src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Fri, 05 Mar 2010 13:58:34 +0100

author
roland
date
Fri, 05 Mar 2010 13:58:34 +0100
changeset 1732
c466efa608d5
parent 1730
3cf667df43ef
child 1736
fc2c71045ada
permissions
-rw-r--r--

6932496: c1: deoptimization of jsr subroutine fails on sparcv9
Summary: store jsr ret bci as intptr constant in c1 debug info
Reviewed-by: never

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 int LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return -1;
   377   }
   379   int offset = code_offset();
   381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   382   __ delayed()->nop();
   383   debug_only(__ stop("should have gone to the caller");)
   384   assert(code_offset() - offset <= exception_handler_size, "overflow");
   385   __ end_a_stub();
   387   return offset;
   388 }
   391 int LIR_Assembler::emit_deopt_handler() {
   392   // if the last instruction is a call (typically to do a throw which
   393   // is coming at the end after block reordering) the return address
   394   // must still point into the code area in order to avoid assertion
   395   // failures when searching for the corresponding bci => add a nop
   396   // (was bug 5/14/1999 - gri)
   397   __ nop();
   399   // generate code for deopt handler
   400   ciMethod* method = compilation()->method();
   401   address handler_base = __ start_a_stub(deopt_handler_size);
   402   if (handler_base == NULL) {
   403     // not enough space left for the handler
   404     bailout("deopt handler overflow");
   405     return -1;
   406   }
   408   int offset = code_offset();
   409   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   410   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   411   __ delayed()->nop();
   412   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   413   debug_only(__ stop("should have gone to the caller");)
   414   __ end_a_stub();
   416   return offset;
   417 }
   420 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   421   if (o == NULL) {
   422     __ set(NULL_WORD, reg);
   423   } else {
   424     int oop_index = __ oop_recorder()->find_index(o);
   425     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   426     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   427   }
   428 }
   431 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   432   // Allocate a new index in oop table to hold the oop once it's been patched
   433   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   434   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   436   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   437   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   438   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   439   // NULL will be dynamically patched later and the patched value may be large.  We must
   440   // therefore generate the sethi/add as a placeholders
   441   __ patchable_set(addrlit, reg);
   443   patching_epilog(patch, lir_patch_normal, reg, info);
   444 }
   447 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   448   Register Rdividend = op->in_opr1()->as_register();
   449   Register Rdivisor  = noreg;
   450   Register Rscratch  = op->in_opr3()->as_register();
   451   Register Rresult   = op->result_opr()->as_register();
   452   int divisor = -1;
   454   if (op->in_opr2()->is_register()) {
   455     Rdivisor = op->in_opr2()->as_register();
   456   } else {
   457     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   458     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   459   }
   461   assert(Rdividend != Rscratch, "");
   462   assert(Rdivisor  != Rscratch, "");
   463   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   465   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   466     // convert division by a power of two into some shifts and logical operations
   467     if (op->code() == lir_idiv) {
   468       if (divisor == 2) {
   469         __ srl(Rdividend, 31, Rscratch);
   470       } else {
   471         __ sra(Rdividend, 31, Rscratch);
   472         __ and3(Rscratch, divisor - 1, Rscratch);
   473       }
   474       __ add(Rdividend, Rscratch, Rscratch);
   475       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   476       return;
   477     } else {
   478       if (divisor == 2) {
   479         __ srl(Rdividend, 31, Rscratch);
   480       } else {
   481         __ sra(Rdividend, 31, Rscratch);
   482         __ and3(Rscratch, divisor - 1,Rscratch);
   483       }
   484       __ add(Rdividend, Rscratch, Rscratch);
   485       __ andn(Rscratch, divisor - 1,Rscratch);
   486       __ sub(Rdividend, Rscratch, Rresult);
   487       return;
   488     }
   489   }
   491   __ sra(Rdividend, 31, Rscratch);
   492   __ wry(Rscratch);
   493   if (!VM_Version::v9_instructions_work()) {
   494     // v9 doesn't require these nops
   495     __ nop();
   496     __ nop();
   497     __ nop();
   498     __ nop();
   499   }
   501   add_debug_info_for_div0_here(op->info());
   503   if (Rdivisor != noreg) {
   504     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   505   } else {
   506     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   507     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   508   }
   510   Label skip;
   511   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   512   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   513   __ bind(skip);
   515   if (op->code() == lir_irem) {
   516     if (Rdivisor != noreg) {
   517       __ smul(Rscratch, Rdivisor, Rscratch);
   518     } else {
   519       __ smul(Rscratch, divisor, Rscratch);
   520     }
   521     __ sub(Rdividend, Rscratch, Rresult);
   522   }
   523 }
   526 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   527 #ifdef ASSERT
   528   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   529   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   530   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   531 #endif
   532   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   534   if (op->cond() == lir_cond_always) {
   535     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   536   } else if (op->code() == lir_cond_float_branch) {
   537     assert(op->ublock() != NULL, "must have unordered successor");
   538     bool is_unordered = (op->ublock() == op->block());
   539     Assembler::Condition acond;
   540     switch (op->cond()) {
   541       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   542       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   543       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   544       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   545       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   546       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   547       default :                         ShouldNotReachHere();
   548     };
   550     if (!VM_Version::v9_instructions_work()) {
   551       __ nop();
   552     }
   553     __ fb( acond, false, Assembler::pn, *(op->label()));
   554   } else {
   555     assert (op->code() == lir_branch, "just checking");
   557     Assembler::Condition acond;
   558     switch (op->cond()) {
   559       case lir_cond_equal:        acond = Assembler::equal;                break;
   560       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   561       case lir_cond_less:         acond = Assembler::less;                 break;
   562       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   563       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   564       case lir_cond_greater:      acond = Assembler::greater;              break;
   565       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   566       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   567       default:                         ShouldNotReachHere();
   568     };
   570     // sparc has different condition codes for testing 32-bit
   571     // vs. 64-bit values.  We could always test xcc is we could
   572     // guarantee that 32-bit loads always sign extended but that isn't
   573     // true and since sign extension isn't free, it would impose a
   574     // slight cost.
   575 #ifdef _LP64
   576     if  (op->type() == T_INT) {
   577       __ br(acond, false, Assembler::pn, *(op->label()));
   578     } else
   579 #endif
   580       __ brx(acond, false, Assembler::pn, *(op->label()));
   581   }
   582   // The peephole pass fills the delay slot
   583 }
   586 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   587   Bytecodes::Code code = op->bytecode();
   588   LIR_Opr dst = op->result_opr();
   590   switch(code) {
   591     case Bytecodes::_i2l: {
   592       Register rlo  = dst->as_register_lo();
   593       Register rhi  = dst->as_register_hi();
   594       Register rval = op->in_opr()->as_register();
   595 #ifdef _LP64
   596       __ sra(rval, 0, rlo);
   597 #else
   598       __ mov(rval, rlo);
   599       __ sra(rval, BitsPerInt-1, rhi);
   600 #endif
   601       break;
   602     }
   603     case Bytecodes::_i2d:
   604     case Bytecodes::_i2f: {
   605       bool is_double = (code == Bytecodes::_i2d);
   606       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   607       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   608       FloatRegister rsrc = op->in_opr()->as_float_reg();
   609       if (rsrc != rdst) {
   610         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   611       }
   612       __ fitof(w, rdst, rdst);
   613       break;
   614     }
   615     case Bytecodes::_f2i:{
   616       FloatRegister rsrc = op->in_opr()->as_float_reg();
   617       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   618       Label L;
   619       // result must be 0 if value is NaN; test by comparing value to itself
   620       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   621       if (!VM_Version::v9_instructions_work()) {
   622         __ nop();
   623       }
   624       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   625       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   626       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   627       // move integer result from float register to int register
   628       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   629       __ bind (L);
   630       break;
   631     }
   632     case Bytecodes::_l2i: {
   633       Register rlo  = op->in_opr()->as_register_lo();
   634       Register rhi  = op->in_opr()->as_register_hi();
   635       Register rdst = dst->as_register();
   636 #ifdef _LP64
   637       __ sra(rlo, 0, rdst);
   638 #else
   639       __ mov(rlo, rdst);
   640 #endif
   641       break;
   642     }
   643     case Bytecodes::_d2f:
   644     case Bytecodes::_f2d: {
   645       bool is_double = (code == Bytecodes::_f2d);
   646       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   647       LIR_Opr val = op->in_opr();
   648       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   649       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   650       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   651       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   652       __ ftof(vw, dw, rval, rdst);
   653       break;
   654     }
   655     case Bytecodes::_i2s:
   656     case Bytecodes::_i2b: {
   657       Register rval = op->in_opr()->as_register();
   658       Register rdst = dst->as_register();
   659       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   660       __ sll (rval, shift, rdst);
   661       __ sra (rdst, shift, rdst);
   662       break;
   663     }
   664     case Bytecodes::_i2c: {
   665       Register rval = op->in_opr()->as_register();
   666       Register rdst = dst->as_register();
   667       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   668       __ sll (rval, shift, rdst);
   669       __ srl (rdst, shift, rdst);
   670       break;
   671     }
   673     default: ShouldNotReachHere();
   674   }
   675 }
   678 void LIR_Assembler::align_call(LIR_Code) {
   679   // do nothing since all instructions are word aligned on sparc
   680 }
   683 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   684   __ call(op->addr(), rtype);
   685   // the peephole pass fills the delay slot
   686 }
   689 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   690   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   691   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   692   __ relocate(rspec);
   693   __ call(op->addr(), relocInfo::none);
   694   // the peephole pass fills the delay slot
   695 }
   698 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   699   add_debug_info_for_null_check_here(op->info());
   700   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   701   if (__ is_simm13(op->vtable_offset())) {
   702     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   703   } else {
   704     // This will generate 2 instructions
   705     __ set(op->vtable_offset(), G5_method);
   706     // ld_ptr, set_hi, set
   707     __ ld_ptr(G3_scratch, G5_method, G5_method);
   708   }
   709   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   710   __ callr(G3_scratch, G0);
   711   // the peephole pass fills the delay slot
   712 }
   715 void LIR_Assembler::preserve_SP() {
   716   Unimplemented();
   717 }
   720 void LIR_Assembler::restore_SP() {
   721   Unimplemented();
   722 }
   725 // load with 32-bit displacement
   726 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   727   int load_offset = code_offset();
   728   if (Assembler::is_simm13(disp)) {
   729     if (info != NULL) add_debug_info_for_null_check_here(info);
   730     switch(ld_type) {
   731       case T_BOOLEAN: // fall through
   732       case T_BYTE  : __ ldsb(s, disp, d); break;
   733       case T_CHAR  : __ lduh(s, disp, d); break;
   734       case T_SHORT : __ ldsh(s, disp, d); break;
   735       case T_INT   : __ ld(s, disp, d); break;
   736       case T_ADDRESS:// fall through
   737       case T_ARRAY : // fall through
   738       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   739       default      : ShouldNotReachHere();
   740     }
   741   } else {
   742     __ set(disp, O7);
   743     if (info != NULL) add_debug_info_for_null_check_here(info);
   744     load_offset = code_offset();
   745     switch(ld_type) {
   746       case T_BOOLEAN: // fall through
   747       case T_BYTE  : __ ldsb(s, O7, d); break;
   748       case T_CHAR  : __ lduh(s, O7, d); break;
   749       case T_SHORT : __ ldsh(s, O7, d); break;
   750       case T_INT   : __ ld(s, O7, d); break;
   751       case T_ADDRESS:// fall through
   752       case T_ARRAY : // fall through
   753       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   754       default      : ShouldNotReachHere();
   755     }
   756   }
   757   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   758   return load_offset;
   759 }
   762 // store with 32-bit displacement
   763 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   764   if (Assembler::is_simm13(offset)) {
   765     if (info != NULL)  add_debug_info_for_null_check_here(info);
   766     switch (type) {
   767       case T_BOOLEAN: // fall through
   768       case T_BYTE  : __ stb(value, base, offset); break;
   769       case T_CHAR  : __ sth(value, base, offset); break;
   770       case T_SHORT : __ sth(value, base, offset); break;
   771       case T_INT   : __ stw(value, base, offset); break;
   772       case T_ADDRESS:// fall through
   773       case T_ARRAY : // fall through
   774       case T_OBJECT: __ st_ptr(value, base, offset); break;
   775       default      : ShouldNotReachHere();
   776     }
   777   } else {
   778     __ set(offset, O7);
   779     if (info != NULL) add_debug_info_for_null_check_here(info);
   780     switch (type) {
   781       case T_BOOLEAN: // fall through
   782       case T_BYTE  : __ stb(value, base, O7); break;
   783       case T_CHAR  : __ sth(value, base, O7); break;
   784       case T_SHORT : __ sth(value, base, O7); break;
   785       case T_INT   : __ stw(value, base, O7); break;
   786       case T_ADDRESS:// fall through
   787       case T_ARRAY : //fall through
   788       case T_OBJECT: __ st_ptr(value, base, O7); break;
   789       default      : ShouldNotReachHere();
   790     }
   791   }
   792   // Note: Do the store before verification as the code might be patched!
   793   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   794 }
   797 // load float with 32-bit displacement
   798 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   799   FloatRegisterImpl::Width w;
   800   switch(ld_type) {
   801     case T_FLOAT : w = FloatRegisterImpl::S; break;
   802     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   803     default      : ShouldNotReachHere();
   804   }
   806   if (Assembler::is_simm13(disp)) {
   807     if (info != NULL) add_debug_info_for_null_check_here(info);
   808     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   809       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   810       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   811     } else {
   812       __ ldf(w, s, disp, d);
   813     }
   814   } else {
   815     __ set(disp, O7);
   816     if (info != NULL) add_debug_info_for_null_check_here(info);
   817     __ ldf(w, s, O7, d);
   818   }
   819 }
   822 // store float with 32-bit displacement
   823 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   824   FloatRegisterImpl::Width w;
   825   switch(type) {
   826     case T_FLOAT : w = FloatRegisterImpl::S; break;
   827     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   828     default      : ShouldNotReachHere();
   829   }
   831   if (Assembler::is_simm13(offset)) {
   832     if (info != NULL) add_debug_info_for_null_check_here(info);
   833     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   834       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   835       __ stf(FloatRegisterImpl::S, value             , base, offset);
   836     } else {
   837       __ stf(w, value, base, offset);
   838     }
   839   } else {
   840     __ set(offset, O7);
   841     if (info != NULL) add_debug_info_for_null_check_here(info);
   842     __ stf(w, value, O7, base);
   843   }
   844 }
   847 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   848   int store_offset;
   849   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   850     assert(!unaligned, "can't handle this");
   851     // for offsets larger than a simm13 we setup the offset in O7
   852     __ set(offset, O7);
   853     store_offset = store(from_reg, base, O7, type);
   854   } else {
   855     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   856     store_offset = code_offset();
   857     switch (type) {
   858       case T_BOOLEAN: // fall through
   859       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   860       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   861       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   862       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   863       case T_LONG  :
   864 #ifdef _LP64
   865         if (unaligned || PatchALot) {
   866           __ srax(from_reg->as_register_lo(), 32, O7);
   867           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   868           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   869         } else {
   870           __ stx(from_reg->as_register_lo(), base, offset);
   871         }
   872 #else
   873         assert(Assembler::is_simm13(offset + 4), "must be");
   874         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   875         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   876 #endif
   877         break;
   878       case T_ADDRESS:// fall through
   879       case T_ARRAY : // fall through
   880       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   881       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   882       case T_DOUBLE:
   883         {
   884           FloatRegister reg = from_reg->as_double_reg();
   885           // split unaligned stores
   886           if (unaligned || PatchALot) {
   887             assert(Assembler::is_simm13(offset + 4), "must be");
   888             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   889             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   890           } else {
   891             __ stf(FloatRegisterImpl::D, reg, base, offset);
   892           }
   893           break;
   894         }
   895       default      : ShouldNotReachHere();
   896     }
   897   }
   898   return store_offset;
   899 }
   902 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   903   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   904   int store_offset = code_offset();
   905   switch (type) {
   906     case T_BOOLEAN: // fall through
   907     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   908     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   909     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   910     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   911     case T_LONG  :
   912 #ifdef _LP64
   913       __ stx(from_reg->as_register_lo(), base, disp);
   914 #else
   915       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   916       __ std(from_reg->as_register_hi(), base, disp);
   917 #endif
   918       break;
   919     case T_ADDRESS:// fall through
   920     case T_ARRAY : // fall through
   921     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   922     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   923     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   924     default      : ShouldNotReachHere();
   925   }
   926   return store_offset;
   927 }
   930 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   931   int load_offset;
   932   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   933     assert(base != O7, "destroying register");
   934     assert(!unaligned, "can't handle this");
   935     // for offsets larger than a simm13 we setup the offset in O7
   936     __ set(offset, O7);
   937     load_offset = load(base, O7, to_reg, type);
   938   } else {
   939     load_offset = code_offset();
   940     switch(type) {
   941       case T_BOOLEAN: // fall through
   942       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   943       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   944       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   945       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   946       case T_LONG  :
   947         if (!unaligned) {
   948 #ifdef _LP64
   949           __ ldx(base, offset, to_reg->as_register_lo());
   950 #else
   951           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   952                  "must be sequential");
   953           __ ldd(base, offset, to_reg->as_register_hi());
   954 #endif
   955         } else {
   956 #ifdef _LP64
   957           assert(base != to_reg->as_register_lo(), "can't handle this");
   958           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   959           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   960           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   961           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   962           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   963 #else
   964           if (base == to_reg->as_register_lo()) {
   965             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   966             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   967           } else {
   968             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   969             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   970           }
   971 #endif
   972         }
   973         break;
   974       case T_ADDRESS:// fall through
   975       case T_ARRAY : // fall through
   976       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
   977       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   978       case T_DOUBLE:
   979         {
   980           FloatRegister reg = to_reg->as_double_reg();
   981           // split unaligned loads
   982           if (unaligned || PatchALot) {
   983             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   984             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   985           } else {
   986             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   987           }
   988           break;
   989         }
   990       default      : ShouldNotReachHere();
   991     }
   992     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
   993   }
   994   return load_offset;
   995 }
   998 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
   999   int load_offset = code_offset();
  1000   switch(type) {
  1001     case T_BOOLEAN: // fall through
  1002     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1003     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1004     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1005     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1006     case T_ADDRESS:// fall through
  1007     case T_ARRAY : // fall through
  1008     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1009     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1010     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1011     case T_LONG  :
  1012 #ifdef _LP64
  1013       __ ldx(base, disp, to_reg->as_register_lo());
  1014 #else
  1015       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1016              "must be sequential");
  1017       __ ldd(base, disp, to_reg->as_register_hi());
  1018 #endif
  1019       break;
  1020     default      : ShouldNotReachHere();
  1022   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1023   return load_offset;
  1027 // load/store with an Address
  1028 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1029   load(a.base(), a.disp() + offset, d, ld_type, info);
  1033 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1034   store(value, dest.base(), dest.disp() + offset, type, info);
  1038 // loadf/storef with an Address
  1039 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1040   load(a.base(), a.disp() + offset, d, ld_type, info);
  1044 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1045   store(value, dest.base(), dest.disp() + offset, type, info);
  1049 // load/store with an Address
  1050 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1051   load(as_Address(a), d, ld_type, info);
  1055 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1056   store(value, as_Address(dest), type, info);
  1060 // loadf/storef with an Address
  1061 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1062   load(as_Address(a), d, ld_type, info);
  1066 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1067   store(value, as_Address(dest), type, info);
  1071 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1072   LIR_Const* c = src->as_constant_ptr();
  1073   switch (c->type()) {
  1074     case T_INT:
  1075     case T_FLOAT:
  1076     case T_ADDRESS: {
  1077       Register src_reg = O7;
  1078       int value = c->as_jint_bits();
  1079       if (value == 0) {
  1080         src_reg = G0;
  1081       } else {
  1082         __ set(value, O7);
  1084       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1085       __ stw(src_reg, addr.base(), addr.disp());
  1086       break;
  1088     case T_OBJECT: {
  1089       Register src_reg = O7;
  1090       jobject2reg(c->as_jobject(), src_reg);
  1091       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1092       __ st_ptr(src_reg, addr.base(), addr.disp());
  1093       break;
  1095     case T_LONG:
  1096     case T_DOUBLE: {
  1097       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1099       Register tmp = O7;
  1100       int value_lo = c->as_jint_lo_bits();
  1101       if (value_lo == 0) {
  1102         tmp = G0;
  1103       } else {
  1104         __ set(value_lo, O7);
  1106       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1107       int value_hi = c->as_jint_hi_bits();
  1108       if (value_hi == 0) {
  1109         tmp = G0;
  1110       } else {
  1111         __ set(value_hi, O7);
  1113       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1114       break;
  1116     default:
  1117       Unimplemented();
  1122 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1123   LIR_Const* c = src->as_constant_ptr();
  1124   LIR_Address* addr     = dest->as_address_ptr();
  1125   Register base = addr->base()->as_pointer_register();
  1127   if (info != NULL) {
  1128     add_debug_info_for_null_check_here(info);
  1130   switch (c->type()) {
  1131     case T_INT:
  1132     case T_FLOAT:
  1133     case T_ADDRESS: {
  1134       LIR_Opr tmp = FrameMap::O7_opr;
  1135       int value = c->as_jint_bits();
  1136       if (value == 0) {
  1137         tmp = FrameMap::G0_opr;
  1138       } else if (Assembler::is_simm13(value)) {
  1139         __ set(value, O7);
  1141       if (addr->index()->is_valid()) {
  1142         assert(addr->disp() == 0, "must be zero");
  1143         store(tmp, base, addr->index()->as_pointer_register(), type);
  1144       } else {
  1145         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1146         store(tmp, base, addr->disp(), type);
  1148       break;
  1150     case T_LONG:
  1151     case T_DOUBLE: {
  1152       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1153       assert(Assembler::is_simm13(addr->disp()) &&
  1154              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1156       Register tmp = O7;
  1157       int value_lo = c->as_jint_lo_bits();
  1158       if (value_lo == 0) {
  1159         tmp = G0;
  1160       } else {
  1161         __ set(value_lo, O7);
  1163       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1164       int value_hi = c->as_jint_hi_bits();
  1165       if (value_hi == 0) {
  1166         tmp = G0;
  1167       } else {
  1168         __ set(value_hi, O7);
  1170       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1171       break;
  1173     case T_OBJECT: {
  1174       jobject obj = c->as_jobject();
  1175       LIR_Opr tmp;
  1176       if (obj == NULL) {
  1177         tmp = FrameMap::G0_opr;
  1178       } else {
  1179         tmp = FrameMap::O7_opr;
  1180         jobject2reg(c->as_jobject(), O7);
  1182       // handle either reg+reg or reg+disp address
  1183       if (addr->index()->is_valid()) {
  1184         assert(addr->disp() == 0, "must be zero");
  1185         store(tmp, base, addr->index()->as_pointer_register(), type);
  1186       } else {
  1187         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1188         store(tmp, base, addr->disp(), type);
  1191       break;
  1193     default:
  1194       Unimplemented();
  1199 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1200   LIR_Const* c = src->as_constant_ptr();
  1201   LIR_Opr to_reg = dest;
  1203   switch (c->type()) {
  1204     case T_INT:
  1205     case T_ADDRESS:
  1207         jint con = c->as_jint();
  1208         if (to_reg->is_single_cpu()) {
  1209           assert(patch_code == lir_patch_none, "no patching handled here");
  1210           __ set(con, to_reg->as_register());
  1211         } else {
  1212           ShouldNotReachHere();
  1213           assert(to_reg->is_single_fpu(), "wrong register kind");
  1215           __ set(con, O7);
  1216           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1217           __ st(O7, temp_slot);
  1218           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1221       break;
  1223     case T_LONG:
  1225         jlong con = c->as_jlong();
  1227         if (to_reg->is_double_cpu()) {
  1228 #ifdef _LP64
  1229           __ set(con,  to_reg->as_register_lo());
  1230 #else
  1231           __ set(low(con),  to_reg->as_register_lo());
  1232           __ set(high(con), to_reg->as_register_hi());
  1233 #endif
  1234 #ifdef _LP64
  1235         } else if (to_reg->is_single_cpu()) {
  1236           __ set(con, to_reg->as_register());
  1237 #endif
  1238         } else {
  1239           ShouldNotReachHere();
  1240           assert(to_reg->is_double_fpu(), "wrong register kind");
  1241           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1242           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1243           __ set(low(con),  O7);
  1244           __ st(O7, temp_slot_lo);
  1245           __ set(high(con), O7);
  1246           __ st(O7, temp_slot_hi);
  1247           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1250       break;
  1252     case T_OBJECT:
  1254         if (patch_code == lir_patch_none) {
  1255           jobject2reg(c->as_jobject(), to_reg->as_register());
  1256         } else {
  1257           jobject2reg_with_patching(to_reg->as_register(), info);
  1260       break;
  1262     case T_FLOAT:
  1264         address const_addr = __ float_constant(c->as_jfloat());
  1265         if (const_addr == NULL) {
  1266           bailout("const section overflow");
  1267           break;
  1269         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1270         AddressLiteral const_addrlit(const_addr, rspec);
  1271         if (to_reg->is_single_fpu()) {
  1272           __ patchable_sethi(const_addrlit, O7);
  1273           __ relocate(rspec);
  1274           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1276         } else {
  1277           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1279           __ set(const_addrlit, O7);
  1280           load(O7, 0, to_reg->as_register(), T_INT);
  1283       break;
  1285     case T_DOUBLE:
  1287         address const_addr = __ double_constant(c->as_jdouble());
  1288         if (const_addr == NULL) {
  1289           bailout("const section overflow");
  1290           break;
  1292         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1294         if (to_reg->is_double_fpu()) {
  1295           AddressLiteral const_addrlit(const_addr, rspec);
  1296           __ patchable_sethi(const_addrlit, O7);
  1297           __ relocate(rspec);
  1298           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1299         } else {
  1300           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1301 #ifdef _LP64
  1302           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1303 #else
  1304           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1305           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1306 #endif
  1310       break;
  1312     default:
  1313       ShouldNotReachHere();
  1317 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1318   Register reg = addr->base()->as_register();
  1319   return Address(reg, addr->disp());
  1323 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1324   switch (type) {
  1325     case T_INT:
  1326     case T_FLOAT: {
  1327       Register tmp = O7;
  1328       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1329       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1330       __ lduw(from.base(), from.disp(), tmp);
  1331       __ stw(tmp, to.base(), to.disp());
  1332       break;
  1334     case T_OBJECT: {
  1335       Register tmp = O7;
  1336       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1337       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1338       __ ld_ptr(from.base(), from.disp(), tmp);
  1339       __ st_ptr(tmp, to.base(), to.disp());
  1340       break;
  1342     case T_LONG:
  1343     case T_DOUBLE: {
  1344       Register tmp = O7;
  1345       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1346       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1347       __ lduw(from.base(), from.disp(), tmp);
  1348       __ stw(tmp, to.base(), to.disp());
  1349       __ lduw(from.base(), from.disp() + 4, tmp);
  1350       __ stw(tmp, to.base(), to.disp() + 4);
  1351       break;
  1354     default:
  1355       ShouldNotReachHere();
  1360 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1361   Address base = as_Address(addr);
  1362   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1366 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1367   Address base = as_Address(addr);
  1368   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1372 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1373                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1375   LIR_Address* addr = src_opr->as_address_ptr();
  1376   LIR_Opr to_reg = dest;
  1378   Register src = addr->base()->as_pointer_register();
  1379   Register disp_reg = noreg;
  1380   int disp_value = addr->disp();
  1381   bool needs_patching = (patch_code != lir_patch_none);
  1383   if (addr->base()->type() == T_OBJECT) {
  1384     __ verify_oop(src);
  1387   PatchingStub* patch = NULL;
  1388   if (needs_patching) {
  1389     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1390     assert(!to_reg->is_double_cpu() ||
  1391            patch_code == lir_patch_none ||
  1392            patch_code == lir_patch_normal, "patching doesn't match register");
  1395   if (addr->index()->is_illegal()) {
  1396     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1397       if (needs_patching) {
  1398         __ patchable_set(0, O7);
  1399       } else {
  1400         __ set(disp_value, O7);
  1402       disp_reg = O7;
  1404   } else if (unaligned || PatchALot) {
  1405     __ add(src, addr->index()->as_register(), O7);
  1406     src = O7;
  1407   } else {
  1408     disp_reg = addr->index()->as_pointer_register();
  1409     assert(disp_value == 0, "can't handle 3 operand addresses");
  1412   // remember the offset of the load.  The patching_epilog must be done
  1413   // before the call to add_debug_info, otherwise the PcDescs don't get
  1414   // entered in increasing order.
  1415   int offset = code_offset();
  1417   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1418   if (disp_reg == noreg) {
  1419     offset = load(src, disp_value, to_reg, type, unaligned);
  1420   } else {
  1421     assert(!unaligned, "can't handle this");
  1422     offset = load(src, disp_reg, to_reg, type);
  1425   if (patch != NULL) {
  1426     patching_epilog(patch, patch_code, src, info);
  1429   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1433 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1434   LIR_Address* addr = src->as_address_ptr();
  1435   Address from_addr = as_Address(addr);
  1437   if (VM_Version::has_v9()) {
  1438     __ prefetch(from_addr, Assembler::severalReads);
  1443 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1444   LIR_Address* addr = src->as_address_ptr();
  1445   Address from_addr = as_Address(addr);
  1447   if (VM_Version::has_v9()) {
  1448     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1453 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1454   Address addr;
  1455   if (src->is_single_word()) {
  1456     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1457   } else if (src->is_double_word())  {
  1458     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1461   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1462   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1466 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1467   Address addr;
  1468   if (dest->is_single_word()) {
  1469     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1470   } else if (dest->is_double_word())  {
  1471     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1473   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1474   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1478 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1479   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1480     if (from_reg->is_double_fpu()) {
  1481       // double to double moves
  1482       assert(to_reg->is_double_fpu(), "should match");
  1483       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1484     } else {
  1485       // float to float moves
  1486       assert(to_reg->is_single_fpu(), "should match");
  1487       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1489   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1490     if (from_reg->is_double_cpu()) {
  1491 #ifdef _LP64
  1492       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1493 #else
  1494       assert(to_reg->is_double_cpu() &&
  1495              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1496              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1497              "should both be long and not overlap");
  1498       // long to long moves
  1499       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1500       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1501 #endif
  1502 #ifdef _LP64
  1503     } else if (to_reg->is_double_cpu()) {
  1504       // int to int moves
  1505       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1506 #endif
  1507     } else {
  1508       // int to int moves
  1509       __ mov(from_reg->as_register(), to_reg->as_register());
  1511   } else {
  1512     ShouldNotReachHere();
  1514   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1515     __ verify_oop(to_reg->as_register());
  1520 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1521                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1522                             bool unaligned) {
  1523   LIR_Address* addr = dest->as_address_ptr();
  1525   Register src = addr->base()->as_pointer_register();
  1526   Register disp_reg = noreg;
  1527   int disp_value = addr->disp();
  1528   bool needs_patching = (patch_code != lir_patch_none);
  1530   if (addr->base()->is_oop_register()) {
  1531     __ verify_oop(src);
  1534   PatchingStub* patch = NULL;
  1535   if (needs_patching) {
  1536     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1537     assert(!from_reg->is_double_cpu() ||
  1538            patch_code == lir_patch_none ||
  1539            patch_code == lir_patch_normal, "patching doesn't match register");
  1542   if (addr->index()->is_illegal()) {
  1543     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1544       if (needs_patching) {
  1545         __ patchable_set(0, O7);
  1546       } else {
  1547         __ set(disp_value, O7);
  1549       disp_reg = O7;
  1551   } else if (unaligned || PatchALot) {
  1552     __ add(src, addr->index()->as_register(), O7);
  1553     src = O7;
  1554   } else {
  1555     disp_reg = addr->index()->as_pointer_register();
  1556     assert(disp_value == 0, "can't handle 3 operand addresses");
  1559   // remember the offset of the store.  The patching_epilog must be done
  1560   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1561   // entered in increasing order.
  1562   int offset;
  1564   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1565   if (disp_reg == noreg) {
  1566     offset = store(from_reg, src, disp_value, type, unaligned);
  1567   } else {
  1568     assert(!unaligned, "can't handle this");
  1569     offset = store(from_reg, src, disp_reg, type);
  1572   if (patch != NULL) {
  1573     patching_epilog(patch, patch_code, src, info);
  1576   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1580 void LIR_Assembler::return_op(LIR_Opr result) {
  1581   // the poll may need a register so just pick one that isn't the return register
  1582 #ifdef TIERED
  1583   if (result->type_field() == LIR_OprDesc::long_type) {
  1584     // Must move the result to G1
  1585     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1586     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1587     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1588     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1590 #endif // TIERED
  1591   __ set((intptr_t)os::get_polling_page(), L0);
  1592   __ relocate(relocInfo::poll_return_type);
  1593   __ ld_ptr(L0, 0, G0);
  1594   __ ret();
  1595   __ delayed()->restore();
  1599 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1600   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1601   if (info != NULL) {
  1602     add_debug_info_for_branch(info);
  1603   } else {
  1604     __ relocate(relocInfo::poll_type);
  1607   int offset = __ offset();
  1608   __ ld_ptr(tmp->as_register(), 0, G0);
  1610   return offset;
  1614 void LIR_Assembler::emit_static_call_stub() {
  1615   address call_pc = __ pc();
  1616   address stub = __ start_a_stub(call_stub_size);
  1617   if (stub == NULL) {
  1618     bailout("static call stub overflow");
  1619     return;
  1622   int start = __ offset();
  1623   __ relocate(static_stub_Relocation::spec(call_pc));
  1625   __ set_oop(NULL, G5);
  1626   // must be set to -1 at code generation time
  1627   AddressLiteral addrlit(-1);
  1628   __ jump_to(addrlit, G3);
  1629   __ delayed()->nop();
  1631   assert(__ offset() - start <= call_stub_size, "stub too big");
  1632   __ end_a_stub();
  1636 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1637   if (opr1->is_single_fpu()) {
  1638     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1639   } else if (opr1->is_double_fpu()) {
  1640     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1641   } else if (opr1->is_single_cpu()) {
  1642     if (opr2->is_constant()) {
  1643       switch (opr2->as_constant_ptr()->type()) {
  1644         case T_INT:
  1645           { jint con = opr2->as_constant_ptr()->as_jint();
  1646             if (Assembler::is_simm13(con)) {
  1647               __ cmp(opr1->as_register(), con);
  1648             } else {
  1649               __ set(con, O7);
  1650               __ cmp(opr1->as_register(), O7);
  1653           break;
  1655         case T_OBJECT:
  1656           // there are only equal/notequal comparisions on objects
  1657           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1658             if (con == NULL) {
  1659               __ cmp(opr1->as_register(), 0);
  1660             } else {
  1661               jobject2reg(con, O7);
  1662               __ cmp(opr1->as_register(), O7);
  1665           break;
  1667         default:
  1668           ShouldNotReachHere();
  1669           break;
  1671     } else {
  1672       if (opr2->is_address()) {
  1673         LIR_Address * addr = opr2->as_address_ptr();
  1674         BasicType type = addr->type();
  1675         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1676         else                    __ ld(as_Address(addr), O7);
  1677         __ cmp(opr1->as_register(), O7);
  1678       } else {
  1679         __ cmp(opr1->as_register(), opr2->as_register());
  1682   } else if (opr1->is_double_cpu()) {
  1683     Register xlo = opr1->as_register_lo();
  1684     Register xhi = opr1->as_register_hi();
  1685     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1686       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1687 #ifdef _LP64
  1688       __ orcc(xhi, G0, G0);
  1689 #else
  1690       __ orcc(xhi, xlo, G0);
  1691 #endif
  1692     } else if (opr2->is_register()) {
  1693       Register ylo = opr2->as_register_lo();
  1694       Register yhi = opr2->as_register_hi();
  1695 #ifdef _LP64
  1696       __ cmp(xlo, ylo);
  1697 #else
  1698       __ subcc(xlo, ylo, xlo);
  1699       __ subccc(xhi, yhi, xhi);
  1700       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1701         __ orcc(xhi, xlo, G0);
  1703 #endif
  1704     } else {
  1705       ShouldNotReachHere();
  1707   } else if (opr1->is_address()) {
  1708     LIR_Address * addr = opr1->as_address_ptr();
  1709     BasicType type = addr->type();
  1710     assert (opr2->is_constant(), "Checking");
  1711     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1712     else                    __ ld(as_Address(addr), O7);
  1713     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1714   } else {
  1715     ShouldNotReachHere();
  1720 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1721   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1722     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1723     if (left->is_single_fpu()) {
  1724       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1725     } else if (left->is_double_fpu()) {
  1726       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1727     } else {
  1728       ShouldNotReachHere();
  1730   } else if (code == lir_cmp_l2i) {
  1731     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1732             right->as_register_hi(), right->as_register_lo(),
  1733             dst->as_register());
  1734   } else {
  1735     ShouldNotReachHere();
  1740 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1742   Assembler::Condition acond;
  1743   switch (condition) {
  1744     case lir_cond_equal:        acond = Assembler::equal;        break;
  1745     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1746     case lir_cond_less:         acond = Assembler::less;         break;
  1747     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1748     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1749     case lir_cond_greater:      acond = Assembler::greater;      break;
  1750     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1751     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1752     default:                         ShouldNotReachHere();
  1753   };
  1755   if (opr1->is_constant() && opr1->type() == T_INT) {
  1756     Register dest = result->as_register();
  1757     // load up first part of constant before branch
  1758     // and do the rest in the delay slot.
  1759     if (!Assembler::is_simm13(opr1->as_jint())) {
  1760       __ sethi(opr1->as_jint(), dest);
  1762   } else if (opr1->is_constant()) {
  1763     const2reg(opr1, result, lir_patch_none, NULL);
  1764   } else if (opr1->is_register()) {
  1765     reg2reg(opr1, result);
  1766   } else if (opr1->is_stack()) {
  1767     stack2reg(opr1, result, result->type());
  1768   } else {
  1769     ShouldNotReachHere();
  1771   Label skip;
  1772   __ br(acond, false, Assembler::pt, skip);
  1773   if (opr1->is_constant() && opr1->type() == T_INT) {
  1774     Register dest = result->as_register();
  1775     if (Assembler::is_simm13(opr1->as_jint())) {
  1776       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1777     } else {
  1778       // the sethi has been done above, so just put in the low 10 bits
  1779       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1781   } else {
  1782     // can't do anything useful in the delay slot
  1783     __ delayed()->nop();
  1785   if (opr2->is_constant()) {
  1786     const2reg(opr2, result, lir_patch_none, NULL);
  1787   } else if (opr2->is_register()) {
  1788     reg2reg(opr2, result);
  1789   } else if (opr2->is_stack()) {
  1790     stack2reg(opr2, result, result->type());
  1791   } else {
  1792     ShouldNotReachHere();
  1794   __ bind(skip);
  1798 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1799   assert(info == NULL, "unused on this code path");
  1800   assert(left->is_register(), "wrong items state");
  1801   assert(dest->is_register(), "wrong items state");
  1803   if (right->is_register()) {
  1804     if (dest->is_float_kind()) {
  1806       FloatRegister lreg, rreg, res;
  1807       FloatRegisterImpl::Width w;
  1808       if (right->is_single_fpu()) {
  1809         w = FloatRegisterImpl::S;
  1810         lreg = left->as_float_reg();
  1811         rreg = right->as_float_reg();
  1812         res  = dest->as_float_reg();
  1813       } else {
  1814         w = FloatRegisterImpl::D;
  1815         lreg = left->as_double_reg();
  1816         rreg = right->as_double_reg();
  1817         res  = dest->as_double_reg();
  1820       switch (code) {
  1821         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1822         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1823         case lir_mul: // fall through
  1824         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1825         case lir_div: // fall through
  1826         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1827         default: ShouldNotReachHere();
  1830     } else if (dest->is_double_cpu()) {
  1831 #ifdef _LP64
  1832       Register dst_lo = dest->as_register_lo();
  1833       Register op1_lo = left->as_pointer_register();
  1834       Register op2_lo = right->as_pointer_register();
  1836       switch (code) {
  1837         case lir_add:
  1838           __ add(op1_lo, op2_lo, dst_lo);
  1839           break;
  1841         case lir_sub:
  1842           __ sub(op1_lo, op2_lo, dst_lo);
  1843           break;
  1845         default: ShouldNotReachHere();
  1847 #else
  1848       Register op1_lo = left->as_register_lo();
  1849       Register op1_hi = left->as_register_hi();
  1850       Register op2_lo = right->as_register_lo();
  1851       Register op2_hi = right->as_register_hi();
  1852       Register dst_lo = dest->as_register_lo();
  1853       Register dst_hi = dest->as_register_hi();
  1855       switch (code) {
  1856         case lir_add:
  1857           __ addcc(op1_lo, op2_lo, dst_lo);
  1858           __ addc (op1_hi, op2_hi, dst_hi);
  1859           break;
  1861         case lir_sub:
  1862           __ subcc(op1_lo, op2_lo, dst_lo);
  1863           __ subc (op1_hi, op2_hi, dst_hi);
  1864           break;
  1866         default: ShouldNotReachHere();
  1868 #endif
  1869     } else {
  1870       assert (right->is_single_cpu(), "Just Checking");
  1872       Register lreg = left->as_register();
  1873       Register res  = dest->as_register();
  1874       Register rreg = right->as_register();
  1875       switch (code) {
  1876         case lir_add:  __ add  (lreg, rreg, res); break;
  1877         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1878         case lir_mul:  __ mult (lreg, rreg, res); break;
  1879         default: ShouldNotReachHere();
  1882   } else {
  1883     assert (right->is_constant(), "must be constant");
  1885     if (dest->is_single_cpu()) {
  1886       Register lreg = left->as_register();
  1887       Register res  = dest->as_register();
  1888       int    simm13 = right->as_constant_ptr()->as_jint();
  1890       switch (code) {
  1891         case lir_add:  __ add  (lreg, simm13, res); break;
  1892         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1893         case lir_mul:  __ mult (lreg, simm13, res); break;
  1894         default: ShouldNotReachHere();
  1896     } else {
  1897       Register lreg = left->as_pointer_register();
  1898       Register res  = dest->as_register_lo();
  1899       long con = right->as_constant_ptr()->as_jlong();
  1900       assert(Assembler::is_simm13(con), "must be simm13");
  1902       switch (code) {
  1903         case lir_add:  __ add  (lreg, (int)con, res); break;
  1904         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1905         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1906         default: ShouldNotReachHere();
  1913 void LIR_Assembler::fpop() {
  1914   // do nothing
  1918 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1919   switch (code) {
  1920     case lir_sin:
  1921     case lir_tan:
  1922     case lir_cos: {
  1923       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1924       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1925       break;
  1927     case lir_sqrt: {
  1928       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1929       FloatRegister src_reg = value->as_double_reg();
  1930       FloatRegister dst_reg = dest->as_double_reg();
  1931       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1932       break;
  1934     case lir_abs: {
  1935       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1936       FloatRegister src_reg = value->as_double_reg();
  1937       FloatRegister dst_reg = dest->as_double_reg();
  1938       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1939       break;
  1941     default: {
  1942       ShouldNotReachHere();
  1943       break;
  1949 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1950   if (right->is_constant()) {
  1951     if (dest->is_single_cpu()) {
  1952       int simm13 = right->as_constant_ptr()->as_jint();
  1953       switch (code) {
  1954         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1955         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1956         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1957         default: ShouldNotReachHere();
  1959     } else {
  1960       long c = right->as_constant_ptr()->as_jlong();
  1961       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1962       int simm13 = (int)c;
  1963       switch (code) {
  1964         case lir_logic_and:
  1965 #ifndef _LP64
  1966           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1967 #endif
  1968           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1969           break;
  1971         case lir_logic_or:
  1972 #ifndef _LP64
  1973           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1974 #endif
  1975           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1976           break;
  1978         case lir_logic_xor:
  1979 #ifndef _LP64
  1980           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1981 #endif
  1982           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1983           break;
  1985         default: ShouldNotReachHere();
  1988   } else {
  1989     assert(right->is_register(), "right should be in register");
  1991     if (dest->is_single_cpu()) {
  1992       switch (code) {
  1993         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1994         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1995         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1996         default: ShouldNotReachHere();
  1998     } else {
  1999 #ifdef _LP64
  2000       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2001                                                                         left->as_register_lo();
  2002       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2003                                                                           right->as_register_lo();
  2005       switch (code) {
  2006         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2007         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2008         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2009         default: ShouldNotReachHere();
  2011 #else
  2012       switch (code) {
  2013         case lir_logic_and:
  2014           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2015           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2016           break;
  2018         case lir_logic_or:
  2019           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2020           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2021           break;
  2023         case lir_logic_xor:
  2024           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2025           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2026           break;
  2028         default: ShouldNotReachHere();
  2030 #endif
  2036 int LIR_Assembler::shift_amount(BasicType t) {
  2037   int elem_size = type2aelembytes(t);
  2038   switch (elem_size) {
  2039     case 1 : return 0;
  2040     case 2 : return 1;
  2041     case 4 : return 2;
  2042     case 8 : return 3;
  2044   ShouldNotReachHere();
  2045   return -1;
  2049 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2050   assert(exceptionOop->as_register() == Oexception, "should match");
  2051   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
  2053   info->add_register_oop(exceptionOop);
  2055   if (unwind) {
  2056     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
  2057     __ delayed()->nop();
  2058   } else {
  2059     // reuse the debug info from the safepoint poll for the throw op itself
  2060     address pc_for_athrow  = __ pc();
  2061     int pc_for_athrow_offset = __ offset();
  2062     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2063     __ set(pc_for_athrow, Oissuing_pc, rspec);
  2064     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2066     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2067     __ delayed()->nop();
  2072 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2073   Register src = op->src()->as_register();
  2074   Register dst = op->dst()->as_register();
  2075   Register src_pos = op->src_pos()->as_register();
  2076   Register dst_pos = op->dst_pos()->as_register();
  2077   Register length  = op->length()->as_register();
  2078   Register tmp = op->tmp()->as_register();
  2079   Register tmp2 = O7;
  2081   int flags = op->flags();
  2082   ciArrayKlass* default_type = op->expected_type();
  2083   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2084   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2086   // set up the arraycopy stub information
  2087   ArrayCopyStub* stub = op->stub();
  2089   // always do stub if no type information is available.  it's ok if
  2090   // the known type isn't loaded since the code sanity checks
  2091   // in debug mode and the type isn't required when we know the exact type
  2092   // also check that the type is an array type.
  2093   // We also, for now, always call the stub if the barrier set requires a
  2094   // write_ref_pre barrier (which the stub does, but none of the optimized
  2095   // cases currently does).
  2096   if (op->expected_type() == NULL ||
  2097       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2098     __ mov(src,     O0);
  2099     __ mov(src_pos, O1);
  2100     __ mov(dst,     O2);
  2101     __ mov(dst_pos, O3);
  2102     __ mov(length,  O4);
  2103     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2105     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2106     __ delayed()->nop();
  2107     __ bind(*stub->continuation());
  2108     return;
  2111   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2113   // make sure src and dst are non-null and load array length
  2114   if (flags & LIR_OpArrayCopy::src_null_check) {
  2115     __ tst(src);
  2116     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2117     __ delayed()->nop();
  2120   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2121     __ tst(dst);
  2122     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2123     __ delayed()->nop();
  2126   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2127     // test src_pos register
  2128     __ tst(src_pos);
  2129     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2130     __ delayed()->nop();
  2133   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2134     // test dst_pos register
  2135     __ tst(dst_pos);
  2136     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2137     __ delayed()->nop();
  2140   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2141     // make sure length isn't negative
  2142     __ tst(length);
  2143     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2144     __ delayed()->nop();
  2147   if (flags & LIR_OpArrayCopy::src_range_check) {
  2148     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2149     __ add(length, src_pos, tmp);
  2150     __ cmp(tmp2, tmp);
  2151     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2152     __ delayed()->nop();
  2155   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2156     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2157     __ add(length, dst_pos, tmp);
  2158     __ cmp(tmp2, tmp);
  2159     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2160     __ delayed()->nop();
  2163   if (flags & LIR_OpArrayCopy::type_check) {
  2164     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2165     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2166     __ cmp(tmp, tmp2);
  2167     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2168     __ delayed()->nop();
  2171 #ifdef ASSERT
  2172   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2173     // Sanity check the known type with the incoming class.  For the
  2174     // primitive case the types must match exactly with src.klass and
  2175     // dst.klass each exactly matching the default type.  For the
  2176     // object array case, if no type check is needed then either the
  2177     // dst type is exactly the expected type and the src type is a
  2178     // subtype which we can't check or src is the same array as dst
  2179     // but not necessarily exactly of type default_type.
  2180     Label known_ok, halt;
  2181     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2182     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2183     if (basic_type != T_OBJECT) {
  2184       __ cmp(tmp, tmp2);
  2185       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2186       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2187       __ cmp(tmp, tmp2);
  2188       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2189       __ delayed()->nop();
  2190     } else {
  2191       __ cmp(tmp, tmp2);
  2192       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2193       __ delayed()->cmp(src, dst);
  2194       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2195       __ delayed()->nop();
  2197     __ bind(halt);
  2198     __ stop("incorrect type information in arraycopy");
  2199     __ bind(known_ok);
  2201 #endif
  2203   int shift = shift_amount(basic_type);
  2205   Register src_ptr = O0;
  2206   Register dst_ptr = O1;
  2207   Register len     = O2;
  2209   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2210   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2211   if (shift == 0) {
  2212     __ add(src_ptr, src_pos, src_ptr);
  2213   } else {
  2214     __ sll(src_pos, shift, tmp);
  2215     __ add(src_ptr, tmp, src_ptr);
  2218   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2219   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2220   if (shift == 0) {
  2221     __ add(dst_ptr, dst_pos, dst_ptr);
  2222   } else {
  2223     __ sll(dst_pos, shift, tmp);
  2224     __ add(dst_ptr, tmp, dst_ptr);
  2227   if (basic_type != T_OBJECT) {
  2228     if (shift == 0) {
  2229       __ mov(length, len);
  2230     } else {
  2231       __ sll(length, shift, len);
  2233     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2234   } else {
  2235     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2236     __ mov(length, len);
  2237     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2240   __ bind(*stub->continuation());
  2244 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2245   if (dest->is_single_cpu()) {
  2246 #ifdef _LP64
  2247     if (left->type() == T_OBJECT) {
  2248       switch (code) {
  2249         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2250         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2251         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2252         default: ShouldNotReachHere();
  2254     } else
  2255 #endif
  2256       switch (code) {
  2257         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2258         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2259         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2260         default: ShouldNotReachHere();
  2262   } else {
  2263 #ifdef _LP64
  2264     switch (code) {
  2265       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2266       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2267       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2268       default: ShouldNotReachHere();
  2270 #else
  2271     switch (code) {
  2272       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2273       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2274       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2275       default: ShouldNotReachHere();
  2277 #endif
  2282 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2283 #ifdef _LP64
  2284   if (left->type() == T_OBJECT) {
  2285     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2286     Register l = left->as_register();
  2287     Register d = dest->as_register_lo();
  2288     switch (code) {
  2289       case lir_shl:  __ sllx  (l, count, d); break;
  2290       case lir_shr:  __ srax  (l, count, d); break;
  2291       case lir_ushr: __ srlx  (l, count, d); break;
  2292       default: ShouldNotReachHere();
  2294     return;
  2296 #endif
  2298   if (dest->is_single_cpu()) {
  2299     count = count & 0x1F; // Java spec
  2300     switch (code) {
  2301       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2302       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2303       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2304       default: ShouldNotReachHere();
  2306   } else if (dest->is_double_cpu()) {
  2307     count = count & 63; // Java spec
  2308     switch (code) {
  2309       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2310       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2311       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2312       default: ShouldNotReachHere();
  2314   } else {
  2315     ShouldNotReachHere();
  2320 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2321   assert(op->tmp1()->as_register()  == G1 &&
  2322          op->tmp2()->as_register()  == G3 &&
  2323          op->tmp3()->as_register()  == G4 &&
  2324          op->obj()->as_register()   == O0 &&
  2325          op->klass()->as_register() == G5, "must be");
  2326   if (op->init_check()) {
  2327     __ ld(op->klass()->as_register(),
  2328           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2329           op->tmp1()->as_register());
  2330     add_debug_info_for_null_check_here(op->stub()->info());
  2331     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2332     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2333     __ delayed()->nop();
  2335   __ allocate_object(op->obj()->as_register(),
  2336                      op->tmp1()->as_register(),
  2337                      op->tmp2()->as_register(),
  2338                      op->tmp3()->as_register(),
  2339                      op->header_size(),
  2340                      op->object_size(),
  2341                      op->klass()->as_register(),
  2342                      *op->stub()->entry());
  2343   __ bind(*op->stub()->continuation());
  2344   __ verify_oop(op->obj()->as_register());
  2348 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2349   assert(op->tmp1()->as_register()  == G1 &&
  2350          op->tmp2()->as_register()  == G3 &&
  2351          op->tmp3()->as_register()  == G4 &&
  2352          op->tmp4()->as_register()  == O1 &&
  2353          op->klass()->as_register() == G5, "must be");
  2354   if (UseSlowPath ||
  2355       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2356       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2357     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
  2358     __ delayed()->nop();
  2359   } else {
  2360     __ allocate_array(op->obj()->as_register(),
  2361                       op->len()->as_register(),
  2362                       op->tmp1()->as_register(),
  2363                       op->tmp2()->as_register(),
  2364                       op->tmp3()->as_register(),
  2365                       arrayOopDesc::header_size(op->type()),
  2366                       type2aelembytes(op->type()),
  2367                       op->klass()->as_register(),
  2368                       *op->stub()->entry());
  2370   __ bind(*op->stub()->continuation());
  2374 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2375   LIR_Code code = op->code();
  2376   if (code == lir_store_check) {
  2377     Register value = op->object()->as_register();
  2378     Register array = op->array()->as_register();
  2379     Register k_RInfo = op->tmp1()->as_register();
  2380     Register klass_RInfo = op->tmp2()->as_register();
  2381     Register Rtmp1 = op->tmp3()->as_register();
  2383     __ verify_oop(value);
  2385     CodeStub* stub = op->stub();
  2386     Label done;
  2387     __ cmp(value, 0);
  2388     __ br(Assembler::equal, false, Assembler::pn, done);
  2389     __ delayed()->nop();
  2390     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2391     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2393     // get instance klass
  2394     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2395     // perform the fast part of the checking logic
  2396     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
  2398     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2399     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2400     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2401     __ delayed()->nop();
  2402     __ cmp(G3, 0);
  2403     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2404     __ delayed()->nop();
  2405     __ bind(done);
  2406   } else if (op->code() == lir_checkcast) {
  2407     // we always need a stub for the failure case.
  2408     CodeStub* stub = op->stub();
  2409     Register obj = op->object()->as_register();
  2410     Register k_RInfo = op->tmp1()->as_register();
  2411     Register klass_RInfo = op->tmp2()->as_register();
  2412     Register dst = op->result_opr()->as_register();
  2413     Register Rtmp1 = op->tmp3()->as_register();
  2414     ciKlass* k = op->klass();
  2416     if (obj == k_RInfo) {
  2417       k_RInfo = klass_RInfo;
  2418       klass_RInfo = obj;
  2420     if (op->profiled_method() != NULL) {
  2421       ciMethod* method = op->profiled_method();
  2422       int bci          = op->profiled_bci();
  2424       // We need two temporaries to perform this operation on SPARC,
  2425       // so to keep things simple we perform a redundant test here
  2426       Label profile_done;
  2427       __ cmp(obj, 0);
  2428       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
  2429       __ delayed()->nop();
  2430       // Object is null; update methodDataOop
  2431       ciMethodData* md = method->method_data();
  2432       if (md == NULL) {
  2433         bailout("out of memory building methodDataOop");
  2434         return;
  2436       ciProfileData* data = md->bci_to_data(bci);
  2437       assert(data != NULL,       "need data for checkcast");
  2438       assert(data->is_BitData(), "need BitData for checkcast");
  2439       Register mdo      = k_RInfo;
  2440       Register data_val = Rtmp1;
  2441       jobject2reg(md->constant_encoding(), mdo);
  2443       int mdo_offset_bias = 0;
  2444       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2445         // The offset is large so bias the mdo by the base of the slot so
  2446         // that the ld can use simm13s to reference the slots of the data
  2447         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2448         __ set(mdo_offset_bias, data_val);
  2449         __ add(mdo, data_val, mdo);
  2453       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2454       __ ldub(flags_addr, data_val);
  2455       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2456       __ stb(data_val, flags_addr);
  2457       __ bind(profile_done);
  2460     Label done;
  2461     // patching may screw with our temporaries on sparc,
  2462     // so let's do it before loading the class
  2463     if (k->is_loaded()) {
  2464       jobject2reg(k->constant_encoding(), k_RInfo);
  2465     } else {
  2466       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2468     assert(obj != k_RInfo, "must be different");
  2469     __ cmp(obj, 0);
  2470     __ br(Assembler::equal, false, Assembler::pn, done);
  2471     __ delayed()->nop();
  2473     // get object class
  2474     // not a safepoint as obj null check happens earlier
  2475     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2476     if (op->fast_check()) {
  2477       assert_different_registers(klass_RInfo, k_RInfo);
  2478       __ cmp(k_RInfo, klass_RInfo);
  2479       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2480       __ delayed()->nop();
  2481       __ bind(done);
  2482     } else {
  2483       bool need_slow_path = true;
  2484       if (k->is_loaded()) {
  2485         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2486           need_slow_path = false;
  2487         // perform the fast part of the checking logic
  2488         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2489                                          (need_slow_path ? &done : NULL),
  2490                                          stub->entry(), NULL,
  2491                                          RegisterOrConstant(k->super_check_offset()));
  2492       } else {
  2493         // perform the fast part of the checking logic
  2494         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
  2495                                          &done, stub->entry(), NULL);
  2497       if (need_slow_path) {
  2498         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2499         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2500         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2501         __ delayed()->nop();
  2502         __ cmp(G3, 0);
  2503         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2504         __ delayed()->nop();
  2506       __ bind(done);
  2508     __ mov(obj, dst);
  2509   } else if (code == lir_instanceof) {
  2510     Register obj = op->object()->as_register();
  2511     Register k_RInfo = op->tmp1()->as_register();
  2512     Register klass_RInfo = op->tmp2()->as_register();
  2513     Register dst = op->result_opr()->as_register();
  2514     Register Rtmp1 = op->tmp3()->as_register();
  2515     ciKlass* k = op->klass();
  2517     Label done;
  2518     if (obj == k_RInfo) {
  2519       k_RInfo = klass_RInfo;
  2520       klass_RInfo = obj;
  2522     // patching may screw with our temporaries on sparc,
  2523     // so let's do it before loading the class
  2524     if (k->is_loaded()) {
  2525       jobject2reg(k->constant_encoding(), k_RInfo);
  2526     } else {
  2527       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2529     assert(obj != k_RInfo, "must be different");
  2530     __ cmp(obj, 0);
  2531     __ br(Assembler::equal, true, Assembler::pn, done);
  2532     __ delayed()->set(0, dst);
  2534     // get object class
  2535     // not a safepoint as obj null check happens earlier
  2536     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2537     if (op->fast_check()) {
  2538       __ cmp(k_RInfo, klass_RInfo);
  2539       __ br(Assembler::equal, true, Assembler::pt, done);
  2540       __ delayed()->set(1, dst);
  2541       __ set(0, dst);
  2542       __ bind(done);
  2543     } else {
  2544       bool need_slow_path = true;
  2545       if (k->is_loaded()) {
  2546         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2547           need_slow_path = false;
  2548         // perform the fast part of the checking logic
  2549         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
  2550                                          (need_slow_path ? &done : NULL),
  2551                                          (need_slow_path ? &done : NULL), NULL,
  2552                                          RegisterOrConstant(k->super_check_offset()),
  2553                                          dst);
  2554       } else {
  2555         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  2556         // perform the fast part of the checking logic
  2557         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
  2558                                          &done, &done, NULL,
  2559                                          RegisterOrConstant(-1),
  2560                                          dst);
  2562       if (need_slow_path) {
  2563         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2564         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2565         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2566         __ delayed()->nop();
  2567         __ mov(G3, dst);
  2569       __ bind(done);
  2571   } else {
  2572     ShouldNotReachHere();
  2578 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2579   if (op->code() == lir_cas_long) {
  2580     assert(VM_Version::supports_cx8(), "wrong machine");
  2581     Register addr = op->addr()->as_pointer_register();
  2582     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2583     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2584     Register new_value_lo = op->new_value()->as_register_lo();
  2585     Register new_value_hi = op->new_value()->as_register_hi();
  2586     Register t1 = op->tmp1()->as_register();
  2587     Register t2 = op->tmp2()->as_register();
  2588 #ifdef _LP64
  2589     __ mov(cmp_value_lo, t1);
  2590     __ mov(new_value_lo, t2);
  2591 #else
  2592     // move high and low halves of long values into single registers
  2593     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2594     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2595     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2596     __ sllx(new_value_hi, 32, t2);
  2597     __ srl(new_value_lo, 0, new_value_lo);
  2598     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2599 #endif
  2600     // perform the compare and swap operation
  2601     __ casx(addr, t1, t2);
  2602     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2603     // overwritten with the original value in "addr" and will be equal to t1.
  2604     __ cmp(t1, t2);
  2606   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2607     Register addr = op->addr()->as_pointer_register();
  2608     Register cmp_value = op->cmp_value()->as_register();
  2609     Register new_value = op->new_value()->as_register();
  2610     Register t1 = op->tmp1()->as_register();
  2611     Register t2 = op->tmp2()->as_register();
  2612     __ mov(cmp_value, t1);
  2613     __ mov(new_value, t2);
  2614 #ifdef _LP64
  2615     if (op->code() == lir_cas_obj) {
  2616       __ casx(addr, t1, t2);
  2617     } else
  2618 #endif
  2620         __ cas(addr, t1, t2);
  2622     __ cmp(t1, t2);
  2623   } else {
  2624     Unimplemented();
  2628 void LIR_Assembler::set_24bit_FPU() {
  2629   Unimplemented();
  2633 void LIR_Assembler::reset_FPU() {
  2634   Unimplemented();
  2638 void LIR_Assembler::breakpoint() {
  2639   __ breakpoint_trap();
  2643 void LIR_Assembler::push(LIR_Opr opr) {
  2644   Unimplemented();
  2648 void LIR_Assembler::pop(LIR_Opr opr) {
  2649   Unimplemented();
  2653 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2654   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2655   Register dst = dst_opr->as_register();
  2656   Register reg = mon_addr.base();
  2657   int offset = mon_addr.disp();
  2658   // compute pointer to BasicLock
  2659   if (mon_addr.is_simm13()) {
  2660     __ add(reg, offset, dst);
  2661   } else {
  2662     __ set(offset, dst);
  2663     __ add(dst, reg, dst);
  2668 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2669   Register obj = op->obj_opr()->as_register();
  2670   Register hdr = op->hdr_opr()->as_register();
  2671   Register lock = op->lock_opr()->as_register();
  2673   // obj may not be an oop
  2674   if (op->code() == lir_lock) {
  2675     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2676     if (UseFastLocking) {
  2677       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2678       // add debug info for NullPointerException only if one is possible
  2679       if (op->info() != NULL) {
  2680         add_debug_info_for_null_check_here(op->info());
  2682       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2683     } else {
  2684       // always do slow locking
  2685       // note: the slow locking code could be inlined here, however if we use
  2686       //       slow locking, speed doesn't matter anyway and this solution is
  2687       //       simpler and requires less duplicated code - additionally, the
  2688       //       slow locking code is the same in either case which simplifies
  2689       //       debugging
  2690       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2691       __ delayed()->nop();
  2693   } else {
  2694     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2695     if (UseFastLocking) {
  2696       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2697       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2698     } else {
  2699       // always do slow unlocking
  2700       // note: the slow unlocking code could be inlined here, however if we use
  2701       //       slow unlocking, speed doesn't matter anyway and this solution is
  2702       //       simpler and requires less duplicated code - additionally, the
  2703       //       slow unlocking code is the same in either case which simplifies
  2704       //       debugging
  2705       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2706       __ delayed()->nop();
  2709   __ bind(*op->stub()->continuation());
  2713 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2714   ciMethod* method = op->profiled_method();
  2715   int bci          = op->profiled_bci();
  2717   // Update counter for all call types
  2718   ciMethodData* md = method->method_data();
  2719   if (md == NULL) {
  2720     bailout("out of memory building methodDataOop");
  2721     return;
  2723   ciProfileData* data = md->bci_to_data(bci);
  2724   assert(data->is_CounterData(), "need CounterData for calls");
  2725   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2726   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2727   Register mdo  = op->mdo()->as_register();
  2728   Register tmp1 = op->tmp1()->as_register();
  2729   jobject2reg(md->constant_encoding(), mdo);
  2730   int mdo_offset_bias = 0;
  2731   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2732                             data->size_in_bytes())) {
  2733     // The offset is large so bias the mdo by the base of the slot so
  2734     // that the ld can use simm13s to reference the slots of the data
  2735     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2736     __ set(mdo_offset_bias, O7);
  2737     __ add(mdo, O7, mdo);
  2740   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2741   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2742   // Perform additional virtual call profiling for invokevirtual and
  2743   // invokeinterface bytecodes
  2744   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2745       Tier1ProfileVirtualCalls) {
  2746     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2747     Register recv = op->recv()->as_register();
  2748     assert_different_registers(mdo, tmp1, recv);
  2749     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2750     ciKlass* known_klass = op->known_holder();
  2751     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2752       // We know the type that will be seen at this call site; we can
  2753       // statically update the methodDataOop rather than needing to do
  2754       // dynamic tests on the receiver type
  2756       // NOTE: we should probably put a lock around this search to
  2757       // avoid collisions by concurrent compilations
  2758       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2759       uint i;
  2760       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2761         ciKlass* receiver = vc_data->receiver(i);
  2762         if (known_klass->equals(receiver)) {
  2763           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2764                                                          VirtualCallData::receiver_count_offset(i)) -
  2765                             mdo_offset_bias);
  2766           __ lduw(data_addr, tmp1);
  2767           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2768           __ stw(tmp1, data_addr);
  2769           return;
  2773       // Receiver type not found in profile data; select an empty slot
  2775       // Note that this is less efficient than it should be because it
  2776       // always does a write to the receiver part of the
  2777       // VirtualCallData rather than just the first time
  2778       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2779         ciKlass* receiver = vc_data->receiver(i);
  2780         if (receiver == NULL) {
  2781           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2782                             mdo_offset_bias);
  2783           jobject2reg(known_klass->constant_encoding(), tmp1);
  2784           __ st_ptr(tmp1, recv_addr);
  2785           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2786                             mdo_offset_bias);
  2787           __ lduw(data_addr, tmp1);
  2788           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2789           __ stw(tmp1, data_addr);
  2790           return;
  2793     } else {
  2794       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2795       Label update_done;
  2796       uint i;
  2797       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2798         Label next_test;
  2799         // See if the receiver is receiver[n].
  2800         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2801                               mdo_offset_bias);
  2802         __ ld_ptr(receiver_addr, tmp1);
  2803         __ verify_oop(tmp1);
  2804         __ cmp(recv, tmp1);
  2805         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2806         __ delayed()->nop();
  2807         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2808                           mdo_offset_bias);
  2809         __ lduw(data_addr, tmp1);
  2810         __ add(tmp1, DataLayout::counter_increment, tmp1);
  2811         __ stw(tmp1, data_addr);
  2812         __ br(Assembler::always, false, Assembler::pt, update_done);
  2813         __ delayed()->nop();
  2814         __ bind(next_test);
  2817       // Didn't find receiver; find next empty slot and fill it in
  2818       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2819         Label next_test;
  2820         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2821                           mdo_offset_bias);
  2822         load(recv_addr, tmp1, T_OBJECT);
  2823         __ tst(tmp1);
  2824         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2825         __ delayed()->nop();
  2826         __ st_ptr(recv, recv_addr);
  2827         __ set(DataLayout::counter_increment, tmp1);
  2828         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2829                   mdo_offset_bias);
  2830         __ br(Assembler::always, false, Assembler::pt, update_done);
  2831         __ delayed()->nop();
  2832         __ bind(next_test);
  2834       // Receiver did not match any saved receiver and there is no empty row for it.
  2835       // Increment total counter to indicate polymorphic case.
  2836       __ lduw(counter_addr, tmp1);
  2837       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2838       __ stw(tmp1, counter_addr);
  2840       __ bind(update_done);
  2842   } else {
  2843     // Static call
  2844     __ lduw(counter_addr, tmp1);
  2845     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2846     __ stw(tmp1, counter_addr);
  2851 void LIR_Assembler::align_backward_branch_target() {
  2852   __ align(16);
  2856 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2857   // make sure we are expecting a delay
  2858   // this has the side effect of clearing the delay state
  2859   // so we can use _masm instead of _masm->delayed() to do the
  2860   // code generation.
  2861   __ delayed();
  2863   // make sure we only emit one instruction
  2864   int offset = code_offset();
  2865   op->delay_op()->emit_code(this);
  2866 #ifdef ASSERT
  2867   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2868     op->delay_op()->print();
  2870   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2871          "only one instruction can go in a delay slot");
  2872 #endif
  2874   // we may also be emitting the call info for the instruction
  2875   // which we are the delay slot of.
  2876   CodeEmitInfo * call_info = op->call_info();
  2877   if (call_info) {
  2878     add_call_info(code_offset(), call_info);
  2881   if (VerifyStackAtCalls) {
  2882     _masm->sub(FP, SP, O7);
  2883     _masm->cmp(O7, initial_frame_size_in_bytes());
  2884     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  2889 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  2890   assert(left->is_register(), "can only handle registers");
  2892   if (left->is_single_cpu()) {
  2893     __ neg(left->as_register(), dest->as_register());
  2894   } else if (left->is_single_fpu()) {
  2895     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  2896   } else if (left->is_double_fpu()) {
  2897     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  2898   } else {
  2899     assert (left->is_double_cpu(), "Must be a long");
  2900     Register Rlow = left->as_register_lo();
  2901     Register Rhi = left->as_register_hi();
  2902 #ifdef _LP64
  2903     __ sub(G0, Rlow, dest->as_register_lo());
  2904 #else
  2905     __ subcc(G0, Rlow, dest->as_register_lo());
  2906     __ subc (G0, Rhi,  dest->as_register_hi());
  2907 #endif
  2912 void LIR_Assembler::fxch(int i) {
  2913   Unimplemented();
  2916 void LIR_Assembler::fld(int i) {
  2917   Unimplemented();
  2920 void LIR_Assembler::ffree(int i) {
  2921   Unimplemented();
  2924 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  2925                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  2927   // if tmp is invalid, then the function being called doesn't destroy the thread
  2928   if (tmp->is_valid()) {
  2929     __ save_thread(tmp->as_register());
  2931   __ call(dest, relocInfo::runtime_call_type);
  2932   __ delayed()->nop();
  2933   if (info != NULL) {
  2934     add_call_info_here(info);
  2936   if (tmp->is_valid()) {
  2937     __ restore_thread(tmp->as_register());
  2940 #ifdef ASSERT
  2941   __ verify_thread();
  2942 #endif // ASSERT
  2946 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  2947 #ifdef _LP64
  2948   ShouldNotReachHere();
  2949 #endif
  2951   NEEDS_CLEANUP;
  2952   if (type == T_LONG) {
  2953     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  2955     // (extended to allow indexed as well as constant displaced for JSR-166)
  2956     Register idx = noreg; // contains either constant offset or index
  2958     int disp = mem_addr->disp();
  2959     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  2960       if (!Assembler::is_simm13(disp)) {
  2961         idx = O7;
  2962         __ set(disp, idx);
  2964     } else {
  2965       assert(disp == 0, "not both indexed and disp");
  2966       idx = mem_addr->index()->as_register();
  2969     int null_check_offset = -1;
  2971     Register base = mem_addr->base()->as_register();
  2972     if (src->is_register() && dest->is_address()) {
  2973       // G4 is high half, G5 is low half
  2974       if (VM_Version::v9_instructions_work()) {
  2975         // clear the top bits of G5, and scale up G4
  2976         __ srl (src->as_register_lo(),  0, G5);
  2977         __ sllx(src->as_register_hi(), 32, G4);
  2978         // combine the two halves into the 64 bits of G4
  2979         __ or3(G4, G5, G4);
  2980         null_check_offset = __ offset();
  2981         if (idx == noreg) {
  2982           __ stx(G4, base, disp);
  2983         } else {
  2984           __ stx(G4, base, idx);
  2986       } else {
  2987         __ mov (src->as_register_hi(), G4);
  2988         __ mov (src->as_register_lo(), G5);
  2989         null_check_offset = __ offset();
  2990         if (idx == noreg) {
  2991           __ std(G4, base, disp);
  2992         } else {
  2993           __ std(G4, base, idx);
  2996     } else if (src->is_address() && dest->is_register()) {
  2997       null_check_offset = __ offset();
  2998       if (VM_Version::v9_instructions_work()) {
  2999         if (idx == noreg) {
  3000           __ ldx(base, disp, G5);
  3001         } else {
  3002           __ ldx(base, idx, G5);
  3004         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3005         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3006       } else {
  3007         if (idx == noreg) {
  3008           __ ldd(base, disp, G4);
  3009         } else {
  3010           __ ldd(base, idx, G4);
  3012         // G4 is high half, G5 is low half
  3013         __ mov (G4, dest->as_register_hi());
  3014         __ mov (G5, dest->as_register_lo());
  3016     } else {
  3017       Unimplemented();
  3019     if (info != NULL) {
  3020       add_debug_info_for_null_check(null_check_offset, info);
  3023   } else {
  3024     // use normal move for all other volatiles since they don't need
  3025     // special handling to remain atomic.
  3026     move_op(src, dest, type, lir_patch_none, info, false, false);
  3030 void LIR_Assembler::membar() {
  3031   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3032   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3035 void LIR_Assembler::membar_acquire() {
  3036   // no-op on TSO
  3039 void LIR_Assembler::membar_release() {
  3040   // no-op on TSO
  3043 // Macro to Pack two sequential registers containing 32 bit values
  3044 // into a single 64 bit register.
  3045 // rs and rs->successor() are packed into rd
  3046 // rd and rs may be the same register.
  3047 // Note: rs and rs->successor() are destroyed.
  3048 void LIR_Assembler::pack64( Register rs, Register rd ) {
  3049   __ sllx(rs, 32, rs);
  3050   __ srl(rs->successor(), 0, rs->successor());
  3051   __ or3(rs, rs->successor(), rd);
  3054 // Macro to unpack a 64 bit value in a register into
  3055 // two sequential registers.
  3056 // rd is unpacked into rd and rd->successor()
  3057 void LIR_Assembler::unpack64( Register rd ) {
  3058   __ mov(rd, rd->successor());
  3059   __ srax(rd, 32, rd);
  3060   __ sra(rd->successor(), 0, rd->successor());
  3064 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3065   LIR_Address* addr = addr_opr->as_address_ptr();
  3066   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3067   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
  3071 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3072   assert(result_reg->is_register(), "check");
  3073   __ mov(G2_thread, result_reg->as_register());
  3077 void LIR_Assembler::peephole(LIR_List* lir) {
  3078   LIR_OpList* inst = lir->instructions_list();
  3079   for (int i = 0; i < inst->length(); i++) {
  3080     LIR_Op* op = inst->at(i);
  3081     switch (op->code()) {
  3082       case lir_cond_float_branch:
  3083       case lir_branch: {
  3084         LIR_OpBranch* branch = op->as_OpBranch();
  3085         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3086         LIR_Op* delay_op = NULL;
  3087         // we'd like to be able to pull following instructions into
  3088         // this slot but we don't know enough to do it safely yet so
  3089         // only optimize block to block control flow.
  3090         if (LIRFillDelaySlots && branch->block()) {
  3091           LIR_Op* prev = inst->at(i - 1);
  3092           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3093             // swap previous instruction into delay slot
  3094             inst->at_put(i - 1, op);
  3095             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3096 #ifndef PRODUCT
  3097             if (LIRTracePeephole) {
  3098               tty->print_cr("delayed");
  3099               inst->at(i - 1)->print();
  3100               inst->at(i)->print();
  3102 #endif
  3103             continue;
  3107         if (!delay_op) {
  3108           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3110         inst->insert_before(i + 1, delay_op);
  3111         break;
  3113       case lir_static_call:
  3114       case lir_virtual_call:
  3115       case lir_icvirtual_call:
  3116       case lir_optvirtual_call: {
  3117         LIR_Op* delay_op = NULL;
  3118         LIR_Op* prev = inst->at(i - 1);
  3119         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3120             (op->code() != lir_virtual_call ||
  3121              !prev->result_opr()->is_single_cpu() ||
  3122              prev->result_opr()->as_register() != O0) &&
  3123             LIR_Assembler::is_single_instruction(prev)) {
  3124           // Only moves without info can be put into the delay slot.
  3125           // Also don't allow the setup of the receiver in the delay
  3126           // slot for vtable calls.
  3127           inst->at_put(i - 1, op);
  3128           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3129 #ifndef PRODUCT
  3130           if (LIRTracePeephole) {
  3131             tty->print_cr("delayed");
  3132             inst->at(i - 1)->print();
  3133             inst->at(i)->print();
  3135 #endif
  3136           continue;
  3139         if (!delay_op) {
  3140           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3141           inst->insert_before(i + 1, delay_op);
  3143         break;
  3152 #undef __

mercurial