src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Fri, 12 Feb 2010 15:27:36 -0800

author
kvn
date
Fri, 12 Feb 2010 15:27:36 -0800
changeset 1692
7b4415a18c8a
parent 1651
7f8790caccb0
parent 1686
576e77447e3c
child 1730
3cf667df43ef
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 int LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return -1;
   377   }
   379   int offset = code_offset();
   381   if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_on_exceptions()) {
   382     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   383     __ delayed()->nop();
   384   }
   386   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   387   __ delayed()->nop();
   388   debug_only(__ stop("should have gone to the caller");)
   389   assert(code_offset() - offset <= exception_handler_size, "overflow");
   390   __ end_a_stub();
   392   return offset;
   393 }
   396 int LIR_Assembler::emit_deopt_handler() {
   397   // if the last instruction is a call (typically to do a throw which
   398   // is coming at the end after block reordering) the return address
   399   // must still point into the code area in order to avoid assertion
   400   // failures when searching for the corresponding bci => add a nop
   401   // (was bug 5/14/1999 - gri)
   402   __ nop();
   404   // generate code for deopt handler
   405   ciMethod* method = compilation()->method();
   406   address handler_base = __ start_a_stub(deopt_handler_size);
   407   if (handler_base == NULL) {
   408     // not enough space left for the handler
   409     bailout("deopt handler overflow");
   410     return -1;
   411   }
   413   int offset = code_offset();
   414   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   415   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   416   __ delayed()->nop();
   417   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   418   debug_only(__ stop("should have gone to the caller");)
   419   __ end_a_stub();
   421   return offset;
   422 }
   425 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   426   if (o == NULL) {
   427     __ set(NULL_WORD, reg);
   428   } else {
   429     int oop_index = __ oop_recorder()->find_index(o);
   430     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   431     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   432   }
   433 }
   436 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   437   // Allocate a new index in oop table to hold the oop once it's been patched
   438   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   439   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   441   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   442   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   443   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   444   // NULL will be dynamically patched later and the patched value may be large.  We must
   445   // therefore generate the sethi/add as a placeholders
   446   __ patchable_set(addrlit, reg);
   448   patching_epilog(patch, lir_patch_normal, reg, info);
   449 }
   452 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   453   Register Rdividend = op->in_opr1()->as_register();
   454   Register Rdivisor  = noreg;
   455   Register Rscratch  = op->in_opr3()->as_register();
   456   Register Rresult   = op->result_opr()->as_register();
   457   int divisor = -1;
   459   if (op->in_opr2()->is_register()) {
   460     Rdivisor = op->in_opr2()->as_register();
   461   } else {
   462     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   463     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   464   }
   466   assert(Rdividend != Rscratch, "");
   467   assert(Rdivisor  != Rscratch, "");
   468   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   470   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   471     // convert division by a power of two into some shifts and logical operations
   472     if (op->code() == lir_idiv) {
   473       if (divisor == 2) {
   474         __ srl(Rdividend, 31, Rscratch);
   475       } else {
   476         __ sra(Rdividend, 31, Rscratch);
   477         __ and3(Rscratch, divisor - 1, Rscratch);
   478       }
   479       __ add(Rdividend, Rscratch, Rscratch);
   480       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   481       return;
   482     } else {
   483       if (divisor == 2) {
   484         __ srl(Rdividend, 31, Rscratch);
   485       } else {
   486         __ sra(Rdividend, 31, Rscratch);
   487         __ and3(Rscratch, divisor - 1,Rscratch);
   488       }
   489       __ add(Rdividend, Rscratch, Rscratch);
   490       __ andn(Rscratch, divisor - 1,Rscratch);
   491       __ sub(Rdividend, Rscratch, Rresult);
   492       return;
   493     }
   494   }
   496   __ sra(Rdividend, 31, Rscratch);
   497   __ wry(Rscratch);
   498   if (!VM_Version::v9_instructions_work()) {
   499     // v9 doesn't require these nops
   500     __ nop();
   501     __ nop();
   502     __ nop();
   503     __ nop();
   504   }
   506   add_debug_info_for_div0_here(op->info());
   508   if (Rdivisor != noreg) {
   509     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   510   } else {
   511     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   512     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   513   }
   515   Label skip;
   516   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   517   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   518   __ bind(skip);
   520   if (op->code() == lir_irem) {
   521     if (Rdivisor != noreg) {
   522       __ smul(Rscratch, Rdivisor, Rscratch);
   523     } else {
   524       __ smul(Rscratch, divisor, Rscratch);
   525     }
   526     __ sub(Rdividend, Rscratch, Rresult);
   527   }
   528 }
   531 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   532 #ifdef ASSERT
   533   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   534   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   535   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   536 #endif
   537   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   539   if (op->cond() == lir_cond_always) {
   540     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   541   } else if (op->code() == lir_cond_float_branch) {
   542     assert(op->ublock() != NULL, "must have unordered successor");
   543     bool is_unordered = (op->ublock() == op->block());
   544     Assembler::Condition acond;
   545     switch (op->cond()) {
   546       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   547       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   548       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   549       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   550       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   551       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   552       default :                         ShouldNotReachHere();
   553     };
   555     if (!VM_Version::v9_instructions_work()) {
   556       __ nop();
   557     }
   558     __ fb( acond, false, Assembler::pn, *(op->label()));
   559   } else {
   560     assert (op->code() == lir_branch, "just checking");
   562     Assembler::Condition acond;
   563     switch (op->cond()) {
   564       case lir_cond_equal:        acond = Assembler::equal;                break;
   565       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   566       case lir_cond_less:         acond = Assembler::less;                 break;
   567       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   568       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   569       case lir_cond_greater:      acond = Assembler::greater;              break;
   570       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   571       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   572       default:                         ShouldNotReachHere();
   573     };
   575     // sparc has different condition codes for testing 32-bit
   576     // vs. 64-bit values.  We could always test xcc is we could
   577     // guarantee that 32-bit loads always sign extended but that isn't
   578     // true and since sign extension isn't free, it would impose a
   579     // slight cost.
   580 #ifdef _LP64
   581     if  (op->type() == T_INT) {
   582       __ br(acond, false, Assembler::pn, *(op->label()));
   583     } else
   584 #endif
   585       __ brx(acond, false, Assembler::pn, *(op->label()));
   586   }
   587   // The peephole pass fills the delay slot
   588 }
   591 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   592   Bytecodes::Code code = op->bytecode();
   593   LIR_Opr dst = op->result_opr();
   595   switch(code) {
   596     case Bytecodes::_i2l: {
   597       Register rlo  = dst->as_register_lo();
   598       Register rhi  = dst->as_register_hi();
   599       Register rval = op->in_opr()->as_register();
   600 #ifdef _LP64
   601       __ sra(rval, 0, rlo);
   602 #else
   603       __ mov(rval, rlo);
   604       __ sra(rval, BitsPerInt-1, rhi);
   605 #endif
   606       break;
   607     }
   608     case Bytecodes::_i2d:
   609     case Bytecodes::_i2f: {
   610       bool is_double = (code == Bytecodes::_i2d);
   611       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   612       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   613       FloatRegister rsrc = op->in_opr()->as_float_reg();
   614       if (rsrc != rdst) {
   615         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   616       }
   617       __ fitof(w, rdst, rdst);
   618       break;
   619     }
   620     case Bytecodes::_f2i:{
   621       FloatRegister rsrc = op->in_opr()->as_float_reg();
   622       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   623       Label L;
   624       // result must be 0 if value is NaN; test by comparing value to itself
   625       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   626       if (!VM_Version::v9_instructions_work()) {
   627         __ nop();
   628       }
   629       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   630       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   631       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   632       // move integer result from float register to int register
   633       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   634       __ bind (L);
   635       break;
   636     }
   637     case Bytecodes::_l2i: {
   638       Register rlo  = op->in_opr()->as_register_lo();
   639       Register rhi  = op->in_opr()->as_register_hi();
   640       Register rdst = dst->as_register();
   641 #ifdef _LP64
   642       __ sra(rlo, 0, rdst);
   643 #else
   644       __ mov(rlo, rdst);
   645 #endif
   646       break;
   647     }
   648     case Bytecodes::_d2f:
   649     case Bytecodes::_f2d: {
   650       bool is_double = (code == Bytecodes::_f2d);
   651       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   652       LIR_Opr val = op->in_opr();
   653       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   654       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   655       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   656       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   657       __ ftof(vw, dw, rval, rdst);
   658       break;
   659     }
   660     case Bytecodes::_i2s:
   661     case Bytecodes::_i2b: {
   662       Register rval = op->in_opr()->as_register();
   663       Register rdst = dst->as_register();
   664       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   665       __ sll (rval, shift, rdst);
   666       __ sra (rdst, shift, rdst);
   667       break;
   668     }
   669     case Bytecodes::_i2c: {
   670       Register rval = op->in_opr()->as_register();
   671       Register rdst = dst->as_register();
   672       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   673       __ sll (rval, shift, rdst);
   674       __ srl (rdst, shift, rdst);
   675       break;
   676     }
   678     default: ShouldNotReachHere();
   679   }
   680 }
   683 void LIR_Assembler::align_call(LIR_Code) {
   684   // do nothing since all instructions are word aligned on sparc
   685 }
   688 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
   689   __ call(entry, rtype);
   690   // the peephole pass fills the delay slot
   691 }
   694 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
   695   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   696   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   697   __ relocate(rspec);
   698   __ call(entry, relocInfo::none);
   699   // the peephole pass fills the delay slot
   700 }
   703 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
   704   add_debug_info_for_null_check_here(info);
   705   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   706   if (__ is_simm13(vtable_offset) ) {
   707     __ ld_ptr(G3_scratch, vtable_offset, G5_method);
   708   } else {
   709     // This will generate 2 instructions
   710     __ set(vtable_offset, G5_method);
   711     // ld_ptr, set_hi, set
   712     __ ld_ptr(G3_scratch, G5_method, G5_method);
   713   }
   714   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   715   __ callr(G3_scratch, G0);
   716   // the peephole pass fills the delay slot
   717 }
   720 // load with 32-bit displacement
   721 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   722   int load_offset = code_offset();
   723   if (Assembler::is_simm13(disp)) {
   724     if (info != NULL) add_debug_info_for_null_check_here(info);
   725     switch(ld_type) {
   726       case T_BOOLEAN: // fall through
   727       case T_BYTE  : __ ldsb(s, disp, d); break;
   728       case T_CHAR  : __ lduh(s, disp, d); break;
   729       case T_SHORT : __ ldsh(s, disp, d); break;
   730       case T_INT   : __ ld(s, disp, d); break;
   731       case T_ADDRESS:// fall through
   732       case T_ARRAY : // fall through
   733       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   734       default      : ShouldNotReachHere();
   735     }
   736   } else {
   737     __ set(disp, O7);
   738     if (info != NULL) add_debug_info_for_null_check_here(info);
   739     load_offset = code_offset();
   740     switch(ld_type) {
   741       case T_BOOLEAN: // fall through
   742       case T_BYTE  : __ ldsb(s, O7, d); break;
   743       case T_CHAR  : __ lduh(s, O7, d); break;
   744       case T_SHORT : __ ldsh(s, O7, d); break;
   745       case T_INT   : __ ld(s, O7, d); break;
   746       case T_ADDRESS:// fall through
   747       case T_ARRAY : // fall through
   748       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   749       default      : ShouldNotReachHere();
   750     }
   751   }
   752   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   753   return load_offset;
   754 }
   757 // store with 32-bit displacement
   758 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   759   if (Assembler::is_simm13(offset)) {
   760     if (info != NULL)  add_debug_info_for_null_check_here(info);
   761     switch (type) {
   762       case T_BOOLEAN: // fall through
   763       case T_BYTE  : __ stb(value, base, offset); break;
   764       case T_CHAR  : __ sth(value, base, offset); break;
   765       case T_SHORT : __ sth(value, base, offset); break;
   766       case T_INT   : __ stw(value, base, offset); break;
   767       case T_ADDRESS:// fall through
   768       case T_ARRAY : // fall through
   769       case T_OBJECT: __ st_ptr(value, base, offset); break;
   770       default      : ShouldNotReachHere();
   771     }
   772   } else {
   773     __ set(offset, O7);
   774     if (info != NULL) add_debug_info_for_null_check_here(info);
   775     switch (type) {
   776       case T_BOOLEAN: // fall through
   777       case T_BYTE  : __ stb(value, base, O7); break;
   778       case T_CHAR  : __ sth(value, base, O7); break;
   779       case T_SHORT : __ sth(value, base, O7); break;
   780       case T_INT   : __ stw(value, base, O7); break;
   781       case T_ADDRESS:// fall through
   782       case T_ARRAY : //fall through
   783       case T_OBJECT: __ st_ptr(value, base, O7); break;
   784       default      : ShouldNotReachHere();
   785     }
   786   }
   787   // Note: Do the store before verification as the code might be patched!
   788   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   789 }
   792 // load float with 32-bit displacement
   793 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   794   FloatRegisterImpl::Width w;
   795   switch(ld_type) {
   796     case T_FLOAT : w = FloatRegisterImpl::S; break;
   797     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   798     default      : ShouldNotReachHere();
   799   }
   801   if (Assembler::is_simm13(disp)) {
   802     if (info != NULL) add_debug_info_for_null_check_here(info);
   803     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   804       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   805       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   806     } else {
   807       __ ldf(w, s, disp, d);
   808     }
   809   } else {
   810     __ set(disp, O7);
   811     if (info != NULL) add_debug_info_for_null_check_here(info);
   812     __ ldf(w, s, O7, d);
   813   }
   814 }
   817 // store float with 32-bit displacement
   818 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   819   FloatRegisterImpl::Width w;
   820   switch(type) {
   821     case T_FLOAT : w = FloatRegisterImpl::S; break;
   822     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   823     default      : ShouldNotReachHere();
   824   }
   826   if (Assembler::is_simm13(offset)) {
   827     if (info != NULL) add_debug_info_for_null_check_here(info);
   828     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   829       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   830       __ stf(FloatRegisterImpl::S, value             , base, offset);
   831     } else {
   832       __ stf(w, value, base, offset);
   833     }
   834   } else {
   835     __ set(offset, O7);
   836     if (info != NULL) add_debug_info_for_null_check_here(info);
   837     __ stf(w, value, O7, base);
   838   }
   839 }
   842 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   843   int store_offset;
   844   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   845     assert(!unaligned, "can't handle this");
   846     // for offsets larger than a simm13 we setup the offset in O7
   847     __ set(offset, O7);
   848     store_offset = store(from_reg, base, O7, type);
   849   } else {
   850     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   851     store_offset = code_offset();
   852     switch (type) {
   853       case T_BOOLEAN: // fall through
   854       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   855       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   856       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   857       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   858       case T_LONG  :
   859 #ifdef _LP64
   860         if (unaligned || PatchALot) {
   861           __ srax(from_reg->as_register_lo(), 32, O7);
   862           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   863           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   864         } else {
   865           __ stx(from_reg->as_register_lo(), base, offset);
   866         }
   867 #else
   868         assert(Assembler::is_simm13(offset + 4), "must be");
   869         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   870         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   871 #endif
   872         break;
   873       case T_ADDRESS:// fall through
   874       case T_ARRAY : // fall through
   875       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   876       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   877       case T_DOUBLE:
   878         {
   879           FloatRegister reg = from_reg->as_double_reg();
   880           // split unaligned stores
   881           if (unaligned || PatchALot) {
   882             assert(Assembler::is_simm13(offset + 4), "must be");
   883             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   884             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   885           } else {
   886             __ stf(FloatRegisterImpl::D, reg, base, offset);
   887           }
   888           break;
   889         }
   890       default      : ShouldNotReachHere();
   891     }
   892   }
   893   return store_offset;
   894 }
   897 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   898   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   899   int store_offset = code_offset();
   900   switch (type) {
   901     case T_BOOLEAN: // fall through
   902     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   903     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   904     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   905     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   906     case T_LONG  :
   907 #ifdef _LP64
   908       __ stx(from_reg->as_register_lo(), base, disp);
   909 #else
   910       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   911       __ std(from_reg->as_register_hi(), base, disp);
   912 #endif
   913       break;
   914     case T_ADDRESS:// fall through
   915     case T_ARRAY : // fall through
   916     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   917     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   918     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   919     default      : ShouldNotReachHere();
   920   }
   921   return store_offset;
   922 }
   925 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   926   int load_offset;
   927   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   928     assert(base != O7, "destroying register");
   929     assert(!unaligned, "can't handle this");
   930     // for offsets larger than a simm13 we setup the offset in O7
   931     __ set(offset, O7);
   932     load_offset = load(base, O7, to_reg, type);
   933   } else {
   934     load_offset = code_offset();
   935     switch(type) {
   936       case T_BOOLEAN: // fall through
   937       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   938       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   939       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   940       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   941       case T_LONG  :
   942         if (!unaligned) {
   943 #ifdef _LP64
   944           __ ldx(base, offset, to_reg->as_register_lo());
   945 #else
   946           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   947                  "must be sequential");
   948           __ ldd(base, offset, to_reg->as_register_hi());
   949 #endif
   950         } else {
   951 #ifdef _LP64
   952           assert(base != to_reg->as_register_lo(), "can't handle this");
   953           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   954           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   955           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   956           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   957           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   958 #else
   959           if (base == to_reg->as_register_lo()) {
   960             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   961             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   962           } else {
   963             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   964             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   965           }
   966 #endif
   967         }
   968         break;
   969       case T_ADDRESS:// fall through
   970       case T_ARRAY : // fall through
   971       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
   972       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   973       case T_DOUBLE:
   974         {
   975           FloatRegister reg = to_reg->as_double_reg();
   976           // split unaligned loads
   977           if (unaligned || PatchALot) {
   978             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   979             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   980           } else {
   981             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   982           }
   983           break;
   984         }
   985       default      : ShouldNotReachHere();
   986     }
   987     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
   988   }
   989   return load_offset;
   990 }
   993 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
   994   int load_offset = code_offset();
   995   switch(type) {
   996     case T_BOOLEAN: // fall through
   997     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
   998     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
   999     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1000     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1001     case T_ADDRESS:// fall through
  1002     case T_ARRAY : // fall through
  1003     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1004     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1005     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1006     case T_LONG  :
  1007 #ifdef _LP64
  1008       __ ldx(base, disp, to_reg->as_register_lo());
  1009 #else
  1010       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1011              "must be sequential");
  1012       __ ldd(base, disp, to_reg->as_register_hi());
  1013 #endif
  1014       break;
  1015     default      : ShouldNotReachHere();
  1017   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1018   return load_offset;
  1022 // load/store with an Address
  1023 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1024   load(a.base(), a.disp() + offset, d, ld_type, info);
  1028 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1029   store(value, dest.base(), dest.disp() + offset, type, info);
  1033 // loadf/storef with an Address
  1034 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1035   load(a.base(), a.disp() + offset, d, ld_type, info);
  1039 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1040   store(value, dest.base(), dest.disp() + offset, type, info);
  1044 // load/store with an Address
  1045 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1046   load(as_Address(a), d, ld_type, info);
  1050 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1051   store(value, as_Address(dest), type, info);
  1055 // loadf/storef with an Address
  1056 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1057   load(as_Address(a), d, ld_type, info);
  1061 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1062   store(value, as_Address(dest), type, info);
  1066 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1067   LIR_Const* c = src->as_constant_ptr();
  1068   switch (c->type()) {
  1069     case T_INT:
  1070     case T_FLOAT: {
  1071       Register src_reg = O7;
  1072       int value = c->as_jint_bits();
  1073       if (value == 0) {
  1074         src_reg = G0;
  1075       } else {
  1076         __ set(value, O7);
  1078       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1079       __ stw(src_reg, addr.base(), addr.disp());
  1080       break;
  1082     case T_OBJECT: {
  1083       Register src_reg = O7;
  1084       jobject2reg(c->as_jobject(), src_reg);
  1085       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1086       __ st_ptr(src_reg, addr.base(), addr.disp());
  1087       break;
  1089     case T_LONG:
  1090     case T_DOUBLE: {
  1091       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1093       Register tmp = O7;
  1094       int value_lo = c->as_jint_lo_bits();
  1095       if (value_lo == 0) {
  1096         tmp = G0;
  1097       } else {
  1098         __ set(value_lo, O7);
  1100       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1101       int value_hi = c->as_jint_hi_bits();
  1102       if (value_hi == 0) {
  1103         tmp = G0;
  1104       } else {
  1105         __ set(value_hi, O7);
  1107       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1108       break;
  1110     default:
  1111       Unimplemented();
  1116 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1117   LIR_Const* c = src->as_constant_ptr();
  1118   LIR_Address* addr     = dest->as_address_ptr();
  1119   Register base = addr->base()->as_pointer_register();
  1121   if (info != NULL) {
  1122     add_debug_info_for_null_check_here(info);
  1124   switch (c->type()) {
  1125     case T_INT:
  1126     case T_FLOAT: {
  1127       LIR_Opr tmp = FrameMap::O7_opr;
  1128       int value = c->as_jint_bits();
  1129       if (value == 0) {
  1130         tmp = FrameMap::G0_opr;
  1131       } else if (Assembler::is_simm13(value)) {
  1132         __ set(value, O7);
  1134       if (addr->index()->is_valid()) {
  1135         assert(addr->disp() == 0, "must be zero");
  1136         store(tmp, base, addr->index()->as_pointer_register(), type);
  1137       } else {
  1138         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1139         store(tmp, base, addr->disp(), type);
  1141       break;
  1143     case T_LONG:
  1144     case T_DOUBLE: {
  1145       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1146       assert(Assembler::is_simm13(addr->disp()) &&
  1147              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1149       Register tmp = O7;
  1150       int value_lo = c->as_jint_lo_bits();
  1151       if (value_lo == 0) {
  1152         tmp = G0;
  1153       } else {
  1154         __ set(value_lo, O7);
  1156       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1157       int value_hi = c->as_jint_hi_bits();
  1158       if (value_hi == 0) {
  1159         tmp = G0;
  1160       } else {
  1161         __ set(value_hi, O7);
  1163       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1164       break;
  1166     case T_OBJECT: {
  1167       jobject obj = c->as_jobject();
  1168       LIR_Opr tmp;
  1169       if (obj == NULL) {
  1170         tmp = FrameMap::G0_opr;
  1171       } else {
  1172         tmp = FrameMap::O7_opr;
  1173         jobject2reg(c->as_jobject(), O7);
  1175       // handle either reg+reg or reg+disp address
  1176       if (addr->index()->is_valid()) {
  1177         assert(addr->disp() == 0, "must be zero");
  1178         store(tmp, base, addr->index()->as_pointer_register(), type);
  1179       } else {
  1180         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1181         store(tmp, base, addr->disp(), type);
  1184       break;
  1186     default:
  1187       Unimplemented();
  1192 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1193   LIR_Const* c = src->as_constant_ptr();
  1194   LIR_Opr to_reg = dest;
  1196   switch (c->type()) {
  1197     case T_INT:
  1199         jint con = c->as_jint();
  1200         if (to_reg->is_single_cpu()) {
  1201           assert(patch_code == lir_patch_none, "no patching handled here");
  1202           __ set(con, to_reg->as_register());
  1203         } else {
  1204           ShouldNotReachHere();
  1205           assert(to_reg->is_single_fpu(), "wrong register kind");
  1207           __ set(con, O7);
  1208           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1209           __ st(O7, temp_slot);
  1210           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1213       break;
  1215     case T_LONG:
  1217         jlong con = c->as_jlong();
  1219         if (to_reg->is_double_cpu()) {
  1220 #ifdef _LP64
  1221           __ set(con,  to_reg->as_register_lo());
  1222 #else
  1223           __ set(low(con),  to_reg->as_register_lo());
  1224           __ set(high(con), to_reg->as_register_hi());
  1225 #endif
  1226 #ifdef _LP64
  1227         } else if (to_reg->is_single_cpu()) {
  1228           __ set(con, to_reg->as_register());
  1229 #endif
  1230         } else {
  1231           ShouldNotReachHere();
  1232           assert(to_reg->is_double_fpu(), "wrong register kind");
  1233           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1234           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1235           __ set(low(con),  O7);
  1236           __ st(O7, temp_slot_lo);
  1237           __ set(high(con), O7);
  1238           __ st(O7, temp_slot_hi);
  1239           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1242       break;
  1244     case T_OBJECT:
  1246         if (patch_code == lir_patch_none) {
  1247           jobject2reg(c->as_jobject(), to_reg->as_register());
  1248         } else {
  1249           jobject2reg_with_patching(to_reg->as_register(), info);
  1252       break;
  1254     case T_FLOAT:
  1256         address const_addr = __ float_constant(c->as_jfloat());
  1257         if (const_addr == NULL) {
  1258           bailout("const section overflow");
  1259           break;
  1261         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1262         AddressLiteral const_addrlit(const_addr, rspec);
  1263         if (to_reg->is_single_fpu()) {
  1264           __ patchable_sethi(const_addrlit, O7);
  1265           __ relocate(rspec);
  1266           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1268         } else {
  1269           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1271           __ set(const_addrlit, O7);
  1272           load(O7, 0, to_reg->as_register(), T_INT);
  1275       break;
  1277     case T_DOUBLE:
  1279         address const_addr = __ double_constant(c->as_jdouble());
  1280         if (const_addr == NULL) {
  1281           bailout("const section overflow");
  1282           break;
  1284         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1286         if (to_reg->is_double_fpu()) {
  1287           AddressLiteral const_addrlit(const_addr, rspec);
  1288           __ patchable_sethi(const_addrlit, O7);
  1289           __ relocate(rspec);
  1290           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1291         } else {
  1292           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1293 #ifdef _LP64
  1294           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1295 #else
  1296           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1297           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1298 #endif
  1302       break;
  1304     default:
  1305       ShouldNotReachHere();
  1309 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1310   Register reg = addr->base()->as_register();
  1311   return Address(reg, addr->disp());
  1315 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1316   switch (type) {
  1317     case T_INT:
  1318     case T_FLOAT: {
  1319       Register tmp = O7;
  1320       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1321       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1322       __ lduw(from.base(), from.disp(), tmp);
  1323       __ stw(tmp, to.base(), to.disp());
  1324       break;
  1326     case T_OBJECT: {
  1327       Register tmp = O7;
  1328       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1329       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1330       __ ld_ptr(from.base(), from.disp(), tmp);
  1331       __ st_ptr(tmp, to.base(), to.disp());
  1332       break;
  1334     case T_LONG:
  1335     case T_DOUBLE: {
  1336       Register tmp = O7;
  1337       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1338       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1339       __ lduw(from.base(), from.disp(), tmp);
  1340       __ stw(tmp, to.base(), to.disp());
  1341       __ lduw(from.base(), from.disp() + 4, tmp);
  1342       __ stw(tmp, to.base(), to.disp() + 4);
  1343       break;
  1346     default:
  1347       ShouldNotReachHere();
  1352 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1353   Address base = as_Address(addr);
  1354   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1358 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1359   Address base = as_Address(addr);
  1360   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1364 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1365                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1367   LIR_Address* addr = src_opr->as_address_ptr();
  1368   LIR_Opr to_reg = dest;
  1370   Register src = addr->base()->as_pointer_register();
  1371   Register disp_reg = noreg;
  1372   int disp_value = addr->disp();
  1373   bool needs_patching = (patch_code != lir_patch_none);
  1375   if (addr->base()->type() == T_OBJECT) {
  1376     __ verify_oop(src);
  1379   PatchingStub* patch = NULL;
  1380   if (needs_patching) {
  1381     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1382     assert(!to_reg->is_double_cpu() ||
  1383            patch_code == lir_patch_none ||
  1384            patch_code == lir_patch_normal, "patching doesn't match register");
  1387   if (addr->index()->is_illegal()) {
  1388     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1389       if (needs_patching) {
  1390         __ patchable_set(0, O7);
  1391       } else {
  1392         __ set(disp_value, O7);
  1394       disp_reg = O7;
  1396   } else if (unaligned || PatchALot) {
  1397     __ add(src, addr->index()->as_register(), O7);
  1398     src = O7;
  1399   } else {
  1400     disp_reg = addr->index()->as_pointer_register();
  1401     assert(disp_value == 0, "can't handle 3 operand addresses");
  1404   // remember the offset of the load.  The patching_epilog must be done
  1405   // before the call to add_debug_info, otherwise the PcDescs don't get
  1406   // entered in increasing order.
  1407   int offset = code_offset();
  1409   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1410   if (disp_reg == noreg) {
  1411     offset = load(src, disp_value, to_reg, type, unaligned);
  1412   } else {
  1413     assert(!unaligned, "can't handle this");
  1414     offset = load(src, disp_reg, to_reg, type);
  1417   if (patch != NULL) {
  1418     patching_epilog(patch, patch_code, src, info);
  1421   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1425 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1426   LIR_Address* addr = src->as_address_ptr();
  1427   Address from_addr = as_Address(addr);
  1429   if (VM_Version::has_v9()) {
  1430     __ prefetch(from_addr, Assembler::severalReads);
  1435 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1436   LIR_Address* addr = src->as_address_ptr();
  1437   Address from_addr = as_Address(addr);
  1439   if (VM_Version::has_v9()) {
  1440     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1445 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1446   Address addr;
  1447   if (src->is_single_word()) {
  1448     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1449   } else if (src->is_double_word())  {
  1450     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1453   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1454   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1458 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1459   Address addr;
  1460   if (dest->is_single_word()) {
  1461     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1462   } else if (dest->is_double_word())  {
  1463     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1465   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1466   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1470 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1471   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1472     if (from_reg->is_double_fpu()) {
  1473       // double to double moves
  1474       assert(to_reg->is_double_fpu(), "should match");
  1475       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1476     } else {
  1477       // float to float moves
  1478       assert(to_reg->is_single_fpu(), "should match");
  1479       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1481   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1482     if (from_reg->is_double_cpu()) {
  1483 #ifdef _LP64
  1484       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1485 #else
  1486       assert(to_reg->is_double_cpu() &&
  1487              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1488              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1489              "should both be long and not overlap");
  1490       // long to long moves
  1491       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1492       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1493 #endif
  1494 #ifdef _LP64
  1495     } else if (to_reg->is_double_cpu()) {
  1496       // int to int moves
  1497       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1498 #endif
  1499     } else {
  1500       // int to int moves
  1501       __ mov(from_reg->as_register(), to_reg->as_register());
  1503   } else {
  1504     ShouldNotReachHere();
  1506   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1507     __ verify_oop(to_reg->as_register());
  1512 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1513                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1514                             bool unaligned) {
  1515   LIR_Address* addr = dest->as_address_ptr();
  1517   Register src = addr->base()->as_pointer_register();
  1518   Register disp_reg = noreg;
  1519   int disp_value = addr->disp();
  1520   bool needs_patching = (patch_code != lir_patch_none);
  1522   if (addr->base()->is_oop_register()) {
  1523     __ verify_oop(src);
  1526   PatchingStub* patch = NULL;
  1527   if (needs_patching) {
  1528     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1529     assert(!from_reg->is_double_cpu() ||
  1530            patch_code == lir_patch_none ||
  1531            patch_code == lir_patch_normal, "patching doesn't match register");
  1534   if (addr->index()->is_illegal()) {
  1535     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1536       if (needs_patching) {
  1537         __ patchable_set(0, O7);
  1538       } else {
  1539         __ set(disp_value, O7);
  1541       disp_reg = O7;
  1543   } else if (unaligned || PatchALot) {
  1544     __ add(src, addr->index()->as_register(), O7);
  1545     src = O7;
  1546   } else {
  1547     disp_reg = addr->index()->as_pointer_register();
  1548     assert(disp_value == 0, "can't handle 3 operand addresses");
  1551   // remember the offset of the store.  The patching_epilog must be done
  1552   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1553   // entered in increasing order.
  1554   int offset;
  1556   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1557   if (disp_reg == noreg) {
  1558     offset = store(from_reg, src, disp_value, type, unaligned);
  1559   } else {
  1560     assert(!unaligned, "can't handle this");
  1561     offset = store(from_reg, src, disp_reg, type);
  1564   if (patch != NULL) {
  1565     patching_epilog(patch, patch_code, src, info);
  1568   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1572 void LIR_Assembler::return_op(LIR_Opr result) {
  1573   // the poll may need a register so just pick one that isn't the return register
  1574 #ifdef TIERED
  1575   if (result->type_field() == LIR_OprDesc::long_type) {
  1576     // Must move the result to G1
  1577     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1578     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1579     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1580     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1582 #endif // TIERED
  1583   __ set((intptr_t)os::get_polling_page(), L0);
  1584   __ relocate(relocInfo::poll_return_type);
  1585   __ ld_ptr(L0, 0, G0);
  1586   __ ret();
  1587   __ delayed()->restore();
  1591 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1592   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1593   if (info != NULL) {
  1594     add_debug_info_for_branch(info);
  1595   } else {
  1596     __ relocate(relocInfo::poll_type);
  1599   int offset = __ offset();
  1600   __ ld_ptr(tmp->as_register(), 0, G0);
  1602   return offset;
  1606 void LIR_Assembler::emit_static_call_stub() {
  1607   address call_pc = __ pc();
  1608   address stub = __ start_a_stub(call_stub_size);
  1609   if (stub == NULL) {
  1610     bailout("static call stub overflow");
  1611     return;
  1614   int start = __ offset();
  1615   __ relocate(static_stub_Relocation::spec(call_pc));
  1617   __ set_oop(NULL, G5);
  1618   // must be set to -1 at code generation time
  1619   AddressLiteral addrlit(-1);
  1620   __ jump_to(addrlit, G3);
  1621   __ delayed()->nop();
  1623   assert(__ offset() - start <= call_stub_size, "stub too big");
  1624   __ end_a_stub();
  1628 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1629   if (opr1->is_single_fpu()) {
  1630     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1631   } else if (opr1->is_double_fpu()) {
  1632     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1633   } else if (opr1->is_single_cpu()) {
  1634     if (opr2->is_constant()) {
  1635       switch (opr2->as_constant_ptr()->type()) {
  1636         case T_INT:
  1637           { jint con = opr2->as_constant_ptr()->as_jint();
  1638             if (Assembler::is_simm13(con)) {
  1639               __ cmp(opr1->as_register(), con);
  1640             } else {
  1641               __ set(con, O7);
  1642               __ cmp(opr1->as_register(), O7);
  1645           break;
  1647         case T_OBJECT:
  1648           // there are only equal/notequal comparisions on objects
  1649           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1650             if (con == NULL) {
  1651               __ cmp(opr1->as_register(), 0);
  1652             } else {
  1653               jobject2reg(con, O7);
  1654               __ cmp(opr1->as_register(), O7);
  1657           break;
  1659         default:
  1660           ShouldNotReachHere();
  1661           break;
  1663     } else {
  1664       if (opr2->is_address()) {
  1665         LIR_Address * addr = opr2->as_address_ptr();
  1666         BasicType type = addr->type();
  1667         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1668         else                    __ ld(as_Address(addr), O7);
  1669         __ cmp(opr1->as_register(), O7);
  1670       } else {
  1671         __ cmp(opr1->as_register(), opr2->as_register());
  1674   } else if (opr1->is_double_cpu()) {
  1675     Register xlo = opr1->as_register_lo();
  1676     Register xhi = opr1->as_register_hi();
  1677     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1678       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1679 #ifdef _LP64
  1680       __ orcc(xhi, G0, G0);
  1681 #else
  1682       __ orcc(xhi, xlo, G0);
  1683 #endif
  1684     } else if (opr2->is_register()) {
  1685       Register ylo = opr2->as_register_lo();
  1686       Register yhi = opr2->as_register_hi();
  1687 #ifdef _LP64
  1688       __ cmp(xlo, ylo);
  1689 #else
  1690       __ subcc(xlo, ylo, xlo);
  1691       __ subccc(xhi, yhi, xhi);
  1692       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1693         __ orcc(xhi, xlo, G0);
  1695 #endif
  1696     } else {
  1697       ShouldNotReachHere();
  1699   } else if (opr1->is_address()) {
  1700     LIR_Address * addr = opr1->as_address_ptr();
  1701     BasicType type = addr->type();
  1702     assert (opr2->is_constant(), "Checking");
  1703     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1704     else                    __ ld(as_Address(addr), O7);
  1705     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1706   } else {
  1707     ShouldNotReachHere();
  1712 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1713   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1714     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1715     if (left->is_single_fpu()) {
  1716       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1717     } else if (left->is_double_fpu()) {
  1718       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1719     } else {
  1720       ShouldNotReachHere();
  1722   } else if (code == lir_cmp_l2i) {
  1723     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1724             right->as_register_hi(), right->as_register_lo(),
  1725             dst->as_register());
  1726   } else {
  1727     ShouldNotReachHere();
  1732 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1734   Assembler::Condition acond;
  1735   switch (condition) {
  1736     case lir_cond_equal:        acond = Assembler::equal;        break;
  1737     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1738     case lir_cond_less:         acond = Assembler::less;         break;
  1739     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1740     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1741     case lir_cond_greater:      acond = Assembler::greater;      break;
  1742     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1743     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1744     default:                         ShouldNotReachHere();
  1745   };
  1747   if (opr1->is_constant() && opr1->type() == T_INT) {
  1748     Register dest = result->as_register();
  1749     // load up first part of constant before branch
  1750     // and do the rest in the delay slot.
  1751     if (!Assembler::is_simm13(opr1->as_jint())) {
  1752       __ sethi(opr1->as_jint(), dest);
  1754   } else if (opr1->is_constant()) {
  1755     const2reg(opr1, result, lir_patch_none, NULL);
  1756   } else if (opr1->is_register()) {
  1757     reg2reg(opr1, result);
  1758   } else if (opr1->is_stack()) {
  1759     stack2reg(opr1, result, result->type());
  1760   } else {
  1761     ShouldNotReachHere();
  1763   Label skip;
  1764   __ br(acond, false, Assembler::pt, skip);
  1765   if (opr1->is_constant() && opr1->type() == T_INT) {
  1766     Register dest = result->as_register();
  1767     if (Assembler::is_simm13(opr1->as_jint())) {
  1768       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1769     } else {
  1770       // the sethi has been done above, so just put in the low 10 bits
  1771       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1773   } else {
  1774     // can't do anything useful in the delay slot
  1775     __ delayed()->nop();
  1777   if (opr2->is_constant()) {
  1778     const2reg(opr2, result, lir_patch_none, NULL);
  1779   } else if (opr2->is_register()) {
  1780     reg2reg(opr2, result);
  1781   } else if (opr2->is_stack()) {
  1782     stack2reg(opr2, result, result->type());
  1783   } else {
  1784     ShouldNotReachHere();
  1786   __ bind(skip);
  1790 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1791   assert(info == NULL, "unused on this code path");
  1792   assert(left->is_register(), "wrong items state");
  1793   assert(dest->is_register(), "wrong items state");
  1795   if (right->is_register()) {
  1796     if (dest->is_float_kind()) {
  1798       FloatRegister lreg, rreg, res;
  1799       FloatRegisterImpl::Width w;
  1800       if (right->is_single_fpu()) {
  1801         w = FloatRegisterImpl::S;
  1802         lreg = left->as_float_reg();
  1803         rreg = right->as_float_reg();
  1804         res  = dest->as_float_reg();
  1805       } else {
  1806         w = FloatRegisterImpl::D;
  1807         lreg = left->as_double_reg();
  1808         rreg = right->as_double_reg();
  1809         res  = dest->as_double_reg();
  1812       switch (code) {
  1813         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1814         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1815         case lir_mul: // fall through
  1816         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1817         case lir_div: // fall through
  1818         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1819         default: ShouldNotReachHere();
  1822     } else if (dest->is_double_cpu()) {
  1823 #ifdef _LP64
  1824       Register dst_lo = dest->as_register_lo();
  1825       Register op1_lo = left->as_pointer_register();
  1826       Register op2_lo = right->as_pointer_register();
  1828       switch (code) {
  1829         case lir_add:
  1830           __ add(op1_lo, op2_lo, dst_lo);
  1831           break;
  1833         case lir_sub:
  1834           __ sub(op1_lo, op2_lo, dst_lo);
  1835           break;
  1837         default: ShouldNotReachHere();
  1839 #else
  1840       Register op1_lo = left->as_register_lo();
  1841       Register op1_hi = left->as_register_hi();
  1842       Register op2_lo = right->as_register_lo();
  1843       Register op2_hi = right->as_register_hi();
  1844       Register dst_lo = dest->as_register_lo();
  1845       Register dst_hi = dest->as_register_hi();
  1847       switch (code) {
  1848         case lir_add:
  1849           __ addcc(op1_lo, op2_lo, dst_lo);
  1850           __ addc (op1_hi, op2_hi, dst_hi);
  1851           break;
  1853         case lir_sub:
  1854           __ subcc(op1_lo, op2_lo, dst_lo);
  1855           __ subc (op1_hi, op2_hi, dst_hi);
  1856           break;
  1858         default: ShouldNotReachHere();
  1860 #endif
  1861     } else {
  1862       assert (right->is_single_cpu(), "Just Checking");
  1864       Register lreg = left->as_register();
  1865       Register res  = dest->as_register();
  1866       Register rreg = right->as_register();
  1867       switch (code) {
  1868         case lir_add:  __ add  (lreg, rreg, res); break;
  1869         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1870         case lir_mul:  __ mult (lreg, rreg, res); break;
  1871         default: ShouldNotReachHere();
  1874   } else {
  1875     assert (right->is_constant(), "must be constant");
  1877     if (dest->is_single_cpu()) {
  1878       Register lreg = left->as_register();
  1879       Register res  = dest->as_register();
  1880       int    simm13 = right->as_constant_ptr()->as_jint();
  1882       switch (code) {
  1883         case lir_add:  __ add  (lreg, simm13, res); break;
  1884         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1885         case lir_mul:  __ mult (lreg, simm13, res); break;
  1886         default: ShouldNotReachHere();
  1888     } else {
  1889       Register lreg = left->as_pointer_register();
  1890       Register res  = dest->as_register_lo();
  1891       long con = right->as_constant_ptr()->as_jlong();
  1892       assert(Assembler::is_simm13(con), "must be simm13");
  1894       switch (code) {
  1895         case lir_add:  __ add  (lreg, (int)con, res); break;
  1896         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1897         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1898         default: ShouldNotReachHere();
  1905 void LIR_Assembler::fpop() {
  1906   // do nothing
  1910 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1911   switch (code) {
  1912     case lir_sin:
  1913     case lir_tan:
  1914     case lir_cos: {
  1915       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1916       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1917       break;
  1919     case lir_sqrt: {
  1920       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1921       FloatRegister src_reg = value->as_double_reg();
  1922       FloatRegister dst_reg = dest->as_double_reg();
  1923       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1924       break;
  1926     case lir_abs: {
  1927       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1928       FloatRegister src_reg = value->as_double_reg();
  1929       FloatRegister dst_reg = dest->as_double_reg();
  1930       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1931       break;
  1933     default: {
  1934       ShouldNotReachHere();
  1935       break;
  1941 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1942   if (right->is_constant()) {
  1943     if (dest->is_single_cpu()) {
  1944       int simm13 = right->as_constant_ptr()->as_jint();
  1945       switch (code) {
  1946         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1947         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1948         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1949         default: ShouldNotReachHere();
  1951     } else {
  1952       long c = right->as_constant_ptr()->as_jlong();
  1953       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1954       int simm13 = (int)c;
  1955       switch (code) {
  1956         case lir_logic_and:
  1957 #ifndef _LP64
  1958           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1959 #endif
  1960           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1961           break;
  1963         case lir_logic_or:
  1964 #ifndef _LP64
  1965           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1966 #endif
  1967           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1968           break;
  1970         case lir_logic_xor:
  1971 #ifndef _LP64
  1972           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1973 #endif
  1974           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1975           break;
  1977         default: ShouldNotReachHere();
  1980   } else {
  1981     assert(right->is_register(), "right should be in register");
  1983     if (dest->is_single_cpu()) {
  1984       switch (code) {
  1985         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1986         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1987         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1988         default: ShouldNotReachHere();
  1990     } else {
  1991 #ifdef _LP64
  1992       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1993                                                                         left->as_register_lo();
  1994       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  1995                                                                           right->as_register_lo();
  1997       switch (code) {
  1998         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  1999         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2000         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2001         default: ShouldNotReachHere();
  2003 #else
  2004       switch (code) {
  2005         case lir_logic_and:
  2006           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2007           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2008           break;
  2010         case lir_logic_or:
  2011           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2012           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2013           break;
  2015         case lir_logic_xor:
  2016           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2017           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2018           break;
  2020         default: ShouldNotReachHere();
  2022 #endif
  2028 int LIR_Assembler::shift_amount(BasicType t) {
  2029   int elem_size = type2aelembytes(t);
  2030   switch (elem_size) {
  2031     case 1 : return 0;
  2032     case 2 : return 1;
  2033     case 4 : return 2;
  2034     case 8 : return 3;
  2036   ShouldNotReachHere();
  2037   return -1;
  2041 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2042   assert(exceptionOop->as_register() == Oexception, "should match");
  2043   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
  2045   info->add_register_oop(exceptionOop);
  2047   if (unwind) {
  2048     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
  2049     __ delayed()->nop();
  2050   } else {
  2051     // reuse the debug info from the safepoint poll for the throw op itself
  2052     address pc_for_athrow  = __ pc();
  2053     int pc_for_athrow_offset = __ offset();
  2054     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2055     __ set(pc_for_athrow, Oissuing_pc, rspec);
  2056     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2058     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2059     __ delayed()->nop();
  2064 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2065   Register src = op->src()->as_register();
  2066   Register dst = op->dst()->as_register();
  2067   Register src_pos = op->src_pos()->as_register();
  2068   Register dst_pos = op->dst_pos()->as_register();
  2069   Register length  = op->length()->as_register();
  2070   Register tmp = op->tmp()->as_register();
  2071   Register tmp2 = O7;
  2073   int flags = op->flags();
  2074   ciArrayKlass* default_type = op->expected_type();
  2075   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2076   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2078   // set up the arraycopy stub information
  2079   ArrayCopyStub* stub = op->stub();
  2081   // always do stub if no type information is available.  it's ok if
  2082   // the known type isn't loaded since the code sanity checks
  2083   // in debug mode and the type isn't required when we know the exact type
  2084   // also check that the type is an array type.
  2085   // We also, for now, always call the stub if the barrier set requires a
  2086   // write_ref_pre barrier (which the stub does, but none of the optimized
  2087   // cases currently does).
  2088   if (op->expected_type() == NULL ||
  2089       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2090     __ mov(src,     O0);
  2091     __ mov(src_pos, O1);
  2092     __ mov(dst,     O2);
  2093     __ mov(dst_pos, O3);
  2094     __ mov(length,  O4);
  2095     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2097     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2098     __ delayed()->nop();
  2099     __ bind(*stub->continuation());
  2100     return;
  2103   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2105   // make sure src and dst are non-null and load array length
  2106   if (flags & LIR_OpArrayCopy::src_null_check) {
  2107     __ tst(src);
  2108     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2109     __ delayed()->nop();
  2112   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2113     __ tst(dst);
  2114     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2115     __ delayed()->nop();
  2118   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2119     // test src_pos register
  2120     __ tst(src_pos);
  2121     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2122     __ delayed()->nop();
  2125   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2126     // test dst_pos register
  2127     __ tst(dst_pos);
  2128     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2129     __ delayed()->nop();
  2132   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2133     // make sure length isn't negative
  2134     __ tst(length);
  2135     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2136     __ delayed()->nop();
  2139   if (flags & LIR_OpArrayCopy::src_range_check) {
  2140     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2141     __ add(length, src_pos, tmp);
  2142     __ cmp(tmp2, tmp);
  2143     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2144     __ delayed()->nop();
  2147   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2148     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2149     __ add(length, dst_pos, tmp);
  2150     __ cmp(tmp2, tmp);
  2151     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2152     __ delayed()->nop();
  2155   if (flags & LIR_OpArrayCopy::type_check) {
  2156     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2157     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2158     __ cmp(tmp, tmp2);
  2159     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2160     __ delayed()->nop();
  2163 #ifdef ASSERT
  2164   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2165     // Sanity check the known type with the incoming class.  For the
  2166     // primitive case the types must match exactly with src.klass and
  2167     // dst.klass each exactly matching the default type.  For the
  2168     // object array case, if no type check is needed then either the
  2169     // dst type is exactly the expected type and the src type is a
  2170     // subtype which we can't check or src is the same array as dst
  2171     // but not necessarily exactly of type default_type.
  2172     Label known_ok, halt;
  2173     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2174     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2175     if (basic_type != T_OBJECT) {
  2176       __ cmp(tmp, tmp2);
  2177       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2178       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2179       __ cmp(tmp, tmp2);
  2180       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2181       __ delayed()->nop();
  2182     } else {
  2183       __ cmp(tmp, tmp2);
  2184       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2185       __ delayed()->cmp(src, dst);
  2186       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2187       __ delayed()->nop();
  2189     __ bind(halt);
  2190     __ stop("incorrect type information in arraycopy");
  2191     __ bind(known_ok);
  2193 #endif
  2195   int shift = shift_amount(basic_type);
  2197   Register src_ptr = O0;
  2198   Register dst_ptr = O1;
  2199   Register len     = O2;
  2201   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2202   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2203   if (shift == 0) {
  2204     __ add(src_ptr, src_pos, src_ptr);
  2205   } else {
  2206     __ sll(src_pos, shift, tmp);
  2207     __ add(src_ptr, tmp, src_ptr);
  2210   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2211   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2212   if (shift == 0) {
  2213     __ add(dst_ptr, dst_pos, dst_ptr);
  2214   } else {
  2215     __ sll(dst_pos, shift, tmp);
  2216     __ add(dst_ptr, tmp, dst_ptr);
  2219   if (basic_type != T_OBJECT) {
  2220     if (shift == 0) {
  2221       __ mov(length, len);
  2222     } else {
  2223       __ sll(length, shift, len);
  2225     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2226   } else {
  2227     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2228     __ mov(length, len);
  2229     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2232   __ bind(*stub->continuation());
  2236 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2237   if (dest->is_single_cpu()) {
  2238 #ifdef _LP64
  2239     if (left->type() == T_OBJECT) {
  2240       switch (code) {
  2241         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2242         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2243         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2244         default: ShouldNotReachHere();
  2246     } else
  2247 #endif
  2248       switch (code) {
  2249         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2250         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2251         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2252         default: ShouldNotReachHere();
  2254   } else {
  2255 #ifdef _LP64
  2256     switch (code) {
  2257       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2258       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2259       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2260       default: ShouldNotReachHere();
  2262 #else
  2263     switch (code) {
  2264       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2265       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2266       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2267       default: ShouldNotReachHere();
  2269 #endif
  2274 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2275 #ifdef _LP64
  2276   if (left->type() == T_OBJECT) {
  2277     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2278     Register l = left->as_register();
  2279     Register d = dest->as_register_lo();
  2280     switch (code) {
  2281       case lir_shl:  __ sllx  (l, count, d); break;
  2282       case lir_shr:  __ srax  (l, count, d); break;
  2283       case lir_ushr: __ srlx  (l, count, d); break;
  2284       default: ShouldNotReachHere();
  2286     return;
  2288 #endif
  2290   if (dest->is_single_cpu()) {
  2291     count = count & 0x1F; // Java spec
  2292     switch (code) {
  2293       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2294       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2295       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2296       default: ShouldNotReachHere();
  2298   } else if (dest->is_double_cpu()) {
  2299     count = count & 63; // Java spec
  2300     switch (code) {
  2301       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2302       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2303       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2304       default: ShouldNotReachHere();
  2306   } else {
  2307     ShouldNotReachHere();
  2312 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2313   assert(op->tmp1()->as_register()  == G1 &&
  2314          op->tmp2()->as_register()  == G3 &&
  2315          op->tmp3()->as_register()  == G4 &&
  2316          op->obj()->as_register()   == O0 &&
  2317          op->klass()->as_register() == G5, "must be");
  2318   if (op->init_check()) {
  2319     __ ld(op->klass()->as_register(),
  2320           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2321           op->tmp1()->as_register());
  2322     add_debug_info_for_null_check_here(op->stub()->info());
  2323     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2324     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2325     __ delayed()->nop();
  2327   __ allocate_object(op->obj()->as_register(),
  2328                      op->tmp1()->as_register(),
  2329                      op->tmp2()->as_register(),
  2330                      op->tmp3()->as_register(),
  2331                      op->header_size(),
  2332                      op->object_size(),
  2333                      op->klass()->as_register(),
  2334                      *op->stub()->entry());
  2335   __ bind(*op->stub()->continuation());
  2336   __ verify_oop(op->obj()->as_register());
  2340 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2341   assert(op->tmp1()->as_register()  == G1 &&
  2342          op->tmp2()->as_register()  == G3 &&
  2343          op->tmp3()->as_register()  == G4 &&
  2344          op->tmp4()->as_register()  == O1 &&
  2345          op->klass()->as_register() == G5, "must be");
  2346   if (UseSlowPath ||
  2347       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2348       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2349     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
  2350     __ delayed()->nop();
  2351   } else {
  2352     __ allocate_array(op->obj()->as_register(),
  2353                       op->len()->as_register(),
  2354                       op->tmp1()->as_register(),
  2355                       op->tmp2()->as_register(),
  2356                       op->tmp3()->as_register(),
  2357                       arrayOopDesc::header_size(op->type()),
  2358                       type2aelembytes(op->type()),
  2359                       op->klass()->as_register(),
  2360                       *op->stub()->entry());
  2362   __ bind(*op->stub()->continuation());
  2366 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2367   LIR_Code code = op->code();
  2368   if (code == lir_store_check) {
  2369     Register value = op->object()->as_register();
  2370     Register array = op->array()->as_register();
  2371     Register k_RInfo = op->tmp1()->as_register();
  2372     Register klass_RInfo = op->tmp2()->as_register();
  2373     Register Rtmp1 = op->tmp3()->as_register();
  2375     __ verify_oop(value);
  2377     CodeStub* stub = op->stub();
  2378     Label done;
  2379     __ cmp(value, 0);
  2380     __ br(Assembler::equal, false, Assembler::pn, done);
  2381     __ delayed()->nop();
  2382     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2383     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2385     // get instance klass
  2386     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2387     // perform the fast part of the checking logic
  2388     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
  2390     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2391     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2392     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2393     __ delayed()->nop();
  2394     __ cmp(G3, 0);
  2395     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2396     __ delayed()->nop();
  2397     __ bind(done);
  2398   } else if (op->code() == lir_checkcast) {
  2399     // we always need a stub for the failure case.
  2400     CodeStub* stub = op->stub();
  2401     Register obj = op->object()->as_register();
  2402     Register k_RInfo = op->tmp1()->as_register();
  2403     Register klass_RInfo = op->tmp2()->as_register();
  2404     Register dst = op->result_opr()->as_register();
  2405     Register Rtmp1 = op->tmp3()->as_register();
  2406     ciKlass* k = op->klass();
  2408     if (obj == k_RInfo) {
  2409       k_RInfo = klass_RInfo;
  2410       klass_RInfo = obj;
  2412     if (op->profiled_method() != NULL) {
  2413       ciMethod* method = op->profiled_method();
  2414       int bci          = op->profiled_bci();
  2416       // We need two temporaries to perform this operation on SPARC,
  2417       // so to keep things simple we perform a redundant test here
  2418       Label profile_done;
  2419       __ cmp(obj, 0);
  2420       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
  2421       __ delayed()->nop();
  2422       // Object is null; update methodDataOop
  2423       ciMethodData* md = method->method_data();
  2424       if (md == NULL) {
  2425         bailout("out of memory building methodDataOop");
  2426         return;
  2428       ciProfileData* data = md->bci_to_data(bci);
  2429       assert(data != NULL,       "need data for checkcast");
  2430       assert(data->is_BitData(), "need BitData for checkcast");
  2431       Register mdo      = k_RInfo;
  2432       Register data_val = Rtmp1;
  2433       jobject2reg(md->constant_encoding(), mdo);
  2435       int mdo_offset_bias = 0;
  2436       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2437         // The offset is large so bias the mdo by the base of the slot so
  2438         // that the ld can use simm13s to reference the slots of the data
  2439         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2440         __ set(mdo_offset_bias, data_val);
  2441         __ add(mdo, data_val, mdo);
  2445       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2446       __ ldub(flags_addr, data_val);
  2447       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2448       __ stb(data_val, flags_addr);
  2449       __ bind(profile_done);
  2452     Label done;
  2453     // patching may screw with our temporaries on sparc,
  2454     // so let's do it before loading the class
  2455     if (k->is_loaded()) {
  2456       jobject2reg(k->constant_encoding(), k_RInfo);
  2457     } else {
  2458       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2460     assert(obj != k_RInfo, "must be different");
  2461     __ cmp(obj, 0);
  2462     __ br(Assembler::equal, false, Assembler::pn, done);
  2463     __ delayed()->nop();
  2465     // get object class
  2466     // not a safepoint as obj null check happens earlier
  2467     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2468     if (op->fast_check()) {
  2469       assert_different_registers(klass_RInfo, k_RInfo);
  2470       __ cmp(k_RInfo, klass_RInfo);
  2471       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2472       __ delayed()->nop();
  2473       __ bind(done);
  2474     } else {
  2475       bool need_slow_path = true;
  2476       if (k->is_loaded()) {
  2477         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2478           need_slow_path = false;
  2479         // perform the fast part of the checking logic
  2480         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2481                                          (need_slow_path ? &done : NULL),
  2482                                          stub->entry(), NULL,
  2483                                          RegisterOrConstant(k->super_check_offset()));
  2484       } else {
  2485         // perform the fast part of the checking logic
  2486         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
  2487                                          &done, stub->entry(), NULL);
  2489       if (need_slow_path) {
  2490         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2491         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2492         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2493         __ delayed()->nop();
  2494         __ cmp(G3, 0);
  2495         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2496         __ delayed()->nop();
  2498       __ bind(done);
  2500     __ mov(obj, dst);
  2501   } else if (code == lir_instanceof) {
  2502     Register obj = op->object()->as_register();
  2503     Register k_RInfo = op->tmp1()->as_register();
  2504     Register klass_RInfo = op->tmp2()->as_register();
  2505     Register dst = op->result_opr()->as_register();
  2506     Register Rtmp1 = op->tmp3()->as_register();
  2507     ciKlass* k = op->klass();
  2509     Label done;
  2510     if (obj == k_RInfo) {
  2511       k_RInfo = klass_RInfo;
  2512       klass_RInfo = obj;
  2514     // patching may screw with our temporaries on sparc,
  2515     // so let's do it before loading the class
  2516     if (k->is_loaded()) {
  2517       jobject2reg(k->constant_encoding(), k_RInfo);
  2518     } else {
  2519       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2521     assert(obj != k_RInfo, "must be different");
  2522     __ cmp(obj, 0);
  2523     __ br(Assembler::equal, true, Assembler::pn, done);
  2524     __ delayed()->set(0, dst);
  2526     // get object class
  2527     // not a safepoint as obj null check happens earlier
  2528     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2529     if (op->fast_check()) {
  2530       __ cmp(k_RInfo, klass_RInfo);
  2531       __ br(Assembler::equal, true, Assembler::pt, done);
  2532       __ delayed()->set(1, dst);
  2533       __ set(0, dst);
  2534       __ bind(done);
  2535     } else {
  2536       bool need_slow_path = true;
  2537       if (k->is_loaded()) {
  2538         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2539           need_slow_path = false;
  2540         // perform the fast part of the checking logic
  2541         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
  2542                                          (need_slow_path ? &done : NULL),
  2543                                          (need_slow_path ? &done : NULL), NULL,
  2544                                          RegisterOrConstant(k->super_check_offset()),
  2545                                          dst);
  2546       } else {
  2547         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  2548         // perform the fast part of the checking logic
  2549         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
  2550                                          &done, &done, NULL,
  2551                                          RegisterOrConstant(-1),
  2552                                          dst);
  2554       if (need_slow_path) {
  2555         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2556         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2557         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2558         __ delayed()->nop();
  2559         __ mov(G3, dst);
  2561       __ bind(done);
  2563   } else {
  2564     ShouldNotReachHere();
  2570 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2571   if (op->code() == lir_cas_long) {
  2572     assert(VM_Version::supports_cx8(), "wrong machine");
  2573     Register addr = op->addr()->as_pointer_register();
  2574     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2575     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2576     Register new_value_lo = op->new_value()->as_register_lo();
  2577     Register new_value_hi = op->new_value()->as_register_hi();
  2578     Register t1 = op->tmp1()->as_register();
  2579     Register t2 = op->tmp2()->as_register();
  2580 #ifdef _LP64
  2581     __ mov(cmp_value_lo, t1);
  2582     __ mov(new_value_lo, t2);
  2583 #else
  2584     // move high and low halves of long values into single registers
  2585     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2586     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2587     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2588     __ sllx(new_value_hi, 32, t2);
  2589     __ srl(new_value_lo, 0, new_value_lo);
  2590     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2591 #endif
  2592     // perform the compare and swap operation
  2593     __ casx(addr, t1, t2);
  2594     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2595     // overwritten with the original value in "addr" and will be equal to t1.
  2596     __ cmp(t1, t2);
  2598   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2599     Register addr = op->addr()->as_pointer_register();
  2600     Register cmp_value = op->cmp_value()->as_register();
  2601     Register new_value = op->new_value()->as_register();
  2602     Register t1 = op->tmp1()->as_register();
  2603     Register t2 = op->tmp2()->as_register();
  2604     __ mov(cmp_value, t1);
  2605     __ mov(new_value, t2);
  2606 #ifdef _LP64
  2607     if (op->code() == lir_cas_obj) {
  2608       __ casx(addr, t1, t2);
  2609     } else
  2610 #endif
  2612         __ cas(addr, t1, t2);
  2614     __ cmp(t1, t2);
  2615   } else {
  2616     Unimplemented();
  2620 void LIR_Assembler::set_24bit_FPU() {
  2621   Unimplemented();
  2625 void LIR_Assembler::reset_FPU() {
  2626   Unimplemented();
  2630 void LIR_Assembler::breakpoint() {
  2631   __ breakpoint_trap();
  2635 void LIR_Assembler::push(LIR_Opr opr) {
  2636   Unimplemented();
  2640 void LIR_Assembler::pop(LIR_Opr opr) {
  2641   Unimplemented();
  2645 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2646   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2647   Register dst = dst_opr->as_register();
  2648   Register reg = mon_addr.base();
  2649   int offset = mon_addr.disp();
  2650   // compute pointer to BasicLock
  2651   if (mon_addr.is_simm13()) {
  2652     __ add(reg, offset, dst);
  2653   } else {
  2654     __ set(offset, dst);
  2655     __ add(dst, reg, dst);
  2660 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2661   Register obj = op->obj_opr()->as_register();
  2662   Register hdr = op->hdr_opr()->as_register();
  2663   Register lock = op->lock_opr()->as_register();
  2665   // obj may not be an oop
  2666   if (op->code() == lir_lock) {
  2667     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2668     if (UseFastLocking) {
  2669       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2670       // add debug info for NullPointerException only if one is possible
  2671       if (op->info() != NULL) {
  2672         add_debug_info_for_null_check_here(op->info());
  2674       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2675     } else {
  2676       // always do slow locking
  2677       // note: the slow locking code could be inlined here, however if we use
  2678       //       slow locking, speed doesn't matter anyway and this solution is
  2679       //       simpler and requires less duplicated code - additionally, the
  2680       //       slow locking code is the same in either case which simplifies
  2681       //       debugging
  2682       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2683       __ delayed()->nop();
  2685   } else {
  2686     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2687     if (UseFastLocking) {
  2688       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2689       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2690     } else {
  2691       // always do slow unlocking
  2692       // note: the slow unlocking code could be inlined here, however if we use
  2693       //       slow unlocking, speed doesn't matter anyway and this solution is
  2694       //       simpler and requires less duplicated code - additionally, the
  2695       //       slow unlocking code is the same in either case which simplifies
  2696       //       debugging
  2697       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2698       __ delayed()->nop();
  2701   __ bind(*op->stub()->continuation());
  2705 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2706   ciMethod* method = op->profiled_method();
  2707   int bci          = op->profiled_bci();
  2709   // Update counter for all call types
  2710   ciMethodData* md = method->method_data();
  2711   if (md == NULL) {
  2712     bailout("out of memory building methodDataOop");
  2713     return;
  2715   ciProfileData* data = md->bci_to_data(bci);
  2716   assert(data->is_CounterData(), "need CounterData for calls");
  2717   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2718   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2719   Register mdo  = op->mdo()->as_register();
  2720   Register tmp1 = op->tmp1()->as_register();
  2721   jobject2reg(md->constant_encoding(), mdo);
  2722   int mdo_offset_bias = 0;
  2723   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2724                             data->size_in_bytes())) {
  2725     // The offset is large so bias the mdo by the base of the slot so
  2726     // that the ld can use simm13s to reference the slots of the data
  2727     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2728     __ set(mdo_offset_bias, O7);
  2729     __ add(mdo, O7, mdo);
  2732   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2733   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2734   // Perform additional virtual call profiling for invokevirtual and
  2735   // invokeinterface bytecodes
  2736   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2737       Tier1ProfileVirtualCalls) {
  2738     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2739     Register recv = op->recv()->as_register();
  2740     assert_different_registers(mdo, tmp1, recv);
  2741     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2742     ciKlass* known_klass = op->known_holder();
  2743     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2744       // We know the type that will be seen at this call site; we can
  2745       // statically update the methodDataOop rather than needing to do
  2746       // dynamic tests on the receiver type
  2748       // NOTE: we should probably put a lock around this search to
  2749       // avoid collisions by concurrent compilations
  2750       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2751       uint i;
  2752       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2753         ciKlass* receiver = vc_data->receiver(i);
  2754         if (known_klass->equals(receiver)) {
  2755           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2756                                                          VirtualCallData::receiver_count_offset(i)) -
  2757                             mdo_offset_bias);
  2758           __ lduw(data_addr, tmp1);
  2759           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2760           __ stw(tmp1, data_addr);
  2761           return;
  2765       // Receiver type not found in profile data; select an empty slot
  2767       // Note that this is less efficient than it should be because it
  2768       // always does a write to the receiver part of the
  2769       // VirtualCallData rather than just the first time
  2770       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2771         ciKlass* receiver = vc_data->receiver(i);
  2772         if (receiver == NULL) {
  2773           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2774                             mdo_offset_bias);
  2775           jobject2reg(known_klass->constant_encoding(), tmp1);
  2776           __ st_ptr(tmp1, recv_addr);
  2777           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2778                             mdo_offset_bias);
  2779           __ lduw(data_addr, tmp1);
  2780           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2781           __ stw(tmp1, data_addr);
  2782           return;
  2785     } else {
  2786       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2787       Label update_done;
  2788       uint i;
  2789       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2790         Label next_test;
  2791         // See if the receiver is receiver[n].
  2792         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2793                               mdo_offset_bias);
  2794         __ ld_ptr(receiver_addr, tmp1);
  2795         __ verify_oop(tmp1);
  2796         __ cmp(recv, tmp1);
  2797         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2798         __ delayed()->nop();
  2799         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2800                           mdo_offset_bias);
  2801         __ lduw(data_addr, tmp1);
  2802         __ add(tmp1, DataLayout::counter_increment, tmp1);
  2803         __ stw(tmp1, data_addr);
  2804         __ br(Assembler::always, false, Assembler::pt, update_done);
  2805         __ delayed()->nop();
  2806         __ bind(next_test);
  2809       // Didn't find receiver; find next empty slot and fill it in
  2810       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2811         Label next_test;
  2812         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2813                           mdo_offset_bias);
  2814         load(recv_addr, tmp1, T_OBJECT);
  2815         __ tst(tmp1);
  2816         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2817         __ delayed()->nop();
  2818         __ st_ptr(recv, recv_addr);
  2819         __ set(DataLayout::counter_increment, tmp1);
  2820         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2821                   mdo_offset_bias);
  2822         __ br(Assembler::always, false, Assembler::pt, update_done);
  2823         __ delayed()->nop();
  2824         __ bind(next_test);
  2826       // Receiver did not match any saved receiver and there is no empty row for it.
  2827       // Increment total counter to indicate polymorphic case.
  2828       __ lduw(counter_addr, tmp1);
  2829       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2830       __ stw(tmp1, counter_addr);
  2832       __ bind(update_done);
  2834   } else {
  2835     // Static call
  2836     __ lduw(counter_addr, tmp1);
  2837     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2838     __ stw(tmp1, counter_addr);
  2843 void LIR_Assembler::align_backward_branch_target() {
  2844   __ align(16);
  2848 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2849   // make sure we are expecting a delay
  2850   // this has the side effect of clearing the delay state
  2851   // so we can use _masm instead of _masm->delayed() to do the
  2852   // code generation.
  2853   __ delayed();
  2855   // make sure we only emit one instruction
  2856   int offset = code_offset();
  2857   op->delay_op()->emit_code(this);
  2858 #ifdef ASSERT
  2859   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2860     op->delay_op()->print();
  2862   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2863          "only one instruction can go in a delay slot");
  2864 #endif
  2866   // we may also be emitting the call info for the instruction
  2867   // which we are the delay slot of.
  2868   CodeEmitInfo * call_info = op->call_info();
  2869   if (call_info) {
  2870     add_call_info(code_offset(), call_info);
  2873   if (VerifyStackAtCalls) {
  2874     _masm->sub(FP, SP, O7);
  2875     _masm->cmp(O7, initial_frame_size_in_bytes());
  2876     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  2881 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  2882   assert(left->is_register(), "can only handle registers");
  2884   if (left->is_single_cpu()) {
  2885     __ neg(left->as_register(), dest->as_register());
  2886   } else if (left->is_single_fpu()) {
  2887     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  2888   } else if (left->is_double_fpu()) {
  2889     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  2890   } else {
  2891     assert (left->is_double_cpu(), "Must be a long");
  2892     Register Rlow = left->as_register_lo();
  2893     Register Rhi = left->as_register_hi();
  2894 #ifdef _LP64
  2895     __ sub(G0, Rlow, dest->as_register_lo());
  2896 #else
  2897     __ subcc(G0, Rlow, dest->as_register_lo());
  2898     __ subc (G0, Rhi,  dest->as_register_hi());
  2899 #endif
  2904 void LIR_Assembler::fxch(int i) {
  2905   Unimplemented();
  2908 void LIR_Assembler::fld(int i) {
  2909   Unimplemented();
  2912 void LIR_Assembler::ffree(int i) {
  2913   Unimplemented();
  2916 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  2917                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  2919   // if tmp is invalid, then the function being called doesn't destroy the thread
  2920   if (tmp->is_valid()) {
  2921     __ save_thread(tmp->as_register());
  2923   __ call(dest, relocInfo::runtime_call_type);
  2924   __ delayed()->nop();
  2925   if (info != NULL) {
  2926     add_call_info_here(info);
  2928   if (tmp->is_valid()) {
  2929     __ restore_thread(tmp->as_register());
  2932 #ifdef ASSERT
  2933   __ verify_thread();
  2934 #endif // ASSERT
  2938 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  2939 #ifdef _LP64
  2940   ShouldNotReachHere();
  2941 #endif
  2943   NEEDS_CLEANUP;
  2944   if (type == T_LONG) {
  2945     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  2947     // (extended to allow indexed as well as constant displaced for JSR-166)
  2948     Register idx = noreg; // contains either constant offset or index
  2950     int disp = mem_addr->disp();
  2951     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  2952       if (!Assembler::is_simm13(disp)) {
  2953         idx = O7;
  2954         __ set(disp, idx);
  2956     } else {
  2957       assert(disp == 0, "not both indexed and disp");
  2958       idx = mem_addr->index()->as_register();
  2961     int null_check_offset = -1;
  2963     Register base = mem_addr->base()->as_register();
  2964     if (src->is_register() && dest->is_address()) {
  2965       // G4 is high half, G5 is low half
  2966       if (VM_Version::v9_instructions_work()) {
  2967         // clear the top bits of G5, and scale up G4
  2968         __ srl (src->as_register_lo(),  0, G5);
  2969         __ sllx(src->as_register_hi(), 32, G4);
  2970         // combine the two halves into the 64 bits of G4
  2971         __ or3(G4, G5, G4);
  2972         null_check_offset = __ offset();
  2973         if (idx == noreg) {
  2974           __ stx(G4, base, disp);
  2975         } else {
  2976           __ stx(G4, base, idx);
  2978       } else {
  2979         __ mov (src->as_register_hi(), G4);
  2980         __ mov (src->as_register_lo(), G5);
  2981         null_check_offset = __ offset();
  2982         if (idx == noreg) {
  2983           __ std(G4, base, disp);
  2984         } else {
  2985           __ std(G4, base, idx);
  2988     } else if (src->is_address() && dest->is_register()) {
  2989       null_check_offset = __ offset();
  2990       if (VM_Version::v9_instructions_work()) {
  2991         if (idx == noreg) {
  2992           __ ldx(base, disp, G5);
  2993         } else {
  2994           __ ldx(base, idx, G5);
  2996         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  2997         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  2998       } else {
  2999         if (idx == noreg) {
  3000           __ ldd(base, disp, G4);
  3001         } else {
  3002           __ ldd(base, idx, G4);
  3004         // G4 is high half, G5 is low half
  3005         __ mov (G4, dest->as_register_hi());
  3006         __ mov (G5, dest->as_register_lo());
  3008     } else {
  3009       Unimplemented();
  3011     if (info != NULL) {
  3012       add_debug_info_for_null_check(null_check_offset, info);
  3015   } else {
  3016     // use normal move for all other volatiles since they don't need
  3017     // special handling to remain atomic.
  3018     move_op(src, dest, type, lir_patch_none, info, false, false);
  3022 void LIR_Assembler::membar() {
  3023   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3024   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3027 void LIR_Assembler::membar_acquire() {
  3028   // no-op on TSO
  3031 void LIR_Assembler::membar_release() {
  3032   // no-op on TSO
  3035 // Macro to Pack two sequential registers containing 32 bit values
  3036 // into a single 64 bit register.
  3037 // rs and rs->successor() are packed into rd
  3038 // rd and rs may be the same register.
  3039 // Note: rs and rs->successor() are destroyed.
  3040 void LIR_Assembler::pack64( Register rs, Register rd ) {
  3041   __ sllx(rs, 32, rs);
  3042   __ srl(rs->successor(), 0, rs->successor());
  3043   __ or3(rs, rs->successor(), rd);
  3046 // Macro to unpack a 64 bit value in a register into
  3047 // two sequential registers.
  3048 // rd is unpacked into rd and rd->successor()
  3049 void LIR_Assembler::unpack64( Register rd ) {
  3050   __ mov(rd, rd->successor());
  3051   __ srax(rd, 32, rd);
  3052   __ sra(rd->successor(), 0, rd->successor());
  3056 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3057   LIR_Address* addr = addr_opr->as_address_ptr();
  3058   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3059   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
  3063 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3064   assert(result_reg->is_register(), "check");
  3065   __ mov(G2_thread, result_reg->as_register());
  3069 void LIR_Assembler::peephole(LIR_List* lir) {
  3070   LIR_OpList* inst = lir->instructions_list();
  3071   for (int i = 0; i < inst->length(); i++) {
  3072     LIR_Op* op = inst->at(i);
  3073     switch (op->code()) {
  3074       case lir_cond_float_branch:
  3075       case lir_branch: {
  3076         LIR_OpBranch* branch = op->as_OpBranch();
  3077         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3078         LIR_Op* delay_op = NULL;
  3079         // we'd like to be able to pull following instructions into
  3080         // this slot but we don't know enough to do it safely yet so
  3081         // only optimize block to block control flow.
  3082         if (LIRFillDelaySlots && branch->block()) {
  3083           LIR_Op* prev = inst->at(i - 1);
  3084           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3085             // swap previous instruction into delay slot
  3086             inst->at_put(i - 1, op);
  3087             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3088 #ifndef PRODUCT
  3089             if (LIRTracePeephole) {
  3090               tty->print_cr("delayed");
  3091               inst->at(i - 1)->print();
  3092               inst->at(i)->print();
  3094 #endif
  3095             continue;
  3099         if (!delay_op) {
  3100           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3102         inst->insert_before(i + 1, delay_op);
  3103         break;
  3105       case lir_static_call:
  3106       case lir_virtual_call:
  3107       case lir_icvirtual_call:
  3108       case lir_optvirtual_call: {
  3109         LIR_Op* delay_op = NULL;
  3110         LIR_Op* prev = inst->at(i - 1);
  3111         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3112             (op->code() != lir_virtual_call ||
  3113              !prev->result_opr()->is_single_cpu() ||
  3114              prev->result_opr()->as_register() != O0) &&
  3115             LIR_Assembler::is_single_instruction(prev)) {
  3116           // Only moves without info can be put into the delay slot.
  3117           // Also don't allow the setup of the receiver in the delay
  3118           // slot for vtable calls.
  3119           inst->at_put(i - 1, op);
  3120           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3121 #ifndef PRODUCT
  3122           if (LIRTracePeephole) {
  3123             tty->print_cr("delayed");
  3124             inst->at(i - 1)->print();
  3125             inst->at(i)->print();
  3127 #endif
  3128           continue;
  3131         if (!delay_op) {
  3132           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3133           inst->insert_before(i + 1, delay_op);
  3135         break;
  3144 #undef __

mercurial