src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Mon, 13 Feb 2012 02:29:22 -0800

author
twisti
date
Mon, 13 Feb 2012 02:29:22 -0800
changeset 3566
45a1bf98f1bb
parent 3500
0382d2b469b2
child 3969
1d7922586cf6
permissions
-rw-r--r--

7141329: Strange values of stack_size in -XX:+TraceMethodHandles output
Reviewed-by: kvn, never

duke@435 1 /*
never@3500 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
stefank@2314 32 #include "oops/compiledICHolderOop.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
duke@435 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class RegisterSaver {
duke@435 49 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 50 // Capture info about frame layout
duke@435 51 enum layout {
duke@435 52 fpu_state_off = 0,
duke@435 53 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 54 st0_off, st0H_off,
duke@435 55 st1_off, st1H_off,
duke@435 56 st2_off, st2H_off,
duke@435 57 st3_off, st3H_off,
duke@435 58 st4_off, st4H_off,
duke@435 59 st5_off, st5H_off,
duke@435 60 st6_off, st6H_off,
duke@435 61 st7_off, st7H_off,
duke@435 62
duke@435 63 xmm0_off, xmm0H_off,
duke@435 64 xmm1_off, xmm1H_off,
duke@435 65 xmm2_off, xmm2H_off,
duke@435 66 xmm3_off, xmm3H_off,
duke@435 67 xmm4_off, xmm4H_off,
duke@435 68 xmm5_off, xmm5H_off,
duke@435 69 xmm6_off, xmm6H_off,
duke@435 70 xmm7_off, xmm7H_off,
duke@435 71 flags_off,
duke@435 72 rdi_off,
duke@435 73 rsi_off,
duke@435 74 ignore_off, // extra copy of rbp,
duke@435 75 rsp_off,
duke@435 76 rbx_off,
duke@435 77 rdx_off,
duke@435 78 rcx_off,
duke@435 79 rax_off,
duke@435 80 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 81 // will override any oopMap setting for it. We must therefore force the layout
duke@435 82 // so that it agrees with the frame sender code.
duke@435 83 rbp_off,
duke@435 84 return_off, // slot for return address
duke@435 85 reg_save_size };
duke@435 86
duke@435 87
duke@435 88 public:
duke@435 89
duke@435 90 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 91 int* total_frame_words, bool verify_fpu = true);
duke@435 92 static void restore_live_registers(MacroAssembler* masm);
duke@435 93
duke@435 94 static int rax_offset() { return rax_off; }
duke@435 95 static int rbx_offset() { return rbx_off; }
duke@435 96
duke@435 97 // Offsets into the register save area
duke@435 98 // Used by deoptimization when it is managing result register
duke@435 99 // values on its own
duke@435 100
duke@435 101 static int raxOffset(void) { return rax_off; }
duke@435 102 static int rdxOffset(void) { return rdx_off; }
duke@435 103 static int rbxOffset(void) { return rbx_off; }
duke@435 104 static int xmm0Offset(void) { return xmm0_off; }
duke@435 105 // This really returns a slot in the fp save area, which one is not important
duke@435 106 static int fpResultOffset(void) { return st0_off; }
duke@435 107
duke@435 108 // During deoptimization only the result register need to be restored
duke@435 109 // all the other values have already been extracted.
duke@435 110
duke@435 111 static void restore_result_registers(MacroAssembler* masm);
duke@435 112
duke@435 113 };
duke@435 114
duke@435 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 116 int* total_frame_words, bool verify_fpu) {
duke@435 117
duke@435 118 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 119 int frame_words = frame_size_in_bytes / wordSize;
duke@435 120 *total_frame_words = frame_words;
duke@435 121
duke@435 122 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 123
duke@435 124 // save registers, fpu state, and flags
duke@435 125 // We assume caller has already has return address slot on the stack
duke@435 126 // We push epb twice in this sequence because we want the real rbp,
never@739 127 // to be under the return like a normal enter and we want to use pusha
duke@435 128 // We push by hand instead of pusing push
duke@435 129 __ enter();
never@739 130 __ pusha();
never@739 131 __ pushf();
never@739 132 __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 133 __ push_FPU_state(); // Save FPU state & init
duke@435 134
duke@435 135 if (verify_fpu) {
duke@435 136 // Some stubs may have non standard FPU control word settings so
duke@435 137 // only check and reset the value when it required to be the
duke@435 138 // standard value. The safepoint blob in particular can be used
duke@435 139 // in methods which are using the 24 bit control word for
duke@435 140 // optimized float math.
duke@435 141
duke@435 142 #ifdef ASSERT
duke@435 143 // Make sure the control word has the expected value
duke@435 144 Label ok;
duke@435 145 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 146 __ jccb(Assembler::equal, ok);
duke@435 147 __ stop("corrupted control word detected");
duke@435 148 __ bind(ok);
duke@435 149 #endif
duke@435 150
duke@435 151 // Reset the control word to guard against exceptions being unmasked
duke@435 152 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 153 // into the on stack copy and then reload that to make sure that the
duke@435 154 // current and future values are correct.
duke@435 155 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 156 }
duke@435 157
duke@435 158 __ frstor(Address(rsp, 0));
duke@435 159 if (!verify_fpu) {
duke@435 160 // Set the control word so that exceptions are masked for the
duke@435 161 // following code.
duke@435 162 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 163 }
duke@435 164
duke@435 165 // Save the FPU registers in de-opt-able form
duke@435 166
duke@435 167 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 168 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 169 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 170 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 171 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 172 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 173 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 174 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 175
duke@435 176 if( UseSSE == 1 ) { // Save the XMM state
duke@435 177 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 178 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 179 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 180 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 181 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 182 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 183 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 184 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 185 } else if( UseSSE >= 2 ) {
duke@435 186 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 187 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 188 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 189 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 190 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 191 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 192 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 193 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 194 }
duke@435 195
duke@435 196 // Set an oopmap for the call site. This oopmap will map all
duke@435 197 // oop-registers and debug-info registers as callee-saved. This
duke@435 198 // will allow deoptimization at this safepoint to find all possible
duke@435 199 // debug-info recordings, as well as let GC find all oops.
duke@435 200
duke@435 201 OopMapSet *oop_maps = new OopMapSet();
duke@435 202 OopMap* map = new OopMap( frame_words, 0 );
duke@435 203
duke@435 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 205
duke@435 206 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 207 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 208 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 209 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 210 // rbp, location is known implicitly, no oopMap
duke@435 211 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 212 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 213 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 214 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 215 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 216 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 217 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 218 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 222 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 223 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 224 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 225 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 226 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 227 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 228 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 229 // %%% This is really a waste but we'll keep things as they were for now
duke@435 230 if (true) {
duke@435 231 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 232 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 233 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 234 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 235 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 236 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 237 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 238 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 239 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 241 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 242 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 243 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 244 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 245 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 246 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 247 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 248 #undef NEXTREG
duke@435 249 #undef STACK_OFFSET
duke@435 250 }
duke@435 251
duke@435 252 return map;
duke@435 253
duke@435 254 }
duke@435 255
duke@435 256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 257
duke@435 258 // Recover XMM & FPU state
duke@435 259 if( UseSSE == 1 ) {
duke@435 260 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 261 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 262 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 263 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 264 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 265 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 266 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 267 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 268 } else if( UseSSE >= 2 ) {
duke@435 269 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 270 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 271 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 272 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 273 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 274 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 275 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 276 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 277 }
duke@435 278 __ pop_FPU_state();
never@739 279 __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
never@739 280
never@739 281 __ popf();
never@739 282 __ popa();
duke@435 283 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 284 __ pop(rbp);
duke@435 285
duke@435 286 }
duke@435 287
duke@435 288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 289
duke@435 290 // Just restore result register. Only used by deoptimization. By
duke@435 291 // now any callee save register that needs to be restore to a c2
duke@435 292 // caller of the deoptee has been extracted into the vframeArray
duke@435 293 // and will be stuffed into the c2i adapter we create for later
duke@435 294 // restoration so only result registers need to be restored here.
duke@435 295 //
duke@435 296
duke@435 297 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 298
duke@435 299 // Recover XMM & FPU state
duke@435 300 if( UseSSE == 1 ) {
duke@435 301 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 302 } else if( UseSSE >= 2 ) {
duke@435 303 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 304 }
never@739 305 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 306 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 307 // Pop all of the register save are off the stack except the return address
never@739 308 __ addptr(rsp, return_off * wordSize);
duke@435 309 }
duke@435 310
duke@435 311 // The java_calling_convention describes stack locations as ideal slots on
duke@435 312 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 313 // (like the placement of the register window) the slots must be biased by
duke@435 314 // the following value.
duke@435 315 static int reg2offset_in(VMReg r) {
duke@435 316 // Account for saved rbp, and return address
duke@435 317 // This should really be in_preserve_stack_slots
duke@435 318 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 319 }
duke@435 320
duke@435 321 static int reg2offset_out(VMReg r) {
duke@435 322 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 323 }
duke@435 324
duke@435 325 // ---------------------------------------------------------------------------
duke@435 326 // Read the array of BasicTypes from a signature, and compute where the
duke@435 327 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 328 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 329 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 330 // as framesizes are fixed.
duke@435 331 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 333 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 334 // integer registers.
duke@435 335
duke@435 336 // Pass first two oop/int args in registers ECX and EDX.
duke@435 337 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 338 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 339 // the doubles will grab the registers before the floats will.
duke@435 340
duke@435 341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 342 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 343 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 344
duke@435 345
duke@435 346 // ---------------------------------------------------------------------------
duke@435 347 // The compiled Java calling convention.
duke@435 348 // Pass first two oop/int args in registers ECX and EDX.
duke@435 349 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 350 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 351 // the doubles will grab the registers before the floats will.
duke@435 352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 353 VMRegPair *regs,
duke@435 354 int total_args_passed,
duke@435 355 int is_outgoing) {
duke@435 356 uint stack = 0; // Starting stack position for args on stack
duke@435 357
duke@435 358
duke@435 359 // Pass first two oop/int args in registers ECX and EDX.
duke@435 360 uint reg_arg0 = 9999;
duke@435 361 uint reg_arg1 = 9999;
duke@435 362
duke@435 363 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 364 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 365 // the doubles will grab the registers before the floats will.
duke@435 366 // CNC - TURNED OFF FOR non-SSE.
duke@435 367 // On Intel we have to round all doubles (and most floats) at
duke@435 368 // call sites by storing to the stack in any case.
duke@435 369 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 370 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 371 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 372 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 373 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 374 uint freg_arg0 = 9999+fargs;
duke@435 375 uint freg_arg1 = 9999+fargs;
duke@435 376
duke@435 377 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 378 int i;
duke@435 379 for( i = 0; i < total_args_passed; i++) {
duke@435 380 if( sig_bt[i] == T_DOUBLE ) {
duke@435 381 // first 2 doubles go in registers
duke@435 382 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 383 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 384 else // Else double is passed low on the stack to be aligned.
duke@435 385 stack += 2;
duke@435 386 } else if( sig_bt[i] == T_LONG ) {
duke@435 387 stack += 2;
duke@435 388 }
duke@435 389 }
duke@435 390 int dstack = 0; // Separate counter for placing doubles
duke@435 391
duke@435 392 // Now pick where all else goes.
duke@435 393 for( i = 0; i < total_args_passed; i++) {
duke@435 394 // From the type and the argument number (count) compute the location
duke@435 395 switch( sig_bt[i] ) {
duke@435 396 case T_SHORT:
duke@435 397 case T_CHAR:
duke@435 398 case T_BYTE:
duke@435 399 case T_BOOLEAN:
duke@435 400 case T_INT:
duke@435 401 case T_ARRAY:
duke@435 402 case T_OBJECT:
duke@435 403 case T_ADDRESS:
duke@435 404 if( reg_arg0 == 9999 ) {
duke@435 405 reg_arg0 = i;
duke@435 406 regs[i].set1(rcx->as_VMReg());
duke@435 407 } else if( reg_arg1 == 9999 ) {
duke@435 408 reg_arg1 = i;
duke@435 409 regs[i].set1(rdx->as_VMReg());
duke@435 410 } else {
duke@435 411 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 412 }
duke@435 413 break;
duke@435 414 case T_FLOAT:
duke@435 415 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 416 freg_arg0 = i;
duke@435 417 regs[i].set1(xmm0->as_VMReg());
duke@435 418 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 419 freg_arg1 = i;
duke@435 420 regs[i].set1(xmm1->as_VMReg());
duke@435 421 } else {
duke@435 422 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 423 }
duke@435 424 break;
duke@435 425 case T_LONG:
duke@435 426 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 427 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 428 dstack += 2;
duke@435 429 break;
duke@435 430 case T_DOUBLE:
duke@435 431 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 432 if( freg_arg0 == (uint)i ) {
duke@435 433 regs[i].set2(xmm0->as_VMReg());
duke@435 434 } else if( freg_arg1 == (uint)i ) {
duke@435 435 regs[i].set2(xmm1->as_VMReg());
duke@435 436 } else {
duke@435 437 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 438 dstack += 2;
duke@435 439 }
duke@435 440 break;
duke@435 441 case T_VOID: regs[i].set_bad(); break;
duke@435 442 break;
duke@435 443 default:
duke@435 444 ShouldNotReachHere();
duke@435 445 break;
duke@435 446 }
duke@435 447 }
duke@435 448
duke@435 449 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 450 return round_to(stack, 2);
duke@435 451 }
duke@435 452
duke@435 453 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 454 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 455 Label L;
duke@435 456 __ verify_oop(rbx);
never@739 457 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 458 __ jcc(Assembler::equal, L);
duke@435 459 // Schedule the branch target address early.
duke@435 460 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 461 // rax, isn't live so capture return address while we easily can
never@739 462 __ movptr(rax, Address(rsp, 0));
never@739 463 __ pusha();
never@739 464 __ pushf();
duke@435 465
duke@435 466 if (UseSSE == 1) {
never@739 467 __ subptr(rsp, 2*wordSize);
duke@435 468 __ movflt(Address(rsp, 0), xmm0);
duke@435 469 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 470 }
duke@435 471 if (UseSSE >= 2) {
never@739 472 __ subptr(rsp, 4*wordSize);
duke@435 473 __ movdbl(Address(rsp, 0), xmm0);
duke@435 474 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 475 }
duke@435 476 #ifdef COMPILER2
duke@435 477 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 478 if (UseSSE >= 2) {
duke@435 479 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 480 } else {
duke@435 481 __ empty_FPU_stack();
duke@435 482 }
duke@435 483 #endif /* COMPILER2 */
duke@435 484
duke@435 485 // VM needs caller's callsite
never@739 486 __ push(rax);
duke@435 487 // VM needs target method
never@739 488 __ push(rbx);
duke@435 489 __ verify_oop(rbx);
duke@435 490 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 491 __ addptr(rsp, 2*wordSize);
duke@435 492
duke@435 493 if (UseSSE == 1) {
duke@435 494 __ movflt(xmm0, Address(rsp, 0));
duke@435 495 __ movflt(xmm1, Address(rsp, wordSize));
never@739 496 __ addptr(rsp, 2*wordSize);
duke@435 497 }
duke@435 498 if (UseSSE >= 2) {
duke@435 499 __ movdbl(xmm0, Address(rsp, 0));
duke@435 500 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 501 __ addptr(rsp, 4*wordSize);
duke@435 502 }
duke@435 503
never@739 504 __ popf();
never@739 505 __ popa();
duke@435 506 __ bind(L);
duke@435 507 }
duke@435 508
duke@435 509
duke@435 510 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
twisti@1861 511 int next_off = st_off - Interpreter::stackElementSize;
twisti@1861 512 __ movdbl(Address(rsp, next_off), r);
duke@435 513 }
duke@435 514
duke@435 515 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 516 int total_args_passed,
duke@435 517 int comp_args_on_stack,
duke@435 518 const BasicType *sig_bt,
duke@435 519 const VMRegPair *regs,
duke@435 520 Label& skip_fixup) {
duke@435 521 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 522 // at all. We've come from compiled code and are attempting to jump to the
duke@435 523 // interpreter, which means the caller made a static call to get here
duke@435 524 // (vcalls always get a compiled target if there is one). Check for a
duke@435 525 // compiled target. If there is one, we need to patch the caller's call.
duke@435 526 patch_callers_callsite(masm);
duke@435 527
duke@435 528 __ bind(skip_fixup);
duke@435 529
duke@435 530 #ifdef COMPILER2
duke@435 531 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 532 if (UseSSE >= 2) {
duke@435 533 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 534 } else {
duke@435 535 __ empty_FPU_stack();
duke@435 536 }
duke@435 537 #endif /* COMPILER2 */
duke@435 538
duke@435 539 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 540 // stack_element_size is the
duke@435 541 // space we need.
twisti@1861 542 int extraspace = total_args_passed * Interpreter::stackElementSize;
duke@435 543
duke@435 544 // Get return address
never@739 545 __ pop(rax);
duke@435 546
duke@435 547 // set senderSP value
never@739 548 __ movptr(rsi, rsp);
never@739 549
never@739 550 __ subptr(rsp, extraspace);
duke@435 551
duke@435 552 // Now write the args into the outgoing interpreter space
duke@435 553 for (int i = 0; i < total_args_passed; i++) {
duke@435 554 if (sig_bt[i] == T_VOID) {
duke@435 555 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 556 continue;
duke@435 557 }
duke@435 558
duke@435 559 // st_off points to lowest address on stack.
twisti@1861 560 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
twisti@1861 561 int next_off = st_off - Interpreter::stackElementSize;
never@739 562
duke@435 563 // Say 4 args:
duke@435 564 // i st_off
duke@435 565 // 0 12 T_LONG
duke@435 566 // 1 8 T_VOID
duke@435 567 // 2 4 T_OBJECT
duke@435 568 // 3 0 T_BOOL
duke@435 569 VMReg r_1 = regs[i].first();
duke@435 570 VMReg r_2 = regs[i].second();
duke@435 571 if (!r_1->is_valid()) {
duke@435 572 assert(!r_2->is_valid(), "");
duke@435 573 continue;
duke@435 574 }
duke@435 575
duke@435 576 if (r_1->is_stack()) {
duke@435 577 // memory to memory use fpu stack top
duke@435 578 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 579
duke@435 580 if (!r_2->is_valid()) {
duke@435 581 __ movl(rdi, Address(rsp, ld_off));
never@739 582 __ movptr(Address(rsp, st_off), rdi);
duke@435 583 } else {
duke@435 584
duke@435 585 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 586 // st_off == MSW, st_off-wordSize == LSW
duke@435 587
never@739 588 __ movptr(rdi, Address(rsp, ld_off));
never@739 589 __ movptr(Address(rsp, next_off), rdi);
never@739 590 #ifndef _LP64
never@739 591 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 592 __ movptr(Address(rsp, st_off), rdi);
never@739 593 #else
never@739 594 #ifdef ASSERT
never@739 595 // Overwrite the unused slot with known junk
never@739 596 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 597 __ movptr(Address(rsp, st_off), rax);
never@739 598 #endif /* ASSERT */
never@739 599 #endif // _LP64
duke@435 600 }
duke@435 601 } else if (r_1->is_Register()) {
duke@435 602 Register r = r_1->as_Register();
duke@435 603 if (!r_2->is_valid()) {
duke@435 604 __ movl(Address(rsp, st_off), r);
duke@435 605 } else {
duke@435 606 // long/double in gpr
never@739 607 NOT_LP64(ShouldNotReachHere());
never@739 608 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 609 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 610 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 611 // long/double in gpr
never@739 612 #ifdef ASSERT
never@739 613 // Overwrite the unused slot with known junk
never@739 614 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 615 __ movptr(Address(rsp, st_off), rax);
never@739 616 #endif /* ASSERT */
never@739 617 __ movptr(Address(rsp, next_off), r);
never@739 618 } else {
never@739 619 __ movptr(Address(rsp, st_off), r);
never@739 620 }
duke@435 621 }
duke@435 622 } else {
duke@435 623 assert(r_1->is_XMMRegister(), "");
duke@435 624 if (!r_2->is_valid()) {
duke@435 625 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 626 } else {
duke@435 627 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 628 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 629 }
duke@435 630 }
duke@435 631 }
duke@435 632
duke@435 633 // Schedule the branch target address early.
never@739 634 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 635 // And repush original return address
never@739 636 __ push(rax);
duke@435 637 __ jmp(rcx);
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
twisti@1861 642 int next_val_off = ld_off - Interpreter::stackElementSize;
twisti@1861 643 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 644 }
duke@435 645
duke@435 646 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 647 int total_args_passed,
duke@435 648 int comp_args_on_stack,
duke@435 649 const BasicType *sig_bt,
duke@435 650 const VMRegPair *regs) {
duke@435 651
duke@435 652 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 653 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 654 // code goes non-entrant while we get args ready.
duke@435 655
duke@435 656 // Pick up the return address
never@739 657 __ movptr(rax, Address(rsp, 0));
duke@435 658
duke@435 659 // Must preserve original SP for loading incoming arguments because
duke@435 660 // we need to align the outgoing SP for compiled code.
never@739 661 __ movptr(rdi, rsp);
duke@435 662
duke@435 663 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 664 // in registers, we will occasionally have no stack args.
duke@435 665 int comp_words_on_stack = 0;
duke@435 666 if (comp_args_on_stack) {
duke@435 667 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 668 // registers are below. By subtracting stack0, we either get a negative
duke@435 669 // number (all values in registers) or the maximum stack slot accessed.
duke@435 670 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 671 // Convert 4-byte stack slots to words.
duke@435 672 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 673 // Round up to miminum stack alignment, in wordSize
duke@435 674 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 675 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 676 }
duke@435 677
duke@435 678 // Align the outgoing SP
never@739 679 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 680
duke@435 681 // push the return address on the stack (note that pushing, rather
duke@435 682 // than storing it, yields the correct frame alignment for the callee)
never@739 683 __ push(rax);
duke@435 684
duke@435 685 // Put saved SP in another register
duke@435 686 const Register saved_sp = rax;
never@739 687 __ movptr(saved_sp, rdi);
duke@435 688
duke@435 689
duke@435 690 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 691 // Pre-load the register-jump target early, to schedule it better.
never@739 692 __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 693
duke@435 694 // Now generate the shuffle code. Pick up all register args and move the
duke@435 695 // rest through the floating point stack top.
duke@435 696 for (int i = 0; i < total_args_passed; i++) {
duke@435 697 if (sig_bt[i] == T_VOID) {
duke@435 698 // Longs and doubles are passed in native word order, but misaligned
duke@435 699 // in the 32-bit build.
duke@435 700 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 701 continue;
duke@435 702 }
duke@435 703
duke@435 704 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 705
duke@435 706 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 707 "scrambled load targets?");
duke@435 708 // Load in argument order going down.
twisti@1861 709 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
duke@435 710 // Point to interpreter value (vs. tag)
twisti@1861 711 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 712 //
duke@435 713 //
duke@435 714 //
duke@435 715 VMReg r_1 = regs[i].first();
duke@435 716 VMReg r_2 = regs[i].second();
duke@435 717 if (!r_1->is_valid()) {
duke@435 718 assert(!r_2->is_valid(), "");
duke@435 719 continue;
duke@435 720 }
duke@435 721 if (r_1->is_stack()) {
duke@435 722 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 723 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 724
duke@435 725 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 726 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 727 // we be generated.
duke@435 728 if (!r_2->is_valid()) {
duke@435 729 // __ fld_s(Address(saved_sp, ld_off));
duke@435 730 // __ fstp_s(Address(rsp, st_off));
duke@435 731 __ movl(rsi, Address(saved_sp, ld_off));
never@739 732 __ movptr(Address(rsp, st_off), rsi);
duke@435 733 } else {
duke@435 734 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 735 // are accessed as negative so LSW is at LOW address
duke@435 736
duke@435 737 // ld_off is MSW so get LSW
duke@435 738 // st_off is LSW (i.e. reg.first())
duke@435 739 // __ fld_d(Address(saved_sp, next_off));
duke@435 740 // __ fstp_d(Address(rsp, st_off));
never@739 741 //
never@739 742 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 743 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 744 // So we must adjust where to pick up the data to match the interpreter.
never@739 745 //
never@739 746 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 747 // are accessed as negative so LSW is at LOW address
never@739 748
never@739 749 // ld_off is MSW so get LSW
never@739 750 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 751 next_off : ld_off;
never@739 752 __ movptr(rsi, Address(saved_sp, offset));
never@739 753 __ movptr(Address(rsp, st_off), rsi);
never@739 754 #ifndef _LP64
never@739 755 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 756 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 757 #endif // _LP64
duke@435 758 }
duke@435 759 } else if (r_1->is_Register()) { // Register argument
duke@435 760 Register r = r_1->as_Register();
duke@435 761 assert(r != rax, "must be different");
duke@435 762 if (r_2->is_valid()) {
never@739 763 //
never@739 764 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 765 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 766 // So we must adjust where to pick up the data to match the interpreter.
never@739 767
never@739 768 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 769 next_off : ld_off;
never@739 770
never@739 771 // this can be a misaligned move
never@739 772 __ movptr(r, Address(saved_sp, offset));
never@739 773 #ifndef _LP64
duke@435 774 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 775 // Remember r_1 is low address (and LSB on x86)
duke@435 776 // So r_2 gets loaded from high address regardless of the platform
never@739 777 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 778 #endif // _LP64
duke@435 779 } else {
duke@435 780 __ movl(r, Address(saved_sp, ld_off));
duke@435 781 }
duke@435 782 } else {
duke@435 783 assert(r_1->is_XMMRegister(), "");
duke@435 784 if (!r_2->is_valid()) {
duke@435 785 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 786 } else {
duke@435 787 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 788 }
duke@435 789 }
duke@435 790 }
duke@435 791
duke@435 792 // 6243940 We might end up in handle_wrong_method if
duke@435 793 // the callee is deoptimized as we race thru here. If that
duke@435 794 // happens we don't want to take a safepoint because the
duke@435 795 // caller frame will look interpreted and arguments are now
duke@435 796 // "compiled" so it is much better to make this transition
duke@435 797 // invisible to the stack walking code. Unfortunately if
duke@435 798 // we try and find the callee by normal means a safepoint
duke@435 799 // is possible. So we stash the desired callee in the thread
duke@435 800 // and the vm will find there should this case occur.
duke@435 801
duke@435 802 __ get_thread(rax);
never@739 803 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 804
duke@435 805 // move methodOop to rax, in case we end up in an c2i adapter.
duke@435 806 // the c2i adapters expect methodOop in rax, (c2) because c2's
duke@435 807 // resolve stubs return the result (the method) in rax,.
duke@435 808 // I'd love to fix this.
never@739 809 __ mov(rax, rbx);
duke@435 810
duke@435 811 __ jmp(rdi);
duke@435 812 }
duke@435 813
duke@435 814 // ---------------------------------------------------------------
duke@435 815 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 816 int total_args_passed,
duke@435 817 int comp_args_on_stack,
duke@435 818 const BasicType *sig_bt,
never@1622 819 const VMRegPair *regs,
never@1622 820 AdapterFingerPrint* fingerprint) {
duke@435 821 address i2c_entry = __ pc();
duke@435 822
duke@435 823 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 824
duke@435 825 // -------------------------------------------------------------------------
duke@435 826 // Generate a C2I adapter. On entry we know rbx, holds the methodOop during calls
duke@435 827 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 828 // need to be unpacked into the interpreter layout. This will almost always
duke@435 829 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 830 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 831 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 832 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 833
duke@435 834 address c2i_unverified_entry = __ pc();
duke@435 835 Label skip_fixup;
duke@435 836
duke@435 837 Register holder = rax;
duke@435 838 Register receiver = rcx;
duke@435 839 Register temp = rbx;
duke@435 840
duke@435 841 {
duke@435 842
duke@435 843 Label missed;
duke@435 844
duke@435 845 __ verify_oop(holder);
never@739 846 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 847 __ verify_oop(temp);
duke@435 848
never@739 849 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 850 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 851 __ jcc(Assembler::notEqual, missed);
duke@435 852 // Method might have been compiled since the call site was patched to
duke@435 853 // interpreted if that is the case treat it as a miss so we can get
duke@435 854 // the call site corrected.
never@739 855 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 856 __ jcc(Assembler::equal, skip_fixup);
duke@435 857
duke@435 858 __ bind(missed);
duke@435 859 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 860 }
duke@435 861
duke@435 862 address c2i_entry = __ pc();
duke@435 863
duke@435 864 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 865
duke@435 866 __ flush();
never@1622 867 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 868 }
duke@435 869
duke@435 870 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 871 VMRegPair *regs,
duke@435 872 int total_args_passed) {
duke@435 873 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 874 // the arguments NOT counting out_preserve_stack_slots.
duke@435 875
duke@435 876 uint stack = 0; // All arguments on stack
duke@435 877
duke@435 878 for( int i = 0; i < total_args_passed; i++) {
duke@435 879 // From the type and the argument number (count) compute the location
duke@435 880 switch( sig_bt[i] ) {
duke@435 881 case T_BOOLEAN:
duke@435 882 case T_CHAR:
duke@435 883 case T_FLOAT:
duke@435 884 case T_BYTE:
duke@435 885 case T_SHORT:
duke@435 886 case T_INT:
duke@435 887 case T_OBJECT:
duke@435 888 case T_ARRAY:
duke@435 889 case T_ADDRESS:
duke@435 890 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 891 break;
duke@435 892 case T_LONG:
duke@435 893 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 894 // Since C arguments do not get reversed, the ordering for
duke@435 895 // doubles on the stack must be opposite the Java convention
duke@435 896 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 897 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 898 stack += 2;
duke@435 899 break;
duke@435 900 case T_VOID: regs[i].set_bad(); break;
duke@435 901 default:
duke@435 902 ShouldNotReachHere();
duke@435 903 break;
duke@435 904 }
duke@435 905 }
duke@435 906 return stack;
duke@435 907 }
duke@435 908
duke@435 909 // A simple move of integer like type
duke@435 910 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 911 if (src.first()->is_stack()) {
duke@435 912 if (dst.first()->is_stack()) {
duke@435 913 // stack to stack
duke@435 914 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 915 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 916 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 917 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 918 } else {
duke@435 919 // stack to reg
never@739 920 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 921 }
duke@435 922 } else if (dst.first()->is_stack()) {
duke@435 923 // reg to stack
never@739 924 // no need to sign extend on 64bit
never@739 925 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 926 } else {
never@739 927 if (dst.first() != src.first()) {
never@739 928 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 929 }
duke@435 930 }
duke@435 931 }
duke@435 932
duke@435 933 // An oop arg. Must pass a handle not the oop itself
duke@435 934 static void object_move(MacroAssembler* masm,
duke@435 935 OopMap* map,
duke@435 936 int oop_handle_offset,
duke@435 937 int framesize_in_slots,
duke@435 938 VMRegPair src,
duke@435 939 VMRegPair dst,
duke@435 940 bool is_receiver,
duke@435 941 int* receiver_offset) {
duke@435 942
duke@435 943 // Because of the calling conventions we know that src can be a
duke@435 944 // register or a stack location. dst can only be a stack location.
duke@435 945
duke@435 946 assert(dst.first()->is_stack(), "must be stack");
duke@435 947 // must pass a handle. First figure out the location we use as a handle
duke@435 948
duke@435 949 if (src.first()->is_stack()) {
duke@435 950 // Oop is already on the stack as an argument
duke@435 951 Register rHandle = rax;
duke@435 952 Label nil;
never@739 953 __ xorptr(rHandle, rHandle);
never@739 954 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 955 __ jcc(Assembler::equal, nil);
never@739 956 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 957 __ bind(nil);
never@739 958 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 959
duke@435 960 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 961 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 962 if (is_receiver) {
duke@435 963 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 964 }
duke@435 965 } else {
duke@435 966 // Oop is in an a register we must store it to the space we reserve
duke@435 967 // on the stack for oop_handles
duke@435 968 const Register rOop = src.first()->as_Register();
duke@435 969 const Register rHandle = rax;
duke@435 970 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 971 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 972 Label skip;
never@739 973 __ movptr(Address(rsp, offset), rOop);
duke@435 974 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 975 __ xorptr(rHandle, rHandle);
never@739 976 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 977 __ jcc(Assembler::equal, skip);
never@739 978 __ lea(rHandle, Address(rsp, offset));
duke@435 979 __ bind(skip);
duke@435 980 // Store the handle parameter
never@739 981 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 982 if (is_receiver) {
duke@435 983 *receiver_offset = offset;
duke@435 984 }
duke@435 985 }
duke@435 986 }
duke@435 987
duke@435 988 // A float arg may have to do float reg int reg conversion
duke@435 989 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 990 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 991
duke@435 992 // Because of the calling convention we know that src is either a stack location
duke@435 993 // or an xmm register. dst can only be a stack location.
duke@435 994
duke@435 995 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 996
duke@435 997 if (src.first()->is_stack()) {
duke@435 998 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 999 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1000 } else {
duke@435 1001 // reg to stack
duke@435 1002 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1003 }
duke@435 1004 }
duke@435 1005
duke@435 1006 // A long move
duke@435 1007 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1008
duke@435 1009 // The only legal possibility for a long_move VMRegPair is:
duke@435 1010 // 1: two stack slots (possibly unaligned)
duke@435 1011 // as neither the java or C calling convention will use registers
duke@435 1012 // for longs.
duke@435 1013
duke@435 1014 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1015 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1016 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1017 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1018 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1019 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1020 } else {
duke@435 1021 ShouldNotReachHere();
duke@435 1022 }
duke@435 1023 }
duke@435 1024
duke@435 1025 // A double move
duke@435 1026 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1027
duke@435 1028 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1029 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1030
duke@435 1031 // Because of the calling convention we know that src is either
duke@435 1032 // 1: a single physical register (xmm registers only)
duke@435 1033 // 2: two stack slots (possibly unaligned)
duke@435 1034 // dst can only be a pair of stack slots.
duke@435 1035
duke@435 1036 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1037
duke@435 1038 if (src.first()->is_stack()) {
duke@435 1039 // source is all stack
never@739 1040 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1041 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1042 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1043 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1044 } else {
duke@435 1045 // reg to stack
duke@435 1046 // No worries about stack alignment
duke@435 1047 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1048 }
duke@435 1049 }
duke@435 1050
duke@435 1051
duke@435 1052 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1053 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1054 // which by this time is free to use
duke@435 1055 switch (ret_type) {
duke@435 1056 case T_FLOAT:
duke@435 1057 __ fstp_s(Address(rbp, -wordSize));
duke@435 1058 break;
duke@435 1059 case T_DOUBLE:
duke@435 1060 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1061 break;
duke@435 1062 case T_VOID: break;
duke@435 1063 case T_LONG:
never@739 1064 __ movptr(Address(rbp, -wordSize), rax);
never@739 1065 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1066 break;
duke@435 1067 default: {
never@739 1068 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1069 }
duke@435 1070 }
duke@435 1071 }
duke@435 1072
duke@435 1073 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1074 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1075 // which by this time is free to use
duke@435 1076 switch (ret_type) {
duke@435 1077 case T_FLOAT:
duke@435 1078 __ fld_s(Address(rbp, -wordSize));
duke@435 1079 break;
duke@435 1080 case T_DOUBLE:
duke@435 1081 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1082 break;
duke@435 1083 case T_LONG:
never@739 1084 __ movptr(rax, Address(rbp, -wordSize));
never@739 1085 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1086 break;
duke@435 1087 case T_VOID: break;
duke@435 1088 default: {
never@739 1089 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1090 }
duke@435 1091 }
duke@435 1092 }
duke@435 1093
never@3500 1094
never@3500 1095 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1096 const int stack_slots,
never@3500 1097 const int total_in_args,
never@3500 1098 const int arg_save_area,
never@3500 1099 OopMap* map,
never@3500 1100 VMRegPair* in_regs,
never@3500 1101 BasicType* in_sig_bt) {
never@3500 1102 // if map is non-NULL then the code should store the values,
never@3500 1103 // otherwise it should load them.
never@3500 1104 int handle_index = 0;
never@3500 1105 // Save down double word first
never@3500 1106 for ( int i = 0; i < total_in_args; i++) {
never@3500 1107 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1108 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1109 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1110 handle_index += 2;
never@3500 1111 assert(handle_index <= stack_slots, "overflow");
never@3500 1112 if (map != NULL) {
never@3500 1113 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1114 } else {
never@3500 1115 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1116 }
never@3500 1117 }
never@3500 1118 if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
never@3500 1119 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1120 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1121 handle_index += 2;
never@3500 1122 assert(handle_index <= stack_slots, "overflow");
never@3500 1123 if (map != NULL) {
never@3500 1124 __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1125 if (in_regs[i].second()->is_Register()) {
never@3500 1126 __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
never@3500 1127 }
never@3500 1128 } else {
never@3500 1129 __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1130 if (in_regs[i].second()->is_Register()) {
never@3500 1131 __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
never@3500 1132 }
never@3500 1133 }
never@3500 1134 }
never@3500 1135 }
never@3500 1136 // Save or restore single word registers
never@3500 1137 for ( int i = 0; i < total_in_args; i++) {
never@3500 1138 if (in_regs[i].first()->is_Register()) {
never@3500 1139 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1140 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1141 assert(handle_index <= stack_slots, "overflow");
never@3500 1142 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1143 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1144 }
never@3500 1145
never@3500 1146 // Value is in an input register pass we must flush it to the stack
never@3500 1147 const Register reg = in_regs[i].first()->as_Register();
never@3500 1148 switch (in_sig_bt[i]) {
never@3500 1149 case T_ARRAY:
never@3500 1150 if (map != NULL) {
never@3500 1151 __ movptr(Address(rsp, offset), reg);
never@3500 1152 } else {
never@3500 1153 __ movptr(reg, Address(rsp, offset));
never@3500 1154 }
never@3500 1155 break;
never@3500 1156 case T_BOOLEAN:
never@3500 1157 case T_CHAR:
never@3500 1158 case T_BYTE:
never@3500 1159 case T_SHORT:
never@3500 1160 case T_INT:
never@3500 1161 if (map != NULL) {
never@3500 1162 __ movl(Address(rsp, offset), reg);
never@3500 1163 } else {
never@3500 1164 __ movl(reg, Address(rsp, offset));
never@3500 1165 }
never@3500 1166 break;
never@3500 1167 case T_OBJECT:
never@3500 1168 default: ShouldNotReachHere();
never@3500 1169 }
never@3500 1170 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1171 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1172 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1173 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1174 assert(handle_index <= stack_slots, "overflow");
never@3500 1175 if (map != NULL) {
never@3500 1176 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1177 } else {
never@3500 1178 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1179 }
never@3500 1180 }
never@3500 1181 } else if (in_regs[i].first()->is_stack()) {
never@3500 1182 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1183 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1184 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1185 }
never@3500 1186 }
never@3500 1187 }
never@3500 1188 }
never@3500 1189
never@3500 1190 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1191 // keeps a new JNI critical region from starting until a GC has been
never@3500 1192 // forced. Save down any oops in registers and describe them in an
never@3500 1193 // OopMap.
never@3500 1194 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1195 Register thread,
never@3500 1196 int stack_slots,
never@3500 1197 int total_c_args,
never@3500 1198 int total_in_args,
never@3500 1199 int arg_save_area,
never@3500 1200 OopMapSet* oop_maps,
never@3500 1201 VMRegPair* in_regs,
never@3500 1202 BasicType* in_sig_bt) {
never@3500 1203 __ block_comment("check GC_locker::needs_gc");
never@3500 1204 Label cont;
never@3500 1205 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1206 __ jcc(Assembler::equal, cont);
never@3500 1207
never@3500 1208 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1209
never@3500 1210 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1211
never@3500 1212 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1213 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1214
never@3500 1215 address the_pc = __ pc();
never@3500 1216 oop_maps->add_gc_map( __ offset(), map);
never@3500 1217 __ set_last_Java_frame(thread, rsp, noreg, the_pc);
never@3500 1218
never@3500 1219 __ block_comment("block_for_jni_critical");
never@3500 1220 __ push(thread);
never@3500 1221 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1222 __ increment(rsp, wordSize);
never@3500 1223
never@3500 1224 __ get_thread(thread);
never@3500 1225 __ reset_last_Java_frame(thread, false, true);
never@3500 1226
never@3500 1227 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1228 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1229
never@3500 1230 __ bind(cont);
never@3500 1231 #ifdef ASSERT
never@3500 1232 if (StressCriticalJNINatives) {
never@3500 1233 // Stress register saving
never@3500 1234 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1235 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1236 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1237 // Destroy argument registers
never@3500 1238 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1239 if (in_regs[i].first()->is_Register()) {
never@3500 1240 const Register reg = in_regs[i].first()->as_Register();
never@3500 1241 __ xorptr(reg, reg);
never@3500 1242 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1243 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1244 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1245 ShouldNotReachHere();
never@3500 1246 } else if (in_regs[i].first()->is_stack()) {
never@3500 1247 // Nothing to do
never@3500 1248 } else {
never@3500 1249 ShouldNotReachHere();
never@3500 1250 }
never@3500 1251 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1252 i++;
never@3500 1253 }
never@3500 1254 }
never@3500 1255
never@3500 1256 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1257 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1258 }
never@3500 1259 #endif
never@3500 1260 }
never@3500 1261
never@3500 1262 // Unpack an array argument into a pointer to the body and the length
never@3500 1263 // if the array is non-null, otherwise pass 0 for both.
never@3500 1264 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1265 Register tmp_reg = rax;
never@3500 1266 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1267 "possible collision");
never@3500 1268 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1269 "possible collision");
never@3500 1270
never@3500 1271 // Pass the length, ptr pair
never@3500 1272 Label is_null, done;
never@3500 1273 VMRegPair tmp(tmp_reg->as_VMReg());
never@3500 1274 if (reg.first()->is_stack()) {
never@3500 1275 // Load the arg up from the stack
never@3500 1276 simple_move32(masm, reg, tmp);
never@3500 1277 reg = tmp;
never@3500 1278 }
never@3500 1279 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1280 __ jccb(Assembler::equal, is_null);
never@3500 1281 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1282 simple_move32(masm, tmp, body_arg);
never@3500 1283 // load the length relative to the body.
never@3500 1284 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1285 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1286 simple_move32(masm, tmp, length_arg);
never@3500 1287 __ jmpb(done);
never@3500 1288 __ bind(is_null);
never@3500 1289 // Pass zeros
never@3500 1290 __ xorptr(tmp_reg, tmp_reg);
never@3500 1291 simple_move32(masm, tmp, body_arg);
never@3500 1292 simple_move32(masm, tmp, length_arg);
never@3500 1293 __ bind(done);
never@3500 1294 }
never@3500 1295
never@3500 1296
duke@435 1297 // ---------------------------------------------------------------------------
duke@435 1298 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1299 // in the Java compiled code convention, marshals them to the native
duke@435 1300 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1301 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1302 // returns.
never@3500 1303 //
never@3500 1304 // Critical native functions are a shorthand for the use of
never@3500 1305 // GetPrimtiveArrayCritical and disallow the use of any other JNI
never@3500 1306 // functions. The wrapper is expected to unpack the arguments before
never@3500 1307 // passing them to the callee and perform checks before and after the
never@3500 1308 // native call to ensure that they GC_locker
never@3500 1309 // lock_critical/unlock_critical semantics are followed. Some other
never@3500 1310 // parts of JNI setup are skipped like the tear down of the JNI handle
never@3500 1311 // block and the check for pending exceptions it's impossible for them
never@3500 1312 // to be thrown.
never@3500 1313 //
never@3500 1314 // They are roughly structured like this:
never@3500 1315 // if (GC_locker::needs_gc())
never@3500 1316 // SharedRuntime::block_for_jni_critical();
never@3500 1317 // tranistion to thread_in_native
never@3500 1318 // unpack arrray arguments and call native entry point
never@3500 1319 // check for safepoint in progress
never@3500 1320 // check if any thread suspend flags are set
never@3500 1321 // call into JVM and possible unlock the JNI critical
never@3500 1322 // if a GC was suppressed while in the critical native.
never@3500 1323 // transition back to thread_in_Java
never@3500 1324 // return to caller
never@3500 1325 //
duke@435 1326 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1327 methodHandle method,
twisti@2687 1328 int compile_id,
duke@435 1329 int total_in_args,
duke@435 1330 int comp_args_on_stack,
duke@435 1331 BasicType *in_sig_bt,
duke@435 1332 VMRegPair *in_regs,
duke@435 1333 BasicType ret_type) {
never@3500 1334 bool is_critical_native = true;
never@3500 1335 address native_func = method->critical_native_function();
never@3500 1336 if (native_func == NULL) {
never@3500 1337 native_func = method->native_function();
never@3500 1338 is_critical_native = false;
never@3500 1339 }
never@3500 1340 assert(native_func != NULL, "must have function");
duke@435 1341
duke@435 1342 // An OopMap for lock (and class if static)
duke@435 1343 OopMapSet *oop_maps = new OopMapSet();
duke@435 1344
duke@435 1345 // We have received a description of where all the java arg are located
duke@435 1346 // on entry to the wrapper. We need to convert these args to where
duke@435 1347 // the jni function will expect them. To figure out where they go
duke@435 1348 // we convert the java signature to a C signature by inserting
duke@435 1349 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1350
never@3500 1351 int total_c_args = total_in_args;
never@3500 1352 if (!is_critical_native) {
never@3500 1353 total_c_args += 1;
never@3500 1354 if (method->is_static()) {
never@3500 1355 total_c_args++;
never@3500 1356 }
never@3500 1357 } else {
never@3500 1358 for (int i = 0; i < total_in_args; i++) {
never@3500 1359 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1360 total_c_args++;
never@3500 1361 }
never@3500 1362 }
duke@435 1363 }
duke@435 1364
duke@435 1365 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1366 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1367 BasicType* in_elem_bt = NULL;
duke@435 1368
duke@435 1369 int argc = 0;
never@3500 1370 if (!is_critical_native) {
never@3500 1371 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1372 if (method->is_static()) {
never@3500 1373 out_sig_bt[argc++] = T_OBJECT;
never@3500 1374 }
never@3500 1375
never@3500 1376 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1377 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1378 }
never@3500 1379 } else {
never@3500 1380 Thread* THREAD = Thread::current();
never@3500 1381 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1382 SignatureStream ss(method->signature());
never@3500 1383 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1384 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1385 // Arrays are passed as int, elem* pair
never@3500 1386 out_sig_bt[argc++] = T_INT;
never@3500 1387 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1388 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1389 const char* at = atype->as_C_string();
never@3500 1390 if (strlen(at) == 2) {
never@3500 1391 assert(at[0] == '[', "must be");
never@3500 1392 switch (at[1]) {
never@3500 1393 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1394 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1395 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1396 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1397 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1398 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1399 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1400 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1401 default: ShouldNotReachHere();
never@3500 1402 }
never@3500 1403 }
never@3500 1404 } else {
never@3500 1405 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1406 in_elem_bt[i] = T_VOID;
never@3500 1407 }
never@3500 1408 if (in_sig_bt[i] != T_VOID) {
never@3500 1409 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1410 ss.next();
never@3500 1411 }
never@3500 1412 }
duke@435 1413 }
duke@435 1414
duke@435 1415 // Now figure out where the args must be stored and how much stack space
never@3500 1416 // they require.
duke@435 1417 int out_arg_slots;
duke@435 1418 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1419
duke@435 1420 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1421 // registers a max of 2 on x86.
duke@435 1422
duke@435 1423 // Calculate the total number of stack slots we will need.
duke@435 1424
duke@435 1425 // First count the abi requirement plus all of the outgoing args
duke@435 1426 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1427
duke@435 1428 // Now the space for the inbound oop handle area
never@3500 1429 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
never@3500 1430 if (is_critical_native) {
never@3500 1431 // Critical natives may have to call out so they need a save area
never@3500 1432 // for register arguments.
never@3500 1433 int double_slots = 0;
never@3500 1434 int single_slots = 0;
never@3500 1435 for ( int i = 0; i < total_in_args; i++) {
never@3500 1436 if (in_regs[i].first()->is_Register()) {
never@3500 1437 const Register reg = in_regs[i].first()->as_Register();
never@3500 1438 switch (in_sig_bt[i]) {
never@3500 1439 case T_ARRAY:
never@3500 1440 case T_BOOLEAN:
never@3500 1441 case T_BYTE:
never@3500 1442 case T_SHORT:
never@3500 1443 case T_CHAR:
never@3500 1444 case T_INT: single_slots++; break;
never@3500 1445 case T_LONG: double_slots++; break;
never@3500 1446 default: ShouldNotReachHere();
never@3500 1447 }
never@3500 1448 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1449 switch (in_sig_bt[i]) {
never@3500 1450 case T_FLOAT: single_slots++; break;
never@3500 1451 case T_DOUBLE: double_slots++; break;
never@3500 1452 default: ShouldNotReachHere();
never@3500 1453 }
never@3500 1454 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1455 ShouldNotReachHere();
never@3500 1456 }
never@3500 1457 }
never@3500 1458 total_save_slots = double_slots * 2 + single_slots;
never@3500 1459 // align the save area
never@3500 1460 if (double_slots != 0) {
never@3500 1461 stack_slots = round_to(stack_slots, 2);
never@3500 1462 }
never@3500 1463 }
duke@435 1464
duke@435 1465 int oop_handle_offset = stack_slots;
never@3500 1466 stack_slots += total_save_slots;
duke@435 1467
duke@435 1468 // Now any space we need for handlizing a klass if static method
duke@435 1469
duke@435 1470 int klass_slot_offset = 0;
duke@435 1471 int klass_offset = -1;
duke@435 1472 int lock_slot_offset = 0;
duke@435 1473 bool is_static = false;
duke@435 1474
duke@435 1475 if (method->is_static()) {
duke@435 1476 klass_slot_offset = stack_slots;
duke@435 1477 stack_slots += VMRegImpl::slots_per_word;
duke@435 1478 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1479 is_static = true;
duke@435 1480 }
duke@435 1481
duke@435 1482 // Plus a lock if needed
duke@435 1483
duke@435 1484 if (method->is_synchronized()) {
duke@435 1485 lock_slot_offset = stack_slots;
duke@435 1486 stack_slots += VMRegImpl::slots_per_word;
duke@435 1487 }
duke@435 1488
duke@435 1489 // Now a place (+2) to save return values or temp during shuffling
duke@435 1490 // + 2 for return address (which we own) and saved rbp,
duke@435 1491 stack_slots += 4;
duke@435 1492
duke@435 1493 // Ok The space we have allocated will look like:
duke@435 1494 //
duke@435 1495 //
duke@435 1496 // FP-> | |
duke@435 1497 // |---------------------|
duke@435 1498 // | 2 slots for moves |
duke@435 1499 // |---------------------|
duke@435 1500 // | lock box (if sync) |
duke@435 1501 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1502 // | klass (if static) |
duke@435 1503 // |---------------------| <- klass_slot_offset
duke@435 1504 // | oopHandle area |
duke@435 1505 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1506 // | outbound memory |
duke@435 1507 // | based arguments |
duke@435 1508 // | |
duke@435 1509 // |---------------------|
duke@435 1510 // | |
duke@435 1511 // SP-> | out_preserved_slots |
duke@435 1512 //
duke@435 1513 //
duke@435 1514 // ****************************************************************************
duke@435 1515 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1516 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1517 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1518 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1519 // ****************************************************************************
duke@435 1520
duke@435 1521
duke@435 1522 // Now compute actual number of stack words we need rounding to make
duke@435 1523 // stack properly aligned.
xlu@959 1524 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1525
duke@435 1526 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1527
duke@435 1528 intptr_t start = (intptr_t)__ pc();
duke@435 1529
duke@435 1530 // First thing make an ic check to see if we should even be here
duke@435 1531
duke@435 1532 // We are free to use all registers as temps without saving them and
never@3500 1533 // restoring them except rbp. rbp is the only callee save register
duke@435 1534 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1535
duke@435 1536
duke@435 1537 const Register ic_reg = rax;
duke@435 1538 const Register receiver = rcx;
duke@435 1539 Label hit;
duke@435 1540 Label exception_pending;
duke@435 1541
duke@435 1542 __ verify_oop(receiver);
never@739 1543 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1544 __ jcc(Assembler::equal, hit);
duke@435 1545
duke@435 1546 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1547
duke@435 1548 // verified entry must be aligned for code patching.
duke@435 1549 // and the first 5 bytes must be in the same cache line
duke@435 1550 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1551 __ align(8);
duke@435 1552
duke@435 1553 __ bind(hit);
duke@435 1554
duke@435 1555 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1556
duke@435 1557 #ifdef COMPILER1
duke@435 1558 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1559 // Object.hashCode can pull the hashCode from the header word
duke@435 1560 // instead of doing a full VM transition once it's been computed.
duke@435 1561 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1562 // this optimization at the call site without a lot of work.
duke@435 1563 Label slowCase;
duke@435 1564 Register receiver = rcx;
duke@435 1565 Register result = rax;
never@739 1566 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1567
duke@435 1568 // check if locked
never@739 1569 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1570 __ jcc (Assembler::zero, slowCase);
duke@435 1571
duke@435 1572 if (UseBiasedLocking) {
duke@435 1573 // Check if biased and fall through to runtime if so
never@739 1574 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1575 __ jcc (Assembler::notZero, slowCase);
duke@435 1576 }
duke@435 1577
duke@435 1578 // get hash
never@739 1579 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1580 // test if hashCode exists
duke@435 1581 __ jcc (Assembler::zero, slowCase);
never@739 1582 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1583 __ ret(0);
duke@435 1584 __ bind (slowCase);
duke@435 1585 }
duke@435 1586 #endif // COMPILER1
duke@435 1587
duke@435 1588 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1589 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1590 // instruction fits that requirement.
duke@435 1591
duke@435 1592 // Generate stack overflow check
duke@435 1593
duke@435 1594 if (UseStackBanging) {
duke@435 1595 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1596 } else {
duke@435 1597 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1598 __ fat_nop();
duke@435 1599 }
duke@435 1600
duke@435 1601 // Generate a new frame for the wrapper.
duke@435 1602 __ enter();
never@3500 1603 // -2 because return address is already present and so is saved rbp
never@739 1604 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1605
never@3500 1606 // Frame is now completed as far as size and linkage.
duke@435 1607 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1608
duke@435 1609 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1610 // after the native call because on windows Java Natives will pop
duke@435 1611 // the arguments and it is painful to do rsp relative addressing
duke@435 1612 // in a platform independent way. So after the call we switch to
duke@435 1613 // rbp, relative addressing.
duke@435 1614
duke@435 1615 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1616
duke@435 1617 #ifdef COMPILER2
duke@435 1618 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1619 if (UseSSE >= 2) {
duke@435 1620 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1621 } else {
duke@435 1622 __ empty_FPU_stack();
duke@435 1623 }
duke@435 1624 #endif /* COMPILER2 */
duke@435 1625
duke@435 1626 // Compute the rbp, offset for any slots used after the jni call
duke@435 1627
duke@435 1628 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1629
duke@435 1630 // We use rdi as a thread pointer because it is callee save and
duke@435 1631 // if we load it once it is usable thru the entire wrapper
duke@435 1632 const Register thread = rdi;
duke@435 1633
duke@435 1634 // We use rsi as the oop handle for the receiver/klass
duke@435 1635 // It is callee save so it survives the call to native
duke@435 1636
duke@435 1637 const Register oop_handle_reg = rsi;
duke@435 1638
duke@435 1639 __ get_thread(thread);
duke@435 1640
never@3500 1641 if (is_critical_native) {
never@3500 1642 check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
never@3500 1643 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 1644 }
duke@435 1645
duke@435 1646 //
duke@435 1647 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1648 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1649 // captured the oops from our caller and have a valid oopMap for
duke@435 1650 // them.
duke@435 1651
duke@435 1652 // -----------------
duke@435 1653 // The Grand Shuffle
duke@435 1654 //
duke@435 1655 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1656 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1657 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1658 // parms though amd does). Since the native abi doesn't use register args
duke@435 1659 // and the java conventions does we don't have to worry about collisions.
duke@435 1660 // All of our moved are reg->stack or stack->stack.
duke@435 1661 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1662 // last moment. The shuffle is described by the two calling convention
duke@435 1663 // vectors we have in our possession. We simply walk the java vector to
duke@435 1664 // get the source locations and the c vector to get the destinations.
duke@435 1665
never@3500 1666 int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
duke@435 1667
duke@435 1668 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1669 int receiver_offset = -1;
duke@435 1670
duke@435 1671 // This is a trick. We double the stack slots so we can claim
duke@435 1672 // the oops in the caller's frame. Since we are sure to have
duke@435 1673 // more args than the caller doubling is enough to make
duke@435 1674 // sure we can capture all the incoming oop args from the
duke@435 1675 // caller.
duke@435 1676 //
duke@435 1677 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1678
duke@435 1679 // Mark location of rbp,
duke@435 1680 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1681
duke@435 1682 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1683 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1684 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1685
never@3500 1686 for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1687 switch (in_sig_bt[i]) {
duke@435 1688 case T_ARRAY:
never@3500 1689 if (is_critical_native) {
never@3500 1690 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 1691 c_arg++;
never@3500 1692 break;
never@3500 1693 }
duke@435 1694 case T_OBJECT:
never@3500 1695 assert(!is_critical_native, "no oop arguments");
duke@435 1696 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1697 ((i == 0) && (!is_static)),
duke@435 1698 &receiver_offset);
duke@435 1699 break;
duke@435 1700 case T_VOID:
duke@435 1701 break;
duke@435 1702
duke@435 1703 case T_FLOAT:
duke@435 1704 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1705 break;
duke@435 1706
duke@435 1707 case T_DOUBLE:
duke@435 1708 assert( i + 1 < total_in_args &&
duke@435 1709 in_sig_bt[i + 1] == T_VOID &&
duke@435 1710 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1711 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1712 break;
duke@435 1713
duke@435 1714 case T_LONG :
duke@435 1715 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1716 break;
duke@435 1717
duke@435 1718 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1719
duke@435 1720 default:
duke@435 1721 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1722 }
duke@435 1723 }
duke@435 1724
duke@435 1725 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1726 // the normal JNI call code.
never@3500 1727 if (method->is_static() && !is_critical_native) {
duke@435 1728
duke@435 1729 // load opp into a register
duke@435 1730 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1731
duke@435 1732 // Now handlize the static class mirror it's known not-null.
never@739 1733 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1734 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1735
duke@435 1736 // Now get the handle
never@739 1737 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1738 // store the klass handle as second argument
never@739 1739 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1740 }
duke@435 1741
duke@435 1742 // Change state to native (we save the return address in the thread, since it might not
duke@435 1743 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1744 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1745 // We use the same pc/oopMap repeatedly when we call out
duke@435 1746
duke@435 1747 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1748 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1749
duke@435 1750 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1751
duke@435 1752
duke@435 1753 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1754 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1755
duke@435 1756 {
duke@435 1757 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1758 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1759 __ call_VM_leaf(
duke@435 1760 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1761 thread, rax);
duke@435 1762 }
duke@435 1763
dcubed@1045 1764 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 1765 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 1766 __ movoop(rax, JNIHandles::make_local(method()));
dcubed@1045 1767 __ call_VM_leaf(
dcubed@1045 1768 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 1769 thread, rax);
dcubed@1045 1770 }
dcubed@1045 1771
duke@435 1772 // These are register definitions we need for locking/unlocking
duke@435 1773 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1774 const Register obj_reg = rcx; // Will contain the oop
duke@435 1775 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1776
duke@435 1777 Label slow_path_lock;
duke@435 1778 Label lock_done;
duke@435 1779
duke@435 1780 // Lock a synchronized method
duke@435 1781 if (method->is_synchronized()) {
never@3500 1782 assert(!is_critical_native, "unhandled");
duke@435 1783
duke@435 1784
duke@435 1785 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1786
duke@435 1787 // Get the handle (the 2nd argument)
never@739 1788 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1789
duke@435 1790 // Get address of the box
duke@435 1791
never@739 1792 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1793
duke@435 1794 // Load the oop from the handle
never@739 1795 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1796
duke@435 1797 if (UseBiasedLocking) {
duke@435 1798 // Note that oop_handle_reg is trashed during this call
duke@435 1799 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1800 }
duke@435 1801
duke@435 1802 // Load immediate 1 into swap_reg %rax,
never@739 1803 __ movptr(swap_reg, 1);
duke@435 1804
duke@435 1805 // Load (object->mark() | 1) into swap_reg %rax,
never@739 1806 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1807
duke@435 1808 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1809 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1810
duke@435 1811 if (os::is_MP()) {
duke@435 1812 __ lock();
duke@435 1813 }
duke@435 1814
duke@435 1815 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1816 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1817 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1818 __ jcc(Assembler::equal, lock_done);
duke@435 1819
duke@435 1820 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1821 // 1) (mark & 3) == 0, and
duke@435 1822 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1823 // These 3 tests can be done by evaluating the following
duke@435 1824 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1825 // assuming both stack pointer and pagesize have their
duke@435 1826 // least significant 2 bits clear.
duke@435 1827 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1828
never@739 1829 __ subptr(swap_reg, rsp);
never@739 1830 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1831
duke@435 1832 // Save the test result, for recursive case, the result is zero
never@739 1833 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1834 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1835 // Slow path will re-enter here
duke@435 1836 __ bind(lock_done);
duke@435 1837
duke@435 1838 if (UseBiasedLocking) {
duke@435 1839 // Re-fetch oop_handle_reg as we trashed it above
never@739 1840 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1841 }
duke@435 1842 }
duke@435 1843
duke@435 1844
duke@435 1845 // Finally just about ready to make the JNI call
duke@435 1846
duke@435 1847
duke@435 1848 // get JNIEnv* which is first argument to native
never@3500 1849 if (!is_critical_native) {
never@3500 1850 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 1851 __ movptr(Address(rsp, 0), rdx);
never@3500 1852 }
duke@435 1853
duke@435 1854 // Now set thread in native
duke@435 1855 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1856
never@3500 1857 __ call(RuntimeAddress(native_func));
duke@435 1858
duke@435 1859 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1860 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 1861 // and continue to do SP relative addressing but we instead switch to FP
duke@435 1862 // relative addressing.
duke@435 1863
duke@435 1864 // Unpack native results.
duke@435 1865 switch (ret_type) {
duke@435 1866 case T_BOOLEAN: __ c2bool(rax); break;
never@739 1867 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 1868 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1869 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1870 case T_INT : /* nothing to do */ break;
duke@435 1871 case T_DOUBLE :
duke@435 1872 case T_FLOAT :
duke@435 1873 // Result is in st0 we'll save as needed
duke@435 1874 break;
duke@435 1875 case T_ARRAY: // Really a handle
duke@435 1876 case T_OBJECT: // Really a handle
duke@435 1877 break; // can't de-handlize until after safepoint check
duke@435 1878 case T_VOID: break;
duke@435 1879 case T_LONG: break;
duke@435 1880 default : ShouldNotReachHere();
duke@435 1881 }
duke@435 1882
duke@435 1883 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1884 // This additional state is necessary because reading and testing the synchronization
duke@435 1885 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1886 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1887 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1888 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1889 // didn't see any synchronization is progress, and escapes.
duke@435 1890 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1891
duke@435 1892 if(os::is_MP()) {
duke@435 1893 if (UseMembar) {
never@739 1894 // Force this write out before the read below
never@739 1895 __ membar(Assembler::Membar_mask_bits(
never@739 1896 Assembler::LoadLoad | Assembler::LoadStore |
never@739 1897 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 1898 } else {
duke@435 1899 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1900 // We use the current thread pointer to calculate a thread specific
duke@435 1901 // offset to write to within the page. This minimizes bus traffic
duke@435 1902 // due to cache line collision.
duke@435 1903 __ serialize_memory(thread, rcx);
duke@435 1904 }
duke@435 1905 }
duke@435 1906
duke@435 1907 if (AlwaysRestoreFPU) {
duke@435 1908 // Make sure the control word is correct.
duke@435 1909 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1910 }
duke@435 1911
never@3500 1912 Label after_transition;
never@3500 1913
duke@435 1914 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1915 { Label Continue;
duke@435 1916
duke@435 1917 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1918 SafepointSynchronize::_not_synchronized);
duke@435 1919
duke@435 1920 Label L;
duke@435 1921 __ jcc(Assembler::notEqual, L);
duke@435 1922 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1923 __ jcc(Assembler::equal, Continue);
duke@435 1924 __ bind(L);
duke@435 1925
duke@435 1926 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1927 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1928 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1929 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1930 // by hand.
duke@435 1931 //
duke@435 1932 save_native_result(masm, ret_type, stack_slots);
never@739 1933 __ push(thread);
never@3500 1934 if (!is_critical_native) {
never@3500 1935 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 1936 JavaThread::check_special_condition_for_native_trans)));
never@3500 1937 } else {
never@3500 1938 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 1939 JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 1940 }
duke@435 1941 __ increment(rsp, wordSize);
duke@435 1942 // Restore any method result value
duke@435 1943 restore_native_result(masm, ret_type, stack_slots);
duke@435 1944
never@3500 1945 if (is_critical_native) {
never@3500 1946 // The call above performed the transition to thread_in_Java so
never@3500 1947 // skip the transition logic below.
never@3500 1948 __ jmpb(after_transition);
never@3500 1949 }
never@3500 1950
duke@435 1951 __ bind(Continue);
duke@435 1952 }
duke@435 1953
duke@435 1954 // change thread state
duke@435 1955 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 1956 __ bind(after_transition);
duke@435 1957
duke@435 1958 Label reguard;
duke@435 1959 Label reguard_done;
duke@435 1960 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1961 __ jcc(Assembler::equal, reguard);
duke@435 1962
duke@435 1963 // slow path reguard re-enters here
duke@435 1964 __ bind(reguard_done);
duke@435 1965
duke@435 1966 // Handle possible exception (will unlock if necessary)
duke@435 1967
duke@435 1968 // native result if any is live
duke@435 1969
duke@435 1970 // Unlock
duke@435 1971 Label slow_path_unlock;
duke@435 1972 Label unlock_done;
duke@435 1973 if (method->is_synchronized()) {
duke@435 1974
duke@435 1975 Label done;
duke@435 1976
duke@435 1977 // Get locked oop from the handle we passed to jni
never@739 1978 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1979
duke@435 1980 if (UseBiasedLocking) {
duke@435 1981 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 1982 }
duke@435 1983
duke@435 1984 // Simple recursive lock?
duke@435 1985
never@739 1986 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 1987 __ jcc(Assembler::equal, done);
duke@435 1988
duke@435 1989 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 1990 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1991 save_native_result(masm, ret_type, stack_slots);
duke@435 1992 }
duke@435 1993
duke@435 1994 // get old displaced header
never@739 1995 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 1996
duke@435 1997 // get address of the stack lock
never@739 1998 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1999
duke@435 2000 // Atomic swap old header if oop still contains the stack lock
duke@435 2001 if (os::is_MP()) {
duke@435 2002 __ lock();
duke@435 2003 }
duke@435 2004
duke@435 2005 // src -> dest iff dest == rax, else rax, <- dest
duke@435 2006 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 2007 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 2008 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2009
duke@435 2010 // slow path re-enters here
duke@435 2011 __ bind(unlock_done);
duke@435 2012 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2013 restore_native_result(masm, ret_type, stack_slots);
duke@435 2014 }
duke@435 2015
duke@435 2016 __ bind(done);
duke@435 2017
duke@435 2018 }
duke@435 2019
duke@435 2020 {
duke@435 2021 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 2022 // Tell dtrace about this method exit
duke@435 2023 save_native_result(masm, ret_type, stack_slots);
duke@435 2024 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 2025 __ call_VM_leaf(
duke@435 2026 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2027 thread, rax);
duke@435 2028 restore_native_result(masm, ret_type, stack_slots);
duke@435 2029 }
duke@435 2030
duke@435 2031 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 2032
duke@435 2033 __ reset_last_Java_frame(thread, false, true);
duke@435 2034
duke@435 2035 // Unpack oop result
duke@435 2036 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2037 Label L;
never@739 2038 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 2039 __ jcc(Assembler::equal, L);
never@739 2040 __ movptr(rax, Address(rax, 0));
duke@435 2041 __ bind(L);
duke@435 2042 __ verify_oop(rax);
duke@435 2043 }
duke@435 2044
never@3500 2045 if (!is_critical_native) {
never@3500 2046 // reset handle block
never@3500 2047 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@3500 2048 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
never@3500 2049
never@3500 2050 // Any exception pending?
never@3500 2051 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2052 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2053 }
duke@435 2054
duke@435 2055 // no exception, we're almost done
duke@435 2056
duke@435 2057 // check that only result value is on FPU stack
duke@435 2058 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 2059
duke@435 2060 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 2061 if (ret_type == T_FLOAT) {
duke@435 2062 if (UseSSE >= 1) {
duke@435 2063 // Pop st0 and store as float and reload into xmm register
duke@435 2064 __ fstp_s(Address(rbp, -4));
duke@435 2065 __ movflt(xmm0, Address(rbp, -4));
duke@435 2066 }
duke@435 2067 } else if (ret_type == T_DOUBLE) {
duke@435 2068 if (UseSSE >= 2) {
duke@435 2069 // Pop st0 and store as double and reload into xmm register
duke@435 2070 __ fstp_d(Address(rbp, -8));
duke@435 2071 __ movdbl(xmm0, Address(rbp, -8));
duke@435 2072 }
duke@435 2073 }
duke@435 2074
duke@435 2075 // Return
duke@435 2076
duke@435 2077 __ leave();
duke@435 2078 __ ret(0);
duke@435 2079
duke@435 2080 // Unexpected paths are out of line and go here
duke@435 2081
duke@435 2082 // Slow path locking & unlocking
duke@435 2083 if (method->is_synchronized()) {
duke@435 2084
duke@435 2085 // BEGIN Slow path lock
duke@435 2086
duke@435 2087 __ bind(slow_path_lock);
duke@435 2088
duke@435 2089 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2090 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 2091 __ push(thread);
never@739 2092 __ push(lock_reg);
never@739 2093 __ push(obj_reg);
duke@435 2094 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 2095 __ addptr(rsp, 3*wordSize);
duke@435 2096
duke@435 2097 #ifdef ASSERT
duke@435 2098 { Label L;
never@739 2099 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2100 __ jcc(Assembler::equal, L);
duke@435 2101 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2102 __ bind(L);
duke@435 2103 }
duke@435 2104 #endif
duke@435 2105 __ jmp(lock_done);
duke@435 2106
duke@435 2107 // END Slow path lock
duke@435 2108
duke@435 2109 // BEGIN Slow path unlock
duke@435 2110 __ bind(slow_path_unlock);
duke@435 2111
duke@435 2112 // Slow path unlock
duke@435 2113
duke@435 2114 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2115 save_native_result(masm, ret_type, stack_slots);
duke@435 2116 }
duke@435 2117 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2118
never@739 2119 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 2120 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 2121
duke@435 2122
duke@435 2123 // should be a peal
duke@435 2124 // +wordSize because of the push above
never@739 2125 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 2126 __ push(rax);
never@739 2127
never@739 2128 __ push(obj_reg);
duke@435 2129 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2130 __ addptr(rsp, 2*wordSize);
duke@435 2131 #ifdef ASSERT
duke@435 2132 {
duke@435 2133 Label L;
never@739 2134 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2135 __ jcc(Assembler::equal, L);
duke@435 2136 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2137 __ bind(L);
duke@435 2138 }
duke@435 2139 #endif /* ASSERT */
duke@435 2140
never@739 2141 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 2142
duke@435 2143 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2144 restore_native_result(masm, ret_type, stack_slots);
duke@435 2145 }
duke@435 2146 __ jmp(unlock_done);
duke@435 2147 // END Slow path unlock
duke@435 2148
duke@435 2149 }
duke@435 2150
duke@435 2151 // SLOW PATH Reguard the stack if needed
duke@435 2152
duke@435 2153 __ bind(reguard);
duke@435 2154 save_native_result(masm, ret_type, stack_slots);
duke@435 2155 {
duke@435 2156 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 2157 }
duke@435 2158 restore_native_result(masm, ret_type, stack_slots);
duke@435 2159 __ jmp(reguard_done);
duke@435 2160
duke@435 2161
duke@435 2162 // BEGIN EXCEPTION PROCESSING
duke@435 2163
never@3500 2164 if (!is_critical_native) {
never@3500 2165 // Forward the exception
never@3500 2166 __ bind(exception_pending);
never@3500 2167
never@3500 2168 // remove possible return value from FPU register stack
never@3500 2169 __ empty_FPU_stack();
never@3500 2170
never@3500 2171 // pop our frame
never@3500 2172 __ leave();
never@3500 2173 // and forward the exception
never@3500 2174 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2175 }
duke@435 2176
duke@435 2177 __ flush();
duke@435 2178
duke@435 2179 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2180 compile_id,
duke@435 2181 masm->code(),
duke@435 2182 vep_offset,
duke@435 2183 frame_complete,
duke@435 2184 stack_slots / VMRegImpl::slots_per_word,
duke@435 2185 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2186 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2187 oop_maps);
never@3500 2188
never@3500 2189 if (is_critical_native) {
never@3500 2190 nm->set_lazy_critical_native(true);
never@3500 2191 }
never@3500 2192
duke@435 2193 return nm;
duke@435 2194
duke@435 2195 }
duke@435 2196
kamg@551 2197 #ifdef HAVE_DTRACE_H
kamg@551 2198 // ---------------------------------------------------------------------------
kamg@551 2199 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2200 // in the Java compiled code convention, marshals them to the native
kamg@551 2201 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2202 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2203 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2204 // to dtrace.
kamg@551 2205 //
kamg@551 2206 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2207 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2208 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2209 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2210 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2211 // So any java string larger then this is truncated.
kamg@551 2212
kamg@551 2213 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 2214 MacroAssembler *masm, methodHandle method) {
kamg@551 2215
kamg@551 2216 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2217 // be single threaded in this method.
kamg@551 2218 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2219
kamg@551 2220 // Fill in the signature array, for the calling-convention call.
kamg@551 2221 int total_args_passed = method->size_of_parameters();
kamg@551 2222
kamg@551 2223 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2224 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2225
kamg@551 2226 // The signature we are going to use for the trap that dtrace will see
kamg@551 2227 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2228 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2229 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2230 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2231 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2232
kamg@551 2233 int i=0;
kamg@551 2234 int total_strings = 0;
kamg@551 2235 int first_arg_to_pass = 0;
kamg@551 2236 int total_c_args = 0;
kamg@551 2237
kamg@551 2238 if( !method->is_static() ) { // Pass in receiver first
kamg@551 2239 in_sig_bt[i++] = T_OBJECT;
kamg@551 2240 first_arg_to_pass = 1;
kamg@551 2241 }
kamg@551 2242
kamg@551 2243 // We need to convert the java args to where a native (non-jni) function
kamg@551 2244 // would expect them. To figure out where they go we convert the java
kamg@551 2245 // signature to a C signature.
kamg@551 2246
kamg@551 2247 SignatureStream ss(method->signature());
kamg@551 2248 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2249 BasicType bt = ss.type();
kamg@551 2250 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2251 out_sig_bt[total_c_args++] = bt;
kamg@551 2252 if( bt == T_OBJECT) {
coleenp@2497 2253 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2254 if (s == vmSymbols::java_lang_String()) {
kamg@551 2255 total_strings++;
kamg@551 2256 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2257 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2258 s == vmSymbols::java_lang_Character() ||
kamg@551 2259 s == vmSymbols::java_lang_Byte() ||
kamg@551 2260 s == vmSymbols::java_lang_Short() ||
kamg@551 2261 s == vmSymbols::java_lang_Integer() ||
kamg@551 2262 s == vmSymbols::java_lang_Float()) {
kamg@551 2263 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2264 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2265 s == vmSymbols::java_lang_Double()) {
kamg@551 2266 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2267 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2268 }
kamg@551 2269 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2270 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2271 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2272 }
kamg@551 2273 }
kamg@551 2274
kamg@551 2275 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2276
kamg@551 2277 // Now get the compiled-Java layout as input arguments
kamg@551 2278 int comp_args_on_stack;
kamg@551 2279 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2280 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2281
kamg@551 2282 // Now figure out where the args must be stored and how much stack space
kamg@551 2283 // they require (neglecting out_preserve_stack_slots).
kamg@551 2284
kamg@551 2285 int out_arg_slots;
kamg@551 2286 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2287
kamg@551 2288 // Calculate the total number of stack slots we will need.
kamg@551 2289
kamg@551 2290 // First count the abi requirement plus all of the outgoing args
kamg@551 2291 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2292
kamg@551 2293 // Now space for the string(s) we must convert
kamg@551 2294
kamg@551 2295 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2296 for (i = 0; i < total_strings ; i++) {
kamg@551 2297 string_locs[i] = stack_slots;
kamg@551 2298 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2299 }
kamg@551 2300
kamg@551 2301 // + 2 for return address (which we own) and saved rbp,
kamg@551 2302
kamg@551 2303 stack_slots += 2;
kamg@551 2304
kamg@551 2305 // Ok The space we have allocated will look like:
kamg@551 2306 //
kamg@551 2307 //
kamg@551 2308 // FP-> | |
kamg@551 2309 // |---------------------|
kamg@551 2310 // | string[n] |
kamg@551 2311 // |---------------------| <- string_locs[n]
kamg@551 2312 // | string[n-1] |
kamg@551 2313 // |---------------------| <- string_locs[n-1]
kamg@551 2314 // | ... |
kamg@551 2315 // | ... |
kamg@551 2316 // |---------------------| <- string_locs[1]
kamg@551 2317 // | string[0] |
kamg@551 2318 // |---------------------| <- string_locs[0]
kamg@551 2319 // | outbound memory |
kamg@551 2320 // | based arguments |
kamg@551 2321 // | |
kamg@551 2322 // |---------------------|
kamg@551 2323 // | |
kamg@551 2324 // SP-> | out_preserved_slots |
kamg@551 2325 //
kamg@551 2326 //
kamg@551 2327
kamg@551 2328 // Now compute actual number of stack words we need rounding to make
kamg@551 2329 // stack properly aligned.
kamg@551 2330 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2331
kamg@551 2332 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2333
kamg@551 2334 intptr_t start = (intptr_t)__ pc();
kamg@551 2335
kamg@551 2336 // First thing make an ic check to see if we should even be here
kamg@551 2337
kamg@551 2338 // We are free to use all registers as temps without saving them and
kamg@551 2339 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2340 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2341
kamg@551 2342 const Register ic_reg = rax;
kamg@551 2343 const Register receiver = rcx;
kamg@551 2344 Label hit;
kamg@551 2345 Label exception_pending;
kamg@551 2346
kamg@551 2347
kamg@551 2348 __ verify_oop(receiver);
kamg@551 2349 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2350 __ jcc(Assembler::equal, hit);
kamg@551 2351
kamg@551 2352 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2353
kamg@551 2354 // verified entry must be aligned for code patching.
kamg@551 2355 // and the first 5 bytes must be in the same cache line
kamg@551 2356 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2357 __ align(8);
kamg@551 2358
kamg@551 2359 __ bind(hit);
kamg@551 2360
kamg@551 2361 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2362
kamg@551 2363
kamg@551 2364 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2365 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2366 // instruction fits that requirement.
kamg@551 2367
kamg@551 2368 // Generate stack overflow check
kamg@551 2369
kamg@551 2370
kamg@551 2371 if (UseStackBanging) {
kamg@551 2372 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2373 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2374 } else {
kamg@551 2375 __ movl(rax, stack_size);
kamg@551 2376 __ bang_stack_size(rax, rbx);
kamg@551 2377 }
kamg@551 2378 } else {
kamg@551 2379 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2380 __ fat_nop();
kamg@551 2381 }
kamg@551 2382
kamg@551 2383 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2384 "valid size for make_non_entrant");
kamg@551 2385
kamg@551 2386 // Generate a new frame for the wrapper.
kamg@551 2387 __ enter();
kamg@551 2388
kamg@551 2389 // -2 because return address is already present and so is saved rbp,
kamg@551 2390 if (stack_size - 2*wordSize != 0) {
kamg@551 2391 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2392 }
kamg@551 2393
kamg@551 2394 // Frame is now completed as far a size and linkage.
kamg@551 2395
kamg@551 2396 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2397
kamg@551 2398 // First thing we do store all the args as if we are doing the call.
kamg@551 2399 // Since the C calling convention is stack based that ensures that
kamg@551 2400 // all the Java register args are stored before we need to convert any
kamg@551 2401 // string we might have.
kamg@551 2402
kamg@551 2403 int sid = 0;
kamg@551 2404 int c_arg, j_arg;
kamg@551 2405 int string_reg = 0;
kamg@551 2406
kamg@551 2407 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2408 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2409
kamg@551 2410 VMRegPair src = in_regs[j_arg];
kamg@551 2411 VMRegPair dst = out_regs[c_arg];
kamg@551 2412 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2413 "stack based abi assumed");
kamg@551 2414
kamg@551 2415 switch (in_sig_bt[j_arg]) {
kamg@551 2416
kamg@551 2417 case T_ARRAY:
kamg@551 2418 case T_OBJECT:
kamg@551 2419 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2420 // Any register based arg for a java string after the first
kamg@551 2421 // will be destroyed by the call to get_utf so we store
kamg@551 2422 // the original value in the location the utf string address
kamg@551 2423 // will eventually be stored.
kamg@551 2424 if (src.first()->is_reg()) {
kamg@551 2425 if (string_reg++ != 0) {
kamg@551 2426 simple_move32(masm, src, dst);
kamg@551 2427 }
kamg@551 2428 }
kamg@551 2429 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2430 // need to unbox a one-word value
kamg@551 2431 Register in_reg = rax;
kamg@551 2432 if ( src.first()->is_reg() ) {
kamg@551 2433 in_reg = src.first()->as_Register();
kamg@551 2434 } else {
kamg@551 2435 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2436 }
kamg@551 2437 Label skipUnbox;
kamg@551 2438 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2439 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2440 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2441 }
kamg@551 2442 __ testl(in_reg, in_reg);
kamg@551 2443 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2444 assert(dst.first()->is_stack() &&
kamg@551 2445 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2446 "value(s) must go into stack slots");
kvn@600 2447
kvn@600 2448 BasicType bt = out_sig_bt[c_arg];
kvn@600 2449 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2450 if ( bt == T_LONG ) {
kamg@551 2451 __ movl(rbx, Address(in_reg,
kamg@551 2452 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2453 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2454 }
kamg@551 2455 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2456 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2457 __ bind(skipUnbox);
kamg@551 2458 } else {
kamg@551 2459 // Convert the arg to NULL
kamg@551 2460 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2461 }
kamg@551 2462 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2463 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2464 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2465 }
kamg@551 2466 break;
kamg@551 2467
kamg@551 2468 case T_VOID:
kamg@551 2469 break;
kamg@551 2470
kamg@551 2471 case T_FLOAT:
kamg@551 2472 float_move(masm, src, dst);
kamg@551 2473 break;
kamg@551 2474
kamg@551 2475 case T_DOUBLE:
kamg@551 2476 assert( j_arg + 1 < total_args_passed &&
kamg@551 2477 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2478 double_move(masm, src, dst);
kamg@551 2479 break;
kamg@551 2480
kamg@551 2481 case T_LONG :
kamg@551 2482 long_move(masm, src, dst);
kamg@551 2483 break;
kamg@551 2484
kamg@551 2485 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2486
kamg@551 2487 default:
kamg@551 2488 simple_move32(masm, src, dst);
kamg@551 2489 }
kamg@551 2490 }
kamg@551 2491
kamg@551 2492 // Now we must convert any string we have to utf8
kamg@551 2493 //
kamg@551 2494
kamg@551 2495 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2496 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2497
kamg@551 2498 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2499
kamg@551 2500 Address utf8_addr = Address(
kamg@551 2501 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2502 __ leal(rax, utf8_addr);
kamg@551 2503
kamg@551 2504 // The first string we find might still be in the original java arg
kamg@551 2505 // register
kamg@551 2506 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2507 Register string_oop;
kamg@551 2508
kamg@551 2509 // This is where the argument will eventually reside
kamg@551 2510 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2511
kamg@551 2512 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2513 string_oop = orig_loc->as_Register();
kamg@551 2514 assert(string_oop != rax, "smashed arg");
kamg@551 2515 } else {
kamg@551 2516
kamg@551 2517 if (orig_loc->is_reg()) {
kamg@551 2518 // Get the copy of the jls object
kamg@551 2519 __ movl(rcx, dest);
kamg@551 2520 } else {
kamg@551 2521 // arg is still in the original location
kamg@551 2522 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2523 }
kamg@551 2524 string_oop = rcx;
kamg@551 2525
kamg@551 2526 }
kamg@551 2527 Label nullString;
kamg@551 2528 __ movl(dest, NULL_WORD);
kamg@551 2529 __ testl(string_oop, string_oop);
kamg@551 2530 __ jcc(Assembler::zero, nullString);
kamg@551 2531
kamg@551 2532 // Now we can store the address of the utf string as the argument
kamg@551 2533 __ movl(dest, rax);
kamg@551 2534
kamg@551 2535 // And do the conversion
kamg@551 2536 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2537 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2538 __ bind(nullString);
kamg@551 2539 }
kamg@551 2540
kamg@551 2541 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2542 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2543 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2544 }
kamg@551 2545 }
kamg@551 2546
kamg@551 2547
kamg@551 2548 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2549 // patch in the trap
kamg@551 2550
kamg@551 2551 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2552
kamg@551 2553 __ nop();
kamg@551 2554
kamg@551 2555
kamg@551 2556 // Return
kamg@551 2557
kamg@551 2558 __ leave();
kamg@551 2559 __ ret(0);
kamg@551 2560
kamg@551 2561 __ flush();
kamg@551 2562
kamg@551 2563 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2564 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2565 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2566 return nm;
kamg@551 2567
kamg@551 2568 }
kamg@551 2569
kamg@551 2570 #endif // HAVE_DTRACE_H
kamg@551 2571
duke@435 2572 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2573 // activation for use during deoptimization
duke@435 2574 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 2575 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 2576 }
duke@435 2577
duke@435 2578
duke@435 2579 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2580 return 0;
duke@435 2581 }
duke@435 2582
duke@435 2583
duke@435 2584 //------------------------------generate_deopt_blob----------------------------
duke@435 2585 void SharedRuntime::generate_deopt_blob() {
duke@435 2586 // allocate space for the code
duke@435 2587 ResourceMark rm;
duke@435 2588 // setup code generation tools
duke@435 2589 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2590 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2591 int frame_size_in_words;
duke@435 2592 OopMap* map = NULL;
duke@435 2593 // Account for the extra args we place on the stack
duke@435 2594 // by the time we call fetch_unroll_info
duke@435 2595 const int additional_words = 2; // deopt kind, thread
duke@435 2596
duke@435 2597 OopMapSet *oop_maps = new OopMapSet();
duke@435 2598
duke@435 2599 // -------------
duke@435 2600 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2601 // address has been pushed on the the stack, and return values are in
duke@435 2602 // registers.
duke@435 2603 // If we are doing a normal deopt then we were called from the patched
duke@435 2604 // nmethod from the point we returned to the nmethod. So the return
duke@435 2605 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2606 // We will adjust the value to it looks like we have the original return
duke@435 2607 // address on the stack (like when we eagerly deoptimized).
duke@435 2608 // In the case of an exception pending with deoptimized then we enter
duke@435 2609 // with a return address on the stack that points after the call we patched
duke@435 2610 // into the exception handler. We have the following register state:
duke@435 2611 // rax,: exception
duke@435 2612 // rbx,: exception handler
duke@435 2613 // rdx: throwing pc
duke@435 2614 // So in this case we simply jam rdx into the useless return address and
duke@435 2615 // the stack looks just like we want.
duke@435 2616 //
duke@435 2617 // At this point we need to de-opt. We save the argument return
duke@435 2618 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2619 // routine captures the return values and returns a structure which
duke@435 2620 // describes the current frame size and the sizes of all replacement frames.
duke@435 2621 // The current frame is compiled code and may contain many inlined
duke@435 2622 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2623 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2624 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2625 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2626 // already been captured in the vframeArray at the time the return PC was
duke@435 2627 // patched.
duke@435 2628 address start = __ pc();
duke@435 2629 Label cont;
duke@435 2630
duke@435 2631 // Prolog for non exception case!
duke@435 2632
duke@435 2633 // Save everything in sight.
duke@435 2634
cfang@1361 2635 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2636 // Normal deoptimization
never@739 2637 __ push(Deoptimization::Unpack_deopt);
duke@435 2638 __ jmp(cont);
duke@435 2639
duke@435 2640 int reexecute_offset = __ pc() - start;
duke@435 2641
duke@435 2642 // Reexecute case
duke@435 2643 // return address is the pc describes what bci to do re-execute at
duke@435 2644
duke@435 2645 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2646 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2647
never@739 2648 __ push(Deoptimization::Unpack_reexecute);
duke@435 2649 __ jmp(cont);
duke@435 2650
duke@435 2651 int exception_offset = __ pc() - start;
duke@435 2652
duke@435 2653 // Prolog for exception case
duke@435 2654
duke@435 2655 // all registers are dead at this entry point, except for rax, and
duke@435 2656 // rdx which contain the exception oop and exception pc
duke@435 2657 // respectively. Set them in TLS and fall thru to the
duke@435 2658 // unpack_with_exception_in_tls entry point.
duke@435 2659
duke@435 2660 __ get_thread(rdi);
never@739 2661 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2662 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2663
duke@435 2664 int exception_in_tls_offset = __ pc() - start;
duke@435 2665
duke@435 2666 // new implementation because exception oop is now passed in JavaThread
duke@435 2667
duke@435 2668 // Prolog for exception case
duke@435 2669 // All registers must be preserved because they might be used by LinearScan
duke@435 2670 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2671 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2672 // args are on the stack, no return address)
duke@435 2673
duke@435 2674 // make room on stack for the return address
duke@435 2675 // It will be patched later with the throwing pc. The correct value is not
duke@435 2676 // available now because loading it from memory would destroy registers.
never@739 2677 __ push(0);
duke@435 2678
duke@435 2679 // Save everything in sight.
duke@435 2680
duke@435 2681 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2682 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2683
duke@435 2684 // Now it is safe to overwrite any register
duke@435 2685
duke@435 2686 // store the correct deoptimization type
never@739 2687 __ push(Deoptimization::Unpack_exception);
duke@435 2688
duke@435 2689 // load throwing pc from JavaThread and patch it as the return address
duke@435 2690 // of the current frame. Then clear the field in JavaThread
duke@435 2691 __ get_thread(rdi);
never@739 2692 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2693 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2694 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2695
duke@435 2696 #ifdef ASSERT
duke@435 2697 // verify that there is really an exception oop in JavaThread
never@739 2698 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2699 __ verify_oop(rax);
duke@435 2700
duke@435 2701 // verify that there is no pending exception
duke@435 2702 Label no_pending_exception;
never@739 2703 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2704 __ testptr(rax, rax);
duke@435 2705 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2706 __ stop("must not have pending exception here");
duke@435 2707 __ bind(no_pending_exception);
duke@435 2708 #endif
duke@435 2709
duke@435 2710 __ bind(cont);
duke@435 2711
duke@435 2712 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2713 __ empty_FPU_stack();
duke@435 2714
duke@435 2715
duke@435 2716 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2717 // crud. We cannot block on this call, no GC can happen.
duke@435 2718 __ get_thread(rcx);
never@739 2719 __ push(rcx);
duke@435 2720 // fetch_unroll_info needs to call last_java_frame()
duke@435 2721 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2722
duke@435 2723 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2724
duke@435 2725 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2726 // find any register it might need.
duke@435 2727
duke@435 2728 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2729
duke@435 2730 // Discard arg to fetch_unroll_info
never@739 2731 __ pop(rcx);
duke@435 2732
duke@435 2733 __ get_thread(rcx);
duke@435 2734 __ reset_last_Java_frame(rcx, false, false);
duke@435 2735
duke@435 2736 // Load UnrollBlock into EDI
never@739 2737 __ mov(rdi, rax);
duke@435 2738
duke@435 2739 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2740 // we are very short of registers
duke@435 2741
duke@435 2742 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2743 // retrieve the deopt kind from where we left it.
never@739 2744 __ pop(rax);
duke@435 2745 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2746
duke@435 2747 Label noException;
duke@435 2748 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2749 __ jcc(Assembler::notEqual, noException);
never@739 2750 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2751 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2752 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2753 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2754
duke@435 2755 __ verify_oop(rax);
duke@435 2756
duke@435 2757 // Overwrite the result registers with the exception results.
never@739 2758 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2759 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2760
duke@435 2761 __ bind(noException);
duke@435 2762
duke@435 2763 // Stack is back to only having register save data on the stack.
duke@435 2764 // Now restore the result registers. Everything else is either dead or captured
duke@435 2765 // in the vframeArray.
duke@435 2766
duke@435 2767 RegisterSaver::restore_result_registers(masm);
duke@435 2768
cfang@1361 2769 // Non standard control word may be leaked out through a safepoint blob, and we can
cfang@1361 2770 // deopt at a poll point with the non standard control word. However, we should make
cfang@1361 2771 // sure the control word is correct after restore_result_registers.
cfang@1361 2772 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
cfang@1361 2773
duke@435 2774 // All of the register save area has been popped of the stack. Only the
duke@435 2775 // return address remains.
duke@435 2776
duke@435 2777 // Pop all the frames we must move/replace.
duke@435 2778 //
duke@435 2779 // Frame picture (youngest to oldest)
duke@435 2780 // 1: self-frame (no frame link)
duke@435 2781 // 2: deopting frame (no frame link)
duke@435 2782 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2783 //
duke@435 2784 // Note: by leaving the return address of self-frame on the stack
duke@435 2785 // and using the size of frame 2 to adjust the stack
duke@435 2786 // when we are done the return to frame 3 will still be on the stack.
duke@435 2787
duke@435 2788 // Pop deoptimized frame
never@739 2789 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2790
duke@435 2791 // sp should be pointing at the return address to the caller (3)
duke@435 2792
duke@435 2793 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2794 if (UseStackBanging) {
duke@435 2795 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2796 __ bang_stack_size(rbx, rcx);
duke@435 2797 }
duke@435 2798
duke@435 2799 // Load array of frame pcs into ECX
never@739 2800 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 2801
never@739 2802 __ pop(rsi); // trash the old pc
duke@435 2803
duke@435 2804 // Load array of frame sizes into ESI
never@739 2805 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2806
duke@435 2807 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2808
duke@435 2809 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2810 __ movl(counter, rbx);
duke@435 2811
duke@435 2812 // Pick up the initial fp we should save
bdelsart@3130 2813 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 2814
duke@435 2815 // Now adjust the caller's stack to make up for the extra locals
duke@435 2816 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2817 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2818 // value and not the "real" sp value.
duke@435 2819
duke@435 2820 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2821 __ movptr(sp_temp, rsp);
never@739 2822 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2823 __ subptr(rsp, rbx);
duke@435 2824
duke@435 2825 // Push interpreter frames in a loop
duke@435 2826 Label loop;
duke@435 2827 __ bind(loop);
never@739 2828 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2829 #ifdef CC_INTERP
never@739 2830 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2831 #ifdef ASSERT
never@739 2832 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2833 __ push(0xDEADDEAD);
duke@435 2834 #else /* ASSERT */
never@739 2835 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2836 #endif /* ASSERT */
duke@435 2837 #else /* CC_INTERP */
never@739 2838 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2839 #endif /* CC_INTERP */
never@739 2840 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2841 __ enter(); // save old & set new rbp,
never@739 2842 __ subptr(rsp, rbx); // Prolog!
never@739 2843 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2844 #ifdef CC_INTERP
never@739 2845 __ movptr(Address(rbp,
duke@435 2846 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2847 rbx); // Make it walkable
duke@435 2848 #else /* CC_INTERP */
duke@435 2849 // This value is corrected by layout_activation_impl
xlu@947 2850 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 2851 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2852 #endif /* CC_INTERP */
never@739 2853 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2854 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2855 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2856 __ decrementl(counter); // decrement counter
duke@435 2857 __ jcc(Assembler::notZero, loop);
never@739 2858 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2859
duke@435 2860 // Re-push self-frame
duke@435 2861 __ enter(); // save old & set new rbp,
duke@435 2862
duke@435 2863 // Return address and rbp, are in place
duke@435 2864 // We'll push additional args later. Just allocate a full sized
duke@435 2865 // register save area
never@739 2866 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 2867
duke@435 2868 // Restore frame locals after moving the frame
never@739 2869 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2870 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2871 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 2872 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2873 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2874
duke@435 2875 // Set up the args to unpack_frame
duke@435 2876
duke@435 2877 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 2878 __ get_thread(rcx);
never@739 2879 __ push(rcx);
duke@435 2880
duke@435 2881 // set last_Java_sp, last_Java_fp
duke@435 2882 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 2883
duke@435 2884 // Call C code. Need thread but NOT official VM entry
duke@435 2885 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2886 // restore return values to their stack-slots with the new SP.
duke@435 2887 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2888 // Set an oopmap for the call site
duke@435 2889 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 2890
duke@435 2891 // rax, contains the return result type
never@739 2892 __ push(rax);
duke@435 2893
duke@435 2894 __ get_thread(rcx);
duke@435 2895 __ reset_last_Java_frame(rcx, false, false);
duke@435 2896
duke@435 2897 // Collect return values
never@739 2898 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 2899 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 2900
duke@435 2901 // Clear floating point stack before returning to interpreter
duke@435 2902 __ empty_FPU_stack();
duke@435 2903
duke@435 2904 // Check if we should push the float or double return value.
duke@435 2905 Label results_done, yes_double_value;
duke@435 2906 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 2907 __ jcc (Assembler::zero, yes_double_value);
duke@435 2908 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 2909 __ jcc (Assembler::notZero, results_done);
duke@435 2910
duke@435 2911 // return float value as expected by interpreter
duke@435 2912 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2913 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2914 __ jmp(results_done);
duke@435 2915
duke@435 2916 // return double value as expected by interpreter
duke@435 2917 __ bind(yes_double_value);
duke@435 2918 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2919 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2920
duke@435 2921 __ bind(results_done);
duke@435 2922
duke@435 2923 // Pop self-frame.
duke@435 2924 __ leave(); // Epilog!
duke@435 2925
duke@435 2926 // Jump to interpreter
duke@435 2927 __ ret(0);
duke@435 2928
duke@435 2929 // -------------
duke@435 2930 // make sure all code is generated
duke@435 2931 masm->flush();
duke@435 2932
duke@435 2933 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 2934 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2935 }
duke@435 2936
duke@435 2937
duke@435 2938 #ifdef COMPILER2
duke@435 2939 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2940 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2941 // allocate space for the code
duke@435 2942 ResourceMark rm;
duke@435 2943 // setup code generation tools
duke@435 2944 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 2945 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2946
duke@435 2947 enum frame_layout {
duke@435 2948 arg0_off, // thread sp + 0 // Arg location for
duke@435 2949 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 2950 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 2951 // will override any oopMap setting for it. We must therefore force the layout
duke@435 2952 // so that it agrees with the frame sender code.
duke@435 2953 rbp_off, // callee saved register sp + 2
duke@435 2954 return_off, // slot for return address sp + 3
duke@435 2955 framesize
duke@435 2956 };
duke@435 2957
duke@435 2958 address start = __ pc();
duke@435 2959 // Push self-frame.
never@739 2960 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 2961
duke@435 2962 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 2963 // convention will save restore it in prolog/epilog) Other than that
duke@435 2964 // there are no callee save registers no that adapter frames are gone.
never@739 2965 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 2966
duke@435 2967 // Clear the floating point exception stack
duke@435 2968 __ empty_FPU_stack();
duke@435 2969
duke@435 2970 // set last_Java_sp
duke@435 2971 __ get_thread(rdx);
duke@435 2972 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 2973
duke@435 2974 // Call C code. Need thread but NOT official VM entry
duke@435 2975 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2976 // capture callee-saved registers as well as return values.
never@739 2977 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 2978 // argument already in ECX
duke@435 2979 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 2980 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2981
duke@435 2982 // Set an oopmap for the call site
duke@435 2983 OopMapSet *oop_maps = new OopMapSet();
duke@435 2984 OopMap* map = new OopMap( framesize, 0 );
duke@435 2985 // No oopMap for rbp, it is known implicitly
duke@435 2986
duke@435 2987 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2988
duke@435 2989 __ get_thread(rcx);
duke@435 2990
duke@435 2991 __ reset_last_Java_frame(rcx, false, false);
duke@435 2992
duke@435 2993 // Load UnrollBlock into EDI
never@739 2994 __ movptr(rdi, rax);
duke@435 2995
duke@435 2996 // Pop all the frames we must move/replace.
duke@435 2997 //
duke@435 2998 // Frame picture (youngest to oldest)
duke@435 2999 // 1: self-frame (no frame link)
duke@435 3000 // 2: deopting frame (no frame link)
duke@435 3001 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3002
duke@435 3003 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 3004 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 3005
duke@435 3006 // Pop deoptimized frame
never@739 3007 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3008 __ addptr(rsp, rcx);
duke@435 3009
duke@435 3010 // sp should be pointing at the return address to the caller (3)
duke@435 3011
duke@435 3012 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3013 if (UseStackBanging) {
duke@435 3014 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3015 __ bang_stack_size(rbx, rcx);
duke@435 3016 }
duke@435 3017
duke@435 3018
duke@435 3019 // Load array of frame pcs into ECX
duke@435 3020 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3021
never@739 3022 __ pop(rsi); // trash the pc
duke@435 3023
duke@435 3024 // Load array of frame sizes into ESI
never@739 3025 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3026
duke@435 3027 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 3028
duke@435 3029 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3030 __ movl(counter, rbx);
duke@435 3031
duke@435 3032 // Pick up the initial fp we should save
bdelsart@3130 3033 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3034
duke@435 3035 // Now adjust the caller's stack to make up for the extra locals
duke@435 3036 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3037 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3038 // value and not the "real" sp value.
duke@435 3039
duke@435 3040 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 3041 __ movptr(sp_temp, rsp);
never@739 3042 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 3043 __ subptr(rsp, rbx);
duke@435 3044
duke@435 3045 // Push interpreter frames in a loop
duke@435 3046 Label loop;
duke@435 3047 __ bind(loop);
never@739 3048 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 3049 #ifdef CC_INTERP
never@739 3050 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 3051 #ifdef ASSERT
never@739 3052 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3053 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 3054 #else /* ASSERT */
never@739 3055 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 3056 #endif /* ASSERT */
duke@435 3057 #else /* CC_INTERP */
never@739 3058 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 3059 #endif /* CC_INTERP */
never@739 3060 __ pushptr(Address(rcx, 0)); // save return address
duke@435 3061 __ enter(); // save old & set new rbp,
never@739 3062 __ subptr(rsp, rbx); // Prolog!
never@739 3063 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3064 #ifdef CC_INTERP
never@739 3065 __ movptr(Address(rbp,
duke@435 3066 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3067 rbx); // Make it walkable
duke@435 3068 #else /* CC_INTERP */
duke@435 3069 // This value is corrected by layout_activation_impl
xlu@947 3070 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 3071 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3072 #endif /* CC_INTERP */
never@739 3073 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3074 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3075 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3076 __ decrementl(counter); // decrement counter
duke@435 3077 __ jcc(Assembler::notZero, loop);
never@739 3078 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3079
duke@435 3080 // Re-push self-frame
duke@435 3081 __ enter(); // save old & set new rbp,
never@739 3082 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 3083
duke@435 3084
duke@435 3085 // set last_Java_sp, last_Java_fp
duke@435 3086 __ get_thread(rdi);
duke@435 3087 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 3088
duke@435 3089 // Call C code. Need thread but NOT official VM entry
duke@435 3090 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3091 // restore return values to their stack-slots with the new SP.
never@739 3092 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 3093 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 3094 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3095 // Set an oopmap for the call site
duke@435 3096 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 3097
duke@435 3098 __ get_thread(rdi);
duke@435 3099 __ reset_last_Java_frame(rdi, true, false);
duke@435 3100
duke@435 3101 // Pop self-frame.
duke@435 3102 __ leave(); // Epilog!
duke@435 3103
duke@435 3104 // Jump to interpreter
duke@435 3105 __ ret(0);
duke@435 3106
duke@435 3107 // -------------
duke@435 3108 // make sure all code is generated
duke@435 3109 masm->flush();
duke@435 3110
duke@435 3111 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 3112 }
duke@435 3113 #endif // COMPILER2
duke@435 3114
duke@435 3115 //------------------------------generate_handler_blob------
duke@435 3116 //
duke@435 3117 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3118 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 3119 // a safepoint.
duke@435 3120 //
never@2950 3121 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 3122
duke@435 3123 // Account for thread arg in our frame
duke@435 3124 const int additional_words = 1;
duke@435 3125 int frame_size_in_words;
duke@435 3126
duke@435 3127 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3128
duke@435 3129 ResourceMark rm;
duke@435 3130 OopMapSet *oop_maps = new OopMapSet();
duke@435 3131 OopMap* map;
duke@435 3132
duke@435 3133 // allocate space for the code
duke@435 3134 // setup code generation tools
duke@435 3135 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 3136 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3137
duke@435 3138 const Register java_thread = rdi; // callee-saved for VC++
duke@435 3139 address start = __ pc();
duke@435 3140 address call_pc = NULL;
duke@435 3141
duke@435 3142 // If cause_return is true we are at a poll_return and there is
duke@435 3143 // the return address on the stack to the caller on the nmethod
duke@435 3144 // that is safepoint. We can leave this return on the stack and
duke@435 3145 // effectively complete the return and safepoint in the caller.
duke@435 3146 // Otherwise we push space for a return address that the safepoint
duke@435 3147 // handler will install later to make the stack walking sensible.
duke@435 3148 if( !cause_return )
never@739 3149 __ push(rbx); // Make room for return address (or push it again)
duke@435 3150
duke@435 3151 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 3152
duke@435 3153 // The following is basically a call_VM. However, we need the precise
duke@435 3154 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3155 // work ourselves.
duke@435 3156
duke@435 3157 // Push thread argument and setup last_Java_sp
duke@435 3158 __ get_thread(java_thread);
never@739 3159 __ push(java_thread);
duke@435 3160 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 3161
duke@435 3162 // if this was not a poll_return then we need to correct the return address now.
duke@435 3163 if( !cause_return ) {
never@739 3164 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 3165 __ movptr(Address(rbp, wordSize), rax);
duke@435 3166 }
duke@435 3167
duke@435 3168 // do the call
duke@435 3169 __ call(RuntimeAddress(call_ptr));
duke@435 3170
duke@435 3171 // Set an oopmap for the call site. This oopmap will map all
duke@435 3172 // oop-registers and debug-info registers as callee-saved. This
duke@435 3173 // will allow deoptimization at this safepoint to find all possible
duke@435 3174 // debug-info recordings, as well as let GC find all oops.
duke@435 3175
duke@435 3176 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3177
duke@435 3178 // Discard arg
never@739 3179 __ pop(rcx);
duke@435 3180
duke@435 3181 Label noException;
duke@435 3182
duke@435 3183 // Clear last_Java_sp again
duke@435 3184 __ get_thread(java_thread);
duke@435 3185 __ reset_last_Java_frame(java_thread, false, false);
duke@435 3186
never@739 3187 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3188 __ jcc(Assembler::equal, noException);
duke@435 3189
duke@435 3190 // Exception pending
duke@435 3191
duke@435 3192 RegisterSaver::restore_live_registers(masm);
duke@435 3193
duke@435 3194 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3195
duke@435 3196 __ bind(noException);
duke@435 3197
duke@435 3198 // Normal exit, register restoring and exit
duke@435 3199 RegisterSaver::restore_live_registers(masm);
duke@435 3200
duke@435 3201 __ ret(0);
duke@435 3202
duke@435 3203 // make sure all code is generated
duke@435 3204 masm->flush();
duke@435 3205
duke@435 3206 // Fill-out other meta info
duke@435 3207 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3208 }
duke@435 3209
duke@435 3210 //
duke@435 3211 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3212 //
duke@435 3213 // Generate a stub that calls into vm to find out the proper destination
duke@435 3214 // of a java call. All the argument registers are live at this point
duke@435 3215 // but since this is generic code we don't know what they are and the caller
duke@435 3216 // must do any gc of the args.
duke@435 3217 //
never@2950 3218 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3219 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3220
duke@435 3221 // allocate space for the code
duke@435 3222 ResourceMark rm;
duke@435 3223
duke@435 3224 CodeBuffer buffer(name, 1000, 512);
duke@435 3225 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3226
duke@435 3227 int frame_size_words;
duke@435 3228 enum frame_layout {
duke@435 3229 thread_off,
duke@435 3230 extra_words };
duke@435 3231
duke@435 3232 OopMapSet *oop_maps = new OopMapSet();
duke@435 3233 OopMap* map = NULL;
duke@435 3234
duke@435 3235 int start = __ offset();
duke@435 3236
duke@435 3237 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 3238
duke@435 3239 int frame_complete = __ offset();
duke@435 3240
duke@435 3241 const Register thread = rdi;
duke@435 3242 __ get_thread(rdi);
duke@435 3243
never@739 3244 __ push(thread);
duke@435 3245 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 3246
duke@435 3247 __ call(RuntimeAddress(destination));
duke@435 3248
duke@435 3249
duke@435 3250 // Set an oopmap for the call site.
duke@435 3251 // We need this not only for callee-saved registers, but also for volatile
duke@435 3252 // registers that the compiler might be keeping live across a safepoint.
duke@435 3253
duke@435 3254 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3255
duke@435 3256 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 3257
never@739 3258 __ addptr(rsp, wordSize);
duke@435 3259
duke@435 3260 // clear last_Java_sp
duke@435 3261 __ reset_last_Java_frame(thread, true, false);
duke@435 3262 // check for pending exceptions
duke@435 3263 Label pending;
never@739 3264 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3265 __ jcc(Assembler::notEqual, pending);
duke@435 3266
duke@435 3267 // get the returned methodOop
never@739 3268 __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
never@739 3269 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 3270
never@739 3271 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 3272
duke@435 3273 RegisterSaver::restore_live_registers(masm);
duke@435 3274
duke@435 3275 // We are back the the original state on entry and ready to go.
duke@435 3276
duke@435 3277 __ jmp(rax);
duke@435 3278
duke@435 3279 // Pending exception after the safepoint
duke@435 3280
duke@435 3281 __ bind(pending);
duke@435 3282
duke@435 3283 RegisterSaver::restore_live_registers(masm);
duke@435 3284
duke@435 3285 // exception pending => remove activation and forward to exception handler
duke@435 3286
duke@435 3287 __ get_thread(thread);
xlu@947 3288 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 3289 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 3290 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3291
duke@435 3292 // -------------
duke@435 3293 // make sure all code is generated
duke@435 3294 masm->flush();
duke@435 3295
duke@435 3296 // return the blob
duke@435 3297 // frame_size_words or bytes??
duke@435 3298 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3299 }

mercurial