 1 - data from the region will be compacted into 1 other region; some
   272     //     data from the region may also be compacted into the region itself.
   273     // 2 - data from the region will be copied to 2 other regions.
   274     //
   275     // During compaction as regions are emptied, the destination_count is
   276     // decremented (atomically) and when it reaches 0, it can be claimed and
   277     // then filled.
   278     //
   279     // A region is claimed for processing by atomically changing the
   280     // destination_count to the claimed value (dc_claimed).  After a region has
   281     // been filled, the destination_count should be set to the completed value
   282     // (dc_completed).
   283     inline uint destination_count() const;
   284     inline uint destination_count_raw() const;
   286     // Whether the block table for this region has been filled.
   287     inline bool blocks_filled() const;
   289     // Number of times the block table was filled.
   290     DEBUG_ONLY(inline size_t blocks_filled_count() const;)
   292     // The location of the java heap data that corresponds to this region.
   293     inline HeapWord* data_location() const;
   295     // The highest address referenced by objects in this region.
   296     inline HeapWord* highest_ref() const;
   298     // Whether this region is available to be claimed, has been claimed, or has
   299     // been completed.
   300     //
   301     // Minor subtlety:  claimed() returns true if the region is marked
   302     // completed(), which is desirable since a region must be claimed before it
   303     // can be completed.
   304     bool available() const { return _dc_and_los < dc_one; }
   305     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   306     bool completed() const { return _dc_and_los >= dc_completed; }
   308     // These are not atomic.
   309     void set_destination(HeapWord* addr)       { _destination = addr; }
   310     void set_source_region(size_t region)      { _source_region = region; }
   311     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   312     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   313     void set_partial_obj_size(size_t words)    {
   314       _partial_obj_size = (region_sz_t) words;
   315     }
   316     inline void set_blocks_filled();
   318     inline void set_destination_count(uint count);
   319     inline void set_live_obj_size(size_t words);
   320     inline void set_data_location(HeapWord* addr);
   321     inline void set_completed();
   322     inline bool claim_unsafe();
   324     // These are atomic.
   325     inline void add_live_obj(size_t words);
   326     inline void set_highest_ref(HeapWord* addr);
   327     inline void decrement_destination_count();
   328     inline bool claim();
   330   private:
   331     // The type used to represent object sizes within a region.
   332     typedef uint region_sz_t;
   334     // Constants for manipulating the _dc_and_los field, which holds both the
   335     // destination count and live obj size.  The live obj size lives at the
   336     // least significant end so no masking is necessary when adding.
   337     static const region_sz_t dc_shift;           // Shift amount.
   338     static const region_sz_t dc_mask;            // Mask for destination count.
   339     static const region_sz_t dc_one;             // 1, shifted appropriately.
   340     static const region_sz_t dc_claimed;         // Region has been claimed.
   341     static const region_sz_t dc_completed;       // Region has been completed.
   342     static const region_sz_t los_mask;           // Mask for live obj size.
   344     HeapWord*            _destination;
   345     size_t               _source_region;
   346     HeapWord*            _partial_obj_addr;
   347     region_sz_t          _partial_obj_size;
   348     region_sz_t volatile _dc_and_los;
   349     bool                 _blocks_filled;
   351 #ifdef ASSERT
   352     size_t               _blocks_filled_count;   // Number of block table fills.
   354     // These enable optimizations that are only partially implemented.  Use
   355     // debug builds to prevent the code fragments from breaking.
   356     HeapWord*            _data_location;
   357     HeapWord*            _highest_ref;
   358 #endif  // #ifdef ASSERT
   360 #ifdef ASSERT
   361    public:
   362     uint                 _pushed;   // 0 until region is pushed onto a stack
   363    private:
   364 #endif
   365   };
   367   // "Blocks" allow shorter sections of the bitmap to be searched.  Each Block
   368   // holds an offset, which is the amount of live data in the Region to the left
   369   // of the first live object that starts in the Block.
   370   class BlockData
   371   {
   372   public:
   373     typedef unsigned short int blk_ofs_t;
   375     blk_ofs_t offset() const    { return _offset; }
   376     void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
   378   private:
   379     blk_ofs_t _offset;
   380   };
   382 public:
   383   ParallelCompactData();
   384   bool initialize(MemRegion covered_region);
   386   size_t region_count() const { return _region_count; }
   387   size_t reserved_byte_size() const { return _reserved_byte_size; }
   389   // Convert region indices to/from RegionData pointers.
   390   inline RegionData* region(size_t region_idx) const;
   391   inline size_t     region(const RegionData* const region_ptr) const;
   393   size_t block_count() const { return _block_count; }
   394   inline BlockData* block(size_t block_idx) const;
   395   inline size_t     block(const BlockData* block_ptr) const;
   397   void add_obj(HeapWord* addr, size_t len);
   398   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   400   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   401   // destination of region n is simply the start of region n.  The argument beg
   402   // must be region-aligned; end need not be.
   403   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   405   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
   406                                   HeapWord* destination, HeapWord* target_end,
   407                                   HeapWord** target_next);
   408   bool summarize(SplitInfo& split_info,
   409                  HeapWord* source_beg, HeapWord* source_end,
   410                  HeapWord** source_next,
   411                  HeapWord* target_beg, HeapWord* target_end,
   412                  HeapWord** target_next);
   414   void clear();
   415   void clear_range(size_t beg_region, size_t end_region);
   416   void clear_range(HeapWord* beg, HeapWord* end) {
   417     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   418   }
   420   // Return the number of words between addr and the start of the region
   421   // containing addr.
