src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Thu, 30 May 2013 13:04:51 -0700

author
jcoomes
date
Thu, 30 May 2013 13:04:51 -0700
changeset 5201
5534bd30c151
parent 5161
10f759898d40
child 5237
f2110083203d
permissions
-rw-r--r--

6725714: par compact - add a table to speed up bitmap searches
Reviewed-by: jmasa, tschatzl

duke@435 1 /*
tamao@5161 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
stefank@2314 31 #include "gc_implementation/shared/collectorCounters.hpp"
stefank@2314 32 #include "gc_implementation/shared/markSweep.hpp"
stefank@2314 33 #include "gc_implementation/shared/mutableSpace.hpp"
stefank@2314 34 #include "memory/sharedHeap.hpp"
stefank@2314 35 #include "oops/oop.hpp"
stefank@2314 36
duke@435 37 class ParallelScavengeHeap;
duke@435 38 class PSAdaptiveSizePolicy;
duke@435 39 class PSYoungGen;
duke@435 40 class PSOldGen;
duke@435 41 class ParCompactionManager;
duke@435 42 class ParallelTaskTerminator;
duke@435 43 class PSParallelCompact;
duke@435 44 class GCTaskManager;
duke@435 45 class GCTaskQueue;
duke@435 46 class PreGCValues;
duke@435 47 class MoveAndUpdateClosure;
duke@435 48 class RefProcTaskExecutor;
duke@435 49
jcoomes@917 50 // The SplitInfo class holds the information needed to 'split' a source region
jcoomes@917 51 // so that the live data can be copied to two destination *spaces*. Normally,
jcoomes@917 52 // all the live data in a region is copied to a single destination space (e.g.,
jcoomes@917 53 // everything live in a region in eden is copied entirely into the old gen).
jcoomes@917 54 // However, when the heap is nearly full, all the live data in eden may not fit
jcoomes@917 55 // into the old gen. Copying only some of the regions from eden to old gen
jcoomes@917 56 // requires finding a region that does not contain a partial object (i.e., no
jcoomes@917 57 // live object crosses the region boundary) somewhere near the last object that
jcoomes@917 58 // does fit into the old gen. Since it's not always possible to find such a
jcoomes@917 59 // region, splitting is necessary for predictable behavior.
jcoomes@917 60 //
jcoomes@917 61 // A region is always split at the end of the partial object. This avoids
jcoomes@917 62 // additional tests when calculating the new location of a pointer, which is a
jcoomes@917 63 // very hot code path. The partial object and everything to its left will be
jcoomes@917 64 // copied to another space (call it dest_space_1). The live data to the right
jcoomes@917 65 // of the partial object will be copied either within the space itself, or to a
jcoomes@917 66 // different destination space (distinct from dest_space_1).
jcoomes@917 67 //
jcoomes@917 68 // Split points are identified during the summary phase, when region
jcoomes@917 69 // destinations are computed: data about the split, including the
jcoomes@917 70 // partial_object_size, is recorded in a SplitInfo record and the
jcoomes@917 71 // partial_object_size field in the summary data is set to zero. The zeroing is
jcoomes@917 72 // possible (and necessary) since the partial object will move to a different
jcoomes@917 73 // destination space than anything to its right, thus the partial object should
jcoomes@917 74 // not affect the locations of any objects to its right.
jcoomes@917 75 //
jcoomes@917 76 // The recorded data is used during the compaction phase, but only rarely: when
jcoomes@917 77 // the partial object on the split region will be copied across a destination
jcoomes@917 78 // region boundary. This test is made once each time a region is filled, and is
jcoomes@917 79 // a simple address comparison, so the overhead is negligible (see
jcoomes@917 80 // PSParallelCompact::first_src_addr()).
jcoomes@917 81 //
jcoomes@917 82 // Notes:
jcoomes@917 83 //
jcoomes@917 84 // Only regions with partial objects are split; a region without a partial
jcoomes@917 85 // object does not need any extra bookkeeping.
jcoomes@917 86 //
jcoomes@917 87 // At most one region is split per space, so the amount of data required is
jcoomes@917 88 // constant.
jcoomes@917 89 //
jcoomes@917 90 // A region is split only when the destination space would overflow. Once that
jcoomes@917 91 // happens, the destination space is abandoned and no other data (even from
jcoomes@917 92 // other source spaces) is targeted to that destination space. Abandoning the
jcoomes@917 93 // destination space may leave a somewhat large unused area at the end, if a
jcoomes@917 94 // large object caused the overflow.
jcoomes@917 95 //
jcoomes@917 96 // Future work:
jcoomes@917 97 //
jcoomes@917 98 // More bookkeeping would be required to continue to use the destination space.
jcoomes@917 99 // The most general solution would allow data from regions in two different
jcoomes@917 100 // source spaces to be "joined" in a single destination region. At the very
jcoomes@917 101 // least, additional code would be required in next_src_region() to detect the
jcoomes@917 102 // join and skip to an out-of-order source region. If the join region was also
jcoomes@917 103 // the last destination region to which a split region was copied (the most
jcoomes@917 104 // likely case), then additional work would be needed to get fill_region() to
jcoomes@917 105 // stop iteration and switch to a new source region at the right point. Basic
jcoomes@917 106 // idea would be to use a fake value for the top of the source space. It is
jcoomes@917 107 // doable, if a bit tricky.
jcoomes@917 108 //
jcoomes@917 109 // A simpler (but less general) solution would fill the remainder of the
jcoomes@917 110 // destination region with a dummy object and continue filling the next
jcoomes@917 111 // destination region.
jcoomes@917 112
jcoomes@917 113 class SplitInfo
jcoomes@917 114 {
jcoomes@917 115 public:
jcoomes@917 116 // Return true if this split info is valid (i.e., if a split has been
jcoomes@917 117 // recorded). The very first region cannot have a partial object and thus is
jcoomes@917 118 // never split, so 0 is the 'invalid' value.
jcoomes@917 119 bool is_valid() const { return _src_region_idx > 0; }
jcoomes@917 120
jcoomes@917 121 // Return true if this split holds data for the specified source region.
jcoomes@917 122 inline bool is_split(size_t source_region) const;
jcoomes@917 123
jcoomes@917 124 // The index of the split region, the size of the partial object on that
jcoomes@917 125 // region and the destination of the partial object.
jcoomes@917 126 size_t src_region_idx() const { return _src_region_idx; }
jcoomes@917 127 size_t partial_obj_size() const { return _partial_obj_size; }
jcoomes@917 128 HeapWord* destination() const { return _destination; }
jcoomes@917 129
jcoomes@917 130 // The destination count of the partial object referenced by this split
jcoomes@917 131 // (either 1 or 2). This must be added to the destination count of the
jcoomes@917 132 // remainder of the source region.
jcoomes@917 133 unsigned int destination_count() const { return _destination_count; }
jcoomes@917 134
jcoomes@917 135 // If a word within the partial object will be written to the first word of a
jcoomes@917 136 // destination region, this is the address of the destination region;
jcoomes@917 137 // otherwise this is NULL.
jcoomes@917 138 HeapWord* dest_region_addr() const { return _dest_region_addr; }
jcoomes@917 139
jcoomes@917 140 // If a word within the partial object will be written to the first word of a
jcoomes@917 141 // destination region, this is the address of that word within the partial
jcoomes@917 142 // object; otherwise this is NULL.
jcoomes@917 143 HeapWord* first_src_addr() const { return _first_src_addr; }
jcoomes@917 144
jcoomes@917 145 // Record the data necessary to split the region src_region_idx.
jcoomes@917 146 void record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 147 HeapWord* destination);
jcoomes@917 148
jcoomes@917 149 void clear();
jcoomes@917 150
jcoomes@917 151 DEBUG_ONLY(void verify_clear();)
jcoomes@917 152
jcoomes@917 153 private:
jcoomes@917 154 size_t _src_region_idx;
jcoomes@917 155 size_t _partial_obj_size;
jcoomes@917 156 HeapWord* _destination;
jcoomes@917 157 unsigned int _destination_count;
jcoomes@917 158 HeapWord* _dest_region_addr;
jcoomes@917 159 HeapWord* _first_src_addr;
jcoomes@917 160 };
jcoomes@917 161
jcoomes@917 162 inline bool SplitInfo::is_split(size_t region_idx) const
jcoomes@917 163 {
jcoomes@917 164 return _src_region_idx == region_idx && is_valid();
jcoomes@917 165 }
jcoomes@917 166
duke@435 167 class SpaceInfo
duke@435 168 {
duke@435 169 public:
duke@435 170 MutableSpace* space() const { return _space; }
duke@435 171
duke@435 172 // Where the free space will start after the collection. Valid only after the
duke@435 173 // summary phase completes.
duke@435 174 HeapWord* new_top() const { return _new_top; }
duke@435 175
duke@435 176 // Allows new_top to be set.
duke@435 177 HeapWord** new_top_addr() { return &_new_top; }
duke@435 178
duke@435 179 // Where the smallest allowable dense prefix ends (used only for perm gen).
duke@435 180 HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
duke@435 181
duke@435 182 // Where the dense prefix ends, or the compacted region begins.
duke@435 183 HeapWord* dense_prefix() const { return _dense_prefix; }
duke@435 184
duke@435 185 // The start array for the (generation containing the) space, or NULL if there
duke@435 186 // is no start array.
duke@435 187 ObjectStartArray* start_array() const { return _start_array; }
duke@435 188
jcoomes@917 189 SplitInfo& split_info() { return _split_info; }
jcoomes@917 190
duke@435 191 void set_space(MutableSpace* s) { _space = s; }
duke@435 192 void set_new_top(HeapWord* addr) { _new_top = addr; }
duke@435 193 void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
duke@435 194 void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
duke@435 195 void set_start_array(ObjectStartArray* s) { _start_array = s; }
duke@435 196
jcoomes@917 197 void publish_new_top() const { _space->set_top(_new_top); }
jcoomes@917 198
duke@435 199 private:
duke@435 200 MutableSpace* _space;
duke@435 201 HeapWord* _new_top;
duke@435 202 HeapWord* _min_dense_prefix;
duke@435 203 HeapWord* _dense_prefix;
duke@435 204 ObjectStartArray* _start_array;
jcoomes@917 205 SplitInfo _split_info;
duke@435 206 };
duke@435 207
duke@435 208 class ParallelCompactData
duke@435 209 {
duke@435 210 public:
duke@435 211 // Sizes are in HeapWords, unless indicated otherwise.
jcoomes@810 212 static const size_t Log2RegionSize;
jcoomes@810 213 static const size_t RegionSize;
jcoomes@810 214 static const size_t RegionSizeBytes;
duke@435 215
jcoomes@810 216 // Mask for the bits in a size_t to get an offset within a region.
jcoomes@810 217 static const size_t RegionSizeOffsetMask;
jcoomes@810 218 // Mask for the bits in a pointer to get an offset within a region.
jcoomes@810 219 static const size_t RegionAddrOffsetMask;
jcoomes@810 220 // Mask for the bits in a pointer to get the address of the start of a region.
jcoomes@810 221 static const size_t RegionAddrMask;
duke@435 222
jcoomes@5201 223 static const size_t Log2BlockSize;
jcoomes@5201 224 static const size_t BlockSize;
jcoomes@5201 225 static const size_t BlockSizeBytes;
jcoomes@5201 226
jcoomes@5201 227 static const size_t BlockSizeOffsetMask;
jcoomes@5201 228 static const size_t BlockAddrOffsetMask;
jcoomes@5201 229 static const size_t BlockAddrMask;
jcoomes@5201 230
jcoomes@5201 231 static const size_t BlocksPerRegion;
jcoomes@5201 232 static const size_t Log2BlocksPerRegion;
jcoomes@5201 233
jcoomes@810 234 class RegionData
duke@435 235 {
duke@435 236 public:
jcoomes@810 237 // Destination address of the region.
duke@435 238 HeapWord* destination() const { return _destination; }
duke@435 239
jcoomes@810 240 // The first region containing data destined for this region.
jcoomes@810 241 size_t source_region() const { return _source_region; }
duke@435 242
jcoomes@810 243 // The object (if any) starting in this region and ending in a different
jcoomes@810 244 // region that could not be updated during the main (parallel) compaction
duke@435 245 // phase. This is different from _partial_obj_addr, which is an object that
jcoomes@810 246 // extends onto a source region. However, the two uses do not overlap in
duke@435 247 // time, so the same field is used to save space.
duke@435 248 HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
duke@435 249
jcoomes@810 250 // The starting address of the partial object extending onto the region.
duke@435 251 HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
duke@435 252
jcoomes@810 253 // Size of the partial object extending onto the region (words).
duke@435 254 size_t partial_obj_size() const { return _partial_obj_size; }
duke@435 255
jcoomes@810 256 // Size of live data that lies within this region due to objects that start
jcoomes@810 257 // in this region (words). This does not include the partial object
jcoomes@810 258 // extending onto the region (if any), or the part of an object that extends
jcoomes@810 259 // onto the next region (if any).
duke@435 260 size_t live_obj_size() const { return _dc_and_los & los_mask; }
duke@435 261
jcoomes@810 262 // Total live data that lies within the region (words).
duke@435 263 size_t data_size() const { return partial_obj_size() + live_obj_size(); }
duke@435 264
jcoomes@810 265 // The destination_count is the number of other regions to which data from
jcoomes@810 266 // this region will be copied. At the end of the summary phase, the valid
duke@435 267 // values of destination_count are
duke@435 268 //
jcoomes@810 269 // 0 - data from the region will be compacted completely into itself, or the
jcoomes@810 270 // region is empty. The region can be claimed and then filled.
jcoomes@810 271 // 1 - data from the region will be compacted into 1 other region; some
jcoomes@810 272 // data from the region may also be compacted into the region itself.
jcoomes@810 273 // 2 - data from the region will be copied to 2 other regions.
duke@435 274 //
jcoomes@810 275 // During compaction as regions are emptied, the destination_count is
duke@435 276 // decremented (atomically) and when it reaches 0, it can be claimed and
duke@435 277 // then filled.
duke@435 278 //
jcoomes@810 279 // A region is claimed for processing by atomically changing the
jcoomes@810 280 // destination_count to the claimed value (dc_claimed). After a region has
duke@435 281 // been filled, the destination_count should be set to the completed value
duke@435 282 // (dc_completed).
duke@435 283 inline uint destination_count() const;
duke@435 284 inline uint destination_count_raw() const;
duke@435 285
jcoomes@5201 286 // Whether the block table for this region has been filled.
jcoomes@5201 287 inline bool blocks_filled() const;
jcoomes@5201 288
jcoomes@5201 289 // Number of times the block table was filled.
jcoomes@5201 290 DEBUG_ONLY(inline size_t blocks_filled_count() const;)
jcoomes@5201 291
jcoomes@810 292 // The location of the java heap data that corresponds to this region.
duke@435 293 inline HeapWord* data_location() const;
duke@435 294
jcoomes@810 295 // The highest address referenced by objects in this region.
duke@435 296 inline HeapWord* highest_ref() const;
duke@435 297
jcoomes@810 298 // Whether this region is available to be claimed, has been claimed, or has
duke@435 299 // been completed.
duke@435 300 //
jcoomes@810 301 // Minor subtlety: claimed() returns true if the region is marked
jcoomes@810 302 // completed(), which is desirable since a region must be claimed before it
duke@435 303 // can be completed.
duke@435 304 bool available() const { return _dc_and_los < dc_one; }
duke@435 305 bool claimed() const { return _dc_and_los >= dc_claimed; }
duke@435 306 bool completed() const { return _dc_and_los >= dc_completed; }
duke@435 307
duke@435 308 // These are not atomic.
duke@435 309 void set_destination(HeapWord* addr) { _destination = addr; }
jcoomes@810 310 void set_source_region(size_t region) { _source_region = region; }
duke@435 311 void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 312 void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 313 void set_partial_obj_size(size_t words) {
jcoomes@810 314 _partial_obj_size = (region_sz_t) words;
duke@435 315 }
jcoomes@5201 316 inline void set_blocks_filled();
duke@435 317
duke@435 318 inline void set_destination_count(uint count);
duke@435 319 inline void set_live_obj_size(size_t words);
duke@435 320 inline void set_data_location(HeapWord* addr);
duke@435 321 inline void set_completed();
duke@435 322 inline bool claim_unsafe();
duke@435 323
duke@435 324 // These are atomic.
duke@435 325 inline void add_live_obj(size_t words);
duke@435 326 inline void set_highest_ref(HeapWord* addr);
duke@435 327 inline void decrement_destination_count();
duke@435 328 inline bool claim();
duke@435 329
duke@435 330 private:
jcoomes@810 331 // The type used to represent object sizes within a region.
jcoomes@810 332 typedef uint region_sz_t;
duke@435 333
duke@435 334 // Constants for manipulating the _dc_and_los field, which holds both the
duke@435 335 // destination count and live obj size. The live obj size lives at the
duke@435 336 // least significant end so no masking is necessary when adding.
jcoomes@810 337 static const region_sz_t dc_shift; // Shift amount.
jcoomes@810 338 static const region_sz_t dc_mask; // Mask for destination count.
jcoomes@810 339 static const region_sz_t dc_one; // 1, shifted appropriately.
jcoomes@810 340 static const region_sz_t dc_claimed; // Region has been claimed.
jcoomes@810 341 static const region_sz_t dc_completed; // Region has been completed.
jcoomes@810 342 static const region_sz_t los_mask; // Mask for live obj size.
duke@435 343
jcoomes@810 344 HeapWord* _destination;
jcoomes@810 345 size_t _source_region;
jcoomes@810 346 HeapWord* _partial_obj_addr;
jcoomes@810 347 region_sz_t _partial_obj_size;
jcoomes@810 348 region_sz_t volatile _dc_and_los;
jcoomes@5201 349 bool _blocks_filled;
jcoomes@5201 350
duke@435 351 #ifdef ASSERT
jcoomes@5201 352 size_t _blocks_filled_count; // Number of block table fills.
jcoomes@5201 353
duke@435 354 // These enable optimizations that are only partially implemented. Use
duke@435 355 // debug builds to prevent the code fragments from breaking.
jcoomes@810 356 HeapWord* _data_location;
jcoomes@810 357 HeapWord* _highest_ref;
duke@435 358 #endif // #ifdef ASSERT
duke@435 359
duke@435 360 #ifdef ASSERT
duke@435 361 public:
jcoomes@5201 362 uint _pushed; // 0 until region is pushed onto a stack
duke@435 363 private:
duke@435 364 #endif
duke@435 365 };
duke@435 366
jcoomes@5201 367 // "Blocks" allow shorter sections of the bitmap to be searched. Each Block
jcoomes@5201 368 // holds an offset, which is the amount of live data in the Region to the left
jcoomes@5201 369 // of the first live object that starts in the Block.
jcoomes@5201 370 class BlockData
jcoomes@5201 371 {
jcoomes@5201 372 public:
jcoomes@5201 373 typedef unsigned short int blk_ofs_t;
jcoomes@5201 374
jcoomes@5201 375 blk_ofs_t offset() const { return _offset; }
jcoomes@5201 376 void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
jcoomes@5201 377
jcoomes@5201 378 private:
jcoomes@5201 379 blk_ofs_t _offset;
jcoomes@5201 380 };
jcoomes@5201 381
duke@435 382 public:
duke@435 383 ParallelCompactData();
duke@435 384 bool initialize(MemRegion covered_region);
duke@435 385
jcoomes@810 386 size_t region_count() const { return _region_count; }
tamao@5161 387 size_t reserved_byte_size() const { return _reserved_byte_size; }
duke@435 388
jcoomes@810 389 // Convert region indices to/from RegionData pointers.
jcoomes@810 390 inline RegionData* region(size_t region_idx) const;
jcoomes@810 391 inline size_t region(const RegionData* const region_ptr) const;
duke@435 392
jcoomes@5201 393 size_t block_count() const { return _block_count; }
jcoomes@5201 394 inline BlockData* block(size_t block_idx) const;
jcoomes@5201 395 inline size_t block(const BlockData* block_ptr) const;
duke@435 396
duke@435 397 void add_obj(HeapWord* addr, size_t len);
duke@435 398 void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
duke@435 399
jcoomes@810 400 // Fill in the regions covering [beg, end) so that no data moves; i.e., the
jcoomes@810 401 // destination of region n is simply the start of region n. The argument beg
jcoomes@810 402 // must be region-aligned; end need not be.
duke@435 403 void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
duke@435 404
jcoomes@917 405 HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
jcoomes@917 406 HeapWord* destination, HeapWord* target_end,
jcoomes@917 407 HeapWord** target_next);
jcoomes@917 408 bool summarize(SplitInfo& split_info,
duke@435 409 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 410 HeapWord** source_next,
jcoomes@917 411 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 412 HeapWord** target_next);
duke@435 413
duke@435 414 void clear();
jcoomes@810 415 void clear_range(size_t beg_region, size_t end_region);
duke@435 416 void clear_range(HeapWord* beg, HeapWord* end) {
jcoomes@810 417 clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
duke@435 418 }
duke@435 419
jcoomes@810 420 // Return the number of words between addr and the start of the region
duke@435 421 // containing addr.
jcoomes@810 422 inline size_t region_offset(const HeapWord* addr) const;
duke@435 423
jcoomes@810 424 // Convert addresses to/from a region index or region pointer.
jcoomes@810 425 inline size_t addr_to_region_idx(const HeapWord* addr) const;
jcoomes@810 426 inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
jcoomes@810 427 inline HeapWord* region_to_addr(size_t region) const;
jcoomes@810 428 inline HeapWord* region_to_addr(size_t region, size_t offset) const;
jcoomes@810 429 inline HeapWord* region_to_addr(const RegionData* region) const;
duke@435 430
jcoomes@810 431 inline HeapWord* region_align_down(HeapWord* addr) const;
jcoomes@810 432 inline HeapWord* region_align_up(HeapWord* addr) const;
jcoomes@810 433 inline bool is_region_aligned(HeapWord* addr) const;
duke@435 434
jcoomes@5201 435 // Analogous to region_offset() for blocks.
jcoomes@5201 436 size_t block_offset(const HeapWord* addr) const;
jcoomes@5201 437 size_t addr_to_block_idx(const HeapWord* addr) const;
jcoomes@5201 438 size_t addr_to_block_idx(const oop obj) const {
jcoomes@5201 439 return addr_to_block_idx((HeapWord*) obj);
jcoomes@5201 440 }
jcoomes@5201 441 inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
jcoomes@5201 442 inline HeapWord* block_to_addr(size_t block) const;
jcoomes@5201 443 inline size_t region_to_block_idx(size_t region) const;
jcoomes@5201 444
jcoomes@5201 445 inline HeapWord* block_align_down(HeapWord* addr) const;
jcoomes@5201 446 inline HeapWord* block_align_up(HeapWord* addr) const;
jcoomes@5201 447 inline bool is_block_aligned(HeapWord* addr) const;
jcoomes@5201 448
duke@435 449 // Return the address one past the end of the partial object.
jcoomes@810 450 HeapWord* partial_obj_end(size_t region_idx) const;
duke@435 451
jcoomes@5201 452 // Return the location of the object after compaction.
duke@435 453 HeapWord* calc_new_pointer(HeapWord* addr);
duke@435 454
duke@435 455 HeapWord* calc_new_pointer(oop p) {
duke@435 456 return calc_new_pointer((HeapWord*) p);
duke@435 457 }
duke@435 458
duke@435 459 #ifdef ASSERT
duke@435 460 void verify_clear(const PSVirtualSpace* vspace);
duke@435 461 void verify_clear();
duke@435 462 #endif // #ifdef ASSERT
duke@435 463
duke@435 464 private:
jcoomes@5201 465 bool initialize_block_data();
jcoomes@810 466 bool initialize_region_data(size_t region_size);
duke@435 467 PSVirtualSpace* create_vspace(size_t count, size_t element_size);
duke@435 468
duke@435 469 private:
duke@435 470 HeapWord* _region_start;
duke@435 471 #ifdef ASSERT
duke@435 472 HeapWord* _region_end;
duke@435 473 #endif // #ifdef ASSERT
duke@435 474
jcoomes@810 475 PSVirtualSpace* _region_vspace;
tamao@5161 476 size_t _reserved_byte_size;
jcoomes@810 477 RegionData* _region_data;
jcoomes@810 478 size_t _region_count;
jcoomes@5201 479
jcoomes@5201 480 PSVirtualSpace* _block_vspace;
jcoomes@5201 481 BlockData* _block_data;
jcoomes@5201 482 size_t _block_count;
duke@435 483 };
duke@435 484
duke@435 485 inline uint
jcoomes@810 486 ParallelCompactData::RegionData::destination_count_raw() const
duke@435 487 {
duke@435 488 return _dc_and_los & dc_mask;
duke@435 489 }
duke@435 490
duke@435 491 inline uint
jcoomes@810 492 ParallelCompactData::RegionData::destination_count() const
duke@435 493 {
duke@435 494 return destination_count_raw() >> dc_shift;
duke@435 495 }
duke@435 496
jcoomes@5201 497 inline bool
jcoomes@5201 498 ParallelCompactData::RegionData::blocks_filled() const
jcoomes@5201 499 {
jcoomes@5201 500 return _blocks_filled;
jcoomes@5201 501 }
jcoomes@5201 502
jcoomes@5201 503 #ifdef ASSERT
jcoomes@5201 504 inline size_t
jcoomes@5201 505 ParallelCompactData::RegionData::blocks_filled_count() const
jcoomes@5201 506 {
jcoomes@5201 507 return _blocks_filled_count;
jcoomes@5201 508 }
jcoomes@5201 509 #endif // #ifdef ASSERT
jcoomes@5201 510
jcoomes@5201 511 inline void
jcoomes@5201 512 ParallelCompactData::RegionData::set_blocks_filled()
jcoomes@5201 513 {
jcoomes@5201 514 _blocks_filled = true;
jcoomes@5201 515 // Debug builds count the number of times the table was filled.
jcoomes@5201 516 DEBUG_ONLY(Atomic::inc_ptr(&_blocks_filled_count));
jcoomes@5201 517 }
jcoomes@5201 518
duke@435 519 inline void
jcoomes@810 520 ParallelCompactData::RegionData::set_destination_count(uint count)
duke@435 521 {
duke@435 522 assert(count <= (dc_completed >> dc_shift), "count too large");
jcoomes@810 523 const region_sz_t live_sz = (region_sz_t) live_obj_size();
duke@435 524 _dc_and_los = (count << dc_shift) | live_sz;
duke@435 525 }
duke@435 526
jcoomes@810 527 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
duke@435 528 {
duke@435 529 assert(words <= los_mask, "would overflow");
jcoomes@810 530 _dc_and_los = destination_count_raw() | (region_sz_t)words;
duke@435 531 }
duke@435 532
jcoomes@810 533 inline void ParallelCompactData::RegionData::decrement_destination_count()
duke@435 534 {
duke@435 535 assert(_dc_and_los < dc_claimed, "already claimed");
duke@435 536 assert(_dc_and_los >= dc_one, "count would go negative");
duke@435 537 Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
duke@435 538 }
duke@435 539
jcoomes@810 540 inline HeapWord* ParallelCompactData::RegionData::data_location() const
duke@435 541 {
duke@435 542 DEBUG_ONLY(return _data_location;)
duke@435 543 NOT_DEBUG(return NULL;)
duke@435 544 }
duke@435 545
jcoomes@810 546 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
duke@435 547 {
duke@435 548 DEBUG_ONLY(return _highest_ref;)
duke@435 549 NOT_DEBUG(return NULL;)
duke@435 550 }
duke@435 551
jcoomes@810 552 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
duke@435 553 {
duke@435 554 DEBUG_ONLY(_data_location = addr;)
duke@435 555 }
duke@435 556
jcoomes@810 557 inline void ParallelCompactData::RegionData::set_completed()
duke@435 558 {
duke@435 559 assert(claimed(), "must be claimed first");
jcoomes@810 560 _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
duke@435 561 }
duke@435 562
jcoomes@810 563 // MT-unsafe claiming of a region. Should only be used during single threaded
duke@435 564 // execution.
jcoomes@810 565 inline bool ParallelCompactData::RegionData::claim_unsafe()
duke@435 566 {
duke@435 567 if (available()) {
duke@435 568 _dc_and_los |= dc_claimed;
duke@435 569 return true;
duke@435 570 }
duke@435 571 return false;
duke@435 572 }
duke@435 573
jcoomes@810 574 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
duke@435 575 {
duke@435 576 assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
duke@435 577 Atomic::add((int) words, (volatile int*) &_dc_and_los);
duke@435 578 }
duke@435 579
jcoomes@810 580 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
duke@435 581 {
duke@435 582 #ifdef ASSERT
duke@435 583 HeapWord* tmp = _highest_ref;
duke@435 584 while (addr > tmp) {
duke@435 585 tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
duke@435 586 }
duke@435 587 #endif // #ifdef ASSERT
duke@435 588 }
duke@435 589
jcoomes@810 590 inline bool ParallelCompactData::RegionData::claim()
duke@435 591 {
duke@435 592 const int los = (int) live_obj_size();
duke@435 593 const int old = Atomic::cmpxchg(dc_claimed | los,
duke@435 594 (volatile int*) &_dc_and_los, los);
duke@435 595 return old == los;
duke@435 596 }
duke@435 597
jcoomes@810 598 inline ParallelCompactData::RegionData*
jcoomes@810 599 ParallelCompactData::region(size_t region_idx) const
duke@435 600 {
jcoomes@810 601 assert(region_idx <= region_count(), "bad arg");
jcoomes@810 602 return _region_data + region_idx;
duke@435 603 }
duke@435 604
duke@435 605 inline size_t
jcoomes@810 606 ParallelCompactData::region(const RegionData* const region_ptr) const
duke@435 607 {
jcoomes@810 608 assert(region_ptr >= _region_data, "bad arg");
jcoomes@810 609 assert(region_ptr <= _region_data + region_count(), "bad arg");
jcoomes@810 610 return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
duke@435 611 }
duke@435 612
jcoomes@5201 613 inline ParallelCompactData::BlockData*
jcoomes@5201 614 ParallelCompactData::block(size_t n) const {
jcoomes@5201 615 assert(n < block_count(), "bad arg");
jcoomes@5201 616 return _block_data + n;
jcoomes@5201 617 }
jcoomes@5201 618
duke@435 619 inline size_t
jcoomes@810 620 ParallelCompactData::region_offset(const HeapWord* addr) const
duke@435 621 {
duke@435 622 assert(addr >= _region_start, "bad addr");
duke@435 623 assert(addr <= _region_end, "bad addr");
jcoomes@810 624 return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
duke@435 625 }
duke@435 626
duke@435 627 inline size_t
jcoomes@810 628 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
duke@435 629 {
duke@435 630 assert(addr >= _region_start, "bad addr");
duke@435 631 assert(addr <= _region_end, "bad addr");
jcoomes@810 632 return pointer_delta(addr, _region_start) >> Log2RegionSize;
duke@435 633 }
duke@435 634
jcoomes@810 635 inline ParallelCompactData::RegionData*
jcoomes@810 636 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
duke@435 637 {
jcoomes@810 638 return region(addr_to_region_idx(addr));
duke@435 639 }
duke@435 640
duke@435 641 inline HeapWord*
jcoomes@810 642 ParallelCompactData::region_to_addr(size_t region) const
duke@435 643 {
jcoomes@810 644 assert(region <= _region_count, "region out of range");
jcoomes@810 645 return _region_start + (region << Log2RegionSize);
duke@435 646 }
duke@435 647
duke@435 648 inline HeapWord*
jcoomes@810 649 ParallelCompactData::region_to_addr(const RegionData* region) const
duke@435 650 {
jcoomes@810 651 return region_to_addr(pointer_delta(region, _region_data,
jcoomes@810 652 sizeof(RegionData)));
duke@435 653 }
duke@435 654
duke@435 655 inline HeapWord*
jcoomes@810 656 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
duke@435 657 {
jcoomes@810 658 assert(region <= _region_count, "region out of range");
jcoomes@810 659 assert(offset < RegionSize, "offset too big"); // This may be too strict.
jcoomes@810 660 return region_to_addr(region) + offset;
duke@435 661 }
duke@435 662
duke@435 663 inline HeapWord*
jcoomes@810 664 ParallelCompactData::region_align_down(HeapWord* addr) const
duke@435 665 {
duke@435 666 assert(addr >= _region_start, "bad addr");
jcoomes@810 667 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@810 668 return (HeapWord*)(size_t(addr) & RegionAddrMask);
duke@435 669 }
duke@435 670
duke@435 671 inline HeapWord*
jcoomes@810 672 ParallelCompactData::region_align_up(HeapWord* addr) const
duke@435 673 {
duke@435 674 assert(addr >= _region_start, "bad addr");
duke@435 675 assert(addr <= _region_end, "bad addr");
jcoomes@810 676 return region_align_down(addr + RegionSizeOffsetMask);
duke@435 677 }
duke@435 678
duke@435 679 inline bool
jcoomes@810 680 ParallelCompactData::is_region_aligned(HeapWord* addr) const
duke@435 681 {
jcoomes@810 682 return region_offset(addr) == 0;
duke@435 683 }
duke@435 684
jcoomes@5201 685 inline size_t
jcoomes@5201 686 ParallelCompactData::block_offset(const HeapWord* addr) const
jcoomes@5201 687 {
jcoomes@5201 688 assert(addr >= _region_start, "bad addr");
jcoomes@5201 689 assert(addr <= _region_end, "bad addr");
jcoomes@5201 690 return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
jcoomes@5201 691 }
jcoomes@5201 692
jcoomes@5201 693 inline size_t
jcoomes@5201 694 ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
jcoomes@5201 695 {
jcoomes@5201 696 assert(addr >= _region_start, "bad addr");
jcoomes@5201 697 assert(addr <= _region_end, "bad addr");
jcoomes@5201 698 return pointer_delta(addr, _region_start) >> Log2BlockSize;
jcoomes@5201 699 }
jcoomes@5201 700
jcoomes@5201 701 inline ParallelCompactData::BlockData*
jcoomes@5201 702 ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
jcoomes@5201 703 {
jcoomes@5201 704 return block(addr_to_block_idx(addr));
jcoomes@5201 705 }
jcoomes@5201 706
jcoomes@5201 707 inline HeapWord*
jcoomes@5201 708 ParallelCompactData::block_to_addr(size_t block) const
jcoomes@5201 709 {
jcoomes@5201 710 assert(block < _block_count, "block out of range");
jcoomes@5201 711 return _region_start + (block << Log2BlockSize);
jcoomes@5201 712 }
jcoomes@5201 713
jcoomes@5201 714 inline size_t
jcoomes@5201 715 ParallelCompactData::region_to_block_idx(size_t region) const
jcoomes@5201 716 {
jcoomes@5201 717 return region << Log2BlocksPerRegion;
jcoomes@5201 718 }
jcoomes@5201 719
jcoomes@5201 720 inline HeapWord*
jcoomes@5201 721 ParallelCompactData::block_align_down(HeapWord* addr) const
jcoomes@5201 722 {
jcoomes@5201 723 assert(addr >= _region_start, "bad addr");
jcoomes@5201 724 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@5201 725 return (HeapWord*)(size_t(addr) & BlockAddrMask);
jcoomes@5201 726 }
jcoomes@5201 727
jcoomes@5201 728 inline HeapWord*
jcoomes@5201 729 ParallelCompactData::block_align_up(HeapWord* addr) const
jcoomes@5201 730 {
jcoomes@5201 731 assert(addr >= _region_start, "bad addr");
jcoomes@5201 732 assert(addr <= _region_end, "bad addr");
jcoomes@5201 733 return block_align_down(addr + BlockSizeOffsetMask);
jcoomes@5201 734 }
jcoomes@5201 735
jcoomes@5201 736 inline bool
jcoomes@5201 737 ParallelCompactData::is_block_aligned(HeapWord* addr) const
jcoomes@5201 738 {
jcoomes@5201 739 return block_offset(addr) == 0;
jcoomes@5201 740 }
jcoomes@5201 741
duke@435 742 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
duke@435 743 // do_addr() method.
duke@435 744 //
duke@435 745 // The closure is initialized with the number of heap words to process
duke@435 746 // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
duke@435 747 // methods in subclasses should update the total as words are processed. Since
duke@435 748 // only one subclass actually uses this mechanism to terminate iteration, the
duke@435 749 // default initial value is > 0. The implementation is here and not in the
duke@435 750 // single subclass that uses it to avoid making is_full() virtual, and thus
duke@435 751 // adding a virtual call per live object.
duke@435 752
duke@435 753 class ParMarkBitMapClosure: public StackObj {
duke@435 754 public:
duke@435 755 typedef ParMarkBitMap::idx_t idx_t;
duke@435 756 typedef ParMarkBitMap::IterationStatus IterationStatus;
duke@435 757
duke@435 758 public:
duke@435 759 inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
duke@435 760 size_t words = max_uintx);
duke@435 761
duke@435 762 inline ParCompactionManager* compaction_manager() const;
duke@435 763 inline ParMarkBitMap* bitmap() const;
duke@435 764 inline size_t words_remaining() const;
duke@435 765 inline bool is_full() const;
duke@435 766 inline HeapWord* source() const;
duke@435 767
duke@435 768 inline void set_source(HeapWord* addr);
duke@435 769
duke@435 770 virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
duke@435 771
duke@435 772 protected:
duke@435 773 inline void decrement_words_remaining(size_t words);
duke@435 774
duke@435 775 private:
duke@435 776 ParMarkBitMap* const _bitmap;
duke@435 777 ParCompactionManager* const _compaction_manager;
duke@435 778 DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
duke@435 779 size_t _words_remaining; // Words left to copy.
duke@435 780
duke@435 781 protected:
duke@435 782 HeapWord* _source; // Next addr that would be read.
duke@435 783 };
duke@435 784
duke@435 785 inline
duke@435 786 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
duke@435 787 ParCompactionManager* cm,
duke@435 788 size_t words):
duke@435 789 _bitmap(bitmap), _compaction_manager(cm)
duke@435 790 #ifdef ASSERT
duke@435 791 , _initial_words_remaining(words)
duke@435 792 #endif
duke@435 793 {
duke@435 794 _words_remaining = words;
duke@435 795 _source = NULL;
duke@435 796 }
duke@435 797
duke@435 798 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
duke@435 799 return _compaction_manager;
duke@435 800 }
duke@435 801
duke@435 802 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
duke@435 803 return _bitmap;
duke@435 804 }
duke@435 805
duke@435 806 inline size_t ParMarkBitMapClosure::words_remaining() const {
duke@435 807 return _words_remaining;
duke@435 808 }
duke@435 809
duke@435 810 inline bool ParMarkBitMapClosure::is_full() const {
duke@435 811 return words_remaining() == 0;
duke@435 812 }
duke@435 813
duke@435 814 inline HeapWord* ParMarkBitMapClosure::source() const {
duke@435 815 return _source;
duke@435 816 }
duke@435 817
duke@435 818 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
duke@435 819 _source = addr;
duke@435 820 }
duke@435 821
duke@435 822 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
duke@435 823 assert(_words_remaining >= words, "processed too many words");
duke@435 824 _words_remaining -= words;
duke@435 825 }
duke@435 826
jcoomes@810 827 // The UseParallelOldGC collector is a stop-the-world garbage collector that
jcoomes@810 828 // does parts of the collection using parallel threads. The collection includes
jcoomes@810 829 // the tenured generation and the young generation. The permanent generation is
jcoomes@810 830 // collected at the same time as the other two generations but the permanent
jcoomes@810 831 // generation is collect by a single GC thread. The permanent generation is
jcoomes@810 832 // collected serially because of the requirement that during the processing of a
jcoomes@810 833 // klass AAA, any objects reference by AAA must already have been processed.
jcoomes@810 834 // This requirement is enforced by a left (lower address) to right (higher
jcoomes@810 835 // address) sliding compaction.
jmasa@698 836 //
jmasa@698 837 // There are four phases of the collection.
jmasa@698 838 //
jmasa@698 839 // - marking phase
jmasa@698 840 // - summary phase
jmasa@698 841 // - compacting phase
jmasa@698 842 // - clean up phase
jmasa@698 843 //
jmasa@698 844 // Roughly speaking these phases correspond, respectively, to
jmasa@698 845 // - mark all the live objects
jmasa@698 846 // - calculate the destination of each object at the end of the collection
jmasa@698 847 // - move the objects to their destination
jmasa@698 848 // - update some references and reinitialize some variables
jmasa@698 849 //
jcoomes@810 850 // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The
jcoomes@810 851 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
jcoomes@810 852 // complete marking of the heap. The summary phase is implemented in
jcoomes@810 853 // PSParallelCompact::summary_phase(). The move and update phase is implemented
jcoomes@810 854 // in PSParallelCompact::compact().
jmasa@698 855 //
jcoomes@810 856 // A space that is being collected is divided into regions and with each region
jcoomes@810 857 // is associated an object of type ParallelCompactData. Each region is of a
jcoomes@810 858 // fixed size and typically will contain more than 1 object and may have parts
jcoomes@810 859 // of objects at the front and back of the region.
jmasa@698 860 //
jcoomes@810 861 // region -----+---------------------+----------
jmasa@698 862 // objects covered [ AAA )[ BBB )[ CCC )[ DDD )
jmasa@698 863 //
jcoomes@810 864 // The marking phase does a complete marking of all live objects in the heap.
jcoomes@810 865 // The marking also compiles the size of the data for all live objects covered
jcoomes@810 866 // by the region. This size includes the part of any live object spanning onto
jcoomes@810 867 // the region (part of AAA if it is live) from the front, all live objects
jcoomes@810 868 // contained in the region (BBB and/or CCC if they are live), and the part of
jcoomes@810 869 // any live objects covered by the region that extends off the region (part of
jcoomes@810 870 // DDD if it is live). The marking phase uses multiple GC threads and marking
jcoomes@810 871 // is done in a bit array of type ParMarkBitMap. The marking of the bit map is
jcoomes@810 872 // done atomically as is the accumulation of the size of the live objects
jcoomes@810 873 // covered by a region.
jmasa@698 874 //
jcoomes@810 875 // The summary phase calculates the total live data to the left of each region
jcoomes@810 876 // XXX. Based on that total and the bottom of the space, it can calculate the
jcoomes@810 877 // starting location of the live data in XXX. The summary phase calculates for
jcoomes@810 878 // each region XXX quantites such as
jmasa@698 879 //
jcoomes@810 880 // - the amount of live data at the beginning of a region from an object
jcoomes@810 881 // entering the region.
jcoomes@810 882 // - the location of the first live data on the region
jcoomes@810 883 // - a count of the number of regions receiving live data from XXX.
jmasa@698 884 //
jmasa@698 885 // See ParallelCompactData for precise details. The summary phase also
jcoomes@810 886 // calculates the dense prefix for the compaction. The dense prefix is a
jcoomes@810 887 // portion at the beginning of the space that is not moved. The objects in the
jcoomes@810 888 // dense prefix do need to have their object references updated. See method
jcoomes@810 889 // summarize_dense_prefix().
jmasa@698 890 //
jmasa@698 891 // The summary phase is done using 1 GC thread.
jmasa@698 892 //
jcoomes@810 893 // The compaction phase moves objects to their new location and updates all
jcoomes@810 894 // references in the object.
jmasa@698 895 //
jcoomes@810 896 // A current exception is that objects that cross a region boundary are moved
jcoomes@810 897 // but do not have their references updated. References are not updated because
jcoomes@810 898 // it cannot easily be determined if the klass pointer KKK for the object AAA
jcoomes@810 899 // has been updated. KKK likely resides in a region to the left of the region
jcoomes@810 900 // containing AAA. These AAA's have there references updated at the end in a
jcoomes@810 901 // clean up phase. See the method PSParallelCompact::update_deferred_objects().
jcoomes@810 902 // An alternate strategy is being investigated for this deferral of updating.
jmasa@698 903 //
jcoomes@810 904 // Compaction is done on a region basis. A region that is ready to be filled is
jcoomes@810 905 // put on a ready list and GC threads take region off the list and fill them. A
jcoomes@810 906 // region is ready to be filled if it empty of live objects. Such a region may
jcoomes@810 907 // have been initially empty (only contained dead objects) or may have had all
jcoomes@810 908 // its live objects copied out already. A region that compacts into itself is
jcoomes@810 909 // also ready for filling. The ready list is initially filled with empty
jcoomes@810 910 // regions and regions compacting into themselves. There is always at least 1
jcoomes@810 911 // region that can be put on the ready list. The regions are atomically added
jcoomes@810 912 // and removed from the ready list.
jcoomes@810 913
duke@435 914 class PSParallelCompact : AllStatic {
duke@435 915 public:
duke@435 916 // Convenient access to type names.
duke@435 917 typedef ParMarkBitMap::idx_t idx_t;
jcoomes@810 918 typedef ParallelCompactData::RegionData RegionData;
jcoomes@5201 919 typedef ParallelCompactData::BlockData BlockData;
duke@435 920
duke@435 921 typedef enum {
coleenp@4037 922 old_space_id, eden_space_id,
duke@435 923 from_space_id, to_space_id, last_space_id
duke@435 924 } SpaceId;
duke@435 925
duke@435 926 public:
coleenp@548 927 // Inline closure decls
duke@435 928 //
duke@435 929 class IsAliveClosure: public BoolObjectClosure {
duke@435 930 public:
coleenp@548 931 virtual bool do_object_b(oop p);
duke@435 932 };
duke@435 933
duke@435 934 class KeepAliveClosure: public OopClosure {
coleenp@548 935 private:
coleenp@548 936 ParCompactionManager* _compaction_manager;
coleenp@548 937 protected:
coleenp@548 938 template <class T> inline void do_oop_work(T* p);
coleenp@548 939 public:
coleenp@548 940 KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 941 virtual void do_oop(oop* p);
coleenp@548 942 virtual void do_oop(narrowOop* p);
coleenp@548 943 };
coleenp@548 944
duke@435 945 class FollowStackClosure: public VoidClosure {
coleenp@548 946 private:
duke@435 947 ParCompactionManager* _compaction_manager;
duke@435 948 public:
coleenp@548 949 FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 950 virtual void do_void();
duke@435 951 };
duke@435 952
coleenp@4037 953 class AdjustPointerClosure: public OopClosure {
duke@435 954 public:
coleenp@548 955 virtual void do_oop(oop* p);
coleenp@548 956 virtual void do_oop(narrowOop* p);
jrose@1424 957 // do not walk from thread stacks to the code cache on this phase
jrose@1424 958 virtual void do_code_blob(CodeBlob* cb) const { }
duke@435 959 };
duke@435 960
coleenp@4037 961 class AdjustKlassClosure : public KlassClosure {
coleenp@4037 962 public:
coleenp@4037 963 void do_klass(Klass* klass);
coleenp@4037 964 };
coleenp@4037 965
duke@435 966 friend class KeepAliveClosure;
duke@435 967 friend class FollowStackClosure;
duke@435 968 friend class AdjustPointerClosure;
coleenp@4037 969 friend class AdjustKlassClosure;
coleenp@4037 970 friend class FollowKlassClosure;
coleenp@4047 971 friend class InstanceClassLoaderKlass;
duke@435 972 friend class RefProcTaskProxy;
duke@435 973
duke@435 974 private:
duke@435 975 static elapsedTimer _accumulated_time;
duke@435 976 static unsigned int _total_invocations;
duke@435 977 static unsigned int _maximum_compaction_gc_num;
duke@435 978 static jlong _time_of_last_gc; // ms
duke@435 979 static CollectorCounters* _counters;
duke@435 980 static ParMarkBitMap _mark_bitmap;
duke@435 981 static ParallelCompactData _summary_data;
duke@435 982 static IsAliveClosure _is_alive_closure;
duke@435 983 static SpaceInfo _space_info[last_space_id];
duke@435 984 static bool _print_phases;
duke@435 985 static AdjustPointerClosure _adjust_pointer_closure;
coleenp@4037 986 static AdjustKlassClosure _adjust_klass_closure;
duke@435 987
duke@435 988 // Reference processing (used in ...follow_contents)
duke@435 989 static ReferenceProcessor* _ref_processor;
duke@435 990
duke@435 991 // Updated location of intArrayKlassObj.
coleenp@4037 992 static Klass* _updated_int_array_klass_obj;
duke@435 993
duke@435 994 // Values computed at initialization and used by dead_wood_limiter().
duke@435 995 static double _dwl_mean;
duke@435 996 static double _dwl_std_dev;
duke@435 997 static double _dwl_first_term;
duke@435 998 static double _dwl_adjustment;
duke@435 999 #ifdef ASSERT
duke@435 1000 static bool _dwl_initialized;
duke@435 1001 #endif // #ifdef ASSERT
duke@435 1002
duke@435 1003 private:
duke@435 1004
duke@435 1005 static void initialize_space_info();
duke@435 1006
duke@435 1007 // Return true if details about individual phases should be printed.
duke@435 1008 static inline bool print_phases();
duke@435 1009
duke@435 1010 // Clear the marking bitmap and summary data that cover the specified space.
duke@435 1011 static void clear_data_covering_space(SpaceId id);
duke@435 1012
duke@435 1013 static void pre_compact(PreGCValues* pre_gc_values);
duke@435 1014 static void post_compact();
duke@435 1015
duke@435 1016 // Mark live objects
duke@435 1017 static void marking_phase(ParCompactionManager* cm,
duke@435 1018 bool maximum_heap_compaction);
duke@435 1019
coleenp@548 1020 template <class T>
coleenp@548 1021 static inline void follow_root(ParCompactionManager* cm, T* p);
duke@435 1022
duke@435 1023 // Compute the dense prefix for the designated space. This is an experimental
duke@435 1024 // implementation currently not used in production.
duke@435 1025 static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
duke@435 1026 bool maximum_compaction);
duke@435 1027
duke@435 1028 // Methods used to compute the dense prefix.
duke@435 1029
duke@435 1030 // Compute the value of the normal distribution at x = density. The mean and
duke@435 1031 // standard deviation are values saved by initialize_dead_wood_limiter().
duke@435 1032 static inline double normal_distribution(double density);
duke@435 1033
duke@435 1034 // Initialize the static vars used by dead_wood_limiter().
duke@435 1035 static void initialize_dead_wood_limiter();
duke@435 1036
duke@435 1037 // Return the percentage of space that can be treated as "dead wood" (i.e.,
duke@435 1038 // not reclaimed).
duke@435 1039 static double dead_wood_limiter(double density, size_t min_percent);
duke@435 1040
jcoomes@810 1041 // Find the first (left-most) region in the range [beg, end) that has at least
duke@435 1042 // dead_words of dead space to the left. The argument beg must be the first
jcoomes@810 1043 // region in the space that is not completely live.
jcoomes@810 1044 static RegionData* dead_wood_limit_region(const RegionData* beg,
jcoomes@810 1045 const RegionData* end,
jcoomes@810 1046 size_t dead_words);
duke@435 1047
jcoomes@810 1048 // Return a pointer to the first region in the range [beg, end) that is not
duke@435 1049 // completely full.
jcoomes@810 1050 static RegionData* first_dead_space_region(const RegionData* beg,
jcoomes@810 1051 const RegionData* end);
duke@435 1052
duke@435 1053 // Return a value indicating the benefit or 'yield' if the compacted region
duke@435 1054 // were to start (or equivalently if the dense prefix were to end) at the
jcoomes@810 1055 // candidate region. Higher values are better.
duke@435 1056 //
duke@435 1057 // The value is based on the amount of space reclaimed vs. the costs of (a)
duke@435 1058 // updating references in the dense prefix plus (b) copying objects and
duke@435 1059 // updating references in the compacted region.
jcoomes@810 1060 static inline double reclaimed_ratio(const RegionData* const candidate,
duke@435 1061 HeapWord* const bottom,
duke@435 1062 HeapWord* const top,
duke@435 1063 HeapWord* const new_top);
duke@435 1064
duke@435 1065 // Compute the dense prefix for the designated space.
duke@435 1066 static HeapWord* compute_dense_prefix(const SpaceId id,
duke@435 1067 bool maximum_compaction);
duke@435 1068
jcoomes@810 1069 // Return true if dead space crosses onto the specified Region; bit must be
jcoomes@810 1070 // the bit index corresponding to the first word of the Region.
jcoomes@810 1071 static inline bool dead_space_crosses_boundary(const RegionData* region,
duke@435 1072 idx_t bit);
duke@435 1073
duke@435 1074 // Summary phase utility routine to fill dead space (if any) at the dense
duke@435 1075 // prefix boundary. Should only be called if the the dense prefix is
duke@435 1076 // non-empty.
duke@435 1077 static void fill_dense_prefix_end(SpaceId id);
duke@435 1078
jcoomes@917 1079 // Clear the summary data source_region field for the specified addresses.
jcoomes@917 1080 static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
jcoomes@917 1081
jcoomes@918 1082 #ifndef PRODUCT
jcoomes@918 1083 // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
jcoomes@918 1084
jcoomes@918 1085 // Fill the region [start, start + words) with live object(s). Only usable
jcoomes@918 1086 // for the old and permanent generations.
jcoomes@918 1087 static void fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 1088 size_t words);
jcoomes@918 1089 // Include the new objects in the summary data.
jcoomes@918 1090 static void summarize_new_objects(SpaceId id, HeapWord* start);
jcoomes@918 1091
jcoomes@931 1092 // Add live objects to a survivor space since it's rare that both survivors
jcoomes@931 1093 // are non-empty.
jcoomes@931 1094 static void provoke_split_fill_survivor(SpaceId id);
jcoomes@931 1095
jcoomes@918 1096 // Add live objects and/or choose the dense prefix to provoke splitting.
jcoomes@918 1097 static void provoke_split(bool & maximum_compaction);
jcoomes@918 1098 #endif
jcoomes@918 1099
duke@435 1100 static void summarize_spaces_quick();
duke@435 1101 static void summarize_space(SpaceId id, bool maximum_compaction);
duke@435 1102 static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
duke@435 1103
duke@435 1104 // Adjust addresses in roots. Does not adjust addresses in heap.
duke@435 1105 static void adjust_roots();
duke@435 1106
jcoomes@5201 1107 DEBUG_ONLY(static void write_block_fill_histogram(outputStream* const out);)
jcoomes@5201 1108
duke@435 1109 // Move objects to new locations.
duke@435 1110 static void compact_perm(ParCompactionManager* cm);
duke@435 1111 static void compact();
duke@435 1112
jcoomes@810 1113 // Add available regions to the stack and draining tasks to the task queue.
jcoomes@810 1114 static void enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 1115 uint parallel_gc_threads);
duke@435 1116
duke@435 1117 // Add dense prefix update tasks to the task queue.
duke@435 1118 static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 1119 uint parallel_gc_threads);
duke@435 1120
jcoomes@810 1121 // Add region stealing tasks to the task queue.
jcoomes@810 1122 static void enqueue_region_stealing_tasks(
duke@435 1123 GCTaskQueue* q,
duke@435 1124 ParallelTaskTerminator* terminator_ptr,
duke@435 1125 uint parallel_gc_threads);
duke@435 1126
duke@435 1127 // If objects are left in eden after a collection, try to move the boundary
duke@435 1128 // and absorb them into the old gen. Returns true if eden was emptied.
duke@435 1129 static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 1130 PSYoungGen* young_gen,
duke@435 1131 PSOldGen* old_gen);
duke@435 1132
duke@435 1133 // Reset time since last full gc
duke@435 1134 static void reset_millis_since_last_gc();
duke@435 1135
duke@435 1136 public:
duke@435 1137 class MarkAndPushClosure: public OopClosure {
coleenp@548 1138 private:
duke@435 1139 ParCompactionManager* _compaction_manager;
duke@435 1140 public:
coleenp@548 1141 MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 1142 virtual void do_oop(oop* p);
coleenp@548 1143 virtual void do_oop(narrowOop* p);
duke@435 1144 };
duke@435 1145
coleenp@4037 1146 // The one and only place to start following the classes.
coleenp@4037 1147 // Should only be applied to the ClassLoaderData klasses list.
coleenp@4037 1148 class FollowKlassClosure : public KlassClosure {
coleenp@4037 1149 private:
coleenp@4037 1150 MarkAndPushClosure* _mark_and_push_closure;
coleenp@4037 1151 public:
coleenp@4037 1152 FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
coleenp@4037 1153 _mark_and_push_closure(mark_and_push_closure) { }
coleenp@4037 1154 void do_klass(Klass* klass);
coleenp@4037 1155 };
coleenp@4037 1156
duke@435 1157 PSParallelCompact();
duke@435 1158
duke@435 1159 // Convenient accessor for Universe::heap().
duke@435 1160 static ParallelScavengeHeap* gc_heap() {
duke@435 1161 return (ParallelScavengeHeap*)Universe::heap();
duke@435 1162 }
duke@435 1163
duke@435 1164 static void invoke(bool maximum_heap_compaction);
jcoomes@3540 1165 static bool invoke_no_policy(bool maximum_heap_compaction);
duke@435 1166
duke@435 1167 static void post_initialize();
duke@435 1168 // Perform initialization for PSParallelCompact that requires
duke@435 1169 // allocations. This should be called during the VM initialization
duke@435 1170 // at a pointer where it would be appropriate to return a JNI_ENOMEM
duke@435 1171 // in the event of a failure.
duke@435 1172 static bool initialize();
duke@435 1173
coleenp@4037 1174 // Closure accessors
coleenp@4037 1175 static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
coleenp@4037 1176 static KlassClosure* adjust_klass_closure() { return (KlassClosure*)&_adjust_klass_closure; }
coleenp@4037 1177 static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
coleenp@4037 1178
duke@435 1179 // Public accessors
duke@435 1180 static elapsedTimer* accumulated_time() { return &_accumulated_time; }
duke@435 1181 static unsigned int total_invocations() { return _total_invocations; }
duke@435 1182 static CollectorCounters* counters() { return _counters; }
duke@435 1183
duke@435 1184 // Used to add tasks
duke@435 1185 static GCTaskManager* const gc_task_manager();
coleenp@4037 1186 static Klass* updated_int_array_klass_obj() {
duke@435 1187 return _updated_int_array_klass_obj;
duke@435 1188 }
duke@435 1189
duke@435 1190 // Marking support
duke@435 1191 static inline bool mark_obj(oop obj);
coleenp@4037 1192 static inline bool is_marked(oop obj);
coleenp@548 1193 // Check mark and maybe push on marking stack
coleenp@548 1194 template <class T> static inline void mark_and_push(ParCompactionManager* cm,
coleenp@548 1195 T* p);
stefank@5011 1196 template <class T> static inline void adjust_pointer(T* p);
duke@435 1197
coleenp@4037 1198 static void follow_klass(ParCompactionManager* cm, Klass* klass);
coleenp@4037 1199 static void adjust_klass(ParCompactionManager* cm, Klass* klass);
coleenp@4037 1200
coleenp@4037 1201 static void follow_class_loader(ParCompactionManager* cm,
coleenp@4037 1202 ClassLoaderData* klass);
coleenp@4037 1203 static void adjust_class_loader(ParCompactionManager* cm,
coleenp@4037 1204 ClassLoaderData* klass);
coleenp@4037 1205
duke@435 1206 // Compaction support.
duke@435 1207 // Return true if p is in the range [beg_addr, end_addr).
duke@435 1208 static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1209 static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1210
duke@435 1211 // Convenience wrappers for per-space data kept in _space_info.
duke@435 1212 static inline MutableSpace* space(SpaceId space_id);
duke@435 1213 static inline HeapWord* new_top(SpaceId space_id);
duke@435 1214 static inline HeapWord* dense_prefix(SpaceId space_id);
duke@435 1215 static inline ObjectStartArray* start_array(SpaceId space_id);
duke@435 1216
duke@435 1217 // Move and update the live objects in the specified space.
duke@435 1218 static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
duke@435 1219
jcoomes@810 1220 // Process the end of the given region range in the dense prefix.
duke@435 1221 // This includes saving any object not updated.
jcoomes@810 1222 static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
jcoomes@810 1223 size_t region_start_index,
jcoomes@810 1224 size_t region_end_index,
jcoomes@810 1225 idx_t exiting_object_offset,
jcoomes@810 1226 idx_t region_offset_start,
jcoomes@810 1227 idx_t region_offset_end);
duke@435 1228
jcoomes@810 1229 // Update a region in the dense prefix. For each live object
jcoomes@810 1230 // in the region, update it's interior references. For each
duke@435 1231 // dead object, fill it with deadwood. Dead space at the end
jcoomes@810 1232 // of a region range will be filled to the start of the next
jcoomes@810 1233 // live object regardless of the region_index_end. None of the
duke@435 1234 // objects in the dense prefix move and dead space is dead
duke@435 1235 // (holds only dead objects that don't need any processing), so
duke@435 1236 // dead space can be filled in any order.
duke@435 1237 static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 1238 SpaceId space_id,
jcoomes@810 1239 size_t region_index_start,
jcoomes@810 1240 size_t region_index_end);
duke@435 1241
duke@435 1242 // Return the address of the count + 1st live word in the range [beg, end).
duke@435 1243 static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
duke@435 1244
duke@435 1245 // Return the address of the word to be copied to dest_addr, which must be
jcoomes@810 1246 // aligned to a region boundary.
duke@435 1247 static HeapWord* first_src_addr(HeapWord* const dest_addr,
jcoomes@917 1248 SpaceId src_space_id,
jcoomes@810 1249 size_t src_region_idx);
duke@435 1250
jcoomes@810 1251 // Determine the next source region, set closure.source() to the start of the
jcoomes@810 1252 // new region return the region index. Parameter end_addr is the address one
duke@435 1253 // beyond the end of source range just processed. If necessary, switch to a
duke@435 1254 // new source space and set src_space_id (in-out parameter) and src_space_top
duke@435 1255 // (out parameter) accordingly.
jcoomes@810 1256 static size_t next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 1257 SpaceId& src_space_id,
jcoomes@810 1258 HeapWord*& src_space_top,
jcoomes@810 1259 HeapWord* end_addr);
duke@435 1260
jcoomes@810 1261 // Decrement the destination count for each non-empty source region in the
jcoomes@930 1262 // range [beg_region, region(region_align_up(end_addr))). If the destination
jcoomes@930 1263 // count for a region goes to 0 and it needs to be filled, enqueue it.
duke@435 1264 static void decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 1265 SpaceId src_space_id,
jcoomes@810 1266 size_t beg_region,
duke@435 1267 HeapWord* end_addr);
duke@435 1268
jcoomes@810 1269 // Fill a region, copying objects from one or more source regions.
jcoomes@810 1270 static void fill_region(ParCompactionManager* cm, size_t region_idx);
jcoomes@810 1271 static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
jcoomes@810 1272 fill_region(cm, region);
duke@435 1273 }
duke@435 1274
jcoomes@5201 1275 // Fill in the block table for the specified region.
jcoomes@5201 1276 static void fill_blocks(size_t region_idx);
jcoomes@5201 1277
duke@435 1278 // Update the deferred objects in the space.
duke@435 1279 static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
duke@435 1280
duke@435 1281 static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
duke@435 1282 static ParallelCompactData& summary_data() { return _summary_data; }
duke@435 1283
duke@435 1284 // Reference Processing
duke@435 1285 static ReferenceProcessor* const ref_processor() { return _ref_processor; }
duke@435 1286
duke@435 1287 // Return the SpaceId for the given address.
duke@435 1288 static SpaceId space_id(HeapWord* addr);
duke@435 1289
duke@435 1290 // Time since last full gc (in milliseconds).
duke@435 1291 static jlong millis_since_last_gc();
duke@435 1292
stefank@4904 1293 static void print_on_error(outputStream* st);
stefank@4904 1294
duke@435 1295 #ifndef PRODUCT
duke@435 1296 // Debugging support.
duke@435 1297 static const char* space_names[last_space_id];
jcoomes@810 1298 static void print_region_ranges();
duke@435 1299 static void print_dense_prefix_stats(const char* const algorithm,
duke@435 1300 const SpaceId id,
duke@435 1301 const bool maximum_compaction,
duke@435 1302 HeapWord* const addr);
jcoomes@917 1303 static void summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1304 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1305 SpaceId src_space_id,
jcoomes@917 1306 HeapWord* src_beg, HeapWord* src_end);
duke@435 1307 #endif // #ifndef PRODUCT
duke@435 1308
duke@435 1309 #ifdef ASSERT
jcoomes@930 1310 // Sanity check the new location of a word in the heap.
jcoomes@930 1311 static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
jcoomes@810 1312 // Verify that all the regions have been emptied.
duke@435 1313 static void verify_complete(SpaceId space_id);
duke@435 1314 #endif // #ifdef ASSERT
duke@435 1315 };
duke@435 1316
coleenp@548 1317 inline bool PSParallelCompact::mark_obj(oop obj) {
duke@435 1318 const int obj_size = obj->size();
duke@435 1319 if (mark_bitmap()->mark_obj(obj, obj_size)) {
duke@435 1320 _summary_data.add_obj(obj, obj_size);
duke@435 1321 return true;
duke@435 1322 } else {
duke@435 1323 return false;
duke@435 1324 }
duke@435 1325 }
duke@435 1326
coleenp@4037 1327 inline bool PSParallelCompact::is_marked(oop obj) {
coleenp@4037 1328 return mark_bitmap()->is_marked(obj);
coleenp@4037 1329 }
coleenp@4037 1330
coleenp@548 1331 template <class T>
coleenp@548 1332 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
coleenp@548 1333 assert(!Universe::heap()->is_in_reserved(p),
coleenp@548 1334 "roots shouldn't be things within the heap");
johnc@4384 1335
coleenp@548 1336 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1337 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1338 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1339 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1340 if (mark_obj(obj)) {
coleenp@548 1341 obj->follow_contents(cm);
coleenp@548 1342 }
coleenp@548 1343 }
coleenp@548 1344 }
jcoomes@1746 1345 cm->follow_marking_stacks();
coleenp@548 1346 }
coleenp@548 1347
coleenp@548 1348 template <class T>
coleenp@548 1349 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
coleenp@548 1350 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1351 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1352 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
jcoomes@1993 1353 if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
jcoomes@1993 1354 cm->push(obj);
coleenp@548 1355 }
coleenp@548 1356 }
coleenp@548 1357 }
coleenp@548 1358
coleenp@548 1359 template <class T>
stefank@5011 1360 inline void PSParallelCompact::adjust_pointer(T* p) {
coleenp@548 1361 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1362 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1363 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1364 oop new_obj = (oop)summary_data().calc_new_pointer(obj);
coleenp@4037 1365 assert(new_obj != NULL, // is forwarding ptr?
coleenp@548 1366 "should be forwarded");
coleenp@548 1367 // Just always do the update unconditionally?
coleenp@548 1368 if (new_obj != NULL) {
coleenp@548 1369 assert(Universe::heap()->is_in_reserved(new_obj),
coleenp@548 1370 "should be in object space");
coleenp@548 1371 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
coleenp@548 1372 }
coleenp@548 1373 }
coleenp@548 1374 }
coleenp@548 1375
coleenp@548 1376 template <class T>
coleenp@548 1377 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 1378 mark_and_push(_compaction_manager, p);
coleenp@548 1379 }
coleenp@548 1380
coleenp@548 1381 inline bool PSParallelCompact::print_phases() {
duke@435 1382 return _print_phases;
duke@435 1383 }
duke@435 1384
coleenp@548 1385 inline double PSParallelCompact::normal_distribution(double density) {
duke@435 1386 assert(_dwl_initialized, "uninitialized");
duke@435 1387 const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
duke@435 1388 return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
duke@435 1389 }
duke@435 1390
duke@435 1391 inline bool
jcoomes@810 1392 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
duke@435 1393 idx_t bit)
duke@435 1394 {
jcoomes@810 1395 assert(bit > 0, "cannot call this for the first bit/region");
jcoomes@810 1396 assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
duke@435 1397 "sanity check");
duke@435 1398
duke@435 1399 // Dead space crosses the boundary if (1) a partial object does not extend
jcoomes@810 1400 // onto the region, (2) an object does not start at the beginning of the
jcoomes@810 1401 // region, and (3) an object does not end at the end of the prior region.
jcoomes@810 1402 return region->partial_obj_size() == 0 &&
duke@435 1403 !_mark_bitmap.is_obj_beg(bit) &&
duke@435 1404 !_mark_bitmap.is_obj_end(bit - 1);
duke@435 1405 }
duke@435 1406
duke@435 1407 inline bool
duke@435 1408 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1409 return p >= beg_addr && p < end_addr;
duke@435 1410 }
duke@435 1411
duke@435 1412 inline bool
duke@435 1413 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1414 return is_in((HeapWord*)p, beg_addr, end_addr);
duke@435 1415 }
duke@435 1416
duke@435 1417 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
duke@435 1418 assert(id < last_space_id, "id out of range");
duke@435 1419 return _space_info[id].space();
duke@435 1420 }
duke@435 1421
duke@435 1422 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
duke@435 1423 assert(id < last_space_id, "id out of range");
duke@435 1424 return _space_info[id].new_top();
duke@435 1425 }
duke@435 1426
duke@435 1427 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
duke@435 1428 assert(id < last_space_id, "id out of range");
duke@435 1429 return _space_info[id].dense_prefix();
duke@435 1430 }
duke@435 1431
duke@435 1432 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
duke@435 1433 assert(id < last_space_id, "id out of range");
duke@435 1434 return _space_info[id].start_array();
duke@435 1435 }
duke@435 1436
jcoomes@930 1437 #ifdef ASSERT
jcoomes@930 1438 inline void
jcoomes@930 1439 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
jcoomes@930 1440 {
jcoomes@930 1441 assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
jcoomes@930 1442 "must move left or to a different space");
kvn@1926 1443 assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
kvn@1926 1444 "checking alignment");
jcoomes@930 1445 }
jcoomes@930 1446 #endif // ASSERT
jcoomes@930 1447
duke@435 1448 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
duke@435 1449 public:
duke@435 1450 inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
duke@435 1451 ObjectStartArray* start_array,
duke@435 1452 HeapWord* destination, size_t words);
duke@435 1453
duke@435 1454 // Accessors.
duke@435 1455 HeapWord* destination() const { return _destination; }
duke@435 1456
duke@435 1457 // If the object will fit (size <= words_remaining()), copy it to the current
duke@435 1458 // destination, update the interior oops and the start array and return either
duke@435 1459 // full (if the closure is full) or incomplete. If the object will not fit,
duke@435 1460 // return would_overflow.
duke@435 1461 virtual IterationStatus do_addr(HeapWord* addr, size_t size);
duke@435 1462
duke@435 1463 // Copy enough words to fill this closure, starting at source(). Interior
duke@435 1464 // oops and the start array are not updated. Return full.
duke@435 1465 IterationStatus copy_until_full();
duke@435 1466
duke@435 1467 // Copy enough words to fill this closure or to the end of an object,
duke@435 1468 // whichever is smaller, starting at source(). Interior oops and the start
duke@435 1469 // array are not updated.
duke@435 1470 void copy_partial_obj();
duke@435 1471
duke@435 1472 protected:
duke@435 1473 // Update variables to indicate that word_count words were processed.
duke@435 1474 inline void update_state(size_t word_count);
duke@435 1475
duke@435 1476 protected:
duke@435 1477 ObjectStartArray* const _start_array;
duke@435 1478 HeapWord* _destination; // Next addr to be written.
duke@435 1479 };
duke@435 1480
duke@435 1481 inline
duke@435 1482 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
duke@435 1483 ParCompactionManager* cm,
duke@435 1484 ObjectStartArray* start_array,
duke@435 1485 HeapWord* destination,
duke@435 1486 size_t words) :
duke@435 1487 ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
duke@435 1488 {
duke@435 1489 _destination = destination;
duke@435 1490 }
duke@435 1491
duke@435 1492 inline void MoveAndUpdateClosure::update_state(size_t words)
duke@435 1493 {
duke@435 1494 decrement_words_remaining(words);
duke@435 1495 _source += words;
duke@435 1496 _destination += words;
duke@435 1497 }
duke@435 1498
duke@435 1499 class UpdateOnlyClosure: public ParMarkBitMapClosure {
duke@435 1500 private:
duke@435 1501 const PSParallelCompact::SpaceId _space_id;
duke@435 1502 ObjectStartArray* const _start_array;
duke@435 1503
duke@435 1504 public:
duke@435 1505 UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 1506 ParCompactionManager* cm,
duke@435 1507 PSParallelCompact::SpaceId space_id);
duke@435 1508
duke@435 1509 // Update the object.
duke@435 1510 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 1511
duke@435 1512 inline void do_addr(HeapWord* addr);
duke@435 1513 };
duke@435 1514
coleenp@548 1515 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
coleenp@548 1516 {
duke@435 1517 _start_array->allocate_block(addr);
duke@435 1518 oop(addr)->update_contents(compaction_manager());
duke@435 1519 }
duke@435 1520
jcoomes@916 1521 class FillClosure: public ParMarkBitMapClosure
jcoomes@916 1522 {
jcoomes@916 1523 public:
coleenp@548 1524 FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
duke@435 1525 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
jcoomes@916 1526 _start_array(PSParallelCompact::start_array(space_id))
jcoomes@916 1527 {
coleenp@4037 1528 assert(space_id == PSParallelCompact::old_space_id,
duke@435 1529 "cannot use FillClosure in the young gen");
duke@435 1530 }
duke@435 1531
duke@435 1532 virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
jcoomes@916 1533 CollectedHeap::fill_with_objects(addr, size);
jcoomes@916 1534 HeapWord* const end = addr + size;
jcoomes@916 1535 do {
jcoomes@916 1536 _start_array->allocate_block(addr);
jcoomes@916 1537 addr += oop(addr)->size();
jcoomes@916 1538 } while (addr < end);
duke@435 1539 return ParMarkBitMap::incomplete;
duke@435 1540 }
duke@435 1541
duke@435 1542 private:
jcoomes@916 1543 ObjectStartArray* const _start_array;
duke@435 1544 };
stefank@2314 1545
stefank@2314 1546 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial