src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Mon, 20 May 2013 10:44:33 -0700

author
tamao
date
Mon, 20 May 2013 10:44:33 -0700
changeset 5161
10f759898d40
parent 5159
001ec9515f84
child 5201
5534bd30c151
permissions
-rw-r--r--

7186737: Unable to allocate bit maps or card tables for parallel gc for the requested heap
Summary: Print helpful error message when VM aborts due to inability of allocating bit maps or card tables
Reviewed-by: jmasa, stefank
Contributed-by: tamao <tao.mao@oracle.com>

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
    28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
    29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
    30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
    31 #include "gc_implementation/shared/collectorCounters.hpp"
    32 #include "gc_implementation/shared/markSweep.hpp"
    33 #include "gc_implementation/shared/mutableSpace.hpp"
    34 #include "memory/sharedHeap.hpp"
    35 #include "oops/oop.hpp"
    37 class ParallelScavengeHeap;
    38 class PSAdaptiveSizePolicy;
    39 class PSYoungGen;
    40 class PSOldGen;
    41 class ParCompactionManager;
    42 class ParallelTaskTerminator;
    43 class PSParallelCompact;
    44 class GCTaskManager;
    45 class GCTaskQueue;
    46 class PreGCValues;
    47 class MoveAndUpdateClosure;
    48 class RefProcTaskExecutor;
    50 // The SplitInfo class holds the information needed to 'split' a source region
    51 // so that the live data can be copied to two destination *spaces*.  Normally,
    52 // all the live data in a region is copied to a single destination space (e.g.,
    53 // everything live in a region in eden is copied entirely into the old gen).
    54 // However, when the heap is nearly full, all the live data in eden may not fit
    55 // into the old gen.  Copying only some of the regions from eden to old gen
    56 // requires finding a region that does not contain a partial object (i.e., no
    57 // live object crosses the region boundary) somewhere near the last object that
    58 // does fit into the old gen.  Since it's not always possible to find such a
    59 // region, splitting is necessary for predictable behavior.
    60 //
    61 // A region is always split at the end of the partial object.  This avoids
    62 // additional tests when calculating the new location of a pointer, which is a
    63 // very hot code path.  The partial object and everything to its left will be
    64 // copied to another space (call it dest_space_1).  The live data to the right
    65 // of the partial object will be copied either within the space itself, or to a
    66 // different destination space (distinct from dest_space_1).
    67 //
    68 // Split points are identified during the summary phase, when region
    69 // destinations are computed:  data about the split, including the
    70 // partial_object_size, is recorded in a SplitInfo record and the
    71 // partial_object_size field in the summary data is set to zero.  The zeroing is
    72 // possible (and necessary) since the partial object will move to a different
    73 // destination space than anything to its right, thus the partial object should
    74 // not affect the locations of any objects to its right.
    75 //
    76 // The recorded data is used during the compaction phase, but only rarely:  when
    77 // the partial object on the split region will be copied across a destination
    78 // region boundary.  This test is made once each time a region is filled, and is
    79 // a simple address comparison, so the overhead is negligible (see
    80 // PSParallelCompact::first_src_addr()).
    81 //
    82 // Notes:
    83 //
    84 // Only regions with partial objects are split; a region without a partial
    85 // object does not need any extra bookkeeping.
    86 //
    87 // At most one region is split per space, so the amount of data required is
    88 // constant.
    89 //
    90 // A region is split only when the destination space would overflow.  Once that
    91 // happens, the destination space is abandoned and no other data (even from
    92 // other source spaces) is targeted to that destination space.  Abandoning the
    93 // destination space may leave a somewhat large unused area at the end, if a
    94 // large object caused the overflow.
    95 //
    96 // Future work:
    97 //
    98 // More bookkeeping would be required to continue to use the destination space.
    99 // The most general solution would allow data from regions in two different
   100 // source spaces to be "joined" in a single destination region.  At the very
   101 // least, additional code would be required in next_src_region() to detect the
   102 // join and skip to an out-of-order source region.  If the join region was also
   103 // the last destination region to which a split region was copied (the most
   104 // likely case), then additional work would be needed to get fill_region() to
   105 // stop iteration and switch to a new source region at the right point.  Basic
   106 // idea would be to use a fake value for the top of the source space.  It is
   107 // doable, if a bit tricky.
   108 //
   109 // A simpler (but less general) solution would fill the remainder of the
   110 // destination region with a dummy object and continue filling the next
   111 // destination region.
   113 class SplitInfo
   114 {
   115 public:
   116   // Return true if this split info is valid (i.e., if a split has been
   117   // recorded).  The very first region cannot have a partial object and thus is
   118   // never split, so 0 is the 'invalid' value.
   119   bool is_valid() const { return _src_region_idx > 0; }
   121   // Return true if this split holds data for the specified source region.
   122   inline bool is_split(size_t source_region) const;
   124   // The index of the split region, the size of the partial object on that
   125   // region and the destination of the partial object.
   126   size_t    src_region_idx() const   { return _src_region_idx; }
   127   size_t    partial_obj_size() const { return _partial_obj_size; }
   128   HeapWord* destination() const      { return _destination; }
   130   // The destination count of the partial object referenced by this split
   131   // (either 1 or 2).  This must be added to the destination count of the
   132   // remainder of the source region.
   133   unsigned int destination_count() const { return _destination_count; }
   135   // If a word within the partial object will be written to the first word of a
   136   // destination region, this is the address of the destination region;
   137   // otherwise this is NULL.
   138   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
   140   // If a word within the partial object will be written to the first word of a
   141   // destination region, this is the address of that word within the partial
   142   // object; otherwise this is NULL.
   143   HeapWord* first_src_addr() const       { return _first_src_addr; }
   145   // Record the data necessary to split the region src_region_idx.
   146   void record(size_t src_region_idx, size_t partial_obj_size,
   147               HeapWord* destination);
   149   void clear();
   151   DEBUG_ONLY(void verify_clear();)
   153 private:
   154   size_t       _src_region_idx;
   155   size_t       _partial_obj_size;
   156   HeapWord*    _destination;
   157   unsigned int _destination_count;
   158   HeapWord*    _dest_region_addr;
   159   HeapWord*    _first_src_addr;
   160 };
   162 inline bool SplitInfo::is_split(size_t region_idx) const
   163 {
   164   return _src_region_idx == region_idx && is_valid();
   165 }
   167 class SpaceInfo
   168 {
   169  public:
   170   MutableSpace* space() const { return _space; }
   172   // Where the free space will start after the collection.  Valid only after the
   173   // summary phase completes.
   174   HeapWord* new_top() const { return _new_top; }
   176   // Allows new_top to be set.
   177   HeapWord** new_top_addr() { return &_new_top; }
   179   // Where the smallest allowable dense prefix ends (used only for perm gen).
   180   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
   182   // Where the dense prefix ends, or the compacted region begins.
   183   HeapWord* dense_prefix() const { return _dense_prefix; }
   185   // The start array for the (generation containing the) space, or NULL if there
   186   // is no start array.
   187   ObjectStartArray* start_array() const { return _start_array; }
   189   SplitInfo& split_info() { return _split_info; }
   191   void set_space(MutableSpace* s)           { _space = s; }
   192   void set_new_top(HeapWord* addr)          { _new_top = addr; }
   193   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
   194   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
   195   void set_start_array(ObjectStartArray* s) { _start_array = s; }
   197   void publish_new_top() const              { _space->set_top(_new_top); }
   199  private:
   200   MutableSpace*     _space;
   201   HeapWord*         _new_top;
   202   HeapWord*         _min_dense_prefix;
   203   HeapWord*         _dense_prefix;
   204   ObjectStartArray* _start_array;
   205   SplitInfo         _split_info;
   206 };
   208 class ParallelCompactData
   209 {
   210 public:
   211   // Sizes are in HeapWords, unless indicated otherwise.
   212   static const size_t Log2RegionSize;
   213   static const size_t RegionSize;
   214   static const size_t RegionSizeBytes;
   216   // Mask for the bits in a size_t to get an offset within a region.
   217   static const size_t RegionSizeOffsetMask;
   218   // Mask for the bits in a pointer to get an offset within a region.
   219   static const size_t RegionAddrOffsetMask;
   220   // Mask for the bits in a pointer to get the address of the start of a region.
   221   static const size_t RegionAddrMask;
   223   class RegionData
   224   {
   225   public:
   226     // Destination address of the region.
   227     HeapWord* destination() const { return _destination; }
   229     // The first region containing data destined for this region.
   230     size_t source_region() const { return _source_region; }
   232     // The object (if any) starting in this region and ending in a different
   233     // region that could not be updated during the main (parallel) compaction
   234     // phase.  This is different from _partial_obj_addr, which is an object that
   235     // extends onto a source region.  However, the two uses do not overlap in
   236     // time, so the same field is used to save space.
   237     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
   239     // The starting address of the partial object extending onto the region.
   240     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
   242     // Size of the partial object extending onto the region (words).
   243     size_t partial_obj_size() const { return _partial_obj_size; }
   245     // Size of live data that lies within this region due to objects that start
   246     // in this region (words).  This does not include the partial object
   247     // extending onto the region (if any), or the part of an object that extends
   248     // onto the next region (if any).
   249     size_t live_obj_size() const { return _dc_and_los & los_mask; }
   251     // Total live data that lies within the region (words).
   252     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
   254     // The destination_count is the number of other regions to which data from
   255     // this region will be copied.  At the end of the summary phase, the valid
   256     // values of destination_count are
   257     //
   258     // 0 - data from the region will be compacted completely into itself, or the
   259     //     region is empty.  The region can be claimed and then filled.
   260     // 1 - data from the region will be compacted into 1 other region; some
   261     //     data from the region may also be compacted into the region itself.
   262     // 2 - data from the region will be copied to 2 other regions.
   263     //
   264     // During compaction as regions are emptied, the destination_count is
   265     // decremented (atomically) and when it reaches 0, it can be claimed and
   266     // then filled.
   267     //
   268     // A region is claimed for processing by atomically changing the
   269     // destination_count to the claimed value (dc_claimed).  After a region has
   270     // been filled, the destination_count should be set to the completed value
   271     // (dc_completed).
   272     inline uint destination_count() const;
   273     inline uint destination_count_raw() const;
   275     // The location of the java heap data that corresponds to this region.
   276     inline HeapWord* data_location() const;
   278     // The highest address referenced by objects in this region.
   279     inline HeapWord* highest_ref() const;
   281     // Whether this region is available to be claimed, has been claimed, or has
   282     // been completed.
   283     //
   284     // Minor subtlety:  claimed() returns true if the region is marked
   285     // completed(), which is desirable since a region must be claimed before it
   286     // can be completed.
   287     bool available() const { return _dc_and_los < dc_one; }
   288     bool claimed() const   { return _dc_and_los >= dc_claimed; }
   289     bool completed() const { return _dc_and_los >= dc_completed; }
   291     // These are not atomic.
   292     void set_destination(HeapWord* addr)       { _destination = addr; }
   293     void set_source_region(size_t region)      { _source_region = region; }
   294     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
   295     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
   296     void set_partial_obj_size(size_t words)    {
   297       _partial_obj_size = (region_sz_t) words;
   298     }
   300     inline void set_destination_count(uint count);
   301     inline void set_live_obj_size(size_t words);
   302     inline void set_data_location(HeapWord* addr);
   303     inline void set_completed();
   304     inline bool claim_unsafe();
   306     // These are atomic.
   307     inline void add_live_obj(size_t words);
   308     inline void set_highest_ref(HeapWord* addr);
   309     inline void decrement_destination_count();
   310     inline bool claim();
   312   private:
   313     // The type used to represent object sizes within a region.
   314     typedef uint region_sz_t;
   316     // Constants for manipulating the _dc_and_los field, which holds both the
   317     // destination count and live obj size.  The live obj size lives at the
   318     // least significant end so no masking is necessary when adding.
   319     static const region_sz_t dc_shift;           // Shift amount.
   320     static const region_sz_t dc_mask;            // Mask for destination count.
   321     static const region_sz_t dc_one;             // 1, shifted appropriately.
   322     static const region_sz_t dc_claimed;         // Region has been claimed.
   323     static const region_sz_t dc_completed;       // Region has been completed.
   324     static const region_sz_t los_mask;           // Mask for live obj size.
   326     HeapWord*            _destination;
   327     size_t               _source_region;
   328     HeapWord*            _partial_obj_addr;
   329     region_sz_t          _partial_obj_size;
   330     region_sz_t volatile _dc_and_los;
   331 #ifdef ASSERT
   332     // These enable optimizations that are only partially implemented.  Use
   333     // debug builds to prevent the code fragments from breaking.
   334     HeapWord*            _data_location;
   335     HeapWord*            _highest_ref;
   336 #endif  // #ifdef ASSERT
   338 #ifdef ASSERT
   339    public:
   340     uint            _pushed;   // 0 until region is pushed onto a worker's stack
   341    private:
   342 #endif
   343   };
   345 public:
   346   ParallelCompactData();
   347   bool initialize(MemRegion covered_region);
   349   size_t region_count() const { return _region_count; }
   350   size_t reserved_byte_size() const { return _reserved_byte_size; }
   352   // Convert region indices to/from RegionData pointers.
   353   inline RegionData* region(size_t region_idx) const;
   354   inline size_t     region(const RegionData* const region_ptr) const;
   356   // Returns true if the given address is contained within the region
   357   bool region_contains(size_t region_index, HeapWord* addr);
   359   void add_obj(HeapWord* addr, size_t len);
   360   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
   362   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
   363   // destination of region n is simply the start of region n.  The argument beg
   364   // must be region-aligned; end need not be.
   365   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
   367   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
   368                                   HeapWord* destination, HeapWord* target_end,
   369                                   HeapWord** target_next);
   370   bool summarize(SplitInfo& split_info,
   371                  HeapWord* source_beg, HeapWord* source_end,
   372                  HeapWord** source_next,
   373                  HeapWord* target_beg, HeapWord* target_end,
   374                  HeapWord** target_next);
   376   void clear();
   377   void clear_range(size_t beg_region, size_t end_region);
   378   void clear_range(HeapWord* beg, HeapWord* end) {
   379     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
   380   }
   382   // Return the number of words between addr and the start of the region
   383   // containing addr.
   384   inline size_t     region_offset(const HeapWord* addr) const;
   386   // Convert addresses to/from a region index or region pointer.
   387   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
   388   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
   389   inline HeapWord*  region_to_addr(size_t region) const;
   390   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
   391   inline HeapWord*  region_to_addr(const RegionData* region) const;
   393   inline HeapWord*  region_align_down(HeapWord* addr) const;
   394   inline HeapWord*  region_align_up(HeapWord* addr) const;
   395   inline bool       is_region_aligned(HeapWord* addr) const;
   397   // Return the address one past the end of the partial object.
   398   HeapWord* partial_obj_end(size_t region_idx) const;
   400   // Return the new location of the object p after the
   401   // the compaction.
   402   HeapWord* calc_new_pointer(HeapWord* addr);
   404   HeapWord* calc_new_pointer(oop p) {
   405     return calc_new_pointer((HeapWord*) p);
   406   }
   408 #ifdef  ASSERT
   409   void verify_clear(const PSVirtualSpace* vspace);
   410   void verify_clear();
   411 #endif  // #ifdef ASSERT
   413 private:
   414   bool initialize_region_data(size_t region_size);
   415   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
   417 private:
   418   HeapWord*       _region_start;
   419 #ifdef  ASSERT
   420   HeapWord*       _region_end;
   421 #endif  // #ifdef ASSERT
   423   PSVirtualSpace* _region_vspace;
   424   size_t          _reserved_byte_size;
   425   RegionData*     _region_data;
   426   size_t          _region_count;
   427 };
   429 inline uint
   430 ParallelCompactData::RegionData::destination_count_raw() const
   431 {
   432   return _dc_and_los & dc_mask;
   433 }
   435 inline uint
   436 ParallelCompactData::RegionData::destination_count() const
   437 {
   438   return destination_count_raw() >> dc_shift;
   439 }
   441 inline void
   442 ParallelCompactData::RegionData::set_destination_count(uint count)
   443 {
   444   assert(count <= (dc_completed >> dc_shift), "count too large");
   445   const region_sz_t live_sz = (region_sz_t) live_obj_size();
   446   _dc_and_los = (count << dc_shift) | live_sz;
   447 }
   449 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
   450 {
   451   assert(words <= los_mask, "would overflow");
   452   _dc_and_los = destination_count_raw() | (region_sz_t)words;
   453 }
   455 inline void ParallelCompactData::RegionData::decrement_destination_count()
   456 {
   457   assert(_dc_and_los < dc_claimed, "already claimed");
   458   assert(_dc_and_los >= dc_one, "count would go negative");
   459   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
   460 }
   462 inline HeapWord* ParallelCompactData::RegionData::data_location() const
   463 {
   464   DEBUG_ONLY(return _data_location;)
   465   NOT_DEBUG(return NULL;)
   466 }
   468 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
   469 {
   470   DEBUG_ONLY(return _highest_ref;)
   471   NOT_DEBUG(return NULL;)
   472 }
   474 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
   475 {
   476   DEBUG_ONLY(_data_location = addr;)
   477 }
   479 inline void ParallelCompactData::RegionData::set_completed()
   480 {
   481   assert(claimed(), "must be claimed first");
   482   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
   483 }
   485 // MT-unsafe claiming of a region.  Should only be used during single threaded
   486 // execution.
   487 inline bool ParallelCompactData::RegionData::claim_unsafe()
   488 {
   489   if (available()) {
   490     _dc_and_los |= dc_claimed;
   491     return true;
   492   }
   493   return false;
   494 }
   496 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
   497 {
   498   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
   499   Atomic::add((int) words, (volatile int*) &_dc_and_los);
   500 }
   502 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
   503 {
   504 #ifdef ASSERT
   505   HeapWord* tmp = _highest_ref;
   506   while (addr > tmp) {
   507     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
   508   }
   509 #endif  // #ifdef ASSERT
   510 }
   512 inline bool ParallelCompactData::RegionData::claim()
   513 {
   514   const int los = (int) live_obj_size();
   515   const int old = Atomic::cmpxchg(dc_claimed | los,
   516                                   (volatile int*) &_dc_and_los, los);
   517   return old == los;
   518 }
   520 inline ParallelCompactData::RegionData*
   521 ParallelCompactData::region(size_t region_idx) const
   522 {
   523   assert(region_idx <= region_count(), "bad arg");
   524   return _region_data + region_idx;
   525 }
   527 inline size_t
   528 ParallelCompactData::region(const RegionData* const region_ptr) const
   529 {
   530   assert(region_ptr >= _region_data, "bad arg");
   531   assert(region_ptr <= _region_data + region_count(), "bad arg");
   532   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
   533 }
   535 inline size_t
   536 ParallelCompactData::region_offset(const HeapWord* addr) const
   537 {
   538   assert(addr >= _region_start, "bad addr");
   539   assert(addr <= _region_end, "bad addr");
   540   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
   541 }
   543 inline size_t
   544 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
   545 {
   546   assert(addr >= _region_start, "bad addr");
   547   assert(addr <= _region_end, "bad addr");
   548   return pointer_delta(addr, _region_start) >> Log2RegionSize;
   549 }
   551 inline ParallelCompactData::RegionData*
   552 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
   553 {
   554   return region(addr_to_region_idx(addr));
   555 }
   557 inline HeapWord*
   558 ParallelCompactData::region_to_addr(size_t region) const
   559 {
   560   assert(region <= _region_count, "region out of range");
   561   return _region_start + (region << Log2RegionSize);
   562 }
   564 inline HeapWord*
   565 ParallelCompactData::region_to_addr(const RegionData* region) const
   566 {
   567   return region_to_addr(pointer_delta(region, _region_data,
   568                                       sizeof(RegionData)));
   569 }
   571 inline HeapWord*
   572 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
   573 {
   574   assert(region <= _region_count, "region out of range");
   575   assert(offset < RegionSize, "offset too big");  // This may be too strict.
   576   return region_to_addr(region) + offset;
   577 }
   579 inline HeapWord*
   580 ParallelCompactData::region_align_down(HeapWord* addr) const
   581 {
   582   assert(addr >= _region_start, "bad addr");
   583   assert(addr < _region_end + RegionSize, "bad addr");
   584   return (HeapWord*)(size_t(addr) & RegionAddrMask);
   585 }
   587 inline HeapWord*
   588 ParallelCompactData::region_align_up(HeapWord* addr) const
   589 {
   590   assert(addr >= _region_start, "bad addr");
   591   assert(addr <= _region_end, "bad addr");
   592   return region_align_down(addr + RegionSizeOffsetMask);
   593 }
   595 inline bool
   596 ParallelCompactData::is_region_aligned(HeapWord* addr) const
   597 {
   598   return region_offset(addr) == 0;
   599 }
   601 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
   602 // do_addr() method.
   603 //
   604 // The closure is initialized with the number of heap words to process
   605 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
   606 // methods in subclasses should update the total as words are processed.  Since
   607 // only one subclass actually uses this mechanism to terminate iteration, the
   608 // default initial value is > 0.  The implementation is here and not in the
   609 // single subclass that uses it to avoid making is_full() virtual, and thus
   610 // adding a virtual call per live object.
   612 class ParMarkBitMapClosure: public StackObj {
   613  public:
   614   typedef ParMarkBitMap::idx_t idx_t;
   615   typedef ParMarkBitMap::IterationStatus IterationStatus;
   617  public:
   618   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
   619                               size_t words = max_uintx);
   621   inline ParCompactionManager* compaction_manager() const;
   622   inline ParMarkBitMap*        bitmap() const;
   623   inline size_t                words_remaining() const;
   624   inline bool                  is_full() const;
   625   inline HeapWord*             source() const;
   627   inline void                  set_source(HeapWord* addr);
   629   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
   631  protected:
   632   inline void decrement_words_remaining(size_t words);
   634  private:
   635   ParMarkBitMap* const        _bitmap;
   636   ParCompactionManager* const _compaction_manager;
   637   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
   638   size_t                      _words_remaining; // Words left to copy.
   640  protected:
   641   HeapWord*                   _source;          // Next addr that would be read.
   642 };
   644 inline
   645 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
   646                                            ParCompactionManager* cm,
   647                                            size_t words):
   648   _bitmap(bitmap), _compaction_manager(cm)
   649 #ifdef  ASSERT
   650   , _initial_words_remaining(words)
   651 #endif
   652 {
   653   _words_remaining = words;
   654   _source = NULL;
   655 }
   657 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
   658   return _compaction_manager;
   659 }
   661 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
   662   return _bitmap;
   663 }
   665 inline size_t ParMarkBitMapClosure::words_remaining() const {
   666   return _words_remaining;
   667 }
   669 inline bool ParMarkBitMapClosure::is_full() const {
   670   return words_remaining() == 0;
   671 }
   673 inline HeapWord* ParMarkBitMapClosure::source() const {
   674   return _source;
   675 }
   677 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
   678   _source = addr;
   679 }
   681 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
   682   assert(_words_remaining >= words, "processed too many words");
   683   _words_remaining -= words;
   684 }
   686 // The UseParallelOldGC collector is a stop-the-world garbage collector that
   687 // does parts of the collection using parallel threads.  The collection includes
   688 // the tenured generation and the young generation.  The permanent generation is
   689 // collected at the same time as the other two generations but the permanent
   690 // generation is collect by a single GC thread.  The permanent generation is
   691 // collected serially because of the requirement that during the processing of a
   692 // klass AAA, any objects reference by AAA must already have been processed.
   693 // This requirement is enforced by a left (lower address) to right (higher
   694 // address) sliding compaction.
   695 //
   696 // There are four phases of the collection.
   697 //
   698 //      - marking phase
   699 //      - summary phase
   700 //      - compacting phase
   701 //      - clean up phase
   702 //
   703 // Roughly speaking these phases correspond, respectively, to
   704 //      - mark all the live objects
   705 //      - calculate the destination of each object at the end of the collection
   706 //      - move the objects to their destination
   707 //      - update some references and reinitialize some variables
   708 //
   709 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
   710 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
   711 // complete marking of the heap.  The summary phase is implemented in
   712 // PSParallelCompact::summary_phase().  The move and update phase is implemented
   713 // in PSParallelCompact::compact().
   714 //
   715 // A space that is being collected is divided into regions and with each region
   716 // is associated an object of type ParallelCompactData.  Each region is of a
   717 // fixed size and typically will contain more than 1 object and may have parts
   718 // of objects at the front and back of the region.
   719 //
   720 // region            -----+---------------------+----------
   721 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
   722 //
   723 // The marking phase does a complete marking of all live objects in the heap.
   724 // The marking also compiles the size of the data for all live objects covered
   725 // by the region.  This size includes the part of any live object spanning onto
   726 // the region (part of AAA if it is live) from the front, all live objects
   727 // contained in the region (BBB and/or CCC if they are live), and the part of
   728 // any live objects covered by the region that extends off the region (part of
   729 // DDD if it is live).  The marking phase uses multiple GC threads and marking
   730 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
   731 // done atomically as is the accumulation of the size of the live objects
   732 // covered by a region.
   733 //
   734 // The summary phase calculates the total live data to the left of each region
   735 // XXX.  Based on that total and the bottom of the space, it can calculate the
   736 // starting location of the live data in XXX.  The summary phase calculates for
   737 // each region XXX quantites such as
   738 //
   739 //      - the amount of live data at the beginning of a region from an object
   740 //        entering the region.
   741 //      - the location of the first live data on the region
   742 //      - a count of the number of regions receiving live data from XXX.
   743 //
   744 // See ParallelCompactData for precise details.  The summary phase also
   745 // calculates the dense prefix for the compaction.  The dense prefix is a
   746 // portion at the beginning of the space that is not moved.  The objects in the
   747 // dense prefix do need to have their object references updated.  See method
   748 // summarize_dense_prefix().
   749 //
   750 // The summary phase is done using 1 GC thread.
   751 //
   752 // The compaction phase moves objects to their new location and updates all
   753 // references in the object.
   754 //
   755 // A current exception is that objects that cross a region boundary are moved
   756 // but do not have their references updated.  References are not updated because
   757 // it cannot easily be determined if the klass pointer KKK for the object AAA
   758 // has been updated.  KKK likely resides in a region to the left of the region
   759 // containing AAA.  These AAA's have there references updated at the end in a
   760 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
   761 // An alternate strategy is being investigated for this deferral of updating.
   762 //
   763 // Compaction is done on a region basis.  A region that is ready to be filled is
   764 // put on a ready list and GC threads take region off the list and fill them.  A
   765 // region is ready to be filled if it empty of live objects.  Such a region may
   766 // have been initially empty (only contained dead objects) or may have had all
   767 // its live objects copied out already.  A region that compacts into itself is
   768 // also ready for filling.  The ready list is initially filled with empty
   769 // regions and regions compacting into themselves.  There is always at least 1
   770 // region that can be put on the ready list.  The regions are atomically added
   771 // and removed from the ready list.
   773 class PSParallelCompact : AllStatic {
   774  public:
   775   // Convenient access to type names.
   776   typedef ParMarkBitMap::idx_t idx_t;
   777   typedef ParallelCompactData::RegionData RegionData;
   779   typedef enum {
   780     old_space_id, eden_space_id,
   781     from_space_id, to_space_id, last_space_id
   782   } SpaceId;
   784  public:
   785   // Inline closure decls
   786   //
   787   class IsAliveClosure: public BoolObjectClosure {
   788    public:
   789     virtual bool do_object_b(oop p);
   790   };
   792   class KeepAliveClosure: public OopClosure {
   793    private:
   794     ParCompactionManager* _compaction_manager;
   795    protected:
   796     template <class T> inline void do_oop_work(T* p);
   797    public:
   798     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   799     virtual void do_oop(oop* p);
   800     virtual void do_oop(narrowOop* p);
   801   };
   803   class FollowStackClosure: public VoidClosure {
   804    private:
   805     ParCompactionManager* _compaction_manager;
   806    public:
   807     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   808     virtual void do_void();
   809   };
   811   class AdjustPointerClosure: public OopClosure {
   812    public:
   813     virtual void do_oop(oop* p);
   814     virtual void do_oop(narrowOop* p);
   815     // do not walk from thread stacks to the code cache on this phase
   816     virtual void do_code_blob(CodeBlob* cb) const { }
   817   };
   819   class AdjustKlassClosure : public KlassClosure {
   820    public:
   821     void do_klass(Klass* klass);
   822   };
   824   friend class KeepAliveClosure;
   825   friend class FollowStackClosure;
   826   friend class AdjustPointerClosure;
   827   friend class AdjustKlassClosure;
   828   friend class FollowKlassClosure;
   829   friend class InstanceClassLoaderKlass;
   830   friend class RefProcTaskProxy;
   832  private:
   833   static elapsedTimer         _accumulated_time;
   834   static unsigned int         _total_invocations;
   835   static unsigned int         _maximum_compaction_gc_num;
   836   static jlong                _time_of_last_gc;   // ms
   837   static CollectorCounters*   _counters;
   838   static ParMarkBitMap        _mark_bitmap;
   839   static ParallelCompactData  _summary_data;
   840   static IsAliveClosure       _is_alive_closure;
   841   static SpaceInfo            _space_info[last_space_id];
   842   static bool                 _print_phases;
   843   static AdjustPointerClosure _adjust_pointer_closure;
   844   static AdjustKlassClosure   _adjust_klass_closure;
   846   // Reference processing (used in ...follow_contents)
   847   static ReferenceProcessor*  _ref_processor;
   849   // Updated location of intArrayKlassObj.
   850   static Klass* _updated_int_array_klass_obj;
   852   // Values computed at initialization and used by dead_wood_limiter().
   853   static double _dwl_mean;
   854   static double _dwl_std_dev;
   855   static double _dwl_first_term;
   856   static double _dwl_adjustment;
   857 #ifdef  ASSERT
   858   static bool   _dwl_initialized;
   859 #endif  // #ifdef ASSERT
   861  private:
   863   static void initialize_space_info();
   865   // Return true if details about individual phases should be printed.
   866   static inline bool print_phases();
   868   // Clear the marking bitmap and summary data that cover the specified space.
   869   static void clear_data_covering_space(SpaceId id);
   871   static void pre_compact(PreGCValues* pre_gc_values);
   872   static void post_compact();
   874   // Mark live objects
   875   static void marking_phase(ParCompactionManager* cm,
   876                             bool maximum_heap_compaction);
   878   template <class T>
   879   static inline void follow_root(ParCompactionManager* cm, T* p);
   881   // Compute the dense prefix for the designated space.  This is an experimental
   882   // implementation currently not used in production.
   883   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
   884                                                     bool maximum_compaction);
   886   // Methods used to compute the dense prefix.
   888   // Compute the value of the normal distribution at x = density.  The mean and
   889   // standard deviation are values saved by initialize_dead_wood_limiter().
   890   static inline double normal_distribution(double density);
   892   // Initialize the static vars used by dead_wood_limiter().
   893   static void initialize_dead_wood_limiter();
   895   // Return the percentage of space that can be treated as "dead wood" (i.e.,
   896   // not reclaimed).
   897   static double dead_wood_limiter(double density, size_t min_percent);
   899   // Find the first (left-most) region in the range [beg, end) that has at least
   900   // dead_words of dead space to the left.  The argument beg must be the first
   901   // region in the space that is not completely live.
   902   static RegionData* dead_wood_limit_region(const RegionData* beg,
   903                                             const RegionData* end,
   904                                             size_t dead_words);
   906   // Return a pointer to the first region in the range [beg, end) that is not
   907   // completely full.
   908   static RegionData* first_dead_space_region(const RegionData* beg,
   909                                              const RegionData* end);
   911   // Return a value indicating the benefit or 'yield' if the compacted region
   912   // were to start (or equivalently if the dense prefix were to end) at the
   913   // candidate region.  Higher values are better.
   914   //
   915   // The value is based on the amount of space reclaimed vs. the costs of (a)
   916   // updating references in the dense prefix plus (b) copying objects and
   917   // updating references in the compacted region.
   918   static inline double reclaimed_ratio(const RegionData* const candidate,
   919                                        HeapWord* const bottom,
   920                                        HeapWord* const top,
   921                                        HeapWord* const new_top);
   923   // Compute the dense prefix for the designated space.
   924   static HeapWord* compute_dense_prefix(const SpaceId id,
   925                                         bool maximum_compaction);
   927   // Return true if dead space crosses onto the specified Region; bit must be
   928   // the bit index corresponding to the first word of the Region.
   929   static inline bool dead_space_crosses_boundary(const RegionData* region,
   930                                                  idx_t bit);
   932   // Summary phase utility routine to fill dead space (if any) at the dense
   933   // prefix boundary.  Should only be called if the the dense prefix is
   934   // non-empty.
   935   static void fill_dense_prefix_end(SpaceId id);
   937   // Clear the summary data source_region field for the specified addresses.
   938   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
   940 #ifndef PRODUCT
   941   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
   943   // Fill the region [start, start + words) with live object(s).  Only usable
   944   // for the old and permanent generations.
   945   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
   946                                      size_t words);
   947   // Include the new objects in the summary data.
   948   static void summarize_new_objects(SpaceId id, HeapWord* start);
   950   // Add live objects to a survivor space since it's rare that both survivors
   951   // are non-empty.
   952   static void provoke_split_fill_survivor(SpaceId id);
   954   // Add live objects and/or choose the dense prefix to provoke splitting.
   955   static void provoke_split(bool & maximum_compaction);
   956 #endif
   958   static void summarize_spaces_quick();
   959   static void summarize_space(SpaceId id, bool maximum_compaction);
   960   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
   962   // Adjust addresses in roots.  Does not adjust addresses in heap.
   963   static void adjust_roots();
   965   // Move objects to new locations.
   966   static void compact_perm(ParCompactionManager* cm);
   967   static void compact();
   969   // Add available regions to the stack and draining tasks to the task queue.
   970   static void enqueue_region_draining_tasks(GCTaskQueue* q,
   971                                             uint parallel_gc_threads);
   973   // Add dense prefix update tasks to the task queue.
   974   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
   975                                          uint parallel_gc_threads);
   977   // Add region stealing tasks to the task queue.
   978   static void enqueue_region_stealing_tasks(
   979                                        GCTaskQueue* q,
   980                                        ParallelTaskTerminator* terminator_ptr,
   981                                        uint parallel_gc_threads);
   983   // If objects are left in eden after a collection, try to move the boundary
   984   // and absorb them into the old gen.  Returns true if eden was emptied.
   985   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
   986                                          PSYoungGen* young_gen,
   987                                          PSOldGen* old_gen);
   989   // Reset time since last full gc
   990   static void reset_millis_since_last_gc();
   992  public:
   993   class MarkAndPushClosure: public OopClosure {
   994    private:
   995     ParCompactionManager* _compaction_manager;
   996    public:
   997     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
   998     virtual void do_oop(oop* p);
   999     virtual void do_oop(narrowOop* p);
  1000   };
  1002   // The one and only place to start following the classes.
  1003   // Should only be applied to the ClassLoaderData klasses list.
  1004   class FollowKlassClosure : public KlassClosure {
  1005    private:
  1006     MarkAndPushClosure* _mark_and_push_closure;
  1007    public:
  1008     FollowKlassClosure(MarkAndPushClosure* mark_and_push_closure) :
  1009         _mark_and_push_closure(mark_and_push_closure) { }
  1010     void do_klass(Klass* klass);
  1011   };
  1013   PSParallelCompact();
  1015   // Convenient accessor for Universe::heap().
  1016   static ParallelScavengeHeap* gc_heap() {
  1017     return (ParallelScavengeHeap*)Universe::heap();
  1020   static void invoke(bool maximum_heap_compaction);
  1021   static bool invoke_no_policy(bool maximum_heap_compaction);
  1023   static void post_initialize();
  1024   // Perform initialization for PSParallelCompact that requires
  1025   // allocations.  This should be called during the VM initialization
  1026   // at a pointer where it would be appropriate to return a JNI_ENOMEM
  1027   // in the event of a failure.
  1028   static bool initialize();
  1030   // Closure accessors
  1031   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
  1032   static KlassClosure* adjust_klass_closure()      { return (KlassClosure*)&_adjust_klass_closure; }
  1033   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
  1035   // Public accessors
  1036   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
  1037   static unsigned int total_invocations() { return _total_invocations; }
  1038   static CollectorCounters* counters()    { return _counters; }
  1040   // Used to add tasks
  1041   static GCTaskManager* const gc_task_manager();
  1042   static Klass* updated_int_array_klass_obj() {
  1043     return _updated_int_array_klass_obj;
  1046   // Marking support
  1047   static inline bool mark_obj(oop obj);
  1048   static inline bool is_marked(oop obj);
  1049   // Check mark and maybe push on marking stack
  1050   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
  1051                                                       T* p);
  1052   template <class T> static inline void adjust_pointer(T* p);
  1054   static void follow_klass(ParCompactionManager* cm, Klass* klass);
  1055   static void adjust_klass(ParCompactionManager* cm, Klass* klass);
  1057   static void follow_class_loader(ParCompactionManager* cm,
  1058                                   ClassLoaderData* klass);
  1059   static void adjust_class_loader(ParCompactionManager* cm,
  1060                                   ClassLoaderData* klass);
  1062   // Compaction support.
  1063   // Return true if p is in the range [beg_addr, end_addr).
  1064   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
  1065   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
  1067   // Convenience wrappers for per-space data kept in _space_info.
  1068   static inline MutableSpace*     space(SpaceId space_id);
  1069   static inline HeapWord*         new_top(SpaceId space_id);
  1070   static inline HeapWord*         dense_prefix(SpaceId space_id);
  1071   static inline ObjectStartArray* start_array(SpaceId space_id);
  1073   // Move and update the live objects in the specified space.
  1074   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
  1076   // Process the end of the given region range in the dense prefix.
  1077   // This includes saving any object not updated.
  1078   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
  1079                                             size_t region_start_index,
  1080                                             size_t region_end_index,
  1081                                             idx_t exiting_object_offset,
  1082                                             idx_t region_offset_start,
  1083                                             idx_t region_offset_end);
  1085   // Update a region in the dense prefix.  For each live object
  1086   // in the region, update it's interior references.  For each
  1087   // dead object, fill it with deadwood. Dead space at the end
  1088   // of a region range will be filled to the start of the next
  1089   // live object regardless of the region_index_end.  None of the
  1090   // objects in the dense prefix move and dead space is dead
  1091   // (holds only dead objects that don't need any processing), so
  1092   // dead space can be filled in any order.
  1093   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
  1094                                                   SpaceId space_id,
  1095                                                   size_t region_index_start,
  1096                                                   size_t region_index_end);
  1098   // Return the address of the count + 1st live word in the range [beg, end).
  1099   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
  1101   // Return the address of the word to be copied to dest_addr, which must be
  1102   // aligned to a region boundary.
  1103   static HeapWord* first_src_addr(HeapWord* const dest_addr,
  1104                                   SpaceId src_space_id,
  1105                                   size_t src_region_idx);
  1107   // Determine the next source region, set closure.source() to the start of the
  1108   // new region return the region index.  Parameter end_addr is the address one
  1109   // beyond the end of source range just processed.  If necessary, switch to a
  1110   // new source space and set src_space_id (in-out parameter) and src_space_top
  1111   // (out parameter) accordingly.
  1112   static size_t next_src_region(MoveAndUpdateClosure& closure,
  1113                                 SpaceId& src_space_id,
  1114                                 HeapWord*& src_space_top,
  1115                                 HeapWord* end_addr);
  1117   // Decrement the destination count for each non-empty source region in the
  1118   // range [beg_region, region(region_align_up(end_addr))).  If the destination
  1119   // count for a region goes to 0 and it needs to be filled, enqueue it.
  1120   static void decrement_destination_counts(ParCompactionManager* cm,
  1121                                            SpaceId src_space_id,
  1122                                            size_t beg_region,
  1123                                            HeapWord* end_addr);
  1125   // Fill a region, copying objects from one or more source regions.
  1126   static void fill_region(ParCompactionManager* cm, size_t region_idx);
  1127   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
  1128     fill_region(cm, region);
  1131   // Update the deferred objects in the space.
  1132   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
  1134   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
  1135   static ParallelCompactData& summary_data() { return _summary_data; }
  1137   // Reference Processing
  1138   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
  1140   // Return the SpaceId for the given address.
  1141   static SpaceId space_id(HeapWord* addr);
  1143   // Time since last full gc (in milliseconds).
  1144   static jlong millis_since_last_gc();
  1146   static void print_on_error(outputStream* st);
  1148 #ifndef PRODUCT
  1149   // Debugging support.
  1150   static const char* space_names[last_space_id];
  1151   static void print_region_ranges();
  1152   static void print_dense_prefix_stats(const char* const algorithm,
  1153                                        const SpaceId id,
  1154                                        const bool maximum_compaction,
  1155                                        HeapWord* const addr);
  1156   static void summary_phase_msg(SpaceId dst_space_id,
  1157                                 HeapWord* dst_beg, HeapWord* dst_end,
  1158                                 SpaceId src_space_id,
  1159                                 HeapWord* src_beg, HeapWord* src_end);
  1160 #endif  // #ifndef PRODUCT
  1162 #ifdef  ASSERT
  1163   // Sanity check the new location of a word in the heap.
  1164   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
  1165   // Verify that all the regions have been emptied.
  1166   static void verify_complete(SpaceId space_id);
  1167 #endif  // #ifdef ASSERT
  1168 };
  1170 inline bool PSParallelCompact::mark_obj(oop obj) {
  1171   const int obj_size = obj->size();
  1172   if (mark_bitmap()->mark_obj(obj, obj_size)) {
  1173     _summary_data.add_obj(obj, obj_size);
  1174     return true;
  1175   } else {
  1176     return false;
  1180 inline bool PSParallelCompact::is_marked(oop obj) {
  1181   return mark_bitmap()->is_marked(obj);
  1184 template <class T>
  1185 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
  1186   assert(!Universe::heap()->is_in_reserved(p),
  1187          "roots shouldn't be things within the heap");
  1189   T heap_oop = oopDesc::load_heap_oop(p);
  1190   if (!oopDesc::is_null(heap_oop)) {
  1191     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1192     if (mark_bitmap()->is_unmarked(obj)) {
  1193       if (mark_obj(obj)) {
  1194         obj->follow_contents(cm);
  1198   cm->follow_marking_stacks();
  1201 template <class T>
  1202 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
  1203   T heap_oop = oopDesc::load_heap_oop(p);
  1204   if (!oopDesc::is_null(heap_oop)) {
  1205     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  1206     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
  1207       cm->push(obj);
  1212 template <class T>
  1213 inline void PSParallelCompact::adjust_pointer(T* p) {
  1214   T heap_oop = oopDesc::load_heap_oop(p);
  1215   if (!oopDesc::is_null(heap_oop)) {
  1216     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
  1217     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
  1218     assert(new_obj != NULL,                    // is forwarding ptr?
  1219            "should be forwarded");
  1220     // Just always do the update unconditionally?
  1221     if (new_obj != NULL) {
  1222       assert(Universe::heap()->is_in_reserved(new_obj),
  1223              "should be in object space");
  1224       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
  1229 template <class T>
  1230 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
  1231   mark_and_push(_compaction_manager, p);
  1234 inline bool PSParallelCompact::print_phases() {
  1235   return _print_phases;
  1238 inline double PSParallelCompact::normal_distribution(double density) {
  1239   assert(_dwl_initialized, "uninitialized");
  1240   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
  1241   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
  1244 inline bool
  1245 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
  1246                                                idx_t bit)
  1248   assert(bit > 0, "cannot call this for the first bit/region");
  1249   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
  1250          "sanity check");
  1252   // Dead space crosses the boundary if (1) a partial object does not extend
  1253   // onto the region, (2) an object does not start at the beginning of the
  1254   // region, and (3) an object does not end at the end of the prior region.
  1255   return region->partial_obj_size() == 0 &&
  1256     !_mark_bitmap.is_obj_beg(bit) &&
  1257     !_mark_bitmap.is_obj_end(bit - 1);
  1260 inline bool
  1261 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1262   return p >= beg_addr && p < end_addr;
  1265 inline bool
  1266 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
  1267   return is_in((HeapWord*)p, beg_addr, end_addr);
  1270 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
  1271   assert(id < last_space_id, "id out of range");
  1272   return _space_info[id].space();
  1275 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
  1276   assert(id < last_space_id, "id out of range");
  1277   return _space_info[id].new_top();
  1280 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
  1281   assert(id < last_space_id, "id out of range");
  1282   return _space_info[id].dense_prefix();
  1285 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
  1286   assert(id < last_space_id, "id out of range");
  1287   return _space_info[id].start_array();
  1290 #ifdef ASSERT
  1291 inline void
  1292 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
  1294   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
  1295          "must move left or to a different space");
  1296   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
  1297          "checking alignment");
  1299 #endif // ASSERT
  1301 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
  1302  public:
  1303   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
  1304                               ObjectStartArray* start_array,
  1305                               HeapWord* destination, size_t words);
  1307   // Accessors.
  1308   HeapWord* destination() const         { return _destination; }
  1310   // If the object will fit (size <= words_remaining()), copy it to the current
  1311   // destination, update the interior oops and the start array and return either
  1312   // full (if the closure is full) or incomplete.  If the object will not fit,
  1313   // return would_overflow.
  1314   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
  1316   // Copy enough words to fill this closure, starting at source().  Interior
  1317   // oops and the start array are not updated.  Return full.
  1318   IterationStatus copy_until_full();
  1320   // Copy enough words to fill this closure or to the end of an object,
  1321   // whichever is smaller, starting at source().  Interior oops and the start
  1322   // array are not updated.
  1323   void copy_partial_obj();
  1325  protected:
  1326   // Update variables to indicate that word_count words were processed.
  1327   inline void update_state(size_t word_count);
  1329  protected:
  1330   ObjectStartArray* const _start_array;
  1331   HeapWord*               _destination;         // Next addr to be written.
  1332 };
  1334 inline
  1335 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
  1336                                            ParCompactionManager* cm,
  1337                                            ObjectStartArray* start_array,
  1338                                            HeapWord* destination,
  1339                                            size_t words) :
  1340   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
  1342   _destination = destination;
  1345 inline void MoveAndUpdateClosure::update_state(size_t words)
  1347   decrement_words_remaining(words);
  1348   _source += words;
  1349   _destination += words;
  1352 class UpdateOnlyClosure: public ParMarkBitMapClosure {
  1353  private:
  1354   const PSParallelCompact::SpaceId _space_id;
  1355   ObjectStartArray* const          _start_array;
  1357  public:
  1358   UpdateOnlyClosure(ParMarkBitMap* mbm,
  1359                     ParCompactionManager* cm,
  1360                     PSParallelCompact::SpaceId space_id);
  1362   // Update the object.
  1363   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
  1365   inline void do_addr(HeapWord* addr);
  1366 };
  1368 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
  1370   _start_array->allocate_block(addr);
  1371   oop(addr)->update_contents(compaction_manager());
  1374 class FillClosure: public ParMarkBitMapClosure
  1376 public:
  1377   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
  1378     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
  1379     _start_array(PSParallelCompact::start_array(space_id))
  1381     assert(space_id == PSParallelCompact::old_space_id,
  1382            "cannot use FillClosure in the young gen");
  1385   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
  1386     CollectedHeap::fill_with_objects(addr, size);
  1387     HeapWord* const end = addr + size;
  1388     do {
  1389       _start_array->allocate_block(addr);
  1390       addr += oop(addr)->size();
  1391     } while (addr < end);
  1392     return ParMarkBitMap::incomplete;
  1395 private:
  1396   ObjectStartArray* const _start_array;
  1397 };
  1399 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP

mercurial