   422   inline size_t     region_offset(const HeapWord* addr) const;
   424   // Convert addresses to/from a region index or region pointer.
   425   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   426   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   427   inline HeapWord*  region_to_addr(size_t region) const;
   428   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   429   inline HeapWord*  region_to_addr(const RegionData* region) const;
   431   inline HeapWord*  region_align_down(HeapWord* addr) const;
   432   inline HeapWord*  region_align_up(HeapWord* addr) const;
   433   inline bool       is_region_aligned(HeapWord* addr) const;
   435   // Analogous to region_offset() for blocks.
   436   size_t     block_offset(const HeapWord* addr) const;
   437   size_t     addr_to_block_idx(const HeapWord* addr) const;
   438   size_t     addr_to_block_idx(const oop obj) const {
   439     return addr_to_block_idx((HeapWord*) obj);
   440   }
   441   inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
   442   inline HeapWord*  block_to_addr(size_t block) const;
   443   inline size_t     region_to_block_idx(size_t region) const;
   445   inline HeapWord*  block_align_down(HeapWord* addr) const;
   446   inline HeapWord*  block_align_up(HeapWord* addr) const;
   447   inline bool       is_block_aligned(HeapWord* addr) const;
   449   // Return the address one past the end of the partial object.
   450   HeapWord* partial_obj_end(size_t region_idx) const;
   452   // Return the location of the object after compaction.
   453   HeapWord* calc_new_pointer(HeapWord* addr);
   455   HeapWord* calc_new_pointer(oop p) {
   456     return calc_new_pointer((HeapWord*) p);
   457   }
   459 #ifdef  ASSERT
   460   void verify_clear(const PSVirtualSpace* vspace);
   461   void verify_clear();
   462 #endif  // #ifdef ASSERT
   464 private:
   465   bool initialize_block_data();
   466   bool initialize_region_data(size_t region_size);
   467   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   469 private:
   470   HeapWord*       _region_start;
   471 #ifdef  ASSERT
   472   HeapWord*       _region_end;
   473 #endif  // #ifdef ASSERT
   475   PSVirtualSpace* _region_vspace;
   476   size_t          _reserved_byte_size;
   477   RegionData*     _region_data;
   478   size_t          _region_count;
   480   PSVirtualSpace* _block_vspace;
   481   BlockData*      _block_data;
   482   size_t          _block_count;
   483 };
   485 inline uint
   486 ParallelCompactData::RegionData::destination_count_raw() const
   487 {
   488   return _dc_and_los & dc_mask;
   489 }
   491 inline uint
   492 ParallelCompactData::RegionData::destination_count() const
   493 {
   494   return destination_count_raw() >> dc_shift;
   495 }
   497 inline bool
   498 ParallelCompactData::RegionData::blocks_filled() const
   499 {
   500   return _blocks_filled;
   501 }
   503 #ifdef ASSERT
   504 inline size_t
   505 ParallelCompactData::RegionData::blocks_filled_count() const
   506 {
   507   return _blocks_filled_count;
   508 }
   509 #endif // #ifdef ASSERT
   511 inline void
   512 ParallelCompactData::RegionData::set_blocks_filled()
   513 {
   514   _blocks_filled = true;
   515   // Debug builds count the number of times the table was filled.
   516   DEBUG_ONLY(Atomic::inc_ptr(&_blocks_filled_count));
   517 }
   519 inline void
   520 ParallelCompactData::RegionData::set_destination_count(uint count)
   521 {
   522   assert(count <= (dc_completed >> dc_shift), "count too large");
   523   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   524   _dc_and_los = (count << dc_shift) | live_sz;
   525 }
   527 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   528 {
   529   assert(words <= los_mask, "would overflow");
   530   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   531 }
   533 inline void ParallelCompactData::RegionData::decrement_destination_count()
   534 {
   535   assert(_dc_and_los < dc_claimed, "already claimed");
   536   assert(_dc_and_los >= dc_one, "count would go negative");
   537   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   538 }
   540 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   541 {
   542   DEBUG_ONLY(return _data_location;)
   543   NOT_DEBUG(return NULL;)
   544 }
   546 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   547 {
   548   DEBUG_ONLY(return _highest_ref;)
   549   NOT_DEBUG(return NULL;)
   550 }
   552 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   553 {
   554   DEBUG_ONLY(_data_location = addr;)
   555 }
   557 inline void ParallelCompactData::RegionData::set_completed()
   558 {
   559   assert(claimed(), "must be claimed first");
   560   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   561 }
   563 // MT-unsafe claiming of a region.  Should only be used during single threaded
   564 // execution.
   565 inline bool ParallelCompactData::RegionData::claim_unsafe()
   566 {
   567   if (available()) {
   568     _dc_and_los |= dc_claimed;
   569     return true;
   570   }
   571   return false;
   572 }
   574 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   575 {
   576   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   577   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   578 }
   580 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   581 {
   582 #ifdef ASSERT
   583   HeapWord* tmp = _highest_ref;
   584   while (addr > tmp) {
   585     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   586   }
   587 #endif  // #ifdef ASSERT
   588 }
   590 inline bool ParallelCompactData::RegionData::claim()
   591 {
   592   const int los = (int) live_obj_size();
   593   const int old = Atomic::cmpxchg(dc_claimed | los,
   594                                   (volatile int*) &_dc_and_los, los);
   595   return old == los;
   596 }
   598 inline ParallelCompactData::RegionData*
   599 ParallelCompactData::region(size_t region_idx) const
   600 {
   601   assert(region_idx <= region_count(), "bad arg");
   602   return _region_data + region_idx;
   603 }
   605 inline size_t
   606 ParallelCompactData::region(const RegionData* const region_ptr) const
   607 {
   608   assert(region_ptr >= _region_data, "bad arg");
   609   assert(region_ptr <= _region_data + region_count(), "bad arg");
   610   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   611 }
   613 inline ParallelCompactData::BlockData*
   614 ParallelCompactData::block(size_t n) const {
   615   assert(n < block_count(), "bad arg");
   616   return _block_data + n;
   617 }
   619 inline size_t
   620 ParallelCompactData::region_offset(const HeapWord* addr) const
   621 {
   622   assert(addr >= _region_start, "bad addr");
   623   assert(addr <= _region_end, "bad addr");
   624   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   625 }
   627 inline size_t
   628 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   629 {
   630   assert(addr >= _region_start, "bad addr");
   631   assert(addr <= _region_end, "bad addr");
   632   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   633 }
   635 inline ParallelCompactData::RegionData*
   636 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   637 {
   638   return region(addr_to_region_idx(addr));
   639 }
   641 inline HeapWord*
   642 ParallelCompactData::region_to_addr(size_t region) const
   643 {
   644   assert(region <= _region_count, "region out of range");
   645   return _region_start + (region << Log2RegionSize);
   646 }
   648 inline HeapWord*
   649 ParallelCompactData::region_to_addr(const RegionData* region) const
   650 {
   651   return region_to_addr(pointer_delta(region, _region_data,
   652                                       sizeof(RegionData)));
   653 }
   655 inline HeapWord*
   656 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   657 {
   658   assert(region <= _region_count, "region out of range");
   659   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   660   return region_to_addr(region) + offset;
   661 }
   663 inline HeapWord*
   664 ParallelCompactData::region_align_down(HeapWord* addr) const
   665 {
   666   assert(addr >= _region_start, "bad addr");
   667   assert(addr < _region_end + RegionSize, "bad addr");
   668   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   669 }
   671 inline HeapWord*
   672 ParallelCompactData::region_align_up(HeapWord* addr) const
   673 {
   674   assert(addr >= _region_start, "bad addr");
   675   assert(addr <= _region_end, "bad addr");
   676   return region_align_down(addr + RegionSizeOffsetMask);
   677 }
   679 inline bool
   680 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   681 {
   682   return region_offset(addr) == 0;
   683 }
   685 inline size_t
   686 ParallelCompactData::block_offset(const HeapWord* addr) const
   687 {
   688   assert(addr >= _region_start, "bad addr");
   689   assert(addr <= _region_end, "bad addr");
   690   return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
   691 }
   693 inline size_t
   694 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
   695 {
   696   assert(addr >= _region_start, "bad addr");
   697   assert(addr <= _region_end, "bad addr");
   698   return pointer_delta(addr, _region_start) >> Log2BlockSize;
   699 }
   701 inline ParallelCompactData::BlockData*
   702 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
   703 {
   704   return block(addr_to_block_idx(addr));
   705 }
   707 inline HeapWord*
   708 ParallelCompactData::block_to_addr(size_t block) const
   709 {
   710   assert(block < _block_count, "block out of range");
   711   return _region_start + (block << Log2BlockSize);
   712 }
   714 inline size_t
   715 ParallelCompactData::region_to_block_idx(size_t region) const
   716 {
   717   return region << Log2BlocksPerRegion;
   718 }
   720 inline HeapWord*
   721 ParallelCompactData::block_align_down(HeapWord* addr) const
   722 {
   723   assert(addr >= _region_start, "bad addr");
   724   assert(addr < _region_end + RegionSize, "bad addr");
   725   return (HeapWord*)(size_t(addr) & BlockAddrMask);
   726 }
   728 inline HeapWord*
   729 ParallelCompactData::block_align_up(HeapWord* addr) const
   730 {
   731   assert(addr >= _region_start, "bad addr");
   732   assert(addr <= _region_end, "bad addr");
   733   return block_align_down(addr + BlockSizeOffsetMask);
   734 }
   736 inline bool
   737 ParallelCompactData::is_block_aligned(HeapWord* addr) const
   738 {
   739   return block_offset(addr) == 0;
   740 }
   742 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   743 // do_addr() method.
   744 //
   745 // The closure is initialized with the number of heap words to process
   746 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   747 // methods in subclasses should update the total as words are processed.  Since
   748 // only one subclass actually uses this mechanism to terminate iteration, the
   749 // default initial value is > 0.  The implementation is here and not in the
   750 // single subclass that uses it to avoid making is_full() virtual, and thus
   751 // adding a virtual call per live object.
   753 class ParMarkBitMapClosure: public StackObj {
   754  public:
   755   typedef ParMarkBitMap::idx_t idx_t;
   756   typedef ParMarkBitMap::IterationStatus IterationStatus;
   758  public:
   759   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   760                               size_t words = max_uintx);
   762   inline ParCompactionManager* compaction_manager() const;
   763   inline ParMarkBitMap*        bitmap() const;
   764   inline size_t                words_remaining() const;
   765   inline bool                  is_full() const;
   766   inline HeapWord*             source() const;
   768   inline void                  set_source(HeapWord* addr);
   770   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   772  protected:
   773   inline void decrement_words_remaining(size_t words);
   775  private:
   776   ParMarkBitMap* const        _bitmap;
   777   ParCompactionManager* const _compaction_manager;
   778   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   779   size_t                      _words_remaining; // Words left to copy.
   781  protected:
   782   HeapWord*                   _source;          // Next addr that would be read.
   783 };
   785 inline
   786 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   787                                            ParCompactionManager* cm,
   788                                            size_t words):
   789   _bitmap(bitmap), _compaction_manager(cm)
   790 #ifdef  ASSERT
   791   , _initial_words_remaining(words)
   792 #endif
   793 {
   794   _words_remaining = words;
   795   _source = NULL;
   796 }
   798 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   799   return _compaction_manager;
   800 }
   802 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   803   return _bitmap;
   804 }
   806 inline size_t ParMarkBitMapClosure::words_remaining() const {
   807   return _words_remaining;
   808 }
   810 inline bool ParMarkBitMapClosure::is_full() const {
   811   return words_remaining() == 0;
   812 }
   814 inline HeapWord* ParMarkBitMapClosure::source() const {
   815   return _source;
   816 }
   818 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   819   _source = addr;
   820 }
   822 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   823   assert(_words_remaining >= words, "processed too many words");
   824   _words_remaining -= words;
   825 }
   827 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   828 // does parts of the collection using parallel threads.  The collection includes
   829 // the tenured generation and the young generation.  The permanent generation is
   830 // collected at the same time as the other two generations but the permanent
   831 // generation is collect by a single GC thread.  The permanent generation is
   832 // collected serially because of the requirement that during the processing of a
   833 // klass AAA, any objects reference by AAA must already have been processed.
   834 // This requirement is enforced by a left (lower address) to right (higher
   835 // address) sliding compaction.
   836 //
   837 // There are four phases of the collection.
   838 //
   839 //      - marking phase
   840 //      - summary phase
   841 //      - compacting phase
   842 //      - clean up phase
   843 //
   844 // Roughly speaking these phases correspond, respectively, to
   845 //      - mark all the live objects
   846 //      - calculate the destination of each object at the end of the collection
   847 //      - move the objects to their destination
   848 //      - update some references and reinitialize some variables
   849 //
   850 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   851 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   852 // complete marking of the heap.  The summary phase is implemented in
   853 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   854 // in PSParallelCompact::compact().
   855 //
   856 // A space that is being collected is divided into regions and with each region
   857 // is associated an object of type ParallelCompactData.  Each region is of a
   858 // fixed size and typically will contain more than 1 object and may have parts
   859 // of objects at the front and back of the region.
   860 //
   861 // region            -----+---------------------+----------
   862 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   863 //
   864 // The marking phase does a complete marking of all live objects in the heap.
   865 // The marking also compiles the size of the data for all live objects covered
   866 // by the region.  This size includes the part of any live object spanning onto
   867 // the region (part of AAA if it is live) from the front, all live objects
   868 // contained in the region (BBB and/or CCC if they are live), and the part of
   869 // any live objects covered by the region that extends off the region (part of
   870 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   871 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   872 // done atomically as is the accumulation of the size of the live objects
   873 // covered by a region.
   874 //
   875 // The summary phase calculates the total live data to the left of each region
   876 // XXX.  Based on that total and the bottom of the space, it can calculate the
   877 // starting location of the live data in XXX.  The summary phase calculates for
   878 // each region XXX quantites such as
   879 //
   880 //      - the amount of live data at the beginning of a region from an object
   881 //        entering the region.
   882 //      - the location of the first live data on the region
   883 //      - a count of the number of regions receiving live data from XXX.
   884 //
   885 // See ParallelCompactData for precise details.  The summary phase also
   886 // calculates the dense prefix for the compaction.  The dense prefix is a
   887 // portion at the beginning of the space that is not moved.  The objects in the
   888 // dense prefix do need to have their object references updated.  See method
   889 // summarize_dense_prefix().
   890 //
   891 // The summary phase is done using 1 GC thread.
   892 //
   893 // The compaction phase moves objects to their new location and updates all
   894 // references in the object.
   895 //
   896 // A current exception is that objects that cross a region boundary are moved
   897 // but do not have their references updated.  References are not updated because
   898 // it cannot easily be determined if the klass pointer KKK for the object AAA
   899 // has been updated.  KKK likely resides in a region to the left of the region
   900 // containing AAA.  These AAA's have there references updated at the end in a
   901 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   902 // An alternate strategy is being investigated for this deferral of updating.
   903 //
   904 // Compaction is done on a region basis.  A region that is ready to be filled is
   905 // put on a ready list and GC threads take region off the list and fill them.  A
   906 // region is ready to be filled if it empty of live objects.  Such a region may
   907 // have been initially empty (only contained dead objects) or may have had all
   908 // its live objects copied out already.  A region that compacts into itself is
   909 // also ready for filling.  The ready list is initially filled with empty
   910 // regions and regions compacting into themselves.  There is always at least 1
   911 // region that can be put on the ready list.  The regions are atomically added
   912 // and removed from the ready list.
   914 class PSParallelCompact : AllStatic {
   915  public:
   916   // Convenient access to type names.
   917   typedef ParMarkBitMap::idx_t idx_t;
   918   typedef ParallelCompactData::RegionData RegionData;
   919   typedef ParallelCompactData::BlockData BlockData;
   921   typedef enum {
   922     old_space_id, eden_space_id,
   923     from_space_id, to_space_id, last_space_id
   924   } SpaceId;
   926  public:
   927   // Inline closure decls
   928   //
   929   class IsAliveClosure: public BoolObjectClosure {
   930    public:
   931     virtual bool do_object_b(oop p);
   932   };
   934   class KeepAliveClosure: public OopClosure {
   935    private:
   936     ParCompactionManager* _compaction_manager;
   937    protected:
   938     template <class T> inline void do_oop_work(T* p);
   939    public:
   940     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   941     virtual void do_oop(oop* p);
   942     virtual void do_oop(narrowOop* p);
   943   };
   945   class FollowStackClosure: public VoidClosure {
   946    private:
   947     ParCompactionManager* _compaction_manager;
   948    public:
   949     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   950     virtual void do_void();
   951   };
   953   class AdjustPointerClosure: public OopClosure {
   954    public:
   955     virtual void do_oop(oop* p);
   956     virtual void do_oop(narrowOop* p);
   957     // do not walk from thread stacks to the code cache on this phase
   958     virtual void do_code_blob(CodeBlob* cb) const { }
   959   };
   961   class AdjustKlassClosure : public KlassClosure {
   962    public:
   963     void do_klass(Klass* klass);
   964   };
   966   friend class KeepAliveClosure;
   967   friend class FollowStackClosure;
   968   friend class AdjustPointerClosure;
   969   friend class AdjustKlassClosure;
   970   friend class FollowKlassClosure;
   971   friend class InstanceClassLoaderKlass;
   972   friend class RefProcTaskProxy;
   974  private:
   975   static elapsedTimer         _accumulated_time;
   976   static unsigned int         _total_invocations;
   977   static unsigned int         _maximum_compaction_gc_num;
   978   static jlong                _time_of_last_gc;   // ms
   979   static CollectorCounters*   _counters;
   980   static ParMarkBitMap        _mark_bitmap;
   981   static ParallelCompactData  _summary_data;
   982   static IsAliveClosure       _is_alive_closure;
   983   static SpaceInfo            _space_info[last_space_id];
   984   static bool                 _print_phases;
   985   static AdjustPointerClosure _adjust_pointer_closure;
   986   static AdjustKlassClosure   _adjust_klass_closure;
   988   // Reference processing (used in ...follow_contents)
   989   static ReferenceProcessor*  _ref_processor;
   991   // Updated location of intArrayKlassObj.
   992   static Klass* _updated_int_array_klass_obj;
   994   // Values computed at initialization and used by dead_wood_limiter().
   995   static double _dwl_mean;
   996   static double _dwl_std_dev;
   997   static double _dwl_first_term;
   998   static double _dwl_adjustment;
   999 #ifdef  ASSERT
  1000   static bool   _dwl_initialized;
  1001 #endif  // #ifdef ASSERT
  1003  private:
  1005   static void initialize_space_info();
  1007   // Return true if details about individual phases should be printed.
  1008   static inline bool print_phases();
  1010   // Clear the marking bitmap and summary data that cover the specified space.
  1011   static void clear_data_covering_space(SpaceId id);
  1013   static void pre_compact(PreGCValues* pre_gc_values);
  1014   static void post_compact();
  1016   // Mark live objects
  1017   static void marking_phase(ParCompactionManager* cm,
  1018                             bool maximum_heap_compaction);
  1020   template <class T>
  1021   static inline void follow_root(ParCompactionManager* cm, T* p);
  1023   // Compute the dense prefix for the designated space.  This is an experimental
  1024   // implementation currently not used in production.
  1025   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
  1026                                                     bool maximum_compaction);
  1028   // Methods used to compute the dense prefix.
  1030   // Compute the value of the normal distribution at x = density.  The mean and
  1031   // standard deviation are values saved by initialize_dead_wood_limiter().
  1032   static inline double normal_distribution(double density);
  1034   // Initialize the static vars used by dead_wood_limiter().
  1035   static void initialize_dead_wood_limiter();
  1037   // Return the percentage of space that can be treated as "dead wood" (i.e.,
  1038   // not reclaimed).
  1039   static double dead_wood_limiter(double density, size_t min_percent);
  1041   // Find the first (left-most) region in the range [beg, end) that has at least
  1042   // dead_words of dead space to the left.  The argument beg must be the first
  1043   // region in the space that is not completely live.
  1044   static RegionData* dead_wood_limit_region(const RegionData* beg,
  1045                                             const RegionData* end,
  1046                                             size_t dead_words);
  1048   // Return a pointer to the first region in the range [beg, end) that is not
  1049   // completely full.
  1050   static RegionData* first_dead_space_region(const RegionData* beg,
  1051                                              const RegionData* end);
  1053   // Return a value indicating the benefit or 'yield' if the compacted region
  1054   // were to start (or equivalently if the dense prefix were to end) at the
  1055   // candidate region.  Higher values are better.
  1056   //
  1057   // The value is based on the amount of space reclaimed vs. the costs of (a)
  1058   // updating references in the dense prefix plus (b) copying objects and
  1059   // updating references in the compacted region.
  1060   static inline double reclaimed_ratio(const RegionData* const candidate,
  1061                                        HeapWord* const bottom,
  1062                                        HeapWord* const top,
  1063                                        HeapWord* const new_top);
  1065   // Compute the dense prefix for the designated space.
  1066   static HeapWord* compute_dense_prefix(const SpaceId id,
  1067                                         bool maximum_compaction);
  1069   // Return true if dead space crosses onto the specified Region; bit must be
  1070   // the bit index corresponding to the first word of the Region.
  1071   static inline bool dead_space_crosses_boundary(const RegionData* region,
  1072                                                  idx_t bit);
  1074   // Summary phase utility routine to fill dead space (if any) at the dense
  1075   // prefix boundary.  Should only be called if the the dense prefix is
  1076   // non-empty.
  1077   static void fill_dense_prefix_end(SpaceId id);
  1079   // Clear the summary data source_region field for the specified addresses.
  1080   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
  1082 #ifndef PRODUCT
  1083   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
  1085   // Fill the region [start, start + words) with live object(s).  Only usable
  1086   // for the old and permanent generations.
  1087   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
  1088                                      size_t words);
  1089   // Include the new objects in the summary data.
  1090   static void summarize_new_objects(SpaceId id, HeapWord* start);
  1092   // Add live objects to a survivor space since it's rare that both survivors
  1093   // are non-empty.
  1094   static void provoke_split_fill_survivor(SpaceId id);
  1096   // Add live objects and/or choose the dense prefix to provoke splitting.
  1097   static void provoke_split(bool & maximum_compaction);
  1098 #endif
  1100   static void summarize_spaces_quick();
  1101   static void summarize_space(SpaceId id, bool maximum_compaction);
  1102   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
  1104   // Adjust addresses in roots.  Does not adjust addresses in heap.
  1105   static void adjust_roots();
  1107   DEBUG_ONLY(static void write_block_fill_histogram(outputStream* const out);)
  1109   // Move objects to new locations.
  1110   static void compact_perm(ParCompactionManager* cm);
  1111   static void compact();
  1113   // Add available regions to the stack and draining tasks to the task queue.
  1114   static void enqueue_region_draining_tasks(GCTaskQueue* q,
  1115                                             uint parallel_gc_threads);
  1117   // Add dense prefix update tasks to the task queue.
  1118   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
  1119                                          uint parallel_gc_threads);
  1121   // Add region stealing tasks to the task queue.
  1122   static void enqueue_region_stealing_tasks(
  1123                                        GCTaskQueue* q,
  1124                                        ParallelTaskTerminator* terminator_ptr,
  1125                                        uint parallel_gc_threads);
  1127   // If objects are left in eden after a collection, try to move the boundary
  1128   // and absorb them into the old gen.  Returns true if eden was emptied.
  1129   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
  1130                                          PSYoungGen* young_gen,
  1131                                          PSOldGen* old_gen);
  1133   // Reset time since last full gc
  1134   static void reset_millis_since_last_gc();
  1136  public:
  1137   class MarkAndPushClosure: public OopClosure {
  1138    private:
  1139     ParCompactionManager* _compaction_manager;
  1140    public:
  1141     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
  1142     virtual void do_oop(oop* p);
  1143     virtual void do_oop(narrowOop* p);
  1144   };
  1146   // The one and only place to start following the classes.
  1147   // Should only be applied to the ClassLoaderData klasses list.
  1148   class FollowKlassClosure : public KlassClosure {
  1149    private:
  1150     MarkAndPushClosure* _mark_and_push_closure;
  1151    public:
  1152     FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
  1153         _mark_and_push_closure(mark_and_push_closure) { }
  1154     void do_klass(Klass* klass);
  1155   };
  1157   PSParallelCompact();
  1159   // Convenient accessor for Universe::heap().
  1160   static ParallelScavengeHeap* gc_heap() {
  1161     return (ParallelScavengeHeap*)Universe::heap();
  1164   static void invoke(bool maximum_heap_compaction);
  1165   static bool invoke_no_policy(bool maximum_heap_compaction);
  1167   static void post_initialize();
  1168   // Perform initialization for PSParallelCompact that requires
  1169   // allocations.  This should be called during the VM initialization
  1170   // at a pointer where it would be appropriate to return a JNI_ENOMEM
  1171   // in the event of a failure.
  1172   static bool initialize();
  1174   // Closure accessors
  1175   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
  1176   static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
  1177   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
  1179   // Public accessors
  1180   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  1181   static unsigned int total_invocations() { return _total_invocations; }
  1182   static CollectorCounters* counters()    { return _counters; }
  1184   // Used to add tasks
  1185   static GCTaskManager* const gc_task_manager();
  1186   static Klass* updated_int_array_klass_obj() {
  1187     return _updated_int_array_klass_obj;
  1190   // Marking support
  1191   static inline bool mark_obj(oop obj);
  1192   static inline bool is_marked(oop obj);
  1193   // Check mark and maybe push on marking stack
  1194   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
  1195                                                       T* p);
  1196   template <class T> static inline void adjust_pointer(T* p);
  1198   static void follow_klass(ParCompactionManager* cm, Klass* klass);
  1199   static void adjust_klass(ParCompactionManager* cm, Klass* klass);
  1201   static void follow_class_loader(ParCompactionManager* cm,
  1202                                   ClassLoaderData* klass);
  1203   static void adjust_class_loader(ParCompactionManager* cm,
  1204                                   ClassLoaderData* klass);
  1206   // Compaction support.
  1207   // Return true if p is in the range [beg_addr, end_addr).
  1208   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  1209   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
  1211   // Convenience wrappers for per-space data kept in _space_info.
  1212   static inline MutableSpace*     space(SpaceId space_id);
  1213   static inline HeapWord*         new_top(SpaceId space_id);
  1214   static inline HeapWord*         dense_prefix(SpaceId space_id);
  1215   static inline ObjectStartArray* start_array(SpaceId space_id);
  1217   // Move and update the live objects in the specified space.
  1218   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
  1220   // Process the end of the given region range in the dense prefix.
  1221   // This includes saving any object not updated.
  1222   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
  1223                                             size_t region_start_index,
  1224                                             size_t region_end_index,
  1225                                             idx_t exiting_object_offset,
  1226                                             idx_t region_offset_start,
  1227                                             idx_t region_offset_end);
  1229   // Update a region in the dense prefix.  For each live object
  1230   // in the region, update it's interior references.  For each
  1231   // dead object, fill it with deadwood. Dead space at the end
  1232   // of a region range will be filled to the start of the next
  1233   // live object regardless of the region_index_end.  None of the
  1234   // objects in the dense prefix move and dead space is dead
  1235   // (holds only dead objects that don't need any processing), so
  1236   // dead space can be filled in any order.
  1237   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  1238                                                   SpaceId space_id,
  1239                                                   size_t region_index_start,
  1240                                                   size_t region_index_end);
  1242   // Return the address of the count + 1st live word in the range [beg, end).
  1243   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
  1245   // Return the address of the word to be copied to dest_addr, which must be
  1246   // aligned to a region boundary.
  1247   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1248                                   SpaceId src_space_id,
  1249                                   size_t src_region_idx);
  1251   // Determine the next source region, set closure.source() to the start of the
  1252   // new region return the region index.  Parameter end_addr is the address one
  1253   // beyond the end of source range just processed.  If necessary, switch to a
  1254   // new source space and set src_space_id (in-out parameter) and src_space_top
  1255   // (out parameter) accordingly.
  1256   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1257                                 SpaceId& src_space_id,
  1258                                 HeapWord*& src_space_top,
  1259                                 HeapWord* end_addr);
  1261   // Decrement the destination count for each non-empty source region in the
  1262   // range [beg_region, region(region_align_up(end_addr))).  If the destination
  1263   // count for a region goes to 0 and it needs to be filled, enqueue it.
  1264   static void decrement_destination_counts(ParCompactionManager* cm,
  1265                                            SpaceId src_space_id,
  1266                                            size_t beg_region,
  1267                                            HeapWord* end_addr);
  1269   // Fill a region, copying objects from one or more source regions.
  1270   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1271   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1272     fill_region(cm, region);
  1275   // Fill in the block table for the specified region.
  1276   static void fill_blocks(size_t region_idx);
  1278   // Update the deferred objects in the space.
  1279   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1281   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1282   static ParallelCompactData& summary_data() { return _summary_data; }
  1284   // Reference Processing
  1285   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1287   // Return the SpaceId for the given address.
  1288   static SpaceId space_id(HeapWord* addr);
  1290   // Time since last full gc (in milliseconds).
  1291   static jlong millis_since_last_gc();
  1293   static void print_on_error(outputStream* st);
  1295 #ifndef PRODUCT
  1296   // Debugging support.
  1297   static const char* space_names[last_space_id];
  1298   static void print_region_ranges();
  1299   static void print_dense_prefix_stats(const char* const algorithm,
  1300                                        const SpaceId id,
  1301                                        const bool maximum_compaction,
  1302                                        HeapWord* const addr);
  1303   static void summary_phase_msg(SpaceId dst_space_id,
  1304                                 HeapWord* dst_beg, HeapWord* dst_end,
  1305                                 SpaceId src_space_id,
  1306                                 HeapWord* src_beg, HeapWord* src_end);
  1307 #endif  // #ifndef PRODUCT
  1309 #ifdef  ASSERT
  1310   // Sanity check the new location of a word in the heap.
  1311   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  1312   // Verify that all the regions have been emptied.
  1313   static void verify_complete(SpaceId space_id);
  1314 #endif  // #ifdef ASSERT
  1315 };
  1317 inline bool PSParallelCompact::mark_obj(oop obj) {
  1318   const int obj_size = obj->size();
  1319   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1320     _summary_data.add_obj(obj, obj_size);
  1321     return true;
  1322   } else {
  1323     return false;
  1327 inline bool PSParallelCompact::is_marked(oop obj) {
  1328   return mark_bitmap()->is_marked(obj);
  1331 template <class T>
  1332 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1333   assert(!Universe::heap()->is_in_reserved(p),
  1334          "roots shouldn't be things within the heap");
  1336   T heap_oop = oopDesc::load_heap_oop(p);
  1337   if (!oopDesc::is_null(heap_oop)) {
  1338     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1339     if (mark_bitmap()->is_unmarked(obj)) {
  1340       if (mark_obj(obj)) {
  1341         obj->follow_contents(cm);
  1345   cm->follow_marking_stacks();
  1348 template <class T>
  1349 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1350   T heap_oop = oopDesc::load_heap_oop(p);
  1351   if (!oopDesc::is_null(heap_oop)) {
  1352     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1353     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
  1354       cm->push(obj);
  1359 template <class T>
  1360 inline void PSParallelCompact::adjust_pointer(T* p) {
  1361   T heap_oop = oopDesc::load_heap_oop(p);
  1362   if (!oopDesc::is_null(heap_oop)) {
  1363     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1364     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1365     assert(new_obj != NULL,                    // is forwarding ptr?
  1366            "should be forwarded");
  1367     // Just always do the update unconditionally?
  1368     if (new_obj != NULL) {
  1369       assert(Universe::heap()->is_in_reserved(new_obj),
  1370              "should be in object space");
  1371       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1376 template <class T>
  1377 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1378   mark_and_push(_compaction_manager, p);
  1381 inline bool PSParallelCompact::print_phases() {
  1382   return _print_phases;
  1385 inline double PSParallelCompact::normal_distribution(double density) {
  1386   assert(_dwl_initialized, "uninitialized");
  1387   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1388   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1391 inline bool
  1392 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1393                                                idx_t bit)
  1395   assert(bit > 0, "cannot call this for the first bit/region");
  1396   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1397          "sanity check");
  1399   // Dead space crosses the boundary if (1) a partial object does not extend
  1400   // onto the region, (2) an object does not start at the beginning of the
  1401   // region, and (3) an object does not end at the end of the prior region.
  1402   return region->partial_obj_size() == 0 &&
  1403     !_mark_bitmap.is_obj_beg(bit) &&
  1404     !_mark_bitmap.is_obj_end(bit - 1);
  1407 inline bool
  1408 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1409   return p >= beg_addr && p < end_addr;
  1412 inline bool
  1413 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1414   return is_in((HeapWord*)p, beg_addr, end_addr);
  1417 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1418   assert(id < last_space_id, "id out of range");
  1419   return _space_info[id].space();
  1422 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1423   assert(id < last_space_id, "id out of range");
  1424   return _space_info[id].new_top();
  1427 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1428   assert(id < last_space_id, "id out of range");
  1429   return _space_info[id].dense_prefix();
  1432 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1433   assert(id < last_space_id, "id out of range");
  1434   return _space_info[id].start_array();
  1437 #ifdef ASSERT
  1438 inline void
  1439 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
  1441   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
  1442          "must move left or to a different space");
  1443   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
  1444          "checking alignment");
  1446 #endif // ASSERT
  1448 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1449  public:
  1450   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1451                               ObjectStartArray* start_array,
  1452                               HeapWord* destination, size_t words);
  1454   // Accessors.
  1455   HeapWord* destination() const         { return _destination; }
  1457   // If the object will fit (size <= words_remaining()), copy it to the current
  1458   // destination, update the interior oops and the start array and return either
  1459   // full (if the closure is full) or incomplete.  If the object will not fit,
  1460   // return would_overflow.
  1461   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1463   // Copy enough words to fill this closure, starting at source().  Interior
  1464   // oops and the start array are not updated.  Return full.
  1465   IterationStatus copy_until_full();
  1467   // Copy enough words to fill this closure or to the end of an object,
  1468   // whichever is smaller, starting at source().  Interior oops and the start
  1469   // array are not updated.
  1470   void copy_partial_obj();
  1472  protected:
  1473   // Update variables to indicate that word_count words were processed.
  1474   inline void update_state(size_t word_count);
  1476  protected:
  1477   ObjectStartArray* const _start_array;
  1478   HeapWord*               _destination;         // Next addr to be written.
  1479 };
  1481 inline
  1482 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1483                                            ParCompactionManager* cm,
  1484                                            ObjectStartArray* start_array,
  1485                                            HeapWord* destination,
  1486                                            size_t words) :
  1487   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1489   _destination = destination;
  1492 inline void MoveAndUpdateClosure::update_state(size_t words)
  1494   decrement_words_remaining(words);
  1495   _source += words;
  1496   _destination += words;
  1499 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1500  private:
  1501   const PSParallelCompact::SpaceId _space_id;
  1502   ObjectStartArray* const          _start_array;
  1504  public:
  1505   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1506                     ParCompactionManager* cm,
  1507                     PSParallelCompact::SpaceId space_id);
  1509   // Update the object.
  1510   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1512   inline void do_addr(HeapWord* addr);
  1513 };
  1515 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1517   _start_array->allocate_block(addr);
  1518   oop(addr)->update_contents(compaction_manager());
  1521 class FillClosure: public ParMarkBitMapClosure
  1523 public:
  1524   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1525     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1526     _start_array(PSParallelCompact::start_array(space_id))
  1528     assert(space_id == PSParallelCompact::old_space_id,
  1529            "cannot use FillClosure in the young gen");
  1532   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1533     CollectedHeap::fill_with_objects(addr, size);
  1534     HeapWord* const end = addr + size;
  1535     do {
  1536       _start_array->allocate_block(addr);
  1537       addr += oop(addr)->size();
  1538     } while (addr < end);
  1539     return ParMarkBitMap::incomplete;
  1542 private:
  1543   ObjectStartArray* const _start_array;
  1544 };
  1546 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial