src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Mon, 13 Feb 2012 02:29:22 -0800

author
twisti
date
Mon, 13 Feb 2012 02:29:22 -0800
changeset 3566
45a1bf98f1bb
parent 3500
0382d2b469b2
child 3969
1d7922586cf6
permissions
-rw-r--r--

7141329: Strange values of stack_size in -XX:+TraceMethodHandles output
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolderOop.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_x86.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    44 #define __ masm->
    46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
    48 class RegisterSaver {
    49   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
    50   // Capture info about frame layout
    51   enum layout {
    52                 fpu_state_off = 0,
    53                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
    54                 st0_off, st0H_off,
    55                 st1_off, st1H_off,
    56                 st2_off, st2H_off,
    57                 st3_off, st3H_off,
    58                 st4_off, st4H_off,
    59                 st5_off, st5H_off,
    60                 st6_off, st6H_off,
    61                 st7_off, st7H_off,
    63                 xmm0_off, xmm0H_off,
    64                 xmm1_off, xmm1H_off,
    65                 xmm2_off, xmm2H_off,
    66                 xmm3_off, xmm3H_off,
    67                 xmm4_off, xmm4H_off,
    68                 xmm5_off, xmm5H_off,
    69                 xmm6_off, xmm6H_off,
    70                 xmm7_off, xmm7H_off,
    71                 flags_off,
    72                 rdi_off,
    73                 rsi_off,
    74                 ignore_off,  // extra copy of rbp,
    75                 rsp_off,
    76                 rbx_off,
    77                 rdx_off,
    78                 rcx_off,
    79                 rax_off,
    80                 // The frame sender code expects that rbp will be in the "natural" place and
    81                 // will override any oopMap setting for it. We must therefore force the layout
    82                 // so that it agrees with the frame sender code.
    83                 rbp_off,
    84                 return_off,      // slot for return address
    85                 reg_save_size };
    88   public:
    90   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
    91                                      int* total_frame_words, bool verify_fpu = true);
    92   static void restore_live_registers(MacroAssembler* masm);
    94   static int rax_offset() { return rax_off; }
    95   static int rbx_offset() { return rbx_off; }
    97   // Offsets into the register save area
    98   // Used by deoptimization when it is managing result register
    99   // values on its own
   101   static int raxOffset(void) { return rax_off; }
   102   static int rdxOffset(void) { return rdx_off; }
   103   static int rbxOffset(void) { return rbx_off; }
   104   static int xmm0Offset(void) { return xmm0_off; }
   105   // This really returns a slot in the fp save area, which one is not important
   106   static int fpResultOffset(void) { return st0_off; }
   108   // During deoptimization only the result register need to be restored
   109   // all the other values have already been extracted.
   111   static void restore_result_registers(MacroAssembler* masm);
   113 };
   115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
   116                                            int* total_frame_words, bool verify_fpu) {
   118   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
   119   int frame_words = frame_size_in_bytes / wordSize;
   120   *total_frame_words = frame_words;
   122   assert(FPUStateSizeInWords == 27, "update stack layout");
   124   // save registers, fpu state, and flags
   125   // We assume caller has already has return address slot on the stack
   126   // We push epb twice in this sequence because we want the real rbp,
   127   // to be under the return like a normal enter and we want to use pusha
   128   // We push by hand instead of pusing push
   129   __ enter();
   130   __ pusha();
   131   __ pushf();
   132   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
   133   __ push_FPU_state();          // Save FPU state & init
   135   if (verify_fpu) {
   136     // Some stubs may have non standard FPU control word settings so
   137     // only check and reset the value when it required to be the
   138     // standard value.  The safepoint blob in particular can be used
   139     // in methods which are using the 24 bit control word for
   140     // optimized float math.
   142 #ifdef ASSERT
   143     // Make sure the control word has the expected value
   144     Label ok;
   145     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   146     __ jccb(Assembler::equal, ok);
   147     __ stop("corrupted control word detected");
   148     __ bind(ok);
   149 #endif
   151     // Reset the control word to guard against exceptions being unmasked
   152     // since fstp_d can cause FPU stack underflow exceptions.  Write it
   153     // into the on stack copy and then reload that to make sure that the
   154     // current and future values are correct.
   155     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
   156   }
   158   __ frstor(Address(rsp, 0));
   159   if (!verify_fpu) {
   160     // Set the control word so that exceptions are masked for the
   161     // following code.
   162     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   163   }
   165   // Save the FPU registers in de-opt-able form
   167   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
   168   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
   169   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
   170   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
   171   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
   172   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
   173   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
   174   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
   176   if( UseSSE == 1 ) {           // Save the XMM state
   177     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
   178     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
   179     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
   180     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
   181     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
   182     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
   183     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
   184     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
   185   } else if( UseSSE >= 2 ) {
   186     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
   187     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
   188     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
   189     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
   190     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
   191     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
   192     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
   193     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
   194   }
   196   // Set an oopmap for the call site.  This oopmap will map all
   197   // oop-registers and debug-info registers as callee-saved.  This
   198   // will allow deoptimization at this safepoint to find all possible
   199   // debug-info recordings, as well as let GC find all oops.
   201   OopMapSet *oop_maps = new OopMapSet();
   202   OopMap* map =  new OopMap( frame_words, 0 );
   204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
   206   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
   207   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
   208   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
   209   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
   210   // rbp, location is known implicitly, no oopMap
   211   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
   212   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
   213   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
   214   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
   215   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
   216   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
   217   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
   218   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
   219   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
   220   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
   221   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
   222   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
   223   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
   224   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
   225   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
   226   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
   227   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
   228   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
   229   // %%% This is really a waste but we'll keep things as they were for now
   230   if (true) {
   231 #define NEXTREG(x) (x)->as_VMReg()->next()
   232     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
   233     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
   234     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
   235     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
   236     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
   237     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
   238     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
   239     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
   240     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
   241     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
   242     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
   243     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
   244     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
   245     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
   246     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
   247     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
   248 #undef NEXTREG
   249 #undef STACK_OFFSET
   250   }
   252   return map;
   254 }
   256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   258   // Recover XMM & FPU state
   259   if( UseSSE == 1 ) {
   260     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
   261     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
   262     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
   263     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
   264     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
   265     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
   266     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
   267     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
   268   } else if( UseSSE >= 2 ) {
   269     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
   270     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
   271     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
   272     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
   273     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
   274     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
   275     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
   276     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
   277   }
   278   __ pop_FPU_state();
   279   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
   281   __ popf();
   282   __ popa();
   283   // Get the rbp, described implicitly by the frame sender code (no oopMap)
   284   __ pop(rbp);
   286 }
   288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   290   // Just restore result register. Only used by deoptimization. By
   291   // now any callee save register that needs to be restore to a c2
   292   // caller of the deoptee has been extracted into the vframeArray
   293   // and will be stuffed into the c2i adapter we create for later
   294   // restoration so only result registers need to be restored here.
   295   //
   297   __ frstor(Address(rsp, 0));      // Restore fpu state
   299   // Recover XMM & FPU state
   300   if( UseSSE == 1 ) {
   301     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
   302   } else if( UseSSE >= 2 ) {
   303     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
   304   }
   305   __ movptr(rax, Address(rsp, rax_off*wordSize));
   306   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
   307   // Pop all of the register save are off the stack except the return address
   308   __ addptr(rsp, return_off * wordSize);
   309 }
   311 // The java_calling_convention describes stack locations as ideal slots on
   312 // a frame with no abi restrictions. Since we must observe abi restrictions
   313 // (like the placement of the register window) the slots must be biased by
   314 // the following value.
   315 static int reg2offset_in(VMReg r) {
   316   // Account for saved rbp, and return address
   317   // This should really be in_preserve_stack_slots
   318   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
   319 }
   321 static int reg2offset_out(VMReg r) {
   322   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   323 }
   325 // ---------------------------------------------------------------------------
   326 // Read the array of BasicTypes from a signature, and compute where the
   327 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
   328 // quantities.  Values less than SharedInfo::stack0 are registers, those above
   329 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
   330 // as framesizes are fixed.
   331 // VMRegImpl::stack0 refers to the first slot 0(sp).
   332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   333 // up to RegisterImpl::number_of_registers) are the 32-bit
   334 // integer registers.
   336 // Pass first two oop/int args in registers ECX and EDX.
   337 // Pass first two float/double args in registers XMM0 and XMM1.
   338 // Doubles have precedence, so if you pass a mix of floats and doubles
   339 // the doubles will grab the registers before the floats will.
   341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   342 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   343 // units regardless of build. Of course for i486 there is no 64 bit build
   346 // ---------------------------------------------------------------------------
   347 // The compiled Java calling convention.
   348 // Pass first two oop/int args in registers ECX and EDX.
   349 // Pass first two float/double args in registers XMM0 and XMM1.
   350 // Doubles have precedence, so if you pass a mix of floats and doubles
   351 // the doubles will grab the registers before the floats will.
   352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   353                                            VMRegPair *regs,
   354                                            int total_args_passed,
   355                                            int is_outgoing) {
   356   uint    stack = 0;          // Starting stack position for args on stack
   359   // Pass first two oop/int args in registers ECX and EDX.
   360   uint reg_arg0 = 9999;
   361   uint reg_arg1 = 9999;
   363   // Pass first two float/double args in registers XMM0 and XMM1.
   364   // Doubles have precedence, so if you pass a mix of floats and doubles
   365   // the doubles will grab the registers before the floats will.
   366   // CNC - TURNED OFF FOR non-SSE.
   367   //       On Intel we have to round all doubles (and most floats) at
   368   //       call sites by storing to the stack in any case.
   369   // UseSSE=0 ==> Don't Use ==> 9999+0
   370   // UseSSE=1 ==> Floats only ==> 9999+1
   371   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
   372   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
   373   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
   374   uint freg_arg0 = 9999+fargs;
   375   uint freg_arg1 = 9999+fargs;
   377   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
   378   int i;
   379   for( i = 0; i < total_args_passed; i++) {
   380     if( sig_bt[i] == T_DOUBLE ) {
   381       // first 2 doubles go in registers
   382       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
   383       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
   384       else // Else double is passed low on the stack to be aligned.
   385         stack += 2;
   386     } else if( sig_bt[i] == T_LONG ) {
   387       stack += 2;
   388     }
   389   }
   390   int dstack = 0;             // Separate counter for placing doubles
   392   // Now pick where all else goes.
   393   for( i = 0; i < total_args_passed; i++) {
   394     // From the type and the argument number (count) compute the location
   395     switch( sig_bt[i] ) {
   396     case T_SHORT:
   397     case T_CHAR:
   398     case T_BYTE:
   399     case T_BOOLEAN:
   400     case T_INT:
   401     case T_ARRAY:
   402     case T_OBJECT:
   403     case T_ADDRESS:
   404       if( reg_arg0 == 9999 )  {
   405         reg_arg0 = i;
   406         regs[i].set1(rcx->as_VMReg());
   407       } else if( reg_arg1 == 9999 )  {
   408         reg_arg1 = i;
   409         regs[i].set1(rdx->as_VMReg());
   410       } else {
   411         regs[i].set1(VMRegImpl::stack2reg(stack++));
   412       }
   413       break;
   414     case T_FLOAT:
   415       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
   416         freg_arg0 = i;
   417         regs[i].set1(xmm0->as_VMReg());
   418       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
   419         freg_arg1 = i;
   420         regs[i].set1(xmm1->as_VMReg());
   421       } else {
   422         regs[i].set1(VMRegImpl::stack2reg(stack++));
   423       }
   424       break;
   425     case T_LONG:
   426       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   427       regs[i].set2(VMRegImpl::stack2reg(dstack));
   428       dstack += 2;
   429       break;
   430     case T_DOUBLE:
   431       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   432       if( freg_arg0 == (uint)i ) {
   433         regs[i].set2(xmm0->as_VMReg());
   434       } else if( freg_arg1 == (uint)i ) {
   435         regs[i].set2(xmm1->as_VMReg());
   436       } else {
   437         regs[i].set2(VMRegImpl::stack2reg(dstack));
   438         dstack += 2;
   439       }
   440       break;
   441     case T_VOID: regs[i].set_bad(); break;
   442       break;
   443     default:
   444       ShouldNotReachHere();
   445       break;
   446     }
   447   }
   449   // return value can be odd number of VMRegImpl stack slots make multiple of 2
   450   return round_to(stack, 2);
   451 }
   453 // Patch the callers callsite with entry to compiled code if it exists.
   454 static void patch_callers_callsite(MacroAssembler *masm) {
   455   Label L;
   456   __ verify_oop(rbx);
   457   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   458   __ jcc(Assembler::equal, L);
   459   // Schedule the branch target address early.
   460   // Call into the VM to patch the caller, then jump to compiled callee
   461   // rax, isn't live so capture return address while we easily can
   462   __ movptr(rax, Address(rsp, 0));
   463   __ pusha();
   464   __ pushf();
   466   if (UseSSE == 1) {
   467     __ subptr(rsp, 2*wordSize);
   468     __ movflt(Address(rsp, 0), xmm0);
   469     __ movflt(Address(rsp, wordSize), xmm1);
   470   }
   471   if (UseSSE >= 2) {
   472     __ subptr(rsp, 4*wordSize);
   473     __ movdbl(Address(rsp, 0), xmm0);
   474     __ movdbl(Address(rsp, 2*wordSize), xmm1);
   475   }
   476 #ifdef COMPILER2
   477   // C2 may leave the stack dirty if not in SSE2+ mode
   478   if (UseSSE >= 2) {
   479     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   480   } else {
   481     __ empty_FPU_stack();
   482   }
   483 #endif /* COMPILER2 */
   485   // VM needs caller's callsite
   486   __ push(rax);
   487   // VM needs target method
   488   __ push(rbx);
   489   __ verify_oop(rbx);
   490   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
   491   __ addptr(rsp, 2*wordSize);
   493   if (UseSSE == 1) {
   494     __ movflt(xmm0, Address(rsp, 0));
   495     __ movflt(xmm1, Address(rsp, wordSize));
   496     __ addptr(rsp, 2*wordSize);
   497   }
   498   if (UseSSE >= 2) {
   499     __ movdbl(xmm0, Address(rsp, 0));
   500     __ movdbl(xmm1, Address(rsp, 2*wordSize));
   501     __ addptr(rsp, 4*wordSize);
   502   }
   504   __ popf();
   505   __ popa();
   506   __ bind(L);
   507 }
   510 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
   511   int next_off = st_off - Interpreter::stackElementSize;
   512   __ movdbl(Address(rsp, next_off), r);
   513 }
   515 static void gen_c2i_adapter(MacroAssembler *masm,
   516                             int total_args_passed,
   517                             int comp_args_on_stack,
   518                             const BasicType *sig_bt,
   519                             const VMRegPair *regs,
   520                             Label& skip_fixup) {
   521   // Before we get into the guts of the C2I adapter, see if we should be here
   522   // at all.  We've come from compiled code and are attempting to jump to the
   523   // interpreter, which means the caller made a static call to get here
   524   // (vcalls always get a compiled target if there is one).  Check for a
   525   // compiled target.  If there is one, we need to patch the caller's call.
   526   patch_callers_callsite(masm);
   528   __ bind(skip_fixup);
   530 #ifdef COMPILER2
   531   // C2 may leave the stack dirty if not in SSE2+ mode
   532   if (UseSSE >= 2) {
   533     __ verify_FPU(0, "c2i transition should have clean FPU stack");
   534   } else {
   535     __ empty_FPU_stack();
   536   }
   537 #endif /* COMPILER2 */
   539   // Since all args are passed on the stack, total_args_passed * interpreter_
   540   // stack_element_size  is the
   541   // space we need.
   542   int extraspace = total_args_passed * Interpreter::stackElementSize;
   544   // Get return address
   545   __ pop(rax);
   547   // set senderSP value
   548   __ movptr(rsi, rsp);
   550   __ subptr(rsp, extraspace);
   552   // Now write the args into the outgoing interpreter space
   553   for (int i = 0; i < total_args_passed; i++) {
   554     if (sig_bt[i] == T_VOID) {
   555       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   556       continue;
   557     }
   559     // st_off points to lowest address on stack.
   560     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
   561     int next_off = st_off - Interpreter::stackElementSize;
   563     // Say 4 args:
   564     // i   st_off
   565     // 0   12 T_LONG
   566     // 1    8 T_VOID
   567     // 2    4 T_OBJECT
   568     // 3    0 T_BOOL
   569     VMReg r_1 = regs[i].first();
   570     VMReg r_2 = regs[i].second();
   571     if (!r_1->is_valid()) {
   572       assert(!r_2->is_valid(), "");
   573       continue;
   574     }
   576     if (r_1->is_stack()) {
   577       // memory to memory use fpu stack top
   578       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
   580       if (!r_2->is_valid()) {
   581         __ movl(rdi, Address(rsp, ld_off));
   582         __ movptr(Address(rsp, st_off), rdi);
   583       } else {
   585         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
   586         // st_off == MSW, st_off-wordSize == LSW
   588         __ movptr(rdi, Address(rsp, ld_off));
   589         __ movptr(Address(rsp, next_off), rdi);
   590 #ifndef _LP64
   591         __ movptr(rdi, Address(rsp, ld_off + wordSize));
   592         __ movptr(Address(rsp, st_off), rdi);
   593 #else
   594 #ifdef ASSERT
   595         // Overwrite the unused slot with known junk
   596         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
   597         __ movptr(Address(rsp, st_off), rax);
   598 #endif /* ASSERT */
   599 #endif // _LP64
   600       }
   601     } else if (r_1->is_Register()) {
   602       Register r = r_1->as_Register();
   603       if (!r_2->is_valid()) {
   604         __ movl(Address(rsp, st_off), r);
   605       } else {
   606         // long/double in gpr
   607         NOT_LP64(ShouldNotReachHere());
   608         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
   609         // T_DOUBLE and T_LONG use two slots in the interpreter
   610         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   611           // long/double in gpr
   612 #ifdef ASSERT
   613           // Overwrite the unused slot with known junk
   614           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
   615           __ movptr(Address(rsp, st_off), rax);
   616 #endif /* ASSERT */
   617           __ movptr(Address(rsp, next_off), r);
   618         } else {
   619           __ movptr(Address(rsp, st_off), r);
   620         }
   621       }
   622     } else {
   623       assert(r_1->is_XMMRegister(), "");
   624       if (!r_2->is_valid()) {
   625         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
   626       } else {
   627         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
   628         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
   629       }
   630     }
   631   }
   633   // Schedule the branch target address early.
   634   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
   635   // And repush original return address
   636   __ push(rax);
   637   __ jmp(rcx);
   638 }
   641 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
   642   int next_val_off = ld_off - Interpreter::stackElementSize;
   643   __ movdbl(r, Address(saved_sp, next_val_off));
   644 }
   646 static void gen_i2c_adapter(MacroAssembler *masm,
   647                             int total_args_passed,
   648                             int comp_args_on_stack,
   649                             const BasicType *sig_bt,
   650                             const VMRegPair *regs) {
   652   // Note: rsi contains the senderSP on entry. We must preserve it since
   653   // we may do a i2c -> c2i transition if we lose a race where compiled
   654   // code goes non-entrant while we get args ready.
   656   // Pick up the return address
   657   __ movptr(rax, Address(rsp, 0));
   659   // Must preserve original SP for loading incoming arguments because
   660   // we need to align the outgoing SP for compiled code.
   661   __ movptr(rdi, rsp);
   663   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
   664   // in registers, we will occasionally have no stack args.
   665   int comp_words_on_stack = 0;
   666   if (comp_args_on_stack) {
   667     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
   668     // registers are below.  By subtracting stack0, we either get a negative
   669     // number (all values in registers) or the maximum stack slot accessed.
   670     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
   671     // Convert 4-byte stack slots to words.
   672     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
   673     // Round up to miminum stack alignment, in wordSize
   674     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   675     __ subptr(rsp, comp_words_on_stack * wordSize);
   676   }
   678   // Align the outgoing SP
   679   __ andptr(rsp, -(StackAlignmentInBytes));
   681   // push the return address on the stack (note that pushing, rather
   682   // than storing it, yields the correct frame alignment for the callee)
   683   __ push(rax);
   685   // Put saved SP in another register
   686   const Register saved_sp = rax;
   687   __ movptr(saved_sp, rdi);
   690   // Will jump to the compiled code just as if compiled code was doing it.
   691   // Pre-load the register-jump target early, to schedule it better.
   692   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
   694   // Now generate the shuffle code.  Pick up all register args and move the
   695   // rest through the floating point stack top.
   696   for (int i = 0; i < total_args_passed; i++) {
   697     if (sig_bt[i] == T_VOID) {
   698       // Longs and doubles are passed in native word order, but misaligned
   699       // in the 32-bit build.
   700       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   701       continue;
   702     }
   704     // Pick up 0, 1 or 2 words from SP+offset.
   706     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
   707             "scrambled load targets?");
   708     // Load in argument order going down.
   709     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
   710     // Point to interpreter value (vs. tag)
   711     int next_off = ld_off - Interpreter::stackElementSize;
   712     //
   713     //
   714     //
   715     VMReg r_1 = regs[i].first();
   716     VMReg r_2 = regs[i].second();
   717     if (!r_1->is_valid()) {
   718       assert(!r_2->is_valid(), "");
   719       continue;
   720     }
   721     if (r_1->is_stack()) {
   722       // Convert stack slot to an SP offset (+ wordSize to account for return address )
   723       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
   725       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
   726       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
   727       // we be generated.
   728       if (!r_2->is_valid()) {
   729         // __ fld_s(Address(saved_sp, ld_off));
   730         // __ fstp_s(Address(rsp, st_off));
   731         __ movl(rsi, Address(saved_sp, ld_off));
   732         __ movptr(Address(rsp, st_off), rsi);
   733       } else {
   734         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   735         // are accessed as negative so LSW is at LOW address
   737         // ld_off is MSW so get LSW
   738         // st_off is LSW (i.e. reg.first())
   739         // __ fld_d(Address(saved_sp, next_off));
   740         // __ fstp_d(Address(rsp, st_off));
   741         //
   742         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   743         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   744         // So we must adjust where to pick up the data to match the interpreter.
   745         //
   746         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
   747         // are accessed as negative so LSW is at LOW address
   749         // ld_off is MSW so get LSW
   750         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   751                            next_off : ld_off;
   752         __ movptr(rsi, Address(saved_sp, offset));
   753         __ movptr(Address(rsp, st_off), rsi);
   754 #ifndef _LP64
   755         __ movptr(rsi, Address(saved_sp, ld_off));
   756         __ movptr(Address(rsp, st_off + wordSize), rsi);
   757 #endif // _LP64
   758       }
   759     } else if (r_1->is_Register()) {  // Register argument
   760       Register r = r_1->as_Register();
   761       assert(r != rax, "must be different");
   762       if (r_2->is_valid()) {
   763         //
   764         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
   765         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
   766         // So we must adjust where to pick up the data to match the interpreter.
   768         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
   769                            next_off : ld_off;
   771         // this can be a misaligned move
   772         __ movptr(r, Address(saved_sp, offset));
   773 #ifndef _LP64
   774         assert(r_2->as_Register() != rax, "need another temporary register");
   775         // Remember r_1 is low address (and LSB on x86)
   776         // So r_2 gets loaded from high address regardless of the platform
   777         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
   778 #endif // _LP64
   779       } else {
   780         __ movl(r, Address(saved_sp, ld_off));
   781       }
   782     } else {
   783       assert(r_1->is_XMMRegister(), "");
   784       if (!r_2->is_valid()) {
   785         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
   786       } else {
   787         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
   788       }
   789     }
   790   }
   792   // 6243940 We might end up in handle_wrong_method if
   793   // the callee is deoptimized as we race thru here. If that
   794   // happens we don't want to take a safepoint because the
   795   // caller frame will look interpreted and arguments are now
   796   // "compiled" so it is much better to make this transition
   797   // invisible to the stack walking code. Unfortunately if
   798   // we try and find the callee by normal means a safepoint
   799   // is possible. So we stash the desired callee in the thread
   800   // and the vm will find there should this case occur.
   802   __ get_thread(rax);
   803   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
   805   // move methodOop to rax, in case we end up in an c2i adapter.
   806   // the c2i adapters expect methodOop in rax, (c2) because c2's
   807   // resolve stubs return the result (the method) in rax,.
   808   // I'd love to fix this.
   809   __ mov(rax, rbx);
   811   __ jmp(rdi);
   812 }
   814 // ---------------------------------------------------------------
   815 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
   816                                                             int total_args_passed,
   817                                                             int comp_args_on_stack,
   818                                                             const BasicType *sig_bt,
   819                                                             const VMRegPair *regs,
   820                                                             AdapterFingerPrint* fingerprint) {
   821   address i2c_entry = __ pc();
   823   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
   825   // -------------------------------------------------------------------------
   826   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
   827   // to the interpreter.  The args start out packed in the compiled layout.  They
   828   // need to be unpacked into the interpreter layout.  This will almost always
   829   // require some stack space.  We grow the current (compiled) stack, then repack
   830   // the args.  We  finally end in a jump to the generic interpreter entry point.
   831   // On exit from the interpreter, the interpreter will restore our SP (lest the
   832   // compiled code, which relys solely on SP and not EBP, get sick).
   834   address c2i_unverified_entry = __ pc();
   835   Label skip_fixup;
   837   Register holder = rax;
   838   Register receiver = rcx;
   839   Register temp = rbx;
   841   {
   843     Label missed;
   845     __ verify_oop(holder);
   846     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
   847     __ verify_oop(temp);
   849     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
   850     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
   851     __ jcc(Assembler::notEqual, missed);
   852     // Method might have been compiled since the call site was patched to
   853     // interpreted if that is the case treat it as a miss so we can get
   854     // the call site corrected.
   855     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
   856     __ jcc(Assembler::equal, skip_fixup);
   858     __ bind(missed);
   859     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
   860   }
   862   address c2i_entry = __ pc();
   864   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
   866   __ flush();
   867   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
   868 }
   870 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   871                                          VMRegPair *regs,
   872                                          int total_args_passed) {
   873 // We return the amount of VMRegImpl stack slots we need to reserve for all
   874 // the arguments NOT counting out_preserve_stack_slots.
   876   uint    stack = 0;        // All arguments on stack
   878   for( int i = 0; i < total_args_passed; i++) {
   879     // From the type and the argument number (count) compute the location
   880     switch( sig_bt[i] ) {
   881     case T_BOOLEAN:
   882     case T_CHAR:
   883     case T_FLOAT:
   884     case T_BYTE:
   885     case T_SHORT:
   886     case T_INT:
   887     case T_OBJECT:
   888     case T_ARRAY:
   889     case T_ADDRESS:
   890       regs[i].set1(VMRegImpl::stack2reg(stack++));
   891       break;
   892     case T_LONG:
   893     case T_DOUBLE: // The stack numbering is reversed from Java
   894       // Since C arguments do not get reversed, the ordering for
   895       // doubles on the stack must be opposite the Java convention
   896       assert(sig_bt[i+1] == T_VOID, "missing Half" );
   897       regs[i].set2(VMRegImpl::stack2reg(stack));
   898       stack += 2;
   899       break;
   900     case T_VOID: regs[i].set_bad(); break;
   901     default:
   902       ShouldNotReachHere();
   903       break;
   904     }
   905   }
   906   return stack;
   907 }
   909 // A simple move of integer like type
   910 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   911   if (src.first()->is_stack()) {
   912     if (dst.first()->is_stack()) {
   913       // stack to stack
   914       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
   915       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
   916       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
   917       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
   918     } else {
   919       // stack to reg
   920       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
   921     }
   922   } else if (dst.first()->is_stack()) {
   923     // reg to stack
   924     // no need to sign extend on 64bit
   925     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
   926   } else {
   927     if (dst.first() != src.first()) {
   928       __ mov(dst.first()->as_Register(), src.first()->as_Register());
   929     }
   930   }
   931 }
   933 // An oop arg. Must pass a handle not the oop itself
   934 static void object_move(MacroAssembler* masm,
   935                         OopMap* map,
   936                         int oop_handle_offset,
   937                         int framesize_in_slots,
   938                         VMRegPair src,
   939                         VMRegPair dst,
   940                         bool is_receiver,
   941                         int* receiver_offset) {
   943   // Because of the calling conventions we know that src can be a
   944   // register or a stack location. dst can only be a stack location.
   946   assert(dst.first()->is_stack(), "must be stack");
   947   // must pass a handle. First figure out the location we use as a handle
   949   if (src.first()->is_stack()) {
   950     // Oop is already on the stack as an argument
   951     Register rHandle = rax;
   952     Label nil;
   953     __ xorptr(rHandle, rHandle);
   954     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
   955     __ jcc(Assembler::equal, nil);
   956     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
   957     __ bind(nil);
   958     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
   960     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   961     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
   962     if (is_receiver) {
   963       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
   964     }
   965   } else {
   966     // Oop is in an a register we must store it to the space we reserve
   967     // on the stack for oop_handles
   968     const Register rOop = src.first()->as_Register();
   969     const Register rHandle = rax;
   970     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
   971     int offset = oop_slot*VMRegImpl::stack_slot_size;
   972     Label skip;
   973     __ movptr(Address(rsp, offset), rOop);
   974     map->set_oop(VMRegImpl::stack2reg(oop_slot));
   975     __ xorptr(rHandle, rHandle);
   976     __ cmpptr(rOop, (int32_t)NULL_WORD);
   977     __ jcc(Assembler::equal, skip);
   978     __ lea(rHandle, Address(rsp, offset));
   979     __ bind(skip);
   980     // Store the handle parameter
   981     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
   982     if (is_receiver) {
   983       *receiver_offset = offset;
   984     }
   985   }
   986 }
   988 // A float arg may have to do float reg int reg conversion
   989 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
   990   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
   992   // Because of the calling convention we know that src is either a stack location
   993   // or an xmm register. dst can only be a stack location.
   995   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
   997   if (src.first()->is_stack()) {
   998     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
   999     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1000   } else {
  1001     // reg to stack
  1002     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1006 // A long move
  1007 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1009   // The only legal possibility for a long_move VMRegPair is:
  1010   // 1: two stack slots (possibly unaligned)
  1011   // as neither the java  or C calling convention will use registers
  1012   // for longs.
  1014   if (src.first()->is_stack() && dst.first()->is_stack()) {
  1015     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
  1016     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1017     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1018     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1019     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1020   } else {
  1021     ShouldNotReachHere();
  1025 // A double move
  1026 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1028   // The only legal possibilities for a double_move VMRegPair are:
  1029   // The painful thing here is that like long_move a VMRegPair might be
  1031   // Because of the calling convention we know that src is either
  1032   //   1: a single physical register (xmm registers only)
  1033   //   2: two stack slots (possibly unaligned)
  1034   // dst can only be a pair of stack slots.
  1036   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
  1038   if (src.first()->is_stack()) {
  1039     // source is all stack
  1040     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
  1041     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
  1042     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
  1043     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
  1044   } else {
  1045     // reg to stack
  1046     // No worries about stack alignment
  1047     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  1052 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1053   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1054   // which by this time is free to use
  1055   switch (ret_type) {
  1056   case T_FLOAT:
  1057     __ fstp_s(Address(rbp, -wordSize));
  1058     break;
  1059   case T_DOUBLE:
  1060     __ fstp_d(Address(rbp, -2*wordSize));
  1061     break;
  1062   case T_VOID:  break;
  1063   case T_LONG:
  1064     __ movptr(Address(rbp, -wordSize), rax);
  1065     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
  1066     break;
  1067   default: {
  1068     __ movptr(Address(rbp, -wordSize), rax);
  1073 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1074   // We always ignore the frame_slots arg and just use the space just below frame pointer
  1075   // which by this time is free to use
  1076   switch (ret_type) {
  1077   case T_FLOAT:
  1078     __ fld_s(Address(rbp, -wordSize));
  1079     break;
  1080   case T_DOUBLE:
  1081     __ fld_d(Address(rbp, -2*wordSize));
  1082     break;
  1083   case T_LONG:
  1084     __ movptr(rax, Address(rbp, -wordSize));
  1085     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
  1086     break;
  1087   case T_VOID:  break;
  1088   default: {
  1089     __ movptr(rax, Address(rbp, -wordSize));
  1095 static void save_or_restore_arguments(MacroAssembler* masm,
  1096                                       const int stack_slots,
  1097                                       const int total_in_args,
  1098                                       const int arg_save_area,
  1099                                       OopMap* map,
  1100                                       VMRegPair* in_regs,
  1101                                       BasicType* in_sig_bt) {
  1102   // if map is non-NULL then the code should store the values,
  1103   // otherwise it should load them.
  1104   int handle_index = 0;
  1105   // Save down double word first
  1106   for ( int i = 0; i < total_in_args; i++) {
  1107     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
  1108       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1109       int offset = slot * VMRegImpl::stack_slot_size;
  1110       handle_index += 2;
  1111       assert(handle_index <= stack_slots, "overflow");
  1112       if (map != NULL) {
  1113         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1114       } else {
  1115         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1118     if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
  1119       int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
  1120       int offset = slot * VMRegImpl::stack_slot_size;
  1121       handle_index += 2;
  1122       assert(handle_index <= stack_slots, "overflow");
  1123       if (map != NULL) {
  1124         __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
  1125         if (in_regs[i].second()->is_Register()) {
  1126           __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
  1128       } else {
  1129         __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
  1130         if (in_regs[i].second()->is_Register()) {
  1131           __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
  1136   // Save or restore single word registers
  1137   for ( int i = 0; i < total_in_args; i++) {
  1138     if (in_regs[i].first()->is_Register()) {
  1139       int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1140       int offset = slot * VMRegImpl::stack_slot_size;
  1141       assert(handle_index <= stack_slots, "overflow");
  1142       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1143         map->set_oop(VMRegImpl::stack2reg(slot));;
  1146       // Value is in an input register pass we must flush it to the stack
  1147       const Register reg = in_regs[i].first()->as_Register();
  1148       switch (in_sig_bt[i]) {
  1149         case T_ARRAY:
  1150           if (map != NULL) {
  1151             __ movptr(Address(rsp, offset), reg);
  1152           } else {
  1153             __ movptr(reg, Address(rsp, offset));
  1155           break;
  1156         case T_BOOLEAN:
  1157         case T_CHAR:
  1158         case T_BYTE:
  1159         case T_SHORT:
  1160         case T_INT:
  1161           if (map != NULL) {
  1162             __ movl(Address(rsp, offset), reg);
  1163           } else {
  1164             __ movl(reg, Address(rsp, offset));
  1166           break;
  1167         case T_OBJECT:
  1168         default: ShouldNotReachHere();
  1170     } else if (in_regs[i].first()->is_XMMRegister()) {
  1171       if (in_sig_bt[i] == T_FLOAT) {
  1172         int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
  1173         int offset = slot * VMRegImpl::stack_slot_size;
  1174         assert(handle_index <= stack_slots, "overflow");
  1175         if (map != NULL) {
  1176           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
  1177         } else {
  1178           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
  1181     } else if (in_regs[i].first()->is_stack()) {
  1182       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1183         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1184         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1190 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1191 // keeps a new JNI critical region from starting until a GC has been
  1192 // forced.  Save down any oops in registers and describe them in an
  1193 // OopMap.
  1194 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1195                                                Register thread,
  1196                                                int stack_slots,
  1197                                                int total_c_args,
  1198                                                int total_in_args,
  1199                                                int arg_save_area,
  1200                                                OopMapSet* oop_maps,
  1201                                                VMRegPair* in_regs,
  1202                                                BasicType* in_sig_bt) {
  1203   __ block_comment("check GC_locker::needs_gc");
  1204   Label cont;
  1205   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
  1206   __ jcc(Assembler::equal, cont);
  1208   // Save down any incoming oops and call into the runtime to halt for a GC
  1210   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1212   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1213                             arg_save_area, map, in_regs, in_sig_bt);
  1215   address the_pc = __ pc();
  1216   oop_maps->add_gc_map( __ offset(), map);
  1217   __ set_last_Java_frame(thread, rsp, noreg, the_pc);
  1219   __ block_comment("block_for_jni_critical");
  1220   __ push(thread);
  1221   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
  1222   __ increment(rsp, wordSize);
  1224   __ get_thread(thread);
  1225   __ reset_last_Java_frame(thread, false, true);
  1227   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1228                             arg_save_area, NULL, in_regs, in_sig_bt);
  1230   __ bind(cont);
  1231 #ifdef ASSERT
  1232   if (StressCriticalJNINatives) {
  1233     // Stress register saving
  1234     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1235     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1236                               arg_save_area, map, in_regs, in_sig_bt);
  1237     // Destroy argument registers
  1238     for (int i = 0; i < total_in_args - 1; i++) {
  1239       if (in_regs[i].first()->is_Register()) {
  1240         const Register reg = in_regs[i].first()->as_Register();
  1241         __ xorptr(reg, reg);
  1242       } else if (in_regs[i].first()->is_XMMRegister()) {
  1243         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
  1244       } else if (in_regs[i].first()->is_FloatRegister()) {
  1245         ShouldNotReachHere();
  1246       } else if (in_regs[i].first()->is_stack()) {
  1247         // Nothing to do
  1248       } else {
  1249         ShouldNotReachHere();
  1251       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
  1252         i++;
  1256     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1257                               arg_save_area, NULL, in_regs, in_sig_bt);
  1259 #endif
  1262 // Unpack an array argument into a pointer to the body and the length
  1263 // if the array is non-null, otherwise pass 0 for both.
  1264 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1265   Register tmp_reg = rax;
  1266   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1267          "possible collision");
  1268   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1269          "possible collision");
  1271   // Pass the length, ptr pair
  1272   Label is_null, done;
  1273   VMRegPair tmp(tmp_reg->as_VMReg());
  1274   if (reg.first()->is_stack()) {
  1275     // Load the arg up from the stack
  1276     simple_move32(masm, reg, tmp);
  1277     reg = tmp;
  1279   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
  1280   __ jccb(Assembler::equal, is_null);
  1281   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1282   simple_move32(masm, tmp, body_arg);
  1283   // load the length relative to the body.
  1284   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
  1285                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
  1286   simple_move32(masm, tmp, length_arg);
  1287   __ jmpb(done);
  1288   __ bind(is_null);
  1289   // Pass zeros
  1290   __ xorptr(tmp_reg, tmp_reg);
  1291   simple_move32(masm, tmp, body_arg);
  1292   simple_move32(masm, tmp, length_arg);
  1293   __ bind(done);
  1297 // ---------------------------------------------------------------------------
  1298 // Generate a native wrapper for a given method.  The method takes arguments
  1299 // in the Java compiled code convention, marshals them to the native
  1300 // convention (handlizes oops, etc), transitions to native, makes the call,
  1301 // returns to java state (possibly blocking), unhandlizes any result and
  1302 // returns.
  1303 //
  1304 // Critical native functions are a shorthand for the use of
  1305 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1306 // functions.  The wrapper is expected to unpack the arguments before
  1307 // passing them to the callee and perform checks before and after the
  1308 // native call to ensure that they GC_locker
  1309 // lock_critical/unlock_critical semantics are followed.  Some other
  1310 // parts of JNI setup are skipped like the tear down of the JNI handle
  1311 // block and the check for pending exceptions it's impossible for them
  1312 // to be thrown.
  1313 //
  1314 // They are roughly structured like this:
  1315 //    if (GC_locker::needs_gc())
  1316 //      SharedRuntime::block_for_jni_critical();
  1317 //    tranistion to thread_in_native
  1318 //    unpack arrray arguments and call native entry point
  1319 //    check for safepoint in progress
  1320 //    check if any thread suspend flags are set
  1321 //      call into JVM and possible unlock the JNI critical
  1322 //      if a GC was suppressed while in the critical native.
  1323 //    transition back to thread_in_Java
  1324 //    return to caller
  1325 //
  1326 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1327                                                 methodHandle method,
  1328                                                 int compile_id,
  1329                                                 int total_in_args,
  1330                                                 int comp_args_on_stack,
  1331                                                 BasicType *in_sig_bt,
  1332                                                 VMRegPair *in_regs,
  1333                                                 BasicType ret_type) {
  1334   bool is_critical_native = true;
  1335   address native_func = method->critical_native_function();
  1336   if (native_func == NULL) {
  1337     native_func = method->native_function();
  1338     is_critical_native = false;
  1340   assert(native_func != NULL, "must have function");
  1342   // An OopMap for lock (and class if static)
  1343   OopMapSet *oop_maps = new OopMapSet();
  1345   // We have received a description of where all the java arg are located
  1346   // on entry to the wrapper. We need to convert these args to where
  1347   // the jni function will expect them. To figure out where they go
  1348   // we convert the java signature to a C signature by inserting
  1349   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1351   int total_c_args = total_in_args;
  1352   if (!is_critical_native) {
  1353     total_c_args += 1;
  1354     if (method->is_static()) {
  1355       total_c_args++;
  1357   } else {
  1358     for (int i = 0; i < total_in_args; i++) {
  1359       if (in_sig_bt[i] == T_ARRAY) {
  1360         total_c_args++;
  1365   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1366   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1367   BasicType* in_elem_bt = NULL;
  1369   int argc = 0;
  1370   if (!is_critical_native) {
  1371     out_sig_bt[argc++] = T_ADDRESS;
  1372     if (method->is_static()) {
  1373       out_sig_bt[argc++] = T_OBJECT;
  1376     for (int i = 0; i < total_in_args ; i++ ) {
  1377       out_sig_bt[argc++] = in_sig_bt[i];
  1379   } else {
  1380     Thread* THREAD = Thread::current();
  1381     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  1382     SignatureStream ss(method->signature());
  1383     for (int i = 0; i < total_in_args ; i++ ) {
  1384       if (in_sig_bt[i] == T_ARRAY) {
  1385         // Arrays are passed as int, elem* pair
  1386         out_sig_bt[argc++] = T_INT;
  1387         out_sig_bt[argc++] = T_ADDRESS;
  1388         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1389         const char* at = atype->as_C_string();
  1390         if (strlen(at) == 2) {
  1391           assert(at[0] == '[', "must be");
  1392           switch (at[1]) {
  1393             case 'B': in_elem_bt[i]  = T_BYTE; break;
  1394             case 'C': in_elem_bt[i]  = T_CHAR; break;
  1395             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  1396             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  1397             case 'I': in_elem_bt[i]  = T_INT; break;
  1398             case 'J': in_elem_bt[i]  = T_LONG; break;
  1399             case 'S': in_elem_bt[i]  = T_SHORT; break;
  1400             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  1401             default: ShouldNotReachHere();
  1404       } else {
  1405         out_sig_bt[argc++] = in_sig_bt[i];
  1406         in_elem_bt[i] = T_VOID;
  1408       if (in_sig_bt[i] != T_VOID) {
  1409         assert(in_sig_bt[i] == ss.type(), "must match");
  1410         ss.next();
  1415   // Now figure out where the args must be stored and how much stack space
  1416   // they require.
  1417   int out_arg_slots;
  1418   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1420   // Compute framesize for the wrapper.  We need to handlize all oops in
  1421   // registers a max of 2 on x86.
  1423   // Calculate the total number of stack slots we will need.
  1425   // First count the abi requirement plus all of the outgoing args
  1426   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1428   // Now the space for the inbound oop handle area
  1429   int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
  1430   if (is_critical_native) {
  1431     // Critical natives may have to call out so they need a save area
  1432     // for register arguments.
  1433     int double_slots = 0;
  1434     int single_slots = 0;
  1435     for ( int i = 0; i < total_in_args; i++) {
  1436       if (in_regs[i].first()->is_Register()) {
  1437         const Register reg = in_regs[i].first()->as_Register();
  1438         switch (in_sig_bt[i]) {
  1439           case T_ARRAY:
  1440           case T_BOOLEAN:
  1441           case T_BYTE:
  1442           case T_SHORT:
  1443           case T_CHAR:
  1444           case T_INT:  single_slots++; break;
  1445           case T_LONG: double_slots++; break;
  1446           default:  ShouldNotReachHere();
  1448       } else if (in_regs[i].first()->is_XMMRegister()) {
  1449         switch (in_sig_bt[i]) {
  1450           case T_FLOAT:  single_slots++; break;
  1451           case T_DOUBLE: double_slots++; break;
  1452           default:  ShouldNotReachHere();
  1454       } else if (in_regs[i].first()->is_FloatRegister()) {
  1455         ShouldNotReachHere();
  1458     total_save_slots = double_slots * 2 + single_slots;
  1459     // align the save area
  1460     if (double_slots != 0) {
  1461       stack_slots = round_to(stack_slots, 2);
  1465   int oop_handle_offset = stack_slots;
  1466   stack_slots += total_save_slots;
  1468   // Now any space we need for handlizing a klass if static method
  1470   int klass_slot_offset = 0;
  1471   int klass_offset = -1;
  1472   int lock_slot_offset = 0;
  1473   bool is_static = false;
  1475   if (method->is_static()) {
  1476     klass_slot_offset = stack_slots;
  1477     stack_slots += VMRegImpl::slots_per_word;
  1478     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1479     is_static = true;
  1482   // Plus a lock if needed
  1484   if (method->is_synchronized()) {
  1485     lock_slot_offset = stack_slots;
  1486     stack_slots += VMRegImpl::slots_per_word;
  1489   // Now a place (+2) to save return values or temp during shuffling
  1490   // + 2 for return address (which we own) and saved rbp,
  1491   stack_slots += 4;
  1493   // Ok The space we have allocated will look like:
  1494   //
  1495   //
  1496   // FP-> |                     |
  1497   //      |---------------------|
  1498   //      | 2 slots for moves   |
  1499   //      |---------------------|
  1500   //      | lock box (if sync)  |
  1501   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
  1502   //      | klass (if static)   |
  1503   //      |---------------------| <- klass_slot_offset
  1504   //      | oopHandle area      |
  1505   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
  1506   //      | outbound memory     |
  1507   //      | based arguments     |
  1508   //      |                     |
  1509   //      |---------------------|
  1510   //      |                     |
  1511   // SP-> | out_preserved_slots |
  1512   //
  1513   //
  1514   // ****************************************************************************
  1515   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1516   // arguments off of the stack after the jni call. Before the call we can use
  1517   // instructions that are SP relative. After the jni call we switch to FP
  1518   // relative instructions instead of re-adjusting the stack on windows.
  1519   // ****************************************************************************
  1522   // Now compute actual number of stack words we need rounding to make
  1523   // stack properly aligned.
  1524   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
  1526   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1528   intptr_t start = (intptr_t)__ pc();
  1530   // First thing make an ic check to see if we should even be here
  1532   // We are free to use all registers as temps without saving them and
  1533   // restoring them except rbp. rbp is the only callee save register
  1534   // as far as the interpreter and the compiler(s) are concerned.
  1537   const Register ic_reg = rax;
  1538   const Register receiver = rcx;
  1539   Label hit;
  1540   Label exception_pending;
  1542   __ verify_oop(receiver);
  1543   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  1544   __ jcc(Assembler::equal, hit);
  1546   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1548   // verified entry must be aligned for code patching.
  1549   // and the first 5 bytes must be in the same cache line
  1550   // if we align at 8 then we will be sure 5 bytes are in the same line
  1551   __ align(8);
  1553   __ bind(hit);
  1555   int vep_offset = ((intptr_t)__ pc()) - start;
  1557 #ifdef COMPILER1
  1558   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1559     // Object.hashCode can pull the hashCode from the header word
  1560     // instead of doing a full VM transition once it's been computed.
  1561     // Since hashCode is usually polymorphic at call sites we can't do
  1562     // this optimization at the call site without a lot of work.
  1563     Label slowCase;
  1564     Register receiver = rcx;
  1565     Register result = rax;
  1566     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
  1568     // check if locked
  1569     __ testptr(result, markOopDesc::unlocked_value);
  1570     __ jcc (Assembler::zero, slowCase);
  1572     if (UseBiasedLocking) {
  1573       // Check if biased and fall through to runtime if so
  1574       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
  1575       __ jcc (Assembler::notZero, slowCase);
  1578     // get hash
  1579     __ andptr(result, markOopDesc::hash_mask_in_place);
  1580     // test if hashCode exists
  1581     __ jcc  (Assembler::zero, slowCase);
  1582     __ shrptr(result, markOopDesc::hash_shift);
  1583     __ ret(0);
  1584     __ bind (slowCase);
  1586 #endif // COMPILER1
  1588   // The instruction at the verified entry point must be 5 bytes or longer
  1589   // because it can be patched on the fly by make_non_entrant. The stack bang
  1590   // instruction fits that requirement.
  1592   // Generate stack overflow check
  1594   if (UseStackBanging) {
  1595     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  1596   } else {
  1597     // need a 5 byte instruction to allow MT safe patching to non-entrant
  1598     __ fat_nop();
  1601   // Generate a new frame for the wrapper.
  1602   __ enter();
  1603   // -2 because return address is already present and so is saved rbp
  1604   __ subptr(rsp, stack_size - 2*wordSize);
  1606   // Frame is now completed as far as size and linkage.
  1607   int frame_complete = ((intptr_t)__ pc()) - start;
  1609   // Calculate the difference between rsp and rbp,. We need to know it
  1610   // after the native call because on windows Java Natives will pop
  1611   // the arguments and it is painful to do rsp relative addressing
  1612   // in a platform independent way. So after the call we switch to
  1613   // rbp, relative addressing.
  1615   int fp_adjustment = stack_size - 2*wordSize;
  1617 #ifdef COMPILER2
  1618   // C2 may leave the stack dirty if not in SSE2+ mode
  1619   if (UseSSE >= 2) {
  1620     __ verify_FPU(0, "c2i transition should have clean FPU stack");
  1621   } else {
  1622     __ empty_FPU_stack();
  1624 #endif /* COMPILER2 */
  1626   // Compute the rbp, offset for any slots used after the jni call
  1628   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
  1630   // We use rdi as a thread pointer because it is callee save and
  1631   // if we load it once it is usable thru the entire wrapper
  1632   const Register thread = rdi;
  1634   // We use rsi as the oop handle for the receiver/klass
  1635   // It is callee save so it survives the call to native
  1637   const Register oop_handle_reg = rsi;
  1639   __ get_thread(thread);
  1641   if (is_critical_native) {
  1642     check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
  1643                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  1646   //
  1647   // We immediately shuffle the arguments so that any vm call we have to
  1648   // make from here on out (sync slow path, jvmti, etc.) we will have
  1649   // captured the oops from our caller and have a valid oopMap for
  1650   // them.
  1652   // -----------------
  1653   // The Grand Shuffle
  1654   //
  1655   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  1656   // and, if static, the class mirror instead of a receiver.  This pretty much
  1657   // guarantees that register layout will not match (and x86 doesn't use reg
  1658   // parms though amd does).  Since the native abi doesn't use register args
  1659   // and the java conventions does we don't have to worry about collisions.
  1660   // All of our moved are reg->stack or stack->stack.
  1661   // We ignore the extra arguments during the shuffle and handle them at the
  1662   // last moment. The shuffle is described by the two calling convention
  1663   // vectors we have in our possession. We simply walk the java vector to
  1664   // get the source locations and the c vector to get the destinations.
  1666   int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
  1668   // Record rsp-based slot for receiver on stack for non-static methods
  1669   int receiver_offset = -1;
  1671   // This is a trick. We double the stack slots so we can claim
  1672   // the oops in the caller's frame. Since we are sure to have
  1673   // more args than the caller doubling is enough to make
  1674   // sure we can capture all the incoming oop args from the
  1675   // caller.
  1676   //
  1677   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1679   // Mark location of rbp,
  1680   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
  1682   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
  1683   // Are free to temporaries if we have to do  stack to steck moves.
  1684   // All inbound args are referenced based on rbp, and all outbound args via rsp.
  1686   for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
  1687     switch (in_sig_bt[i]) {
  1688       case T_ARRAY:
  1689         if (is_critical_native) {
  1690           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
  1691           c_arg++;
  1692           break;
  1694       case T_OBJECT:
  1695         assert(!is_critical_native, "no oop arguments");
  1696         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  1697                     ((i == 0) && (!is_static)),
  1698                     &receiver_offset);
  1699         break;
  1700       case T_VOID:
  1701         break;
  1703       case T_FLOAT:
  1704         float_move(masm, in_regs[i], out_regs[c_arg]);
  1705           break;
  1707       case T_DOUBLE:
  1708         assert( i + 1 < total_in_args &&
  1709                 in_sig_bt[i + 1] == T_VOID &&
  1710                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  1711         double_move(masm, in_regs[i], out_regs[c_arg]);
  1712         break;
  1714       case T_LONG :
  1715         long_move(masm, in_regs[i], out_regs[c_arg]);
  1716         break;
  1718       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  1720       default:
  1721         simple_move32(masm, in_regs[i], out_regs[c_arg]);
  1725   // Pre-load a static method's oop into rsi.  Used both by locking code and
  1726   // the normal JNI call code.
  1727   if (method->is_static() && !is_critical_native) {
  1729     //  load opp into a register
  1730     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
  1732     // Now handlize the static class mirror it's known not-null.
  1733     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
  1734     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  1736     // Now get the handle
  1737     __ lea(oop_handle_reg, Address(rsp, klass_offset));
  1738     // store the klass handle as second argument
  1739     __ movptr(Address(rsp, wordSize), oop_handle_reg);
  1742   // Change state to native (we save the return address in the thread, since it might not
  1743   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  1744   // points into the right code segment. It does not have to be the correct return pc.
  1745   // We use the same pc/oopMap repeatedly when we call out
  1747   intptr_t the_pc = (intptr_t) __ pc();
  1748   oop_maps->add_gc_map(the_pc - start, map);
  1750   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
  1753   // We have all of the arguments setup at this point. We must not touch any register
  1754   // argument registers at this point (what if we save/restore them there are no oop?
  1757     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  1758     __ movoop(rax, JNIHandles::make_local(method()));
  1759     __ call_VM_leaf(
  1760          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1761          thread, rax);
  1764   // RedefineClasses() tracing support for obsolete method entry
  1765   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  1766     __ movoop(rax, JNIHandles::make_local(method()));
  1767     __ call_VM_leaf(
  1768          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  1769          thread, rax);
  1772   // These are register definitions we need for locking/unlocking
  1773   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
  1774   const Register obj_reg  = rcx;  // Will contain the oop
  1775   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
  1777   Label slow_path_lock;
  1778   Label lock_done;
  1780   // Lock a synchronized method
  1781   if (method->is_synchronized()) {
  1782     assert(!is_critical_native, "unhandled");
  1785     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
  1787     // Get the handle (the 2nd argument)
  1788     __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1790     // Get address of the box
  1792     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
  1794     // Load the oop from the handle
  1795     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1797     if (UseBiasedLocking) {
  1798       // Note that oop_handle_reg is trashed during this call
  1799       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
  1802     // Load immediate 1 into swap_reg %rax,
  1803     __ movptr(swap_reg, 1);
  1805     // Load (object->mark() | 1) into swap_reg %rax,
  1806     __ orptr(swap_reg, Address(obj_reg, 0));
  1808     // Save (object->mark() | 1) into BasicLock's displaced header
  1809     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1811     if (os::is_MP()) {
  1812       __ lock();
  1815     // src -> dest iff dest == rax, else rax, <- dest
  1816     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
  1817     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
  1818     __ jcc(Assembler::equal, lock_done);
  1820     // Test if the oopMark is an obvious stack pointer, i.e.,
  1821     //  1) (mark & 3) == 0, and
  1822     //  2) rsp <= mark < mark + os::pagesize()
  1823     // These 3 tests can be done by evaluating the following
  1824     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
  1825     // assuming both stack pointer and pagesize have their
  1826     // least significant 2 bits clear.
  1827     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
  1829     __ subptr(swap_reg, rsp);
  1830     __ andptr(swap_reg, 3 - os::vm_page_size());
  1832     // Save the test result, for recursive case, the result is zero
  1833     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
  1834     __ jcc(Assembler::notEqual, slow_path_lock);
  1835     // Slow path will re-enter here
  1836     __ bind(lock_done);
  1838     if (UseBiasedLocking) {
  1839       // Re-fetch oop_handle_reg as we trashed it above
  1840       __ movptr(oop_handle_reg, Address(rsp, wordSize));
  1845   // Finally just about ready to make the JNI call
  1848   // get JNIEnv* which is first argument to native
  1849   if (!is_critical_native) {
  1850     __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
  1851     __ movptr(Address(rsp, 0), rdx);
  1854   // Now set thread in native
  1855   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1857   __ call(RuntimeAddress(native_func));
  1859   // WARNING - on Windows Java Natives use pascal calling convention and pop the
  1860   // arguments off of the stack. We could just re-adjust the stack pointer here
  1861   // and continue to do SP relative addressing but we instead switch to FP
  1862   // relative addressing.
  1864   // Unpack native results.
  1865   switch (ret_type) {
  1866   case T_BOOLEAN: __ c2bool(rax);            break;
  1867   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
  1868   case T_BYTE   : __ sign_extend_byte (rax); break;
  1869   case T_SHORT  : __ sign_extend_short(rax); break;
  1870   case T_INT    : /* nothing to do */        break;
  1871   case T_DOUBLE :
  1872   case T_FLOAT  :
  1873     // Result is in st0 we'll save as needed
  1874     break;
  1875   case T_ARRAY:                 // Really a handle
  1876   case T_OBJECT:                // Really a handle
  1877       break; // can't de-handlize until after safepoint check
  1878   case T_VOID: break;
  1879   case T_LONG: break;
  1880   default       : ShouldNotReachHere();
  1883   // Switch thread to "native transition" state before reading the synchronization state.
  1884   // This additional state is necessary because reading and testing the synchronization
  1885   // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1886   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1887   //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1888   //     Thread A is resumed to finish this native method, but doesn't block here since it
  1889   //     didn't see any synchronization is progress, and escapes.
  1890   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1892   if(os::is_MP()) {
  1893     if (UseMembar) {
  1894       // Force this write out before the read below
  1895       __ membar(Assembler::Membar_mask_bits(
  1896            Assembler::LoadLoad | Assembler::LoadStore |
  1897            Assembler::StoreLoad | Assembler::StoreStore));
  1898     } else {
  1899       // Write serialization page so VM thread can do a pseudo remote membar.
  1900       // We use the current thread pointer to calculate a thread specific
  1901       // offset to write to within the page. This minimizes bus traffic
  1902       // due to cache line collision.
  1903       __ serialize_memory(thread, rcx);
  1907   if (AlwaysRestoreFPU) {
  1908     // Make sure the control word is correct.
  1909     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1912   Label after_transition;
  1914   // check for safepoint operation in progress and/or pending suspend requests
  1915   { Label Continue;
  1917     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
  1918              SafepointSynchronize::_not_synchronized);
  1920     Label L;
  1921     __ jcc(Assembler::notEqual, L);
  1922     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1923     __ jcc(Assembler::equal, Continue);
  1924     __ bind(L);
  1926     // Don't use call_VM as it will see a possible pending exception and forward it
  1927     // and never return here preventing us from clearing _last_native_pc down below.
  1928     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1929     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1930     // by hand.
  1931     //
  1932     save_native_result(masm, ret_type, stack_slots);
  1933     __ push(thread);
  1934     if (!is_critical_native) {
  1935       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1936                                               JavaThread::check_special_condition_for_native_trans)));
  1937     } else {
  1938       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1939                                               JavaThread::check_special_condition_for_native_trans_and_transition)));
  1941     __ increment(rsp, wordSize);
  1942     // Restore any method result value
  1943     restore_native_result(masm, ret_type, stack_slots);
  1945     if (is_critical_native) {
  1946       // The call above performed the transition to thread_in_Java so
  1947       // skip the transition logic below.
  1948       __ jmpb(after_transition);
  1951     __ bind(Continue);
  1954   // change thread state
  1955   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1956   __ bind(after_transition);
  1958   Label reguard;
  1959   Label reguard_done;
  1960   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1961   __ jcc(Assembler::equal, reguard);
  1963   // slow path reguard  re-enters here
  1964   __ bind(reguard_done);
  1966   // Handle possible exception (will unlock if necessary)
  1968   // native result if any is live
  1970   // Unlock
  1971   Label slow_path_unlock;
  1972   Label unlock_done;
  1973   if (method->is_synchronized()) {
  1975     Label done;
  1977     // Get locked oop from the handle we passed to jni
  1978     __ movptr(obj_reg, Address(oop_handle_reg, 0));
  1980     if (UseBiasedLocking) {
  1981       __ biased_locking_exit(obj_reg, rbx, done);
  1984     // Simple recursive lock?
  1986     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
  1987     __ jcc(Assembler::equal, done);
  1989     // Must save rax, if if it is live now because cmpxchg must use it
  1990     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  1991       save_native_result(masm, ret_type, stack_slots);
  1994     //  get old displaced header
  1995     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
  1997     // get address of the stack lock
  1998     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2000     // Atomic swap old header if oop still contains the stack lock
  2001     if (os::is_MP()) {
  2002     __ lock();
  2005     // src -> dest iff dest == rax, else rax, <- dest
  2006     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
  2007     __ cmpxchgptr(rbx, Address(obj_reg, 0));
  2008     __ jcc(Assembler::notEqual, slow_path_unlock);
  2010     // slow path re-enters here
  2011     __ bind(unlock_done);
  2012     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
  2013       restore_native_result(masm, ret_type, stack_slots);
  2016     __ bind(done);
  2021     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
  2022     // Tell dtrace about this method exit
  2023     save_native_result(masm, ret_type, stack_slots);
  2024     __ movoop(rax, JNIHandles::make_local(method()));
  2025     __ call_VM_leaf(
  2026          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2027          thread, rax);
  2028     restore_native_result(masm, ret_type, stack_slots);
  2031   // We can finally stop using that last_Java_frame we setup ages ago
  2033   __ reset_last_Java_frame(thread, false, true);
  2035   // Unpack oop result
  2036   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2037       Label L;
  2038       __ cmpptr(rax, (int32_t)NULL_WORD);
  2039       __ jcc(Assembler::equal, L);
  2040       __ movptr(rax, Address(rax, 0));
  2041       __ bind(L);
  2042       __ verify_oop(rax);
  2045   if (!is_critical_native) {
  2046     // reset handle block
  2047     __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
  2048     __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  2050     // Any exception pending?
  2051     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2052     __ jcc(Assembler::notEqual, exception_pending);
  2055   // no exception, we're almost done
  2057   // check that only result value is on FPU stack
  2058   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
  2060   // Fixup floating pointer results so that result looks like a return from a compiled method
  2061   if (ret_type == T_FLOAT) {
  2062     if (UseSSE >= 1) {
  2063       // Pop st0 and store as float and reload into xmm register
  2064       __ fstp_s(Address(rbp, -4));
  2065       __ movflt(xmm0, Address(rbp, -4));
  2067   } else if (ret_type == T_DOUBLE) {
  2068     if (UseSSE >= 2) {
  2069       // Pop st0 and store as double and reload into xmm register
  2070       __ fstp_d(Address(rbp, -8));
  2071       __ movdbl(xmm0, Address(rbp, -8));
  2075   // Return
  2077   __ leave();
  2078   __ ret(0);
  2080   // Unexpected paths are out of line and go here
  2082   // Slow path locking & unlocking
  2083   if (method->is_synchronized()) {
  2085     // BEGIN Slow path lock
  2087     __ bind(slow_path_lock);
  2089     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
  2090     // args are (oop obj, BasicLock* lock, JavaThread* thread)
  2091     __ push(thread);
  2092     __ push(lock_reg);
  2093     __ push(obj_reg);
  2094     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
  2095     __ addptr(rsp, 3*wordSize);
  2097 #ifdef ASSERT
  2098     { Label L;
  2099     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
  2100     __ jcc(Assembler::equal, L);
  2101     __ stop("no pending exception allowed on exit from monitorenter");
  2102     __ bind(L);
  2104 #endif
  2105     __ jmp(lock_done);
  2107     // END Slow path lock
  2109     // BEGIN Slow path unlock
  2110     __ bind(slow_path_unlock);
  2112     // Slow path unlock
  2114     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2115       save_native_result(masm, ret_type, stack_slots);
  2117     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
  2119     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2120     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
  2123     // should be a peal
  2124     // +wordSize because of the push above
  2125     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
  2126     __ push(rax);
  2128     __ push(obj_reg);
  2129     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
  2130     __ addptr(rsp, 2*wordSize);
  2131 #ifdef ASSERT
  2133       Label L;
  2134       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
  2135       __ jcc(Assembler::equal, L);
  2136       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
  2137       __ bind(L);
  2139 #endif /* ASSERT */
  2141     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
  2143     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
  2144       restore_native_result(masm, ret_type, stack_slots);
  2146     __ jmp(unlock_done);
  2147     // END Slow path unlock
  2151   // SLOW PATH Reguard the stack if needed
  2153   __ bind(reguard);
  2154   save_native_result(masm, ret_type, stack_slots);
  2156     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  2158   restore_native_result(masm, ret_type, stack_slots);
  2159   __ jmp(reguard_done);
  2162   // BEGIN EXCEPTION PROCESSING
  2164   if (!is_critical_native) {
  2165     // Forward  the exception
  2166     __ bind(exception_pending);
  2168     // remove possible return value from FPU register stack
  2169     __ empty_FPU_stack();
  2171     // pop our frame
  2172     __ leave();
  2173     // and forward the exception
  2174     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2177   __ flush();
  2179   nmethod *nm = nmethod::new_native_nmethod(method,
  2180                                             compile_id,
  2181                                             masm->code(),
  2182                                             vep_offset,
  2183                                             frame_complete,
  2184                                             stack_slots / VMRegImpl::slots_per_word,
  2185                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2186                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
  2187                                             oop_maps);
  2189   if (is_critical_native) {
  2190     nm->set_lazy_critical_native(true);
  2193   return nm;
  2197 #ifdef HAVE_DTRACE_H
  2198 // ---------------------------------------------------------------------------
  2199 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2200 // in the Java compiled code convention, marshals them to the native
  2201 // abi and then leaves nops at the position you would expect to call a native
  2202 // function. When the probe is enabled the nops are replaced with a trap
  2203 // instruction that dtrace inserts and the trace will cause a notification
  2204 // to dtrace.
  2205 //
  2206 // The probes are only able to take primitive types and java/lang/String as
  2207 // arguments.  No other java types are allowed. Strings are converted to utf8
  2208 // strings so that from dtrace point of view java strings are converted to C
  2209 // strings. There is an arbitrary fixed limit on the total space that a method
  2210 // can use for converting the strings. (256 chars per string in the signature).
  2211 // So any java string larger then this is truncated.
  2213 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2214     MacroAssembler *masm, methodHandle method) {
  2216   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2217   // be single threaded in this method.
  2218   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2220   // Fill in the signature array, for the calling-convention call.
  2221   int total_args_passed = method->size_of_parameters();
  2223   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2224   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2226   // The signature we are going to use for the trap that dtrace will see
  2227   // java/lang/String is converted. We drop "this" and any other object
  2228   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2229   // is converted to a two-slot long, which is why we double the allocation).
  2230   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2231   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2233   int i=0;
  2234   int total_strings = 0;
  2235   int first_arg_to_pass = 0;
  2236   int total_c_args = 0;
  2238   if( !method->is_static() ) {  // Pass in receiver first
  2239     in_sig_bt[i++] = T_OBJECT;
  2240     first_arg_to_pass = 1;
  2243   // We need to convert the java args to where a native (non-jni) function
  2244   // would expect them. To figure out where they go we convert the java
  2245   // signature to a C signature.
  2247   SignatureStream ss(method->signature());
  2248   for ( ; !ss.at_return_type(); ss.next()) {
  2249     BasicType bt = ss.type();
  2250     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2251     out_sig_bt[total_c_args++] = bt;
  2252     if( bt == T_OBJECT) {
  2253       Symbol* s = ss.as_symbol_or_null();   // symbol is created
  2254       if (s == vmSymbols::java_lang_String()) {
  2255         total_strings++;
  2256         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2257       } else if (s == vmSymbols::java_lang_Boolean() ||
  2258                  s == vmSymbols::java_lang_Character() ||
  2259                  s == vmSymbols::java_lang_Byte() ||
  2260                  s == vmSymbols::java_lang_Short() ||
  2261                  s == vmSymbols::java_lang_Integer() ||
  2262                  s == vmSymbols::java_lang_Float()) {
  2263         out_sig_bt[total_c_args-1] = T_INT;
  2264       } else if (s == vmSymbols::java_lang_Long() ||
  2265                  s == vmSymbols::java_lang_Double()) {
  2266         out_sig_bt[total_c_args-1] = T_LONG;
  2267         out_sig_bt[total_c_args++] = T_VOID;
  2269     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2270       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2271       out_sig_bt[total_c_args++] = T_VOID;
  2275   assert(i==total_args_passed, "validly parsed signature");
  2277   // Now get the compiled-Java layout as input arguments
  2278   int comp_args_on_stack;
  2279   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2280       in_sig_bt, in_regs, total_args_passed, false);
  2282   // Now figure out where the args must be stored and how much stack space
  2283   // they require (neglecting out_preserve_stack_slots).
  2285   int out_arg_slots;
  2286   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2288   // Calculate the total number of stack slots we will need.
  2290   // First count the abi requirement plus all of the outgoing args
  2291   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2293   // Now space for the string(s) we must convert
  2295   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  2296   for (i = 0; i < total_strings ; i++) {
  2297     string_locs[i] = stack_slots;
  2298     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  2301   // + 2 for return address (which we own) and saved rbp,
  2303   stack_slots += 2;
  2305   // Ok The space we have allocated will look like:
  2306   //
  2307   //
  2308   // FP-> |                     |
  2309   //      |---------------------|
  2310   //      | string[n]           |
  2311   //      |---------------------| <- string_locs[n]
  2312   //      | string[n-1]         |
  2313   //      |---------------------| <- string_locs[n-1]
  2314   //      | ...                 |
  2315   //      | ...                 |
  2316   //      |---------------------| <- string_locs[1]
  2317   //      | string[0]           |
  2318   //      |---------------------| <- string_locs[0]
  2319   //      | outbound memory     |
  2320   //      | based arguments     |
  2321   //      |                     |
  2322   //      |---------------------|
  2323   //      |                     |
  2324   // SP-> | out_preserved_slots |
  2325   //
  2326   //
  2328   // Now compute actual number of stack words we need rounding to make
  2329   // stack properly aligned.
  2330   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2332   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2334   intptr_t start = (intptr_t)__ pc();
  2336   // First thing make an ic check to see if we should even be here
  2338   // We are free to use all registers as temps without saving them and
  2339   // restoring them except rbp. rbp, is the only callee save register
  2340   // as far as the interpreter and the compiler(s) are concerned.
  2342   const Register ic_reg = rax;
  2343   const Register receiver = rcx;
  2344   Label hit;
  2345   Label exception_pending;
  2348   __ verify_oop(receiver);
  2349   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  2350   __ jcc(Assembler::equal, hit);
  2352   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  2354   // verified entry must be aligned for code patching.
  2355   // and the first 5 bytes must be in the same cache line
  2356   // if we align at 8 then we will be sure 5 bytes are in the same line
  2357   __ align(8);
  2359   __ bind(hit);
  2361   int vep_offset = ((intptr_t)__ pc()) - start;
  2364   // The instruction at the verified entry point must be 5 bytes or longer
  2365   // because it can be patched on the fly by make_non_entrant. The stack bang
  2366   // instruction fits that requirement.
  2368   // Generate stack overflow check
  2371   if (UseStackBanging) {
  2372     if (stack_size <= StackShadowPages*os::vm_page_size()) {
  2373       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  2374     } else {
  2375       __ movl(rax, stack_size);
  2376       __ bang_stack_size(rax, rbx);
  2378   } else {
  2379     // need a 5 byte instruction to allow MT safe patching to non-entrant
  2380     __ fat_nop();
  2383   assert(((int)__ pc() - start - vep_offset) >= 5,
  2384          "valid size for make_non_entrant");
  2386   // Generate a new frame for the wrapper.
  2387   __ enter();
  2389   // -2 because return address is already present and so is saved rbp,
  2390   if (stack_size - 2*wordSize != 0) {
  2391     __ subl(rsp, stack_size - 2*wordSize);
  2394   // Frame is now completed as far a size and linkage.
  2396   int frame_complete = ((intptr_t)__ pc()) - start;
  2398   // First thing we do store all the args as if we are doing the call.
  2399   // Since the C calling convention is stack based that ensures that
  2400   // all the Java register args are stored before we need to convert any
  2401   // string we might have.
  2403   int sid = 0;
  2404   int c_arg, j_arg;
  2405   int string_reg = 0;
  2407   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2408        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2410     VMRegPair src = in_regs[j_arg];
  2411     VMRegPair dst = out_regs[c_arg];
  2412     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
  2413            "stack based abi assumed");
  2415     switch (in_sig_bt[j_arg]) {
  2417       case T_ARRAY:
  2418       case T_OBJECT:
  2419         if (out_sig_bt[c_arg] == T_ADDRESS) {
  2420           // Any register based arg for a java string after the first
  2421           // will be destroyed by the call to get_utf so we store
  2422           // the original value in the location the utf string address
  2423           // will eventually be stored.
  2424           if (src.first()->is_reg()) {
  2425             if (string_reg++ != 0) {
  2426               simple_move32(masm, src, dst);
  2429         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2430           // need to unbox a one-word value
  2431           Register in_reg = rax;
  2432           if ( src.first()->is_reg() ) {
  2433             in_reg = src.first()->as_Register();
  2434           } else {
  2435             simple_move32(masm, src, in_reg->as_VMReg());
  2437           Label skipUnbox;
  2438           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2439           if ( out_sig_bt[c_arg] == T_LONG ) {
  2440             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
  2442           __ testl(in_reg, in_reg);
  2443           __ jcc(Assembler::zero, skipUnbox);
  2444           assert(dst.first()->is_stack() &&
  2445                  (!dst.second()->is_valid() || dst.second()->is_stack()),
  2446                  "value(s) must go into stack slots");
  2448           BasicType bt = out_sig_bt[c_arg];
  2449           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2450           if ( bt == T_LONG ) {
  2451             __ movl(rbx, Address(in_reg,
  2452                                  box_offset + VMRegImpl::stack_slot_size));
  2453             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
  2455           __ movl(in_reg,  Address(in_reg, box_offset));
  2456           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
  2457           __ bind(skipUnbox);
  2458         } else {
  2459           // Convert the arg to NULL
  2460           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
  2462         if (out_sig_bt[c_arg] == T_LONG) {
  2463           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2464           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2466         break;
  2468       case T_VOID:
  2469         break;
  2471       case T_FLOAT:
  2472         float_move(masm, src, dst);
  2473         break;
  2475       case T_DOUBLE:
  2476         assert( j_arg + 1 < total_args_passed &&
  2477                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
  2478         double_move(masm, src, dst);
  2479         break;
  2481       case T_LONG :
  2482         long_move(masm, src, dst);
  2483         break;
  2485       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2487       default:
  2488         simple_move32(masm, src, dst);
  2492   // Now we must convert any string we have to utf8
  2493   //
  2495   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
  2496        sid < total_strings ; j_arg++, c_arg++ ) {
  2498     if (out_sig_bt[c_arg] == T_ADDRESS) {
  2500       Address utf8_addr = Address(
  2501           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
  2502       __ leal(rax, utf8_addr);
  2504       // The first string we find might still be in the original java arg
  2505       // register
  2506       VMReg orig_loc = in_regs[j_arg].first();
  2507       Register string_oop;
  2509       // This is where the argument will eventually reside
  2510       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
  2512       if (sid == 1 && orig_loc->is_reg()) {
  2513         string_oop = orig_loc->as_Register();
  2514         assert(string_oop != rax, "smashed arg");
  2515       } else {
  2517         if (orig_loc->is_reg()) {
  2518           // Get the copy of the jls object
  2519           __ movl(rcx, dest);
  2520         } else {
  2521           // arg is still in the original location
  2522           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
  2524         string_oop = rcx;
  2527       Label nullString;
  2528       __ movl(dest, NULL_WORD);
  2529       __ testl(string_oop, string_oop);
  2530       __ jcc(Assembler::zero, nullString);
  2532       // Now we can store the address of the utf string as the argument
  2533       __ movl(dest, rax);
  2535       // And do the conversion
  2536       __ call_VM_leaf(CAST_FROM_FN_PTR(
  2537              address, SharedRuntime::get_utf), string_oop, rax);
  2538       __ bind(nullString);
  2541     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
  2542       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2543       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
  2548   // Ok now we are done. Need to place the nop that dtrace wants in order to
  2549   // patch in the trap
  2551   int patch_offset = ((intptr_t)__ pc()) - start;
  2553   __ nop();
  2556   // Return
  2558   __ leave();
  2559   __ ret(0);
  2561   __ flush();
  2563   nmethod *nm = nmethod::new_dtrace_nmethod(
  2564       method, masm->code(), vep_offset, patch_offset, frame_complete,
  2565       stack_slots / VMRegImpl::slots_per_word);
  2566   return nm;
  2570 #endif // HAVE_DTRACE_H
  2572 // this function returns the adjust size (in number of words) to a c2i adapter
  2573 // activation for use during deoptimization
  2574 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
  2575   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  2579 uint SharedRuntime::out_preserve_stack_slots() {
  2580   return 0;
  2584 //------------------------------generate_deopt_blob----------------------------
  2585 void SharedRuntime::generate_deopt_blob() {
  2586   // allocate space for the code
  2587   ResourceMark rm;
  2588   // setup code generation tools
  2589   CodeBuffer   buffer("deopt_blob", 1024, 1024);
  2590   MacroAssembler* masm = new MacroAssembler(&buffer);
  2591   int frame_size_in_words;
  2592   OopMap* map = NULL;
  2593   // Account for the extra args we place on the stack
  2594   // by the time we call fetch_unroll_info
  2595   const int additional_words = 2; // deopt kind, thread
  2597   OopMapSet *oop_maps = new OopMapSet();
  2599   // -------------
  2600   // This code enters when returning to a de-optimized nmethod.  A return
  2601   // address has been pushed on the the stack, and return values are in
  2602   // registers.
  2603   // If we are doing a normal deopt then we were called from the patched
  2604   // nmethod from the point we returned to the nmethod. So the return
  2605   // address on the stack is wrong by NativeCall::instruction_size
  2606   // We will adjust the value to it looks like we have the original return
  2607   // address on the stack (like when we eagerly deoptimized).
  2608   // In the case of an exception pending with deoptimized then we enter
  2609   // with a return address on the stack that points after the call we patched
  2610   // into the exception handler. We have the following register state:
  2611   //    rax,: exception
  2612   //    rbx,: exception handler
  2613   //    rdx: throwing pc
  2614   // So in this case we simply jam rdx into the useless return address and
  2615   // the stack looks just like we want.
  2616   //
  2617   // At this point we need to de-opt.  We save the argument return
  2618   // registers.  We call the first C routine, fetch_unroll_info().  This
  2619   // routine captures the return values and returns a structure which
  2620   // describes the current frame size and the sizes of all replacement frames.
  2621   // The current frame is compiled code and may contain many inlined
  2622   // functions, each with their own JVM state.  We pop the current frame, then
  2623   // push all the new frames.  Then we call the C routine unpack_frames() to
  2624   // populate these frames.  Finally unpack_frames() returns us the new target
  2625   // address.  Notice that callee-save registers are BLOWN here; they have
  2626   // already been captured in the vframeArray at the time the return PC was
  2627   // patched.
  2628   address start = __ pc();
  2629   Label cont;
  2631   // Prolog for non exception case!
  2633   // Save everything in sight.
  2635   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2636   // Normal deoptimization
  2637   __ push(Deoptimization::Unpack_deopt);
  2638   __ jmp(cont);
  2640   int reexecute_offset = __ pc() - start;
  2642   // Reexecute case
  2643   // return address is the pc describes what bci to do re-execute at
  2645   // No need to update map as each call to save_live_registers will produce identical oopmap
  2646   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2648   __ push(Deoptimization::Unpack_reexecute);
  2649   __ jmp(cont);
  2651   int exception_offset = __ pc() - start;
  2653   // Prolog for exception case
  2655   // all registers are dead at this entry point, except for rax, and
  2656   // rdx which contain the exception oop and exception pc
  2657   // respectively.  Set them in TLS and fall thru to the
  2658   // unpack_with_exception_in_tls entry point.
  2660   __ get_thread(rdi);
  2661   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
  2662   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
  2664   int exception_in_tls_offset = __ pc() - start;
  2666   // new implementation because exception oop is now passed in JavaThread
  2668   // Prolog for exception case
  2669   // All registers must be preserved because they might be used by LinearScan
  2670   // Exceptiop oop and throwing PC are passed in JavaThread
  2671   // tos: stack at point of call to method that threw the exception (i.e. only
  2672   // args are on the stack, no return address)
  2674   // make room on stack for the return address
  2675   // It will be patched later with the throwing pc. The correct value is not
  2676   // available now because loading it from memory would destroy registers.
  2677   __ push(0);
  2679   // Save everything in sight.
  2681   // No need to update map as each call to save_live_registers will produce identical oopmap
  2682   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  2684   // Now it is safe to overwrite any register
  2686   // store the correct deoptimization type
  2687   __ push(Deoptimization::Unpack_exception);
  2689   // load throwing pc from JavaThread and patch it as the return address
  2690   // of the current frame. Then clear the field in JavaThread
  2691   __ get_thread(rdi);
  2692   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
  2693   __ movptr(Address(rbp, wordSize), rdx);
  2694   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
  2696 #ifdef ASSERT
  2697   // verify that there is really an exception oop in JavaThread
  2698   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
  2699   __ verify_oop(rax);
  2701   // verify that there is no pending exception
  2702   Label no_pending_exception;
  2703   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
  2704   __ testptr(rax, rax);
  2705   __ jcc(Assembler::zero, no_pending_exception);
  2706   __ stop("must not have pending exception here");
  2707   __ bind(no_pending_exception);
  2708 #endif
  2710   __ bind(cont);
  2712   // Compiled code leaves the floating point stack dirty, empty it.
  2713   __ empty_FPU_stack();
  2716   // Call C code.  Need thread and this frame, but NOT official VM entry
  2717   // crud.  We cannot block on this call, no GC can happen.
  2718   __ get_thread(rcx);
  2719   __ push(rcx);
  2720   // fetch_unroll_info needs to call last_java_frame()
  2721   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
  2723   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
  2725   // Need to have an oopmap that tells fetch_unroll_info where to
  2726   // find any register it might need.
  2728   oop_maps->add_gc_map( __ pc()-start, map);
  2730   // Discard arg to fetch_unroll_info
  2731   __ pop(rcx);
  2733   __ get_thread(rcx);
  2734   __ reset_last_Java_frame(rcx, false, false);
  2736   // Load UnrollBlock into EDI
  2737   __ mov(rdi, rax);
  2739   // Move the unpack kind to a safe place in the UnrollBlock because
  2740   // we are very short of registers
  2742   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
  2743   // retrieve the deopt kind from where we left it.
  2744   __ pop(rax);
  2745   __ movl(unpack_kind, rax);                      // save the unpack_kind value
  2747    Label noException;
  2748   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
  2749   __ jcc(Assembler::notEqual, noException);
  2750   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
  2751   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
  2752   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
  2753   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
  2755   __ verify_oop(rax);
  2757   // Overwrite the result registers with the exception results.
  2758   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2759   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2761   __ bind(noException);
  2763   // Stack is back to only having register save data on the stack.
  2764   // Now restore the result registers. Everything else is either dead or captured
  2765   // in the vframeArray.
  2767   RegisterSaver::restore_result_registers(masm);
  2769   // Non standard control word may be leaked out through a safepoint blob, and we can
  2770   // deopt at a poll point with the non standard control word. However, we should make
  2771   // sure the control word is correct after restore_result_registers.
  2772   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  2774   // All of the register save area has been popped of the stack. Only the
  2775   // return address remains.
  2777   // Pop all the frames we must move/replace.
  2778   //
  2779   // Frame picture (youngest to oldest)
  2780   // 1: self-frame (no frame link)
  2781   // 2: deopting frame  (no frame link)
  2782   // 3: caller of deopting frame (could be compiled/interpreted).
  2783   //
  2784   // Note: by leaving the return address of self-frame on the stack
  2785   // and using the size of frame 2 to adjust the stack
  2786   // when we are done the return to frame 3 will still be on the stack.
  2788   // Pop deoptimized frame
  2789   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  2791   // sp should be pointing at the return address to the caller (3)
  2793   // Stack bang to make sure there's enough room for these interpreter frames.
  2794   if (UseStackBanging) {
  2795     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  2796     __ bang_stack_size(rbx, rcx);
  2799   // Load array of frame pcs into ECX
  2800   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  2802   __ pop(rsi); // trash the old pc
  2804   // Load array of frame sizes into ESI
  2805   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  2807   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  2809   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  2810   __ movl(counter, rbx);
  2812   // Pick up the initial fp we should save
  2813   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  2815   // Now adjust the caller's stack to make up for the extra locals
  2816   // but record the original sp so that we can save it in the skeletal interpreter
  2817   // frame and the stack walking of interpreter_sender will get the unextended sp
  2818   // value and not the "real" sp value.
  2820   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  2821   __ movptr(sp_temp, rsp);
  2822   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  2823   __ subptr(rsp, rbx);
  2825   // Push interpreter frames in a loop
  2826   Label loop;
  2827   __ bind(loop);
  2828   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  2829 #ifdef CC_INTERP
  2830   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  2831 #ifdef ASSERT
  2832   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  2833   __ push(0xDEADDEAD);
  2834 #else /* ASSERT */
  2835   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  2836 #endif /* ASSERT */
  2837 #else /* CC_INTERP */
  2838   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  2839 #endif /* CC_INTERP */
  2840   __ pushptr(Address(rcx, 0));          // save return address
  2841   __ enter();                           // save old & set new rbp,
  2842   __ subptr(rsp, rbx);                  // Prolog!
  2843   __ movptr(rbx, sp_temp);              // sender's sp
  2844 #ifdef CC_INTERP
  2845   __ movptr(Address(rbp,
  2846                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  2847           rbx); // Make it walkable
  2848 #else /* CC_INTERP */
  2849   // This value is corrected by layout_activation_impl
  2850   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  2851   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  2852 #endif /* CC_INTERP */
  2853   __ movptr(sp_temp, rsp);              // pass to next frame
  2854   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  2855   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  2856   __ decrementl(counter);             // decrement counter
  2857   __ jcc(Assembler::notZero, loop);
  2858   __ pushptr(Address(rcx, 0));          // save final return address
  2860   // Re-push self-frame
  2861   __ enter();                           // save old & set new rbp,
  2863   //  Return address and rbp, are in place
  2864   // We'll push additional args later. Just allocate a full sized
  2865   // register save area
  2866   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
  2868   // Restore frame locals after moving the frame
  2869   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
  2870   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
  2871   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
  2872   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2873   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
  2875   // Set up the args to unpack_frame
  2877   __ pushl(unpack_kind);                     // get the unpack_kind value
  2878   __ get_thread(rcx);
  2879   __ push(rcx);
  2881   // set last_Java_sp, last_Java_fp
  2882   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
  2884   // Call C code.  Need thread but NOT official VM entry
  2885   // crud.  We cannot block on this call, no GC can happen.  Call should
  2886   // restore return values to their stack-slots with the new SP.
  2887   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  2888   // Set an oopmap for the call site
  2889   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
  2891   // rax, contains the return result type
  2892   __ push(rax);
  2894   __ get_thread(rcx);
  2895   __ reset_last_Java_frame(rcx, false, false);
  2897   // Collect return values
  2898   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
  2899   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
  2901   // Clear floating point stack before returning to interpreter
  2902   __ empty_FPU_stack();
  2904   // Check if we should push the float or double return value.
  2905   Label results_done, yes_double_value;
  2906   __ cmpl(Address(rsp, 0), T_DOUBLE);
  2907   __ jcc (Assembler::zero, yes_double_value);
  2908   __ cmpl(Address(rsp, 0), T_FLOAT);
  2909   __ jcc (Assembler::notZero, results_done);
  2911   // return float value as expected by interpreter
  2912   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2913   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2914   __ jmp(results_done);
  2916   // return double value as expected by interpreter
  2917   __ bind(yes_double_value);
  2918   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
  2919   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
  2921   __ bind(results_done);
  2923   // Pop self-frame.
  2924   __ leave();                              // Epilog!
  2926   // Jump to interpreter
  2927   __ ret(0);
  2929   // -------------
  2930   // make sure all code is generated
  2931   masm->flush();
  2933   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  2934   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  2938 #ifdef COMPILER2
  2939 //------------------------------generate_uncommon_trap_blob--------------------
  2940 void SharedRuntime::generate_uncommon_trap_blob() {
  2941   // allocate space for the code
  2942   ResourceMark rm;
  2943   // setup code generation tools
  2944   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
  2945   MacroAssembler* masm = new MacroAssembler(&buffer);
  2947   enum frame_layout {
  2948     arg0_off,      // thread                     sp + 0 // Arg location for
  2949     arg1_off,      // unloaded_class_index       sp + 1 // calling C
  2950     // The frame sender code expects that rbp will be in the "natural" place and
  2951     // will override any oopMap setting for it. We must therefore force the layout
  2952     // so that it agrees with the frame sender code.
  2953     rbp_off,       // callee saved register      sp + 2
  2954     return_off,    // slot for return address    sp + 3
  2955     framesize
  2956   };
  2958   address start = __ pc();
  2959   // Push self-frame.
  2960   __ subptr(rsp, return_off*wordSize);     // Epilog!
  2962   // rbp, is an implicitly saved callee saved register (i.e. the calling
  2963   // convention will save restore it in prolog/epilog) Other than that
  2964   // there are no callee save registers no that adapter frames are gone.
  2965   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
  2967   // Clear the floating point exception stack
  2968   __ empty_FPU_stack();
  2970   // set last_Java_sp
  2971   __ get_thread(rdx);
  2972   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
  2974   // Call C code.  Need thread but NOT official VM entry
  2975   // crud.  We cannot block on this call, no GC can happen.  Call should
  2976   // capture callee-saved registers as well as return values.
  2977   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
  2978   // argument already in ECX
  2979   __ movl(Address(rsp, arg1_off*wordSize),rcx);
  2980   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
  2982   // Set an oopmap for the call site
  2983   OopMapSet *oop_maps = new OopMapSet();
  2984   OopMap* map =  new OopMap( framesize, 0 );
  2985   // No oopMap for rbp, it is known implicitly
  2987   oop_maps->add_gc_map( __ pc()-start, map);
  2989   __ get_thread(rcx);
  2991   __ reset_last_Java_frame(rcx, false, false);
  2993   // Load UnrollBlock into EDI
  2994   __ movptr(rdi, rax);
  2996   // Pop all the frames we must move/replace.
  2997   //
  2998   // Frame picture (youngest to oldest)
  2999   // 1: self-frame (no frame link)
  3000   // 2: deopting frame  (no frame link)
  3001   // 3: caller of deopting frame (could be compiled/interpreted).
  3003   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
  3004   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
  3006   // Pop deoptimized frame
  3007   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
  3008   __ addptr(rsp, rcx);
  3010   // sp should be pointing at the return address to the caller (3)
  3012   // Stack bang to make sure there's enough room for these interpreter frames.
  3013   if (UseStackBanging) {
  3014     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
  3015     __ bang_stack_size(rbx, rcx);
  3019   // Load array of frame pcs into ECX
  3020   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
  3022   __ pop(rsi); // trash the pc
  3024   // Load array of frame sizes into ESI
  3025   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
  3027   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
  3029   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
  3030   __ movl(counter, rbx);
  3032   // Pick up the initial fp we should save
  3033   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
  3035   // Now adjust the caller's stack to make up for the extra locals
  3036   // but record the original sp so that we can save it in the skeletal interpreter
  3037   // frame and the stack walking of interpreter_sender will get the unextended sp
  3038   // value and not the "real" sp value.
  3040   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
  3041   __ movptr(sp_temp, rsp);
  3042   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
  3043   __ subptr(rsp, rbx);
  3045   // Push interpreter frames in a loop
  3046   Label loop;
  3047   __ bind(loop);
  3048   __ movptr(rbx, Address(rsi, 0));      // Load frame size
  3049 #ifdef CC_INTERP
  3050   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
  3051 #ifdef ASSERT
  3052   __ push(0xDEADDEAD);                  // Make a recognizable pattern
  3053   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
  3054 #else /* ASSERT */
  3055   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
  3056 #endif /* ASSERT */
  3057 #else /* CC_INTERP */
  3058   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
  3059 #endif /* CC_INTERP */
  3060   __ pushptr(Address(rcx, 0));          // save return address
  3061   __ enter();                           // save old & set new rbp,
  3062   __ subptr(rsp, rbx);                  // Prolog!
  3063   __ movptr(rbx, sp_temp);              // sender's sp
  3064 #ifdef CC_INTERP
  3065   __ movptr(Address(rbp,
  3066                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
  3067           rbx); // Make it walkable
  3068 #else /* CC_INTERP */
  3069   // This value is corrected by layout_activation_impl
  3070   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
  3071   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
  3072 #endif /* CC_INTERP */
  3073   __ movptr(sp_temp, rsp);              // pass to next frame
  3074   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  3075   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
  3076   __ decrementl(counter);             // decrement counter
  3077   __ jcc(Assembler::notZero, loop);
  3078   __ pushptr(Address(rcx, 0));            // save final return address
  3080   // Re-push self-frame
  3081   __ enter();                           // save old & set new rbp,
  3082   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
  3085   // set last_Java_sp, last_Java_fp
  3086   __ get_thread(rdi);
  3087   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
  3089   // Call C code.  Need thread but NOT official VM entry
  3090   // crud.  We cannot block on this call, no GC can happen.  Call should
  3091   // restore return values to their stack-slots with the new SP.
  3092   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
  3093   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
  3094   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
  3095   // Set an oopmap for the call site
  3096   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
  3098   __ get_thread(rdi);
  3099   __ reset_last_Java_frame(rdi, true, false);
  3101   // Pop self-frame.
  3102   __ leave();     // Epilog!
  3104   // Jump to interpreter
  3105   __ ret(0);
  3107   // -------------
  3108   // make sure all code is generated
  3109   masm->flush();
  3111    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
  3113 #endif // COMPILER2
  3115 //------------------------------generate_handler_blob------
  3116 //
  3117 // Generate a special Compile2Runtime blob that saves all registers,
  3118 // setup oopmap, and calls safepoint code to stop the compiled code for
  3119 // a safepoint.
  3120 //
  3121 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
  3123   // Account for thread arg in our frame
  3124   const int additional_words = 1;
  3125   int frame_size_in_words;
  3127   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3129   ResourceMark rm;
  3130   OopMapSet *oop_maps = new OopMapSet();
  3131   OopMap* map;
  3133   // allocate space for the code
  3134   // setup code generation tools
  3135   CodeBuffer   buffer("handler_blob", 1024, 512);
  3136   MacroAssembler* masm = new MacroAssembler(&buffer);
  3138   const Register java_thread = rdi; // callee-saved for VC++
  3139   address start   = __ pc();
  3140   address call_pc = NULL;
  3142   // If cause_return is true we are at a poll_return and there is
  3143   // the return address on the stack to the caller on the nmethod
  3144   // that is safepoint. We can leave this return on the stack and
  3145   // effectively complete the return and safepoint in the caller.
  3146   // Otherwise we push space for a return address that the safepoint
  3147   // handler will install later to make the stack walking sensible.
  3148   if( !cause_return )
  3149     __ push(rbx);                // Make room for return address (or push it again)
  3151   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
  3153   // The following is basically a call_VM. However, we need the precise
  3154   // address of the call in order to generate an oopmap. Hence, we do all the
  3155   // work ourselves.
  3157   // Push thread argument and setup last_Java_sp
  3158   __ get_thread(java_thread);
  3159   __ push(java_thread);
  3160   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
  3162   // if this was not a poll_return then we need to correct the return address now.
  3163   if( !cause_return ) {
  3164     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
  3165     __ movptr(Address(rbp, wordSize), rax);
  3168   // do the call
  3169   __ call(RuntimeAddress(call_ptr));
  3171   // Set an oopmap for the call site.  This oopmap will map all
  3172   // oop-registers and debug-info registers as callee-saved.  This
  3173   // will allow deoptimization at this safepoint to find all possible
  3174   // debug-info recordings, as well as let GC find all oops.
  3176   oop_maps->add_gc_map( __ pc() - start, map);
  3178   // Discard arg
  3179   __ pop(rcx);
  3181   Label noException;
  3183   // Clear last_Java_sp again
  3184   __ get_thread(java_thread);
  3185   __ reset_last_Java_frame(java_thread, false, false);
  3187   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3188   __ jcc(Assembler::equal, noException);
  3190   // Exception pending
  3192   RegisterSaver::restore_live_registers(masm);
  3194   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3196   __ bind(noException);
  3198   // Normal exit, register restoring and exit
  3199   RegisterSaver::restore_live_registers(masm);
  3201   __ ret(0);
  3203   // make sure all code is generated
  3204   masm->flush();
  3206   // Fill-out other meta info
  3207   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
  3210 //
  3211 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3212 //
  3213 // Generate a stub that calls into vm to find out the proper destination
  3214 // of a java call. All the argument registers are live at this point
  3215 // but since this is generic code we don't know what they are and the caller
  3216 // must do any gc of the args.
  3217 //
  3218 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3219   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3221   // allocate space for the code
  3222   ResourceMark rm;
  3224   CodeBuffer buffer(name, 1000, 512);
  3225   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3227   int frame_size_words;
  3228   enum frame_layout {
  3229                 thread_off,
  3230                 extra_words };
  3232   OopMapSet *oop_maps = new OopMapSet();
  3233   OopMap* map = NULL;
  3235   int start = __ offset();
  3237   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
  3239   int frame_complete = __ offset();
  3241   const Register thread = rdi;
  3242   __ get_thread(rdi);
  3244   __ push(thread);
  3245   __ set_last_Java_frame(thread, noreg, rbp, NULL);
  3247   __ call(RuntimeAddress(destination));
  3250   // Set an oopmap for the call site.
  3251   // We need this not only for callee-saved registers, but also for volatile
  3252   // registers that the compiler might be keeping live across a safepoint.
  3254   oop_maps->add_gc_map( __ offset() - start, map);
  3256   // rax, contains the address we are going to jump to assuming no exception got installed
  3258   __ addptr(rsp, wordSize);
  3260   // clear last_Java_sp
  3261   __ reset_last_Java_frame(thread, true, false);
  3262   // check for pending exceptions
  3263   Label pending;
  3264   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  3265   __ jcc(Assembler::notEqual, pending);
  3267   // get the returned methodOop
  3268   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
  3269   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
  3271   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
  3273   RegisterSaver::restore_live_registers(masm);
  3275   // We are back the the original state on entry and ready to go.
  3277   __ jmp(rax);
  3279   // Pending exception after the safepoint
  3281   __ bind(pending);
  3283   RegisterSaver::restore_live_registers(masm);
  3285   // exception pending => remove activation and forward to exception handler
  3287   __ get_thread(thread);
  3288   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  3289   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
  3290   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  3292   // -------------
  3293   // make sure all code is generated
  3294   masm->flush();
  3296   // return the  blob
  3297   // frame_size_words or bytes??
  3298   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial