src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 09 Mar 2010 20:16:19 +0100

author
twisti
date
Tue, 09 Mar 2010 20:16:19 +0100
changeset 1730
3cf667df43ef
parent 1692
7b4415a18c8a
child 1732
c466efa608d5
permissions
-rw-r--r--

6919934: JSR 292 needs to support x86 C1
Summary: This implements JSR 292 support for C1 x86.
Reviewed-by: never, jrose, kvn

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 int LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return -1;
   377   }
   379   int offset = code_offset();
   381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   382   __ delayed()->nop();
   383   debug_only(__ stop("should have gone to the caller");)
   384   assert(code_offset() - offset <= exception_handler_size, "overflow");
   385   __ end_a_stub();
   387   return offset;
   388 }
   391 int LIR_Assembler::emit_deopt_handler() {
   392   // if the last instruction is a call (typically to do a throw which
   393   // is coming at the end after block reordering) the return address
   394   // must still point into the code area in order to avoid assertion
   395   // failures when searching for the corresponding bci => add a nop
   396   // (was bug 5/14/1999 - gri)
   397   __ nop();
   399   // generate code for deopt handler
   400   ciMethod* method = compilation()->method();
   401   address handler_base = __ start_a_stub(deopt_handler_size);
   402   if (handler_base == NULL) {
   403     // not enough space left for the handler
   404     bailout("deopt handler overflow");
   405     return -1;
   406   }
   408   int offset = code_offset();
   409   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   410   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   411   __ delayed()->nop();
   412   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   413   debug_only(__ stop("should have gone to the caller");)
   414   __ end_a_stub();
   416   return offset;
   417 }
   420 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   421   if (o == NULL) {
   422     __ set(NULL_WORD, reg);
   423   } else {
   424     int oop_index = __ oop_recorder()->find_index(o);
   425     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   426     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   427   }
   428 }
   431 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   432   // Allocate a new index in oop table to hold the oop once it's been patched
   433   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   434   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   436   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   437   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   438   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   439   // NULL will be dynamically patched later and the patched value may be large.  We must
   440   // therefore generate the sethi/add as a placeholders
   441   __ patchable_set(addrlit, reg);
   443   patching_epilog(patch, lir_patch_normal, reg, info);
   444 }
   447 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   448   Register Rdividend = op->in_opr1()->as_register();
   449   Register Rdivisor  = noreg;
   450   Register Rscratch  = op->in_opr3()->as_register();
   451   Register Rresult   = op->result_opr()->as_register();
   452   int divisor = -1;
   454   if (op->in_opr2()->is_register()) {
   455     Rdivisor = op->in_opr2()->as_register();
   456   } else {
   457     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   458     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   459   }
   461   assert(Rdividend != Rscratch, "");
   462   assert(Rdivisor  != Rscratch, "");
   463   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   465   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   466     // convert division by a power of two into some shifts and logical operations
   467     if (op->code() == lir_idiv) {
   468       if (divisor == 2) {
   469         __ srl(Rdividend, 31, Rscratch);
   470       } else {
   471         __ sra(Rdividend, 31, Rscratch);
   472         __ and3(Rscratch, divisor - 1, Rscratch);
   473       }
   474       __ add(Rdividend, Rscratch, Rscratch);
   475       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   476       return;
   477     } else {
   478       if (divisor == 2) {
   479         __ srl(Rdividend, 31, Rscratch);
   480       } else {
   481         __ sra(Rdividend, 31, Rscratch);
   482         __ and3(Rscratch, divisor - 1,Rscratch);
   483       }
   484       __ add(Rdividend, Rscratch, Rscratch);
   485       __ andn(Rscratch, divisor - 1,Rscratch);
   486       __ sub(Rdividend, Rscratch, Rresult);
   487       return;
   488     }
   489   }
   491   __ sra(Rdividend, 31, Rscratch);
   492   __ wry(Rscratch);
   493   if (!VM_Version::v9_instructions_work()) {
   494     // v9 doesn't require these nops
   495     __ nop();
   496     __ nop();
   497     __ nop();
   498     __ nop();
   499   }
   501   add_debug_info_for_div0_here(op->info());
   503   if (Rdivisor != noreg) {
   504     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   505   } else {
   506     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   507     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   508   }
   510   Label skip;
   511   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   512   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   513   __ bind(skip);
   515   if (op->code() == lir_irem) {
   516     if (Rdivisor != noreg) {
   517       __ smul(Rscratch, Rdivisor, Rscratch);
   518     } else {
   519       __ smul(Rscratch, divisor, Rscratch);
   520     }
   521     __ sub(Rdividend, Rscratch, Rresult);
   522   }
   523 }
   526 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   527 #ifdef ASSERT
   528   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   529   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   530   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   531 #endif
   532   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   534   if (op->cond() == lir_cond_always) {
   535     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   536   } else if (op->code() == lir_cond_float_branch) {
   537     assert(op->ublock() != NULL, "must have unordered successor");
   538     bool is_unordered = (op->ublock() == op->block());
   539     Assembler::Condition acond;
   540     switch (op->cond()) {
   541       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   542       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   543       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   544       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   545       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   546       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   547       default :                         ShouldNotReachHere();
   548     };
   550     if (!VM_Version::v9_instructions_work()) {
   551       __ nop();
   552     }
   553     __ fb( acond, false, Assembler::pn, *(op->label()));
   554   } else {
   555     assert (op->code() == lir_branch, "just checking");
   557     Assembler::Condition acond;
   558     switch (op->cond()) {
   559       case lir_cond_equal:        acond = Assembler::equal;                break;
   560       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   561       case lir_cond_less:         acond = Assembler::less;                 break;
   562       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   563       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   564       case lir_cond_greater:      acond = Assembler::greater;              break;
   565       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   566       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   567       default:                         ShouldNotReachHere();
   568     };
   570     // sparc has different condition codes for testing 32-bit
   571     // vs. 64-bit values.  We could always test xcc is we could
   572     // guarantee that 32-bit loads always sign extended but that isn't
   573     // true and since sign extension isn't free, it would impose a
   574     // slight cost.
   575 #ifdef _LP64
   576     if  (op->type() == T_INT) {
   577       __ br(acond, false, Assembler::pn, *(op->label()));
   578     } else
   579 #endif
   580       __ brx(acond, false, Assembler::pn, *(op->label()));
   581   }
   582   // The peephole pass fills the delay slot
   583 }
   586 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   587   Bytecodes::Code code = op->bytecode();
   588   LIR_Opr dst = op->result_opr();
   590   switch(code) {
   591     case Bytecodes::_i2l: {
   592       Register rlo  = dst->as_register_lo();
   593       Register rhi  = dst->as_register_hi();
   594       Register rval = op->in_opr()->as_register();
   595 #ifdef _LP64
   596       __ sra(rval, 0, rlo);
   597 #else
   598       __ mov(rval, rlo);
   599       __ sra(rval, BitsPerInt-1, rhi);
   600 #endif
   601       break;
   602     }
   603     case Bytecodes::_i2d:
   604     case Bytecodes::_i2f: {
   605       bool is_double = (code == Bytecodes::_i2d);
   606       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   607       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   608       FloatRegister rsrc = op->in_opr()->as_float_reg();
   609       if (rsrc != rdst) {
   610         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   611       }
   612       __ fitof(w, rdst, rdst);
   613       break;
   614     }
   615     case Bytecodes::_f2i:{
   616       FloatRegister rsrc = op->in_opr()->as_float_reg();
   617       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   618       Label L;
   619       // result must be 0 if value is NaN; test by comparing value to itself
   620       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   621       if (!VM_Version::v9_instructions_work()) {
   622         __ nop();
   623       }
   624       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   625       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   626       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   627       // move integer result from float register to int register
   628       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   629       __ bind (L);
   630       break;
   631     }
   632     case Bytecodes::_l2i: {
   633       Register rlo  = op->in_opr()->as_register_lo();
   634       Register rhi  = op->in_opr()->as_register_hi();
   635       Register rdst = dst->as_register();
   636 #ifdef _LP64
   637       __ sra(rlo, 0, rdst);
   638 #else
   639       __ mov(rlo, rdst);
   640 #endif
   641       break;
   642     }
   643     case Bytecodes::_d2f:
   644     case Bytecodes::_f2d: {
   645       bool is_double = (code == Bytecodes::_f2d);
   646       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   647       LIR_Opr val = op->in_opr();
   648       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   649       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   650       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   651       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   652       __ ftof(vw, dw, rval, rdst);
   653       break;
   654     }
   655     case Bytecodes::_i2s:
   656     case Bytecodes::_i2b: {
   657       Register rval = op->in_opr()->as_register();
   658       Register rdst = dst->as_register();
   659       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   660       __ sll (rval, shift, rdst);
   661       __ sra (rdst, shift, rdst);
   662       break;
   663     }
   664     case Bytecodes::_i2c: {
   665       Register rval = op->in_opr()->as_register();
   666       Register rdst = dst->as_register();
   667       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   668       __ sll (rval, shift, rdst);
   669       __ srl (rdst, shift, rdst);
   670       break;
   671     }
   673     default: ShouldNotReachHere();
   674   }
   675 }
   678 void LIR_Assembler::align_call(LIR_Code) {
   679   // do nothing since all instructions are word aligned on sparc
   680 }
   683 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   684   __ call(op->addr(), rtype);
   685   // the peephole pass fills the delay slot
   686 }
   689 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   690   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   691   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   692   __ relocate(rspec);
   693   __ call(op->addr(), relocInfo::none);
   694   // the peephole pass fills the delay slot
   695 }
   698 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   699   add_debug_info_for_null_check_here(op->info());
   700   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   701   if (__ is_simm13(op->vtable_offset())) {
   702     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   703   } else {
   704     // This will generate 2 instructions
   705     __ set(op->vtable_offset(), G5_method);
   706     // ld_ptr, set_hi, set
   707     __ ld_ptr(G3_scratch, G5_method, G5_method);
   708   }
   709   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   710   __ callr(G3_scratch, G0);
   711   // the peephole pass fills the delay slot
   712 }
   715 void LIR_Assembler::preserve_SP() {
   716   Unimplemented();
   717 }
   720 void LIR_Assembler::restore_SP() {
   721   Unimplemented();
   722 }
   725 // load with 32-bit displacement
   726 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   727   int load_offset = code_offset();
   728   if (Assembler::is_simm13(disp)) {
   729     if (info != NULL) add_debug_info_for_null_check_here(info);
   730     switch(ld_type) {
   731       case T_BOOLEAN: // fall through
   732       case T_BYTE  : __ ldsb(s, disp, d); break;
   733       case T_CHAR  : __ lduh(s, disp, d); break;
   734       case T_SHORT : __ ldsh(s, disp, d); break;
   735       case T_INT   : __ ld(s, disp, d); break;
   736       case T_ADDRESS:// fall through
   737       case T_ARRAY : // fall through
   738       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   739       default      : ShouldNotReachHere();
   740     }
   741   } else {
   742     __ set(disp, O7);
   743     if (info != NULL) add_debug_info_for_null_check_here(info);
   744     load_offset = code_offset();
   745     switch(ld_type) {
   746       case T_BOOLEAN: // fall through
   747       case T_BYTE  : __ ldsb(s, O7, d); break;
   748       case T_CHAR  : __ lduh(s, O7, d); break;
   749       case T_SHORT : __ ldsh(s, O7, d); break;
   750       case T_INT   : __ ld(s, O7, d); break;
   751       case T_ADDRESS:// fall through
   752       case T_ARRAY : // fall through
   753       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   754       default      : ShouldNotReachHere();
   755     }
   756   }
   757   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   758   return load_offset;
   759 }
   762 // store with 32-bit displacement
   763 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   764   if (Assembler::is_simm13(offset)) {
   765     if (info != NULL)  add_debug_info_for_null_check_here(info);
   766     switch (type) {
   767       case T_BOOLEAN: // fall through
   768       case T_BYTE  : __ stb(value, base, offset); break;
   769       case T_CHAR  : __ sth(value, base, offset); break;
   770       case T_SHORT : __ sth(value, base, offset); break;
   771       case T_INT   : __ stw(value, base, offset); break;
   772       case T_ADDRESS:// fall through
   773       case T_ARRAY : // fall through
   774       case T_OBJECT: __ st_ptr(value, base, offset); break;
   775       default      : ShouldNotReachHere();
   776     }
   777   } else {
   778     __ set(offset, O7);
   779     if (info != NULL) add_debug_info_for_null_check_here(info);
   780     switch (type) {
   781       case T_BOOLEAN: // fall through
   782       case T_BYTE  : __ stb(value, base, O7); break;
   783       case T_CHAR  : __ sth(value, base, O7); break;
   784       case T_SHORT : __ sth(value, base, O7); break;
   785       case T_INT   : __ stw(value, base, O7); break;
   786       case T_ADDRESS:// fall through
   787       case T_ARRAY : //fall through
   788       case T_OBJECT: __ st_ptr(value, base, O7); break;
   789       default      : ShouldNotReachHere();
   790     }
   791   }
   792   // Note: Do the store before verification as the code might be patched!
   793   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   794 }
   797 // load float with 32-bit displacement
   798 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   799   FloatRegisterImpl::Width w;
   800   switch(ld_type) {
   801     case T_FLOAT : w = FloatRegisterImpl::S; break;
   802     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   803     default      : ShouldNotReachHere();
   804   }
   806   if (Assembler::is_simm13(disp)) {
   807     if (info != NULL) add_debug_info_for_null_check_here(info);
   808     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   809       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   810       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   811     } else {
   812       __ ldf(w, s, disp, d);
   813     }
   814   } else {
   815     __ set(disp, O7);
   816     if (info != NULL) add_debug_info_for_null_check_here(info);
   817     __ ldf(w, s, O7, d);
   818   }
   819 }
   822 // store float with 32-bit displacement
   823 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   824   FloatRegisterImpl::Width w;
   825   switch(type) {
   826     case T_FLOAT : w = FloatRegisterImpl::S; break;
   827     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   828     default      : ShouldNotReachHere();
   829   }
   831   if (Assembler::is_simm13(offset)) {
   832     if (info != NULL) add_debug_info_for_null_check_here(info);
   833     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   834       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   835       __ stf(FloatRegisterImpl::S, value             , base, offset);
   836     } else {
   837       __ stf(w, value, base, offset);
   838     }
   839   } else {
   840     __ set(offset, O7);
   841     if (info != NULL) add_debug_info_for_null_check_here(info);
   842     __ stf(w, value, O7, base);
   843   }
   844 }
   847 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   848   int store_offset;
   849   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   850     assert(!unaligned, "can't handle this");
   851     // for offsets larger than a simm13 we setup the offset in O7
   852     __ set(offset, O7);
   853     store_offset = store(from_reg, base, O7, type);
   854   } else {
   855     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   856     store_offset = code_offset();
   857     switch (type) {
   858       case T_BOOLEAN: // fall through
   859       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   860       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   861       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   862       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   863       case T_LONG  :
   864 #ifdef _LP64
   865         if (unaligned || PatchALot) {
   866           __ srax(from_reg->as_register_lo(), 32, O7);
   867           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   868           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   869         } else {
   870           __ stx(from_reg->as_register_lo(), base, offset);
   871         }
   872 #else
   873         assert(Assembler::is_simm13(offset + 4), "must be");
   874         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   875         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   876 #endif
   877         break;
   878       case T_ADDRESS:// fall through
   879       case T_ARRAY : // fall through
   880       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   881       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   882       case T_DOUBLE:
   883         {
   884           FloatRegister reg = from_reg->as_double_reg();
   885           // split unaligned stores
   886           if (unaligned || PatchALot) {
   887             assert(Assembler::is_simm13(offset + 4), "must be");
   888             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   889             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   890           } else {
   891             __ stf(FloatRegisterImpl::D, reg, base, offset);
   892           }
   893           break;
   894         }
   895       default      : ShouldNotReachHere();
   896     }
   897   }
   898   return store_offset;
   899 }
   902 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   903   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   904   int store_offset = code_offset();
   905   switch (type) {
   906     case T_BOOLEAN: // fall through
   907     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   908     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   909     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   910     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   911     case T_LONG  :
   912 #ifdef _LP64
   913       __ stx(from_reg->as_register_lo(), base, disp);
   914 #else
   915       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   916       __ std(from_reg->as_register_hi(), base, disp);
   917 #endif
   918       break;
   919     case T_ADDRESS:// fall through
   920     case T_ARRAY : // fall through
   921     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   922     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   923     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   924     default      : ShouldNotReachHere();
   925   }
   926   return store_offset;
   927 }
   930 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   931   int load_offset;
   932   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   933     assert(base != O7, "destroying register");
   934     assert(!unaligned, "can't handle this");
   935     // for offsets larger than a simm13 we setup the offset in O7
   936     __ set(offset, O7);
   937     load_offset = load(base, O7, to_reg, type);
   938   } else {
   939     load_offset = code_offset();
   940     switch(type) {
   941       case T_BOOLEAN: // fall through
   942       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   943       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   944       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   945       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   946       case T_LONG  :
   947         if (!unaligned) {
   948 #ifdef _LP64
   949           __ ldx(base, offset, to_reg->as_register_lo());
   950 #else
   951           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   952                  "must be sequential");
   953           __ ldd(base, offset, to_reg->as_register_hi());
   954 #endif
   955         } else {
   956 #ifdef _LP64
   957           assert(base != to_reg->as_register_lo(), "can't handle this");
   958           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   959           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   960           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   961           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   962           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   963 #else
   964           if (base == to_reg->as_register_lo()) {
   965             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   966             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   967           } else {
   968             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   969             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   970           }
   971 #endif
   972         }
   973         break;
   974       case T_ADDRESS:// fall through
   975       case T_ARRAY : // fall through
   976       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
   977       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   978       case T_DOUBLE:
   979         {
   980           FloatRegister reg = to_reg->as_double_reg();
   981           // split unaligned loads
   982           if (unaligned || PatchALot) {
   983             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   984             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   985           } else {
   986             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   987           }
   988           break;
   989         }
   990       default      : ShouldNotReachHere();
   991     }
   992     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
   993   }
   994   return load_offset;
   995 }
   998 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
   999   int load_offset = code_offset();
  1000   switch(type) {
  1001     case T_BOOLEAN: // fall through
  1002     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1003     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1004     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1005     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1006     case T_ADDRESS:// fall through
  1007     case T_ARRAY : // fall through
  1008     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1009     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1010     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1011     case T_LONG  :
  1012 #ifdef _LP64
  1013       __ ldx(base, disp, to_reg->as_register_lo());
  1014 #else
  1015       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1016              "must be sequential");
  1017       __ ldd(base, disp, to_reg->as_register_hi());
  1018 #endif
  1019       break;
  1020     default      : ShouldNotReachHere();
  1022   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1023   return load_offset;
  1027 // load/store with an Address
  1028 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1029   load(a.base(), a.disp() + offset, d, ld_type, info);
  1033 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1034   store(value, dest.base(), dest.disp() + offset, type, info);
  1038 // loadf/storef with an Address
  1039 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1040   load(a.base(), a.disp() + offset, d, ld_type, info);
  1044 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1045   store(value, dest.base(), dest.disp() + offset, type, info);
  1049 // load/store with an Address
  1050 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1051   load(as_Address(a), d, ld_type, info);
  1055 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1056   store(value, as_Address(dest), type, info);
  1060 // loadf/storef with an Address
  1061 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1062   load(as_Address(a), d, ld_type, info);
  1066 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1067   store(value, as_Address(dest), type, info);
  1071 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1072   LIR_Const* c = src->as_constant_ptr();
  1073   switch (c->type()) {
  1074     case T_INT:
  1075     case T_FLOAT: {
  1076       Register src_reg = O7;
  1077       int value = c->as_jint_bits();
  1078       if (value == 0) {
  1079         src_reg = G0;
  1080       } else {
  1081         __ set(value, O7);
  1083       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1084       __ stw(src_reg, addr.base(), addr.disp());
  1085       break;
  1087     case T_OBJECT: {
  1088       Register src_reg = O7;
  1089       jobject2reg(c->as_jobject(), src_reg);
  1090       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1091       __ st_ptr(src_reg, addr.base(), addr.disp());
  1092       break;
  1094     case T_LONG:
  1095     case T_DOUBLE: {
  1096       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1098       Register tmp = O7;
  1099       int value_lo = c->as_jint_lo_bits();
  1100       if (value_lo == 0) {
  1101         tmp = G0;
  1102       } else {
  1103         __ set(value_lo, O7);
  1105       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1106       int value_hi = c->as_jint_hi_bits();
  1107       if (value_hi == 0) {
  1108         tmp = G0;
  1109       } else {
  1110         __ set(value_hi, O7);
  1112       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1113       break;
  1115     default:
  1116       Unimplemented();
  1121 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1122   LIR_Const* c = src->as_constant_ptr();
  1123   LIR_Address* addr     = dest->as_address_ptr();
  1124   Register base = addr->base()->as_pointer_register();
  1126   if (info != NULL) {
  1127     add_debug_info_for_null_check_here(info);
  1129   switch (c->type()) {
  1130     case T_INT:
  1131     case T_FLOAT: {
  1132       LIR_Opr tmp = FrameMap::O7_opr;
  1133       int value = c->as_jint_bits();
  1134       if (value == 0) {
  1135         tmp = FrameMap::G0_opr;
  1136       } else if (Assembler::is_simm13(value)) {
  1137         __ set(value, O7);
  1139       if (addr->index()->is_valid()) {
  1140         assert(addr->disp() == 0, "must be zero");
  1141         store(tmp, base, addr->index()->as_pointer_register(), type);
  1142       } else {
  1143         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1144         store(tmp, base, addr->disp(), type);
  1146       break;
  1148     case T_LONG:
  1149     case T_DOUBLE: {
  1150       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1151       assert(Assembler::is_simm13(addr->disp()) &&
  1152              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1154       Register tmp = O7;
  1155       int value_lo = c->as_jint_lo_bits();
  1156       if (value_lo == 0) {
  1157         tmp = G0;
  1158       } else {
  1159         __ set(value_lo, O7);
  1161       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1162       int value_hi = c->as_jint_hi_bits();
  1163       if (value_hi == 0) {
  1164         tmp = G0;
  1165       } else {
  1166         __ set(value_hi, O7);
  1168       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1169       break;
  1171     case T_OBJECT: {
  1172       jobject obj = c->as_jobject();
  1173       LIR_Opr tmp;
  1174       if (obj == NULL) {
  1175         tmp = FrameMap::G0_opr;
  1176       } else {
  1177         tmp = FrameMap::O7_opr;
  1178         jobject2reg(c->as_jobject(), O7);
  1180       // handle either reg+reg or reg+disp address
  1181       if (addr->index()->is_valid()) {
  1182         assert(addr->disp() == 0, "must be zero");
  1183         store(tmp, base, addr->index()->as_pointer_register(), type);
  1184       } else {
  1185         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1186         store(tmp, base, addr->disp(), type);
  1189       break;
  1191     default:
  1192       Unimplemented();
  1197 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1198   LIR_Const* c = src->as_constant_ptr();
  1199   LIR_Opr to_reg = dest;
  1201   switch (c->type()) {
  1202     case T_INT:
  1204         jint con = c->as_jint();
  1205         if (to_reg->is_single_cpu()) {
  1206           assert(patch_code == lir_patch_none, "no patching handled here");
  1207           __ set(con, to_reg->as_register());
  1208         } else {
  1209           ShouldNotReachHere();
  1210           assert(to_reg->is_single_fpu(), "wrong register kind");
  1212           __ set(con, O7);
  1213           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1214           __ st(O7, temp_slot);
  1215           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1218       break;
  1220     case T_LONG:
  1222         jlong con = c->as_jlong();
  1224         if (to_reg->is_double_cpu()) {
  1225 #ifdef _LP64
  1226           __ set(con,  to_reg->as_register_lo());
  1227 #else
  1228           __ set(low(con),  to_reg->as_register_lo());
  1229           __ set(high(con), to_reg->as_register_hi());
  1230 #endif
  1231 #ifdef _LP64
  1232         } else if (to_reg->is_single_cpu()) {
  1233           __ set(con, to_reg->as_register());
  1234 #endif
  1235         } else {
  1236           ShouldNotReachHere();
  1237           assert(to_reg->is_double_fpu(), "wrong register kind");
  1238           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1239           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1240           __ set(low(con),  O7);
  1241           __ st(O7, temp_slot_lo);
  1242           __ set(high(con), O7);
  1243           __ st(O7, temp_slot_hi);
  1244           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1247       break;
  1249     case T_OBJECT:
  1251         if (patch_code == lir_patch_none) {
  1252           jobject2reg(c->as_jobject(), to_reg->as_register());
  1253         } else {
  1254           jobject2reg_with_patching(to_reg->as_register(), info);
  1257       break;
  1259     case T_FLOAT:
  1261         address const_addr = __ float_constant(c->as_jfloat());
  1262         if (const_addr == NULL) {
  1263           bailout("const section overflow");
  1264           break;
  1266         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1267         AddressLiteral const_addrlit(const_addr, rspec);
  1268         if (to_reg->is_single_fpu()) {
  1269           __ patchable_sethi(const_addrlit, O7);
  1270           __ relocate(rspec);
  1271           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1273         } else {
  1274           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1276           __ set(const_addrlit, O7);
  1277           load(O7, 0, to_reg->as_register(), T_INT);
  1280       break;
  1282     case T_DOUBLE:
  1284         address const_addr = __ double_constant(c->as_jdouble());
  1285         if (const_addr == NULL) {
  1286           bailout("const section overflow");
  1287           break;
  1289         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1291         if (to_reg->is_double_fpu()) {
  1292           AddressLiteral const_addrlit(const_addr, rspec);
  1293           __ patchable_sethi(const_addrlit, O7);
  1294           __ relocate(rspec);
  1295           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1296         } else {
  1297           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1298 #ifdef _LP64
  1299           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1300 #else
  1301           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1302           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1303 #endif
  1307       break;
  1309     default:
  1310       ShouldNotReachHere();
  1314 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1315   Register reg = addr->base()->as_register();
  1316   return Address(reg, addr->disp());
  1320 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1321   switch (type) {
  1322     case T_INT:
  1323     case T_FLOAT: {
  1324       Register tmp = O7;
  1325       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1326       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1327       __ lduw(from.base(), from.disp(), tmp);
  1328       __ stw(tmp, to.base(), to.disp());
  1329       break;
  1331     case T_OBJECT: {
  1332       Register tmp = O7;
  1333       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1334       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1335       __ ld_ptr(from.base(), from.disp(), tmp);
  1336       __ st_ptr(tmp, to.base(), to.disp());
  1337       break;
  1339     case T_LONG:
  1340     case T_DOUBLE: {
  1341       Register tmp = O7;
  1342       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1343       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1344       __ lduw(from.base(), from.disp(), tmp);
  1345       __ stw(tmp, to.base(), to.disp());
  1346       __ lduw(from.base(), from.disp() + 4, tmp);
  1347       __ stw(tmp, to.base(), to.disp() + 4);
  1348       break;
  1351     default:
  1352       ShouldNotReachHere();
  1357 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1358   Address base = as_Address(addr);
  1359   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1363 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1364   Address base = as_Address(addr);
  1365   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1369 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1370                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1372   LIR_Address* addr = src_opr->as_address_ptr();
  1373   LIR_Opr to_reg = dest;
  1375   Register src = addr->base()->as_pointer_register();
  1376   Register disp_reg = noreg;
  1377   int disp_value = addr->disp();
  1378   bool needs_patching = (patch_code != lir_patch_none);
  1380   if (addr->base()->type() == T_OBJECT) {
  1381     __ verify_oop(src);
  1384   PatchingStub* patch = NULL;
  1385   if (needs_patching) {
  1386     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1387     assert(!to_reg->is_double_cpu() ||
  1388            patch_code == lir_patch_none ||
  1389            patch_code == lir_patch_normal, "patching doesn't match register");
  1392   if (addr->index()->is_illegal()) {
  1393     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1394       if (needs_patching) {
  1395         __ patchable_set(0, O7);
  1396       } else {
  1397         __ set(disp_value, O7);
  1399       disp_reg = O7;
  1401   } else if (unaligned || PatchALot) {
  1402     __ add(src, addr->index()->as_register(), O7);
  1403     src = O7;
  1404   } else {
  1405     disp_reg = addr->index()->as_pointer_register();
  1406     assert(disp_value == 0, "can't handle 3 operand addresses");
  1409   // remember the offset of the load.  The patching_epilog must be done
  1410   // before the call to add_debug_info, otherwise the PcDescs don't get
  1411   // entered in increasing order.
  1412   int offset = code_offset();
  1414   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1415   if (disp_reg == noreg) {
  1416     offset = load(src, disp_value, to_reg, type, unaligned);
  1417   } else {
  1418     assert(!unaligned, "can't handle this");
  1419     offset = load(src, disp_reg, to_reg, type);
  1422   if (patch != NULL) {
  1423     patching_epilog(patch, patch_code, src, info);
  1426   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1430 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1431   LIR_Address* addr = src->as_address_ptr();
  1432   Address from_addr = as_Address(addr);
  1434   if (VM_Version::has_v9()) {
  1435     __ prefetch(from_addr, Assembler::severalReads);
  1440 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1441   LIR_Address* addr = src->as_address_ptr();
  1442   Address from_addr = as_Address(addr);
  1444   if (VM_Version::has_v9()) {
  1445     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1450 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1451   Address addr;
  1452   if (src->is_single_word()) {
  1453     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1454   } else if (src->is_double_word())  {
  1455     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1458   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1459   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1463 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1464   Address addr;
  1465   if (dest->is_single_word()) {
  1466     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1467   } else if (dest->is_double_word())  {
  1468     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1470   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1471   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1475 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1476   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1477     if (from_reg->is_double_fpu()) {
  1478       // double to double moves
  1479       assert(to_reg->is_double_fpu(), "should match");
  1480       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1481     } else {
  1482       // float to float moves
  1483       assert(to_reg->is_single_fpu(), "should match");
  1484       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1486   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1487     if (from_reg->is_double_cpu()) {
  1488 #ifdef _LP64
  1489       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1490 #else
  1491       assert(to_reg->is_double_cpu() &&
  1492              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1493              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1494              "should both be long and not overlap");
  1495       // long to long moves
  1496       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1497       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1498 #endif
  1499 #ifdef _LP64
  1500     } else if (to_reg->is_double_cpu()) {
  1501       // int to int moves
  1502       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1503 #endif
  1504     } else {
  1505       // int to int moves
  1506       __ mov(from_reg->as_register(), to_reg->as_register());
  1508   } else {
  1509     ShouldNotReachHere();
  1511   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1512     __ verify_oop(to_reg->as_register());
  1517 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1518                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1519                             bool unaligned) {
  1520   LIR_Address* addr = dest->as_address_ptr();
  1522   Register src = addr->base()->as_pointer_register();
  1523   Register disp_reg = noreg;
  1524   int disp_value = addr->disp();
  1525   bool needs_patching = (patch_code != lir_patch_none);
  1527   if (addr->base()->is_oop_register()) {
  1528     __ verify_oop(src);
  1531   PatchingStub* patch = NULL;
  1532   if (needs_patching) {
  1533     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1534     assert(!from_reg->is_double_cpu() ||
  1535            patch_code == lir_patch_none ||
  1536            patch_code == lir_patch_normal, "patching doesn't match register");
  1539   if (addr->index()->is_illegal()) {
  1540     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1541       if (needs_patching) {
  1542         __ patchable_set(0, O7);
  1543       } else {
  1544         __ set(disp_value, O7);
  1546       disp_reg = O7;
  1548   } else if (unaligned || PatchALot) {
  1549     __ add(src, addr->index()->as_register(), O7);
  1550     src = O7;
  1551   } else {
  1552     disp_reg = addr->index()->as_pointer_register();
  1553     assert(disp_value == 0, "can't handle 3 operand addresses");
  1556   // remember the offset of the store.  The patching_epilog must be done
  1557   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1558   // entered in increasing order.
  1559   int offset;
  1561   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1562   if (disp_reg == noreg) {
  1563     offset = store(from_reg, src, disp_value, type, unaligned);
  1564   } else {
  1565     assert(!unaligned, "can't handle this");
  1566     offset = store(from_reg, src, disp_reg, type);
  1569   if (patch != NULL) {
  1570     patching_epilog(patch, patch_code, src, info);
  1573   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1577 void LIR_Assembler::return_op(LIR_Opr result) {
  1578   // the poll may need a register so just pick one that isn't the return register
  1579 #ifdef TIERED
  1580   if (result->type_field() == LIR_OprDesc::long_type) {
  1581     // Must move the result to G1
  1582     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1583     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1584     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1585     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1587 #endif // TIERED
  1588   __ set((intptr_t)os::get_polling_page(), L0);
  1589   __ relocate(relocInfo::poll_return_type);
  1590   __ ld_ptr(L0, 0, G0);
  1591   __ ret();
  1592   __ delayed()->restore();
  1596 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1597   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1598   if (info != NULL) {
  1599     add_debug_info_for_branch(info);
  1600   } else {
  1601     __ relocate(relocInfo::poll_type);
  1604   int offset = __ offset();
  1605   __ ld_ptr(tmp->as_register(), 0, G0);
  1607   return offset;
  1611 void LIR_Assembler::emit_static_call_stub() {
  1612   address call_pc = __ pc();
  1613   address stub = __ start_a_stub(call_stub_size);
  1614   if (stub == NULL) {
  1615     bailout("static call stub overflow");
  1616     return;
  1619   int start = __ offset();
  1620   __ relocate(static_stub_Relocation::spec(call_pc));
  1622   __ set_oop(NULL, G5);
  1623   // must be set to -1 at code generation time
  1624   AddressLiteral addrlit(-1);
  1625   __ jump_to(addrlit, G3);
  1626   __ delayed()->nop();
  1628   assert(__ offset() - start <= call_stub_size, "stub too big");
  1629   __ end_a_stub();
  1633 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1634   if (opr1->is_single_fpu()) {
  1635     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1636   } else if (opr1->is_double_fpu()) {
  1637     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1638   } else if (opr1->is_single_cpu()) {
  1639     if (opr2->is_constant()) {
  1640       switch (opr2->as_constant_ptr()->type()) {
  1641         case T_INT:
  1642           { jint con = opr2->as_constant_ptr()->as_jint();
  1643             if (Assembler::is_simm13(con)) {
  1644               __ cmp(opr1->as_register(), con);
  1645             } else {
  1646               __ set(con, O7);
  1647               __ cmp(opr1->as_register(), O7);
  1650           break;
  1652         case T_OBJECT:
  1653           // there are only equal/notequal comparisions on objects
  1654           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1655             if (con == NULL) {
  1656               __ cmp(opr1->as_register(), 0);
  1657             } else {
  1658               jobject2reg(con, O7);
  1659               __ cmp(opr1->as_register(), O7);
  1662           break;
  1664         default:
  1665           ShouldNotReachHere();
  1666           break;
  1668     } else {
  1669       if (opr2->is_address()) {
  1670         LIR_Address * addr = opr2->as_address_ptr();
  1671         BasicType type = addr->type();
  1672         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1673         else                    __ ld(as_Address(addr), O7);
  1674         __ cmp(opr1->as_register(), O7);
  1675       } else {
  1676         __ cmp(opr1->as_register(), opr2->as_register());
  1679   } else if (opr1->is_double_cpu()) {
  1680     Register xlo = opr1->as_register_lo();
  1681     Register xhi = opr1->as_register_hi();
  1682     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1683       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1684 #ifdef _LP64
  1685       __ orcc(xhi, G0, G0);
  1686 #else
  1687       __ orcc(xhi, xlo, G0);
  1688 #endif
  1689     } else if (opr2->is_register()) {
  1690       Register ylo = opr2->as_register_lo();
  1691       Register yhi = opr2->as_register_hi();
  1692 #ifdef _LP64
  1693       __ cmp(xlo, ylo);
  1694 #else
  1695       __ subcc(xlo, ylo, xlo);
  1696       __ subccc(xhi, yhi, xhi);
  1697       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1698         __ orcc(xhi, xlo, G0);
  1700 #endif
  1701     } else {
  1702       ShouldNotReachHere();
  1704   } else if (opr1->is_address()) {
  1705     LIR_Address * addr = opr1->as_address_ptr();
  1706     BasicType type = addr->type();
  1707     assert (opr2->is_constant(), "Checking");
  1708     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1709     else                    __ ld(as_Address(addr), O7);
  1710     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1711   } else {
  1712     ShouldNotReachHere();
  1717 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1718   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1719     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1720     if (left->is_single_fpu()) {
  1721       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1722     } else if (left->is_double_fpu()) {
  1723       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1724     } else {
  1725       ShouldNotReachHere();
  1727   } else if (code == lir_cmp_l2i) {
  1728     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1729             right->as_register_hi(), right->as_register_lo(),
  1730             dst->as_register());
  1731   } else {
  1732     ShouldNotReachHere();
  1737 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1739   Assembler::Condition acond;
  1740   switch (condition) {
  1741     case lir_cond_equal:        acond = Assembler::equal;        break;
  1742     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1743     case lir_cond_less:         acond = Assembler::less;         break;
  1744     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1745     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1746     case lir_cond_greater:      acond = Assembler::greater;      break;
  1747     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1748     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1749     default:                         ShouldNotReachHere();
  1750   };
  1752   if (opr1->is_constant() && opr1->type() == T_INT) {
  1753     Register dest = result->as_register();
  1754     // load up first part of constant before branch
  1755     // and do the rest in the delay slot.
  1756     if (!Assembler::is_simm13(opr1->as_jint())) {
  1757       __ sethi(opr1->as_jint(), dest);
  1759   } else if (opr1->is_constant()) {
  1760     const2reg(opr1, result, lir_patch_none, NULL);
  1761   } else if (opr1->is_register()) {
  1762     reg2reg(opr1, result);
  1763   } else if (opr1->is_stack()) {
  1764     stack2reg(opr1, result, result->type());
  1765   } else {
  1766     ShouldNotReachHere();
  1768   Label skip;
  1769   __ br(acond, false, Assembler::pt, skip);
  1770   if (opr1->is_constant() && opr1->type() == T_INT) {
  1771     Register dest = result->as_register();
  1772     if (Assembler::is_simm13(opr1->as_jint())) {
  1773       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1774     } else {
  1775       // the sethi has been done above, so just put in the low 10 bits
  1776       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1778   } else {
  1779     // can't do anything useful in the delay slot
  1780     __ delayed()->nop();
  1782   if (opr2->is_constant()) {
  1783     const2reg(opr2, result, lir_patch_none, NULL);
  1784   } else if (opr2->is_register()) {
  1785     reg2reg(opr2, result);
  1786   } else if (opr2->is_stack()) {
  1787     stack2reg(opr2, result, result->type());
  1788   } else {
  1789     ShouldNotReachHere();
  1791   __ bind(skip);
  1795 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1796   assert(info == NULL, "unused on this code path");
  1797   assert(left->is_register(), "wrong items state");
  1798   assert(dest->is_register(), "wrong items state");
  1800   if (right->is_register()) {
  1801     if (dest->is_float_kind()) {
  1803       FloatRegister lreg, rreg, res;
  1804       FloatRegisterImpl::Width w;
  1805       if (right->is_single_fpu()) {
  1806         w = FloatRegisterImpl::S;
  1807         lreg = left->as_float_reg();
  1808         rreg = right->as_float_reg();
  1809         res  = dest->as_float_reg();
  1810       } else {
  1811         w = FloatRegisterImpl::D;
  1812         lreg = left->as_double_reg();
  1813         rreg = right->as_double_reg();
  1814         res  = dest->as_double_reg();
  1817       switch (code) {
  1818         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1819         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1820         case lir_mul: // fall through
  1821         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1822         case lir_div: // fall through
  1823         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1824         default: ShouldNotReachHere();
  1827     } else if (dest->is_double_cpu()) {
  1828 #ifdef _LP64
  1829       Register dst_lo = dest->as_register_lo();
  1830       Register op1_lo = left->as_pointer_register();
  1831       Register op2_lo = right->as_pointer_register();
  1833       switch (code) {
  1834         case lir_add:
  1835           __ add(op1_lo, op2_lo, dst_lo);
  1836           break;
  1838         case lir_sub:
  1839           __ sub(op1_lo, op2_lo, dst_lo);
  1840           break;
  1842         default: ShouldNotReachHere();
  1844 #else
  1845       Register op1_lo = left->as_register_lo();
  1846       Register op1_hi = left->as_register_hi();
  1847       Register op2_lo = right->as_register_lo();
  1848       Register op2_hi = right->as_register_hi();
  1849       Register dst_lo = dest->as_register_lo();
  1850       Register dst_hi = dest->as_register_hi();
  1852       switch (code) {
  1853         case lir_add:
  1854           __ addcc(op1_lo, op2_lo, dst_lo);
  1855           __ addc (op1_hi, op2_hi, dst_hi);
  1856           break;
  1858         case lir_sub:
  1859           __ subcc(op1_lo, op2_lo, dst_lo);
  1860           __ subc (op1_hi, op2_hi, dst_hi);
  1861           break;
  1863         default: ShouldNotReachHere();
  1865 #endif
  1866     } else {
  1867       assert (right->is_single_cpu(), "Just Checking");
  1869       Register lreg = left->as_register();
  1870       Register res  = dest->as_register();
  1871       Register rreg = right->as_register();
  1872       switch (code) {
  1873         case lir_add:  __ add  (lreg, rreg, res); break;
  1874         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1875         case lir_mul:  __ mult (lreg, rreg, res); break;
  1876         default: ShouldNotReachHere();
  1879   } else {
  1880     assert (right->is_constant(), "must be constant");
  1882     if (dest->is_single_cpu()) {
  1883       Register lreg = left->as_register();
  1884       Register res  = dest->as_register();
  1885       int    simm13 = right->as_constant_ptr()->as_jint();
  1887       switch (code) {
  1888         case lir_add:  __ add  (lreg, simm13, res); break;
  1889         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1890         case lir_mul:  __ mult (lreg, simm13, res); break;
  1891         default: ShouldNotReachHere();
  1893     } else {
  1894       Register lreg = left->as_pointer_register();
  1895       Register res  = dest->as_register_lo();
  1896       long con = right->as_constant_ptr()->as_jlong();
  1897       assert(Assembler::is_simm13(con), "must be simm13");
  1899       switch (code) {
  1900         case lir_add:  __ add  (lreg, (int)con, res); break;
  1901         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1902         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1903         default: ShouldNotReachHere();
  1910 void LIR_Assembler::fpop() {
  1911   // do nothing
  1915 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1916   switch (code) {
  1917     case lir_sin:
  1918     case lir_tan:
  1919     case lir_cos: {
  1920       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1921       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1922       break;
  1924     case lir_sqrt: {
  1925       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1926       FloatRegister src_reg = value->as_double_reg();
  1927       FloatRegister dst_reg = dest->as_double_reg();
  1928       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1929       break;
  1931     case lir_abs: {
  1932       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1933       FloatRegister src_reg = value->as_double_reg();
  1934       FloatRegister dst_reg = dest->as_double_reg();
  1935       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1936       break;
  1938     default: {
  1939       ShouldNotReachHere();
  1940       break;
  1946 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1947   if (right->is_constant()) {
  1948     if (dest->is_single_cpu()) {
  1949       int simm13 = right->as_constant_ptr()->as_jint();
  1950       switch (code) {
  1951         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1952         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1953         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1954         default: ShouldNotReachHere();
  1956     } else {
  1957       long c = right->as_constant_ptr()->as_jlong();
  1958       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1959       int simm13 = (int)c;
  1960       switch (code) {
  1961         case lir_logic_and:
  1962 #ifndef _LP64
  1963           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1964 #endif
  1965           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1966           break;
  1968         case lir_logic_or:
  1969 #ifndef _LP64
  1970           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1971 #endif
  1972           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1973           break;
  1975         case lir_logic_xor:
  1976 #ifndef _LP64
  1977           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1978 #endif
  1979           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1980           break;
  1982         default: ShouldNotReachHere();
  1985   } else {
  1986     assert(right->is_register(), "right should be in register");
  1988     if (dest->is_single_cpu()) {
  1989       switch (code) {
  1990         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1991         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1992         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1993         default: ShouldNotReachHere();
  1995     } else {
  1996 #ifdef _LP64
  1997       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1998                                                                         left->as_register_lo();
  1999       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2000                                                                           right->as_register_lo();
  2002       switch (code) {
  2003         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2004         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2005         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2006         default: ShouldNotReachHere();
  2008 #else
  2009       switch (code) {
  2010         case lir_logic_and:
  2011           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2012           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2013           break;
  2015         case lir_logic_or:
  2016           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2017           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2018           break;
  2020         case lir_logic_xor:
  2021           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2022           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2023           break;
  2025         default: ShouldNotReachHere();
  2027 #endif
  2033 int LIR_Assembler::shift_amount(BasicType t) {
  2034   int elem_size = type2aelembytes(t);
  2035   switch (elem_size) {
  2036     case 1 : return 0;
  2037     case 2 : return 1;
  2038     case 4 : return 2;
  2039     case 8 : return 3;
  2041   ShouldNotReachHere();
  2042   return -1;
  2046 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2047   assert(exceptionOop->as_register() == Oexception, "should match");
  2048   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
  2050   info->add_register_oop(exceptionOop);
  2052   if (unwind) {
  2053     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
  2054     __ delayed()->nop();
  2055   } else {
  2056     // reuse the debug info from the safepoint poll for the throw op itself
  2057     address pc_for_athrow  = __ pc();
  2058     int pc_for_athrow_offset = __ offset();
  2059     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2060     __ set(pc_for_athrow, Oissuing_pc, rspec);
  2061     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2063     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2064     __ delayed()->nop();
  2069 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2070   Register src = op->src()->as_register();
  2071   Register dst = op->dst()->as_register();
  2072   Register src_pos = op->src_pos()->as_register();
  2073   Register dst_pos = op->dst_pos()->as_register();
  2074   Register length  = op->length()->as_register();
  2075   Register tmp = op->tmp()->as_register();
  2076   Register tmp2 = O7;
  2078   int flags = op->flags();
  2079   ciArrayKlass* default_type = op->expected_type();
  2080   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2081   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2083   // set up the arraycopy stub information
  2084   ArrayCopyStub* stub = op->stub();
  2086   // always do stub if no type information is available.  it's ok if
  2087   // the known type isn't loaded since the code sanity checks
  2088   // in debug mode and the type isn't required when we know the exact type
  2089   // also check that the type is an array type.
  2090   // We also, for now, always call the stub if the barrier set requires a
  2091   // write_ref_pre barrier (which the stub does, but none of the optimized
  2092   // cases currently does).
  2093   if (op->expected_type() == NULL ||
  2094       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2095     __ mov(src,     O0);
  2096     __ mov(src_pos, O1);
  2097     __ mov(dst,     O2);
  2098     __ mov(dst_pos, O3);
  2099     __ mov(length,  O4);
  2100     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2102     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2103     __ delayed()->nop();
  2104     __ bind(*stub->continuation());
  2105     return;
  2108   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2110   // make sure src and dst are non-null and load array length
  2111   if (flags & LIR_OpArrayCopy::src_null_check) {
  2112     __ tst(src);
  2113     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2114     __ delayed()->nop();
  2117   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2118     __ tst(dst);
  2119     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2120     __ delayed()->nop();
  2123   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2124     // test src_pos register
  2125     __ tst(src_pos);
  2126     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2127     __ delayed()->nop();
  2130   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2131     // test dst_pos register
  2132     __ tst(dst_pos);
  2133     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2134     __ delayed()->nop();
  2137   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2138     // make sure length isn't negative
  2139     __ tst(length);
  2140     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2141     __ delayed()->nop();
  2144   if (flags & LIR_OpArrayCopy::src_range_check) {
  2145     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2146     __ add(length, src_pos, tmp);
  2147     __ cmp(tmp2, tmp);
  2148     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2149     __ delayed()->nop();
  2152   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2153     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2154     __ add(length, dst_pos, tmp);
  2155     __ cmp(tmp2, tmp);
  2156     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2157     __ delayed()->nop();
  2160   if (flags & LIR_OpArrayCopy::type_check) {
  2161     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2162     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2163     __ cmp(tmp, tmp2);
  2164     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2165     __ delayed()->nop();
  2168 #ifdef ASSERT
  2169   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2170     // Sanity check the known type with the incoming class.  For the
  2171     // primitive case the types must match exactly with src.klass and
  2172     // dst.klass each exactly matching the default type.  For the
  2173     // object array case, if no type check is needed then either the
  2174     // dst type is exactly the expected type and the src type is a
  2175     // subtype which we can't check or src is the same array as dst
  2176     // but not necessarily exactly of type default_type.
  2177     Label known_ok, halt;
  2178     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2179     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2180     if (basic_type != T_OBJECT) {
  2181       __ cmp(tmp, tmp2);
  2182       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2183       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2184       __ cmp(tmp, tmp2);
  2185       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2186       __ delayed()->nop();
  2187     } else {
  2188       __ cmp(tmp, tmp2);
  2189       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2190       __ delayed()->cmp(src, dst);
  2191       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2192       __ delayed()->nop();
  2194     __ bind(halt);
  2195     __ stop("incorrect type information in arraycopy");
  2196     __ bind(known_ok);
  2198 #endif
  2200   int shift = shift_amount(basic_type);
  2202   Register src_ptr = O0;
  2203   Register dst_ptr = O1;
  2204   Register len     = O2;
  2206   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2207   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2208   if (shift == 0) {
  2209     __ add(src_ptr, src_pos, src_ptr);
  2210   } else {
  2211     __ sll(src_pos, shift, tmp);
  2212     __ add(src_ptr, tmp, src_ptr);
  2215   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2216   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2217   if (shift == 0) {
  2218     __ add(dst_ptr, dst_pos, dst_ptr);
  2219   } else {
  2220     __ sll(dst_pos, shift, tmp);
  2221     __ add(dst_ptr, tmp, dst_ptr);
  2224   if (basic_type != T_OBJECT) {
  2225     if (shift == 0) {
  2226       __ mov(length, len);
  2227     } else {
  2228       __ sll(length, shift, len);
  2230     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2231   } else {
  2232     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2233     __ mov(length, len);
  2234     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2237   __ bind(*stub->continuation());
  2241 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2242   if (dest->is_single_cpu()) {
  2243 #ifdef _LP64
  2244     if (left->type() == T_OBJECT) {
  2245       switch (code) {
  2246         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2247         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2248         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2249         default: ShouldNotReachHere();
  2251     } else
  2252 #endif
  2253       switch (code) {
  2254         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2255         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2256         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2257         default: ShouldNotReachHere();
  2259   } else {
  2260 #ifdef _LP64
  2261     switch (code) {
  2262       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2263       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2264       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2265       default: ShouldNotReachHere();
  2267 #else
  2268     switch (code) {
  2269       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2270       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2271       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2272       default: ShouldNotReachHere();
  2274 #endif
  2279 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2280 #ifdef _LP64
  2281   if (left->type() == T_OBJECT) {
  2282     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2283     Register l = left->as_register();
  2284     Register d = dest->as_register_lo();
  2285     switch (code) {
  2286       case lir_shl:  __ sllx  (l, count, d); break;
  2287       case lir_shr:  __ srax  (l, count, d); break;
  2288       case lir_ushr: __ srlx  (l, count, d); break;
  2289       default: ShouldNotReachHere();
  2291     return;
  2293 #endif
  2295   if (dest->is_single_cpu()) {
  2296     count = count & 0x1F; // Java spec
  2297     switch (code) {
  2298       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2299       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2300       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2301       default: ShouldNotReachHere();
  2303   } else if (dest->is_double_cpu()) {
  2304     count = count & 63; // Java spec
  2305     switch (code) {
  2306       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2307       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2308       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2309       default: ShouldNotReachHere();
  2311   } else {
  2312     ShouldNotReachHere();
  2317 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2318   assert(op->tmp1()->as_register()  == G1 &&
  2319          op->tmp2()->as_register()  == G3 &&
  2320          op->tmp3()->as_register()  == G4 &&
  2321          op->obj()->as_register()   == O0 &&
  2322          op->klass()->as_register() == G5, "must be");
  2323   if (op->init_check()) {
  2324     __ ld(op->klass()->as_register(),
  2325           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2326           op->tmp1()->as_register());
  2327     add_debug_info_for_null_check_here(op->stub()->info());
  2328     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2329     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2330     __ delayed()->nop();
  2332   __ allocate_object(op->obj()->as_register(),
  2333                      op->tmp1()->as_register(),
  2334                      op->tmp2()->as_register(),
  2335                      op->tmp3()->as_register(),
  2336                      op->header_size(),
  2337                      op->object_size(),
  2338                      op->klass()->as_register(),
  2339                      *op->stub()->entry());
  2340   __ bind(*op->stub()->continuation());
  2341   __ verify_oop(op->obj()->as_register());
  2345 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2346   assert(op->tmp1()->as_register()  == G1 &&
  2347          op->tmp2()->as_register()  == G3 &&
  2348          op->tmp3()->as_register()  == G4 &&
  2349          op->tmp4()->as_register()  == O1 &&
  2350          op->klass()->as_register() == G5, "must be");
  2351   if (UseSlowPath ||
  2352       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2353       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2354     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
  2355     __ delayed()->nop();
  2356   } else {
  2357     __ allocate_array(op->obj()->as_register(),
  2358                       op->len()->as_register(),
  2359                       op->tmp1()->as_register(),
  2360                       op->tmp2()->as_register(),
  2361                       op->tmp3()->as_register(),
  2362                       arrayOopDesc::header_size(op->type()),
  2363                       type2aelembytes(op->type()),
  2364                       op->klass()->as_register(),
  2365                       *op->stub()->entry());
  2367   __ bind(*op->stub()->continuation());
  2371 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2372   LIR_Code code = op->code();
  2373   if (code == lir_store_check) {
  2374     Register value = op->object()->as_register();
  2375     Register array = op->array()->as_register();
  2376     Register k_RInfo = op->tmp1()->as_register();
  2377     Register klass_RInfo = op->tmp2()->as_register();
  2378     Register Rtmp1 = op->tmp3()->as_register();
  2380     __ verify_oop(value);
  2382     CodeStub* stub = op->stub();
  2383     Label done;
  2384     __ cmp(value, 0);
  2385     __ br(Assembler::equal, false, Assembler::pn, done);
  2386     __ delayed()->nop();
  2387     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2388     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2390     // get instance klass
  2391     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2392     // perform the fast part of the checking logic
  2393     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
  2395     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2396     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2397     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2398     __ delayed()->nop();
  2399     __ cmp(G3, 0);
  2400     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2401     __ delayed()->nop();
  2402     __ bind(done);
  2403   } else if (op->code() == lir_checkcast) {
  2404     // we always need a stub for the failure case.
  2405     CodeStub* stub = op->stub();
  2406     Register obj = op->object()->as_register();
  2407     Register k_RInfo = op->tmp1()->as_register();
  2408     Register klass_RInfo = op->tmp2()->as_register();
  2409     Register dst = op->result_opr()->as_register();
  2410     Register Rtmp1 = op->tmp3()->as_register();
  2411     ciKlass* k = op->klass();
  2413     if (obj == k_RInfo) {
  2414       k_RInfo = klass_RInfo;
  2415       klass_RInfo = obj;
  2417     if (op->profiled_method() != NULL) {
  2418       ciMethod* method = op->profiled_method();
  2419       int bci          = op->profiled_bci();
  2421       // We need two temporaries to perform this operation on SPARC,
  2422       // so to keep things simple we perform a redundant test here
  2423       Label profile_done;
  2424       __ cmp(obj, 0);
  2425       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
  2426       __ delayed()->nop();
  2427       // Object is null; update methodDataOop
  2428       ciMethodData* md = method->method_data();
  2429       if (md == NULL) {
  2430         bailout("out of memory building methodDataOop");
  2431         return;
  2433       ciProfileData* data = md->bci_to_data(bci);
  2434       assert(data != NULL,       "need data for checkcast");
  2435       assert(data->is_BitData(), "need BitData for checkcast");
  2436       Register mdo      = k_RInfo;
  2437       Register data_val = Rtmp1;
  2438       jobject2reg(md->constant_encoding(), mdo);
  2440       int mdo_offset_bias = 0;
  2441       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2442         // The offset is large so bias the mdo by the base of the slot so
  2443         // that the ld can use simm13s to reference the slots of the data
  2444         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2445         __ set(mdo_offset_bias, data_val);
  2446         __ add(mdo, data_val, mdo);
  2450       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2451       __ ldub(flags_addr, data_val);
  2452       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2453       __ stb(data_val, flags_addr);
  2454       __ bind(profile_done);
  2457     Label done;
  2458     // patching may screw with our temporaries on sparc,
  2459     // so let's do it before loading the class
  2460     if (k->is_loaded()) {
  2461       jobject2reg(k->constant_encoding(), k_RInfo);
  2462     } else {
  2463       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2465     assert(obj != k_RInfo, "must be different");
  2466     __ cmp(obj, 0);
  2467     __ br(Assembler::equal, false, Assembler::pn, done);
  2468     __ delayed()->nop();
  2470     // get object class
  2471     // not a safepoint as obj null check happens earlier
  2472     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2473     if (op->fast_check()) {
  2474       assert_different_registers(klass_RInfo, k_RInfo);
  2475       __ cmp(k_RInfo, klass_RInfo);
  2476       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2477       __ delayed()->nop();
  2478       __ bind(done);
  2479     } else {
  2480       bool need_slow_path = true;
  2481       if (k->is_loaded()) {
  2482         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2483           need_slow_path = false;
  2484         // perform the fast part of the checking logic
  2485         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2486                                          (need_slow_path ? &done : NULL),
  2487                                          stub->entry(), NULL,
  2488                                          RegisterOrConstant(k->super_check_offset()));
  2489       } else {
  2490         // perform the fast part of the checking logic
  2491         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
  2492                                          &done, stub->entry(), NULL);
  2494       if (need_slow_path) {
  2495         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2496         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2497         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2498         __ delayed()->nop();
  2499         __ cmp(G3, 0);
  2500         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2501         __ delayed()->nop();
  2503       __ bind(done);
  2505     __ mov(obj, dst);
  2506   } else if (code == lir_instanceof) {
  2507     Register obj = op->object()->as_register();
  2508     Register k_RInfo = op->tmp1()->as_register();
  2509     Register klass_RInfo = op->tmp2()->as_register();
  2510     Register dst = op->result_opr()->as_register();
  2511     Register Rtmp1 = op->tmp3()->as_register();
  2512     ciKlass* k = op->klass();
  2514     Label done;
  2515     if (obj == k_RInfo) {
  2516       k_RInfo = klass_RInfo;
  2517       klass_RInfo = obj;
  2519     // patching may screw with our temporaries on sparc,
  2520     // so let's do it before loading the class
  2521     if (k->is_loaded()) {
  2522       jobject2reg(k->constant_encoding(), k_RInfo);
  2523     } else {
  2524       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2526     assert(obj != k_RInfo, "must be different");
  2527     __ cmp(obj, 0);
  2528     __ br(Assembler::equal, true, Assembler::pn, done);
  2529     __ delayed()->set(0, dst);
  2531     // get object class
  2532     // not a safepoint as obj null check happens earlier
  2533     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2534     if (op->fast_check()) {
  2535       __ cmp(k_RInfo, klass_RInfo);
  2536       __ br(Assembler::equal, true, Assembler::pt, done);
  2537       __ delayed()->set(1, dst);
  2538       __ set(0, dst);
  2539       __ bind(done);
  2540     } else {
  2541       bool need_slow_path = true;
  2542       if (k->is_loaded()) {
  2543         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2544           need_slow_path = false;
  2545         // perform the fast part of the checking logic
  2546         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
  2547                                          (need_slow_path ? &done : NULL),
  2548                                          (need_slow_path ? &done : NULL), NULL,
  2549                                          RegisterOrConstant(k->super_check_offset()),
  2550                                          dst);
  2551       } else {
  2552         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  2553         // perform the fast part of the checking logic
  2554         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
  2555                                          &done, &done, NULL,
  2556                                          RegisterOrConstant(-1),
  2557                                          dst);
  2559       if (need_slow_path) {
  2560         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2561         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2562         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2563         __ delayed()->nop();
  2564         __ mov(G3, dst);
  2566       __ bind(done);
  2568   } else {
  2569     ShouldNotReachHere();
  2575 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2576   if (op->code() == lir_cas_long) {
  2577     assert(VM_Version::supports_cx8(), "wrong machine");
  2578     Register addr = op->addr()->as_pointer_register();
  2579     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2580     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2581     Register new_value_lo = op->new_value()->as_register_lo();
  2582     Register new_value_hi = op->new_value()->as_register_hi();
  2583     Register t1 = op->tmp1()->as_register();
  2584     Register t2 = op->tmp2()->as_register();
  2585 #ifdef _LP64
  2586     __ mov(cmp_value_lo, t1);
  2587     __ mov(new_value_lo, t2);
  2588 #else
  2589     // move high and low halves of long values into single registers
  2590     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2591     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2592     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2593     __ sllx(new_value_hi, 32, t2);
  2594     __ srl(new_value_lo, 0, new_value_lo);
  2595     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2596 #endif
  2597     // perform the compare and swap operation
  2598     __ casx(addr, t1, t2);
  2599     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2600     // overwritten with the original value in "addr" and will be equal to t1.
  2601     __ cmp(t1, t2);
  2603   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2604     Register addr = op->addr()->as_pointer_register();
  2605     Register cmp_value = op->cmp_value()->as_register();
  2606     Register new_value = op->new_value()->as_register();
  2607     Register t1 = op->tmp1()->as_register();
  2608     Register t2 = op->tmp2()->as_register();
  2609     __ mov(cmp_value, t1);
  2610     __ mov(new_value, t2);
  2611 #ifdef _LP64
  2612     if (op->code() == lir_cas_obj) {
  2613       __ casx(addr, t1, t2);
  2614     } else
  2615 #endif
  2617         __ cas(addr, t1, t2);
  2619     __ cmp(t1, t2);
  2620   } else {
  2621     Unimplemented();
  2625 void LIR_Assembler::set_24bit_FPU() {
  2626   Unimplemented();
  2630 void LIR_Assembler::reset_FPU() {
  2631   Unimplemented();
  2635 void LIR_Assembler::breakpoint() {
  2636   __ breakpoint_trap();
  2640 void LIR_Assembler::push(LIR_Opr opr) {
  2641   Unimplemented();
  2645 void LIR_Assembler::pop(LIR_Opr opr) {
  2646   Unimplemented();
  2650 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2651   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2652   Register dst = dst_opr->as_register();
  2653   Register reg = mon_addr.base();
  2654   int offset = mon_addr.disp();
  2655   // compute pointer to BasicLock
  2656   if (mon_addr.is_simm13()) {
  2657     __ add(reg, offset, dst);
  2658   } else {
  2659     __ set(offset, dst);
  2660     __ add(dst, reg, dst);
  2665 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2666   Register obj = op->obj_opr()->as_register();
  2667   Register hdr = op->hdr_opr()->as_register();
  2668   Register lock = op->lock_opr()->as_register();
  2670   // obj may not be an oop
  2671   if (op->code() == lir_lock) {
  2672     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2673     if (UseFastLocking) {
  2674       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2675       // add debug info for NullPointerException only if one is possible
  2676       if (op->info() != NULL) {
  2677         add_debug_info_for_null_check_here(op->info());
  2679       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2680     } else {
  2681       // always do slow locking
  2682       // note: the slow locking code could be inlined here, however if we use
  2683       //       slow locking, speed doesn't matter anyway and this solution is
  2684       //       simpler and requires less duplicated code - additionally, the
  2685       //       slow locking code is the same in either case which simplifies
  2686       //       debugging
  2687       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2688       __ delayed()->nop();
  2690   } else {
  2691     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2692     if (UseFastLocking) {
  2693       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2694       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2695     } else {
  2696       // always do slow unlocking
  2697       // note: the slow unlocking code could be inlined here, however if we use
  2698       //       slow unlocking, speed doesn't matter anyway and this solution is
  2699       //       simpler and requires less duplicated code - additionally, the
  2700       //       slow unlocking code is the same in either case which simplifies
  2701       //       debugging
  2702       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2703       __ delayed()->nop();
  2706   __ bind(*op->stub()->continuation());
  2710 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2711   ciMethod* method = op->profiled_method();
  2712   int bci          = op->profiled_bci();
  2714   // Update counter for all call types
  2715   ciMethodData* md = method->method_data();
  2716   if (md == NULL) {
  2717     bailout("out of memory building methodDataOop");
  2718     return;
  2720   ciProfileData* data = md->bci_to_data(bci);
  2721   assert(data->is_CounterData(), "need CounterData for calls");
  2722   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2723   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2724   Register mdo  = op->mdo()->as_register();
  2725   Register tmp1 = op->tmp1()->as_register();
  2726   jobject2reg(md->constant_encoding(), mdo);
  2727   int mdo_offset_bias = 0;
  2728   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2729                             data->size_in_bytes())) {
  2730     // The offset is large so bias the mdo by the base of the slot so
  2731     // that the ld can use simm13s to reference the slots of the data
  2732     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2733     __ set(mdo_offset_bias, O7);
  2734     __ add(mdo, O7, mdo);
  2737   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2738   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2739   // Perform additional virtual call profiling for invokevirtual and
  2740   // invokeinterface bytecodes
  2741   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2742       Tier1ProfileVirtualCalls) {
  2743     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2744     Register recv = op->recv()->as_register();
  2745     assert_different_registers(mdo, tmp1, recv);
  2746     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2747     ciKlass* known_klass = op->known_holder();
  2748     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2749       // We know the type that will be seen at this call site; we can
  2750       // statically update the methodDataOop rather than needing to do
  2751       // dynamic tests on the receiver type
  2753       // NOTE: we should probably put a lock around this search to
  2754       // avoid collisions by concurrent compilations
  2755       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2756       uint i;
  2757       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2758         ciKlass* receiver = vc_data->receiver(i);
  2759         if (known_klass->equals(receiver)) {
  2760           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2761                                                          VirtualCallData::receiver_count_offset(i)) -
  2762                             mdo_offset_bias);
  2763           __ lduw(data_addr, tmp1);
  2764           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2765           __ stw(tmp1, data_addr);
  2766           return;
  2770       // Receiver type not found in profile data; select an empty slot
  2772       // Note that this is less efficient than it should be because it
  2773       // always does a write to the receiver part of the
  2774       // VirtualCallData rather than just the first time
  2775       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2776         ciKlass* receiver = vc_data->receiver(i);
  2777         if (receiver == NULL) {
  2778           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2779                             mdo_offset_bias);
  2780           jobject2reg(known_klass->constant_encoding(), tmp1);
  2781           __ st_ptr(tmp1, recv_addr);
  2782           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2783                             mdo_offset_bias);
  2784           __ lduw(data_addr, tmp1);
  2785           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2786           __ stw(tmp1, data_addr);
  2787           return;
  2790     } else {
  2791       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2792       Label update_done;
  2793       uint i;
  2794       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2795         Label next_test;
  2796         // See if the receiver is receiver[n].
  2797         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2798                               mdo_offset_bias);
  2799         __ ld_ptr(receiver_addr, tmp1);
  2800         __ verify_oop(tmp1);
  2801         __ cmp(recv, tmp1);
  2802         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2803         __ delayed()->nop();
  2804         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2805                           mdo_offset_bias);
  2806         __ lduw(data_addr, tmp1);
  2807         __ add(tmp1, DataLayout::counter_increment, tmp1);
  2808         __ stw(tmp1, data_addr);
  2809         __ br(Assembler::always, false, Assembler::pt, update_done);
  2810         __ delayed()->nop();
  2811         __ bind(next_test);
  2814       // Didn't find receiver; find next empty slot and fill it in
  2815       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2816         Label next_test;
  2817         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2818                           mdo_offset_bias);
  2819         load(recv_addr, tmp1, T_OBJECT);
  2820         __ tst(tmp1);
  2821         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2822         __ delayed()->nop();
  2823         __ st_ptr(recv, recv_addr);
  2824         __ set(DataLayout::counter_increment, tmp1);
  2825         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2826                   mdo_offset_bias);
  2827         __ br(Assembler::always, false, Assembler::pt, update_done);
  2828         __ delayed()->nop();
  2829         __ bind(next_test);
  2831       // Receiver did not match any saved receiver and there is no empty row for it.
  2832       // Increment total counter to indicate polymorphic case.
  2833       __ lduw(counter_addr, tmp1);
  2834       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2835       __ stw(tmp1, counter_addr);
  2837       __ bind(update_done);
  2839   } else {
  2840     // Static call
  2841     __ lduw(counter_addr, tmp1);
  2842     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2843     __ stw(tmp1, counter_addr);
  2848 void LIR_Assembler::align_backward_branch_target() {
  2849   __ align(16);
  2853 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2854   // make sure we are expecting a delay
  2855   // this has the side effect of clearing the delay state
  2856   // so we can use _masm instead of _masm->delayed() to do the
  2857   // code generation.
  2858   __ delayed();
  2860   // make sure we only emit one instruction
  2861   int offset = code_offset();
  2862   op->delay_op()->emit_code(this);
  2863 #ifdef ASSERT
  2864   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2865     op->delay_op()->print();
  2867   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2868          "only one instruction can go in a delay slot");
  2869 #endif
  2871   // we may also be emitting the call info for the instruction
  2872   // which we are the delay slot of.
  2873   CodeEmitInfo * call_info = op->call_info();
  2874   if (call_info) {
  2875     add_call_info(code_offset(), call_info);
  2878   if (VerifyStackAtCalls) {
  2879     _masm->sub(FP, SP, O7);
  2880     _masm->cmp(O7, initial_frame_size_in_bytes());
  2881     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  2886 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  2887   assert(left->is_register(), "can only handle registers");
  2889   if (left->is_single_cpu()) {
  2890     __ neg(left->as_register(), dest->as_register());
  2891   } else if (left->is_single_fpu()) {
  2892     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  2893   } else if (left->is_double_fpu()) {
  2894     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  2895   } else {
  2896     assert (left->is_double_cpu(), "Must be a long");
  2897     Register Rlow = left->as_register_lo();
  2898     Register Rhi = left->as_register_hi();
  2899 #ifdef _LP64
  2900     __ sub(G0, Rlow, dest->as_register_lo());
  2901 #else
  2902     __ subcc(G0, Rlow, dest->as_register_lo());
  2903     __ subc (G0, Rhi,  dest->as_register_hi());
  2904 #endif
  2909 void LIR_Assembler::fxch(int i) {
  2910   Unimplemented();
  2913 void LIR_Assembler::fld(int i) {
  2914   Unimplemented();
  2917 void LIR_Assembler::ffree(int i) {
  2918   Unimplemented();
  2921 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  2922                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  2924   // if tmp is invalid, then the function being called doesn't destroy the thread
  2925   if (tmp->is_valid()) {
  2926     __ save_thread(tmp->as_register());
  2928   __ call(dest, relocInfo::runtime_call_type);
  2929   __ delayed()->nop();
  2930   if (info != NULL) {
  2931     add_call_info_here(info);
  2933   if (tmp->is_valid()) {
  2934     __ restore_thread(tmp->as_register());
  2937 #ifdef ASSERT
  2938   __ verify_thread();
  2939 #endif // ASSERT
  2943 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  2944 #ifdef _LP64
  2945   ShouldNotReachHere();
  2946 #endif
  2948   NEEDS_CLEANUP;
  2949   if (type == T_LONG) {
  2950     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  2952     // (extended to allow indexed as well as constant displaced for JSR-166)
  2953     Register idx = noreg; // contains either constant offset or index
  2955     int disp = mem_addr->disp();
  2956     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  2957       if (!Assembler::is_simm13(disp)) {
  2958         idx = O7;
  2959         __ set(disp, idx);
  2961     } else {
  2962       assert(disp == 0, "not both indexed and disp");
  2963       idx = mem_addr->index()->as_register();
  2966     int null_check_offset = -1;
  2968     Register base = mem_addr->base()->as_register();
  2969     if (src->is_register() && dest->is_address()) {
  2970       // G4 is high half, G5 is low half
  2971       if (VM_Version::v9_instructions_work()) {
  2972         // clear the top bits of G5, and scale up G4
  2973         __ srl (src->as_register_lo(),  0, G5);
  2974         __ sllx(src->as_register_hi(), 32, G4);
  2975         // combine the two halves into the 64 bits of G4
  2976         __ or3(G4, G5, G4);
  2977         null_check_offset = __ offset();
  2978         if (idx == noreg) {
  2979           __ stx(G4, base, disp);
  2980         } else {
  2981           __ stx(G4, base, idx);
  2983       } else {
  2984         __ mov (src->as_register_hi(), G4);
  2985         __ mov (src->as_register_lo(), G5);
  2986         null_check_offset = __ offset();
  2987         if (idx == noreg) {
  2988           __ std(G4, base, disp);
  2989         } else {
  2990           __ std(G4, base, idx);
  2993     } else if (src->is_address() && dest->is_register()) {
  2994       null_check_offset = __ offset();
  2995       if (VM_Version::v9_instructions_work()) {
  2996         if (idx == noreg) {
  2997           __ ldx(base, disp, G5);
  2998         } else {
  2999           __ ldx(base, idx, G5);
  3001         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3002         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3003       } else {
  3004         if (idx == noreg) {
  3005           __ ldd(base, disp, G4);
  3006         } else {
  3007           __ ldd(base, idx, G4);
  3009         // G4 is high half, G5 is low half
  3010         __ mov (G4, dest->as_register_hi());
  3011         __ mov (G5, dest->as_register_lo());
  3013     } else {
  3014       Unimplemented();
  3016     if (info != NULL) {
  3017       add_debug_info_for_null_check(null_check_offset, info);
  3020   } else {
  3021     // use normal move for all other volatiles since they don't need
  3022     // special handling to remain atomic.
  3023     move_op(src, dest, type, lir_patch_none, info, false, false);
  3027 void LIR_Assembler::membar() {
  3028   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3029   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3032 void LIR_Assembler::membar_acquire() {
  3033   // no-op on TSO
  3036 void LIR_Assembler::membar_release() {
  3037   // no-op on TSO
  3040 // Macro to Pack two sequential registers containing 32 bit values
  3041 // into a single 64 bit register.
  3042 // rs and rs->successor() are packed into rd
  3043 // rd and rs may be the same register.
  3044 // Note: rs and rs->successor() are destroyed.
  3045 void LIR_Assembler::pack64( Register rs, Register rd ) {
  3046   __ sllx(rs, 32, rs);
  3047   __ srl(rs->successor(), 0, rs->successor());
  3048   __ or3(rs, rs->successor(), rd);
  3051 // Macro to unpack a 64 bit value in a register into
  3052 // two sequential registers.
  3053 // rd is unpacked into rd and rd->successor()
  3054 void LIR_Assembler::unpack64( Register rd ) {
  3055   __ mov(rd, rd->successor());
  3056   __ srax(rd, 32, rd);
  3057   __ sra(rd->successor(), 0, rd->successor());
  3061 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3062   LIR_Address* addr = addr_opr->as_address_ptr();
  3063   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3064   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
  3068 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3069   assert(result_reg->is_register(), "check");
  3070   __ mov(G2_thread, result_reg->as_register());
  3074 void LIR_Assembler::peephole(LIR_List* lir) {
  3075   LIR_OpList* inst = lir->instructions_list();
  3076   for (int i = 0; i < inst->length(); i++) {
  3077     LIR_Op* op = inst->at(i);
  3078     switch (op->code()) {
  3079       case lir_cond_float_branch:
  3080       case lir_branch: {
  3081         LIR_OpBranch* branch = op->as_OpBranch();
  3082         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3083         LIR_Op* delay_op = NULL;
  3084         // we'd like to be able to pull following instructions into
  3085         // this slot but we don't know enough to do it safely yet so
  3086         // only optimize block to block control flow.
  3087         if (LIRFillDelaySlots && branch->block()) {
  3088           LIR_Op* prev = inst->at(i - 1);
  3089           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3090             // swap previous instruction into delay slot
  3091             inst->at_put(i - 1, op);
  3092             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3093 #ifndef PRODUCT
  3094             if (LIRTracePeephole) {
  3095               tty->print_cr("delayed");
  3096               inst->at(i - 1)->print();
  3097               inst->at(i)->print();
  3099 #endif
  3100             continue;
  3104         if (!delay_op) {
  3105           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3107         inst->insert_before(i + 1, delay_op);
  3108         break;
  3110       case lir_static_call:
  3111       case lir_virtual_call:
  3112       case lir_icvirtual_call:
  3113       case lir_optvirtual_call: {
  3114         LIR_Op* delay_op = NULL;
  3115         LIR_Op* prev = inst->at(i - 1);
  3116         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3117             (op->code() != lir_virtual_call ||
  3118              !prev->result_opr()->is_single_cpu() ||
  3119              prev->result_opr()->as_register() != O0) &&
  3120             LIR_Assembler::is_single_instruction(prev)) {
  3121           // Only moves without info can be put into the delay slot.
  3122           // Also don't allow the setup of the receiver in the delay
  3123           // slot for vtable calls.
  3124           inst->at_put(i - 1, op);
  3125           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3126 #ifndef PRODUCT
  3127           if (LIRTracePeephole) {
  3128             tty->print_cr("delayed");
  3129             inst->at(i - 1)->print();
  3130             inst->at(i)->print();
  3132 #endif
  3133           continue;
  3136         if (!delay_op) {
  3137           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3138           inst->insert_before(i + 1, delay_op);
  3140         break;
  3149 #undef __

mercurial