src/cpu/x86/vm/x86_32.ad

Fri, 03 Dec 2010 01:34:31 -0800

author
twisti
date
Fri, 03 Dec 2010 01:34:31 -0800
changeset 2350
2f644f85485d
parent 2275
2fe998383789
child 2569
6bbaedb03534
permissions
-rw-r--r--

6961690: load oops from constant table on SPARC
Summary: oops should be loaded from the constant table of an nmethod instead of materializing them with a long code sequence.
Reviewed-by: never, kvn

     1 //
     2 // Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_CC()
   357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   358   unsigned char c = (unsigned char)( f1 | f2 );
   359   cbuf.insts()->emit_int8(c);
   360 }
   362 // EMIT_OPCODE()
   363 void emit_opcode(CodeBuffer &cbuf, int code) {
   364   cbuf.insts()->emit_int8((unsigned char) code);
   365 }
   367 // EMIT_OPCODE() w/ relocation information
   368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   370   emit_opcode(cbuf, code);
   371 }
   373 // EMIT_D8()
   374 void emit_d8(CodeBuffer &cbuf, int d8) {
   375   cbuf.insts()->emit_int8((unsigned char) d8);
   376 }
   378 // EMIT_D16()
   379 void emit_d16(CodeBuffer &cbuf, int d16) {
   380   cbuf.insts()->emit_int16(d16);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   cbuf.insts()->emit_int32(d32);
   386 }
   388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   390         int format) {
   391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   392   cbuf.insts()->emit_int32(d32);
   393 }
   395 // emit 32 bit value and construct relocation entry from RelocationHolder
   396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   397         int format) {
   398 #ifdef ASSERT
   399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   401   }
   402 #endif
   403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   404   cbuf.insts()->emit_int32(d32);
   405 }
   407 // Access stack slot for load or store
   408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   410   if( -128 <= disp && disp <= 127 ) {
   411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   414   } else {
   415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   418   }
   419 }
   421    // eRegI ereg, memory mem) %{    // emit_reg_mem
   422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   423   // There is no index & no scale, use form without SIB byte
   424   if ((index == 0x4) &&
   425       (scale == 0) && (base != ESP_enc)) {
   426     // If no displacement, mode is 0x0; unless base is [EBP]
   427     if ( (displace == 0) && (base != EBP_enc) ) {
   428       emit_rm(cbuf, 0x0, reg_encoding, base);
   429     }
   430     else {                    // If 8-bit displacement, mode 0x1
   431       if ((displace >= -128) && (displace <= 127)
   432           && !(displace_is_oop) ) {
   433         emit_rm(cbuf, 0x1, reg_encoding, base);
   434         emit_d8(cbuf, displace);
   435       }
   436       else {                  // If 32-bit displacement
   437         if (base == -1) { // Special flag for absolute address
   438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   439           // (manual lies; no SIB needed here)
   440           if ( displace_is_oop ) {
   441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   442           } else {
   443             emit_d32      (cbuf, displace);
   444           }
   445         }
   446         else {                // Normal base + offset
   447           emit_rm(cbuf, 0x2, reg_encoding, base);
   448           if ( displace_is_oop ) {
   449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   450           } else {
   451             emit_d32      (cbuf, displace);
   452           }
   453         }
   454       }
   455     }
   456   }
   457   else {                      // Else, encode with the SIB byte
   458     // If no displacement, mode is 0x0; unless base is [EBP]
   459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   461       emit_rm(cbuf, scale, index, base);
   462     }
   463     else {                    // If 8-bit displacement, mode 0x1
   464       if ((displace >= -128) && (displace <= 127)
   465           && !(displace_is_oop) ) {
   466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   467         emit_rm(cbuf, scale, index, base);
   468         emit_d8(cbuf, displace);
   469       }
   470       else {                  // If 32-bit displacement
   471         if (base == 0x04 ) {
   472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   473           emit_rm(cbuf, scale, index, 0x04);
   474         } else {
   475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   476           emit_rm(cbuf, scale, index, base);
   477         }
   478         if ( displace_is_oop ) {
   479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   480         } else {
   481           emit_d32      (cbuf, displace);
   482         }
   483       }
   484     }
   485   }
   486 }
   489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   490   if( dst_encoding == src_encoding ) {
   491     // reg-reg copy, use an empty encoding
   492   } else {
   493     emit_opcode( cbuf, 0x8B );
   494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   495   }
   496 }
   498 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   499   if( dst_encoding == src_encoding ) {
   500     // reg-reg copy, use an empty encoding
   501   } else {
   502     MacroAssembler _masm(&cbuf);
   504     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   505   }
   506 }
   509 //=============================================================================
   510 const bool Matcher::constant_table_absolute_addressing = true;
   511 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   513 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   514   // Empty encoding
   515 }
   517 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   518   return 0;
   519 }
   521 #ifndef PRODUCT
   522 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   523   st->print("# MachConstantBaseNode (empty encoding)");
   524 }
   525 #endif
   528 //=============================================================================
   529 #ifndef PRODUCT
   530 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   531   Compile* C = ra_->C;
   532   if( C->in_24_bit_fp_mode() ) {
   533     st->print("FLDCW  24 bit fpu control word");
   534     st->print_cr(""); st->print("\t");
   535   }
   537   int framesize = C->frame_slots() << LogBytesPerInt;
   538   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   539   // Remove two words for return addr and rbp,
   540   framesize -= 2*wordSize;
   542   // Calls to C2R adapters often do not accept exceptional returns.
   543   // We require that their callers must bang for them.  But be careful, because
   544   // some VM calls (such as call site linkage) can use several kilobytes of
   545   // stack.  But the stack safety zone should account for that.
   546   // See bugs 4446381, 4468289, 4497237.
   547   if (C->need_stack_bang(framesize)) {
   548     st->print_cr("# stack bang"); st->print("\t");
   549   }
   550   st->print_cr("PUSHL  EBP"); st->print("\t");
   552   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   553     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   554     st->print_cr(""); st->print("\t");
   555     framesize -= wordSize;
   556   }
   558   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   559     if (framesize) {
   560       st->print("SUB    ESP,%d\t# Create frame",framesize);
   561     }
   562   } else {
   563     st->print("SUB    ESP,%d\t# Create frame",framesize);
   564   }
   565 }
   566 #endif
   569 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   570   Compile* C = ra_->C;
   572   if (UseSSE >= 2 && VerifyFPU) {
   573     MacroAssembler masm(&cbuf);
   574     masm.verify_FPU(0, "FPU stack must be clean on entry");
   575   }
   577   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   578   // NativeJump::patch_verified_entry will be able to patch out the entry
   579   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   580   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   581   // 6 bytes. So if we don't do the fldcw or the push then we must
   582   // use the 6 byte frame allocation even if we have no frame. :-(
   583   // If method sets FPU control word do it now
   584   if( C->in_24_bit_fp_mode() ) {
   585     MacroAssembler masm(&cbuf);
   586     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   587   }
   589   int framesize = C->frame_slots() << LogBytesPerInt;
   590   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   591   // Remove two words for return addr and rbp,
   592   framesize -= 2*wordSize;
   594   // Calls to C2R adapters often do not accept exceptional returns.
   595   // We require that their callers must bang for them.  But be careful, because
   596   // some VM calls (such as call site linkage) can use several kilobytes of
   597   // stack.  But the stack safety zone should account for that.
   598   // See bugs 4446381, 4468289, 4497237.
   599   if (C->need_stack_bang(framesize)) {
   600     MacroAssembler masm(&cbuf);
   601     masm.generate_stack_overflow_check(framesize);
   602   }
   604   // We always push rbp, so that on return to interpreter rbp, will be
   605   // restored correctly and we can correct the stack.
   606   emit_opcode(cbuf, 0x50 | EBP_enc);
   608   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   609     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   610     emit_d32(cbuf, 0xbadb100d);
   611     framesize -= wordSize;
   612   }
   614   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   615     if (framesize) {
   616       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   617       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   618       emit_d8(cbuf, framesize);
   619     }
   620   } else {
   621     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   622     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   623     emit_d32(cbuf, framesize);
   624   }
   625   C->set_frame_complete(cbuf.insts_size());
   627 #ifdef ASSERT
   628   if (VerifyStackAtCalls) {
   629     Label L;
   630     MacroAssembler masm(&cbuf);
   631     masm.push(rax);
   632     masm.mov(rax, rsp);
   633     masm.andptr(rax, StackAlignmentInBytes-1);
   634     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   635     masm.pop(rax);
   636     masm.jcc(Assembler::equal, L);
   637     masm.stop("Stack is not properly aligned!");
   638     masm.bind(L);
   639   }
   640 #endif
   642 }
   644 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   645   return MachNode::size(ra_); // too many variables; just compute it the hard way
   646 }
   648 int MachPrologNode::reloc() const {
   649   return 0; // a large enough number
   650 }
   652 //=============================================================================
   653 #ifndef PRODUCT
   654 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   655   Compile *C = ra_->C;
   656   int framesize = C->frame_slots() << LogBytesPerInt;
   657   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   658   // Remove two words for return addr and rbp,
   659   framesize -= 2*wordSize;
   661   if( C->in_24_bit_fp_mode() ) {
   662     st->print("FLDCW  standard control word");
   663     st->cr(); st->print("\t");
   664   }
   665   if( framesize ) {
   666     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   667     st->cr(); st->print("\t");
   668   }
   669   st->print_cr("POPL   EBP"); st->print("\t");
   670   if( do_polling() && C->is_method_compilation() ) {
   671     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   672     st->cr(); st->print("\t");
   673   }
   674 }
   675 #endif
   677 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   678   Compile *C = ra_->C;
   680   // If method set FPU control word, restore to standard control word
   681   if( C->in_24_bit_fp_mode() ) {
   682     MacroAssembler masm(&cbuf);
   683     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   684   }
   686   int framesize = C->frame_slots() << LogBytesPerInt;
   687   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   688   // Remove two words for return addr and rbp,
   689   framesize -= 2*wordSize;
   691   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   693   if( framesize >= 128 ) {
   694     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   695     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   696     emit_d32(cbuf, framesize);
   697   }
   698   else if( framesize ) {
   699     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   700     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   701     emit_d8(cbuf, framesize);
   702   }
   704   emit_opcode(cbuf, 0x58 | EBP_enc);
   706   if( do_polling() && C->is_method_compilation() ) {
   707     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   708     emit_opcode(cbuf,0x85);
   709     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   710     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   711   }
   712 }
   714 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   715   Compile *C = ra_->C;
   716   // If method set FPU control word, restore to standard control word
   717   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   718   if( do_polling() && C->is_method_compilation() ) size += 6;
   720   int framesize = C->frame_slots() << LogBytesPerInt;
   721   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   722   // Remove two words for return addr and rbp,
   723   framesize -= 2*wordSize;
   725   size++; // popl rbp,
   727   if( framesize >= 128 ) {
   728     size += 6;
   729   } else {
   730     size += framesize ? 3 : 0;
   731   }
   732   return size;
   733 }
   735 int MachEpilogNode::reloc() const {
   736   return 0; // a large enough number
   737 }
   739 const Pipeline * MachEpilogNode::pipeline() const {
   740   return MachNode::pipeline_class();
   741 }
   743 int MachEpilogNode::safepoint_offset() const { return 0; }
   745 //=============================================================================
   747 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   748 static enum RC rc_class( OptoReg::Name reg ) {
   750   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   751   if (OptoReg::is_stack(reg)) return rc_stack;
   753   VMReg r = OptoReg::as_VMReg(reg);
   754   if (r->is_Register()) return rc_int;
   755   if (r->is_FloatRegister()) {
   756     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   757     return rc_float;
   758   }
   759   assert(r->is_XMMRegister(), "must be");
   760   return rc_xmm;
   761 }
   763 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   764                         int opcode, const char *op_str, int size, outputStream* st ) {
   765   if( cbuf ) {
   766     emit_opcode  (*cbuf, opcode );
   767     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   768 #ifndef PRODUCT
   769   } else if( !do_size ) {
   770     if( size != 0 ) st->print("\n\t");
   771     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   772       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   773       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   774     } else { // FLD, FST, PUSH, POP
   775       st->print("%s [ESP + #%d]",op_str,offset);
   776     }
   777 #endif
   778   }
   779   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   780   return size+3+offset_size;
   781 }
   783 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   784 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   785                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   786   if( cbuf ) {
   787     if( reg_lo+1 == reg_hi ) { // double move?
   788       if( is_load && !UseXmmLoadAndClearUpper )
   789         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   790       else
   791         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   792     } else {
   793       emit_opcode(*cbuf, 0xF3 );
   794     }
   795     emit_opcode(*cbuf, 0x0F );
   796     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   797       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   798     else
   799       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   800     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   801 #ifndef PRODUCT
   802   } else if( !do_size ) {
   803     if( size != 0 ) st->print("\n\t");
   804     if( reg_lo+1 == reg_hi ) { // double move?
   805       if( is_load ) st->print("%s %s,[ESP + #%d]",
   806                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   807                                Matcher::regName[reg_lo], offset);
   808       else          st->print("MOVSD  [ESP + #%d],%s",
   809                                offset, Matcher::regName[reg_lo]);
   810     } else {
   811       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   812                                Matcher::regName[reg_lo], offset);
   813       else          st->print("MOVSS  [ESP + #%d],%s",
   814                                offset, Matcher::regName[reg_lo]);
   815     }
   816 #endif
   817   }
   818   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   819   return size+5+offset_size;
   820 }
   823 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   824                             int src_hi, int dst_hi, int size, outputStream* st ) {
   825   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   826     if( cbuf ) {
   827       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   828         emit_opcode(*cbuf, 0x66 );
   829       }
   830       emit_opcode(*cbuf, 0x0F );
   831       emit_opcode(*cbuf, 0x28 );
   832       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   833 #ifndef PRODUCT
   834     } else if( !do_size ) {
   835       if( size != 0 ) st->print("\n\t");
   836       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   837         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   838       } else {
   839         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   840       }
   841 #endif
   842     }
   843     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   844   } else {
   845     if( cbuf ) {
   846       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   847       emit_opcode(*cbuf, 0x0F );
   848       emit_opcode(*cbuf, 0x10 );
   849       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   850 #ifndef PRODUCT
   851     } else if( !do_size ) {
   852       if( size != 0 ) st->print("\n\t");
   853       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   854         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   855       } else {
   856         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   857       }
   858 #endif
   859     }
   860     return size+4;
   861   }
   862 }
   864 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   865                             int src_hi, int dst_hi, int size, outputStream* st ) {
   866   // 32-bit
   867   if (cbuf) {
   868     emit_opcode(*cbuf, 0x66);
   869     emit_opcode(*cbuf, 0x0F);
   870     emit_opcode(*cbuf, 0x6E);
   871     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
   872 #ifndef PRODUCT
   873   } else if (!do_size) {
   874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   875 #endif
   876   }
   877   return 4;
   878 }
   881 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   882                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   883   // 32-bit
   884   if (cbuf) {
   885     emit_opcode(*cbuf, 0x66);
   886     emit_opcode(*cbuf, 0x0F);
   887     emit_opcode(*cbuf, 0x7E);
   888     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
   889 #ifndef PRODUCT
   890   } else if (!do_size) {
   891     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   892 #endif
   893   }
   894   return 4;
   895 }
   897 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   898   if( cbuf ) {
   899     emit_opcode(*cbuf, 0x8B );
   900     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   901 #ifndef PRODUCT
   902   } else if( !do_size ) {
   903     if( size != 0 ) st->print("\n\t");
   904     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   905 #endif
   906   }
   907   return size+2;
   908 }
   910 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   911                                  int offset, int size, outputStream* st ) {
   912   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   913     if( cbuf ) {
   914       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   915       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   916 #ifndef PRODUCT
   917     } else if( !do_size ) {
   918       if( size != 0 ) st->print("\n\t");
   919       st->print("FLD    %s",Matcher::regName[src_lo]);
   920 #endif
   921     }
   922     size += 2;
   923   }
   925   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   926   const char *op_str;
   927   int op;
   928   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   929     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   930     op = 0xDD;
   931   } else {                   // 32-bit store
   932     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   933     op = 0xD9;
   934     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   935   }
   937   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   938 }
   940 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   941   // Get registers to move
   942   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   943   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   944   OptoReg::Name dst_second = ra_->get_reg_second(this );
   945   OptoReg::Name dst_first = ra_->get_reg_first(this );
   947   enum RC src_second_rc = rc_class(src_second);
   948   enum RC src_first_rc = rc_class(src_first);
   949   enum RC dst_second_rc = rc_class(dst_second);
   950   enum RC dst_first_rc = rc_class(dst_first);
   952   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   954   // Generate spill code!
   955   int size = 0;
   957   if( src_first == dst_first && src_second == dst_second )
   958     return size;            // Self copy, no move
   960   // --------------------------------------
   961   // Check for mem-mem move.  push/pop to move.
   962   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   963     if( src_second == dst_first ) { // overlapping stack copy ranges
   964       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   965       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   966       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   967       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   968     }
   969     // move low bits
   970     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   971     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   972     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   973       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   974       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   975     }
   976     return size;
   977   }
   979   // --------------------------------------
   980   // Check for integer reg-reg copy
   981   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   982     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   984   // Check for integer store
   985   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   986     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   988   // Check for integer load
   989   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   990     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   992   // Check for integer reg-xmm reg copy
   993   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   994     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   995             "no 64 bit integer-float reg moves" );
   996     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   997   }
   998   // --------------------------------------
   999   // Check for float reg-reg copy
  1000   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1001     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1002             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1003     if( cbuf ) {
  1005       // Note the mucking with the register encode to compensate for the 0/1
  1006       // indexing issue mentioned in a comment in the reg_def sections
  1007       // for FPR registers many lines above here.
  1009       if( src_first != FPR1L_num ) {
  1010         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1011         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1012         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1013         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1014      } else {
  1015         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1016         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1018 #ifndef PRODUCT
  1019     } else if( !do_size ) {
  1020       if( size != 0 ) st->print("\n\t");
  1021       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1022       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1023 #endif
  1025     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1028   // Check for float store
  1029   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1030     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1033   // Check for float load
  1034   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1035     int offset = ra_->reg2offset(src_first);
  1036     const char *op_str;
  1037     int op;
  1038     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1039       op_str = "FLD_D";
  1040       op = 0xDD;
  1041     } else {                   // 32-bit load
  1042       op_str = "FLD_S";
  1043       op = 0xD9;
  1044       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1046     if( cbuf ) {
  1047       emit_opcode  (*cbuf, op );
  1048       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1049       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1050       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1051 #ifndef PRODUCT
  1052     } else if( !do_size ) {
  1053       if( size != 0 ) st->print("\n\t");
  1054       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1055 #endif
  1057     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1058     return size + 3+offset_size+2;
  1061   // Check for xmm reg-reg copy
  1062   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1063     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1064             (src_first+1 == src_second && dst_first+1 == dst_second),
  1065             "no non-adjacent float-moves" );
  1066     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1069   // Check for xmm reg-integer reg copy
  1070   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1071     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1072             "no 64 bit float-integer reg moves" );
  1073     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1076   // Check for xmm store
  1077   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1078     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1081   // Check for float xmm load
  1082   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1083     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1086   // Copy from float reg to xmm reg
  1087   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1088     // copy to the top of stack from floating point reg
  1089     // and use LEA to preserve flags
  1090     if( cbuf ) {
  1091       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1092       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1093       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1094       emit_d8(*cbuf,0xF8);
  1095 #ifndef PRODUCT
  1096     } else if( !do_size ) {
  1097       if( size != 0 ) st->print("\n\t");
  1098       st->print("LEA    ESP,[ESP-8]");
  1099 #endif
  1101     size += 4;
  1103     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1105     // Copy from the temp memory to the xmm reg.
  1106     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1108     if( cbuf ) {
  1109       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1110       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1111       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1112       emit_d8(*cbuf,0x08);
  1113 #ifndef PRODUCT
  1114     } else if( !do_size ) {
  1115       if( size != 0 ) st->print("\n\t");
  1116       st->print("LEA    ESP,[ESP+8]");
  1117 #endif
  1119     size += 4;
  1120     return size;
  1123   assert( size > 0, "missed a case" );
  1125   // --------------------------------------------------------------------
  1126   // Check for second bits still needing moving.
  1127   if( src_second == dst_second )
  1128     return size;               // Self copy; no move
  1129   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1131   // Check for second word int-int move
  1132   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1133     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1135   // Check for second word integer store
  1136   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1137     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1139   // Check for second word integer load
  1140   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1141     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1144   Unimplemented();
  1147 #ifndef PRODUCT
  1148 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1149   implementation( NULL, ra_, false, st );
  1151 #endif
  1153 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1154   implementation( &cbuf, ra_, false, NULL );
  1157 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1158   return implementation( NULL, ra_, true, NULL );
  1161 //=============================================================================
  1162 #ifndef PRODUCT
  1163 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1164   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1166 #endif
  1168 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1169   MacroAssembler _masm(&cbuf);
  1170   __ nop(_count);
  1173 uint MachNopNode::size(PhaseRegAlloc *) const {
  1174   return _count;
  1178 //=============================================================================
  1179 #ifndef PRODUCT
  1180 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1181   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1182   int reg = ra_->get_reg_first(this);
  1183   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1185 #endif
  1187 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1188   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1189   int reg = ra_->get_encode(this);
  1190   if( offset >= 128 ) {
  1191     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1192     emit_rm(cbuf, 0x2, reg, 0x04);
  1193     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1194     emit_d32(cbuf, offset);
  1196   else {
  1197     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1198     emit_rm(cbuf, 0x1, reg, 0x04);
  1199     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1200     emit_d8(cbuf, offset);
  1204 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1205   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1206   if( offset >= 128 ) {
  1207     return 7;
  1209   else {
  1210     return 4;
  1214 //=============================================================================
  1216 // emit call stub, compiled java to interpreter
  1217 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1218   // Stub is fixed up when the corresponding call is converted from calling
  1219   // compiled code to calling interpreted code.
  1220   // mov rbx,0
  1221   // jmp -1
  1223   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1225   // Note that the code buffer's insts_mark is always relative to insts.
  1226   // That's why we must use the macroassembler to generate a stub.
  1227   MacroAssembler _masm(&cbuf);
  1229   address base =
  1230   __ start_a_stub(Compile::MAX_stubs_size);
  1231   if (base == NULL)  return;  // CodeBuffer::expand failed
  1232   // static stub relocation stores the instruction address of the call
  1233   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1234   // static stub relocation also tags the methodOop in the code-stream.
  1235   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1236   // This is recognized as unresolved by relocs/nativeInst/ic code
  1237   __ jump(RuntimeAddress(__ pc()));
  1239   __ end_a_stub();
  1240   // Update current stubs pointer and restore insts_end.
  1242 // size of call stub, compiled java to interpretor
  1243 uint size_java_to_interp() {
  1244   return 10;  // movl; jmp
  1246 // relocation entries for call stub, compiled java to interpretor
  1247 uint reloc_java_to_interp() {
  1248   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1251 //=============================================================================
  1252 #ifndef PRODUCT
  1253 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1254   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1255   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1256   st->print_cr("\tNOP");
  1257   st->print_cr("\tNOP");
  1258   if( !OptoBreakpoint )
  1259     st->print_cr("\tNOP");
  1261 #endif
  1263 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1264   MacroAssembler masm(&cbuf);
  1265 #ifdef ASSERT
  1266   uint insts_size = cbuf.insts_size();
  1267 #endif
  1268   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1269   masm.jump_cc(Assembler::notEqual,
  1270                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1271   /* WARNING these NOPs are critical so that verified entry point is properly
  1272      aligned for patching by NativeJump::patch_verified_entry() */
  1273   int nops_cnt = 2;
  1274   if( !OptoBreakpoint ) // Leave space for int3
  1275      nops_cnt += 1;
  1276   masm.nop(nops_cnt);
  1278   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1281 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1282   return OptoBreakpoint ? 11 : 12;
  1286 //=============================================================================
  1287 uint size_exception_handler() {
  1288   // NativeCall instruction size is the same as NativeJump.
  1289   // exception handler starts out as jump and can be patched to
  1290   // a call be deoptimization.  (4932387)
  1291   // Note that this value is also credited (in output.cpp) to
  1292   // the size of the code section.
  1293   return NativeJump::instruction_size;
  1296 // Emit exception handler code.  Stuff framesize into a register
  1297 // and call a VM stub routine.
  1298 int emit_exception_handler(CodeBuffer& cbuf) {
  1300   // Note that the code buffer's insts_mark is always relative to insts.
  1301   // That's why we must use the macroassembler to generate a handler.
  1302   MacroAssembler _masm(&cbuf);
  1303   address base =
  1304   __ start_a_stub(size_exception_handler());
  1305   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1306   int offset = __ offset();
  1307   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1308   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1309   __ end_a_stub();
  1310   return offset;
  1313 uint size_deopt_handler() {
  1314   // NativeCall instruction size is the same as NativeJump.
  1315   // exception handler starts out as jump and can be patched to
  1316   // a call be deoptimization.  (4932387)
  1317   // Note that this value is also credited (in output.cpp) to
  1318   // the size of the code section.
  1319   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1322 // Emit deopt handler code.
  1323 int emit_deopt_handler(CodeBuffer& cbuf) {
  1325   // Note that the code buffer's insts_mark is always relative to insts.
  1326   // That's why we must use the macroassembler to generate a handler.
  1327   MacroAssembler _masm(&cbuf);
  1328   address base =
  1329   __ start_a_stub(size_exception_handler());
  1330   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1331   int offset = __ offset();
  1332   InternalAddress here(__ pc());
  1333   __ pushptr(here.addr());
  1335   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1336   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1337   __ end_a_stub();
  1338   return offset;
  1342 const bool Matcher::match_rule_supported(int opcode) {
  1343   if (!has_match_rule(opcode))
  1344     return false;
  1346   return true;  // Per default match rules are supported.
  1349 int Matcher::regnum_to_fpu_offset(int regnum) {
  1350   return regnum - 32; // The FP registers are in the second chunk
  1353 // This is UltraSparc specific, true just means we have fast l2f conversion
  1354 const bool Matcher::convL2FSupported(void) {
  1355   return true;
  1358 // Vector width in bytes
  1359 const uint Matcher::vector_width_in_bytes(void) {
  1360   return UseSSE >= 2 ? 8 : 0;
  1363 // Vector ideal reg
  1364 const uint Matcher::vector_ideal_reg(void) {
  1365   return Op_RegD;
  1368 // Is this branch offset short enough that a short branch can be used?
  1369 //
  1370 // NOTE: If the platform does not provide any short branch variants, then
  1371 //       this method should return false for offset 0.
  1372 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1373   // the short version of jmpConUCF2 contains multiple branches,
  1374   // making the reach slightly less
  1375   if (rule == jmpConUCF2_rule)
  1376     return (-126 <= offset && offset <= 125);
  1377   return (-128 <= offset && offset <= 127);
  1380 const bool Matcher::isSimpleConstant64(jlong value) {
  1381   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1382   return false;
  1385 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1386 const bool Matcher::init_array_count_is_in_bytes = false;
  1388 // Threshold size for cleararray.
  1389 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1391 // Should the Matcher clone shifts on addressing modes, expecting them to
  1392 // be subsumed into complex addressing expressions or compute them into
  1393 // registers?  True for Intel but false for most RISCs
  1394 const bool Matcher::clone_shift_expressions = true;
  1396 bool Matcher::narrow_oop_use_complex_address() {
  1397   ShouldNotCallThis();
  1398   return true;
  1402 // Is it better to copy float constants, or load them directly from memory?
  1403 // Intel can load a float constant from a direct address, requiring no
  1404 // extra registers.  Most RISCs will have to materialize an address into a
  1405 // register first, so they would do better to copy the constant from stack.
  1406 const bool Matcher::rematerialize_float_constants = true;
  1408 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1409 // needed.  Else we split the double into 2 integer pieces and move it
  1410 // piece-by-piece.  Only happens when passing doubles into C code as the
  1411 // Java calling convention forces doubles to be aligned.
  1412 const bool Matcher::misaligned_doubles_ok = true;
  1415 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1416   // Get the memory operand from the node
  1417   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1418   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1419   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1420   uint opcnt     = 1;                 // First operand
  1421   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1422   while( idx >= skipped+num_edges ) {
  1423     skipped += num_edges;
  1424     opcnt++;                          // Bump operand count
  1425     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1426     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1429   MachOper *memory = node->_opnds[opcnt];
  1430   MachOper *new_memory = NULL;
  1431   switch (memory->opcode()) {
  1432   case DIRECT:
  1433   case INDOFFSET32X:
  1434     // No transformation necessary.
  1435     return;
  1436   case INDIRECT:
  1437     new_memory = new (C) indirect_win95_safeOper( );
  1438     break;
  1439   case INDOFFSET8:
  1440     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1441     break;
  1442   case INDOFFSET32:
  1443     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1444     break;
  1445   case INDINDEXOFFSET:
  1446     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1447     break;
  1448   case INDINDEXSCALE:
  1449     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1450     break;
  1451   case INDINDEXSCALEOFFSET:
  1452     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1453     break;
  1454   case LOAD_LONG_INDIRECT:
  1455   case LOAD_LONG_INDOFFSET32:
  1456     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1457     return;
  1458   default:
  1459     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1460     return;
  1462   node->_opnds[opcnt] = new_memory;
  1465 // Advertise here if the CPU requires explicit rounding operations
  1466 // to implement the UseStrictFP mode.
  1467 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1469 // Are floats conerted to double when stored to stack during deoptimization?
  1470 // On x32 it is stored with convertion only when FPU is used for floats.
  1471 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1473 // Do ints take an entire long register or just half?
  1474 const bool Matcher::int_in_long = false;
  1476 // Return whether or not this register is ever used as an argument.  This
  1477 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1478 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1479 // arguments in those registers not be available to the callee.
  1480 bool Matcher::can_be_java_arg( int reg ) {
  1481   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1482   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1483   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1484   return false;
  1487 bool Matcher::is_spillable_arg( int reg ) {
  1488   return can_be_java_arg(reg);
  1491 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1492   // Use hardware integer DIV instruction when
  1493   // it is faster than a code which use multiply.
  1494   // Only when constant divisor fits into 32 bit
  1495   // (min_jint is excluded to get only correct
  1496   // positive 32 bit values from negative).
  1497   return VM_Version::has_fast_idiv() &&
  1498          (divisor == (int)divisor && divisor != min_jint);
  1501 // Register for DIVI projection of divmodI
  1502 RegMask Matcher::divI_proj_mask() {
  1503   return EAX_REG_mask;
  1506 // Register for MODI projection of divmodI
  1507 RegMask Matcher::modI_proj_mask() {
  1508   return EDX_REG_mask;
  1511 // Register for DIVL projection of divmodL
  1512 RegMask Matcher::divL_proj_mask() {
  1513   ShouldNotReachHere();
  1514   return RegMask();
  1517 // Register for MODL projection of divmodL
  1518 RegMask Matcher::modL_proj_mask() {
  1519   ShouldNotReachHere();
  1520   return RegMask();
  1523 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1524   return EBP_REG_mask;
  1527 // Returns true if the high 32 bits of the value is known to be zero.
  1528 bool is_operand_hi32_zero(Node* n) {
  1529   int opc = n->Opcode();
  1530   if (opc == Op_LoadUI2L) {
  1531     return true;
  1533   if (opc == Op_AndL) {
  1534     Node* o2 = n->in(2);
  1535     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1536       return true;
  1539   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1540     return true;
  1542   return false;
  1545 %}
  1547 //----------ENCODING BLOCK-----------------------------------------------------
  1548 // This block specifies the encoding classes used by the compiler to output
  1549 // byte streams.  Encoding classes generate functions which are called by
  1550 // Machine Instruction Nodes in order to generate the bit encoding of the
  1551 // instruction.  Operands specify their base encoding interface with the
  1552 // interface keyword.  There are currently supported four interfaces,
  1553 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1554 // operand to generate a function which returns its register number when
  1555 // queried.   CONST_INTER causes an operand to generate a function which
  1556 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1557 // operand to generate four functions which return the Base Register, the
  1558 // Index Register, the Scale Value, and the Offset Value of the operand when
  1559 // queried.  COND_INTER causes an operand to generate six functions which
  1560 // return the encoding code (ie - encoding bits for the instruction)
  1561 // associated with each basic boolean condition for a conditional instruction.
  1562 // Instructions specify two basic values for encoding.  They use the
  1563 // ins_encode keyword to specify their encoding class (which must be one of
  1564 // the class names specified in the encoding block), and they use the
  1565 // opcode keyword to specify, in order, their primary, secondary, and
  1566 // tertiary opcode.  Only the opcode sections which a particular instruction
  1567 // needs for encoding need to be specified.
  1568 encode %{
  1569   // Build emit functions for each basic byte or larger field in the intel
  1570   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1571   // code in the enc_class source block.  Emit functions will live in the
  1572   // main source block for now.  In future, we can generalize this by
  1573   // adding a syntax that specifies the sizes of fields in an order,
  1574   // so that the adlc can build the emit functions automagically
  1576   // Emit primary opcode
  1577   enc_class OpcP %{
  1578     emit_opcode(cbuf, $primary);
  1579   %}
  1581   // Emit secondary opcode
  1582   enc_class OpcS %{
  1583     emit_opcode(cbuf, $secondary);
  1584   %}
  1586   // Emit opcode directly
  1587   enc_class Opcode(immI d8) %{
  1588     emit_opcode(cbuf, $d8$$constant);
  1589   %}
  1591   enc_class SizePrefix %{
  1592     emit_opcode(cbuf,0x66);
  1593   %}
  1595   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1596     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1597   %}
  1599   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1600     emit_opcode(cbuf,$opcode$$constant);
  1601     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1602   %}
  1604   enc_class mov_r32_imm0( eRegI dst ) %{
  1605     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1606     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1607   %}
  1609   enc_class cdq_enc %{
  1610     // Full implementation of Java idiv and irem; checks for
  1611     // special case as described in JVM spec., p.243 & p.271.
  1612     //
  1613     //         normal case                           special case
  1614     //
  1615     // input : rax,: dividend                         min_int
  1616     //         reg: divisor                          -1
  1617     //
  1618     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1619     //         rdx: remainder (= rax, irem reg)       0
  1620     //
  1621     //  Code sequnce:
  1622     //
  1623     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1624     //  0F 85 0B 00 00 00    jne         normal_case
  1625     //  33 D2                xor         rdx,edx
  1626     //  83 F9 FF             cmp         rcx,0FFh
  1627     //  0F 84 03 00 00 00    je          done
  1628     //                  normal_case:
  1629     //  99                   cdq
  1630     //  F7 F9                idiv        rax,ecx
  1631     //                  done:
  1632     //
  1633     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1634     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1635     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1636     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1637     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1638     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1639     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1640     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1641     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1642     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1643     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1644     // normal_case:
  1645     emit_opcode(cbuf,0x99);                                         // cdq
  1646     // idiv (note: must be emitted by the user of this rule)
  1647     // normal:
  1648   %}
  1650   // Dense encoding for older common ops
  1651   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1652     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1653   %}
  1656   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1657   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1658     // Check for 8-bit immediate, and set sign extend bit in opcode
  1659     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1660       emit_opcode(cbuf, $primary | 0x02);
  1662     else {                          // If 32-bit immediate
  1663       emit_opcode(cbuf, $primary);
  1665   %}
  1667   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1668     // Emit primary opcode and set sign-extend bit
  1669     // Check for 8-bit immediate, and set sign extend bit in opcode
  1670     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1671       emit_opcode(cbuf, $primary | 0x02);    }
  1672     else {                          // If 32-bit immediate
  1673       emit_opcode(cbuf, $primary);
  1675     // Emit r/m byte with secondary opcode, after primary opcode.
  1676     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1677   %}
  1679   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1680     // Check for 8-bit immediate, and set sign extend bit in opcode
  1681     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1682       $$$emit8$imm$$constant;
  1684     else {                          // If 32-bit immediate
  1685       // Output immediate
  1686       $$$emit32$imm$$constant;
  1688   %}
  1690   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1691     // Emit primary opcode and set sign-extend bit
  1692     // Check for 8-bit immediate, and set sign extend bit in opcode
  1693     int con = (int)$imm$$constant; // Throw away top bits
  1694     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1695     // Emit r/m byte with secondary opcode, after primary opcode.
  1696     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1697     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1698     else                               emit_d32(cbuf,con);
  1699   %}
  1701   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1702     // Emit primary opcode and set sign-extend bit
  1703     // Check for 8-bit immediate, and set sign extend bit in opcode
  1704     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1705     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1706     // Emit r/m byte with tertiary opcode, after primary opcode.
  1707     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1708     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1709     else                               emit_d32(cbuf,con);
  1710   %}
  1712   enc_class Lbl (label labl) %{ // JMP, CALL
  1713     Label *l = $labl$$label;
  1714     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
  1715   %}
  1717   enc_class LblShort (label labl) %{ // JMP, CALL
  1718     Label *l = $labl$$label;
  1719     int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
  1720     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1721     emit_d8(cbuf, disp);
  1722   %}
  1724   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1725     emit_cc(cbuf, $secondary, $dst$$reg );
  1726   %}
  1728   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1729     int destlo = $dst$$reg;
  1730     int desthi = HIGH_FROM_LOW(destlo);
  1731     // bswap lo
  1732     emit_opcode(cbuf, 0x0F);
  1733     emit_cc(cbuf, 0xC8, destlo);
  1734     // bswap hi
  1735     emit_opcode(cbuf, 0x0F);
  1736     emit_cc(cbuf, 0xC8, desthi);
  1737     // xchg lo and hi
  1738     emit_opcode(cbuf, 0x87);
  1739     emit_rm(cbuf, 0x3, destlo, desthi);
  1740   %}
  1742   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1743     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1744   %}
  1746   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1747     Label *l = $labl$$label;
  1748     $$$emit8$primary;
  1749     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1750     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
  1751   %}
  1753   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1754     Label *l = $labl$$label;
  1755     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1756     int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
  1757     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1758     emit_d8(cbuf, disp);
  1759   %}
  1761   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1762     $$$emit8$primary;
  1763     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1764   %}
  1766   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1767     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1768     emit_d8(cbuf, op >> 8 );
  1769     emit_d8(cbuf, op & 255);
  1770   %}
  1772   // emulate a CMOV with a conditional branch around a MOV
  1773   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1774     // Invert sense of branch from sense of CMOV
  1775     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1776     emit_d8( cbuf, $brOffs$$constant );
  1777   %}
  1779   enc_class enc_PartialSubtypeCheck( ) %{
  1780     Register Redi = as_Register(EDI_enc); // result register
  1781     Register Reax = as_Register(EAX_enc); // super class
  1782     Register Recx = as_Register(ECX_enc); // killed
  1783     Register Resi = as_Register(ESI_enc); // sub class
  1784     Label miss;
  1786     MacroAssembler _masm(&cbuf);
  1787     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1788                                      NULL, &miss,
  1789                                      /*set_cond_codes:*/ true);
  1790     if ($primary) {
  1791       __ xorptr(Redi, Redi);
  1793     __ bind(miss);
  1794   %}
  1796   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1797     MacroAssembler masm(&cbuf);
  1798     int start = masm.offset();
  1799     if (UseSSE >= 2) {
  1800       if (VerifyFPU) {
  1801         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1803     } else {
  1804       // External c_calling_convention expects the FPU stack to be 'clean'.
  1805       // Compiled code leaves it dirty.  Do cleanup now.
  1806       masm.empty_FPU_stack();
  1808     if (sizeof_FFree_Float_Stack_All == -1) {
  1809       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1810     } else {
  1811       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1813   %}
  1815   enc_class Verify_FPU_For_Leaf %{
  1816     if( VerifyFPU ) {
  1817       MacroAssembler masm(&cbuf);
  1818       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1820   %}
  1822   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1823     // This is the instruction starting address for relocation info.
  1824     cbuf.set_insts_mark();
  1825     $$$emit8$primary;
  1826     // CALL directly to the runtime
  1827     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1828                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1830     if (UseSSE >= 2) {
  1831       MacroAssembler _masm(&cbuf);
  1832       BasicType rt = tf()->return_type();
  1834       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1835         // A C runtime call where the return value is unused.  In SSE2+
  1836         // mode the result needs to be removed from the FPU stack.  It's
  1837         // likely that this function call could be removed by the
  1838         // optimizer if the C function is a pure function.
  1839         __ ffree(0);
  1840       } else if (rt == T_FLOAT) {
  1841         __ lea(rsp, Address(rsp, -4));
  1842         __ fstp_s(Address(rsp, 0));
  1843         __ movflt(xmm0, Address(rsp, 0));
  1844         __ lea(rsp, Address(rsp,  4));
  1845       } else if (rt == T_DOUBLE) {
  1846         __ lea(rsp, Address(rsp, -8));
  1847         __ fstp_d(Address(rsp, 0));
  1848         __ movdbl(xmm0, Address(rsp, 0));
  1849         __ lea(rsp, Address(rsp,  8));
  1852   %}
  1855   enc_class pre_call_FPU %{
  1856     // If method sets FPU control word restore it here
  1857     debug_only(int off0 = cbuf.insts_size());
  1858     if( Compile::current()->in_24_bit_fp_mode() ) {
  1859       MacroAssembler masm(&cbuf);
  1860       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1862     debug_only(int off1 = cbuf.insts_size());
  1863     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1864   %}
  1866   enc_class post_call_FPU %{
  1867     // If method sets FPU control word do it here also
  1868     if( Compile::current()->in_24_bit_fp_mode() ) {
  1869       MacroAssembler masm(&cbuf);
  1870       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1872   %}
  1874   enc_class preserve_SP %{
  1875     debug_only(int off0 = cbuf.insts_size());
  1876     MacroAssembler _masm(&cbuf);
  1877     // RBP is preserved across all calls, even compiled calls.
  1878     // Use it to preserve RSP in places where the callee might change the SP.
  1879     __ movptr(rbp_mh_SP_save, rsp);
  1880     debug_only(int off1 = cbuf.insts_size());
  1881     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1882   %}
  1884   enc_class restore_SP %{
  1885     MacroAssembler _masm(&cbuf);
  1886     __ movptr(rsp, rbp_mh_SP_save);
  1887   %}
  1889   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1890     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1891     // who we intended to call.
  1892     cbuf.set_insts_mark();
  1893     $$$emit8$primary;
  1894     if ( !_method ) {
  1895       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1896                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1897     } else if(_optimized_virtual) {
  1898       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1899                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1900     } else {
  1901       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1902                      static_call_Relocation::spec(), RELOC_IMM32 );
  1904     if( _method ) {  // Emit stub for static call
  1905       emit_java_to_interp(cbuf);
  1907   %}
  1909   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1910     // !!!!!
  1911     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1912     // emit_call_dynamic_prologue( cbuf );
  1913     cbuf.set_insts_mark();
  1914     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1915     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1916     address  virtual_call_oop_addr = cbuf.insts_mark();
  1917     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1918     // who we intended to call.
  1919     cbuf.set_insts_mark();
  1920     $$$emit8$primary;
  1921     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1922                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1923   %}
  1925   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1926     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1927     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1929     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1930     cbuf.set_insts_mark();
  1931     $$$emit8$primary;
  1932     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1933     emit_d8(cbuf, disp);             // Displacement
  1935   %}
  1937   enc_class Xor_Reg (eRegI dst) %{
  1938     emit_opcode(cbuf, 0x33);
  1939     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1940   %}
  1942 //   Following encoding is no longer used, but may be restored if calling
  1943 //   convention changes significantly.
  1944 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1945 //
  1946 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1947 //     // int ic_reg     = Matcher::inline_cache_reg();
  1948 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1949 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1950 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1951 //
  1952 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1953 //     // // so we load it immediately before the call
  1954 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1955 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1956 //
  1957 //     // xor rbp,ebp
  1958 //     emit_opcode(cbuf, 0x33);
  1959 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1960 //
  1961 //     // CALL to interpreter.
  1962 //     cbuf.set_insts_mark();
  1963 //     $$$emit8$primary;
  1964 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1965 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1966 //   %}
  1968   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1969     $$$emit8$primary;
  1970     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1971     $$$emit8$shift$$constant;
  1972   %}
  1974   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1975     // Load immediate does not have a zero or sign extended version
  1976     // for 8-bit immediates
  1977     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1978     $$$emit32$src$$constant;
  1979   %}
  1981   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1982     // Load immediate does not have a zero or sign extended version
  1983     // for 8-bit immediates
  1984     emit_opcode(cbuf, $primary + $dst$$reg);
  1985     $$$emit32$src$$constant;
  1986   %}
  1988   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1989     // Load immediate does not have a zero or sign extended version
  1990     // for 8-bit immediates
  1991     int dst_enc = $dst$$reg;
  1992     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1993     if (src_con == 0) {
  1994       // xor dst, dst
  1995       emit_opcode(cbuf, 0x33);
  1996       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1997     } else {
  1998       emit_opcode(cbuf, $primary + dst_enc);
  1999       emit_d32(cbuf, src_con);
  2001   %}
  2003   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  2004     // Load immediate does not have a zero or sign extended version
  2005     // for 8-bit immediates
  2006     int dst_enc = $dst$$reg + 2;
  2007     int src_con = ((julong)($src$$constant)) >> 32;
  2008     if (src_con == 0) {
  2009       // xor dst, dst
  2010       emit_opcode(cbuf, 0x33);
  2011       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2012     } else {
  2013       emit_opcode(cbuf, $primary + dst_enc);
  2014       emit_d32(cbuf, src_con);
  2016   %}
  2019   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2020     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2021     emit_opcode(cbuf, 0x0F );
  2022     emit_opcode(cbuf, 0x6E );
  2023     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2024   %}
  2026   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2027     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2028     emit_opcode(cbuf, 0x0F );
  2029     emit_opcode(cbuf, 0x7E );
  2030     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2031   %}
  2033   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2034     { // MOVD $dst,$src.lo
  2035       emit_opcode(cbuf,0x66);
  2036       emit_opcode(cbuf,0x0F);
  2037       emit_opcode(cbuf,0x6E);
  2038       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2040     { // MOVD $tmp,$src.hi
  2041       emit_opcode(cbuf,0x66);
  2042       emit_opcode(cbuf,0x0F);
  2043       emit_opcode(cbuf,0x6E);
  2044       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2046     { // PUNPCKLDQ $dst,$tmp
  2047       emit_opcode(cbuf,0x66);
  2048       emit_opcode(cbuf,0x0F);
  2049       emit_opcode(cbuf,0x62);
  2050       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2052   %}
  2054   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2055     { // MOVD $dst.lo,$src
  2056       emit_opcode(cbuf,0x66);
  2057       emit_opcode(cbuf,0x0F);
  2058       emit_opcode(cbuf,0x7E);
  2059       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2061     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2062       emit_opcode(cbuf,0xF2);
  2063       emit_opcode(cbuf,0x0F);
  2064       emit_opcode(cbuf,0x70);
  2065       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2066       emit_d8(cbuf, 0x4E);
  2068     { // MOVD $dst.hi,$tmp
  2069       emit_opcode(cbuf,0x66);
  2070       emit_opcode(cbuf,0x0F);
  2071       emit_opcode(cbuf,0x7E);
  2072       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2074   %}
  2077   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2078   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2079     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2080   %}
  2082   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2083     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2084   %}
  2086   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2087   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2088     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2089   %}
  2091   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2092     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2093   %}
  2095   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2096     $$$emit8$primary;
  2097     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2098   %}
  2100   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2101     $$$emit8$secondary;
  2102     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2103   %}
  2105   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2106     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2107   %}
  2109   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2110     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2111   %}
  2113   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2114     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2115   %}
  2117   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2118     // Output immediate
  2119     $$$emit32$src$$constant;
  2120   %}
  2122   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2123     // Output Float immediate bits
  2124     jfloat jf = $src$$constant;
  2125     int    jf_as_bits = jint_cast( jf );
  2126     emit_d32(cbuf, jf_as_bits);
  2127   %}
  2129   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2130     // Output Float immediate bits
  2131     jfloat jf = $src$$constant;
  2132     int    jf_as_bits = jint_cast( jf );
  2133     emit_d32(cbuf, jf_as_bits);
  2134   %}
  2136   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2137     // Output immediate
  2138     $$$emit16$src$$constant;
  2139   %}
  2141   enc_class Con_d32(immI src) %{
  2142     emit_d32(cbuf,$src$$constant);
  2143   %}
  2145   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2146     // Output immediate memory reference
  2147     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2148     emit_d32(cbuf, 0x00);
  2149   %}
  2151   enc_class lock_prefix( ) %{
  2152     if( os::is_MP() )
  2153       emit_opcode(cbuf,0xF0);         // [Lock]
  2154   %}
  2156   // Cmp-xchg long value.
  2157   // Note: we need to swap rbx, and rcx before and after the
  2158   //       cmpxchg8 instruction because the instruction uses
  2159   //       rcx as the high order word of the new value to store but
  2160   //       our register encoding uses rbx,.
  2161   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2163     // XCHG  rbx,ecx
  2164     emit_opcode(cbuf,0x87);
  2165     emit_opcode(cbuf,0xD9);
  2166     // [Lock]
  2167     if( os::is_MP() )
  2168       emit_opcode(cbuf,0xF0);
  2169     // CMPXCHG8 [Eptr]
  2170     emit_opcode(cbuf,0x0F);
  2171     emit_opcode(cbuf,0xC7);
  2172     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2173     // XCHG  rbx,ecx
  2174     emit_opcode(cbuf,0x87);
  2175     emit_opcode(cbuf,0xD9);
  2176   %}
  2178   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2179     // [Lock]
  2180     if( os::is_MP() )
  2181       emit_opcode(cbuf,0xF0);
  2183     // CMPXCHG [Eptr]
  2184     emit_opcode(cbuf,0x0F);
  2185     emit_opcode(cbuf,0xB1);
  2186     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2187   %}
  2189   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2190     int res_encoding = $res$$reg;
  2192     // MOV  res,0
  2193     emit_opcode( cbuf, 0xB8 + res_encoding);
  2194     emit_d32( cbuf, 0 );
  2195     // JNE,s  fail
  2196     emit_opcode(cbuf,0x75);
  2197     emit_d8(cbuf, 5 );
  2198     // MOV  res,1
  2199     emit_opcode( cbuf, 0xB8 + res_encoding);
  2200     emit_d32( cbuf, 1 );
  2201     // fail:
  2202   %}
  2204   enc_class set_instruction_start( ) %{
  2205     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2206   %}
  2208   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2209     int reg_encoding = $ereg$$reg;
  2210     int base  = $mem$$base;
  2211     int index = $mem$$index;
  2212     int scale = $mem$$scale;
  2213     int displace = $mem$$disp;
  2214     bool disp_is_oop = $mem->disp_is_oop();
  2215     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2216   %}
  2218   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2219     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2220     int base  = $mem$$base;
  2221     int index = $mem$$index;
  2222     int scale = $mem$$scale;
  2223     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2224     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2225     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2226   %}
  2228   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2229     int r1, r2;
  2230     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2231     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2232     emit_opcode(cbuf,0x0F);
  2233     emit_opcode(cbuf,$tertiary);
  2234     emit_rm(cbuf, 0x3, r1, r2);
  2235     emit_d8(cbuf,$cnt$$constant);
  2236     emit_d8(cbuf,$primary);
  2237     emit_rm(cbuf, 0x3, $secondary, r1);
  2238     emit_d8(cbuf,$cnt$$constant);
  2239   %}
  2241   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2242     emit_opcode( cbuf, 0x8B ); // Move
  2243     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2244     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2245       emit_d8(cbuf,$primary);
  2246       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2247       emit_d8(cbuf,$cnt$$constant-32);
  2249     emit_d8(cbuf,$primary);
  2250     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2251     emit_d8(cbuf,31);
  2252   %}
  2254   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2255     int r1, r2;
  2256     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2257     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2259     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2260     emit_rm(cbuf, 0x3, r1, r2);
  2261     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2262       emit_opcode(cbuf,$primary);
  2263       emit_rm(cbuf, 0x3, $secondary, r1);
  2264       emit_d8(cbuf,$cnt$$constant-32);
  2266     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2267     emit_rm(cbuf, 0x3, r2, r2);
  2268   %}
  2270   // Clone of RegMem but accepts an extra parameter to access each
  2271   // half of a double in memory; it never needs relocation info.
  2272   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2273     emit_opcode(cbuf,$opcode$$constant);
  2274     int reg_encoding = $rm_reg$$reg;
  2275     int base     = $mem$$base;
  2276     int index    = $mem$$index;
  2277     int scale    = $mem$$scale;
  2278     int displace = $mem$$disp + $disp_for_half$$constant;
  2279     bool disp_is_oop = false;
  2280     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2281   %}
  2283   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2284   //
  2285   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2286   // and it never needs relocation information.
  2287   // Frequently used to move data between FPU's Stack Top and memory.
  2288   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2289     int rm_byte_opcode = $rm_opcode$$constant;
  2290     int base     = $mem$$base;
  2291     int index    = $mem$$index;
  2292     int scale    = $mem$$scale;
  2293     int displace = $mem$$disp;
  2294     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2295     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2296   %}
  2298   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2299     int rm_byte_opcode = $rm_opcode$$constant;
  2300     int base     = $mem$$base;
  2301     int index    = $mem$$index;
  2302     int scale    = $mem$$scale;
  2303     int displace = $mem$$disp;
  2304     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2305     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2306   %}
  2308   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2309     int reg_encoding = $dst$$reg;
  2310     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2311     int index        = 0x04;            // 0x04 indicates no index
  2312     int scale        = 0x00;            // 0x00 indicates no scale
  2313     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2314     bool disp_is_oop = false;
  2315     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2316   %}
  2318   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2319     // Compare dst,src
  2320     emit_opcode(cbuf,0x3B);
  2321     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2322     // jmp dst < src around move
  2323     emit_opcode(cbuf,0x7C);
  2324     emit_d8(cbuf,2);
  2325     // move dst,src
  2326     emit_opcode(cbuf,0x8B);
  2327     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2328   %}
  2330   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2331     // Compare dst,src
  2332     emit_opcode(cbuf,0x3B);
  2333     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2334     // jmp dst > src around move
  2335     emit_opcode(cbuf,0x7F);
  2336     emit_d8(cbuf,2);
  2337     // move dst,src
  2338     emit_opcode(cbuf,0x8B);
  2339     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2340   %}
  2342   enc_class enc_FP_store(memory mem, regD src) %{
  2343     // If src is FPR1, we can just FST to store it.
  2344     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2345     int reg_encoding = 0x2; // Just store
  2346     int base  = $mem$$base;
  2347     int index = $mem$$index;
  2348     int scale = $mem$$scale;
  2349     int displace = $mem$$disp;
  2350     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2351     if( $src$$reg != FPR1L_enc ) {
  2352       reg_encoding = 0x3;  // Store & pop
  2353       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2354       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2356     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2357     emit_opcode(cbuf,$primary);
  2358     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2359   %}
  2361   enc_class neg_reg(eRegI dst) %{
  2362     // NEG $dst
  2363     emit_opcode(cbuf,0xF7);
  2364     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2365   %}
  2367   enc_class setLT_reg(eCXRegI dst) %{
  2368     // SETLT $dst
  2369     emit_opcode(cbuf,0x0F);
  2370     emit_opcode(cbuf,0x9C);
  2371     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2372   %}
  2374   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2375     int tmpReg = $tmp$$reg;
  2377     // SUB $p,$q
  2378     emit_opcode(cbuf,0x2B);
  2379     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2380     // SBB $tmp,$tmp
  2381     emit_opcode(cbuf,0x1B);
  2382     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2383     // AND $tmp,$y
  2384     emit_opcode(cbuf,0x23);
  2385     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2386     // ADD $p,$tmp
  2387     emit_opcode(cbuf,0x03);
  2388     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2389   %}
  2391   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2392     int tmpReg = $tmp$$reg;
  2394     // SUB $p,$q
  2395     emit_opcode(cbuf,0x2B);
  2396     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2397     // SBB $tmp,$tmp
  2398     emit_opcode(cbuf,0x1B);
  2399     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2400     // AND $tmp,$y
  2401     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2402     emit_opcode(cbuf,0x23);
  2403     int reg_encoding = tmpReg;
  2404     int base  = $mem$$base;
  2405     int index = $mem$$index;
  2406     int scale = $mem$$scale;
  2407     int displace = $mem$$disp;
  2408     bool disp_is_oop = $mem->disp_is_oop();
  2409     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2410     // ADD $p,$tmp
  2411     emit_opcode(cbuf,0x03);
  2412     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2413   %}
  2415   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2416     // TEST shift,32
  2417     emit_opcode(cbuf,0xF7);
  2418     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2419     emit_d32(cbuf,0x20);
  2420     // JEQ,s small
  2421     emit_opcode(cbuf, 0x74);
  2422     emit_d8(cbuf, 0x04);
  2423     // MOV    $dst.hi,$dst.lo
  2424     emit_opcode( cbuf, 0x8B );
  2425     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2426     // CLR    $dst.lo
  2427     emit_opcode(cbuf, 0x33);
  2428     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2429 // small:
  2430     // SHLD   $dst.hi,$dst.lo,$shift
  2431     emit_opcode(cbuf,0x0F);
  2432     emit_opcode(cbuf,0xA5);
  2433     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2434     // SHL    $dst.lo,$shift"
  2435     emit_opcode(cbuf,0xD3);
  2436     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2437   %}
  2439   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2440     // TEST shift,32
  2441     emit_opcode(cbuf,0xF7);
  2442     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2443     emit_d32(cbuf,0x20);
  2444     // JEQ,s small
  2445     emit_opcode(cbuf, 0x74);
  2446     emit_d8(cbuf, 0x04);
  2447     // MOV    $dst.lo,$dst.hi
  2448     emit_opcode( cbuf, 0x8B );
  2449     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2450     // CLR    $dst.hi
  2451     emit_opcode(cbuf, 0x33);
  2452     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2453 // small:
  2454     // SHRD   $dst.lo,$dst.hi,$shift
  2455     emit_opcode(cbuf,0x0F);
  2456     emit_opcode(cbuf,0xAD);
  2457     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2458     // SHR    $dst.hi,$shift"
  2459     emit_opcode(cbuf,0xD3);
  2460     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2461   %}
  2463   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2464     // TEST shift,32
  2465     emit_opcode(cbuf,0xF7);
  2466     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2467     emit_d32(cbuf,0x20);
  2468     // JEQ,s small
  2469     emit_opcode(cbuf, 0x74);
  2470     emit_d8(cbuf, 0x05);
  2471     // MOV    $dst.lo,$dst.hi
  2472     emit_opcode( cbuf, 0x8B );
  2473     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2474     // SAR    $dst.hi,31
  2475     emit_opcode(cbuf, 0xC1);
  2476     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2477     emit_d8(cbuf, 0x1F );
  2478 // small:
  2479     // SHRD   $dst.lo,$dst.hi,$shift
  2480     emit_opcode(cbuf,0x0F);
  2481     emit_opcode(cbuf,0xAD);
  2482     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2483     // SAR    $dst.hi,$shift"
  2484     emit_opcode(cbuf,0xD3);
  2485     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2486   %}
  2489   // ----------------- Encodings for floating point unit -----------------
  2490   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2491   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2492     $$$emit8$primary;
  2493     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2494   %}
  2496   // Pop argument in FPR0 with FSTP ST(0)
  2497   enc_class PopFPU() %{
  2498     emit_opcode( cbuf, 0xDD );
  2499     emit_d8( cbuf, 0xD8 );
  2500   %}
  2502   // !!!!! equivalent to Pop_Reg_F
  2503   enc_class Pop_Reg_D( regD dst ) %{
  2504     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2505     emit_d8( cbuf, 0xD8+$dst$$reg );
  2506   %}
  2508   enc_class Push_Reg_D( regD dst ) %{
  2509     emit_opcode( cbuf, 0xD9 );
  2510     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2511   %}
  2513   enc_class strictfp_bias1( regD dst ) %{
  2514     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2515     emit_opcode( cbuf, 0x2D );
  2516     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2517     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2518     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2519   %}
  2521   enc_class strictfp_bias2( regD dst ) %{
  2522     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2523     emit_opcode( cbuf, 0x2D );
  2524     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2525     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2526     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2527   %}
  2529   // Special case for moving an integer register to a stack slot.
  2530   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2531     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2532   %}
  2534   // Special case for moving a register to a stack slot.
  2535   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2536     // Opcode already emitted
  2537     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2538     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2539     emit_d32(cbuf, $dst$$disp);   // Displacement
  2540   %}
  2542   // Push the integer in stackSlot 'src' onto FP-stack
  2543   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2544     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2545   %}
  2547   // Push the float in stackSlot 'src' onto FP-stack
  2548   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2549     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2550   %}
  2552   // Push the double in stackSlot 'src' onto FP-stack
  2553   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2554     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2555   %}
  2557   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2558   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2559     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2560   %}
  2562   // Same as Pop_Mem_F except for opcode
  2563   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2564   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2565     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2566   %}
  2568   enc_class Pop_Reg_F( regF dst ) %{
  2569     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2570     emit_d8( cbuf, 0xD8+$dst$$reg );
  2571   %}
  2573   enc_class Push_Reg_F( regF dst ) %{
  2574     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2575     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2576   %}
  2578   // Push FPU's float to a stack-slot, and pop FPU-stack
  2579   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2580     int pop = 0x02;
  2581     if ($src$$reg != FPR1L_enc) {
  2582       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2583       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2584       pop = 0x03;
  2586     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2587   %}
  2589   // Push FPU's double to a stack-slot, and pop FPU-stack
  2590   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2591     int pop = 0x02;
  2592     if ($src$$reg != FPR1L_enc) {
  2593       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2594       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2595       pop = 0x03;
  2597     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2598   %}
  2600   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2601   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2602     int pop = 0xD0 - 1; // -1 since we skip FLD
  2603     if ($src$$reg != FPR1L_enc) {
  2604       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2605       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2606       pop = 0xD8;
  2608     emit_opcode( cbuf, 0xDD );
  2609     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2610   %}
  2613   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2614     MacroAssembler masm(&cbuf);
  2615     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2616     masm.fmul(   $src2$$reg+0);   // value at TOS
  2617     masm.fadd(   $src$$reg+0);    // value at TOS
  2618     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2619   %}
  2622   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2623     // load dst in FPR0
  2624     emit_opcode( cbuf, 0xD9 );
  2625     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2626     if ($src$$reg != FPR1L_enc) {
  2627       // fincstp
  2628       emit_opcode (cbuf, 0xD9);
  2629       emit_opcode (cbuf, 0xF7);
  2630       // swap src with FPR1:
  2631       // FXCH FPR1 with src
  2632       emit_opcode(cbuf, 0xD9);
  2633       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2634       // fdecstp
  2635       emit_opcode (cbuf, 0xD9);
  2636       emit_opcode (cbuf, 0xF6);
  2638   %}
  2640   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2641     // Allocate a word
  2642     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2643     emit_opcode(cbuf,0xEC);
  2644     emit_d8(cbuf,0x08);
  2646     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2647     emit_opcode  (cbuf, 0x0F );
  2648     emit_opcode  (cbuf, 0x11 );
  2649     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2651     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2652     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2654     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2655     emit_opcode  (cbuf, 0x0F );
  2656     emit_opcode  (cbuf, 0x11 );
  2657     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2659     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2660     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2662   %}
  2664   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2665     // Allocate a word
  2666     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2667     emit_opcode(cbuf,0xEC);
  2668     emit_d8(cbuf,0x04);
  2670     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2671     emit_opcode  (cbuf, 0x0F );
  2672     emit_opcode  (cbuf, 0x11 );
  2673     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2675     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2676     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2678     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2679     emit_opcode  (cbuf, 0x0F );
  2680     emit_opcode  (cbuf, 0x11 );
  2681     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2683     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2684     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2686   %}
  2688   enc_class Push_ResultXD(regXD dst) %{
  2689     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2691     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2692     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2693     emit_opcode  (cbuf, 0x0F );
  2694     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2695     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2697     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2698     emit_opcode(cbuf,0xC4);
  2699     emit_d8(cbuf,0x08);
  2700   %}
  2702   enc_class Push_ResultX(regX dst, immI d8) %{
  2703     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2705     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2706     emit_opcode  (cbuf, 0x0F );
  2707     emit_opcode  (cbuf, 0x10 );
  2708     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2710     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2711     emit_opcode(cbuf,0xC4);
  2712     emit_d8(cbuf,$d8$$constant);
  2713   %}
  2715   enc_class Push_SrcXD(regXD src) %{
  2716     // Allocate a word
  2717     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2718     emit_opcode(cbuf,0xEC);
  2719     emit_d8(cbuf,0x08);
  2721     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2722     emit_opcode  (cbuf, 0x0F );
  2723     emit_opcode  (cbuf, 0x11 );
  2724     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2726     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2727     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2728   %}
  2730   enc_class push_stack_temp_qword() %{
  2731     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2732     emit_opcode(cbuf,0xEC);
  2733     emit_d8    (cbuf,0x08);
  2734   %}
  2736   enc_class pop_stack_temp_qword() %{
  2737     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2738     emit_opcode(cbuf,0xC4);
  2739     emit_d8    (cbuf,0x08);
  2740   %}
  2742   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2743     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2744     emit_opcode  (cbuf, 0x0F );
  2745     emit_opcode  (cbuf, 0x11 );
  2746     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2748     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2749     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2750   %}
  2752   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2753   // Otherwise return a NaN.
  2754   enc_class pow_exp_core_encoding %{
  2755     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2756     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2757     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2758     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2759     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2760     emit_opcode(cbuf,0x1C);
  2761     emit_d8(cbuf,0x24);
  2762     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2763     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2764     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2765     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2766     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2767     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2768     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2769     emit_d32(cbuf,0xFFFFF800);
  2770     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2771     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2772     emit_d32(cbuf,1023);
  2773     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2774     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2775     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2776     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2777     emit_d8(cbuf,20);
  2778     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2779     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2780     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2781     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2782     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2783     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2784     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2785     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2786     emit_d32(cbuf,0);
  2787     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2788     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2789   %}
  2791 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2792 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2794   enc_class Push_Result_Mod_D( regD src) %{
  2795     if ($src$$reg != FPR1L_enc) {
  2796       // fincstp
  2797       emit_opcode (cbuf, 0xD9);
  2798       emit_opcode (cbuf, 0xF7);
  2799       // FXCH FPR1 with src
  2800       emit_opcode(cbuf, 0xD9);
  2801       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2802       // fdecstp
  2803       emit_opcode (cbuf, 0xD9);
  2804       emit_opcode (cbuf, 0xF6);
  2806     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2807     // // FSTP   FPR$dst$$reg
  2808     // emit_opcode( cbuf, 0xDD );
  2809     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2810   %}
  2812   enc_class fnstsw_sahf_skip_parity() %{
  2813     // fnstsw ax
  2814     emit_opcode( cbuf, 0xDF );
  2815     emit_opcode( cbuf, 0xE0 );
  2816     // sahf
  2817     emit_opcode( cbuf, 0x9E );
  2818     // jnp  ::skip
  2819     emit_opcode( cbuf, 0x7B );
  2820     emit_opcode( cbuf, 0x05 );
  2821   %}
  2823   enc_class emitModD() %{
  2824     // fprem must be iterative
  2825     // :: loop
  2826     // fprem
  2827     emit_opcode( cbuf, 0xD9 );
  2828     emit_opcode( cbuf, 0xF8 );
  2829     // wait
  2830     emit_opcode( cbuf, 0x9b );
  2831     // fnstsw ax
  2832     emit_opcode( cbuf, 0xDF );
  2833     emit_opcode( cbuf, 0xE0 );
  2834     // sahf
  2835     emit_opcode( cbuf, 0x9E );
  2836     // jp  ::loop
  2837     emit_opcode( cbuf, 0x0F );
  2838     emit_opcode( cbuf, 0x8A );
  2839     emit_opcode( cbuf, 0xF4 );
  2840     emit_opcode( cbuf, 0xFF );
  2841     emit_opcode( cbuf, 0xFF );
  2842     emit_opcode( cbuf, 0xFF );
  2843   %}
  2845   enc_class fpu_flags() %{
  2846     // fnstsw_ax
  2847     emit_opcode( cbuf, 0xDF);
  2848     emit_opcode( cbuf, 0xE0);
  2849     // test ax,0x0400
  2850     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2851     emit_opcode( cbuf, 0xA9 );
  2852     emit_d16   ( cbuf, 0x0400 );
  2853     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2854     // // test rax,0x0400
  2855     // emit_opcode( cbuf, 0xA9 );
  2856     // emit_d32   ( cbuf, 0x00000400 );
  2857     //
  2858     // jz exit (no unordered comparison)
  2859     emit_opcode( cbuf, 0x74 );
  2860     emit_d8    ( cbuf, 0x02 );
  2861     // mov ah,1 - treat as LT case (set carry flag)
  2862     emit_opcode( cbuf, 0xB4 );
  2863     emit_d8    ( cbuf, 0x01 );
  2864     // sahf
  2865     emit_opcode( cbuf, 0x9E);
  2866   %}
  2868   enc_class cmpF_P6_fixup() %{
  2869     // Fixup the integer flags in case comparison involved a NaN
  2870     //
  2871     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2872     emit_opcode( cbuf, 0x7B );
  2873     emit_d8    ( cbuf, 0x03 );
  2874     // MOV AH,1 - treat as LT case (set carry flag)
  2875     emit_opcode( cbuf, 0xB4 );
  2876     emit_d8    ( cbuf, 0x01 );
  2877     // SAHF
  2878     emit_opcode( cbuf, 0x9E);
  2879     // NOP     // target for branch to avoid branch to branch
  2880     emit_opcode( cbuf, 0x90);
  2881   %}
  2883 //     fnstsw_ax();
  2884 //     sahf();
  2885 //     movl(dst, nan_result);
  2886 //     jcc(Assembler::parity, exit);
  2887 //     movl(dst, less_result);
  2888 //     jcc(Assembler::below, exit);
  2889 //     movl(dst, equal_result);
  2890 //     jcc(Assembler::equal, exit);
  2891 //     movl(dst, greater_result);
  2893 // less_result     =  1;
  2894 // greater_result  = -1;
  2895 // equal_result    = 0;
  2896 // nan_result      = -1;
  2898   enc_class CmpF_Result(eRegI dst) %{
  2899     // fnstsw_ax();
  2900     emit_opcode( cbuf, 0xDF);
  2901     emit_opcode( cbuf, 0xE0);
  2902     // sahf
  2903     emit_opcode( cbuf, 0x9E);
  2904     // movl(dst, nan_result);
  2905     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2906     emit_d32( cbuf, -1 );
  2907     // jcc(Assembler::parity, exit);
  2908     emit_opcode( cbuf, 0x7A );
  2909     emit_d8    ( cbuf, 0x13 );
  2910     // movl(dst, less_result);
  2911     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2912     emit_d32( cbuf, -1 );
  2913     // jcc(Assembler::below, exit);
  2914     emit_opcode( cbuf, 0x72 );
  2915     emit_d8    ( cbuf, 0x0C );
  2916     // movl(dst, equal_result);
  2917     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2918     emit_d32( cbuf, 0 );
  2919     // jcc(Assembler::equal, exit);
  2920     emit_opcode( cbuf, 0x74 );
  2921     emit_d8    ( cbuf, 0x05 );
  2922     // movl(dst, greater_result);
  2923     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2924     emit_d32( cbuf, 1 );
  2925   %}
  2928   // XMM version of CmpF_Result. Because the XMM compare
  2929   // instructions set the EFLAGS directly. It becomes simpler than
  2930   // the float version above.
  2931   enc_class CmpX_Result(eRegI dst) %{
  2932     MacroAssembler _masm(&cbuf);
  2933     Label nan, inc, done;
  2935     __ jccb(Assembler::parity, nan);
  2936     __ jccb(Assembler::equal,  done);
  2937     __ jccb(Assembler::above,  inc);
  2938     __ bind(nan);
  2939     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2940     __ jmpb(done);
  2941     __ bind(inc);
  2942     __ increment(as_Register($dst$$reg)); // NO L qqq
  2943     __ bind(done);
  2944   %}
  2946   // Compare the longs and set flags
  2947   // BROKEN!  Do Not use as-is
  2948   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2949     // CMP    $src1.hi,$src2.hi
  2950     emit_opcode( cbuf, 0x3B );
  2951     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2952     // JNE,s  done
  2953     emit_opcode(cbuf,0x75);
  2954     emit_d8(cbuf, 2 );
  2955     // CMP    $src1.lo,$src2.lo
  2956     emit_opcode( cbuf, 0x3B );
  2957     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2958 // done:
  2959   %}
  2961   enc_class convert_int_long( regL dst, eRegI src ) %{
  2962     // mov $dst.lo,$src
  2963     int dst_encoding = $dst$$reg;
  2964     int src_encoding = $src$$reg;
  2965     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2966     // mov $dst.hi,$src
  2967     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2968     // sar $dst.hi,31
  2969     emit_opcode( cbuf, 0xC1 );
  2970     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2971     emit_d8(cbuf, 0x1F );
  2972   %}
  2974   enc_class convert_long_double( eRegL src ) %{
  2975     // push $src.hi
  2976     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2977     // push $src.lo
  2978     emit_opcode(cbuf, 0x50+$src$$reg  );
  2979     // fild 64-bits at [SP]
  2980     emit_opcode(cbuf,0xdf);
  2981     emit_d8(cbuf, 0x6C);
  2982     emit_d8(cbuf, 0x24);
  2983     emit_d8(cbuf, 0x00);
  2984     // pop stack
  2985     emit_opcode(cbuf, 0x83); // add  SP, #8
  2986     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2987     emit_d8(cbuf, 0x8);
  2988   %}
  2990   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2991     // IMUL   EDX:EAX,$src1
  2992     emit_opcode( cbuf, 0xF7 );
  2993     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2994     // SAR    EDX,$cnt-32
  2995     int shift_count = ((int)$cnt$$constant) - 32;
  2996     if (shift_count > 0) {
  2997       emit_opcode(cbuf, 0xC1);
  2998       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2999       emit_d8(cbuf, shift_count);
  3001   %}
  3003   // this version doesn't have add sp, 8
  3004   enc_class convert_long_double2( eRegL src ) %{
  3005     // push $src.hi
  3006     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3007     // push $src.lo
  3008     emit_opcode(cbuf, 0x50+$src$$reg  );
  3009     // fild 64-bits at [SP]
  3010     emit_opcode(cbuf,0xdf);
  3011     emit_d8(cbuf, 0x6C);
  3012     emit_d8(cbuf, 0x24);
  3013     emit_d8(cbuf, 0x00);
  3014   %}
  3016   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3017     // Basic idea: long = (long)int * (long)int
  3018     // IMUL EDX:EAX, src
  3019     emit_opcode( cbuf, 0xF7 );
  3020     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3021   %}
  3023   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3024     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3025     // MUL EDX:EAX, src
  3026     emit_opcode( cbuf, 0xF7 );
  3027     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3028   %}
  3030   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3031     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3032     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3033     // MOV    $tmp,$src.lo
  3034     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3035     // IMUL   $tmp,EDX
  3036     emit_opcode( cbuf, 0x0F );
  3037     emit_opcode( cbuf, 0xAF );
  3038     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3039     // MOV    EDX,$src.hi
  3040     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3041     // IMUL   EDX,EAX
  3042     emit_opcode( cbuf, 0x0F );
  3043     emit_opcode( cbuf, 0xAF );
  3044     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3045     // ADD    $tmp,EDX
  3046     emit_opcode( cbuf, 0x03 );
  3047     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3048     // MUL   EDX:EAX,$src.lo
  3049     emit_opcode( cbuf, 0xF7 );
  3050     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3051     // ADD    EDX,ESI
  3052     emit_opcode( cbuf, 0x03 );
  3053     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3054   %}
  3056   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3057     // Basic idea: lo(result) = lo(src * y_lo)
  3058     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3059     // IMUL   $tmp,EDX,$src
  3060     emit_opcode( cbuf, 0x6B );
  3061     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3062     emit_d8( cbuf, (int)$src$$constant );
  3063     // MOV    EDX,$src
  3064     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3065     emit_d32( cbuf, (int)$src$$constant );
  3066     // MUL   EDX:EAX,EDX
  3067     emit_opcode( cbuf, 0xF7 );
  3068     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3069     // ADD    EDX,ESI
  3070     emit_opcode( cbuf, 0x03 );
  3071     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3072   %}
  3074   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3075     // PUSH src1.hi
  3076     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3077     // PUSH src1.lo
  3078     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3079     // PUSH src2.hi
  3080     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3081     // PUSH src2.lo
  3082     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3083     // CALL directly to the runtime
  3084     cbuf.set_insts_mark();
  3085     emit_opcode(cbuf,0xE8);       // Call into runtime
  3086     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3087     // Restore stack
  3088     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3089     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3090     emit_d8(cbuf, 4*4);
  3091   %}
  3093   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3094     // PUSH src1.hi
  3095     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3096     // PUSH src1.lo
  3097     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3098     // PUSH src2.hi
  3099     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3100     // PUSH src2.lo
  3101     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3102     // CALL directly to the runtime
  3103     cbuf.set_insts_mark();
  3104     emit_opcode(cbuf,0xE8);       // Call into runtime
  3105     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3106     // Restore stack
  3107     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3108     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3109     emit_d8(cbuf, 4*4);
  3110   %}
  3112   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3113     // MOV   $tmp,$src.lo
  3114     emit_opcode(cbuf, 0x8B);
  3115     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3116     // OR    $tmp,$src.hi
  3117     emit_opcode(cbuf, 0x0B);
  3118     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3119   %}
  3121   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3122     // CMP    $src1.lo,$src2.lo
  3123     emit_opcode( cbuf, 0x3B );
  3124     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3125     // JNE,s  skip
  3126     emit_cc(cbuf, 0x70, 0x5);
  3127     emit_d8(cbuf,2);
  3128     // CMP    $src1.hi,$src2.hi
  3129     emit_opcode( cbuf, 0x3B );
  3130     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3131   %}
  3133   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3134     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3135     emit_opcode( cbuf, 0x3B );
  3136     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3137     // MOV    $tmp,$src1.hi
  3138     emit_opcode( cbuf, 0x8B );
  3139     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3140     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3141     emit_opcode( cbuf, 0x1B );
  3142     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3143   %}
  3145   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3146     // XOR    $tmp,$tmp
  3147     emit_opcode(cbuf,0x33);  // XOR
  3148     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3149     // CMP    $tmp,$src.lo
  3150     emit_opcode( cbuf, 0x3B );
  3151     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3152     // SBB    $tmp,$src.hi
  3153     emit_opcode( cbuf, 0x1B );
  3154     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3155   %}
  3157  // Sniff, sniff... smells like Gnu Superoptimizer
  3158   enc_class neg_long( eRegL dst ) %{
  3159     emit_opcode(cbuf,0xF7);    // NEG hi
  3160     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3161     emit_opcode(cbuf,0xF7);    // NEG lo
  3162     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3163     emit_opcode(cbuf,0x83);    // SBB hi,0
  3164     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3165     emit_d8    (cbuf,0 );
  3166   %}
  3168   enc_class movq_ld(regXD dst, memory mem) %{
  3169     MacroAssembler _masm(&cbuf);
  3170     __ movq($dst$$XMMRegister, $mem$$Address);
  3171   %}
  3173   enc_class movq_st(memory mem, regXD src) %{
  3174     MacroAssembler _masm(&cbuf);
  3175     __ movq($mem$$Address, $src$$XMMRegister);
  3176   %}
  3178   enc_class pshufd_8x8(regX dst, regX src) %{
  3179     MacroAssembler _masm(&cbuf);
  3181     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3182     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3183     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3184   %}
  3186   enc_class pshufd_4x16(regX dst, regX src) %{
  3187     MacroAssembler _masm(&cbuf);
  3189     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3190   %}
  3192   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3193     MacroAssembler _masm(&cbuf);
  3195     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3196   %}
  3198   enc_class pxor(regXD dst, regXD src) %{
  3199     MacroAssembler _masm(&cbuf);
  3201     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3202   %}
  3204   enc_class mov_i2x(regXD dst, eRegI src) %{
  3205     MacroAssembler _masm(&cbuf);
  3207     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3208   %}
  3211   // Because the transitions from emitted code to the runtime
  3212   // monitorenter/exit helper stubs are so slow it's critical that
  3213   // we inline both the stack-locking fast-path and the inflated fast path.
  3214   //
  3215   // See also: cmpFastLock and cmpFastUnlock.
  3216   //
  3217   // What follows is a specialized inline transliteration of the code
  3218   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3219   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3220   // at startup-time.  These methods would accept arguments as
  3221   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3222   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3223   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3224   // In practice, however, the # of lock sites is bounded and is usually small.
  3225   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3226   // if the processor uses simple bimodal branch predictors keyed by EIP
  3227   // Since the helper routines would be called from multiple synchronization
  3228   // sites.
  3229   //
  3230   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3231   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3232   // to those specialized methods.  That'd give us a mostly platform-independent
  3233   // implementation that the JITs could optimize and inline at their pleasure.
  3234   // Done correctly, the only time we'd need to cross to native could would be
  3235   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3236   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3237   // (b) explicit barriers or fence operations.
  3238   //
  3239   // TODO:
  3240   //
  3241   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3242   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3243   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3244   //    the lock operators would typically be faster than reifying Self.
  3245   //
  3246   // *  Ideally I'd define the primitives as:
  3247   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3248   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3249   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3250   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3251   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3252   //    sub-optimal code near the synchronization site.
  3253   //
  3254   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3255   //    Alternately, use a better sp-proximity test.
  3256   //
  3257   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3258   //    Either one is sufficient to uniquely identify a thread.
  3259   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3260   //
  3261   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3262   //    object is locked by the calling thread but the waitlist is empty.
  3263   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3264   //
  3265   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3266   //    But beware of excessive branch density on AMD Opterons.
  3267   //
  3268   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3269   //    or failure of the fast-path.  If the fast-path fails then we pass
  3270   //    control to the slow-path, typically in C.  In Fast_Lock and
  3271   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3272   //    will emit a conditional branch immediately after the node.
  3273   //    So we have branches to branches and lots of ICC.ZF games.
  3274   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3275   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3276   //    will drop through the node.  ICC.ZF is undefined at exit.
  3277   //    In the case of failure, the node will branch directly to the
  3278   //    FailureLabel
  3281   // obj: object to lock
  3282   // box: on-stack box address (displaced header location) - KILLED
  3283   // rax,: tmp -- KILLED
  3284   // scr: tmp -- KILLED
  3285   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3287     Register objReg = as_Register($obj$$reg);
  3288     Register boxReg = as_Register($box$$reg);
  3289     Register tmpReg = as_Register($tmp$$reg);
  3290     Register scrReg = as_Register($scr$$reg);
  3292     // Ensure the register assignents are disjoint
  3293     guarantee (objReg != boxReg, "") ;
  3294     guarantee (objReg != tmpReg, "") ;
  3295     guarantee (objReg != scrReg, "") ;
  3296     guarantee (boxReg != tmpReg, "") ;
  3297     guarantee (boxReg != scrReg, "") ;
  3298     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3300     MacroAssembler masm(&cbuf);
  3302     if (_counters != NULL) {
  3303       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3305     if (EmitSync & 1) {
  3306         // set box->dhw = unused_mark (3)
  3307         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3308         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3309         masm.cmpptr (rsp, (int32_t)0) ;                        
  3310     } else 
  3311     if (EmitSync & 2) { 
  3312         Label DONE_LABEL ;           
  3313         if (UseBiasedLocking) {
  3314            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3315            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3318         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3319         masm.orptr (tmpReg, 0x1);
  3320         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3321         if (os::is_MP()) { masm.lock();  }
  3322         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3323         masm.jcc(Assembler::equal, DONE_LABEL);
  3324         // Recursive locking
  3325         masm.subptr(tmpReg, rsp);
  3326         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3327         masm.movptr(Address(boxReg, 0), tmpReg);
  3328         masm.bind(DONE_LABEL) ; 
  3329     } else {  
  3330       // Possible cases that we'll encounter in fast_lock 
  3331       // ------------------------------------------------
  3332       // * Inflated
  3333       //    -- unlocked
  3334       //    -- Locked
  3335       //       = by self
  3336       //       = by other
  3337       // * biased
  3338       //    -- by Self
  3339       //    -- by other
  3340       // * neutral
  3341       // * stack-locked
  3342       //    -- by self
  3343       //       = sp-proximity test hits
  3344       //       = sp-proximity test generates false-negative
  3345       //    -- by other
  3346       //
  3348       Label IsInflated, DONE_LABEL, PopDone ;
  3350       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3351       // order to reduce the number of conditional branches in the most common cases.
  3352       // Beware -- there's a subtle invariant that fetch of the markword
  3353       // at [FETCH], below, will never observe a biased encoding (*101b).
  3354       // If this invariant is not held we risk exclusion (safety) failure.
  3355       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3356         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3359       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3360       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3361       masm.jccb  (Assembler::notZero, IsInflated) ;
  3363       // Attempt stack-locking ...
  3364       masm.orptr (tmpReg, 0x1);
  3365       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3366       if (os::is_MP()) { masm.lock();  }
  3367       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3368       if (_counters != NULL) {
  3369         masm.cond_inc32(Assembler::equal,
  3370                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3372       masm.jccb (Assembler::equal, DONE_LABEL);
  3374       // Recursive locking
  3375       masm.subptr(tmpReg, rsp);
  3376       masm.andptr(tmpReg, 0xFFFFF003 );
  3377       masm.movptr(Address(boxReg, 0), tmpReg);
  3378       if (_counters != NULL) {
  3379         masm.cond_inc32(Assembler::equal,
  3380                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3382       masm.jmp  (DONE_LABEL) ;
  3384       masm.bind (IsInflated) ;
  3386       // The object is inflated.
  3387       //
  3388       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3389       //   Use markOopDesc::monitor_value instead of "2".
  3390       //   use markOop::unused_mark() instead of "3".
  3391       // The tmpReg value is an objectMonitor reference ORed with
  3392       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3393       // objectmonitor pointer by masking off the "2" bit or we can just
  3394       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3395       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3396       //
  3397       // I use the latter as it avoids AGI stalls.
  3398       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3399       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3400       //
  3401       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3403       // boxReg refers to the on-stack BasicLock in the current frame.
  3404       // We'd like to write:
  3405       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3406       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3407       // additional latency as we have another ST in the store buffer that must drain.
  3409       if (EmitSync & 8192) { 
  3410          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3411          masm.get_thread (scrReg) ; 
  3412          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3413          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3414          if (os::is_MP()) { masm.lock(); } 
  3415          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3416       } else 
  3417       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3418          masm.movptr(scrReg, boxReg) ; 
  3419          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3421          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3422          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3423             // prefetchw [eax + Offset(_owner)-2]
  3424             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3427          if ((EmitSync & 64) == 0) {
  3428            // Optimistic form: consider XORL tmpReg,tmpReg
  3429            masm.movptr(tmpReg, NULL_WORD) ; 
  3430          } else { 
  3431            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3432            // Test-And-CAS instead of CAS
  3433            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3434            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3435            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3438          // Appears unlocked - try to swing _owner from null to non-null.
  3439          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3440          // to CAS the register containing Self into m->Owner.
  3441          // But we don't have enough registers, so instead we can either try to CAS
  3442          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3443          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3444          // (rsp or the address of the box) into  m->owner is harmless.
  3445          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3446          if (os::is_MP()) { masm.lock();  }
  3447          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3448          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3449          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3450          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3451          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3452          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3454          // If the CAS fails we can either retry or pass control to the slow-path.  
  3455          // We use the latter tactic.  
  3456          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3457          // If the CAS was successful ...
  3458          //   Self has acquired the lock
  3459          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3460          // Intentional fall-through into DONE_LABEL ...
  3461       } else {
  3462          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3463          masm.movptr(boxReg, tmpReg) ; 
  3465          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3466          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3467             // prefetchw [eax + Offset(_owner)-2]
  3468             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3471          if ((EmitSync & 64) == 0) {
  3472            // Optimistic form
  3473            masm.xorptr  (tmpReg, tmpReg) ; 
  3474          } else { 
  3475            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3476            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3477            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3478            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3481          // Appears unlocked - try to swing _owner from null to non-null.
  3482          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3483          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3484          masm.get_thread (scrReg) ;
  3485          if (os::is_MP()) { masm.lock(); }
  3486          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3488          // If the CAS fails we can either retry or pass control to the slow-path.
  3489          // We use the latter tactic.
  3490          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3491          // If the CAS was successful ...
  3492          //   Self has acquired the lock
  3493          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3494          // Intentional fall-through into DONE_LABEL ...
  3497       // DONE_LABEL is a hot target - we'd really like to place it at the
  3498       // start of cache line by padding with NOPs.
  3499       // See the AMD and Intel software optimization manuals for the
  3500       // most efficient "long" NOP encodings.
  3501       // Unfortunately none of our alignment mechanisms suffice.
  3502       masm.bind(DONE_LABEL);
  3504       // Avoid branch-to-branch on AMD processors
  3505       // This appears to be superstition.
  3506       if (EmitSync & 32) masm.nop() ;
  3509       // At DONE_LABEL the icc ZFlag is set as follows ...
  3510       // Fast_Unlock uses the same protocol.
  3511       // ZFlag == 1 -> Success
  3512       // ZFlag == 0 -> Failure - force control through the slow-path
  3514   %}
  3516   // obj: object to unlock
  3517   // box: box address (displaced header location), killed.  Must be EAX.
  3518   // rbx,: killed tmp; cannot be obj nor box.
  3519   //
  3520   // Some commentary on balanced locking:
  3521   //
  3522   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3523   // Methods that don't have provably balanced locking are forced to run in the
  3524   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3525   // The interpreter provides two properties:
  3526   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3527   //      objects acquired the current activation (frame).  Recall that the
  3528   //      interpreter maintains an on-stack list of locks currently held by
  3529   //      a frame.
  3530   // I2:  If a method attempts to unlock an object that is not held by the
  3531   //      the frame the interpreter throws IMSX.
  3532   //
  3533   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3534   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3535   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3536   // is still locked by A().
  3537   //
  3538   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3539   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3540   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3541   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3543   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3545     Register objReg = as_Register($obj$$reg);
  3546     Register boxReg = as_Register($box$$reg);
  3547     Register tmpReg = as_Register($tmp$$reg);
  3549     guarantee (objReg != boxReg, "") ;
  3550     guarantee (objReg != tmpReg, "") ;
  3551     guarantee (boxReg != tmpReg, "") ;
  3552     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3553     MacroAssembler masm(&cbuf);
  3555     if (EmitSync & 4) {
  3556       // Disable - inhibit all inlining.  Force control through the slow-path
  3557       masm.cmpptr (rsp, 0) ; 
  3558     } else 
  3559     if (EmitSync & 8) {
  3560       Label DONE_LABEL ;
  3561       if (UseBiasedLocking) {
  3562          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3564       // classic stack-locking code ...
  3565       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3566       masm.testptr(tmpReg, tmpReg) ;
  3567       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3568       if (os::is_MP()) { masm.lock(); }
  3569       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3570       masm.bind(DONE_LABEL);
  3571     } else {
  3572       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3574       // Critically, the biased locking test must have precedence over
  3575       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3576       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3577          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3580       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3581       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3582       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3584       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3585       masm.jccb  (Assembler::zero, Stacked) ;
  3587       masm.bind  (Inflated) ;
  3588       // It's inflated.
  3589       // Despite our balanced locking property we still check that m->_owner == Self
  3590       // as java routines or native JNI code called by this thread might
  3591       // have released the lock.
  3592       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3593       // state in _succ so we can avoid fetching EntryList|cxq.
  3594       //
  3595       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3596       // such as recursive enter and exit -- but we have to be wary of
  3597       // I$ bloat, T$ effects and BP$ effects.
  3598       //
  3599       // If there's no contention try a 1-0 exit.  That is, exit without
  3600       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3601       // we detect and recover from the race that the 1-0 exit admits.
  3602       //
  3603       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3604       // before it STs null into _owner, releasing the lock.  Updates
  3605       // to data protected by the critical section must be visible before
  3606       // we drop the lock (and thus before any other thread could acquire
  3607       // the lock and observe the fields protected by the lock).
  3608       // IA32's memory-model is SPO, so STs are ordered with respect to
  3609       // each other and there's no need for an explicit barrier (fence).
  3610       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3612       masm.get_thread (boxReg) ;
  3613       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3614         // prefetchw [ebx + Offset(_owner)-2]
  3615         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3618       // Note that we could employ various encoding schemes to reduce
  3619       // the number of loads below (currently 4) to just 2 or 3.
  3620       // Refer to the comments in synchronizer.cpp.
  3621       // In practice the chain of fetches doesn't seem to impact performance, however.
  3622       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3623          // Attempt to reduce branch density - AMD's branch predictor.
  3624          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3625          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3626          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3627          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3628          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3629          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3630          masm.jmpb  (DONE_LABEL) ; 
  3631       } else { 
  3632          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3633          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3634          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3635          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3636          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3637          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3638          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3639          masm.jmpb  (DONE_LABEL) ; 
  3642       // The Following code fragment (EmitSync & 65536) improves the performance of
  3643       // contended applications and contended synchronization microbenchmarks.
  3644       // Unfortunately the emission of the code - even though not executed - causes regressions
  3645       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3646       // with an equal number of never-executed NOPs results in the same regression.
  3647       // We leave it off by default.
  3649       if ((EmitSync & 65536) != 0) {
  3650          Label LSuccess, LGoSlowPath ;
  3652          masm.bind  (CheckSucc) ;
  3654          // Optional pre-test ... it's safe to elide this
  3655          if ((EmitSync & 16) == 0) { 
  3656             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3657             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3660          // We have a classic Dekker-style idiom:
  3661          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3662          // There are a number of ways to implement the barrier:
  3663          // (1) lock:andl &m->_owner, 0
  3664          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3665          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3666          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3667          // (2) If supported, an explicit MFENCE is appealing.
  3668          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3669          //     particularly if the write-buffer is full as might be the case if
  3670          //     if stores closely precede the fence or fence-equivalent instruction.
  3671          //     In more modern implementations MFENCE appears faster, however.
  3672          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3673          //     The $lines underlying the top-of-stack should be in M-state.
  3674          //     The locked add instruction is serializing, of course.
  3675          // (4) Use xchg, which is serializing
  3676          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3677          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3678          //     The integer condition codes will tell us if succ was 0.
  3679          //     Since _succ and _owner should reside in the same $line and
  3680          //     we just stored into _owner, it's likely that the $line
  3681          //     remains in M-state for the lock:orl.
  3682          //
  3683          // We currently use (3), although it's likely that switching to (2)
  3684          // is correct for the future.
  3686          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3687          if (os::is_MP()) { 
  3688             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3689               masm.mfence();
  3690             } else { 
  3691               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3694          // Ratify _succ remains non-null
  3695          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3696          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3698          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3699          if (os::is_MP()) { masm.lock(); }
  3700          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3701          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3702          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3703          // Now install Self over rsp.  This is safe as we're transitioning from
  3704          // non-null to non=null
  3705          masm.get_thread (boxReg) ;
  3706          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3707          // Intentional fall-through into LGoSlowPath ...
  3709          masm.bind  (LGoSlowPath) ; 
  3710          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3711          masm.jmpb  (DONE_LABEL) ; 
  3713          masm.bind  (LSuccess) ; 
  3714          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3715          masm.jmpb  (DONE_LABEL) ; 
  3718       masm.bind (Stacked) ;
  3719       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3720       // It must be stack-locked.
  3721       // Try to reset the header to displaced header.
  3722       // The "box" value on the stack is stable, so we can reload
  3723       // and be assured we observe the same value as above.
  3724       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3725       if (os::is_MP()) {   masm.lock();    }
  3726       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3727       // Intention fall-thru into DONE_LABEL
  3730       // DONE_LABEL is a hot target - we'd really like to place it at the
  3731       // start of cache line by padding with NOPs.
  3732       // See the AMD and Intel software optimization manuals for the
  3733       // most efficient "long" NOP encodings.
  3734       // Unfortunately none of our alignment mechanisms suffice.
  3735       if ((EmitSync & 65536) == 0) {
  3736          masm.bind (CheckSucc) ;
  3738       masm.bind(DONE_LABEL);
  3740       // Avoid branch to branch on AMD processors
  3741       if (EmitSync & 32768) { masm.nop() ; }
  3743   %}
  3746   enc_class enc_pop_rdx() %{
  3747     emit_opcode(cbuf,0x5A);
  3748   %}
  3750   enc_class enc_rethrow() %{
  3751     cbuf.set_insts_mark();
  3752     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3753     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3754                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3755   %}
  3758   // Convert a double to an int.  Java semantics require we do complex
  3759   // manglelations in the corner cases.  So we set the rounding mode to
  3760   // 'zero', store the darned double down as an int, and reset the
  3761   // rounding mode to 'nearest'.  The hardware throws an exception which
  3762   // patches up the correct value directly to the stack.
  3763   enc_class D2I_encoding( regD src ) %{
  3764     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3765     // exceptions here, so that a NAN or other corner-case value will
  3766     // thrown an exception (but normal values get converted at full speed).
  3767     // However, I2C adapters and other float-stack manglers leave pending
  3768     // invalid-op exceptions hanging.  We would have to clear them before
  3769     // enabling them and that is more expensive than just testing for the
  3770     // invalid value Intel stores down in the corner cases.
  3771     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3772     emit_opcode(cbuf,0x2D);
  3773     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3774     // Allocate a word
  3775     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3776     emit_opcode(cbuf,0xEC);
  3777     emit_d8(cbuf,0x04);
  3778     // Encoding assumes a double has been pushed into FPR0.
  3779     // Store down the double as an int, popping the FPU stack
  3780     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3781     emit_opcode(cbuf,0x1C);
  3782     emit_d8(cbuf,0x24);
  3783     // Restore the rounding mode; mask the exception
  3784     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3785     emit_opcode(cbuf,0x2D);
  3786     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3787         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3788         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3790     // Load the converted int; adjust CPU stack
  3791     emit_opcode(cbuf,0x58);       // POP EAX
  3792     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3793     emit_d32   (cbuf,0x80000000); //         0x80000000
  3794     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3795     emit_d8    (cbuf,0x07);       // Size of slow_call
  3796     // Push src onto stack slow-path
  3797     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3798     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3799     // CALL directly to the runtime
  3800     cbuf.set_insts_mark();
  3801     emit_opcode(cbuf,0xE8);       // Call into runtime
  3802     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3803     // Carry on here...
  3804   %}
  3806   enc_class D2L_encoding( regD src ) %{
  3807     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3808     emit_opcode(cbuf,0x2D);
  3809     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3810     // Allocate a word
  3811     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3812     emit_opcode(cbuf,0xEC);
  3813     emit_d8(cbuf,0x08);
  3814     // Encoding assumes a double has been pushed into FPR0.
  3815     // Store down the double as a long, popping the FPU stack
  3816     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3817     emit_opcode(cbuf,0x3C);
  3818     emit_d8(cbuf,0x24);
  3819     // Restore the rounding mode; mask the exception
  3820     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3821     emit_opcode(cbuf,0x2D);
  3822     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3823         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3824         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3826     // Load the converted int; adjust CPU stack
  3827     emit_opcode(cbuf,0x58);       // POP EAX
  3828     emit_opcode(cbuf,0x5A);       // POP EDX
  3829     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3830     emit_d8    (cbuf,0xFA);       // rdx
  3831     emit_d32   (cbuf,0x80000000); //         0x80000000
  3832     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3833     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3834     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3835     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3836     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3837     emit_d8    (cbuf,0x07);       // Size of slow_call
  3838     // Push src onto stack slow-path
  3839     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3840     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3841     // CALL directly to the runtime
  3842     cbuf.set_insts_mark();
  3843     emit_opcode(cbuf,0xE8);       // Call into runtime
  3844     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3845     // Carry on here...
  3846   %}
  3848   enc_class X2L_encoding( regX src ) %{
  3849     // Allocate a word
  3850     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3851     emit_opcode(cbuf,0xEC);
  3852     emit_d8(cbuf,0x08);
  3854     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3855     emit_opcode  (cbuf, 0x0F );
  3856     emit_opcode  (cbuf, 0x11 );
  3857     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3859     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3860     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3862     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3863     emit_opcode(cbuf,0x2D);
  3864     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3866     // Encoding assumes a double has been pushed into FPR0.
  3867     // Store down the double as a long, popping the FPU stack
  3868     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3869     emit_opcode(cbuf,0x3C);
  3870     emit_d8(cbuf,0x24);
  3872     // Restore the rounding mode; mask the exception
  3873     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3874     emit_opcode(cbuf,0x2D);
  3875     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3876       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3877       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3879     // Load the converted int; adjust CPU stack
  3880     emit_opcode(cbuf,0x58);      // POP EAX
  3882     emit_opcode(cbuf,0x5A);      // POP EDX
  3884     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3885     emit_d8    (cbuf,0xFA);      // rdx
  3886     emit_d32   (cbuf,0x80000000);//         0x80000000
  3888     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3889     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3891     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3892     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3894     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3895     emit_d8    (cbuf,0x13);      // Size of slow_call
  3897     // Allocate a word
  3898     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3899     emit_opcode(cbuf,0xEC);
  3900     emit_d8(cbuf,0x04);
  3902     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3903     emit_opcode  (cbuf, 0x0F );
  3904     emit_opcode  (cbuf, 0x11 );
  3905     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3907     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3908     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3910     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3911     emit_opcode(cbuf,0xC4);
  3912     emit_d8(cbuf,0x04);
  3914     // CALL directly to the runtime
  3915     cbuf.set_insts_mark();
  3916     emit_opcode(cbuf,0xE8);       // Call into runtime
  3917     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3918     // Carry on here...
  3919   %}
  3921   enc_class XD2L_encoding( regXD src ) %{
  3922     // Allocate a word
  3923     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3924     emit_opcode(cbuf,0xEC);
  3925     emit_d8(cbuf,0x08);
  3927     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3928     emit_opcode  (cbuf, 0x0F );
  3929     emit_opcode  (cbuf, 0x11 );
  3930     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3932     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3933     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3935     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3936     emit_opcode(cbuf,0x2D);
  3937     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3939     // Encoding assumes a double has been pushed into FPR0.
  3940     // Store down the double as a long, popping the FPU stack
  3941     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3942     emit_opcode(cbuf,0x3C);
  3943     emit_d8(cbuf,0x24);
  3945     // Restore the rounding mode; mask the exception
  3946     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3947     emit_opcode(cbuf,0x2D);
  3948     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3949       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3950       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3952     // Load the converted int; adjust CPU stack
  3953     emit_opcode(cbuf,0x58);      // POP EAX
  3955     emit_opcode(cbuf,0x5A);      // POP EDX
  3957     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3958     emit_d8    (cbuf,0xFA);      // rdx
  3959     emit_d32   (cbuf,0x80000000); //         0x80000000
  3961     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3962     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3964     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3965     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3967     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3968     emit_d8    (cbuf,0x13);      // Size of slow_call
  3970     // Push src onto stack slow-path
  3971     // Allocate a word
  3972     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3973     emit_opcode(cbuf,0xEC);
  3974     emit_d8(cbuf,0x08);
  3976     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3977     emit_opcode  (cbuf, 0x0F );
  3978     emit_opcode  (cbuf, 0x11 );
  3979     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3981     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3982     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3984     emit_opcode(cbuf,0x83);      // ADD ESP,8
  3985     emit_opcode(cbuf,0xC4);
  3986     emit_d8(cbuf,0x08);
  3988     // CALL directly to the runtime
  3989     cbuf.set_insts_mark();
  3990     emit_opcode(cbuf,0xE8);      // Call into runtime
  3991     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3992     // Carry on here...
  3993   %}
  3995   enc_class D2X_encoding( regX dst, regD src ) %{
  3996     // Allocate a word
  3997     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3998     emit_opcode(cbuf,0xEC);
  3999     emit_d8(cbuf,0x04);
  4000     int pop = 0x02;
  4001     if ($src$$reg != FPR1L_enc) {
  4002       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4003       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4004       pop = 0x03;
  4006     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4008     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4009     emit_opcode  (cbuf, 0x0F );
  4010     emit_opcode  (cbuf, 0x10 );
  4011     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4013     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4014     emit_opcode(cbuf,0xC4);
  4015     emit_d8(cbuf,0x04);
  4016     // Carry on here...
  4017   %}
  4019   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4020     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4022     // Compare the result to see if we need to go to the slow path
  4023     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4024     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4025     emit_d32   (cbuf,0x80000000); //         0x80000000
  4027     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4028     emit_d8    (cbuf,0x13);       // Size of slow_call
  4029     // Store xmm to a temp memory
  4030     // location and push it onto stack.
  4032     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4033     emit_opcode(cbuf,0xEC);
  4034     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4036     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4037     emit_opcode  (cbuf, 0x0F );
  4038     emit_opcode  (cbuf, 0x11 );
  4039     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4041     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4042     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4044     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4045     emit_opcode(cbuf,0xC4);
  4046     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4048     // CALL directly to the runtime
  4049     cbuf.set_insts_mark();
  4050     emit_opcode(cbuf,0xE8);       // Call into runtime
  4051     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4053     // Carry on here...
  4054   %}
  4056   enc_class X2D_encoding( regD dst, regX src ) %{
  4057     // Allocate a word
  4058     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4059     emit_opcode(cbuf,0xEC);
  4060     emit_d8(cbuf,0x04);
  4062     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4063     emit_opcode  (cbuf, 0x0F );
  4064     emit_opcode  (cbuf, 0x11 );
  4065     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4067     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4068     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4070     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4071     emit_opcode(cbuf,0xC4);
  4072     emit_d8(cbuf,0x04);
  4074     // Carry on here...
  4075   %}
  4077   enc_class AbsXF_encoding(regX dst) %{
  4078     address signmask_address=(address)float_signmask_pool;
  4079     // andpd:\tANDPS  $dst,[signconst]
  4080     emit_opcode(cbuf, 0x0F);
  4081     emit_opcode(cbuf, 0x54);
  4082     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4083     emit_d32(cbuf, (int)signmask_address);
  4084   %}
  4086   enc_class AbsXD_encoding(regXD dst) %{
  4087     address signmask_address=(address)double_signmask_pool;
  4088     // andpd:\tANDPD  $dst,[signconst]
  4089     emit_opcode(cbuf, 0x66);
  4090     emit_opcode(cbuf, 0x0F);
  4091     emit_opcode(cbuf, 0x54);
  4092     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4093     emit_d32(cbuf, (int)signmask_address);
  4094   %}
  4096   enc_class NegXF_encoding(regX dst) %{
  4097     address signmask_address=(address)float_signflip_pool;
  4098     // andpd:\tXORPS  $dst,[signconst]
  4099     emit_opcode(cbuf, 0x0F);
  4100     emit_opcode(cbuf, 0x57);
  4101     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4102     emit_d32(cbuf, (int)signmask_address);
  4103   %}
  4105   enc_class NegXD_encoding(regXD dst) %{
  4106     address signmask_address=(address)double_signflip_pool;
  4107     // andpd:\tXORPD  $dst,[signconst]
  4108     emit_opcode(cbuf, 0x66);
  4109     emit_opcode(cbuf, 0x0F);
  4110     emit_opcode(cbuf, 0x57);
  4111     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4112     emit_d32(cbuf, (int)signmask_address);
  4113   %}
  4115   enc_class FMul_ST_reg( eRegF src1 ) %{
  4116     // Operand was loaded from memory into fp ST (stack top)
  4117     // FMUL   ST,$src  /* D8 C8+i */
  4118     emit_opcode(cbuf, 0xD8);
  4119     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4120   %}
  4122   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4123     // FADDP  ST,src2  /* D8 C0+i */
  4124     emit_opcode(cbuf, 0xD8);
  4125     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4126     //could use FADDP  src2,fpST  /* DE C0+i */
  4127   %}
  4129   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4130     // FADDP  src2,ST  /* DE C0+i */
  4131     emit_opcode(cbuf, 0xDE);
  4132     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4133   %}
  4135   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4136     // Operand has been loaded into fp ST (stack top)
  4137       // FSUB   ST,$src1
  4138       emit_opcode(cbuf, 0xD8);
  4139       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4141       // FDIV
  4142       emit_opcode(cbuf, 0xD8);
  4143       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4144   %}
  4146   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4147     // Operand was loaded from memory into fp ST (stack top)
  4148     // FADD   ST,$src  /* D8 C0+i */
  4149     emit_opcode(cbuf, 0xD8);
  4150     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4152     // FMUL  ST,src2  /* D8 C*+i */
  4153     emit_opcode(cbuf, 0xD8);
  4154     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4155   %}
  4158   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4159     // Operand was loaded from memory into fp ST (stack top)
  4160     // FADD   ST,$src  /* D8 C0+i */
  4161     emit_opcode(cbuf, 0xD8);
  4162     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4164     // FMULP  src2,ST  /* DE C8+i */
  4165     emit_opcode(cbuf, 0xDE);
  4166     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4167   %}
  4169   // Atomically load the volatile long
  4170   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4171     emit_opcode(cbuf,0xDF);
  4172     int rm_byte_opcode = 0x05;
  4173     int base     = $mem$$base;
  4174     int index    = $mem$$index;
  4175     int scale    = $mem$$scale;
  4176     int displace = $mem$$disp;
  4177     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4178     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4179     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4180   %}
  4182   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4183     { // Atomic long load
  4184       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4185       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4186       emit_opcode(cbuf,0x0F);
  4187       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4188       int base     = $mem$$base;
  4189       int index    = $mem$$index;
  4190       int scale    = $mem$$scale;
  4191       int displace = $mem$$disp;
  4192       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4193       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4195     { // MOVSD $dst,$tmp ! atomic long store
  4196       emit_opcode(cbuf,0xF2);
  4197       emit_opcode(cbuf,0x0F);
  4198       emit_opcode(cbuf,0x11);
  4199       int base     = $dst$$base;
  4200       int index    = $dst$$index;
  4201       int scale    = $dst$$scale;
  4202       int displace = $dst$$disp;
  4203       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4204       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4206   %}
  4208   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4209     { // Atomic long load
  4210       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4211       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4212       emit_opcode(cbuf,0x0F);
  4213       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4214       int base     = $mem$$base;
  4215       int index    = $mem$$index;
  4216       int scale    = $mem$$scale;
  4217       int displace = $mem$$disp;
  4218       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4219       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4221     { // MOVD $dst.lo,$tmp
  4222       emit_opcode(cbuf,0x66);
  4223       emit_opcode(cbuf,0x0F);
  4224       emit_opcode(cbuf,0x7E);
  4225       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4227     { // PSRLQ $tmp,32
  4228       emit_opcode(cbuf,0x66);
  4229       emit_opcode(cbuf,0x0F);
  4230       emit_opcode(cbuf,0x73);
  4231       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4232       emit_d8(cbuf, 0x20);
  4234     { // MOVD $dst.hi,$tmp
  4235       emit_opcode(cbuf,0x66);
  4236       emit_opcode(cbuf,0x0F);
  4237       emit_opcode(cbuf,0x7E);
  4238       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4240   %}
  4242   // Volatile Store Long.  Must be atomic, so move it into
  4243   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4244   // target address before the store (for null-ptr checks)
  4245   // so the memory operand is used twice in the encoding.
  4246   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4247     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4248     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  4249     emit_opcode(cbuf,0xDF);
  4250     int rm_byte_opcode = 0x07;
  4251     int base     = $mem$$base;
  4252     int index    = $mem$$index;
  4253     int scale    = $mem$$scale;
  4254     int displace = $mem$$disp;
  4255     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4256     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4257   %}
  4259   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4260     { // Atomic long load
  4261       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4262       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4263       emit_opcode(cbuf,0x0F);
  4264       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4265       int base     = $src$$base;
  4266       int index    = $src$$index;
  4267       int scale    = $src$$scale;
  4268       int displace = $src$$disp;
  4269       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4270       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4272     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4273     { // MOVSD $mem,$tmp ! atomic long store
  4274       emit_opcode(cbuf,0xF2);
  4275       emit_opcode(cbuf,0x0F);
  4276       emit_opcode(cbuf,0x11);
  4277       int base     = $mem$$base;
  4278       int index    = $mem$$index;
  4279       int scale    = $mem$$scale;
  4280       int displace = $mem$$disp;
  4281       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4282       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4284   %}
  4286   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4287     { // MOVD $tmp,$src.lo
  4288       emit_opcode(cbuf,0x66);
  4289       emit_opcode(cbuf,0x0F);
  4290       emit_opcode(cbuf,0x6E);
  4291       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4293     { // MOVD $tmp2,$src.hi
  4294       emit_opcode(cbuf,0x66);
  4295       emit_opcode(cbuf,0x0F);
  4296       emit_opcode(cbuf,0x6E);
  4297       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4299     { // PUNPCKLDQ $tmp,$tmp2
  4300       emit_opcode(cbuf,0x66);
  4301       emit_opcode(cbuf,0x0F);
  4302       emit_opcode(cbuf,0x62);
  4303       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4305     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4306     { // MOVSD $mem,$tmp ! atomic long store
  4307       emit_opcode(cbuf,0xF2);
  4308       emit_opcode(cbuf,0x0F);
  4309       emit_opcode(cbuf,0x11);
  4310       int base     = $mem$$base;
  4311       int index    = $mem$$index;
  4312       int scale    = $mem$$scale;
  4313       int displace = $mem$$disp;
  4314       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4315       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4317   %}
  4319   // Safepoint Poll.  This polls the safepoint page, and causes an
  4320   // exception if it is not readable. Unfortunately, it kills the condition code
  4321   // in the process
  4322   // We current use TESTL [spp],EDI
  4323   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4325   enc_class Safepoint_Poll() %{
  4326     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  4327     emit_opcode(cbuf,0x85);
  4328     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4329     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4330   %}
  4331 %}
  4334 //----------FRAME--------------------------------------------------------------
  4335 // Definition of frame structure and management information.
  4336 //
  4337 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4338 //                             |   (to get allocators register number
  4339 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4340 //  r   CALLER     |        |
  4341 //  o     |        +--------+      pad to even-align allocators stack-slot
  4342 //  w     V        |  pad0  |        numbers; owned by CALLER
  4343 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4344 //  h     ^        |   in   |  5
  4345 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4346 //  |     |        |        |  3
  4347 //  |     |        +--------+
  4348 //  V     |        | old out|      Empty on Intel, window on Sparc
  4349 //        |    old |preserve|      Must be even aligned.
  4350 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4351 //        |        |   in   |  3   area for Intel ret address
  4352 //     Owned by    |preserve|      Empty on Sparc.
  4353 //       SELF      +--------+
  4354 //        |        |  pad2  |  2   pad to align old SP
  4355 //        |        +--------+  1
  4356 //        |        | locks  |  0
  4357 //        |        +--------+----> OptoReg::stack0(), even aligned
  4358 //        |        |  pad1  | 11   pad to align new SP
  4359 //        |        +--------+
  4360 //        |        |        | 10
  4361 //        |        | spills |  9   spills
  4362 //        V        |        |  8   (pad0 slot for callee)
  4363 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4364 //        ^        |  out   |  7
  4365 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4366 //     Owned by    +--------+
  4367 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4368 //        |    new |preserve|      Must be even-aligned.
  4369 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4370 //        |        |        |
  4371 //
  4372 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4373 //         known from SELF's arguments and the Java calling convention.
  4374 //         Region 6-7 is determined per call site.
  4375 // Note 2: If the calling convention leaves holes in the incoming argument
  4376 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4377 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4378 //         incoming area, as the Java calling convention is completely under
  4379 //         the control of the AD file.  Doubles can be sorted and packed to
  4380 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4381 //         varargs C calling conventions.
  4382 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4383 //         even aligned with pad0 as needed.
  4384 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4385 //         region 6-11 is even aligned; it may be padded out more so that
  4386 //         the region from SP to FP meets the minimum stack alignment.
  4388 frame %{
  4389   // What direction does stack grow in (assumed to be same for C & Java)
  4390   stack_direction(TOWARDS_LOW);
  4392   // These three registers define part of the calling convention
  4393   // between compiled code and the interpreter.
  4394   inline_cache_reg(EAX);                // Inline Cache Register
  4395   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4397   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4398   cisc_spilling_operand_name(indOffset32);
  4400   // Number of stack slots consumed by locking an object
  4401   sync_stack_slots(1);
  4403   // Compiled code's Frame Pointer
  4404   frame_pointer(ESP);
  4405   // Interpreter stores its frame pointer in a register which is
  4406   // stored to the stack by I2CAdaptors.
  4407   // I2CAdaptors convert from interpreted java to compiled java.
  4408   interpreter_frame_pointer(EBP);
  4410   // Stack alignment requirement
  4411   // Alignment size in bytes (128-bit -> 16 bytes)
  4412   stack_alignment(StackAlignmentInBytes);
  4414   // Number of stack slots between incoming argument block and the start of
  4415   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4416   // EPILOG must remove this many slots.  Intel needs one slot for
  4417   // return address and one for rbp, (must save rbp)
  4418   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4420   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4421   // for calls to C.  Supports the var-args backing area for register parms.
  4422   varargs_C_out_slots_killed(0);
  4424   // The after-PROLOG location of the return address.  Location of
  4425   // return address specifies a type (REG or STACK) and a number
  4426   // representing the register number (i.e. - use a register name) or
  4427   // stack slot.
  4428   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4429   // Otherwise, it is above the locks and verification slot and alignment word
  4430   return_addr(STACK - 1 +
  4431               round_to(1+VerifyStackAtCalls+
  4432               Compile::current()->fixed_slots(),
  4433               (StackAlignmentInBytes/wordSize)));
  4435   // Body of function which returns an integer array locating
  4436   // arguments either in registers or in stack slots.  Passed an array
  4437   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4438   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4439   // arguments for a CALLEE.  Incoming stack arguments are
  4440   // automatically biased by the preserve_stack_slots field above.
  4441   calling_convention %{
  4442     // No difference between ingoing/outgoing just pass false
  4443     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4444   %}
  4447   // Body of function which returns an integer array locating
  4448   // arguments either in registers or in stack slots.  Passed an array
  4449   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4450   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4451   // arguments for a CALLEE.  Incoming stack arguments are
  4452   // automatically biased by the preserve_stack_slots field above.
  4453   c_calling_convention %{
  4454     // This is obviously always outgoing
  4455     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4456   %}
  4458   // Location of C & interpreter return values
  4459   c_return_value %{
  4460     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4461     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4462     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4464     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4465     // that C functions return float and double results in XMM0.
  4466     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4467       return OptoRegPair(XMM0b_num,XMM0a_num);
  4468     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4469       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4471     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4472   %}
  4474   // Location of return values
  4475   return_value %{
  4476     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4477     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4478     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4479     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4480       return OptoRegPair(XMM0b_num,XMM0a_num);
  4481     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4482       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4483     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4484   %}
  4486 %}
  4488 //----------ATTRIBUTES---------------------------------------------------------
  4489 //----------Operand Attributes-------------------------------------------------
  4490 op_attrib op_cost(0);        // Required cost attribute
  4492 //----------Instruction Attributes---------------------------------------------
  4493 ins_attrib ins_cost(100);       // Required cost attribute
  4494 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4495 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4496 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4497                                 // non-matching short branch variant of some
  4498                                                             // long branch?
  4499 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4500                                 // specifies the alignment that some part of the instruction (not
  4501                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4502                                 // function must be provided for the instruction
  4504 //----------OPERANDS-----------------------------------------------------------
  4505 // Operand definitions must precede instruction definitions for correct parsing
  4506 // in the ADLC because operands constitute user defined types which are used in
  4507 // instruction definitions.
  4509 //----------Simple Operands----------------------------------------------------
  4510 // Immediate Operands
  4511 // Integer Immediate
  4512 operand immI() %{
  4513   match(ConI);
  4515   op_cost(10);
  4516   format %{ %}
  4517   interface(CONST_INTER);
  4518 %}
  4520 // Constant for test vs zero
  4521 operand immI0() %{
  4522   predicate(n->get_int() == 0);
  4523   match(ConI);
  4525   op_cost(0);
  4526   format %{ %}
  4527   interface(CONST_INTER);
  4528 %}
  4530 // Constant for increment
  4531 operand immI1() %{
  4532   predicate(n->get_int() == 1);
  4533   match(ConI);
  4535   op_cost(0);
  4536   format %{ %}
  4537   interface(CONST_INTER);
  4538 %}
  4540 // Constant for decrement
  4541 operand immI_M1() %{
  4542   predicate(n->get_int() == -1);
  4543   match(ConI);
  4545   op_cost(0);
  4546   format %{ %}
  4547   interface(CONST_INTER);
  4548 %}
  4550 // Valid scale values for addressing modes
  4551 operand immI2() %{
  4552   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4553   match(ConI);
  4555   format %{ %}
  4556   interface(CONST_INTER);
  4557 %}
  4559 operand immI8() %{
  4560   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4561   match(ConI);
  4563   op_cost(5);
  4564   format %{ %}
  4565   interface(CONST_INTER);
  4566 %}
  4568 operand immI16() %{
  4569   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4570   match(ConI);
  4572   op_cost(10);
  4573   format %{ %}
  4574   interface(CONST_INTER);
  4575 %}
  4577 // Constant for long shifts
  4578 operand immI_32() %{
  4579   predicate( n->get_int() == 32 );
  4580   match(ConI);
  4582   op_cost(0);
  4583   format %{ %}
  4584   interface(CONST_INTER);
  4585 %}
  4587 operand immI_1_31() %{
  4588   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4589   match(ConI);
  4591   op_cost(0);
  4592   format %{ %}
  4593   interface(CONST_INTER);
  4594 %}
  4596 operand immI_32_63() %{
  4597   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4598   match(ConI);
  4599   op_cost(0);
  4601   format %{ %}
  4602   interface(CONST_INTER);
  4603 %}
  4605 operand immI_1() %{
  4606   predicate( n->get_int() == 1 );
  4607   match(ConI);
  4609   op_cost(0);
  4610   format %{ %}
  4611   interface(CONST_INTER);
  4612 %}
  4614 operand immI_2() %{
  4615   predicate( n->get_int() == 2 );
  4616   match(ConI);
  4618   op_cost(0);
  4619   format %{ %}
  4620   interface(CONST_INTER);
  4621 %}
  4623 operand immI_3() %{
  4624   predicate( n->get_int() == 3 );
  4625   match(ConI);
  4627   op_cost(0);
  4628   format %{ %}
  4629   interface(CONST_INTER);
  4630 %}
  4632 // Pointer Immediate
  4633 operand immP() %{
  4634   match(ConP);
  4636   op_cost(10);
  4637   format %{ %}
  4638   interface(CONST_INTER);
  4639 %}
  4641 // NULL Pointer Immediate
  4642 operand immP0() %{
  4643   predicate( n->get_ptr() == 0 );
  4644   match(ConP);
  4645   op_cost(0);
  4647   format %{ %}
  4648   interface(CONST_INTER);
  4649 %}
  4651 // Long Immediate
  4652 operand immL() %{
  4653   match(ConL);
  4655   op_cost(20);
  4656   format %{ %}
  4657   interface(CONST_INTER);
  4658 %}
  4660 // Long Immediate zero
  4661 operand immL0() %{
  4662   predicate( n->get_long() == 0L );
  4663   match(ConL);
  4664   op_cost(0);
  4666   format %{ %}
  4667   interface(CONST_INTER);
  4668 %}
  4670 // Long Immediate zero
  4671 operand immL_M1() %{
  4672   predicate( n->get_long() == -1L );
  4673   match(ConL);
  4674   op_cost(0);
  4676   format %{ %}
  4677   interface(CONST_INTER);
  4678 %}
  4680 // Long immediate from 0 to 127.
  4681 // Used for a shorter form of long mul by 10.
  4682 operand immL_127() %{
  4683   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4684   match(ConL);
  4685   op_cost(0);
  4687   format %{ %}
  4688   interface(CONST_INTER);
  4689 %}
  4691 // Long Immediate: low 32-bit mask
  4692 operand immL_32bits() %{
  4693   predicate(n->get_long() == 0xFFFFFFFFL);
  4694   match(ConL);
  4695   op_cost(0);
  4697   format %{ %}
  4698   interface(CONST_INTER);
  4699 %}
  4701 // Long Immediate: low 32-bit mask
  4702 operand immL32() %{
  4703   predicate(n->get_long() == (int)(n->get_long()));
  4704   match(ConL);
  4705   op_cost(20);
  4707   format %{ %}
  4708   interface(CONST_INTER);
  4709 %}
  4711 //Double Immediate zero
  4712 operand immD0() %{
  4713   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4714   // bug that generates code such that NaNs compare equal to 0.0
  4715   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4716   match(ConD);
  4718   op_cost(5);
  4719   format %{ %}
  4720   interface(CONST_INTER);
  4721 %}
  4723 // Double Immediate one
  4724 operand immD1() %{
  4725   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4726   match(ConD);
  4728   op_cost(5);
  4729   format %{ %}
  4730   interface(CONST_INTER);
  4731 %}
  4733 // Double Immediate
  4734 operand immD() %{
  4735   predicate(UseSSE<=1);
  4736   match(ConD);
  4738   op_cost(5);
  4739   format %{ %}
  4740   interface(CONST_INTER);
  4741 %}
  4743 operand immXD() %{
  4744   predicate(UseSSE>=2);
  4745   match(ConD);
  4747   op_cost(5);
  4748   format %{ %}
  4749   interface(CONST_INTER);
  4750 %}
  4752 // Double Immediate zero
  4753 operand immXD0() %{
  4754   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4755   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4756   // compare equal to -0.0.
  4757   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4758   match(ConD);
  4760   format %{ %}
  4761   interface(CONST_INTER);
  4762 %}
  4764 // Float Immediate zero
  4765 operand immF0() %{
  4766   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4767   match(ConF);
  4769   op_cost(5);
  4770   format %{ %}
  4771   interface(CONST_INTER);
  4772 %}
  4774 // Float Immediate one
  4775 operand immF1() %{
  4776   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4777   match(ConF);
  4779   op_cost(5);
  4780   format %{ %}
  4781   interface(CONST_INTER);
  4782 %}
  4784 // Float Immediate
  4785 operand immF() %{
  4786   predicate( UseSSE == 0 );
  4787   match(ConF);
  4789   op_cost(5);
  4790   format %{ %}
  4791   interface(CONST_INTER);
  4792 %}
  4794 // Float Immediate
  4795 operand immXF() %{
  4796   predicate(UseSSE >= 1);
  4797   match(ConF);
  4799   op_cost(5);
  4800   format %{ %}
  4801   interface(CONST_INTER);
  4802 %}
  4804 // Float Immediate zero.  Zero and not -0.0
  4805 operand immXF0() %{
  4806   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4807   match(ConF);
  4809   op_cost(5);
  4810   format %{ %}
  4811   interface(CONST_INTER);
  4812 %}
  4814 // Immediates for special shifts (sign extend)
  4816 // Constants for increment
  4817 operand immI_16() %{
  4818   predicate( n->get_int() == 16 );
  4819   match(ConI);
  4821   format %{ %}
  4822   interface(CONST_INTER);
  4823 %}
  4825 operand immI_24() %{
  4826   predicate( n->get_int() == 24 );
  4827   match(ConI);
  4829   format %{ %}
  4830   interface(CONST_INTER);
  4831 %}
  4833 // Constant for byte-wide masking
  4834 operand immI_255() %{
  4835   predicate( n->get_int() == 255 );
  4836   match(ConI);
  4838   format %{ %}
  4839   interface(CONST_INTER);
  4840 %}
  4842 // Constant for short-wide masking
  4843 operand immI_65535() %{
  4844   predicate(n->get_int() == 65535);
  4845   match(ConI);
  4847   format %{ %}
  4848   interface(CONST_INTER);
  4849 %}
  4851 // Register Operands
  4852 // Integer Register
  4853 operand eRegI() %{
  4854   constraint(ALLOC_IN_RC(e_reg));
  4855   match(RegI);
  4856   match(xRegI);
  4857   match(eAXRegI);
  4858   match(eBXRegI);
  4859   match(eCXRegI);
  4860   match(eDXRegI);
  4861   match(eDIRegI);
  4862   match(eSIRegI);
  4864   format %{ %}
  4865   interface(REG_INTER);
  4866 %}
  4868 // Subset of Integer Register
  4869 operand xRegI(eRegI reg) %{
  4870   constraint(ALLOC_IN_RC(x_reg));
  4871   match(reg);
  4872   match(eAXRegI);
  4873   match(eBXRegI);
  4874   match(eCXRegI);
  4875   match(eDXRegI);
  4877   format %{ %}
  4878   interface(REG_INTER);
  4879 %}
  4881 // Special Registers
  4882 operand eAXRegI(xRegI reg) %{
  4883   constraint(ALLOC_IN_RC(eax_reg));
  4884   match(reg);
  4885   match(eRegI);
  4887   format %{ "EAX" %}
  4888   interface(REG_INTER);
  4889 %}
  4891 // Special Registers
  4892 operand eBXRegI(xRegI reg) %{
  4893   constraint(ALLOC_IN_RC(ebx_reg));
  4894   match(reg);
  4895   match(eRegI);
  4897   format %{ "EBX" %}
  4898   interface(REG_INTER);
  4899 %}
  4901 operand eCXRegI(xRegI reg) %{
  4902   constraint(ALLOC_IN_RC(ecx_reg));
  4903   match(reg);
  4904   match(eRegI);
  4906   format %{ "ECX" %}
  4907   interface(REG_INTER);
  4908 %}
  4910 operand eDXRegI(xRegI reg) %{
  4911   constraint(ALLOC_IN_RC(edx_reg));
  4912   match(reg);
  4913   match(eRegI);
  4915   format %{ "EDX" %}
  4916   interface(REG_INTER);
  4917 %}
  4919 operand eDIRegI(xRegI reg) %{
  4920   constraint(ALLOC_IN_RC(edi_reg));
  4921   match(reg);
  4922   match(eRegI);
  4924   format %{ "EDI" %}
  4925   interface(REG_INTER);
  4926 %}
  4928 operand naxRegI() %{
  4929   constraint(ALLOC_IN_RC(nax_reg));
  4930   match(RegI);
  4931   match(eCXRegI);
  4932   match(eDXRegI);
  4933   match(eSIRegI);
  4934   match(eDIRegI);
  4936   format %{ %}
  4937   interface(REG_INTER);
  4938 %}
  4940 operand nadxRegI() %{
  4941   constraint(ALLOC_IN_RC(nadx_reg));
  4942   match(RegI);
  4943   match(eBXRegI);
  4944   match(eCXRegI);
  4945   match(eSIRegI);
  4946   match(eDIRegI);
  4948   format %{ %}
  4949   interface(REG_INTER);
  4950 %}
  4952 operand ncxRegI() %{
  4953   constraint(ALLOC_IN_RC(ncx_reg));
  4954   match(RegI);
  4955   match(eAXRegI);
  4956   match(eDXRegI);
  4957   match(eSIRegI);
  4958   match(eDIRegI);
  4960   format %{ %}
  4961   interface(REG_INTER);
  4962 %}
  4964 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4965 // //
  4966 operand eSIRegI(xRegI reg) %{
  4967    constraint(ALLOC_IN_RC(esi_reg));
  4968    match(reg);
  4969    match(eRegI);
  4971    format %{ "ESI" %}
  4972    interface(REG_INTER);
  4973 %}
  4975 // Pointer Register
  4976 operand anyRegP() %{
  4977   constraint(ALLOC_IN_RC(any_reg));
  4978   match(RegP);
  4979   match(eAXRegP);
  4980   match(eBXRegP);
  4981   match(eCXRegP);
  4982   match(eDIRegP);
  4983   match(eRegP);
  4985   format %{ %}
  4986   interface(REG_INTER);
  4987 %}
  4989 operand eRegP() %{
  4990   constraint(ALLOC_IN_RC(e_reg));
  4991   match(RegP);
  4992   match(eAXRegP);
  4993   match(eBXRegP);
  4994   match(eCXRegP);
  4995   match(eDIRegP);
  4997   format %{ %}
  4998   interface(REG_INTER);
  4999 %}
  5001 // On windows95, EBP is not safe to use for implicit null tests.
  5002 operand eRegP_no_EBP() %{
  5003   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5004   match(RegP);
  5005   match(eAXRegP);
  5006   match(eBXRegP);
  5007   match(eCXRegP);
  5008   match(eDIRegP);
  5010   op_cost(100);
  5011   format %{ %}
  5012   interface(REG_INTER);
  5013 %}
  5015 operand naxRegP() %{
  5016   constraint(ALLOC_IN_RC(nax_reg));
  5017   match(RegP);
  5018   match(eBXRegP);
  5019   match(eDXRegP);
  5020   match(eCXRegP);
  5021   match(eSIRegP);
  5022   match(eDIRegP);
  5024   format %{ %}
  5025   interface(REG_INTER);
  5026 %}
  5028 operand nabxRegP() %{
  5029   constraint(ALLOC_IN_RC(nabx_reg));
  5030   match(RegP);
  5031   match(eCXRegP);
  5032   match(eDXRegP);
  5033   match(eSIRegP);
  5034   match(eDIRegP);
  5036   format %{ %}
  5037   interface(REG_INTER);
  5038 %}
  5040 operand pRegP() %{
  5041   constraint(ALLOC_IN_RC(p_reg));
  5042   match(RegP);
  5043   match(eBXRegP);
  5044   match(eDXRegP);
  5045   match(eSIRegP);
  5046   match(eDIRegP);
  5048   format %{ %}
  5049   interface(REG_INTER);
  5050 %}
  5052 // Special Registers
  5053 // Return a pointer value
  5054 operand eAXRegP(eRegP reg) %{
  5055   constraint(ALLOC_IN_RC(eax_reg));
  5056   match(reg);
  5057   format %{ "EAX" %}
  5058   interface(REG_INTER);
  5059 %}
  5061 // Used in AtomicAdd
  5062 operand eBXRegP(eRegP reg) %{
  5063   constraint(ALLOC_IN_RC(ebx_reg));
  5064   match(reg);
  5065   format %{ "EBX" %}
  5066   interface(REG_INTER);
  5067 %}
  5069 // Tail-call (interprocedural jump) to interpreter
  5070 operand eCXRegP(eRegP reg) %{
  5071   constraint(ALLOC_IN_RC(ecx_reg));
  5072   match(reg);
  5073   format %{ "ECX" %}
  5074   interface(REG_INTER);
  5075 %}
  5077 operand eSIRegP(eRegP reg) %{
  5078   constraint(ALLOC_IN_RC(esi_reg));
  5079   match(reg);
  5080   format %{ "ESI" %}
  5081   interface(REG_INTER);
  5082 %}
  5084 // Used in rep stosw
  5085 operand eDIRegP(eRegP reg) %{
  5086   constraint(ALLOC_IN_RC(edi_reg));
  5087   match(reg);
  5088   format %{ "EDI" %}
  5089   interface(REG_INTER);
  5090 %}
  5092 operand eBPRegP() %{
  5093   constraint(ALLOC_IN_RC(ebp_reg));
  5094   match(RegP);
  5095   format %{ "EBP" %}
  5096   interface(REG_INTER);
  5097 %}
  5099 operand eRegL() %{
  5100   constraint(ALLOC_IN_RC(long_reg));
  5101   match(RegL);
  5102   match(eADXRegL);
  5104   format %{ %}
  5105   interface(REG_INTER);
  5106 %}
  5108 operand eADXRegL( eRegL reg ) %{
  5109   constraint(ALLOC_IN_RC(eadx_reg));
  5110   match(reg);
  5112   format %{ "EDX:EAX" %}
  5113   interface(REG_INTER);
  5114 %}
  5116 operand eBCXRegL( eRegL reg ) %{
  5117   constraint(ALLOC_IN_RC(ebcx_reg));
  5118   match(reg);
  5120   format %{ "EBX:ECX" %}
  5121   interface(REG_INTER);
  5122 %}
  5124 // Special case for integer high multiply
  5125 operand eADXRegL_low_only() %{
  5126   constraint(ALLOC_IN_RC(eadx_reg));
  5127   match(RegL);
  5129   format %{ "EAX" %}
  5130   interface(REG_INTER);
  5131 %}
  5133 // Flags register, used as output of compare instructions
  5134 operand eFlagsReg() %{
  5135   constraint(ALLOC_IN_RC(int_flags));
  5136   match(RegFlags);
  5138   format %{ "EFLAGS" %}
  5139   interface(REG_INTER);
  5140 %}
  5142 // Flags register, used as output of FLOATING POINT compare instructions
  5143 operand eFlagsRegU() %{
  5144   constraint(ALLOC_IN_RC(int_flags));
  5145   match(RegFlags);
  5147   format %{ "EFLAGS_U" %}
  5148   interface(REG_INTER);
  5149 %}
  5151 operand eFlagsRegUCF() %{
  5152   constraint(ALLOC_IN_RC(int_flags));
  5153   match(RegFlags);
  5154   predicate(false);
  5156   format %{ "EFLAGS_U_CF" %}
  5157   interface(REG_INTER);
  5158 %}
  5160 // Condition Code Register used by long compare
  5161 operand flagsReg_long_LTGE() %{
  5162   constraint(ALLOC_IN_RC(int_flags));
  5163   match(RegFlags);
  5164   format %{ "FLAGS_LTGE" %}
  5165   interface(REG_INTER);
  5166 %}
  5167 operand flagsReg_long_EQNE() %{
  5168   constraint(ALLOC_IN_RC(int_flags));
  5169   match(RegFlags);
  5170   format %{ "FLAGS_EQNE" %}
  5171   interface(REG_INTER);
  5172 %}
  5173 operand flagsReg_long_LEGT() %{
  5174   constraint(ALLOC_IN_RC(int_flags));
  5175   match(RegFlags);
  5176   format %{ "FLAGS_LEGT" %}
  5177   interface(REG_INTER);
  5178 %}
  5180 // Float register operands
  5181 operand regD() %{
  5182   predicate( UseSSE < 2 );
  5183   constraint(ALLOC_IN_RC(dbl_reg));
  5184   match(RegD);
  5185   match(regDPR1);
  5186   match(regDPR2);
  5187   format %{ %}
  5188   interface(REG_INTER);
  5189 %}
  5191 operand regDPR1(regD reg) %{
  5192   predicate( UseSSE < 2 );
  5193   constraint(ALLOC_IN_RC(dbl_reg0));
  5194   match(reg);
  5195   format %{ "FPR1" %}
  5196   interface(REG_INTER);
  5197 %}
  5199 operand regDPR2(regD reg) %{
  5200   predicate( UseSSE < 2 );
  5201   constraint(ALLOC_IN_RC(dbl_reg1));
  5202   match(reg);
  5203   format %{ "FPR2" %}
  5204   interface(REG_INTER);
  5205 %}
  5207 operand regnotDPR1(regD reg) %{
  5208   predicate( UseSSE < 2 );
  5209   constraint(ALLOC_IN_RC(dbl_notreg0));
  5210   match(reg);
  5211   format %{ %}
  5212   interface(REG_INTER);
  5213 %}
  5215 // XMM Double register operands
  5216 operand regXD() %{
  5217   predicate( UseSSE>=2 );
  5218   constraint(ALLOC_IN_RC(xdb_reg));
  5219   match(RegD);
  5220   match(regXD6);
  5221   match(regXD7);
  5222   format %{ %}
  5223   interface(REG_INTER);
  5224 %}
  5226 // XMM6 double register operands
  5227 operand regXD6(regXD reg) %{
  5228   predicate( UseSSE>=2 );
  5229   constraint(ALLOC_IN_RC(xdb_reg6));
  5230   match(reg);
  5231   format %{ "XMM6" %}
  5232   interface(REG_INTER);
  5233 %}
  5235 // XMM7 double register operands
  5236 operand regXD7(regXD reg) %{
  5237   predicate( UseSSE>=2 );
  5238   constraint(ALLOC_IN_RC(xdb_reg7));
  5239   match(reg);
  5240   format %{ "XMM7" %}
  5241   interface(REG_INTER);
  5242 %}
  5244 // Float register operands
  5245 operand regF() %{
  5246   predicate( UseSSE < 2 );
  5247   constraint(ALLOC_IN_RC(flt_reg));
  5248   match(RegF);
  5249   match(regFPR1);
  5250   format %{ %}
  5251   interface(REG_INTER);
  5252 %}
  5254 // Float register operands
  5255 operand regFPR1(regF reg) %{
  5256   predicate( UseSSE < 2 );
  5257   constraint(ALLOC_IN_RC(flt_reg0));
  5258   match(reg);
  5259   format %{ "FPR1" %}
  5260   interface(REG_INTER);
  5261 %}
  5263 // XMM register operands
  5264 operand regX() %{
  5265   predicate( UseSSE>=1 );
  5266   constraint(ALLOC_IN_RC(xmm_reg));
  5267   match(RegF);
  5268   format %{ %}
  5269   interface(REG_INTER);
  5270 %}
  5273 //----------Memory Operands----------------------------------------------------
  5274 // Direct Memory Operand
  5275 operand direct(immP addr) %{
  5276   match(addr);
  5278   format %{ "[$addr]" %}
  5279   interface(MEMORY_INTER) %{
  5280     base(0xFFFFFFFF);
  5281     index(0x4);
  5282     scale(0x0);
  5283     disp($addr);
  5284   %}
  5285 %}
  5287 // Indirect Memory Operand
  5288 operand indirect(eRegP reg) %{
  5289   constraint(ALLOC_IN_RC(e_reg));
  5290   match(reg);
  5292   format %{ "[$reg]" %}
  5293   interface(MEMORY_INTER) %{
  5294     base($reg);
  5295     index(0x4);
  5296     scale(0x0);
  5297     disp(0x0);
  5298   %}
  5299 %}
  5301 // Indirect Memory Plus Short Offset Operand
  5302 operand indOffset8(eRegP reg, immI8 off) %{
  5303   match(AddP reg off);
  5305   format %{ "[$reg + $off]" %}
  5306   interface(MEMORY_INTER) %{
  5307     base($reg);
  5308     index(0x4);
  5309     scale(0x0);
  5310     disp($off);
  5311   %}
  5312 %}
  5314 // Indirect Memory Plus Long Offset Operand
  5315 operand indOffset32(eRegP reg, immI off) %{
  5316   match(AddP reg off);
  5318   format %{ "[$reg + $off]" %}
  5319   interface(MEMORY_INTER) %{
  5320     base($reg);
  5321     index(0x4);
  5322     scale(0x0);
  5323     disp($off);
  5324   %}
  5325 %}
  5327 // Indirect Memory Plus Long Offset Operand
  5328 operand indOffset32X(eRegI reg, immP off) %{
  5329   match(AddP off reg);
  5331   format %{ "[$reg + $off]" %}
  5332   interface(MEMORY_INTER) %{
  5333     base($reg);
  5334     index(0x4);
  5335     scale(0x0);
  5336     disp($off);
  5337   %}
  5338 %}
  5340 // Indirect Memory Plus Index Register Plus Offset Operand
  5341 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5342   match(AddP (AddP reg ireg) off);
  5344   op_cost(10);
  5345   format %{"[$reg + $off + $ireg]" %}
  5346   interface(MEMORY_INTER) %{
  5347     base($reg);
  5348     index($ireg);
  5349     scale(0x0);
  5350     disp($off);
  5351   %}
  5352 %}
  5354 // Indirect Memory Plus Index Register Plus Offset Operand
  5355 operand indIndex(eRegP reg, eRegI ireg) %{
  5356   match(AddP reg ireg);
  5358   op_cost(10);
  5359   format %{"[$reg + $ireg]" %}
  5360   interface(MEMORY_INTER) %{
  5361     base($reg);
  5362     index($ireg);
  5363     scale(0x0);
  5364     disp(0x0);
  5365   %}
  5366 %}
  5368 // // -------------------------------------------------------------------------
  5369 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5370 // // -------------------------------------------------------------------------
  5371 // // Scaled Memory Operands
  5372 // // Indirect Memory Times Scale Plus Offset Operand
  5373 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5374 //   match(AddP off (LShiftI ireg scale));
  5375 //
  5376 //   op_cost(10);
  5377 //   format %{"[$off + $ireg << $scale]" %}
  5378 //   interface(MEMORY_INTER) %{
  5379 //     base(0x4);
  5380 //     index($ireg);
  5381 //     scale($scale);
  5382 //     disp($off);
  5383 //   %}
  5384 // %}
  5386 // Indirect Memory Times Scale Plus Index Register
  5387 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5388   match(AddP reg (LShiftI ireg scale));
  5390   op_cost(10);
  5391   format %{"[$reg + $ireg << $scale]" %}
  5392   interface(MEMORY_INTER) %{
  5393     base($reg);
  5394     index($ireg);
  5395     scale($scale);
  5396     disp(0x0);
  5397   %}
  5398 %}
  5400 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5401 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5402   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5404   op_cost(10);
  5405   format %{"[$reg + $off + $ireg << $scale]" %}
  5406   interface(MEMORY_INTER) %{
  5407     base($reg);
  5408     index($ireg);
  5409     scale($scale);
  5410     disp($off);
  5411   %}
  5412 %}
  5414 //----------Load Long Memory Operands------------------------------------------
  5415 // The load-long idiom will use it's address expression again after loading
  5416 // the first word of the long.  If the load-long destination overlaps with
  5417 // registers used in the addressing expression, the 2nd half will be loaded
  5418 // from a clobbered address.  Fix this by requiring that load-long use
  5419 // address registers that do not overlap with the load-long target.
  5421 // load-long support
  5422 operand load_long_RegP() %{
  5423   constraint(ALLOC_IN_RC(esi_reg));
  5424   match(RegP);
  5425   match(eSIRegP);
  5426   op_cost(100);
  5427   format %{  %}
  5428   interface(REG_INTER);
  5429 %}
  5431 // Indirect Memory Operand Long
  5432 operand load_long_indirect(load_long_RegP reg) %{
  5433   constraint(ALLOC_IN_RC(esi_reg));
  5434   match(reg);
  5436   format %{ "[$reg]" %}
  5437   interface(MEMORY_INTER) %{
  5438     base($reg);
  5439     index(0x4);
  5440     scale(0x0);
  5441     disp(0x0);
  5442   %}
  5443 %}
  5445 // Indirect Memory Plus Long Offset Operand
  5446 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5447   match(AddP reg off);
  5449   format %{ "[$reg + $off]" %}
  5450   interface(MEMORY_INTER) %{
  5451     base($reg);
  5452     index(0x4);
  5453     scale(0x0);
  5454     disp($off);
  5455   %}
  5456 %}
  5458 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5461 //----------Special Memory Operands--------------------------------------------
  5462 // Stack Slot Operand - This operand is used for loading and storing temporary
  5463 //                      values on the stack where a match requires a value to
  5464 //                      flow through memory.
  5465 operand stackSlotP(sRegP reg) %{
  5466   constraint(ALLOC_IN_RC(stack_slots));
  5467   // No match rule because this operand is only generated in matching
  5468   format %{ "[$reg]" %}
  5469   interface(MEMORY_INTER) %{
  5470     base(0x4);   // ESP
  5471     index(0x4);  // No Index
  5472     scale(0x0);  // No Scale
  5473     disp($reg);  // Stack Offset
  5474   %}
  5475 %}
  5477 operand stackSlotI(sRegI reg) %{
  5478   constraint(ALLOC_IN_RC(stack_slots));
  5479   // No match rule because this operand is only generated in matching
  5480   format %{ "[$reg]" %}
  5481   interface(MEMORY_INTER) %{
  5482     base(0x4);   // ESP
  5483     index(0x4);  // No Index
  5484     scale(0x0);  // No Scale
  5485     disp($reg);  // Stack Offset
  5486   %}
  5487 %}
  5489 operand stackSlotF(sRegF reg) %{
  5490   constraint(ALLOC_IN_RC(stack_slots));
  5491   // No match rule because this operand is only generated in matching
  5492   format %{ "[$reg]" %}
  5493   interface(MEMORY_INTER) %{
  5494     base(0x4);   // ESP
  5495     index(0x4);  // No Index
  5496     scale(0x0);  // No Scale
  5497     disp($reg);  // Stack Offset
  5498   %}
  5499 %}
  5501 operand stackSlotD(sRegD reg) %{
  5502   constraint(ALLOC_IN_RC(stack_slots));
  5503   // No match rule because this operand is only generated in matching
  5504   format %{ "[$reg]" %}
  5505   interface(MEMORY_INTER) %{
  5506     base(0x4);   // ESP
  5507     index(0x4);  // No Index
  5508     scale(0x0);  // No Scale
  5509     disp($reg);  // Stack Offset
  5510   %}
  5511 %}
  5513 operand stackSlotL(sRegL reg) %{
  5514   constraint(ALLOC_IN_RC(stack_slots));
  5515   // No match rule because this operand is only generated in matching
  5516   format %{ "[$reg]" %}
  5517   interface(MEMORY_INTER) %{
  5518     base(0x4);   // ESP
  5519     index(0x4);  // No Index
  5520     scale(0x0);  // No Scale
  5521     disp($reg);  // Stack Offset
  5522   %}
  5523 %}
  5525 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5526 // Indirect Memory Operand
  5527 operand indirect_win95_safe(eRegP_no_EBP reg)
  5528 %{
  5529   constraint(ALLOC_IN_RC(e_reg));
  5530   match(reg);
  5532   op_cost(100);
  5533   format %{ "[$reg]" %}
  5534   interface(MEMORY_INTER) %{
  5535     base($reg);
  5536     index(0x4);
  5537     scale(0x0);
  5538     disp(0x0);
  5539   %}
  5540 %}
  5542 // Indirect Memory Plus Short Offset Operand
  5543 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5544 %{
  5545   match(AddP reg off);
  5547   op_cost(100);
  5548   format %{ "[$reg + $off]" %}
  5549   interface(MEMORY_INTER) %{
  5550     base($reg);
  5551     index(0x4);
  5552     scale(0x0);
  5553     disp($off);
  5554   %}
  5555 %}
  5557 // Indirect Memory Plus Long Offset Operand
  5558 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5559 %{
  5560   match(AddP reg off);
  5562   op_cost(100);
  5563   format %{ "[$reg + $off]" %}
  5564   interface(MEMORY_INTER) %{
  5565     base($reg);
  5566     index(0x4);
  5567     scale(0x0);
  5568     disp($off);
  5569   %}
  5570 %}
  5572 // Indirect Memory Plus Index Register Plus Offset Operand
  5573 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5574 %{
  5575   match(AddP (AddP reg ireg) off);
  5577   op_cost(100);
  5578   format %{"[$reg + $off + $ireg]" %}
  5579   interface(MEMORY_INTER) %{
  5580     base($reg);
  5581     index($ireg);
  5582     scale(0x0);
  5583     disp($off);
  5584   %}
  5585 %}
  5587 // Indirect Memory Times Scale Plus Index Register
  5588 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5589 %{
  5590   match(AddP reg (LShiftI ireg scale));
  5592   op_cost(100);
  5593   format %{"[$reg + $ireg << $scale]" %}
  5594   interface(MEMORY_INTER) %{
  5595     base($reg);
  5596     index($ireg);
  5597     scale($scale);
  5598     disp(0x0);
  5599   %}
  5600 %}
  5602 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5603 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5604 %{
  5605   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5607   op_cost(100);
  5608   format %{"[$reg + $off + $ireg << $scale]" %}
  5609   interface(MEMORY_INTER) %{
  5610     base($reg);
  5611     index($ireg);
  5612     scale($scale);
  5613     disp($off);
  5614   %}
  5615 %}
  5617 //----------Conditional Branch Operands----------------------------------------
  5618 // Comparison Op  - This is the operation of the comparison, and is limited to
  5619 //                  the following set of codes:
  5620 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5621 //
  5622 // Other attributes of the comparison, such as unsignedness, are specified
  5623 // by the comparison instruction that sets a condition code flags register.
  5624 // That result is represented by a flags operand whose subtype is appropriate
  5625 // to the unsignedness (etc.) of the comparison.
  5626 //
  5627 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5628 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5629 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5631 // Comparision Code
  5632 operand cmpOp() %{
  5633   match(Bool);
  5635   format %{ "" %}
  5636   interface(COND_INTER) %{
  5637     equal(0x4, "e");
  5638     not_equal(0x5, "ne");
  5639     less(0xC, "l");
  5640     greater_equal(0xD, "ge");
  5641     less_equal(0xE, "le");
  5642     greater(0xF, "g");
  5643   %}
  5644 %}
  5646 // Comparison Code, unsigned compare.  Used by FP also, with
  5647 // C2 (unordered) turned into GT or LT already.  The other bits
  5648 // C0 and C3 are turned into Carry & Zero flags.
  5649 operand cmpOpU() %{
  5650   match(Bool);
  5652   format %{ "" %}
  5653   interface(COND_INTER) %{
  5654     equal(0x4, "e");
  5655     not_equal(0x5, "ne");
  5656     less(0x2, "b");
  5657     greater_equal(0x3, "nb");
  5658     less_equal(0x6, "be");
  5659     greater(0x7, "nbe");
  5660   %}
  5661 %}
  5663 // Floating comparisons that don't require any fixup for the unordered case
  5664 operand cmpOpUCF() %{
  5665   match(Bool);
  5666   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5667             n->as_Bool()->_test._test == BoolTest::ge ||
  5668             n->as_Bool()->_test._test == BoolTest::le ||
  5669             n->as_Bool()->_test._test == BoolTest::gt);
  5670   format %{ "" %}
  5671   interface(COND_INTER) %{
  5672     equal(0x4, "e");
  5673     not_equal(0x5, "ne");
  5674     less(0x2, "b");
  5675     greater_equal(0x3, "nb");
  5676     less_equal(0x6, "be");
  5677     greater(0x7, "nbe");
  5678   %}
  5679 %}
  5682 // Floating comparisons that can be fixed up with extra conditional jumps
  5683 operand cmpOpUCF2() %{
  5684   match(Bool);
  5685   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5686             n->as_Bool()->_test._test == BoolTest::eq);
  5687   format %{ "" %}
  5688   interface(COND_INTER) %{
  5689     equal(0x4, "e");
  5690     not_equal(0x5, "ne");
  5691     less(0x2, "b");
  5692     greater_equal(0x3, "nb");
  5693     less_equal(0x6, "be");
  5694     greater(0x7, "nbe");
  5695   %}
  5696 %}
  5698 // Comparison Code for FP conditional move
  5699 operand cmpOp_fcmov() %{
  5700   match(Bool);
  5702   format %{ "" %}
  5703   interface(COND_INTER) %{
  5704     equal        (0x0C8);
  5705     not_equal    (0x1C8);
  5706     less         (0x0C0);
  5707     greater_equal(0x1C0);
  5708     less_equal   (0x0D0);
  5709     greater      (0x1D0);
  5710   %}
  5711 %}
  5713 // Comparision Code used in long compares
  5714 operand cmpOp_commute() %{
  5715   match(Bool);
  5717   format %{ "" %}
  5718   interface(COND_INTER) %{
  5719     equal(0x4, "e");
  5720     not_equal(0x5, "ne");
  5721     less(0xF, "g");
  5722     greater_equal(0xE, "le");
  5723     less_equal(0xD, "ge");
  5724     greater(0xC, "l");
  5725   %}
  5726 %}
  5728 //----------OPERAND CLASSES----------------------------------------------------
  5729 // Operand Classes are groups of operands that are used as to simplify
  5730 // instruction definitions by not requiring the AD writer to specify separate
  5731 // instructions for every form of operand when the instruction accepts
  5732 // multiple operand types with the same basic encoding and format.  The classic
  5733 // case of this is memory operands.
  5735 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5736                indIndex, indIndexScale, indIndexScaleOffset);
  5738 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5739 // This means some kind of offset is always required and you cannot use
  5740 // an oop as the offset (done when working on static globals).
  5741 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5742                     indIndex, indIndexScale, indIndexScaleOffset);
  5745 //----------PIPELINE-----------------------------------------------------------
  5746 // Rules which define the behavior of the target architectures pipeline.
  5747 pipeline %{
  5749 //----------ATTRIBUTES---------------------------------------------------------
  5750 attributes %{
  5751   variable_size_instructions;        // Fixed size instructions
  5752   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5753   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5754   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5755   instruction_fetch_units = 1;       // of 16 bytes
  5757   // List of nop instructions
  5758   nops( MachNop );
  5759 %}
  5761 //----------RESOURCES----------------------------------------------------------
  5762 // Resources are the functional units available to the machine
  5764 // Generic P2/P3 pipeline
  5765 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5766 // 3 instructions decoded per cycle.
  5767 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5768 // 2 ALU op, only ALU0 handles mul/div instructions.
  5769 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5770            MS0, MS1, MEM = MS0 | MS1,
  5771            BR, FPU,
  5772            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5774 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5775 // Pipeline Description specifies the stages in the machine's pipeline
  5777 // Generic P2/P3 pipeline
  5778 pipe_desc(S0, S1, S2, S3, S4, S5);
  5780 //----------PIPELINE CLASSES---------------------------------------------------
  5781 // Pipeline Classes describe the stages in which input and output are
  5782 // referenced by the hardware pipeline.
  5784 // Naming convention: ialu or fpu
  5785 // Then: _reg
  5786 // Then: _reg if there is a 2nd register
  5787 // Then: _long if it's a pair of instructions implementing a long
  5788 // Then: _fat if it requires the big decoder
  5789 //   Or: _mem if it requires the big decoder and a memory unit.
  5791 // Integer ALU reg operation
  5792 pipe_class ialu_reg(eRegI dst) %{
  5793     single_instruction;
  5794     dst    : S4(write);
  5795     dst    : S3(read);
  5796     DECODE : S0;        // any decoder
  5797     ALU    : S3;        // any alu
  5798 %}
  5800 // Long ALU reg operation
  5801 pipe_class ialu_reg_long(eRegL dst) %{
  5802     instruction_count(2);
  5803     dst    : S4(write);
  5804     dst    : S3(read);
  5805     DECODE : S0(2);     // any 2 decoders
  5806     ALU    : S3(2);     // both alus
  5807 %}
  5809 // Integer ALU reg operation using big decoder
  5810 pipe_class ialu_reg_fat(eRegI dst) %{
  5811     single_instruction;
  5812     dst    : S4(write);
  5813     dst    : S3(read);
  5814     D0     : S0;        // big decoder only
  5815     ALU    : S3;        // any alu
  5816 %}
  5818 // Long ALU reg operation using big decoder
  5819 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5820     instruction_count(2);
  5821     dst    : S4(write);
  5822     dst    : S3(read);
  5823     D0     : S0(2);     // big decoder only; twice
  5824     ALU    : S3(2);     // any 2 alus
  5825 %}
  5827 // Integer ALU reg-reg operation
  5828 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5829     single_instruction;
  5830     dst    : S4(write);
  5831     src    : S3(read);
  5832     DECODE : S0;        // any decoder
  5833     ALU    : S3;        // any alu
  5834 %}
  5836 // Long ALU reg-reg operation
  5837 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5838     instruction_count(2);
  5839     dst    : S4(write);
  5840     src    : S3(read);
  5841     DECODE : S0(2);     // any 2 decoders
  5842     ALU    : S3(2);     // both alus
  5843 %}
  5845 // Integer ALU reg-reg operation
  5846 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5847     single_instruction;
  5848     dst    : S4(write);
  5849     src    : S3(read);
  5850     D0     : S0;        // big decoder only
  5851     ALU    : S3;        // any alu
  5852 %}
  5854 // Long ALU reg-reg operation
  5855 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5856     instruction_count(2);
  5857     dst    : S4(write);
  5858     src    : S3(read);
  5859     D0     : S0(2);     // big decoder only; twice
  5860     ALU    : S3(2);     // both alus
  5861 %}
  5863 // Integer ALU reg-mem operation
  5864 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5865     single_instruction;
  5866     dst    : S5(write);
  5867     mem    : S3(read);
  5868     D0     : S0;        // big decoder only
  5869     ALU    : S4;        // any alu
  5870     MEM    : S3;        // any mem
  5871 %}
  5873 // Long ALU reg-mem operation
  5874 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5875     instruction_count(2);
  5876     dst    : S5(write);
  5877     mem    : S3(read);
  5878     D0     : S0(2);     // big decoder only; twice
  5879     ALU    : S4(2);     // any 2 alus
  5880     MEM    : S3(2);     // both mems
  5881 %}
  5883 // Integer mem operation (prefetch)
  5884 pipe_class ialu_mem(memory mem)
  5885 %{
  5886     single_instruction;
  5887     mem    : S3(read);
  5888     D0     : S0;        // big decoder only
  5889     MEM    : S3;        // any mem
  5890 %}
  5892 // Integer Store to Memory
  5893 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5894     single_instruction;
  5895     mem    : S3(read);
  5896     src    : S5(read);
  5897     D0     : S0;        // big decoder only
  5898     ALU    : S4;        // any alu
  5899     MEM    : S3;
  5900 %}
  5902 // Long Store to Memory
  5903 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5904     instruction_count(2);
  5905     mem    : S3(read);
  5906     src    : S5(read);
  5907     D0     : S0(2);     // big decoder only; twice
  5908     ALU    : S4(2);     // any 2 alus
  5909     MEM    : S3(2);     // Both mems
  5910 %}
  5912 // Integer Store to Memory
  5913 pipe_class ialu_mem_imm(memory mem) %{
  5914     single_instruction;
  5915     mem    : S3(read);
  5916     D0     : S0;        // big decoder only
  5917     ALU    : S4;        // any alu
  5918     MEM    : S3;
  5919 %}
  5921 // Integer ALU0 reg-reg operation
  5922 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5923     single_instruction;
  5924     dst    : S4(write);
  5925     src    : S3(read);
  5926     D0     : S0;        // Big decoder only
  5927     ALU0   : S3;        // only alu0
  5928 %}
  5930 // Integer ALU0 reg-mem operation
  5931 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5932     single_instruction;
  5933     dst    : S5(write);
  5934     mem    : S3(read);
  5935     D0     : S0;        // big decoder only
  5936     ALU0   : S4;        // ALU0 only
  5937     MEM    : S3;        // any mem
  5938 %}
  5940 // Integer ALU reg-reg operation
  5941 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5942     single_instruction;
  5943     cr     : S4(write);
  5944     src1   : S3(read);
  5945     src2   : S3(read);
  5946     DECODE : S0;        // any decoder
  5947     ALU    : S3;        // any alu
  5948 %}
  5950 // Integer ALU reg-imm operation
  5951 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5952     single_instruction;
  5953     cr     : S4(write);
  5954     src1   : S3(read);
  5955     DECODE : S0;        // any decoder
  5956     ALU    : S3;        // any alu
  5957 %}
  5959 // Integer ALU reg-mem operation
  5960 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5961     single_instruction;
  5962     cr     : S4(write);
  5963     src1   : S3(read);
  5964     src2   : S3(read);
  5965     D0     : S0;        // big decoder only
  5966     ALU    : S4;        // any alu
  5967     MEM    : S3;
  5968 %}
  5970 // Conditional move reg-reg
  5971 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5972     instruction_count(4);
  5973     y      : S4(read);
  5974     q      : S3(read);
  5975     p      : S3(read);
  5976     DECODE : S0(4);     // any decoder
  5977 %}
  5979 // Conditional move reg-reg
  5980 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5981     single_instruction;
  5982     dst    : S4(write);
  5983     src    : S3(read);
  5984     cr     : S3(read);
  5985     DECODE : S0;        // any decoder
  5986 %}
  5988 // Conditional move reg-mem
  5989 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5990     single_instruction;
  5991     dst    : S4(write);
  5992     src    : S3(read);
  5993     cr     : S3(read);
  5994     DECODE : S0;        // any decoder
  5995     MEM    : S3;
  5996 %}
  5998 // Conditional move reg-reg long
  5999 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6000     single_instruction;
  6001     dst    : S4(write);
  6002     src    : S3(read);
  6003     cr     : S3(read);
  6004     DECODE : S0(2);     // any 2 decoders
  6005 %}
  6007 // Conditional move double reg-reg
  6008 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6009     single_instruction;
  6010     dst    : S4(write);
  6011     src    : S3(read);
  6012     cr     : S3(read);
  6013     DECODE : S0;        // any decoder
  6014 %}
  6016 // Float reg-reg operation
  6017 pipe_class fpu_reg(regD dst) %{
  6018     instruction_count(2);
  6019     dst    : S3(read);
  6020     DECODE : S0(2);     // any 2 decoders
  6021     FPU    : S3;
  6022 %}
  6024 // Float reg-reg operation
  6025 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6026     instruction_count(2);
  6027     dst    : S4(write);
  6028     src    : S3(read);
  6029     DECODE : S0(2);     // any 2 decoders
  6030     FPU    : S3;
  6031 %}
  6033 // Float reg-reg operation
  6034 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6035     instruction_count(3);
  6036     dst    : S4(write);
  6037     src1   : S3(read);
  6038     src2   : S3(read);
  6039     DECODE : S0(3);     // any 3 decoders
  6040     FPU    : S3(2);
  6041 %}
  6043 // Float reg-reg operation
  6044 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6045     instruction_count(4);
  6046     dst    : S4(write);
  6047     src1   : S3(read);
  6048     src2   : S3(read);
  6049     src3   : S3(read);
  6050     DECODE : S0(4);     // any 3 decoders
  6051     FPU    : S3(2);
  6052 %}
  6054 // Float reg-reg operation
  6055 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6056     instruction_count(4);
  6057     dst    : S4(write);
  6058     src1   : S3(read);
  6059     src2   : S3(read);
  6060     src3   : S3(read);
  6061     DECODE : S1(3);     // any 3 decoders
  6062     D0     : S0;        // Big decoder only
  6063     FPU    : S3(2);
  6064     MEM    : S3;
  6065 %}
  6067 // Float reg-mem operation
  6068 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6069     instruction_count(2);
  6070     dst    : S5(write);
  6071     mem    : S3(read);
  6072     D0     : S0;        // big decoder only
  6073     DECODE : S1;        // any decoder for FPU POP
  6074     FPU    : S4;
  6075     MEM    : S3;        // any mem
  6076 %}
  6078 // Float reg-mem operation
  6079 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6080     instruction_count(3);
  6081     dst    : S5(write);
  6082     src1   : S3(read);
  6083     mem    : S3(read);
  6084     D0     : S0;        // big decoder only
  6085     DECODE : S1(2);     // any decoder for FPU POP
  6086     FPU    : S4;
  6087     MEM    : S3;        // any mem
  6088 %}
  6090 // Float mem-reg operation
  6091 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6092     instruction_count(2);
  6093     src    : S5(read);
  6094     mem    : S3(read);
  6095     DECODE : S0;        // any decoder for FPU PUSH
  6096     D0     : S1;        // big decoder only
  6097     FPU    : S4;
  6098     MEM    : S3;        // any mem
  6099 %}
  6101 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6102     instruction_count(3);
  6103     src1   : S3(read);
  6104     src2   : S3(read);
  6105     mem    : S3(read);
  6106     DECODE : S0(2);     // any decoder for FPU PUSH
  6107     D0     : S1;        // big decoder only
  6108     FPU    : S4;
  6109     MEM    : S3;        // any mem
  6110 %}
  6112 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6113     instruction_count(3);
  6114     src1   : S3(read);
  6115     src2   : S3(read);
  6116     mem    : S4(read);
  6117     DECODE : S0;        // any decoder for FPU PUSH
  6118     D0     : S0(2);     // big decoder only
  6119     FPU    : S4;
  6120     MEM    : S3(2);     // any mem
  6121 %}
  6123 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6124     instruction_count(2);
  6125     src1   : S3(read);
  6126     dst    : S4(read);
  6127     D0     : S0(2);     // big decoder only
  6128     MEM    : S3(2);     // any mem
  6129 %}
  6131 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6132     instruction_count(3);
  6133     src1   : S3(read);
  6134     src2   : S3(read);
  6135     dst    : S4(read);
  6136     D0     : S0(3);     // big decoder only
  6137     FPU    : S4;
  6138     MEM    : S3(3);     // any mem
  6139 %}
  6141 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6142     instruction_count(3);
  6143     src1   : S4(read);
  6144     mem    : S4(read);
  6145     DECODE : S0;        // any decoder for FPU PUSH
  6146     D0     : S0(2);     // big decoder only
  6147     FPU    : S4;
  6148     MEM    : S3(2);     // any mem
  6149 %}
  6151 // Float load constant
  6152 pipe_class fpu_reg_con(regD dst) %{
  6153     instruction_count(2);
  6154     dst    : S5(write);
  6155     D0     : S0;        // big decoder only for the load
  6156     DECODE : S1;        // any decoder for FPU POP
  6157     FPU    : S4;
  6158     MEM    : S3;        // any mem
  6159 %}
  6161 // Float load constant
  6162 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6163     instruction_count(3);
  6164     dst    : S5(write);
  6165     src    : S3(read);
  6166     D0     : S0;        // big decoder only for the load
  6167     DECODE : S1(2);     // any decoder for FPU POP
  6168     FPU    : S4;
  6169     MEM    : S3;        // any mem
  6170 %}
  6172 // UnConditional branch
  6173 pipe_class pipe_jmp( label labl ) %{
  6174     single_instruction;
  6175     BR   : S3;
  6176 %}
  6178 // Conditional branch
  6179 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6180     single_instruction;
  6181     cr    : S1(read);
  6182     BR    : S3;
  6183 %}
  6185 // Allocation idiom
  6186 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6187     instruction_count(1); force_serialization;
  6188     fixed_latency(6);
  6189     heap_ptr : S3(read);
  6190     DECODE   : S0(3);
  6191     D0       : S2;
  6192     MEM      : S3;
  6193     ALU      : S3(2);
  6194     dst      : S5(write);
  6195     BR       : S5;
  6196 %}
  6198 // Generic big/slow expanded idiom
  6199 pipe_class pipe_slow(  ) %{
  6200     instruction_count(10); multiple_bundles; force_serialization;
  6201     fixed_latency(100);
  6202     D0  : S0(2);
  6203     MEM : S3(2);
  6204 %}
  6206 // The real do-nothing guy
  6207 pipe_class empty( ) %{
  6208     instruction_count(0);
  6209 %}
  6211 // Define the class for the Nop node
  6212 define %{
  6213    MachNop = empty;
  6214 %}
  6216 %}
  6218 //----------INSTRUCTIONS-------------------------------------------------------
  6219 //
  6220 // match      -- States which machine-independent subtree may be replaced
  6221 //               by this instruction.
  6222 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6223 //               selection to identify a minimum cost tree of machine
  6224 //               instructions that matches a tree of machine-independent
  6225 //               instructions.
  6226 // format     -- A string providing the disassembly for this instruction.
  6227 //               The value of an instruction's operand may be inserted
  6228 //               by referring to it with a '$' prefix.
  6229 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6230 //               to within an encode class as $primary, $secondary, and $tertiary
  6231 //               respectively.  The primary opcode is commonly used to
  6232 //               indicate the type of machine instruction, while secondary
  6233 //               and tertiary are often used for prefix options or addressing
  6234 //               modes.
  6235 // ins_encode -- A list of encode classes with parameters. The encode class
  6236 //               name must have been defined in an 'enc_class' specification
  6237 //               in the encode section of the architecture description.
  6239 //----------BSWAP-Instruction--------------------------------------------------
  6240 instruct bytes_reverse_int(eRegI dst) %{
  6241   match(Set dst (ReverseBytesI dst));
  6243   format %{ "BSWAP  $dst" %}
  6244   opcode(0x0F, 0xC8);
  6245   ins_encode( OpcP, OpcSReg(dst) );
  6246   ins_pipe( ialu_reg );
  6247 %}
  6249 instruct bytes_reverse_long(eRegL dst) %{
  6250   match(Set dst (ReverseBytesL dst));
  6252   format %{ "BSWAP  $dst.lo\n\t"
  6253             "BSWAP  $dst.hi\n\t"
  6254             "XCHG   $dst.lo $dst.hi" %}
  6256   ins_cost(125);
  6257   ins_encode( bswap_long_bytes(dst) );
  6258   ins_pipe( ialu_reg_reg);
  6259 %}
  6261 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  6262   match(Set dst (ReverseBytesUS dst));
  6264   format %{ "BSWAP  $dst\n\t" 
  6265             "SHR    $dst,16\n\t" %}
  6266   ins_encode %{
  6267     __ bswapl($dst$$Register);
  6268     __ shrl($dst$$Register, 16); 
  6269   %}
  6270   ins_pipe( ialu_reg );
  6271 %}
  6273 instruct bytes_reverse_short(eRegI dst) %{
  6274   match(Set dst (ReverseBytesS dst));
  6276   format %{ "BSWAP  $dst\n\t" 
  6277             "SAR    $dst,16\n\t" %}
  6278   ins_encode %{
  6279     __ bswapl($dst$$Register);
  6280     __ sarl($dst$$Register, 16); 
  6281   %}
  6282   ins_pipe( ialu_reg );
  6283 %}
  6286 //---------- Zeros Count Instructions ------------------------------------------
  6288 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6289   predicate(UseCountLeadingZerosInstruction);
  6290   match(Set dst (CountLeadingZerosI src));
  6291   effect(KILL cr);
  6293   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6294   ins_encode %{
  6295     __ lzcntl($dst$$Register, $src$$Register);
  6296   %}
  6297   ins_pipe(ialu_reg);
  6298 %}
  6300 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6301   predicate(!UseCountLeadingZerosInstruction);
  6302   match(Set dst (CountLeadingZerosI src));
  6303   effect(KILL cr);
  6305   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6306             "JNZ    skip\n\t"
  6307             "MOV    $dst, -1\n"
  6308       "skip:\n\t"
  6309             "NEG    $dst\n\t"
  6310             "ADD    $dst, 31" %}
  6311   ins_encode %{
  6312     Register Rdst = $dst$$Register;
  6313     Register Rsrc = $src$$Register;
  6314     Label skip;
  6315     __ bsrl(Rdst, Rsrc);
  6316     __ jccb(Assembler::notZero, skip);
  6317     __ movl(Rdst, -1);
  6318     __ bind(skip);
  6319     __ negl(Rdst);
  6320     __ addl(Rdst, BitsPerInt - 1);
  6321   %}
  6322   ins_pipe(ialu_reg);
  6323 %}
  6325 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6326   predicate(UseCountLeadingZerosInstruction);
  6327   match(Set dst (CountLeadingZerosL src));
  6328   effect(TEMP dst, KILL cr);
  6330   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6331             "JNC    done\n\t"
  6332             "LZCNT  $dst, $src.lo\n\t"
  6333             "ADD    $dst, 32\n"
  6334       "done:" %}
  6335   ins_encode %{
  6336     Register Rdst = $dst$$Register;
  6337     Register Rsrc = $src$$Register;
  6338     Label done;
  6339     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6340     __ jccb(Assembler::carryClear, done);
  6341     __ lzcntl(Rdst, Rsrc);
  6342     __ addl(Rdst, BitsPerInt);
  6343     __ bind(done);
  6344   %}
  6345   ins_pipe(ialu_reg);
  6346 %}
  6348 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6349   predicate(!UseCountLeadingZerosInstruction);
  6350   match(Set dst (CountLeadingZerosL src));
  6351   effect(TEMP dst, KILL cr);
  6353   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6354             "JZ     msw_is_zero\n\t"
  6355             "ADD    $dst, 32\n\t"
  6356             "JMP    not_zero\n"
  6357       "msw_is_zero:\n\t"
  6358             "BSR    $dst, $src.lo\n\t"
  6359             "JNZ    not_zero\n\t"
  6360             "MOV    $dst, -1\n"
  6361       "not_zero:\n\t"
  6362             "NEG    $dst\n\t"
  6363             "ADD    $dst, 63\n" %}
  6364  ins_encode %{
  6365     Register Rdst = $dst$$Register;
  6366     Register Rsrc = $src$$Register;
  6367     Label msw_is_zero;
  6368     Label not_zero;
  6369     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6370     __ jccb(Assembler::zero, msw_is_zero);
  6371     __ addl(Rdst, BitsPerInt);
  6372     __ jmpb(not_zero);
  6373     __ bind(msw_is_zero);
  6374     __ bsrl(Rdst, Rsrc);
  6375     __ jccb(Assembler::notZero, not_zero);
  6376     __ movl(Rdst, -1);
  6377     __ bind(not_zero);
  6378     __ negl(Rdst);
  6379     __ addl(Rdst, BitsPerLong - 1);
  6380   %}
  6381   ins_pipe(ialu_reg);
  6382 %}
  6384 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6385   match(Set dst (CountTrailingZerosI src));
  6386   effect(KILL cr);
  6388   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6389             "JNZ    done\n\t"
  6390             "MOV    $dst, 32\n"
  6391       "done:" %}
  6392   ins_encode %{
  6393     Register Rdst = $dst$$Register;
  6394     Label done;
  6395     __ bsfl(Rdst, $src$$Register);
  6396     __ jccb(Assembler::notZero, done);
  6397     __ movl(Rdst, BitsPerInt);
  6398     __ bind(done);
  6399   %}
  6400   ins_pipe(ialu_reg);
  6401 %}
  6403 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6404   match(Set dst (CountTrailingZerosL src));
  6405   effect(TEMP dst, KILL cr);
  6407   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6408             "JNZ    done\n\t"
  6409             "BSF    $dst, $src.hi\n\t"
  6410             "JNZ    msw_not_zero\n\t"
  6411             "MOV    $dst, 32\n"
  6412       "msw_not_zero:\n\t"
  6413             "ADD    $dst, 32\n"
  6414       "done:" %}
  6415   ins_encode %{
  6416     Register Rdst = $dst$$Register;
  6417     Register Rsrc = $src$$Register;
  6418     Label msw_not_zero;
  6419     Label done;
  6420     __ bsfl(Rdst, Rsrc);
  6421     __ jccb(Assembler::notZero, done);
  6422     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6423     __ jccb(Assembler::notZero, msw_not_zero);
  6424     __ movl(Rdst, BitsPerInt);
  6425     __ bind(msw_not_zero);
  6426     __ addl(Rdst, BitsPerInt);
  6427     __ bind(done);
  6428   %}
  6429   ins_pipe(ialu_reg);
  6430 %}
  6433 //---------- Population Count Instructions -------------------------------------
  6435 instruct popCountI(eRegI dst, eRegI src) %{
  6436   predicate(UsePopCountInstruction);
  6437   match(Set dst (PopCountI src));
  6439   format %{ "POPCNT $dst, $src" %}
  6440   ins_encode %{
  6441     __ popcntl($dst$$Register, $src$$Register);
  6442   %}
  6443   ins_pipe(ialu_reg);
  6444 %}
  6446 instruct popCountI_mem(eRegI dst, memory mem) %{
  6447   predicate(UsePopCountInstruction);
  6448   match(Set dst (PopCountI (LoadI mem)));
  6450   format %{ "POPCNT $dst, $mem" %}
  6451   ins_encode %{
  6452     __ popcntl($dst$$Register, $mem$$Address);
  6453   %}
  6454   ins_pipe(ialu_reg);
  6455 %}
  6457 // Note: Long.bitCount(long) returns an int.
  6458 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6459   predicate(UsePopCountInstruction);
  6460   match(Set dst (PopCountL src));
  6461   effect(KILL cr, TEMP tmp, TEMP dst);
  6463   format %{ "POPCNT $dst, $src.lo\n\t"
  6464             "POPCNT $tmp, $src.hi\n\t"
  6465             "ADD    $dst, $tmp" %}
  6466   ins_encode %{
  6467     __ popcntl($dst$$Register, $src$$Register);
  6468     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6469     __ addl($dst$$Register, $tmp$$Register);
  6470   %}
  6471   ins_pipe(ialu_reg);
  6472 %}
  6474 // Note: Long.bitCount(long) returns an int.
  6475 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6476   predicate(UsePopCountInstruction);
  6477   match(Set dst (PopCountL (LoadL mem)));
  6478   effect(KILL cr, TEMP tmp, TEMP dst);
  6480   format %{ "POPCNT $dst, $mem\n\t"
  6481             "POPCNT $tmp, $mem+4\n\t"
  6482             "ADD    $dst, $tmp" %}
  6483   ins_encode %{
  6484     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6485     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6486     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6487     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6488     __ addl($dst$$Register, $tmp$$Register);
  6489   %}
  6490   ins_pipe(ialu_reg);
  6491 %}
  6494 //----------Load/Store/Move Instructions---------------------------------------
  6495 //----------Load Instructions--------------------------------------------------
  6496 // Load Byte (8bit signed)
  6497 instruct loadB(xRegI dst, memory mem) %{
  6498   match(Set dst (LoadB mem));
  6500   ins_cost(125);
  6501   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6503   ins_encode %{
  6504     __ movsbl($dst$$Register, $mem$$Address);
  6505   %}
  6507   ins_pipe(ialu_reg_mem);
  6508 %}
  6510 // Load Byte (8bit signed) into Long Register
  6511 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6512   match(Set dst (ConvI2L (LoadB mem)));
  6513   effect(KILL cr);
  6515   ins_cost(375);
  6516   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6517             "MOV    $dst.hi,$dst.lo\n\t"
  6518             "SAR    $dst.hi,7" %}
  6520   ins_encode %{
  6521     __ movsbl($dst$$Register, $mem$$Address);
  6522     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6523     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6524   %}
  6526   ins_pipe(ialu_reg_mem);
  6527 %}
  6529 // Load Unsigned Byte (8bit UNsigned)
  6530 instruct loadUB(xRegI dst, memory mem) %{
  6531   match(Set dst (LoadUB mem));
  6533   ins_cost(125);
  6534   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6536   ins_encode %{
  6537     __ movzbl($dst$$Register, $mem$$Address);
  6538   %}
  6540   ins_pipe(ialu_reg_mem);
  6541 %}
  6543 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6544 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6545   match(Set dst (ConvI2L (LoadUB mem)));
  6546   effect(KILL cr);
  6548   ins_cost(250);
  6549   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6550             "XOR    $dst.hi,$dst.hi" %}
  6552   ins_encode %{
  6553     Register Rdst = $dst$$Register;
  6554     __ movzbl(Rdst, $mem$$Address);
  6555     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6556   %}
  6558   ins_pipe(ialu_reg_mem);
  6559 %}
  6561 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6562 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6563   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6564   effect(KILL cr);
  6566   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6567             "XOR    $dst.hi,$dst.hi\n\t"
  6568             "AND    $dst.lo,$mask" %}
  6569   ins_encode %{
  6570     Register Rdst = $dst$$Register;
  6571     __ movzbl(Rdst, $mem$$Address);
  6572     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6573     __ andl(Rdst, $mask$$constant);
  6574   %}
  6575   ins_pipe(ialu_reg_mem);
  6576 %}
  6578 // Load Short (16bit signed)
  6579 instruct loadS(eRegI dst, memory mem) %{
  6580   match(Set dst (LoadS mem));
  6582   ins_cost(125);
  6583   format %{ "MOVSX  $dst,$mem\t# short" %}
  6585   ins_encode %{
  6586     __ movswl($dst$$Register, $mem$$Address);
  6587   %}
  6589   ins_pipe(ialu_reg_mem);
  6590 %}
  6592 // Load Short (16 bit signed) to Byte (8 bit signed)
  6593 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6594   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6596   ins_cost(125);
  6597   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6598   ins_encode %{
  6599     __ movsbl($dst$$Register, $mem$$Address);
  6600   %}
  6601   ins_pipe(ialu_reg_mem);
  6602 %}
  6604 // Load Short (16bit signed) into Long Register
  6605 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6606   match(Set dst (ConvI2L (LoadS mem)));
  6607   effect(KILL cr);
  6609   ins_cost(375);
  6610   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6611             "MOV    $dst.hi,$dst.lo\n\t"
  6612             "SAR    $dst.hi,15" %}
  6614   ins_encode %{
  6615     __ movswl($dst$$Register, $mem$$Address);
  6616     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6617     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6618   %}
  6620   ins_pipe(ialu_reg_mem);
  6621 %}
  6623 // Load Unsigned Short/Char (16bit unsigned)
  6624 instruct loadUS(eRegI dst, memory mem) %{
  6625   match(Set dst (LoadUS mem));
  6627   ins_cost(125);
  6628   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6630   ins_encode %{
  6631     __ movzwl($dst$$Register, $mem$$Address);
  6632   %}
  6634   ins_pipe(ialu_reg_mem);
  6635 %}
  6637 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6638 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6639   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6641   ins_cost(125);
  6642   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6643   ins_encode %{
  6644     __ movsbl($dst$$Register, $mem$$Address);
  6645   %}
  6646   ins_pipe(ialu_reg_mem);
  6647 %}
  6649 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6650 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6651   match(Set dst (ConvI2L (LoadUS mem)));
  6652   effect(KILL cr);
  6654   ins_cost(250);
  6655   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6656             "XOR    $dst.hi,$dst.hi" %}
  6658   ins_encode %{
  6659     __ movzwl($dst$$Register, $mem$$Address);
  6660     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6661   %}
  6663   ins_pipe(ialu_reg_mem);
  6664 %}
  6666 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6667 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6668   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6669   effect(KILL cr);
  6671   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6672             "XOR    $dst.hi,$dst.hi" %}
  6673   ins_encode %{
  6674     Register Rdst = $dst$$Register;
  6675     __ movzbl(Rdst, $mem$$Address);
  6676     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6677   %}
  6678   ins_pipe(ialu_reg_mem);
  6679 %}
  6681 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6682 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6683   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6684   effect(KILL cr);
  6686   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6687             "XOR    $dst.hi,$dst.hi\n\t"
  6688             "AND    $dst.lo,$mask" %}
  6689   ins_encode %{
  6690     Register Rdst = $dst$$Register;
  6691     __ movzwl(Rdst, $mem$$Address);
  6692     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6693     __ andl(Rdst, $mask$$constant);
  6694   %}
  6695   ins_pipe(ialu_reg_mem);
  6696 %}
  6698 // Load Integer
  6699 instruct loadI(eRegI dst, memory mem) %{
  6700   match(Set dst (LoadI mem));
  6702   ins_cost(125);
  6703   format %{ "MOV    $dst,$mem\t# int" %}
  6705   ins_encode %{
  6706     __ movl($dst$$Register, $mem$$Address);
  6707   %}
  6709   ins_pipe(ialu_reg_mem);
  6710 %}
  6712 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6713 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6714   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6716   ins_cost(125);
  6717   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6718   ins_encode %{
  6719     __ movsbl($dst$$Register, $mem$$Address);
  6720   %}
  6721   ins_pipe(ialu_reg_mem);
  6722 %}
  6724 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6725 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6726   match(Set dst (AndI (LoadI mem) mask));
  6728   ins_cost(125);
  6729   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6730   ins_encode %{
  6731     __ movzbl($dst$$Register, $mem$$Address);
  6732   %}
  6733   ins_pipe(ialu_reg_mem);
  6734 %}
  6736 // Load Integer (32 bit signed) to Short (16 bit signed)
  6737 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6738   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6740   ins_cost(125);
  6741   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6742   ins_encode %{
  6743     __ movswl($dst$$Register, $mem$$Address);
  6744   %}
  6745   ins_pipe(ialu_reg_mem);
  6746 %}
  6748 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6749 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6750   match(Set dst (AndI (LoadI mem) mask));
  6752   ins_cost(125);
  6753   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6754   ins_encode %{
  6755     __ movzwl($dst$$Register, $mem$$Address);
  6756   %}
  6757   ins_pipe(ialu_reg_mem);
  6758 %}
  6760 // Load Integer into Long Register
  6761 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6762   match(Set dst (ConvI2L (LoadI mem)));
  6763   effect(KILL cr);
  6765   ins_cost(375);
  6766   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6767             "MOV    $dst.hi,$dst.lo\n\t"
  6768             "SAR    $dst.hi,31" %}
  6770   ins_encode %{
  6771     __ movl($dst$$Register, $mem$$Address);
  6772     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6773     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6774   %}
  6776   ins_pipe(ialu_reg_mem);
  6777 %}
  6779 // Load Integer with mask 0xFF into Long Register
  6780 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6781   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6782   effect(KILL cr);
  6784   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6785             "XOR    $dst.hi,$dst.hi" %}
  6786   ins_encode %{
  6787     Register Rdst = $dst$$Register;
  6788     __ movzbl(Rdst, $mem$$Address);
  6789     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6790   %}
  6791   ins_pipe(ialu_reg_mem);
  6792 %}
  6794 // Load Integer with mask 0xFFFF into Long Register
  6795 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6796   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6797   effect(KILL cr);
  6799   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6800             "XOR    $dst.hi,$dst.hi" %}
  6801   ins_encode %{
  6802     Register Rdst = $dst$$Register;
  6803     __ movzwl(Rdst, $mem$$Address);
  6804     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6805   %}
  6806   ins_pipe(ialu_reg_mem);
  6807 %}
  6809 // Load Integer with 32-bit mask into Long Register
  6810 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6811   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6812   effect(KILL cr);
  6814   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6815             "XOR    $dst.hi,$dst.hi\n\t"
  6816             "AND    $dst.lo,$mask" %}
  6817   ins_encode %{
  6818     Register Rdst = $dst$$Register;
  6819     __ movl(Rdst, $mem$$Address);
  6820     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6821     __ andl(Rdst, $mask$$constant);
  6822   %}
  6823   ins_pipe(ialu_reg_mem);
  6824 %}
  6826 // Load Unsigned Integer into Long Register
  6827 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6828   match(Set dst (LoadUI2L mem));
  6829   effect(KILL cr);
  6831   ins_cost(250);
  6832   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6833             "XOR    $dst.hi,$dst.hi" %}
  6835   ins_encode %{
  6836     __ movl($dst$$Register, $mem$$Address);
  6837     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6838   %}
  6840   ins_pipe(ialu_reg_mem);
  6841 %}
  6843 // Load Long.  Cannot clobber address while loading, so restrict address
  6844 // register to ESI
  6845 instruct loadL(eRegL dst, load_long_memory mem) %{
  6846   predicate(!((LoadLNode*)n)->require_atomic_access());
  6847   match(Set dst (LoadL mem));
  6849   ins_cost(250);
  6850   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6851             "MOV    $dst.hi,$mem+4" %}
  6853   ins_encode %{
  6854     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6855     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6856     __ movl($dst$$Register, Amemlo);
  6857     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6858   %}
  6860   ins_pipe(ialu_reg_long_mem);
  6861 %}
  6863 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6864 // then store it down to the stack and reload on the int
  6865 // side.
  6866 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6867   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6868   match(Set dst (LoadL mem));
  6870   ins_cost(200);
  6871   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6872             "FISTp  $dst" %}
  6873   ins_encode(enc_loadL_volatile(mem,dst));
  6874   ins_pipe( fpu_reg_mem );
  6875 %}
  6877 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6878   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6879   match(Set dst (LoadL mem));
  6880   effect(TEMP tmp);
  6881   ins_cost(180);
  6882   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6883             "MOVSD  $dst,$tmp" %}
  6884   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6885   ins_pipe( pipe_slow );
  6886 %}
  6888 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6889   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6890   match(Set dst (LoadL mem));
  6891   effect(TEMP tmp);
  6892   ins_cost(160);
  6893   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6894             "MOVD   $dst.lo,$tmp\n\t"
  6895             "PSRLQ  $tmp,32\n\t"
  6896             "MOVD   $dst.hi,$tmp" %}
  6897   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6898   ins_pipe( pipe_slow );
  6899 %}
  6901 // Load Range
  6902 instruct loadRange(eRegI dst, memory mem) %{
  6903   match(Set dst (LoadRange mem));
  6905   ins_cost(125);
  6906   format %{ "MOV    $dst,$mem" %}
  6907   opcode(0x8B);
  6908   ins_encode( OpcP, RegMem(dst,mem));
  6909   ins_pipe( ialu_reg_mem );
  6910 %}
  6913 // Load Pointer
  6914 instruct loadP(eRegP dst, memory mem) %{
  6915   match(Set dst (LoadP mem));
  6917   ins_cost(125);
  6918   format %{ "MOV    $dst,$mem" %}
  6919   opcode(0x8B);
  6920   ins_encode( OpcP, RegMem(dst,mem));
  6921   ins_pipe( ialu_reg_mem );
  6922 %}
  6924 // Load Klass Pointer
  6925 instruct loadKlass(eRegP dst, memory mem) %{
  6926   match(Set dst (LoadKlass mem));
  6928   ins_cost(125);
  6929   format %{ "MOV    $dst,$mem" %}
  6930   opcode(0x8B);
  6931   ins_encode( OpcP, RegMem(dst,mem));
  6932   ins_pipe( ialu_reg_mem );
  6933 %}
  6935 // Load Double
  6936 instruct loadD(regD dst, memory mem) %{
  6937   predicate(UseSSE<=1);
  6938   match(Set dst (LoadD mem));
  6940   ins_cost(150);
  6941   format %{ "FLD_D  ST,$mem\n\t"
  6942             "FSTP   $dst" %}
  6943   opcode(0xDD);               /* DD /0 */
  6944   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6945               Pop_Reg_D(dst) );
  6946   ins_pipe( fpu_reg_mem );
  6947 %}
  6949 // Load Double to XMM
  6950 instruct loadXD(regXD dst, memory mem) %{
  6951   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6952   match(Set dst (LoadD mem));
  6953   ins_cost(145);
  6954   format %{ "MOVSD  $dst,$mem" %}
  6955   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6956   ins_pipe( pipe_slow );
  6957 %}
  6959 instruct loadXD_partial(regXD dst, memory mem) %{
  6960   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6961   match(Set dst (LoadD mem));
  6962   ins_cost(145);
  6963   format %{ "MOVLPD $dst,$mem" %}
  6964   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6965   ins_pipe( pipe_slow );
  6966 %}
  6968 // Load to XMM register (single-precision floating point)
  6969 // MOVSS instruction
  6970 instruct loadX(regX dst, memory mem) %{
  6971   predicate(UseSSE>=1);
  6972   match(Set dst (LoadF mem));
  6973   ins_cost(145);
  6974   format %{ "MOVSS  $dst,$mem" %}
  6975   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6976   ins_pipe( pipe_slow );
  6977 %}
  6979 // Load Float
  6980 instruct loadF(regF dst, memory mem) %{
  6981   predicate(UseSSE==0);
  6982   match(Set dst (LoadF mem));
  6984   ins_cost(150);
  6985   format %{ "FLD_S  ST,$mem\n\t"
  6986             "FSTP   $dst" %}
  6987   opcode(0xD9);               /* D9 /0 */
  6988   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6989               Pop_Reg_F(dst) );
  6990   ins_pipe( fpu_reg_mem );
  6991 %}
  6993 // Load Aligned Packed Byte to XMM register
  6994 instruct loadA8B(regXD dst, memory mem) %{
  6995   predicate(UseSSE>=1);
  6996   match(Set dst (Load8B mem));
  6997   ins_cost(125);
  6998   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6999   ins_encode( movq_ld(dst, mem));
  7000   ins_pipe( pipe_slow );
  7001 %}
  7003 // Load Aligned Packed Short to XMM register
  7004 instruct loadA4S(regXD dst, memory mem) %{
  7005   predicate(UseSSE>=1);
  7006   match(Set dst (Load4S mem));
  7007   ins_cost(125);
  7008   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  7009   ins_encode( movq_ld(dst, mem));
  7010   ins_pipe( pipe_slow );
  7011 %}
  7013 // Load Aligned Packed Char to XMM register
  7014 instruct loadA4C(regXD dst, memory mem) %{
  7015   predicate(UseSSE>=1);
  7016   match(Set dst (Load4C mem));
  7017   ins_cost(125);
  7018   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7019   ins_encode( movq_ld(dst, mem));
  7020   ins_pipe( pipe_slow );
  7021 %}
  7023 // Load Aligned Packed Integer to XMM register
  7024 instruct load2IU(regXD dst, memory mem) %{
  7025   predicate(UseSSE>=1);
  7026   match(Set dst (Load2I mem));
  7027   ins_cost(125);
  7028   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7029   ins_encode( movq_ld(dst, mem));
  7030   ins_pipe( pipe_slow );
  7031 %}
  7033 // Load Aligned Packed Single to XMM
  7034 instruct loadA2F(regXD dst, memory mem) %{
  7035   predicate(UseSSE>=1);
  7036   match(Set dst (Load2F mem));
  7037   ins_cost(145);
  7038   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7039   ins_encode( movq_ld(dst, mem));
  7040   ins_pipe( pipe_slow );
  7041 %}
  7043 // Load Effective Address
  7044 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7045   match(Set dst mem);
  7047   ins_cost(110);
  7048   format %{ "LEA    $dst,$mem" %}
  7049   opcode(0x8D);
  7050   ins_encode( OpcP, RegMem(dst,mem));
  7051   ins_pipe( ialu_reg_reg_fat );
  7052 %}
  7054 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7055   match(Set dst mem);
  7057   ins_cost(110);
  7058   format %{ "LEA    $dst,$mem" %}
  7059   opcode(0x8D);
  7060   ins_encode( OpcP, RegMem(dst,mem));
  7061   ins_pipe( ialu_reg_reg_fat );
  7062 %}
  7064 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7065   match(Set dst mem);
  7067   ins_cost(110);
  7068   format %{ "LEA    $dst,$mem" %}
  7069   opcode(0x8D);
  7070   ins_encode( OpcP, RegMem(dst,mem));
  7071   ins_pipe( ialu_reg_reg_fat );
  7072 %}
  7074 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7075   match(Set dst mem);
  7077   ins_cost(110);
  7078   format %{ "LEA    $dst,$mem" %}
  7079   opcode(0x8D);
  7080   ins_encode( OpcP, RegMem(dst,mem));
  7081   ins_pipe( ialu_reg_reg_fat );
  7082 %}
  7084 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7085   match(Set dst mem);
  7087   ins_cost(110);
  7088   format %{ "LEA    $dst,$mem" %}
  7089   opcode(0x8D);
  7090   ins_encode( OpcP, RegMem(dst,mem));
  7091   ins_pipe( ialu_reg_reg_fat );
  7092 %}
  7094 // Load Constant
  7095 instruct loadConI(eRegI dst, immI src) %{
  7096   match(Set dst src);
  7098   format %{ "MOV    $dst,$src" %}
  7099   ins_encode( LdImmI(dst, src) );
  7100   ins_pipe( ialu_reg_fat );
  7101 %}
  7103 // Load Constant zero
  7104 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7105   match(Set dst src);
  7106   effect(KILL cr);
  7108   ins_cost(50);
  7109   format %{ "XOR    $dst,$dst" %}
  7110   opcode(0x33);  /* + rd */
  7111   ins_encode( OpcP, RegReg( dst, dst ) );
  7112   ins_pipe( ialu_reg );
  7113 %}
  7115 instruct loadConP(eRegP dst, immP src) %{
  7116   match(Set dst src);
  7118   format %{ "MOV    $dst,$src" %}
  7119   opcode(0xB8);  /* + rd */
  7120   ins_encode( LdImmP(dst, src) );
  7121   ins_pipe( ialu_reg_fat );
  7122 %}
  7124 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7125   match(Set dst src);
  7126   effect(KILL cr);
  7127   ins_cost(200);
  7128   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7129             "MOV    $dst.hi,$src.hi" %}
  7130   opcode(0xB8);
  7131   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7132   ins_pipe( ialu_reg_long_fat );
  7133 %}
  7135 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7136   match(Set dst src);
  7137   effect(KILL cr);
  7138   ins_cost(150);
  7139   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7140             "XOR    $dst.hi,$dst.hi" %}
  7141   opcode(0x33,0x33);
  7142   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7143   ins_pipe( ialu_reg_long );
  7144 %}
  7146 // The instruction usage is guarded by predicate in operand immF().
  7147 instruct loadConF(regF dst, immF con) %{
  7148   match(Set dst con);
  7149   ins_cost(125);
  7150   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  7151             "FSTP   $dst" %}
  7152   ins_encode %{
  7153     __ fld_s($constantaddress($con));
  7154     __ fstp_d($dst$$reg);
  7155   %}
  7156   ins_pipe(fpu_reg_con);
  7157 %}
  7159 // The instruction usage is guarded by predicate in operand immF0().
  7160 instruct loadConF0(regF dst, immF0 con) %{
  7161   match(Set dst con);
  7162   ins_cost(125);
  7163   format %{ "FLDZ   ST\n\t"
  7164             "FSTP   $dst" %}
  7165   ins_encode %{
  7166     __ fldz();
  7167     __ fstp_d($dst$$reg);
  7168   %}
  7169   ins_pipe(fpu_reg_con);
  7170 %}
  7172 // The instruction usage is guarded by predicate in operand immF1().
  7173 instruct loadConF1(regF dst, immF1 con) %{
  7174   match(Set dst con);
  7175   ins_cost(125);
  7176   format %{ "FLD1   ST\n\t"
  7177             "FSTP   $dst" %}
  7178   ins_encode %{
  7179     __ fld1();
  7180     __ fstp_d($dst$$reg);
  7181   %}
  7182   ins_pipe(fpu_reg_con);
  7183 %}
  7185 // The instruction usage is guarded by predicate in operand immXF().
  7186 instruct loadConX(regX dst, immXF con) %{
  7187   match(Set dst con);
  7188   ins_cost(125);
  7189   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  7190   ins_encode %{
  7191     __ movflt($dst$$XMMRegister, $constantaddress($con));
  7192   %}
  7193   ins_pipe(pipe_slow);
  7194 %}
  7196 // The instruction usage is guarded by predicate in operand immXF0().
  7197 instruct loadConX0(regX dst, immXF0 src) %{
  7198   match(Set dst src);
  7199   ins_cost(100);
  7200   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7201   ins_encode %{
  7202     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  7203   %}
  7204   ins_pipe(pipe_slow);
  7205 %}
  7207 // The instruction usage is guarded by predicate in operand immD().
  7208 instruct loadConD(regD dst, immD con) %{
  7209   match(Set dst con);
  7210   ins_cost(125);
  7212   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  7213             "FSTP   $dst" %}
  7214   ins_encode %{
  7215     __ fld_d($constantaddress($con));
  7216     __ fstp_d($dst$$reg);
  7217   %}
  7218   ins_pipe(fpu_reg_con);
  7219 %}
  7221 // The instruction usage is guarded by predicate in operand immD0().
  7222 instruct loadConD0(regD dst, immD0 con) %{
  7223   match(Set dst con);
  7224   ins_cost(125);
  7226   format %{ "FLDZ   ST\n\t"
  7227             "FSTP   $dst" %}
  7228   ins_encode %{
  7229     __ fldz();
  7230     __ fstp_d($dst$$reg);
  7231   %}
  7232   ins_pipe(fpu_reg_con);
  7233 %}
  7235 // The instruction usage is guarded by predicate in operand immD1().
  7236 instruct loadConD1(regD dst, immD1 con) %{
  7237   match(Set dst con);
  7238   ins_cost(125);
  7240   format %{ "FLD1   ST\n\t"
  7241             "FSTP   $dst" %}
  7242   ins_encode %{
  7243     __ fld1();
  7244     __ fstp_d($dst$$reg);
  7245   %}
  7246   ins_pipe(fpu_reg_con);
  7247 %}
  7249 // The instruction usage is guarded by predicate in operand immXD().
  7250 instruct loadConXD(regXD dst, immXD con) %{
  7251   match(Set dst con);
  7252   ins_cost(125);
  7253   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  7254   ins_encode %{
  7255     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  7256   %}
  7257   ins_pipe(pipe_slow);
  7258 %}
  7260 // The instruction usage is guarded by predicate in operand immXD0().
  7261 instruct loadConXD0(regXD dst, immXD0 src) %{
  7262   match(Set dst src);
  7263   ins_cost(100);
  7264   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7265   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7266   ins_pipe( pipe_slow );
  7267 %}
  7269 // Load Stack Slot
  7270 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7271   match(Set dst src);
  7272   ins_cost(125);
  7274   format %{ "MOV    $dst,$src" %}
  7275   opcode(0x8B);
  7276   ins_encode( OpcP, RegMem(dst,src));
  7277   ins_pipe( ialu_reg_mem );
  7278 %}
  7280 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7281   match(Set dst src);
  7283   ins_cost(200);
  7284   format %{ "MOV    $dst,$src.lo\n\t"
  7285             "MOV    $dst+4,$src.hi" %}
  7286   opcode(0x8B, 0x8B);
  7287   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7288   ins_pipe( ialu_mem_long_reg );
  7289 %}
  7291 // Load Stack Slot
  7292 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7293   match(Set dst src);
  7294   ins_cost(125);
  7296   format %{ "MOV    $dst,$src" %}
  7297   opcode(0x8B);
  7298   ins_encode( OpcP, RegMem(dst,src));
  7299   ins_pipe( ialu_reg_mem );
  7300 %}
  7302 // Load Stack Slot
  7303 instruct loadSSF(regF dst, stackSlotF src) %{
  7304   match(Set dst src);
  7305   ins_cost(125);
  7307   format %{ "FLD_S  $src\n\t"
  7308             "FSTP   $dst" %}
  7309   opcode(0xD9);               /* D9 /0, FLD m32real */
  7310   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7311               Pop_Reg_F(dst) );
  7312   ins_pipe( fpu_reg_mem );
  7313 %}
  7315 // Load Stack Slot
  7316 instruct loadSSD(regD dst, stackSlotD src) %{
  7317   match(Set dst src);
  7318   ins_cost(125);
  7320   format %{ "FLD_D  $src\n\t"
  7321             "FSTP   $dst" %}
  7322   opcode(0xDD);               /* DD /0, FLD m64real */
  7323   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7324               Pop_Reg_D(dst) );
  7325   ins_pipe( fpu_reg_mem );
  7326 %}
  7328 // Prefetch instructions.
  7329 // Must be safe to execute with invalid address (cannot fault).
  7331 instruct prefetchr0( memory mem ) %{
  7332   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7333   match(PrefetchRead mem);
  7334   ins_cost(0);
  7335   size(0);
  7336   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7337   ins_encode();
  7338   ins_pipe(empty);
  7339 %}
  7341 instruct prefetchr( memory mem ) %{
  7342   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7343   match(PrefetchRead mem);
  7344   ins_cost(100);
  7346   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7347   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7348   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7349   ins_pipe(ialu_mem);
  7350 %}
  7352 instruct prefetchrNTA( memory mem ) %{
  7353   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7354   match(PrefetchRead mem);
  7355   ins_cost(100);
  7357   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7358   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7359   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7360   ins_pipe(ialu_mem);
  7361 %}
  7363 instruct prefetchrT0( memory mem ) %{
  7364   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7365   match(PrefetchRead mem);
  7366   ins_cost(100);
  7368   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7369   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7370   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7371   ins_pipe(ialu_mem);
  7372 %}
  7374 instruct prefetchrT2( memory mem ) %{
  7375   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7376   match(PrefetchRead mem);
  7377   ins_cost(100);
  7379   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7380   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7381   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7382   ins_pipe(ialu_mem);
  7383 %}
  7385 instruct prefetchw0( memory mem ) %{
  7386   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7387   match(PrefetchWrite mem);
  7388   ins_cost(0);
  7389   size(0);
  7390   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7391   ins_encode();
  7392   ins_pipe(empty);
  7393 %}
  7395 instruct prefetchw( memory mem ) %{
  7396   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7397   match( PrefetchWrite mem );
  7398   ins_cost(100);
  7400   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7401   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7402   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7403   ins_pipe(ialu_mem);
  7404 %}
  7406 instruct prefetchwNTA( memory mem ) %{
  7407   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7408   match(PrefetchWrite mem);
  7409   ins_cost(100);
  7411   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7412   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7413   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7414   ins_pipe(ialu_mem);
  7415 %}
  7417 instruct prefetchwT0( memory mem ) %{
  7418   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7419   match(PrefetchWrite mem);
  7420   ins_cost(100);
  7422   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7423   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7424   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7425   ins_pipe(ialu_mem);
  7426 %}
  7428 instruct prefetchwT2( memory mem ) %{
  7429   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7430   match(PrefetchWrite mem);
  7431   ins_cost(100);
  7433   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7434   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7435   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7436   ins_pipe(ialu_mem);
  7437 %}
  7439 //----------Store Instructions-------------------------------------------------
  7441 // Store Byte
  7442 instruct storeB(memory mem, xRegI src) %{
  7443   match(Set mem (StoreB mem src));
  7445   ins_cost(125);
  7446   format %{ "MOV8   $mem,$src" %}
  7447   opcode(0x88);
  7448   ins_encode( OpcP, RegMem( src, mem ) );
  7449   ins_pipe( ialu_mem_reg );
  7450 %}
  7452 // Store Char/Short
  7453 instruct storeC(memory mem, eRegI src) %{
  7454   match(Set mem (StoreC mem src));
  7456   ins_cost(125);
  7457   format %{ "MOV16  $mem,$src" %}
  7458   opcode(0x89, 0x66);
  7459   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7460   ins_pipe( ialu_mem_reg );
  7461 %}
  7463 // Store Integer
  7464 instruct storeI(memory mem, eRegI src) %{
  7465   match(Set mem (StoreI mem src));
  7467   ins_cost(125);
  7468   format %{ "MOV    $mem,$src" %}
  7469   opcode(0x89);
  7470   ins_encode( OpcP, RegMem( src, mem ) );
  7471   ins_pipe( ialu_mem_reg );
  7472 %}
  7474 // Store Long
  7475 instruct storeL(long_memory mem, eRegL src) %{
  7476   predicate(!((StoreLNode*)n)->require_atomic_access());
  7477   match(Set mem (StoreL mem src));
  7479   ins_cost(200);
  7480   format %{ "MOV    $mem,$src.lo\n\t"
  7481             "MOV    $mem+4,$src.hi" %}
  7482   opcode(0x89, 0x89);
  7483   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7484   ins_pipe( ialu_mem_long_reg );
  7485 %}
  7487 // Store Long to Integer
  7488 instruct storeL2I(memory mem, eRegL src) %{
  7489   match(Set mem (StoreI mem (ConvL2I src)));
  7491   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7492   ins_encode %{
  7493     __ movl($mem$$Address, $src$$Register);
  7494   %}
  7495   ins_pipe(ialu_mem_reg);
  7496 %}
  7498 // Volatile Store Long.  Must be atomic, so move it into
  7499 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7500 // target address before the store (for null-ptr checks)
  7501 // so the memory operand is used twice in the encoding.
  7502 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7503   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7504   match(Set mem (StoreL mem src));
  7505   effect( KILL cr );
  7506   ins_cost(400);
  7507   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7508             "FILD   $src\n\t"
  7509             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7510   opcode(0x3B);
  7511   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7512   ins_pipe( fpu_reg_mem );
  7513 %}
  7515 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7516   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7517   match(Set mem (StoreL mem src));
  7518   effect( TEMP tmp, KILL cr );
  7519   ins_cost(380);
  7520   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7521             "MOVSD  $tmp,$src\n\t"
  7522             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7523   opcode(0x3B);
  7524   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7525   ins_pipe( pipe_slow );
  7526 %}
  7528 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7529   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7530   match(Set mem (StoreL mem src));
  7531   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7532   ins_cost(360);
  7533   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7534             "MOVD   $tmp,$src.lo\n\t"
  7535             "MOVD   $tmp2,$src.hi\n\t"
  7536             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7537             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7538   opcode(0x3B);
  7539   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7540   ins_pipe( pipe_slow );
  7541 %}
  7543 // Store Pointer; for storing unknown oops and raw pointers
  7544 instruct storeP(memory mem, anyRegP src) %{
  7545   match(Set mem (StoreP mem src));
  7547   ins_cost(125);
  7548   format %{ "MOV    $mem,$src" %}
  7549   opcode(0x89);
  7550   ins_encode( OpcP, RegMem( src, mem ) );
  7551   ins_pipe( ialu_mem_reg );
  7552 %}
  7554 // Store Integer Immediate
  7555 instruct storeImmI(memory mem, immI src) %{
  7556   match(Set mem (StoreI mem src));
  7558   ins_cost(150);
  7559   format %{ "MOV    $mem,$src" %}
  7560   opcode(0xC7);               /* C7 /0 */
  7561   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7562   ins_pipe( ialu_mem_imm );
  7563 %}
  7565 // Store Short/Char Immediate
  7566 instruct storeImmI16(memory mem, immI16 src) %{
  7567   predicate(UseStoreImmI16);
  7568   match(Set mem (StoreC mem src));
  7570   ins_cost(150);
  7571   format %{ "MOV16  $mem,$src" %}
  7572   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7573   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7574   ins_pipe( ialu_mem_imm );
  7575 %}
  7577 // Store Pointer Immediate; null pointers or constant oops that do not
  7578 // need card-mark barriers.
  7579 instruct storeImmP(memory mem, immP src) %{
  7580   match(Set mem (StoreP mem src));
  7582   ins_cost(150);
  7583   format %{ "MOV    $mem,$src" %}
  7584   opcode(0xC7);               /* C7 /0 */
  7585   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7586   ins_pipe( ialu_mem_imm );
  7587 %}
  7589 // Store Byte Immediate
  7590 instruct storeImmB(memory mem, immI8 src) %{
  7591   match(Set mem (StoreB mem src));
  7593   ins_cost(150);
  7594   format %{ "MOV8   $mem,$src" %}
  7595   opcode(0xC6);               /* C6 /0 */
  7596   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7597   ins_pipe( ialu_mem_imm );
  7598 %}
  7600 // Store Aligned Packed Byte XMM register to memory
  7601 instruct storeA8B(memory mem, regXD src) %{
  7602   predicate(UseSSE>=1);
  7603   match(Set mem (Store8B mem src));
  7604   ins_cost(145);
  7605   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7606   ins_encode( movq_st(mem, src));
  7607   ins_pipe( pipe_slow );
  7608 %}
  7610 // Store Aligned Packed Char/Short XMM register to memory
  7611 instruct storeA4C(memory mem, regXD src) %{
  7612   predicate(UseSSE>=1);
  7613   match(Set mem (Store4C mem src));
  7614   ins_cost(145);
  7615   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7616   ins_encode( movq_st(mem, src));
  7617   ins_pipe( pipe_slow );
  7618 %}
  7620 // Store Aligned Packed Integer XMM register to memory
  7621 instruct storeA2I(memory mem, regXD src) %{
  7622   predicate(UseSSE>=1);
  7623   match(Set mem (Store2I mem src));
  7624   ins_cost(145);
  7625   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7626   ins_encode( movq_st(mem, src));
  7627   ins_pipe( pipe_slow );
  7628 %}
  7630 // Store CMS card-mark Immediate
  7631 instruct storeImmCM(memory mem, immI8 src) %{
  7632   match(Set mem (StoreCM mem src));
  7634   ins_cost(150);
  7635   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7636   opcode(0xC6);               /* C6 /0 */
  7637   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7638   ins_pipe( ialu_mem_imm );
  7639 %}
  7641 // Store Double
  7642 instruct storeD( memory mem, regDPR1 src) %{
  7643   predicate(UseSSE<=1);
  7644   match(Set mem (StoreD mem src));
  7646   ins_cost(100);
  7647   format %{ "FST_D  $mem,$src" %}
  7648   opcode(0xDD);       /* DD /2 */
  7649   ins_encode( enc_FP_store(mem,src) );
  7650   ins_pipe( fpu_mem_reg );
  7651 %}
  7653 // Store double does rounding on x86
  7654 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7655   predicate(UseSSE<=1);
  7656   match(Set mem (StoreD mem (RoundDouble src)));
  7658   ins_cost(100);
  7659   format %{ "FST_D  $mem,$src\t# round" %}
  7660   opcode(0xDD);       /* DD /2 */
  7661   ins_encode( enc_FP_store(mem,src) );
  7662   ins_pipe( fpu_mem_reg );
  7663 %}
  7665 // Store XMM register to memory (double-precision floating points)
  7666 // MOVSD instruction
  7667 instruct storeXD(memory mem, regXD src) %{
  7668   predicate(UseSSE>=2);
  7669   match(Set mem (StoreD mem src));
  7670   ins_cost(95);
  7671   format %{ "MOVSD  $mem,$src" %}
  7672   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7673   ins_pipe( pipe_slow );
  7674 %}
  7676 // Store XMM register to memory (single-precision floating point)
  7677 // MOVSS instruction
  7678 instruct storeX(memory mem, regX src) %{
  7679   predicate(UseSSE>=1);
  7680   match(Set mem (StoreF mem src));
  7681   ins_cost(95);
  7682   format %{ "MOVSS  $mem,$src" %}
  7683   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7684   ins_pipe( pipe_slow );
  7685 %}
  7687 // Store Aligned Packed Single Float XMM register to memory
  7688 instruct storeA2F(memory mem, regXD src) %{
  7689   predicate(UseSSE>=1);
  7690   match(Set mem (Store2F mem src));
  7691   ins_cost(145);
  7692   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7693   ins_encode( movq_st(mem, src));
  7694   ins_pipe( pipe_slow );
  7695 %}
  7697 // Store Float
  7698 instruct storeF( memory mem, regFPR1 src) %{
  7699   predicate(UseSSE==0);
  7700   match(Set mem (StoreF mem src));
  7702   ins_cost(100);
  7703   format %{ "FST_S  $mem,$src" %}
  7704   opcode(0xD9);       /* D9 /2 */
  7705   ins_encode( enc_FP_store(mem,src) );
  7706   ins_pipe( fpu_mem_reg );
  7707 %}
  7709 // Store Float does rounding on x86
  7710 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7711   predicate(UseSSE==0);
  7712   match(Set mem (StoreF mem (RoundFloat src)));
  7714   ins_cost(100);
  7715   format %{ "FST_S  $mem,$src\t# round" %}
  7716   opcode(0xD9);       /* D9 /2 */
  7717   ins_encode( enc_FP_store(mem,src) );
  7718   ins_pipe( fpu_mem_reg );
  7719 %}
  7721 // Store Float does rounding on x86
  7722 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7723   predicate(UseSSE<=1);
  7724   match(Set mem (StoreF mem (ConvD2F src)));
  7726   ins_cost(100);
  7727   format %{ "FST_S  $mem,$src\t# D-round" %}
  7728   opcode(0xD9);       /* D9 /2 */
  7729   ins_encode( enc_FP_store(mem,src) );
  7730   ins_pipe( fpu_mem_reg );
  7731 %}
  7733 // Store immediate Float value (it is faster than store from FPU register)
  7734 // The instruction usage is guarded by predicate in operand immF().
  7735 instruct storeF_imm( memory mem, immF src) %{
  7736   match(Set mem (StoreF mem src));
  7738   ins_cost(50);
  7739   format %{ "MOV    $mem,$src\t# store float" %}
  7740   opcode(0xC7);               /* C7 /0 */
  7741   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7742   ins_pipe( ialu_mem_imm );
  7743 %}
  7745 // Store immediate Float value (it is faster than store from XMM register)
  7746 // The instruction usage is guarded by predicate in operand immXF().
  7747 instruct storeX_imm( memory mem, immXF src) %{
  7748   match(Set mem (StoreF mem src));
  7750   ins_cost(50);
  7751   format %{ "MOV    $mem,$src\t# store float" %}
  7752   opcode(0xC7);               /* C7 /0 */
  7753   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7754   ins_pipe( ialu_mem_imm );
  7755 %}
  7757 // Store Integer to stack slot
  7758 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7759   match(Set dst src);
  7761   ins_cost(100);
  7762   format %{ "MOV    $dst,$src" %}
  7763   opcode(0x89);
  7764   ins_encode( OpcPRegSS( dst, src ) );
  7765   ins_pipe( ialu_mem_reg );
  7766 %}
  7768 // Store Integer to stack slot
  7769 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7770   match(Set dst src);
  7772   ins_cost(100);
  7773   format %{ "MOV    $dst,$src" %}
  7774   opcode(0x89);
  7775   ins_encode( OpcPRegSS( dst, src ) );
  7776   ins_pipe( ialu_mem_reg );
  7777 %}
  7779 // Store Long to stack slot
  7780 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7781   match(Set dst src);
  7783   ins_cost(200);
  7784   format %{ "MOV    $dst,$src.lo\n\t"
  7785             "MOV    $dst+4,$src.hi" %}
  7786   opcode(0x89, 0x89);
  7787   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7788   ins_pipe( ialu_mem_long_reg );
  7789 %}
  7791 //----------MemBar Instructions-----------------------------------------------
  7792 // Memory barrier flavors
  7794 instruct membar_acquire() %{
  7795   match(MemBarAcquire);
  7796   ins_cost(400);
  7798   size(0);
  7799   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7800   ins_encode();
  7801   ins_pipe(empty);
  7802 %}
  7804 instruct membar_acquire_lock() %{
  7805   match(MemBarAcquire);
  7806   predicate(Matcher::prior_fast_lock(n));
  7807   ins_cost(0);
  7809   size(0);
  7810   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7811   ins_encode( );
  7812   ins_pipe(empty);
  7813 %}
  7815 instruct membar_release() %{
  7816   match(MemBarRelease);
  7817   ins_cost(400);
  7819   size(0);
  7820   format %{ "MEMBAR-release ! (empty encoding)" %}
  7821   ins_encode( );
  7822   ins_pipe(empty);
  7823 %}
  7825 instruct membar_release_lock() %{
  7826   match(MemBarRelease);
  7827   predicate(Matcher::post_fast_unlock(n));
  7828   ins_cost(0);
  7830   size(0);
  7831   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7832   ins_encode( );
  7833   ins_pipe(empty);
  7834 %}
  7836 instruct membar_volatile(eFlagsReg cr) %{
  7837   match(MemBarVolatile);
  7838   effect(KILL cr);
  7839   ins_cost(400);
  7841   format %{ 
  7842     $$template
  7843     if (os::is_MP()) {
  7844       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7845     } else {
  7846       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7848   %}
  7849   ins_encode %{
  7850     __ membar(Assembler::StoreLoad);
  7851   %}
  7852   ins_pipe(pipe_slow);
  7853 %}
  7855 instruct unnecessary_membar_volatile() %{
  7856   match(MemBarVolatile);
  7857   predicate(Matcher::post_store_load_barrier(n));
  7858   ins_cost(0);
  7860   size(0);
  7861   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7862   ins_encode( );
  7863   ins_pipe(empty);
  7864 %}
  7866 //----------Move Instructions--------------------------------------------------
  7867 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7868   match(Set dst (CastX2P src));
  7869   format %{ "# X2P  $dst, $src" %}
  7870   ins_encode( /*empty encoding*/ );
  7871   ins_cost(0);
  7872   ins_pipe(empty);
  7873 %}
  7875 instruct castP2X(eRegI dst, eRegP src ) %{
  7876   match(Set dst (CastP2X src));
  7877   ins_cost(50);
  7878   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7879   ins_encode( enc_Copy( dst, src) );
  7880   ins_pipe( ialu_reg_reg );
  7881 %}
  7883 //----------Conditional Move---------------------------------------------------
  7884 // Conditional move
  7885 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7886   predicate(VM_Version::supports_cmov() );
  7887   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7888   ins_cost(200);
  7889   format %{ "CMOV$cop $dst,$src" %}
  7890   opcode(0x0F,0x40);
  7891   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7892   ins_pipe( pipe_cmov_reg );
  7893 %}
  7895 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7896   predicate(VM_Version::supports_cmov() );
  7897   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7898   ins_cost(200);
  7899   format %{ "CMOV$cop $dst,$src" %}
  7900   opcode(0x0F,0x40);
  7901   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7902   ins_pipe( pipe_cmov_reg );
  7903 %}
  7905 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7906   predicate(VM_Version::supports_cmov() );
  7907   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7908   ins_cost(200);
  7909   expand %{
  7910     cmovI_regU(cop, cr, dst, src);
  7911   %}
  7912 %}
  7914 // Conditional move
  7915 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7916   predicate(VM_Version::supports_cmov() );
  7917   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7918   ins_cost(250);
  7919   format %{ "CMOV$cop $dst,$src" %}
  7920   opcode(0x0F,0x40);
  7921   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7922   ins_pipe( pipe_cmov_mem );
  7923 %}
  7925 // Conditional move
  7926 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7927   predicate(VM_Version::supports_cmov() );
  7928   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7929   ins_cost(250);
  7930   format %{ "CMOV$cop $dst,$src" %}
  7931   opcode(0x0F,0x40);
  7932   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7933   ins_pipe( pipe_cmov_mem );
  7934 %}
  7936 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7937   predicate(VM_Version::supports_cmov() );
  7938   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7939   ins_cost(250);
  7940   expand %{
  7941     cmovI_memU(cop, cr, dst, src);
  7942   %}
  7943 %}
  7945 // Conditional move
  7946 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7947   predicate(VM_Version::supports_cmov() );
  7948   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7949   ins_cost(200);
  7950   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7951   opcode(0x0F,0x40);
  7952   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7953   ins_pipe( pipe_cmov_reg );
  7954 %}
  7956 // Conditional move (non-P6 version)
  7957 // Note:  a CMoveP is generated for  stubs and native wrappers
  7958 //        regardless of whether we are on a P6, so we
  7959 //        emulate a cmov here
  7960 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7961   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7962   ins_cost(300);
  7963   format %{ "Jn$cop   skip\n\t"
  7964           "MOV    $dst,$src\t# pointer\n"
  7965       "skip:" %}
  7966   opcode(0x8b);
  7967   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7968   ins_pipe( pipe_cmov_reg );
  7969 %}
  7971 // Conditional move
  7972 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7973   predicate(VM_Version::supports_cmov() );
  7974   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7975   ins_cost(200);
  7976   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7977   opcode(0x0F,0x40);
  7978   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7979   ins_pipe( pipe_cmov_reg );
  7980 %}
  7982 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7983   predicate(VM_Version::supports_cmov() );
  7984   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7985   ins_cost(200);
  7986   expand %{
  7987     cmovP_regU(cop, cr, dst, src);
  7988   %}
  7989 %}
  7991 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7992 // correctly meets the two pointer arguments; one is an incoming
  7993 // register but the other is a memory operand.  ALSO appears to
  7994 // be buggy with implicit null checks.
  7995 //
  7996 //// Conditional move
  7997 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7998 //  predicate(VM_Version::supports_cmov() );
  7999 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8000 //  ins_cost(250);
  8001 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8002 //  opcode(0x0F,0x40);
  8003 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8004 //  ins_pipe( pipe_cmov_mem );
  8005 //%}
  8006 //
  8007 //// Conditional move
  8008 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  8009 //  predicate(VM_Version::supports_cmov() );
  8010 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8011 //  ins_cost(250);
  8012 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8013 //  opcode(0x0F,0x40);
  8014 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8015 //  ins_pipe( pipe_cmov_mem );
  8016 //%}
  8018 // Conditional move
  8019 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  8020   predicate(UseSSE<=1);
  8021   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8022   ins_cost(200);
  8023   format %{ "FCMOV$cop $dst,$src\t# double" %}
  8024   opcode(0xDA);
  8025   ins_encode( enc_cmov_d(cop,src) );
  8026   ins_pipe( pipe_cmovD_reg );
  8027 %}
  8029 // Conditional move
  8030 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  8031   predicate(UseSSE==0);
  8032   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8033   ins_cost(200);
  8034   format %{ "FCMOV$cop $dst,$src\t# float" %}
  8035   opcode(0xDA);
  8036   ins_encode( enc_cmov_d(cop,src) );
  8037   ins_pipe( pipe_cmovD_reg );
  8038 %}
  8040 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8041 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  8042   predicate(UseSSE<=1);
  8043   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8044   ins_cost(200);
  8045   format %{ "Jn$cop   skip\n\t"
  8046             "MOV    $dst,$src\t# double\n"
  8047       "skip:" %}
  8048   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8049   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  8050   ins_pipe( pipe_cmovD_reg );
  8051 %}
  8053 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8054 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  8055   predicate(UseSSE==0);
  8056   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8057   ins_cost(200);
  8058   format %{ "Jn$cop    skip\n\t"
  8059             "MOV    $dst,$src\t# float\n"
  8060       "skip:" %}
  8061   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8062   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  8063   ins_pipe( pipe_cmovD_reg );
  8064 %}
  8066 // No CMOVE with SSE/SSE2
  8067 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  8068   predicate (UseSSE>=1);
  8069   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8070   ins_cost(200);
  8071   format %{ "Jn$cop   skip\n\t"
  8072             "MOVSS  $dst,$src\t# float\n"
  8073       "skip:" %}
  8074   ins_encode %{
  8075     Label skip;
  8076     // Invert sense of branch from sense of CMOV
  8077     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8078     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8079     __ bind(skip);
  8080   %}
  8081   ins_pipe( pipe_slow );
  8082 %}
  8084 // No CMOVE with SSE/SSE2
  8085 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8086   predicate (UseSSE>=2);
  8087   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8088   ins_cost(200);
  8089   format %{ "Jn$cop   skip\n\t"
  8090             "MOVSD  $dst,$src\t# float\n"
  8091       "skip:" %}
  8092   ins_encode %{
  8093     Label skip;
  8094     // Invert sense of branch from sense of CMOV
  8095     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8096     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8097     __ bind(skip);
  8098   %}
  8099   ins_pipe( pipe_slow );
  8100 %}
  8102 // unsigned version
  8103 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8104   predicate (UseSSE>=1);
  8105   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8106   ins_cost(200);
  8107   format %{ "Jn$cop   skip\n\t"
  8108             "MOVSS  $dst,$src\t# float\n"
  8109       "skip:" %}
  8110   ins_encode %{
  8111     Label skip;
  8112     // Invert sense of branch from sense of CMOV
  8113     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8114     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8115     __ bind(skip);
  8116   %}
  8117   ins_pipe( pipe_slow );
  8118 %}
  8120 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8121   predicate (UseSSE>=1);
  8122   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8123   ins_cost(200);
  8124   expand %{
  8125     fcmovX_regU(cop, cr, dst, src);
  8126   %}
  8127 %}
  8129 // unsigned version
  8130 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8131   predicate (UseSSE>=2);
  8132   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8133   ins_cost(200);
  8134   format %{ "Jn$cop   skip\n\t"
  8135             "MOVSD  $dst,$src\t# float\n"
  8136       "skip:" %}
  8137   ins_encode %{
  8138     Label skip;
  8139     // Invert sense of branch from sense of CMOV
  8140     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8141     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8142     __ bind(skip);
  8143   %}
  8144   ins_pipe( pipe_slow );
  8145 %}
  8147 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8148   predicate (UseSSE>=2);
  8149   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8150   ins_cost(200);
  8151   expand %{
  8152     fcmovXD_regU(cop, cr, dst, src);
  8153   %}
  8154 %}
  8156 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8157   predicate(VM_Version::supports_cmov() );
  8158   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8159   ins_cost(200);
  8160   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8161             "CMOV$cop $dst.hi,$src.hi" %}
  8162   opcode(0x0F,0x40);
  8163   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8164   ins_pipe( pipe_cmov_reg_long );
  8165 %}
  8167 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8168   predicate(VM_Version::supports_cmov() );
  8169   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8170   ins_cost(200);
  8171   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8172             "CMOV$cop $dst.hi,$src.hi" %}
  8173   opcode(0x0F,0x40);
  8174   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8175   ins_pipe( pipe_cmov_reg_long );
  8176 %}
  8178 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8179   predicate(VM_Version::supports_cmov() );
  8180   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8181   ins_cost(200);
  8182   expand %{
  8183     cmovL_regU(cop, cr, dst, src);
  8184   %}
  8185 %}
  8187 //----------Arithmetic Instructions--------------------------------------------
  8188 //----------Addition Instructions----------------------------------------------
  8189 // Integer Addition Instructions
  8190 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8191   match(Set dst (AddI dst src));
  8192   effect(KILL cr);
  8194   size(2);
  8195   format %{ "ADD    $dst,$src" %}
  8196   opcode(0x03);
  8197   ins_encode( OpcP, RegReg( dst, src) );
  8198   ins_pipe( ialu_reg_reg );
  8199 %}
  8201 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8202   match(Set dst (AddI dst src));
  8203   effect(KILL cr);
  8205   format %{ "ADD    $dst,$src" %}
  8206   opcode(0x81, 0x00); /* /0 id */
  8207   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8208   ins_pipe( ialu_reg );
  8209 %}
  8211 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8212   predicate(UseIncDec);
  8213   match(Set dst (AddI dst src));
  8214   effect(KILL cr);
  8216   size(1);
  8217   format %{ "INC    $dst" %}
  8218   opcode(0x40); /*  */
  8219   ins_encode( Opc_plus( primary, dst ) );
  8220   ins_pipe( ialu_reg );
  8221 %}
  8223 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8224   match(Set dst (AddI src0 src1));
  8225   ins_cost(110);
  8227   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8228   opcode(0x8D); /* 0x8D /r */
  8229   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8230   ins_pipe( ialu_reg_reg );
  8231 %}
  8233 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8234   match(Set dst (AddP src0 src1));
  8235   ins_cost(110);
  8237   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8238   opcode(0x8D); /* 0x8D /r */
  8239   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8240   ins_pipe( ialu_reg_reg );
  8241 %}
  8243 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8244   predicate(UseIncDec);
  8245   match(Set dst (AddI dst src));
  8246   effect(KILL cr);
  8248   size(1);
  8249   format %{ "DEC    $dst" %}
  8250   opcode(0x48); /*  */
  8251   ins_encode( Opc_plus( primary, dst ) );
  8252   ins_pipe( ialu_reg );
  8253 %}
  8255 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8256   match(Set dst (AddP dst src));
  8257   effect(KILL cr);
  8259   size(2);
  8260   format %{ "ADD    $dst,$src" %}
  8261   opcode(0x03);
  8262   ins_encode( OpcP, RegReg( dst, src) );
  8263   ins_pipe( ialu_reg_reg );
  8264 %}
  8266 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8267   match(Set dst (AddP dst src));
  8268   effect(KILL cr);
  8270   format %{ "ADD    $dst,$src" %}
  8271   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8272   // ins_encode( RegImm( dst, src) );
  8273   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8274   ins_pipe( ialu_reg );
  8275 %}
  8277 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8278   match(Set dst (AddI dst (LoadI src)));
  8279   effect(KILL cr);
  8281   ins_cost(125);
  8282   format %{ "ADD    $dst,$src" %}
  8283   opcode(0x03);
  8284   ins_encode( OpcP, RegMem( dst, src) );
  8285   ins_pipe( ialu_reg_mem );
  8286 %}
  8288 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8289   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8290   effect(KILL cr);
  8292   ins_cost(150);
  8293   format %{ "ADD    $dst,$src" %}
  8294   opcode(0x01);  /* Opcode 01 /r */
  8295   ins_encode( OpcP, RegMem( src, dst ) );
  8296   ins_pipe( ialu_mem_reg );
  8297 %}
  8299 // Add Memory with Immediate
  8300 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8301   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8302   effect(KILL cr);
  8304   ins_cost(125);
  8305   format %{ "ADD    $dst,$src" %}
  8306   opcode(0x81);               /* Opcode 81 /0 id */
  8307   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8308   ins_pipe( ialu_mem_imm );
  8309 %}
  8311 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8312   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8313   effect(KILL cr);
  8315   ins_cost(125);
  8316   format %{ "INC    $dst" %}
  8317   opcode(0xFF);               /* Opcode FF /0 */
  8318   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8319   ins_pipe( ialu_mem_imm );
  8320 %}
  8322 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8323   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8324   effect(KILL cr);
  8326   ins_cost(125);
  8327   format %{ "DEC    $dst" %}
  8328   opcode(0xFF);               /* Opcode FF /1 */
  8329   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8330   ins_pipe( ialu_mem_imm );
  8331 %}
  8334 instruct checkCastPP( eRegP dst ) %{
  8335   match(Set dst (CheckCastPP dst));
  8337   size(0);
  8338   format %{ "#checkcastPP of $dst" %}
  8339   ins_encode( /*empty encoding*/ );
  8340   ins_pipe( empty );
  8341 %}
  8343 instruct castPP( eRegP dst ) %{
  8344   match(Set dst (CastPP dst));
  8345   format %{ "#castPP of $dst" %}
  8346   ins_encode( /*empty encoding*/ );
  8347   ins_pipe( empty );
  8348 %}
  8350 instruct castII( eRegI dst ) %{
  8351   match(Set dst (CastII dst));
  8352   format %{ "#castII of $dst" %}
  8353   ins_encode( /*empty encoding*/ );
  8354   ins_cost(0);
  8355   ins_pipe( empty );
  8356 %}
  8359 // Load-locked - same as a regular pointer load when used with compare-swap
  8360 instruct loadPLocked(eRegP dst, memory mem) %{
  8361   match(Set dst (LoadPLocked mem));
  8363   ins_cost(125);
  8364   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8365   opcode(0x8B);
  8366   ins_encode( OpcP, RegMem(dst,mem));
  8367   ins_pipe( ialu_reg_mem );
  8368 %}
  8370 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8371 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8372   predicate(UseSSE<=1);
  8373   match(Set dst (LoadLLocked mem));
  8375   ins_cost(200);
  8376   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8377             "FISTp  $dst" %}
  8378   ins_encode(enc_loadL_volatile(mem,dst));
  8379   ins_pipe( fpu_reg_mem );
  8380 %}
  8382 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8383   predicate(UseSSE>=2);
  8384   match(Set dst (LoadLLocked mem));
  8385   effect(TEMP tmp);
  8386   ins_cost(180);
  8387   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8388             "MOVSD  $dst,$tmp" %}
  8389   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8390   ins_pipe( pipe_slow );
  8391 %}
  8393 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8394   predicate(UseSSE>=2);
  8395   match(Set dst (LoadLLocked mem));
  8396   effect(TEMP tmp);
  8397   ins_cost(160);
  8398   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8399             "MOVD   $dst.lo,$tmp\n\t"
  8400             "PSRLQ  $tmp,32\n\t"
  8401             "MOVD   $dst.hi,$tmp" %}
  8402   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8403   ins_pipe( pipe_slow );
  8404 %}
  8406 // Conditional-store of the updated heap-top.
  8407 // Used during allocation of the shared heap.
  8408 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8409 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8410   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8411   // EAX is killed if there is contention, but then it's also unused.
  8412   // In the common case of no contention, EAX holds the new oop address.
  8413   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8414   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8415   ins_pipe( pipe_cmpxchg );
  8416 %}
  8418 // Conditional-store of an int value.
  8419 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8420 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8421   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8422   effect(KILL oldval);
  8423   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8424   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8425   ins_pipe( pipe_cmpxchg );
  8426 %}
  8428 // Conditional-store of a long value.
  8429 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8430 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8431   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8432   effect(KILL oldval);
  8433   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8434             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8435             "XCHG   EBX,ECX"
  8436   %}
  8437   ins_encode %{
  8438     // Note: we need to swap rbx, and rcx before and after the
  8439     //       cmpxchg8 instruction because the instruction uses
  8440     //       rcx as the high order word of the new value to store but
  8441     //       our register encoding uses rbx.
  8442     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8443     if( os::is_MP() )
  8444       __ lock();
  8445     __ cmpxchg8($mem$$Address);
  8446     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8447   %}
  8448   ins_pipe( pipe_cmpxchg );
  8449 %}
  8451 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8453 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8454   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8455   effect(KILL cr, KILL oldval);
  8456   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8457             "MOV    $res,0\n\t"
  8458             "JNE,s  fail\n\t"
  8459             "MOV    $res,1\n"
  8460           "fail:" %}
  8461   ins_encode( enc_cmpxchg8(mem_ptr),
  8462               enc_flags_ne_to_boolean(res) );
  8463   ins_pipe( pipe_cmpxchg );
  8464 %}
  8466 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8467   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8468   effect(KILL cr, KILL oldval);
  8469   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8470             "MOV    $res,0\n\t"
  8471             "JNE,s  fail\n\t"
  8472             "MOV    $res,1\n"
  8473           "fail:" %}
  8474   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8475   ins_pipe( pipe_cmpxchg );
  8476 %}
  8478 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8479   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8480   effect(KILL cr, KILL oldval);
  8481   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8482             "MOV    $res,0\n\t"
  8483             "JNE,s  fail\n\t"
  8484             "MOV    $res,1\n"
  8485           "fail:" %}
  8486   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8487   ins_pipe( pipe_cmpxchg );
  8488 %}
  8490 //----------Subtraction Instructions-------------------------------------------
  8491 // Integer Subtraction Instructions
  8492 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8493   match(Set dst (SubI dst src));
  8494   effect(KILL cr);
  8496   size(2);
  8497   format %{ "SUB    $dst,$src" %}
  8498   opcode(0x2B);
  8499   ins_encode( OpcP, RegReg( dst, src) );
  8500   ins_pipe( ialu_reg_reg );
  8501 %}
  8503 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8504   match(Set dst (SubI dst src));
  8505   effect(KILL cr);
  8507   format %{ "SUB    $dst,$src" %}
  8508   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8509   // ins_encode( RegImm( dst, src) );
  8510   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8511   ins_pipe( ialu_reg );
  8512 %}
  8514 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8515   match(Set dst (SubI dst (LoadI src)));
  8516   effect(KILL cr);
  8518   ins_cost(125);
  8519   format %{ "SUB    $dst,$src" %}
  8520   opcode(0x2B);
  8521   ins_encode( OpcP, RegMem( dst, src) );
  8522   ins_pipe( ialu_reg_mem );
  8523 %}
  8525 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8526   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8527   effect(KILL cr);
  8529   ins_cost(150);
  8530   format %{ "SUB    $dst,$src" %}
  8531   opcode(0x29);  /* Opcode 29 /r */
  8532   ins_encode( OpcP, RegMem( src, dst ) );
  8533   ins_pipe( ialu_mem_reg );
  8534 %}
  8536 // Subtract from a pointer
  8537 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8538   match(Set dst (AddP dst (SubI zero src)));
  8539   effect(KILL cr);
  8541   size(2);
  8542   format %{ "SUB    $dst,$src" %}
  8543   opcode(0x2B);
  8544   ins_encode( OpcP, RegReg( dst, src) );
  8545   ins_pipe( ialu_reg_reg );
  8546 %}
  8548 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8549   match(Set dst (SubI zero dst));
  8550   effect(KILL cr);
  8552   size(2);
  8553   format %{ "NEG    $dst" %}
  8554   opcode(0xF7,0x03);  // Opcode F7 /3
  8555   ins_encode( OpcP, RegOpc( dst ) );
  8556   ins_pipe( ialu_reg );
  8557 %}
  8560 //----------Multiplication/Division Instructions-------------------------------
  8561 // Integer Multiplication Instructions
  8562 // Multiply Register
  8563 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8564   match(Set dst (MulI dst src));
  8565   effect(KILL cr);
  8567   size(3);
  8568   ins_cost(300);
  8569   format %{ "IMUL   $dst,$src" %}
  8570   opcode(0xAF, 0x0F);
  8571   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8572   ins_pipe( ialu_reg_reg_alu0 );
  8573 %}
  8575 // Multiply 32-bit Immediate
  8576 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8577   match(Set dst (MulI src imm));
  8578   effect(KILL cr);
  8580   ins_cost(300);
  8581   format %{ "IMUL   $dst,$src,$imm" %}
  8582   opcode(0x69);  /* 69 /r id */
  8583   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8584   ins_pipe( ialu_reg_reg_alu0 );
  8585 %}
  8587 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8588   match(Set dst src);
  8589   effect(KILL cr);
  8591   // Note that this is artificially increased to make it more expensive than loadConL
  8592   ins_cost(250);
  8593   format %{ "MOV    EAX,$src\t// low word only" %}
  8594   opcode(0xB8);
  8595   ins_encode( LdImmL_Lo(dst, src) );
  8596   ins_pipe( ialu_reg_fat );
  8597 %}
  8599 // Multiply by 32-bit Immediate, taking the shifted high order results
  8600 //  (special case for shift by 32)
  8601 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8602   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8603   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8604              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8605              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8606   effect(USE src1, KILL cr);
  8608   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8609   ins_cost(0*100 + 1*400 - 150);
  8610   format %{ "IMUL   EDX:EAX,$src1" %}
  8611   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8612   ins_pipe( pipe_slow );
  8613 %}
  8615 // Multiply by 32-bit Immediate, taking the shifted high order results
  8616 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8617   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8618   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8619              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8620              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8621   effect(USE src1, KILL cr);
  8623   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8624   ins_cost(1*100 + 1*400 - 150);
  8625   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8626             "SAR    EDX,$cnt-32" %}
  8627   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8628   ins_pipe( pipe_slow );
  8629 %}
  8631 // Multiply Memory 32-bit Immediate
  8632 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8633   match(Set dst (MulI (LoadI src) imm));
  8634   effect(KILL cr);
  8636   ins_cost(300);
  8637   format %{ "IMUL   $dst,$src,$imm" %}
  8638   opcode(0x69);  /* 69 /r id */
  8639   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8640   ins_pipe( ialu_reg_mem_alu0 );
  8641 %}
  8643 // Multiply Memory
  8644 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8645   match(Set dst (MulI dst (LoadI src)));
  8646   effect(KILL cr);
  8648   ins_cost(350);
  8649   format %{ "IMUL   $dst,$src" %}
  8650   opcode(0xAF, 0x0F);
  8651   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8652   ins_pipe( ialu_reg_mem_alu0 );
  8653 %}
  8655 // Multiply Register Int to Long
  8656 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8657   // Basic Idea: long = (long)int * (long)int
  8658   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8659   effect(DEF dst, USE src, USE src1, KILL flags);
  8661   ins_cost(300);
  8662   format %{ "IMUL   $dst,$src1" %}
  8664   ins_encode( long_int_multiply( dst, src1 ) );
  8665   ins_pipe( ialu_reg_reg_alu0 );
  8666 %}
  8668 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8669   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8670   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8671   effect(KILL flags);
  8673   ins_cost(300);
  8674   format %{ "MUL    $dst,$src1" %}
  8676   ins_encode( long_uint_multiply(dst, src1) );
  8677   ins_pipe( ialu_reg_reg_alu0 );
  8678 %}
  8680 // Multiply Register Long
  8681 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8682   match(Set dst (MulL dst src));
  8683   effect(KILL cr, TEMP tmp);
  8684   ins_cost(4*100+3*400);
  8685 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8686 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8687   format %{ "MOV    $tmp,$src.lo\n\t"
  8688             "IMUL   $tmp,EDX\n\t"
  8689             "MOV    EDX,$src.hi\n\t"
  8690             "IMUL   EDX,EAX\n\t"
  8691             "ADD    $tmp,EDX\n\t"
  8692             "MUL    EDX:EAX,$src.lo\n\t"
  8693             "ADD    EDX,$tmp" %}
  8694   ins_encode( long_multiply( dst, src, tmp ) );
  8695   ins_pipe( pipe_slow );
  8696 %}
  8698 // Multiply Register Long where the left operand's high 32 bits are zero
  8699 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8700   predicate(is_operand_hi32_zero(n->in(1)));
  8701   match(Set dst (MulL dst src));
  8702   effect(KILL cr, TEMP tmp);
  8703   ins_cost(2*100+2*400);
  8704 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8705 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8706   format %{ "MOV    $tmp,$src.hi\n\t"
  8707             "IMUL   $tmp,EAX\n\t"
  8708             "MUL    EDX:EAX,$src.lo\n\t"
  8709             "ADD    EDX,$tmp" %}
  8710   ins_encode %{
  8711     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8712     __ imull($tmp$$Register, rax);
  8713     __ mull($src$$Register);
  8714     __ addl(rdx, $tmp$$Register);
  8715   %}
  8716   ins_pipe( pipe_slow );
  8717 %}
  8719 // Multiply Register Long where the right operand's high 32 bits are zero
  8720 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8721   predicate(is_operand_hi32_zero(n->in(2)));
  8722   match(Set dst (MulL dst src));
  8723   effect(KILL cr, TEMP tmp);
  8724   ins_cost(2*100+2*400);
  8725 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8726 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8727   format %{ "MOV    $tmp,$src.lo\n\t"
  8728             "IMUL   $tmp,EDX\n\t"
  8729             "MUL    EDX:EAX,$src.lo\n\t"
  8730             "ADD    EDX,$tmp" %}
  8731   ins_encode %{
  8732     __ movl($tmp$$Register, $src$$Register);
  8733     __ imull($tmp$$Register, rdx);
  8734     __ mull($src$$Register);
  8735     __ addl(rdx, $tmp$$Register);
  8736   %}
  8737   ins_pipe( pipe_slow );
  8738 %}
  8740 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8741 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8742   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8743   match(Set dst (MulL dst src));
  8744   effect(KILL cr);
  8745   ins_cost(1*400);
  8746 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8747 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8748   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8749   ins_encode %{
  8750     __ mull($src$$Register);
  8751   %}
  8752   ins_pipe( pipe_slow );
  8753 %}
  8755 // Multiply Register Long by small constant
  8756 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8757   match(Set dst (MulL dst src));
  8758   effect(KILL cr, TEMP tmp);
  8759   ins_cost(2*100+2*400);
  8760   size(12);
  8761 // Basic idea: lo(result) = lo(src * EAX)
  8762 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8763   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8764             "MOV    EDX,$src\n\t"
  8765             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8766             "ADD    EDX,$tmp" %}
  8767   ins_encode( long_multiply_con( dst, src, tmp ) );
  8768   ins_pipe( pipe_slow );
  8769 %}
  8771 // Integer DIV with Register
  8772 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8773   match(Set rax (DivI rax div));
  8774   effect(KILL rdx, KILL cr);
  8775   size(26);
  8776   ins_cost(30*100+10*100);
  8777   format %{ "CMP    EAX,0x80000000\n\t"
  8778             "JNE,s  normal\n\t"
  8779             "XOR    EDX,EDX\n\t"
  8780             "CMP    ECX,-1\n\t"
  8781             "JE,s   done\n"
  8782     "normal: CDQ\n\t"
  8783             "IDIV   $div\n\t"
  8784     "done:"        %}
  8785   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8786   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8787   ins_pipe( ialu_reg_reg_alu0 );
  8788 %}
  8790 // Divide Register Long
  8791 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8792   match(Set dst (DivL src1 src2));
  8793   effect( KILL cr, KILL cx, KILL bx );
  8794   ins_cost(10000);
  8795   format %{ "PUSH   $src1.hi\n\t"
  8796             "PUSH   $src1.lo\n\t"
  8797             "PUSH   $src2.hi\n\t"
  8798             "PUSH   $src2.lo\n\t"
  8799             "CALL   SharedRuntime::ldiv\n\t"
  8800             "ADD    ESP,16" %}
  8801   ins_encode( long_div(src1,src2) );
  8802   ins_pipe( pipe_slow );
  8803 %}
  8805 // Integer DIVMOD with Register, both quotient and mod results
  8806 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8807   match(DivModI rax div);
  8808   effect(KILL cr);
  8809   size(26);
  8810   ins_cost(30*100+10*100);
  8811   format %{ "CMP    EAX,0x80000000\n\t"
  8812             "JNE,s  normal\n\t"
  8813             "XOR    EDX,EDX\n\t"
  8814             "CMP    ECX,-1\n\t"
  8815             "JE,s   done\n"
  8816     "normal: CDQ\n\t"
  8817             "IDIV   $div\n\t"
  8818     "done:"        %}
  8819   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8820   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8821   ins_pipe( pipe_slow );
  8822 %}
  8824 // Integer MOD with Register
  8825 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8826   match(Set rdx (ModI rax div));
  8827   effect(KILL rax, KILL cr);
  8829   size(26);
  8830   ins_cost(300);
  8831   format %{ "CDQ\n\t"
  8832             "IDIV   $div" %}
  8833   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8834   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8835   ins_pipe( ialu_reg_reg_alu0 );
  8836 %}
  8838 // Remainder Register Long
  8839 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8840   match(Set dst (ModL src1 src2));
  8841   effect( KILL cr, KILL cx, KILL bx );
  8842   ins_cost(10000);
  8843   format %{ "PUSH   $src1.hi\n\t"
  8844             "PUSH   $src1.lo\n\t"
  8845             "PUSH   $src2.hi\n\t"
  8846             "PUSH   $src2.lo\n\t"
  8847             "CALL   SharedRuntime::lrem\n\t"
  8848             "ADD    ESP,16" %}
  8849   ins_encode( long_mod(src1,src2) );
  8850   ins_pipe( pipe_slow );
  8851 %}
  8853 // Divide Register Long (no special case since divisor != -1)
  8854 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8855   match(Set dst (DivL dst imm));
  8856   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8857   ins_cost(1000);
  8858   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8859             "XOR    $tmp2,$tmp2\n\t"
  8860             "CMP    $tmp,EDX\n\t"
  8861             "JA,s   fast\n\t"
  8862             "MOV    $tmp2,EAX\n\t"
  8863             "MOV    EAX,EDX\n\t"
  8864             "MOV    EDX,0\n\t"
  8865             "JLE,s  pos\n\t"
  8866             "LNEG   EAX : $tmp2\n\t"
  8867             "DIV    $tmp # unsigned division\n\t"
  8868             "XCHG   EAX,$tmp2\n\t"
  8869             "DIV    $tmp\n\t"
  8870             "LNEG   $tmp2 : EAX\n\t"
  8871             "JMP,s  done\n"
  8872     "pos:\n\t"
  8873             "DIV    $tmp\n\t"
  8874             "XCHG   EAX,$tmp2\n"
  8875     "fast:\n\t"
  8876             "DIV    $tmp\n"
  8877     "done:\n\t"
  8878             "MOV    EDX,$tmp2\n\t"
  8879             "NEG    EDX:EAX # if $imm < 0" %}
  8880   ins_encode %{
  8881     int con = (int)$imm$$constant;
  8882     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8883     int pcon = (con > 0) ? con : -con;
  8884     Label Lfast, Lpos, Ldone;
  8886     __ movl($tmp$$Register, pcon);
  8887     __ xorl($tmp2$$Register,$tmp2$$Register);
  8888     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8889     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8891     __ movl($tmp2$$Register, $dst$$Register); // save
  8892     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8893     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8894     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8896     // Negative dividend.
  8897     // convert value to positive to use unsigned division
  8898     __ lneg($dst$$Register, $tmp2$$Register);
  8899     __ divl($tmp$$Register);
  8900     __ xchgl($dst$$Register, $tmp2$$Register);
  8901     __ divl($tmp$$Register);
  8902     // revert result back to negative
  8903     __ lneg($tmp2$$Register, $dst$$Register);
  8904     __ jmpb(Ldone);
  8906     __ bind(Lpos);
  8907     __ divl($tmp$$Register); // Use unsigned division
  8908     __ xchgl($dst$$Register, $tmp2$$Register);
  8909     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8911     __ bind(Lfast);
  8912     // fast path: src is positive
  8913     __ divl($tmp$$Register); // Use unsigned division
  8915     __ bind(Ldone);
  8916     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8917     if (con < 0) {
  8918       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8920   %}
  8921   ins_pipe( pipe_slow );
  8922 %}
  8924 // Remainder Register Long (remainder fit into 32 bits)
  8925 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8926   match(Set dst (ModL dst imm));
  8927   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8928   ins_cost(1000);
  8929   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8930             "CMP    $tmp,EDX\n\t"
  8931             "JA,s   fast\n\t"
  8932             "MOV    $tmp2,EAX\n\t"
  8933             "MOV    EAX,EDX\n\t"
  8934             "MOV    EDX,0\n\t"
  8935             "JLE,s  pos\n\t"
  8936             "LNEG   EAX : $tmp2\n\t"
  8937             "DIV    $tmp # unsigned division\n\t"
  8938             "MOV    EAX,$tmp2\n\t"
  8939             "DIV    $tmp\n\t"
  8940             "NEG    EDX\n\t"
  8941             "JMP,s  done\n"
  8942     "pos:\n\t"
  8943             "DIV    $tmp\n\t"
  8944             "MOV    EAX,$tmp2\n"
  8945     "fast:\n\t"
  8946             "DIV    $tmp\n"
  8947     "done:\n\t"
  8948             "MOV    EAX,EDX\n\t"
  8949             "SAR    EDX,31\n\t" %}
  8950   ins_encode %{
  8951     int con = (int)$imm$$constant;
  8952     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8953     int pcon = (con > 0) ? con : -con;
  8954     Label  Lfast, Lpos, Ldone;
  8956     __ movl($tmp$$Register, pcon);
  8957     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8958     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8960     __ movl($tmp2$$Register, $dst$$Register); // save
  8961     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8962     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8963     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8965     // Negative dividend.
  8966     // convert value to positive to use unsigned division
  8967     __ lneg($dst$$Register, $tmp2$$Register);
  8968     __ divl($tmp$$Register);
  8969     __ movl($dst$$Register, $tmp2$$Register);
  8970     __ divl($tmp$$Register);
  8971     // revert remainder back to negative
  8972     __ negl(HIGH_FROM_LOW($dst$$Register));
  8973     __ jmpb(Ldone);
  8975     __ bind(Lpos);
  8976     __ divl($tmp$$Register);
  8977     __ movl($dst$$Register, $tmp2$$Register);
  8979     __ bind(Lfast);
  8980     // fast path: src is positive
  8981     __ divl($tmp$$Register);
  8983     __ bind(Ldone);
  8984     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8985     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8987   %}
  8988   ins_pipe( pipe_slow );
  8989 %}
  8991 // Integer Shift Instructions
  8992 // Shift Left by one
  8993 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8994   match(Set dst (LShiftI dst shift));
  8995   effect(KILL cr);
  8997   size(2);
  8998   format %{ "SHL    $dst,$shift" %}
  8999   opcode(0xD1, 0x4);  /* D1 /4 */
  9000   ins_encode( OpcP, RegOpc( dst ) );
  9001   ins_pipe( ialu_reg );
  9002 %}
  9004 // Shift Left by 8-bit immediate
  9005 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9006   match(Set dst (LShiftI dst shift));
  9007   effect(KILL cr);
  9009   size(3);
  9010   format %{ "SHL    $dst,$shift" %}
  9011   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9012   ins_encode( RegOpcImm( dst, shift) );
  9013   ins_pipe( ialu_reg );
  9014 %}
  9016 // Shift Left by variable
  9017 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9018   match(Set dst (LShiftI dst shift));
  9019   effect(KILL cr);
  9021   size(2);
  9022   format %{ "SHL    $dst,$shift" %}
  9023   opcode(0xD3, 0x4);  /* D3 /4 */
  9024   ins_encode( OpcP, RegOpc( dst ) );
  9025   ins_pipe( ialu_reg_reg );
  9026 %}
  9028 // Arithmetic shift right by one
  9029 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9030   match(Set dst (RShiftI dst shift));
  9031   effect(KILL cr);
  9033   size(2);
  9034   format %{ "SAR    $dst,$shift" %}
  9035   opcode(0xD1, 0x7);  /* D1 /7 */
  9036   ins_encode( OpcP, RegOpc( dst ) );
  9037   ins_pipe( ialu_reg );
  9038 %}
  9040 // Arithmetic shift right by one
  9041 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  9042   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9043   effect(KILL cr);
  9044   format %{ "SAR    $dst,$shift" %}
  9045   opcode(0xD1, 0x7);  /* D1 /7 */
  9046   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  9047   ins_pipe( ialu_mem_imm );
  9048 %}
  9050 // Arithmetic Shift Right by 8-bit immediate
  9051 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9052   match(Set dst (RShiftI dst shift));
  9053   effect(KILL cr);
  9055   size(3);
  9056   format %{ "SAR    $dst,$shift" %}
  9057   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9058   ins_encode( RegOpcImm( dst, shift ) );
  9059   ins_pipe( ialu_mem_imm );
  9060 %}
  9062 // Arithmetic Shift Right by 8-bit immediate
  9063 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  9064   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9065   effect(KILL cr);
  9067   format %{ "SAR    $dst,$shift" %}
  9068   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9069   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  9070   ins_pipe( ialu_mem_imm );
  9071 %}
  9073 // Arithmetic Shift Right by variable
  9074 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9075   match(Set dst (RShiftI dst shift));
  9076   effect(KILL cr);
  9078   size(2);
  9079   format %{ "SAR    $dst,$shift" %}
  9080   opcode(0xD3, 0x7);  /* D3 /7 */
  9081   ins_encode( OpcP, RegOpc( dst ) );
  9082   ins_pipe( ialu_reg_reg );
  9083 %}
  9085 // Logical shift right by one
  9086 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9087   match(Set dst (URShiftI dst shift));
  9088   effect(KILL cr);
  9090   size(2);
  9091   format %{ "SHR    $dst,$shift" %}
  9092   opcode(0xD1, 0x5);  /* D1 /5 */
  9093   ins_encode( OpcP, RegOpc( dst ) );
  9094   ins_pipe( ialu_reg );
  9095 %}
  9097 // Logical Shift Right by 8-bit immediate
  9098 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9099   match(Set dst (URShiftI dst shift));
  9100   effect(KILL cr);
  9102   size(3);
  9103   format %{ "SHR    $dst,$shift" %}
  9104   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9105   ins_encode( RegOpcImm( dst, shift) );
  9106   ins_pipe( ialu_reg );
  9107 %}
  9110 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  9111 // This idiom is used by the compiler for the i2b bytecode.
  9112 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  9113   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  9115   size(3);
  9116   format %{ "MOVSX  $dst,$src :8" %}
  9117   ins_encode %{
  9118     __ movsbl($dst$$Register, $src$$Register);
  9119   %}
  9120   ins_pipe(ialu_reg_reg);
  9121 %}
  9123 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  9124 // This idiom is used by the compiler the i2s bytecode.
  9125 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  9126   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  9128   size(3);
  9129   format %{ "MOVSX  $dst,$src :16" %}
  9130   ins_encode %{
  9131     __ movswl($dst$$Register, $src$$Register);
  9132   %}
  9133   ins_pipe(ialu_reg_reg);
  9134 %}
  9137 // Logical Shift Right by variable
  9138 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9139   match(Set dst (URShiftI dst shift));
  9140   effect(KILL cr);
  9142   size(2);
  9143   format %{ "SHR    $dst,$shift" %}
  9144   opcode(0xD3, 0x5);  /* D3 /5 */
  9145   ins_encode( OpcP, RegOpc( dst ) );
  9146   ins_pipe( ialu_reg_reg );
  9147 %}
  9150 //----------Logical Instructions-----------------------------------------------
  9151 //----------Integer Logical Instructions---------------------------------------
  9152 // And Instructions
  9153 // And Register with Register
  9154 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9155   match(Set dst (AndI dst src));
  9156   effect(KILL cr);
  9158   size(2);
  9159   format %{ "AND    $dst,$src" %}
  9160   opcode(0x23);
  9161   ins_encode( OpcP, RegReg( dst, src) );
  9162   ins_pipe( ialu_reg_reg );
  9163 %}
  9165 // And Register with Immediate
  9166 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9167   match(Set dst (AndI dst src));
  9168   effect(KILL cr);
  9170   format %{ "AND    $dst,$src" %}
  9171   opcode(0x81,0x04);  /* Opcode 81 /4 */
  9172   // ins_encode( RegImm( dst, src) );
  9173   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9174   ins_pipe( ialu_reg );
  9175 %}
  9177 // And Register with Memory
  9178 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9179   match(Set dst (AndI dst (LoadI src)));
  9180   effect(KILL cr);
  9182   ins_cost(125);
  9183   format %{ "AND    $dst,$src" %}
  9184   opcode(0x23);
  9185   ins_encode( OpcP, RegMem( dst, src) );
  9186   ins_pipe( ialu_reg_mem );
  9187 %}
  9189 // And Memory with Register
  9190 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9191   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9192   effect(KILL cr);
  9194   ins_cost(150);
  9195   format %{ "AND    $dst,$src" %}
  9196   opcode(0x21);  /* Opcode 21 /r */
  9197   ins_encode( OpcP, RegMem( src, dst ) );
  9198   ins_pipe( ialu_mem_reg );
  9199 %}
  9201 // And Memory with Immediate
  9202 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9203   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9204   effect(KILL cr);
  9206   ins_cost(125);
  9207   format %{ "AND    $dst,$src" %}
  9208   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  9209   // ins_encode( MemImm( dst, src) );
  9210   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9211   ins_pipe( ialu_mem_imm );
  9212 %}
  9214 // Or Instructions
  9215 // Or Register with Register
  9216 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9217   match(Set dst (OrI dst src));
  9218   effect(KILL cr);
  9220   size(2);
  9221   format %{ "OR     $dst,$src" %}
  9222   opcode(0x0B);
  9223   ins_encode( OpcP, RegReg( dst, src) );
  9224   ins_pipe( ialu_reg_reg );
  9225 %}
  9227 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9228   match(Set dst (OrI dst (CastP2X src)));
  9229   effect(KILL cr);
  9231   size(2);
  9232   format %{ "OR     $dst,$src" %}
  9233   opcode(0x0B);
  9234   ins_encode( OpcP, RegReg( dst, src) );
  9235   ins_pipe( ialu_reg_reg );
  9236 %}
  9239 // Or Register with Immediate
  9240 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9241   match(Set dst (OrI dst src));
  9242   effect(KILL cr);
  9244   format %{ "OR     $dst,$src" %}
  9245   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9246   // ins_encode( RegImm( dst, src) );
  9247   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9248   ins_pipe( ialu_reg );
  9249 %}
  9251 // Or Register with Memory
  9252 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9253   match(Set dst (OrI dst (LoadI src)));
  9254   effect(KILL cr);
  9256   ins_cost(125);
  9257   format %{ "OR     $dst,$src" %}
  9258   opcode(0x0B);
  9259   ins_encode( OpcP, RegMem( dst, src) );
  9260   ins_pipe( ialu_reg_mem );
  9261 %}
  9263 // Or Memory with Register
  9264 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9265   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9266   effect(KILL cr);
  9268   ins_cost(150);
  9269   format %{ "OR     $dst,$src" %}
  9270   opcode(0x09);  /* Opcode 09 /r */
  9271   ins_encode( OpcP, RegMem( src, dst ) );
  9272   ins_pipe( ialu_mem_reg );
  9273 %}
  9275 // Or Memory with Immediate
  9276 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9277   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9278   effect(KILL cr);
  9280   ins_cost(125);
  9281   format %{ "OR     $dst,$src" %}
  9282   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9283   // ins_encode( MemImm( dst, src) );
  9284   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9285   ins_pipe( ialu_mem_imm );
  9286 %}
  9288 // ROL/ROR
  9289 // ROL expand
  9290 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9291   effect(USE_DEF dst, USE shift, KILL cr);
  9293   format %{ "ROL    $dst, $shift" %}
  9294   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9295   ins_encode( OpcP, RegOpc( dst ));
  9296   ins_pipe( ialu_reg );
  9297 %}
  9299 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9300   effect(USE_DEF dst, USE shift, KILL cr);
  9302   format %{ "ROL    $dst, $shift" %}
  9303   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9304   ins_encode( RegOpcImm(dst, shift) );
  9305   ins_pipe(ialu_reg);
  9306 %}
  9308 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9309   effect(USE_DEF dst, USE shift, KILL cr);
  9311   format %{ "ROL    $dst, $shift" %}
  9312   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9313   ins_encode(OpcP, RegOpc(dst));
  9314   ins_pipe( ialu_reg_reg );
  9315 %}
  9316 // end of ROL expand
  9318 // ROL 32bit by one once
  9319 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9320   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9322   expand %{
  9323     rolI_eReg_imm1(dst, lshift, cr);
  9324   %}
  9325 %}
  9327 // ROL 32bit var by imm8 once
  9328 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9329   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9330   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9332   expand %{
  9333     rolI_eReg_imm8(dst, lshift, cr);
  9334   %}
  9335 %}
  9337 // ROL 32bit var by var once
  9338 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9339   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9341   expand %{
  9342     rolI_eReg_CL(dst, shift, cr);
  9343   %}
  9344 %}
  9346 // ROL 32bit var by var once
  9347 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9348   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9350   expand %{
  9351     rolI_eReg_CL(dst, shift, cr);
  9352   %}
  9353 %}
  9355 // ROR expand
  9356 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9357   effect(USE_DEF dst, USE shift, KILL cr);
  9359   format %{ "ROR    $dst, $shift" %}
  9360   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9361   ins_encode( OpcP, RegOpc( dst ) );
  9362   ins_pipe( ialu_reg );
  9363 %}
  9365 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9366   effect (USE_DEF dst, USE shift, KILL cr);
  9368   format %{ "ROR    $dst, $shift" %}
  9369   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9370   ins_encode( RegOpcImm(dst, shift) );
  9371   ins_pipe( ialu_reg );
  9372 %}
  9374 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9375   effect(USE_DEF dst, USE shift, KILL cr);
  9377   format %{ "ROR    $dst, $shift" %}
  9378   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9379   ins_encode(OpcP, RegOpc(dst));
  9380   ins_pipe( ialu_reg_reg );
  9381 %}
  9382 // end of ROR expand
  9384 // ROR right once
  9385 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9386   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9388   expand %{
  9389     rorI_eReg_imm1(dst, rshift, cr);
  9390   %}
  9391 %}
  9393 // ROR 32bit by immI8 once
  9394 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9395   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9396   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9398   expand %{
  9399     rorI_eReg_imm8(dst, rshift, cr);
  9400   %}
  9401 %}
  9403 // ROR 32bit var by var once
  9404 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9405   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9407   expand %{
  9408     rorI_eReg_CL(dst, shift, cr);
  9409   %}
  9410 %}
  9412 // ROR 32bit var by var once
  9413 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9414   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9416   expand %{
  9417     rorI_eReg_CL(dst, shift, cr);
  9418   %}
  9419 %}
  9421 // Xor Instructions
  9422 // Xor Register with Register
  9423 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9424   match(Set dst (XorI dst src));
  9425   effect(KILL cr);
  9427   size(2);
  9428   format %{ "XOR    $dst,$src" %}
  9429   opcode(0x33);
  9430   ins_encode( OpcP, RegReg( dst, src) );
  9431   ins_pipe( ialu_reg_reg );
  9432 %}
  9434 // Xor Register with Immediate -1
  9435 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9436   match(Set dst (XorI dst imm));  
  9438   size(2);
  9439   format %{ "NOT    $dst" %}  
  9440   ins_encode %{
  9441      __ notl($dst$$Register);
  9442   %}
  9443   ins_pipe( ialu_reg );
  9444 %}
  9446 // Xor Register with Immediate
  9447 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9448   match(Set dst (XorI dst src));
  9449   effect(KILL cr);
  9451   format %{ "XOR    $dst,$src" %}
  9452   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9453   // ins_encode( RegImm( dst, src) );
  9454   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9455   ins_pipe( ialu_reg );
  9456 %}
  9458 // Xor Register with Memory
  9459 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9460   match(Set dst (XorI dst (LoadI src)));
  9461   effect(KILL cr);
  9463   ins_cost(125);
  9464   format %{ "XOR    $dst,$src" %}
  9465   opcode(0x33);
  9466   ins_encode( OpcP, RegMem(dst, src) );
  9467   ins_pipe( ialu_reg_mem );
  9468 %}
  9470 // Xor Memory with Register
  9471 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9472   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9473   effect(KILL cr);
  9475   ins_cost(150);
  9476   format %{ "XOR    $dst,$src" %}
  9477   opcode(0x31);  /* Opcode 31 /r */
  9478   ins_encode( OpcP, RegMem( src, dst ) );
  9479   ins_pipe( ialu_mem_reg );
  9480 %}
  9482 // Xor Memory with Immediate
  9483 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9484   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9485   effect(KILL cr);
  9487   ins_cost(125);
  9488   format %{ "XOR    $dst,$src" %}
  9489   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9490   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9491   ins_pipe( ialu_mem_imm );
  9492 %}
  9494 //----------Convert Int to Boolean---------------------------------------------
  9496 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9497   effect( DEF dst, USE src );
  9498   format %{ "MOV    $dst,$src" %}
  9499   ins_encode( enc_Copy( dst, src) );
  9500   ins_pipe( ialu_reg_reg );
  9501 %}
  9503 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9504   effect( USE_DEF dst, USE src, KILL cr );
  9506   size(4);
  9507   format %{ "NEG    $dst\n\t"
  9508             "ADC    $dst,$src" %}
  9509   ins_encode( neg_reg(dst),
  9510               OpcRegReg(0x13,dst,src) );
  9511   ins_pipe( ialu_reg_reg_long );
  9512 %}
  9514 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9515   match(Set dst (Conv2B src));
  9517   expand %{
  9518     movI_nocopy(dst,src);
  9519     ci2b(dst,src,cr);
  9520   %}
  9521 %}
  9523 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9524   effect( DEF dst, USE src );
  9525   format %{ "MOV    $dst,$src" %}
  9526   ins_encode( enc_Copy( dst, src) );
  9527   ins_pipe( ialu_reg_reg );
  9528 %}
  9530 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9531   effect( USE_DEF dst, USE src, KILL cr );
  9532   format %{ "NEG    $dst\n\t"
  9533             "ADC    $dst,$src" %}
  9534   ins_encode( neg_reg(dst),
  9535               OpcRegReg(0x13,dst,src) );
  9536   ins_pipe( ialu_reg_reg_long );
  9537 %}
  9539 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9540   match(Set dst (Conv2B src));
  9542   expand %{
  9543     movP_nocopy(dst,src);
  9544     cp2b(dst,src,cr);
  9545   %}
  9546 %}
  9548 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9549   match(Set dst (CmpLTMask p q));
  9550   effect( KILL cr );
  9551   ins_cost(400);
  9553   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9554   format %{ "XOR    $dst,$dst\n\t"
  9555             "CMP    $p,$q\n\t"
  9556             "SETlt  $dst\n\t"
  9557             "NEG    $dst" %}
  9558   ins_encode( OpcRegReg(0x33,dst,dst),
  9559               OpcRegReg(0x3B,p,q),
  9560               setLT_reg(dst), neg_reg(dst) );
  9561   ins_pipe( pipe_slow );
  9562 %}
  9564 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9565   match(Set dst (CmpLTMask dst zero));
  9566   effect( DEF dst, KILL cr );
  9567   ins_cost(100);
  9569   format %{ "SAR    $dst,31" %}
  9570   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9571   ins_encode( RegOpcImm( dst, 0x1F ) );
  9572   ins_pipe( ialu_reg );
  9573 %}
  9576 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9577   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9578   effect( KILL tmp, KILL cr );
  9579   ins_cost(400);
  9580   // annoyingly, $tmp has no edges so you cant ask for it in
  9581   // any format or encoding
  9582   format %{ "SUB    $p,$q\n\t"
  9583             "SBB    ECX,ECX\n\t"
  9584             "AND    ECX,$y\n\t"
  9585             "ADD    $p,ECX" %}
  9586   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9587   ins_pipe( pipe_cmplt );
  9588 %}
  9590 /* If I enable this, I encourage spilling in the inner loop of compress.
  9591 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9592   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9593   effect( USE_KILL tmp, KILL cr );
  9594   ins_cost(400);
  9596   format %{ "SUB    $p,$q\n\t"
  9597             "SBB    ECX,ECX\n\t"
  9598             "AND    ECX,$y\n\t"
  9599             "ADD    $p,ECX" %}
  9600   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9601 %}
  9602 */
  9604 //----------Long Instructions------------------------------------------------
  9605 // Add Long Register with Register
  9606 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9607   match(Set dst (AddL dst src));
  9608   effect(KILL cr);
  9609   ins_cost(200);
  9610   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9611             "ADC    $dst.hi,$src.hi" %}
  9612   opcode(0x03, 0x13);
  9613   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9614   ins_pipe( ialu_reg_reg_long );
  9615 %}
  9617 // Add Long Register with Immediate
  9618 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9619   match(Set dst (AddL dst src));
  9620   effect(KILL cr);
  9621   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9622             "ADC    $dst.hi,$src.hi" %}
  9623   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9624   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9625   ins_pipe( ialu_reg_long );
  9626 %}
  9628 // Add Long Register with Memory
  9629 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9630   match(Set dst (AddL dst (LoadL mem)));
  9631   effect(KILL cr);
  9632   ins_cost(125);
  9633   format %{ "ADD    $dst.lo,$mem\n\t"
  9634             "ADC    $dst.hi,$mem+4" %}
  9635   opcode(0x03, 0x13);
  9636   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9637   ins_pipe( ialu_reg_long_mem );
  9638 %}
  9640 // Subtract Long Register with Register.
  9641 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9642   match(Set dst (SubL dst src));
  9643   effect(KILL cr);
  9644   ins_cost(200);
  9645   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9646             "SBB    $dst.hi,$src.hi" %}
  9647   opcode(0x2B, 0x1B);
  9648   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9649   ins_pipe( ialu_reg_reg_long );
  9650 %}
  9652 // Subtract Long Register with Immediate
  9653 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9654   match(Set dst (SubL dst src));
  9655   effect(KILL cr);
  9656   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9657             "SBB    $dst.hi,$src.hi" %}
  9658   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9659   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9660   ins_pipe( ialu_reg_long );
  9661 %}
  9663 // Subtract Long Register with Memory
  9664 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9665   match(Set dst (SubL dst (LoadL mem)));
  9666   effect(KILL cr);
  9667   ins_cost(125);
  9668   format %{ "SUB    $dst.lo,$mem\n\t"
  9669             "SBB    $dst.hi,$mem+4" %}
  9670   opcode(0x2B, 0x1B);
  9671   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9672   ins_pipe( ialu_reg_long_mem );
  9673 %}
  9675 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9676   match(Set dst (SubL zero dst));
  9677   effect(KILL cr);
  9678   ins_cost(300);
  9679   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9680   ins_encode( neg_long(dst) );
  9681   ins_pipe( ialu_reg_reg_long );
  9682 %}
  9684 // And Long Register with Register
  9685 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9686   match(Set dst (AndL dst src));
  9687   effect(KILL cr);
  9688   format %{ "AND    $dst.lo,$src.lo\n\t"
  9689             "AND    $dst.hi,$src.hi" %}
  9690   opcode(0x23,0x23);
  9691   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9692   ins_pipe( ialu_reg_reg_long );
  9693 %}
  9695 // And Long Register with Immediate
  9696 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9697   match(Set dst (AndL dst src));
  9698   effect(KILL cr);
  9699   format %{ "AND    $dst.lo,$src.lo\n\t"
  9700             "AND    $dst.hi,$src.hi" %}
  9701   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9702   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9703   ins_pipe( ialu_reg_long );
  9704 %}
  9706 // And Long Register with Memory
  9707 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9708   match(Set dst (AndL dst (LoadL mem)));
  9709   effect(KILL cr);
  9710   ins_cost(125);
  9711   format %{ "AND    $dst.lo,$mem\n\t"
  9712             "AND    $dst.hi,$mem+4" %}
  9713   opcode(0x23, 0x23);
  9714   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9715   ins_pipe( ialu_reg_long_mem );
  9716 %}
  9718 // Or Long Register with Register
  9719 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9720   match(Set dst (OrL dst src));
  9721   effect(KILL cr);
  9722   format %{ "OR     $dst.lo,$src.lo\n\t"
  9723             "OR     $dst.hi,$src.hi" %}
  9724   opcode(0x0B,0x0B);
  9725   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9726   ins_pipe( ialu_reg_reg_long );
  9727 %}
  9729 // Or Long Register with Immediate
  9730 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9731   match(Set dst (OrL dst src));
  9732   effect(KILL cr);
  9733   format %{ "OR     $dst.lo,$src.lo\n\t"
  9734             "OR     $dst.hi,$src.hi" %}
  9735   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9736   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9737   ins_pipe( ialu_reg_long );
  9738 %}
  9740 // Or Long Register with Memory
  9741 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9742   match(Set dst (OrL dst (LoadL mem)));
  9743   effect(KILL cr);
  9744   ins_cost(125);
  9745   format %{ "OR     $dst.lo,$mem\n\t"
  9746             "OR     $dst.hi,$mem+4" %}
  9747   opcode(0x0B,0x0B);
  9748   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9749   ins_pipe( ialu_reg_long_mem );
  9750 %}
  9752 // Xor Long Register with Register
  9753 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9754   match(Set dst (XorL dst src));
  9755   effect(KILL cr);
  9756   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9757             "XOR    $dst.hi,$src.hi" %}
  9758   opcode(0x33,0x33);
  9759   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9760   ins_pipe( ialu_reg_reg_long );
  9761 %}
  9763 // Xor Long Register with Immediate -1
  9764 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9765   match(Set dst (XorL dst imm));  
  9766   format %{ "NOT    $dst.lo\n\t"
  9767             "NOT    $dst.hi" %}
  9768   ins_encode %{
  9769      __ notl($dst$$Register);
  9770      __ notl(HIGH_FROM_LOW($dst$$Register));
  9771   %}
  9772   ins_pipe( ialu_reg_long );
  9773 %}
  9775 // Xor Long Register with Immediate
  9776 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9777   match(Set dst (XorL dst src));
  9778   effect(KILL cr);
  9779   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9780             "XOR    $dst.hi,$src.hi" %}
  9781   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9782   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9783   ins_pipe( ialu_reg_long );
  9784 %}
  9786 // Xor Long Register with Memory
  9787 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9788   match(Set dst (XorL dst (LoadL mem)));
  9789   effect(KILL cr);
  9790   ins_cost(125);
  9791   format %{ "XOR    $dst.lo,$mem\n\t"
  9792             "XOR    $dst.hi,$mem+4" %}
  9793   opcode(0x33,0x33);
  9794   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9795   ins_pipe( ialu_reg_long_mem );
  9796 %}
  9798 // Shift Left Long by 1
  9799 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9800   predicate(UseNewLongLShift);
  9801   match(Set dst (LShiftL dst cnt));
  9802   effect(KILL cr);
  9803   ins_cost(100);
  9804   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9805             "ADC    $dst.hi,$dst.hi" %}
  9806   ins_encode %{
  9807     __ addl($dst$$Register,$dst$$Register);
  9808     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9809   %}
  9810   ins_pipe( ialu_reg_long );
  9811 %}
  9813 // Shift Left Long by 2
  9814 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9815   predicate(UseNewLongLShift);
  9816   match(Set dst (LShiftL dst cnt));
  9817   effect(KILL cr);
  9818   ins_cost(100);
  9819   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9820             "ADC    $dst.hi,$dst.hi\n\t" 
  9821             "ADD    $dst.lo,$dst.lo\n\t"
  9822             "ADC    $dst.hi,$dst.hi" %}
  9823   ins_encode %{
  9824     __ addl($dst$$Register,$dst$$Register);
  9825     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9826     __ addl($dst$$Register,$dst$$Register);
  9827     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9828   %}
  9829   ins_pipe( ialu_reg_long );
  9830 %}
  9832 // Shift Left Long by 3
  9833 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9834   predicate(UseNewLongLShift);
  9835   match(Set dst (LShiftL dst cnt));
  9836   effect(KILL cr);
  9837   ins_cost(100);
  9838   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9839             "ADC    $dst.hi,$dst.hi\n\t" 
  9840             "ADD    $dst.lo,$dst.lo\n\t"
  9841             "ADC    $dst.hi,$dst.hi\n\t" 
  9842             "ADD    $dst.lo,$dst.lo\n\t"
  9843             "ADC    $dst.hi,$dst.hi" %}
  9844   ins_encode %{
  9845     __ addl($dst$$Register,$dst$$Register);
  9846     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9847     __ addl($dst$$Register,$dst$$Register);
  9848     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9849     __ addl($dst$$Register,$dst$$Register);
  9850     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9851   %}
  9852   ins_pipe( ialu_reg_long );
  9853 %}
  9855 // Shift Left Long by 1-31
  9856 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9857   match(Set dst (LShiftL dst cnt));
  9858   effect(KILL cr);
  9859   ins_cost(200);
  9860   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9861             "SHL    $dst.lo,$cnt" %}
  9862   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9863   ins_encode( move_long_small_shift(dst,cnt) );
  9864   ins_pipe( ialu_reg_long );
  9865 %}
  9867 // Shift Left Long by 32-63
  9868 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9869   match(Set dst (LShiftL dst cnt));
  9870   effect(KILL cr);
  9871   ins_cost(300);
  9872   format %{ "MOV    $dst.hi,$dst.lo\n"
  9873           "\tSHL    $dst.hi,$cnt-32\n"
  9874           "\tXOR    $dst.lo,$dst.lo" %}
  9875   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9876   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9877   ins_pipe( ialu_reg_long );
  9878 %}
  9880 // Shift Left Long by variable
  9881 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9882   match(Set dst (LShiftL dst shift));
  9883   effect(KILL cr);
  9884   ins_cost(500+200);
  9885   size(17);
  9886   format %{ "TEST   $shift,32\n\t"
  9887             "JEQ,s  small\n\t"
  9888             "MOV    $dst.hi,$dst.lo\n\t"
  9889             "XOR    $dst.lo,$dst.lo\n"
  9890     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9891             "SHL    $dst.lo,$shift" %}
  9892   ins_encode( shift_left_long( dst, shift ) );
  9893   ins_pipe( pipe_slow );
  9894 %}
  9896 // Shift Right Long by 1-31
  9897 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9898   match(Set dst (URShiftL dst cnt));
  9899   effect(KILL cr);
  9900   ins_cost(200);
  9901   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9902             "SHR    $dst.hi,$cnt" %}
  9903   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9904   ins_encode( move_long_small_shift(dst,cnt) );
  9905   ins_pipe( ialu_reg_long );
  9906 %}
  9908 // Shift Right Long by 32-63
  9909 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9910   match(Set dst (URShiftL dst cnt));
  9911   effect(KILL cr);
  9912   ins_cost(300);
  9913   format %{ "MOV    $dst.lo,$dst.hi\n"
  9914           "\tSHR    $dst.lo,$cnt-32\n"
  9915           "\tXOR    $dst.hi,$dst.hi" %}
  9916   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9917   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9918   ins_pipe( ialu_reg_long );
  9919 %}
  9921 // Shift Right Long by variable
  9922 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9923   match(Set dst (URShiftL dst shift));
  9924   effect(KILL cr);
  9925   ins_cost(600);
  9926   size(17);
  9927   format %{ "TEST   $shift,32\n\t"
  9928             "JEQ,s  small\n\t"
  9929             "MOV    $dst.lo,$dst.hi\n\t"
  9930             "XOR    $dst.hi,$dst.hi\n"
  9931     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9932             "SHR    $dst.hi,$shift" %}
  9933   ins_encode( shift_right_long( dst, shift ) );
  9934   ins_pipe( pipe_slow );
  9935 %}
  9937 // Shift Right Long by 1-31
  9938 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9939   match(Set dst (RShiftL dst cnt));
  9940   effect(KILL cr);
  9941   ins_cost(200);
  9942   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9943             "SAR    $dst.hi,$cnt" %}
  9944   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9945   ins_encode( move_long_small_shift(dst,cnt) );
  9946   ins_pipe( ialu_reg_long );
  9947 %}
  9949 // Shift Right Long by 32-63
  9950 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9951   match(Set dst (RShiftL dst cnt));
  9952   effect(KILL cr);
  9953   ins_cost(300);
  9954   format %{ "MOV    $dst.lo,$dst.hi\n"
  9955           "\tSAR    $dst.lo,$cnt-32\n"
  9956           "\tSAR    $dst.hi,31" %}
  9957   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9958   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9959   ins_pipe( ialu_reg_long );
  9960 %}
  9962 // Shift Right arithmetic Long by variable
  9963 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9964   match(Set dst (RShiftL dst shift));
  9965   effect(KILL cr);
  9966   ins_cost(600);
  9967   size(18);
  9968   format %{ "TEST   $shift,32\n\t"
  9969             "JEQ,s  small\n\t"
  9970             "MOV    $dst.lo,$dst.hi\n\t"
  9971             "SAR    $dst.hi,31\n"
  9972     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9973             "SAR    $dst.hi,$shift" %}
  9974   ins_encode( shift_right_arith_long( dst, shift ) );
  9975   ins_pipe( pipe_slow );
  9976 %}
  9979 //----------Double Instructions------------------------------------------------
  9980 // Double Math
  9982 // Compare & branch
  9984 // P6 version of float compare, sets condition codes in EFLAGS
  9985 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9986   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9987   match(Set cr (CmpD src1 src2));
  9988   effect(KILL rax);
  9989   ins_cost(150);
  9990   format %{ "FLD    $src1\n\t"
  9991             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9992             "JNP    exit\n\t"
  9993             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9994             "SAHF\n"
  9995      "exit:\tNOP               // avoid branch to branch" %}
  9996   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9997   ins_encode( Push_Reg_D(src1),
  9998               OpcP, RegOpc(src2),
  9999               cmpF_P6_fixup );
 10000   ins_pipe( pipe_slow );
 10001 %}
 10003 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
 10004   predicate(VM_Version::supports_cmov() && UseSSE <=1);
 10005   match(Set cr (CmpD src1 src2));
 10006   ins_cost(150);
 10007   format %{ "FLD    $src1\n\t"
 10008             "FUCOMIP ST,$src2  // P6 instruction" %}
 10009   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10010   ins_encode( Push_Reg_D(src1),
 10011               OpcP, RegOpc(src2));
 10012   ins_pipe( pipe_slow );
 10013 %}
 10015 // Compare & branch
 10016 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
 10017   predicate(UseSSE<=1);
 10018   match(Set cr (CmpD src1 src2));
 10019   effect(KILL rax);
 10020   ins_cost(200);
 10021   format %{ "FLD    $src1\n\t"
 10022             "FCOMp  $src2\n\t"
 10023             "FNSTSW AX\n\t"
 10024             "TEST   AX,0x400\n\t"
 10025             "JZ,s   flags\n\t"
 10026             "MOV    AH,1\t# unordered treat as LT\n"
 10027     "flags:\tSAHF" %}
 10028   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10029   ins_encode( Push_Reg_D(src1),
 10030               OpcP, RegOpc(src2),
 10031               fpu_flags);
 10032   ins_pipe( pipe_slow );
 10033 %}
 10035 // Compare vs zero into -1,0,1
 10036 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
 10037   predicate(UseSSE<=1);
 10038   match(Set dst (CmpD3 src1 zero));
 10039   effect(KILL cr, KILL rax);
 10040   ins_cost(280);
 10041   format %{ "FTSTD  $dst,$src1" %}
 10042   opcode(0xE4, 0xD9);
 10043   ins_encode( Push_Reg_D(src1),
 10044               OpcS, OpcP, PopFPU,
 10045               CmpF_Result(dst));
 10046   ins_pipe( pipe_slow );
 10047 %}
 10049 // Compare into -1,0,1
 10050 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
 10051   predicate(UseSSE<=1);
 10052   match(Set dst (CmpD3 src1 src2));
 10053   effect(KILL cr, KILL rax);
 10054   ins_cost(300);
 10055   format %{ "FCMPD  $dst,$src1,$src2" %}
 10056   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10057   ins_encode( Push_Reg_D(src1),
 10058               OpcP, RegOpc(src2),
 10059               CmpF_Result(dst));
 10060   ins_pipe( pipe_slow );
 10061 %}
 10063 // float compare and set condition codes in EFLAGS by XMM regs
 10064 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
 10065   predicate(UseSSE>=2);
 10066   match(Set cr (CmpD dst src));
 10067   effect(KILL rax);
 10068   ins_cost(125);
 10069   format %{ "COMISD $dst,$src\n"
 10070           "\tJNP    exit\n"
 10071           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10072           "\tSAHF\n"
 10073      "exit:\tNOP               // avoid branch to branch" %}
 10074   opcode(0x66, 0x0F, 0x2F);
 10075   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
 10076   ins_pipe( pipe_slow );
 10077 %}
 10079 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
 10080   predicate(UseSSE>=2);
 10081   match(Set cr (CmpD dst src));
 10082   ins_cost(100);
 10083   format %{ "COMISD $dst,$src" %}
 10084   opcode(0x66, 0x0F, 0x2F);
 10085   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 10086   ins_pipe( pipe_slow );
 10087 %}
 10089 // float compare and set condition codes in EFLAGS by XMM regs
 10090 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
 10091   predicate(UseSSE>=2);
 10092   match(Set cr (CmpD dst (LoadD src)));
 10093   effect(KILL rax);
 10094   ins_cost(145);
 10095   format %{ "COMISD $dst,$src\n"
 10096           "\tJNP    exit\n"
 10097           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10098           "\tSAHF\n"
 10099      "exit:\tNOP               // avoid branch to branch" %}
 10100   opcode(0x66, 0x0F, 0x2F);
 10101   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
 10102   ins_pipe( pipe_slow );
 10103 %}
 10105 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
 10106   predicate(UseSSE>=2);
 10107   match(Set cr (CmpD dst (LoadD src)));
 10108   ins_cost(100);
 10109   format %{ "COMISD $dst,$src" %}
 10110   opcode(0x66, 0x0F, 0x2F);
 10111   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
 10112   ins_pipe( pipe_slow );
 10113 %}
 10115 // Compare into -1,0,1 in XMM
 10116 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
 10117   predicate(UseSSE>=2);
 10118   match(Set dst (CmpD3 src1 src2));
 10119   effect(KILL cr);
 10120   ins_cost(255);
 10121   format %{ "XOR    $dst,$dst\n"
 10122           "\tCOMISD $src1,$src2\n"
 10123           "\tJP,s   nan\n"
 10124           "\tJEQ,s  exit\n"
 10125           "\tJA,s   inc\n"
 10126       "nan:\tDEC    $dst\n"
 10127           "\tJMP,s  exit\n"
 10128       "inc:\tINC    $dst\n"
 10129       "exit:"
 10130                 %}
 10131   opcode(0x66, 0x0F, 0x2F);
 10132   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
 10133              CmpX_Result(dst));
 10134   ins_pipe( pipe_slow );
 10135 %}
 10137 // Compare into -1,0,1 in XMM and memory
 10138 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
 10139   predicate(UseSSE>=2);
 10140   match(Set dst (CmpD3 src1 (LoadD mem)));
 10141   effect(KILL cr);
 10142   ins_cost(275);
 10143   format %{ "COMISD $src1,$mem\n"
 10144           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10145           "\tJP,s   nan\n"
 10146           "\tJEQ,s  exit\n"
 10147           "\tJA,s   inc\n"
 10148       "nan:\tDEC    $dst\n"
 10149           "\tJMP,s  exit\n"
 10150       "inc:\tINC    $dst\n"
 10151       "exit:"
 10152                 %}
 10153   opcode(0x66, 0x0F, 0x2F);
 10154   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
 10155              LdImmI(dst,0x0), CmpX_Result(dst));
 10156   ins_pipe( pipe_slow );
 10157 %}
 10160 instruct subD_reg(regD dst, regD src) %{
 10161   predicate (UseSSE <=1);
 10162   match(Set dst (SubD dst src));
 10164   format %{ "FLD    $src\n\t"
 10165             "DSUBp  $dst,ST" %}
 10166   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10167   ins_cost(150);
 10168   ins_encode( Push_Reg_D(src),
 10169               OpcP, RegOpc(dst) );
 10170   ins_pipe( fpu_reg_reg );
 10171 %}
 10173 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10174   predicate (UseSSE <=1);
 10175   match(Set dst (RoundDouble (SubD src1 src2)));
 10176   ins_cost(250);
 10178   format %{ "FLD    $src2\n\t"
 10179             "DSUB   ST,$src1\n\t"
 10180             "FSTP_D $dst\t# D-round" %}
 10181   opcode(0xD8, 0x5);
 10182   ins_encode( Push_Reg_D(src2),
 10183               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10184   ins_pipe( fpu_mem_reg_reg );
 10185 %}
 10188 instruct subD_reg_mem(regD dst, memory src) %{
 10189   predicate (UseSSE <=1);
 10190   match(Set dst (SubD dst (LoadD src)));
 10191   ins_cost(150);
 10193   format %{ "FLD    $src\n\t"
 10194             "DSUBp  $dst,ST" %}
 10195   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10196   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10197               OpcP, RegOpc(dst) );
 10198   ins_pipe( fpu_reg_mem );
 10199 %}
 10201 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
 10202   predicate (UseSSE<=1);
 10203   match(Set dst (AbsD src));
 10204   ins_cost(100);
 10205   format %{ "FABS" %}
 10206   opcode(0xE1, 0xD9);
 10207   ins_encode( OpcS, OpcP );
 10208   ins_pipe( fpu_reg_reg );
 10209 %}
 10211 instruct absXD_reg( regXD dst ) %{
 10212   predicate(UseSSE>=2);
 10213   match(Set dst (AbsD dst));
 10214   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10215   ins_encode( AbsXD_encoding(dst));
 10216   ins_pipe( pipe_slow );
 10217 %}
 10219 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10220   predicate(UseSSE<=1);
 10221   match(Set dst (NegD src));
 10222   ins_cost(100);
 10223   format %{ "FCHS" %}
 10224   opcode(0xE0, 0xD9);
 10225   ins_encode( OpcS, OpcP );
 10226   ins_pipe( fpu_reg_reg );
 10227 %}
 10229 instruct negXD_reg( regXD dst ) %{
 10230   predicate(UseSSE>=2);
 10231   match(Set dst (NegD dst));
 10232   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10233   ins_encode %{
 10234      __ xorpd($dst$$XMMRegister,
 10235               ExternalAddress((address)double_signflip_pool));
 10236   %}
 10237   ins_pipe( pipe_slow );
 10238 %}
 10240 instruct addD_reg(regD dst, regD src) %{
 10241   predicate(UseSSE<=1);
 10242   match(Set dst (AddD dst src));
 10243   format %{ "FLD    $src\n\t"
 10244             "DADD   $dst,ST" %}
 10245   size(4);
 10246   ins_cost(150);
 10247   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10248   ins_encode( Push_Reg_D(src),
 10249               OpcP, RegOpc(dst) );
 10250   ins_pipe( fpu_reg_reg );
 10251 %}
 10254 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10255   predicate(UseSSE<=1);
 10256   match(Set dst (RoundDouble (AddD src1 src2)));
 10257   ins_cost(250);
 10259   format %{ "FLD    $src2\n\t"
 10260             "DADD   ST,$src1\n\t"
 10261             "FSTP_D $dst\t# D-round" %}
 10262   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10263   ins_encode( Push_Reg_D(src2),
 10264               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10265   ins_pipe( fpu_mem_reg_reg );
 10266 %}
 10269 instruct addD_reg_mem(regD dst, memory src) %{
 10270   predicate(UseSSE<=1);
 10271   match(Set dst (AddD dst (LoadD src)));
 10272   ins_cost(150);
 10274   format %{ "FLD    $src\n\t"
 10275             "DADDp  $dst,ST" %}
 10276   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10277   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10278               OpcP, RegOpc(dst) );
 10279   ins_pipe( fpu_reg_mem );
 10280 %}
 10282 // add-to-memory
 10283 instruct addD_mem_reg(memory dst, regD src) %{
 10284   predicate(UseSSE<=1);
 10285   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10286   ins_cost(150);
 10288   format %{ "FLD_D  $dst\n\t"
 10289             "DADD   ST,$src\n\t"
 10290             "FST_D  $dst" %}
 10291   opcode(0xDD, 0x0);
 10292   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10293               Opcode(0xD8), RegOpc(src),
 10294               set_instruction_start,
 10295               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10296   ins_pipe( fpu_reg_mem );
 10297 %}
 10299 instruct addD_reg_imm1(regD dst, immD1 con) %{
 10300   predicate(UseSSE<=1);
 10301   match(Set dst (AddD dst con));
 10302   ins_cost(125);
 10303   format %{ "FLD1\n\t"
 10304             "DADDp  $dst,ST" %}
 10305   ins_encode %{
 10306     __ fld1();
 10307     __ faddp($dst$$reg);
 10308   %}
 10309   ins_pipe(fpu_reg);
 10310 %}
 10312 instruct addD_reg_imm(regD dst, immD con) %{
 10313   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10314   match(Set dst (AddD dst con));
 10315   ins_cost(200);
 10316   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
 10317             "DADDp  $dst,ST" %}
 10318   ins_encode %{
 10319     __ fld_d($constantaddress($con));
 10320     __ faddp($dst$$reg);
 10321   %}
 10322   ins_pipe(fpu_reg_mem);
 10323 %}
 10325 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10326   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10327   match(Set dst (RoundDouble (AddD src con)));
 10328   ins_cost(200);
 10329   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
 10330             "DADD   ST,$src\n\t"
 10331             "FSTP_D $dst\t# D-round" %}
 10332   ins_encode %{
 10333     __ fld_d($constantaddress($con));
 10334     __ fadd($src$$reg);
 10335     __ fstp_d(Address(rsp, $dst$$disp));
 10336   %}
 10337   ins_pipe(fpu_mem_reg_con);
 10338 %}
 10340 // Add two double precision floating point values in xmm
 10341 instruct addXD_reg(regXD dst, regXD src) %{
 10342   predicate(UseSSE>=2);
 10343   match(Set dst (AddD dst src));
 10344   format %{ "ADDSD  $dst,$src" %}
 10345   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10346   ins_pipe( pipe_slow );
 10347 %}
 10349 instruct addXD_imm(regXD dst, immXD con) %{
 10350   predicate(UseSSE>=2);
 10351   match(Set dst (AddD dst con));
 10352   format %{ "ADDSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10353   ins_encode %{
 10354     __ addsd($dst$$XMMRegister, $constantaddress($con));
 10355   %}
 10356   ins_pipe(pipe_slow);
 10357 %}
 10359 instruct addXD_mem(regXD dst, memory mem) %{
 10360   predicate(UseSSE>=2);
 10361   match(Set dst (AddD dst (LoadD mem)));
 10362   format %{ "ADDSD  $dst,$mem" %}
 10363   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10364   ins_pipe( pipe_slow );
 10365 %}
 10367 // Sub two double precision floating point values in xmm
 10368 instruct subXD_reg(regXD dst, regXD src) %{
 10369   predicate(UseSSE>=2);
 10370   match(Set dst (SubD dst src));
 10371   format %{ "SUBSD  $dst,$src" %}
 10372   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10373   ins_pipe( pipe_slow );
 10374 %}
 10376 instruct subXD_imm(regXD dst, immXD con) %{
 10377   predicate(UseSSE>=2);
 10378   match(Set dst (SubD dst con));
 10379   format %{ "SUBSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10380   ins_encode %{
 10381     __ subsd($dst$$XMMRegister, $constantaddress($con));
 10382   %}
 10383   ins_pipe(pipe_slow);
 10384 %}
 10386 instruct subXD_mem(regXD dst, memory mem) %{
 10387   predicate(UseSSE>=2);
 10388   match(Set dst (SubD dst (LoadD mem)));
 10389   format %{ "SUBSD  $dst,$mem" %}
 10390   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10391   ins_pipe( pipe_slow );
 10392 %}
 10394 // Mul two double precision floating point values in xmm
 10395 instruct mulXD_reg(regXD dst, regXD src) %{
 10396   predicate(UseSSE>=2);
 10397   match(Set dst (MulD dst src));
 10398   format %{ "MULSD  $dst,$src" %}
 10399   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10400   ins_pipe( pipe_slow );
 10401 %}
 10403 instruct mulXD_imm(regXD dst, immXD con) %{
 10404   predicate(UseSSE>=2);
 10405   match(Set dst (MulD dst con));
 10406   format %{ "MULSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10407   ins_encode %{
 10408     __ mulsd($dst$$XMMRegister, $constantaddress($con));
 10409   %}
 10410   ins_pipe(pipe_slow);
 10411 %}
 10413 instruct mulXD_mem(regXD dst, memory mem) %{
 10414   predicate(UseSSE>=2);
 10415   match(Set dst (MulD dst (LoadD mem)));
 10416   format %{ "MULSD  $dst,$mem" %}
 10417   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10418   ins_pipe( pipe_slow );
 10419 %}
 10421 // Div two double precision floating point values in xmm
 10422 instruct divXD_reg(regXD dst, regXD src) %{
 10423   predicate(UseSSE>=2);
 10424   match(Set dst (DivD dst src));
 10425   format %{ "DIVSD  $dst,$src" %}
 10426   opcode(0xF2, 0x0F, 0x5E);
 10427   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10428   ins_pipe( pipe_slow );
 10429 %}
 10431 instruct divXD_imm(regXD dst, immXD con) %{
 10432   predicate(UseSSE>=2);
 10433   match(Set dst (DivD dst con));
 10434   format %{ "DIVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
 10435   ins_encode %{
 10436     __ divsd($dst$$XMMRegister, $constantaddress($con));
 10437   %}
 10438   ins_pipe(pipe_slow);
 10439 %}
 10441 instruct divXD_mem(regXD dst, memory mem) %{
 10442   predicate(UseSSE>=2);
 10443   match(Set dst (DivD dst (LoadD mem)));
 10444   format %{ "DIVSD  $dst,$mem" %}
 10445   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10446   ins_pipe( pipe_slow );
 10447 %}
 10450 instruct mulD_reg(regD dst, regD src) %{
 10451   predicate(UseSSE<=1);
 10452   match(Set dst (MulD dst src));
 10453   format %{ "FLD    $src\n\t"
 10454             "DMULp  $dst,ST" %}
 10455   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10456   ins_cost(150);
 10457   ins_encode( Push_Reg_D(src),
 10458               OpcP, RegOpc(dst) );
 10459   ins_pipe( fpu_reg_reg );
 10460 %}
 10462 // Strict FP instruction biases argument before multiply then
 10463 // biases result to avoid double rounding of subnormals.
 10464 //
 10465 // scale arg1 by multiplying arg1 by 2^(-15360)
 10466 // load arg2
 10467 // multiply scaled arg1 by arg2
 10468 // rescale product by 2^(15360)
 10469 //
 10470 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10471   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10472   match(Set dst (MulD dst src));
 10473   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10475   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10476             "DMULp  $dst,ST\n\t"
 10477             "FLD    $src\n\t"
 10478             "DMULp  $dst,ST\n\t"
 10479             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10480             "DMULp  $dst,ST\n\t" %}
 10481   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10482   ins_encode( strictfp_bias1(dst),
 10483               Push_Reg_D(src),
 10484               OpcP, RegOpc(dst),
 10485               strictfp_bias2(dst) );
 10486   ins_pipe( fpu_reg_reg );
 10487 %}
 10489 instruct mulD_reg_imm(regD dst, immD con) %{
 10490   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10491   match(Set dst (MulD dst con));
 10492   ins_cost(200);
 10493   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
 10494             "DMULp  $dst,ST" %}
 10495   ins_encode %{
 10496     __ fld_d($constantaddress($con));
 10497     __ fmulp($dst$$reg);
 10498   %}
 10499   ins_pipe(fpu_reg_mem);
 10500 %}
 10503 instruct mulD_reg_mem(regD dst, memory src) %{
 10504   predicate( UseSSE<=1 );
 10505   match(Set dst (MulD dst (LoadD src)));
 10506   ins_cost(200);
 10507   format %{ "FLD_D  $src\n\t"
 10508             "DMULp  $dst,ST" %}
 10509   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10510   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10511               OpcP, RegOpc(dst) );
 10512   ins_pipe( fpu_reg_mem );
 10513 %}
 10515 //
 10516 // Cisc-alternate to reg-reg multiply
 10517 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10518   predicate( UseSSE<=1 );
 10519   match(Set dst (MulD src (LoadD mem)));
 10520   ins_cost(250);
 10521   format %{ "FLD_D  $mem\n\t"
 10522             "DMUL   ST,$src\n\t"
 10523             "FSTP_D $dst" %}
 10524   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10525   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10526               OpcReg_F(src),
 10527               Pop_Reg_D(dst) );
 10528   ins_pipe( fpu_reg_reg_mem );
 10529 %}
 10532 // MACRO3 -- addD a mulD
 10533 // This instruction is a '2-address' instruction in that the result goes
 10534 // back to src2.  This eliminates a move from the macro; possibly the
 10535 // register allocator will have to add it back (and maybe not).
 10536 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10537   predicate( UseSSE<=1 );
 10538   match(Set src2 (AddD (MulD src0 src1) src2));
 10539   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10540             "DMUL   ST,$src1\n\t"
 10541             "DADDp  $src2,ST" %}
 10542   ins_cost(250);
 10543   opcode(0xDD); /* LoadD DD /0 */
 10544   ins_encode( Push_Reg_F(src0),
 10545               FMul_ST_reg(src1),
 10546               FAddP_reg_ST(src2) );
 10547   ins_pipe( fpu_reg_reg_reg );
 10548 %}
 10551 // MACRO3 -- subD a mulD
 10552 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10553   predicate( UseSSE<=1 );
 10554   match(Set src2 (SubD (MulD src0 src1) src2));
 10555   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10556             "DMUL   ST,$src1\n\t"
 10557             "DSUBRp $src2,ST" %}
 10558   ins_cost(250);
 10559   ins_encode( Push_Reg_F(src0),
 10560               FMul_ST_reg(src1),
 10561               Opcode(0xDE), Opc_plus(0xE0,src2));
 10562   ins_pipe( fpu_reg_reg_reg );
 10563 %}
 10566 instruct divD_reg(regD dst, regD src) %{
 10567   predicate( UseSSE<=1 );
 10568   match(Set dst (DivD dst src));
 10570   format %{ "FLD    $src\n\t"
 10571             "FDIVp  $dst,ST" %}
 10572   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10573   ins_cost(150);
 10574   ins_encode( Push_Reg_D(src),
 10575               OpcP, RegOpc(dst) );
 10576   ins_pipe( fpu_reg_reg );
 10577 %}
 10579 // Strict FP instruction biases argument before division then
 10580 // biases result, to avoid double rounding of subnormals.
 10581 //
 10582 // scale dividend by multiplying dividend by 2^(-15360)
 10583 // load divisor
 10584 // divide scaled dividend by divisor
 10585 // rescale quotient by 2^(15360)
 10586 //
 10587 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10588   predicate (UseSSE<=1);
 10589   match(Set dst (DivD dst src));
 10590   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10591   ins_cost(01);
 10593   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10594             "DMULp  $dst,ST\n\t"
 10595             "FLD    $src\n\t"
 10596             "FDIVp  $dst,ST\n\t"
 10597             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10598             "DMULp  $dst,ST\n\t" %}
 10599   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10600   ins_encode( strictfp_bias1(dst),
 10601               Push_Reg_D(src),
 10602               OpcP, RegOpc(dst),
 10603               strictfp_bias2(dst) );
 10604   ins_pipe( fpu_reg_reg );
 10605 %}
 10607 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10608   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10609   match(Set dst (RoundDouble (DivD src1 src2)));
 10611   format %{ "FLD    $src1\n\t"
 10612             "FDIV   ST,$src2\n\t"
 10613             "FSTP_D $dst\t# D-round" %}
 10614   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10615   ins_encode( Push_Reg_D(src1),
 10616               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10617   ins_pipe( fpu_mem_reg_reg );
 10618 %}
 10621 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10622   predicate(UseSSE<=1);
 10623   match(Set dst (ModD dst src));
 10624   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10626   format %{ "DMOD   $dst,$src" %}
 10627   ins_cost(250);
 10628   ins_encode(Push_Reg_Mod_D(dst, src),
 10629               emitModD(),
 10630               Push_Result_Mod_D(src),
 10631               Pop_Reg_D(dst));
 10632   ins_pipe( pipe_slow );
 10633 %}
 10635 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10636   predicate(UseSSE>=2);
 10637   match(Set dst (ModD src0 src1));
 10638   effect(KILL rax, KILL cr);
 10640   format %{ "SUB    ESP,8\t # DMOD\n"
 10641           "\tMOVSD  [ESP+0],$src1\n"
 10642           "\tFLD_D  [ESP+0]\n"
 10643           "\tMOVSD  [ESP+0],$src0\n"
 10644           "\tFLD_D  [ESP+0]\n"
 10645      "loop:\tFPREM\n"
 10646           "\tFWAIT\n"
 10647           "\tFNSTSW AX\n"
 10648           "\tSAHF\n"
 10649           "\tJP     loop\n"
 10650           "\tFSTP_D [ESP+0]\n"
 10651           "\tMOVSD  $dst,[ESP+0]\n"
 10652           "\tADD    ESP,8\n"
 10653           "\tFSTP   ST0\t # Restore FPU Stack"
 10654     %}
 10655   ins_cost(250);
 10656   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10657   ins_pipe( pipe_slow );
 10658 %}
 10660 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10661   predicate (UseSSE<=1);
 10662   match(Set dst (SinD src));
 10663   ins_cost(1800);
 10664   format %{ "DSIN   $dst" %}
 10665   opcode(0xD9, 0xFE);
 10666   ins_encode( OpcP, OpcS );
 10667   ins_pipe( pipe_slow );
 10668 %}
 10670 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10671   predicate (UseSSE>=2);
 10672   match(Set dst (SinD dst));
 10673   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10674   ins_cost(1800);
 10675   format %{ "DSIN   $dst" %}
 10676   opcode(0xD9, 0xFE);
 10677   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10678   ins_pipe( pipe_slow );
 10679 %}
 10681 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10682   predicate (UseSSE<=1);
 10683   match(Set dst (CosD src));
 10684   ins_cost(1800);
 10685   format %{ "DCOS   $dst" %}
 10686   opcode(0xD9, 0xFF);
 10687   ins_encode( OpcP, OpcS );
 10688   ins_pipe( pipe_slow );
 10689 %}
 10691 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10692   predicate (UseSSE>=2);
 10693   match(Set dst (CosD dst));
 10694   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10695   ins_cost(1800);
 10696   format %{ "DCOS   $dst" %}
 10697   opcode(0xD9, 0xFF);
 10698   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10699   ins_pipe( pipe_slow );
 10700 %}
 10702 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10703   predicate (UseSSE<=1);
 10704   match(Set dst(TanD src));
 10705   format %{ "DTAN   $dst" %}
 10706   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10707               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10708   ins_pipe( pipe_slow );
 10709 %}
 10711 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10712   predicate (UseSSE>=2);
 10713   match(Set dst(TanD dst));
 10714   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10715   format %{ "DTAN   $dst" %}
 10716   ins_encode( Push_SrcXD(dst),
 10717               Opcode(0xD9), Opcode(0xF2),    // fptan
 10718               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10719               Push_ResultXD(dst) );
 10720   ins_pipe( pipe_slow );
 10721 %}
 10723 instruct atanD_reg(regD dst, regD src) %{
 10724   predicate (UseSSE<=1);
 10725   match(Set dst(AtanD dst src));
 10726   format %{ "DATA   $dst,$src" %}
 10727   opcode(0xD9, 0xF3);
 10728   ins_encode( Push_Reg_D(src),
 10729               OpcP, OpcS, RegOpc(dst) );
 10730   ins_pipe( pipe_slow );
 10731 %}
 10733 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10734   predicate (UseSSE>=2);
 10735   match(Set dst(AtanD dst src));
 10736   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10737   format %{ "DATA   $dst,$src" %}
 10738   opcode(0xD9, 0xF3);
 10739   ins_encode( Push_SrcXD(src),
 10740               OpcP, OpcS, Push_ResultXD(dst) );
 10741   ins_pipe( pipe_slow );
 10742 %}
 10744 instruct sqrtD_reg(regD dst, regD src) %{
 10745   predicate (UseSSE<=1);
 10746   match(Set dst (SqrtD src));
 10747   format %{ "DSQRT  $dst,$src" %}
 10748   opcode(0xFA, 0xD9);
 10749   ins_encode( Push_Reg_D(src),
 10750               OpcS, OpcP, Pop_Reg_D(dst) );
 10751   ins_pipe( pipe_slow );
 10752 %}
 10754 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10755   predicate (UseSSE<=1);
 10756   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10757   effect(KILL rax, KILL rbx, KILL rcx);
 10758   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10759             "FLD_D  $X\n\t"
 10760             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10762             "FDUP   \t\t\t# Q Q\n\t"
 10763             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10764             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10765             "FISTP  dword [ESP]\n\t"
 10766             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10767             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10768             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10769             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10770             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10771             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10772             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10773             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10774             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10775             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10776             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10777             "MOV    [ESP+0],0\n\t"
 10778             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10780             "ADD    ESP,8"
 10781              %}
 10782   ins_encode( push_stack_temp_qword,
 10783               Push_Reg_D(X),
 10784               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10785               pow_exp_core_encoding,
 10786               pop_stack_temp_qword);
 10787   ins_pipe( pipe_slow );
 10788 %}
 10790 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10791   predicate (UseSSE>=2);
 10792   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10793   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10794   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10795             "MOVSD  [ESP],$src1\n\t"
 10796             "FLD    FPR1,$src1\n\t"
 10797             "MOVSD  [ESP],$src0\n\t"
 10798             "FLD    FPR1,$src0\n\t"
 10799             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10801             "FDUP   \t\t\t# Q Q\n\t"
 10802             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10803             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10804             "FISTP  dword [ESP]\n\t"
 10805             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10806             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10807             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10808             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10809             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10810             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10811             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10812             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10813             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10814             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10815             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10816             "MOV    [ESP+0],0\n\t"
 10817             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10819             "FST_D  [ESP]\n\t"
 10820             "MOVSD  $dst,[ESP]\n\t"
 10821             "ADD    ESP,8"
 10822              %}
 10823   ins_encode( push_stack_temp_qword,
 10824               push_xmm_to_fpr1(src1),
 10825               push_xmm_to_fpr1(src0),
 10826               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10827               pow_exp_core_encoding,
 10828               Push_ResultXD(dst) );
 10829   ins_pipe( pipe_slow );
 10830 %}
 10833 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10834   predicate (UseSSE<=1);
 10835   match(Set dpr1 (ExpD dpr1));
 10836   effect(KILL rax, KILL rbx, KILL rcx);
 10837   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10838             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10839             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10841             "FDUP   \t\t\t# Q Q\n\t"
 10842             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10843             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10844             "FISTP  dword [ESP]\n\t"
 10845             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10846             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10847             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10848             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10849             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10850             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10851             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10852             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10853             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10854             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10855             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10856             "MOV    [ESP+0],0\n\t"
 10857             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10859             "ADD    ESP,8"
 10860              %}
 10861   ins_encode( push_stack_temp_qword,
 10862               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10863               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10864               pow_exp_core_encoding,
 10865               pop_stack_temp_qword);
 10866   ins_pipe( pipe_slow );
 10867 %}
 10869 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10870   predicate (UseSSE>=2);
 10871   match(Set dst (ExpD src));
 10872   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10873   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10874             "MOVSD  [ESP],$src\n\t"
 10875             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10876             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10878             "FDUP   \t\t\t# Q Q\n\t"
 10879             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10880             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10881             "FISTP  dword [ESP]\n\t"
 10882             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10883             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10884             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10885             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10886             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10887             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10888             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10889             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10890             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10891             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10892             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10893             "MOV    [ESP+0],0\n\t"
 10894             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10896             "FST_D  [ESP]\n\t"
 10897             "MOVSD  $dst,[ESP]\n\t"
 10898             "ADD    ESP,8"
 10899              %}
 10900   ins_encode( Push_SrcXD(src),
 10901               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10902               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10903               pow_exp_core_encoding,
 10904               Push_ResultXD(dst) );
 10905   ins_pipe( pipe_slow );
 10906 %}
 10910 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10911   predicate (UseSSE<=1);
 10912   // The source Double operand on FPU stack
 10913   match(Set dst (Log10D src));
 10914   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10915   // fxch         ; swap ST(0) with ST(1)
 10916   // fyl2x        ; compute log_10(2) * log_2(x)
 10917   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10918             "FXCH   \n\t"
 10919             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10920          %}
 10921   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10922               Opcode(0xD9), Opcode(0xC9),   // fxch
 10923               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10925   ins_pipe( pipe_slow );
 10926 %}
 10928 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10929   predicate (UseSSE>=2);
 10930   effect(KILL cr);
 10931   match(Set dst (Log10D src));
 10932   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10933   // fyl2x        ; compute log_10(2) * log_2(x)
 10934   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10935             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10936          %}
 10937   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10938               Push_SrcXD(src),
 10939               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10940               Push_ResultXD(dst));
 10942   ins_pipe( pipe_slow );
 10943 %}
 10945 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10946   predicate (UseSSE<=1);
 10947   // The source Double operand on FPU stack
 10948   match(Set dst (LogD src));
 10949   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10950   // fxch         ; swap ST(0) with ST(1)
 10951   // fyl2x        ; compute log_e(2) * log_2(x)
 10952   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10953             "FXCH   \n\t"
 10954             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10955          %}
 10956   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10957               Opcode(0xD9), Opcode(0xC9),   // fxch
 10958               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10960   ins_pipe( pipe_slow );
 10961 %}
 10963 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10964   predicate (UseSSE>=2);
 10965   effect(KILL cr);
 10966   // The source and result Double operands in XMM registers
 10967   match(Set dst (LogD src));
 10968   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10969   // fyl2x        ; compute log_e(2) * log_2(x)
 10970   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10971             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10972          %}
 10973   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10974               Push_SrcXD(src),
 10975               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10976               Push_ResultXD(dst));
 10977   ins_pipe( pipe_slow );
 10978 %}
 10980 //-------------Float Instructions-------------------------------
 10981 // Float Math
 10983 // Code for float compare:
 10984 //     fcompp();
 10985 //     fwait(); fnstsw_ax();
 10986 //     sahf();
 10987 //     movl(dst, unordered_result);
 10988 //     jcc(Assembler::parity, exit);
 10989 //     movl(dst, less_result);
 10990 //     jcc(Assembler::below, exit);
 10991 //     movl(dst, equal_result);
 10992 //     jcc(Assembler::equal, exit);
 10993 //     movl(dst, greater_result);
 10994 //   exit:
 10996 // P6 version of float compare, sets condition codes in EFLAGS
 10997 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10998   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10999   match(Set cr (CmpF src1 src2));
 11000   effect(KILL rax);
 11001   ins_cost(150);
 11002   format %{ "FLD    $src1\n\t"
 11003             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 11004             "JNP    exit\n\t"
 11005             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 11006             "SAHF\n"
 11007      "exit:\tNOP               // avoid branch to branch" %}
 11008   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 11009   ins_encode( Push_Reg_D(src1),
 11010               OpcP, RegOpc(src2),
 11011               cmpF_P6_fixup );
 11012   ins_pipe( pipe_slow );
 11013 %}
 11015 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 11016   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 11017   match(Set cr (CmpF src1 src2));
 11018   ins_cost(100);
 11019   format %{ "FLD    $src1\n\t"
 11020             "FUCOMIP ST,$src2  // P6 instruction" %}
 11021   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 11022   ins_encode( Push_Reg_D(src1),
 11023               OpcP, RegOpc(src2));
 11024   ins_pipe( pipe_slow );
 11025 %}
 11028 // Compare & branch
 11029 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 11030   predicate(UseSSE == 0);
 11031   match(Set cr (CmpF src1 src2));
 11032   effect(KILL rax);
 11033   ins_cost(200);
 11034   format %{ "FLD    $src1\n\t"
 11035             "FCOMp  $src2\n\t"
 11036             "FNSTSW AX\n\t"
 11037             "TEST   AX,0x400\n\t"
 11038             "JZ,s   flags\n\t"
 11039             "MOV    AH,1\t# unordered treat as LT\n"
 11040     "flags:\tSAHF" %}
 11041   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 11042   ins_encode( Push_Reg_D(src1),
 11043               OpcP, RegOpc(src2),
 11044               fpu_flags);
 11045   ins_pipe( pipe_slow );
 11046 %}
 11048 // Compare vs zero into -1,0,1
 11049 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 11050   predicate(UseSSE == 0);
 11051   match(Set dst (CmpF3 src1 zero));
 11052   effect(KILL cr, KILL rax);
 11053   ins_cost(280);
 11054   format %{ "FTSTF  $dst,$src1" %}
 11055   opcode(0xE4, 0xD9);
 11056   ins_encode( Push_Reg_D(src1),
 11057               OpcS, OpcP, PopFPU,
 11058               CmpF_Result(dst));
 11059   ins_pipe( pipe_slow );
 11060 %}
 11062 // Compare into -1,0,1
 11063 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11064   predicate(UseSSE == 0);
 11065   match(Set dst (CmpF3 src1 src2));
 11066   effect(KILL cr, KILL rax);
 11067   ins_cost(300);
 11068   format %{ "FCMPF  $dst,$src1,$src2" %}
 11069   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 11070   ins_encode( Push_Reg_D(src1),
 11071               OpcP, RegOpc(src2),
 11072               CmpF_Result(dst));
 11073   ins_pipe( pipe_slow );
 11074 %}
 11076 // float compare and set condition codes in EFLAGS by XMM regs
 11077 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 11078   predicate(UseSSE>=1);
 11079   match(Set cr (CmpF dst src));
 11080   effect(KILL rax);
 11081   ins_cost(145);
 11082   format %{ "COMISS $dst,$src\n"
 11083           "\tJNP    exit\n"
 11084           "\tMOV    ah,1       // saw a NaN, set CF\n"
 11085           "\tSAHF\n"
 11086      "exit:\tNOP               // avoid branch to branch" %}
 11087   opcode(0x0F, 0x2F);
 11088   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 11089   ins_pipe( pipe_slow );
 11090 %}
 11092 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 11093   predicate(UseSSE>=1);
 11094   match(Set cr (CmpF dst src));
 11095   ins_cost(100);
 11096   format %{ "COMISS $dst,$src" %}
 11097   opcode(0x0F, 0x2F);
 11098   ins_encode(OpcP, OpcS, RegReg(dst, src));
 11099   ins_pipe( pipe_slow );
 11100 %}
 11102 // float compare and set condition codes in EFLAGS by XMM regs
 11103 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 11104   predicate(UseSSE>=1);
 11105   match(Set cr (CmpF dst (LoadF src)));
 11106   effect(KILL rax);
 11107   ins_cost(165);
 11108   format %{ "COMISS $dst,$src\n"
 11109           "\tJNP    exit\n"
 11110           "\tMOV    ah,1       // saw a NaN, set CF\n"
 11111           "\tSAHF\n"
 11112      "exit:\tNOP               // avoid branch to branch" %}
 11113   opcode(0x0F, 0x2F);
 11114   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 11115   ins_pipe( pipe_slow );
 11116 %}
 11118 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 11119   predicate(UseSSE>=1);
 11120   match(Set cr (CmpF dst (LoadF src)));
 11121   ins_cost(100);
 11122   format %{ "COMISS $dst,$src" %}
 11123   opcode(0x0F, 0x2F);
 11124   ins_encode(OpcP, OpcS, RegMem(dst, src));
 11125   ins_pipe( pipe_slow );
 11126 %}
 11128 // Compare into -1,0,1 in XMM
 11129 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 11130   predicate(UseSSE>=1);
 11131   match(Set dst (CmpF3 src1 src2));
 11132   effect(KILL cr);
 11133   ins_cost(255);
 11134   format %{ "XOR    $dst,$dst\n"
 11135           "\tCOMISS $src1,$src2\n"
 11136           "\tJP,s   nan\n"
 11137           "\tJEQ,s  exit\n"
 11138           "\tJA,s   inc\n"
 11139       "nan:\tDEC    $dst\n"
 11140           "\tJMP,s  exit\n"
 11141       "inc:\tINC    $dst\n"
 11142       "exit:"
 11143                 %}
 11144   opcode(0x0F, 0x2F);
 11145   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 11146   ins_pipe( pipe_slow );
 11147 %}
 11149 // Compare into -1,0,1 in XMM and memory
 11150 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 11151   predicate(UseSSE>=1);
 11152   match(Set dst (CmpF3 src1 (LoadF mem)));
 11153   effect(KILL cr);
 11154   ins_cost(275);
 11155   format %{ "COMISS $src1,$mem\n"
 11156           "\tMOV    $dst,0\t\t# do not blow flags\n"
 11157           "\tJP,s   nan\n"
 11158           "\tJEQ,s  exit\n"
 11159           "\tJA,s   inc\n"
 11160       "nan:\tDEC    $dst\n"
 11161           "\tJMP,s  exit\n"
 11162       "inc:\tINC    $dst\n"
 11163       "exit:"
 11164                 %}
 11165   opcode(0x0F, 0x2F);
 11166   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 11167   ins_pipe( pipe_slow );
 11168 %}
 11170 // Spill to obtain 24-bit precision
 11171 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11172   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11173   match(Set dst (SubF src1 src2));
 11175   format %{ "FSUB   $dst,$src1 - $src2" %}
 11176   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 11177   ins_encode( Push_Reg_F(src1),
 11178               OpcReg_F(src2),
 11179               Pop_Mem_F(dst) );
 11180   ins_pipe( fpu_mem_reg_reg );
 11181 %}
 11182 //
 11183 // This instruction does not round to 24-bits
 11184 instruct subF_reg(regF dst, regF src) %{
 11185   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11186   match(Set dst (SubF dst src));
 11188   format %{ "FSUB   $dst,$src" %}
 11189   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 11190   ins_encode( Push_Reg_F(src),
 11191               OpcP, RegOpc(dst) );
 11192   ins_pipe( fpu_reg_reg );
 11193 %}
 11195 // Spill to obtain 24-bit precision
 11196 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11197   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11198   match(Set dst (AddF src1 src2));
 11200   format %{ "FADD   $dst,$src1,$src2" %}
 11201   opcode(0xD8, 0x0); /* D8 C0+i */
 11202   ins_encode( Push_Reg_F(src2),
 11203               OpcReg_F(src1),
 11204               Pop_Mem_F(dst) );
 11205   ins_pipe( fpu_mem_reg_reg );
 11206 %}
 11207 //
 11208 // This instruction does not round to 24-bits
 11209 instruct addF_reg(regF dst, regF src) %{
 11210   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11211   match(Set dst (AddF dst src));
 11213   format %{ "FLD    $src\n\t"
 11214             "FADDp  $dst,ST" %}
 11215   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 11216   ins_encode( Push_Reg_F(src),
 11217               OpcP, RegOpc(dst) );
 11218   ins_pipe( fpu_reg_reg );
 11219 %}
 11221 // Add two single precision floating point values in xmm
 11222 instruct addX_reg(regX dst, regX src) %{
 11223   predicate(UseSSE>=1);
 11224   match(Set dst (AddF dst src));
 11225   format %{ "ADDSS  $dst,$src" %}
 11226   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11227   ins_pipe( pipe_slow );
 11228 %}
 11230 instruct addX_imm(regX dst, immXF con) %{
 11231   predicate(UseSSE>=1);
 11232   match(Set dst (AddF dst con));
 11233   format %{ "ADDSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11234   ins_encode %{
 11235     __ addss($dst$$XMMRegister, $constantaddress($con));
 11236   %}
 11237   ins_pipe(pipe_slow);
 11238 %}
 11240 instruct addX_mem(regX dst, memory mem) %{
 11241   predicate(UseSSE>=1);
 11242   match(Set dst (AddF dst (LoadF mem)));
 11243   format %{ "ADDSS  $dst,$mem" %}
 11244   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11245   ins_pipe( pipe_slow );
 11246 %}
 11248 // Subtract two single precision floating point values in xmm
 11249 instruct subX_reg(regX dst, regX src) %{
 11250   predicate(UseSSE>=1);
 11251   match(Set dst (SubF dst src));
 11252   format %{ "SUBSS  $dst,$src" %}
 11253   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11254   ins_pipe( pipe_slow );
 11255 %}
 11257 instruct subX_imm(regX dst, immXF con) %{
 11258   predicate(UseSSE>=1);
 11259   match(Set dst (SubF dst con));
 11260   format %{ "SUBSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11261   ins_encode %{
 11262     __ subss($dst$$XMMRegister, $constantaddress($con));
 11263   %}
 11264   ins_pipe(pipe_slow);
 11265 %}
 11267 instruct subX_mem(regX dst, memory mem) %{
 11268   predicate(UseSSE>=1);
 11269   match(Set dst (SubF dst (LoadF mem)));
 11270   format %{ "SUBSS  $dst,$mem" %}
 11271   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11272   ins_pipe( pipe_slow );
 11273 %}
 11275 // Multiply two single precision floating point values in xmm
 11276 instruct mulX_reg(regX dst, regX src) %{
 11277   predicate(UseSSE>=1);
 11278   match(Set dst (MulF dst src));
 11279   format %{ "MULSS  $dst,$src" %}
 11280   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11281   ins_pipe( pipe_slow );
 11282 %}
 11284 instruct mulX_imm(regX dst, immXF con) %{
 11285   predicate(UseSSE>=1);
 11286   match(Set dst (MulF dst con));
 11287   format %{ "MULSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11288   ins_encode %{
 11289     __ mulss($dst$$XMMRegister, $constantaddress($con));
 11290   %}
 11291   ins_pipe(pipe_slow);
 11292 %}
 11294 instruct mulX_mem(regX dst, memory mem) %{
 11295   predicate(UseSSE>=1);
 11296   match(Set dst (MulF dst (LoadF mem)));
 11297   format %{ "MULSS  $dst,$mem" %}
 11298   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11299   ins_pipe( pipe_slow );
 11300 %}
 11302 // Divide two single precision floating point values in xmm
 11303 instruct divX_reg(regX dst, regX src) %{
 11304   predicate(UseSSE>=1);
 11305   match(Set dst (DivF dst src));
 11306   format %{ "DIVSS  $dst,$src" %}
 11307   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11308   ins_pipe( pipe_slow );
 11309 %}
 11311 instruct divX_imm(regX dst, immXF con) %{
 11312   predicate(UseSSE>=1);
 11313   match(Set dst (DivF dst con));
 11314   format %{ "DIVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
 11315   ins_encode %{
 11316     __ divss($dst$$XMMRegister, $constantaddress($con));
 11317   %}
 11318   ins_pipe(pipe_slow);
 11319 %}
 11321 instruct divX_mem(regX dst, memory mem) %{
 11322   predicate(UseSSE>=1);
 11323   match(Set dst (DivF dst (LoadF mem)));
 11324   format %{ "DIVSS  $dst,$mem" %}
 11325   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11326   ins_pipe( pipe_slow );
 11327 %}
 11329 // Get the square root of a single precision floating point values in xmm
 11330 instruct sqrtX_reg(regX dst, regX src) %{
 11331   predicate(UseSSE>=1);
 11332   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11333   format %{ "SQRTSS $dst,$src" %}
 11334   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11335   ins_pipe( pipe_slow );
 11336 %}
 11338 instruct sqrtX_mem(regX dst, memory mem) %{
 11339   predicate(UseSSE>=1);
 11340   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11341   format %{ "SQRTSS $dst,$mem" %}
 11342   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11343   ins_pipe( pipe_slow );
 11344 %}
 11346 // Get the square root of a double precision floating point values in xmm
 11347 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11348   predicate(UseSSE>=2);
 11349   match(Set dst (SqrtD src));
 11350   format %{ "SQRTSD $dst,$src" %}
 11351   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11352   ins_pipe( pipe_slow );
 11353 %}
 11355 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11356   predicate(UseSSE>=2);
 11357   match(Set dst (SqrtD (LoadD mem)));
 11358   format %{ "SQRTSD $dst,$mem" %}
 11359   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11360   ins_pipe( pipe_slow );
 11361 %}
 11363 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11364   predicate(UseSSE==0);
 11365   match(Set dst (AbsF src));
 11366   ins_cost(100);
 11367   format %{ "FABS" %}
 11368   opcode(0xE1, 0xD9);
 11369   ins_encode( OpcS, OpcP );
 11370   ins_pipe( fpu_reg_reg );
 11371 %}
 11373 instruct absX_reg(regX dst ) %{
 11374   predicate(UseSSE>=1);
 11375   match(Set dst (AbsF dst));
 11376   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11377   ins_encode( AbsXF_encoding(dst));
 11378   ins_pipe( pipe_slow );
 11379 %}
 11381 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11382   predicate(UseSSE==0);
 11383   match(Set dst (NegF src));
 11384   ins_cost(100);
 11385   format %{ "FCHS" %}
 11386   opcode(0xE0, 0xD9);
 11387   ins_encode( OpcS, OpcP );
 11388   ins_pipe( fpu_reg_reg );
 11389 %}
 11391 instruct negX_reg( regX dst ) %{
 11392   predicate(UseSSE>=1);
 11393   match(Set dst (NegF dst));
 11394   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11395   ins_encode( NegXF_encoding(dst));
 11396   ins_pipe( pipe_slow );
 11397 %}
 11399 // Cisc-alternate to addF_reg
 11400 // Spill to obtain 24-bit precision
 11401 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11402   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11403   match(Set dst (AddF src1 (LoadF src2)));
 11405   format %{ "FLD    $src2\n\t"
 11406             "FADD   ST,$src1\n\t"
 11407             "FSTP_S $dst" %}
 11408   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11409   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11410               OpcReg_F(src1),
 11411               Pop_Mem_F(dst) );
 11412   ins_pipe( fpu_mem_reg_mem );
 11413 %}
 11414 //
 11415 // Cisc-alternate to addF_reg
 11416 // This instruction does not round to 24-bits
 11417 instruct addF_reg_mem(regF dst, memory src) %{
 11418   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11419   match(Set dst (AddF dst (LoadF src)));
 11421   format %{ "FADD   $dst,$src" %}
 11422   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11423   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11424               OpcP, RegOpc(dst) );
 11425   ins_pipe( fpu_reg_mem );
 11426 %}
 11428 // // Following two instructions for _222_mpegaudio
 11429 // Spill to obtain 24-bit precision
 11430 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11431   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11432   match(Set dst (AddF src1 src2));
 11434   format %{ "FADD   $dst,$src1,$src2" %}
 11435   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11436   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11437               OpcReg_F(src2),
 11438               Pop_Mem_F(dst) );
 11439   ins_pipe( fpu_mem_reg_mem );
 11440 %}
 11442 // Cisc-spill variant
 11443 // Spill to obtain 24-bit precision
 11444 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11445   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11446   match(Set dst (AddF src1 (LoadF src2)));
 11448   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11449   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11450   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11451               set_instruction_start,
 11452               OpcP, RMopc_Mem(secondary,src1),
 11453               Pop_Mem_F(dst) );
 11454   ins_pipe( fpu_mem_mem_mem );
 11455 %}
 11457 // Spill to obtain 24-bit precision
 11458 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11459   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11460   match(Set dst (AddF src1 src2));
 11462   format %{ "FADD   $dst,$src1,$src2" %}
 11463   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11464   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11465               set_instruction_start,
 11466               OpcP, RMopc_Mem(secondary,src1),
 11467               Pop_Mem_F(dst) );
 11468   ins_pipe( fpu_mem_mem_mem );
 11469 %}
 11472 // Spill to obtain 24-bit precision
 11473 instruct addF24_reg_imm(stackSlotF dst, regF src, immF con) %{
 11474   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11475   match(Set dst (AddF src con));
 11476   format %{ "FLD    $src\n\t"
 11477             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11478             "FSTP_S $dst"  %}
 11479   ins_encode %{
 11480     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11481     __ fadd_s($constantaddress($con));
 11482     __ fstp_s(Address(rsp, $dst$$disp));
 11483   %}
 11484   ins_pipe(fpu_mem_reg_con);
 11485 %}
 11486 //
 11487 // This instruction does not round to 24-bits
 11488 instruct addF_reg_imm(regF dst, regF src, immF con) %{
 11489   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11490   match(Set dst (AddF src con));
 11491   format %{ "FLD    $src\n\t"
 11492             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11493             "FSTP   $dst"  %}
 11494   ins_encode %{
 11495     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11496     __ fadd_s($constantaddress($con));
 11497     __ fstp_d($dst$$reg);
 11498   %}
 11499   ins_pipe(fpu_reg_reg_con);
 11500 %}
 11502 // Spill to obtain 24-bit precision
 11503 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11504   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11505   match(Set dst (MulF src1 src2));
 11507   format %{ "FLD    $src1\n\t"
 11508             "FMUL   $src2\n\t"
 11509             "FSTP_S $dst"  %}
 11510   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11511   ins_encode( Push_Reg_F(src1),
 11512               OpcReg_F(src2),
 11513               Pop_Mem_F(dst) );
 11514   ins_pipe( fpu_mem_reg_reg );
 11515 %}
 11516 //
 11517 // This instruction does not round to 24-bits
 11518 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11519   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11520   match(Set dst (MulF src1 src2));
 11522   format %{ "FLD    $src1\n\t"
 11523             "FMUL   $src2\n\t"
 11524             "FSTP_S $dst"  %}
 11525   opcode(0xD8, 0x1); /* D8 C8+i */
 11526   ins_encode( Push_Reg_F(src2),
 11527               OpcReg_F(src1),
 11528               Pop_Reg_F(dst) );
 11529   ins_pipe( fpu_reg_reg_reg );
 11530 %}
 11533 // Spill to obtain 24-bit precision
 11534 // Cisc-alternate to reg-reg multiply
 11535 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11536   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11537   match(Set dst (MulF src1 (LoadF src2)));
 11539   format %{ "FLD_S  $src2\n\t"
 11540             "FMUL   $src1\n\t"
 11541             "FSTP_S $dst"  %}
 11542   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11543   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11544               OpcReg_F(src1),
 11545               Pop_Mem_F(dst) );
 11546   ins_pipe( fpu_mem_reg_mem );
 11547 %}
 11548 //
 11549 // This instruction does not round to 24-bits
 11550 // Cisc-alternate to reg-reg multiply
 11551 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11552   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11553   match(Set dst (MulF src1 (LoadF src2)));
 11555   format %{ "FMUL   $dst,$src1,$src2" %}
 11556   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11557   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11558               OpcReg_F(src1),
 11559               Pop_Reg_F(dst) );
 11560   ins_pipe( fpu_reg_reg_mem );
 11561 %}
 11563 // Spill to obtain 24-bit precision
 11564 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11565   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11566   match(Set dst (MulF src1 src2));
 11568   format %{ "FMUL   $dst,$src1,$src2" %}
 11569   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11570   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11571               set_instruction_start,
 11572               OpcP, RMopc_Mem(secondary,src1),
 11573               Pop_Mem_F(dst) );
 11574   ins_pipe( fpu_mem_mem_mem );
 11575 %}
 11577 // Spill to obtain 24-bit precision
 11578 instruct mulF24_reg_imm(stackSlotF dst, regF src, immF con) %{
 11579   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11580   match(Set dst (MulF src con));
 11582   format %{ "FLD    $src\n\t"
 11583             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11584             "FSTP_S $dst"  %}
 11585   ins_encode %{
 11586     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11587     __ fmul_s($constantaddress($con));
 11588     __ fstp_s(Address(rsp, $dst$$disp));
 11589   %}
 11590   ins_pipe(fpu_mem_reg_con);
 11591 %}
 11592 //
 11593 // This instruction does not round to 24-bits
 11594 instruct mulF_reg_imm(regF dst, regF src, immF con) %{
 11595   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11596   match(Set dst (MulF src con));
 11598   format %{ "FLD    $src\n\t"
 11599             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 11600             "FSTP   $dst"  %}
 11601   ins_encode %{
 11602     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 11603     __ fmul_s($constantaddress($con));
 11604     __ fstp_d($dst$$reg);
 11605   %}
 11606   ins_pipe(fpu_reg_reg_con);
 11607 %}
 11610 //
 11611 // MACRO1 -- subsume unshared load into mulF
 11612 // This instruction does not round to 24-bits
 11613 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11614   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11615   match(Set dst (MulF (LoadF mem1) src));
 11617   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11618             "FMUL   ST,$src\n\t"
 11619             "FSTP   $dst" %}
 11620   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11621   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11622               OpcReg_F(src),
 11623               Pop_Reg_F(dst) );
 11624   ins_pipe( fpu_reg_reg_mem );
 11625 %}
 11626 //
 11627 // MACRO2 -- addF a mulF which subsumed an unshared load
 11628 // This instruction does not round to 24-bits
 11629 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11630   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11631   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11632   ins_cost(95);
 11634   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11635             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11636             "FADD   ST,$src2\n\t"
 11637             "FSTP   $dst" %}
 11638   opcode(0xD9); /* LoadF D9 /0 */
 11639   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11640               FMul_ST_reg(src1),
 11641               FAdd_ST_reg(src2),
 11642               Pop_Reg_F(dst) );
 11643   ins_pipe( fpu_reg_mem_reg_reg );
 11644 %}
 11646 // MACRO3 -- addF a mulF
 11647 // This instruction does not round to 24-bits.  It is a '2-address'
 11648 // instruction in that the result goes back to src2.  This eliminates
 11649 // a move from the macro; possibly the register allocator will have
 11650 // to add it back (and maybe not).
 11651 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11652   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11653   match(Set src2 (AddF (MulF src0 src1) src2));
 11655   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11656             "FMUL   ST,$src1\n\t"
 11657             "FADDP  $src2,ST" %}
 11658   opcode(0xD9); /* LoadF D9 /0 */
 11659   ins_encode( Push_Reg_F(src0),
 11660               FMul_ST_reg(src1),
 11661               FAddP_reg_ST(src2) );
 11662   ins_pipe( fpu_reg_reg_reg );
 11663 %}
 11665 // MACRO4 -- divF subF
 11666 // This instruction does not round to 24-bits
 11667 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11668   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11669   match(Set dst (DivF (SubF src2 src1) src3));
 11671   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11672             "FSUB   ST,$src1\n\t"
 11673             "FDIV   ST,$src3\n\t"
 11674             "FSTP  $dst" %}
 11675   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11676   ins_encode( Push_Reg_F(src2),
 11677               subF_divF_encode(src1,src3),
 11678               Pop_Reg_F(dst) );
 11679   ins_pipe( fpu_reg_reg_reg_reg );
 11680 %}
 11682 // Spill to obtain 24-bit precision
 11683 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11684   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11685   match(Set dst (DivF src1 src2));
 11687   format %{ "FDIV   $dst,$src1,$src2" %}
 11688   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11689   ins_encode( Push_Reg_F(src1),
 11690               OpcReg_F(src2),
 11691               Pop_Mem_F(dst) );
 11692   ins_pipe( fpu_mem_reg_reg );
 11693 %}
 11694 //
 11695 // This instruction does not round to 24-bits
 11696 instruct divF_reg(regF dst, regF src) %{
 11697   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11698   match(Set dst (DivF dst src));
 11700   format %{ "FDIV   $dst,$src" %}
 11701   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11702   ins_encode( Push_Reg_F(src),
 11703               OpcP, RegOpc(dst) );
 11704   ins_pipe( fpu_reg_reg );
 11705 %}
 11708 // Spill to obtain 24-bit precision
 11709 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11710   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11711   match(Set dst (ModF src1 src2));
 11712   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11714   format %{ "FMOD   $dst,$src1,$src2" %}
 11715   ins_encode( Push_Reg_Mod_D(src1, src2),
 11716               emitModD(),
 11717               Push_Result_Mod_D(src2),
 11718               Pop_Mem_F(dst));
 11719   ins_pipe( pipe_slow );
 11720 %}
 11721 //
 11722 // This instruction does not round to 24-bits
 11723 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11724   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11725   match(Set dst (ModF dst src));
 11726   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11728   format %{ "FMOD   $dst,$src" %}
 11729   ins_encode(Push_Reg_Mod_D(dst, src),
 11730               emitModD(),
 11731               Push_Result_Mod_D(src),
 11732               Pop_Reg_F(dst));
 11733   ins_pipe( pipe_slow );
 11734 %}
 11736 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11737   predicate(UseSSE>=1);
 11738   match(Set dst (ModF src0 src1));
 11739   effect(KILL rax, KILL cr);
 11740   format %{ "SUB    ESP,4\t # FMOD\n"
 11741           "\tMOVSS  [ESP+0],$src1\n"
 11742           "\tFLD_S  [ESP+0]\n"
 11743           "\tMOVSS  [ESP+0],$src0\n"
 11744           "\tFLD_S  [ESP+0]\n"
 11745      "loop:\tFPREM\n"
 11746           "\tFWAIT\n"
 11747           "\tFNSTSW AX\n"
 11748           "\tSAHF\n"
 11749           "\tJP     loop\n"
 11750           "\tFSTP_S [ESP+0]\n"
 11751           "\tMOVSS  $dst,[ESP+0]\n"
 11752           "\tADD    ESP,4\n"
 11753           "\tFSTP   ST0\t # Restore FPU Stack"
 11754     %}
 11755   ins_cost(250);
 11756   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11757   ins_pipe( pipe_slow );
 11758 %}
 11761 //----------Arithmetic Conversion Instructions---------------------------------
 11762 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11764 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11765   predicate(UseSSE==0);
 11766   match(Set dst (RoundFloat src));
 11767   ins_cost(125);
 11768   format %{ "FST_S  $dst,$src\t# F-round" %}
 11769   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11770   ins_pipe( fpu_mem_reg );
 11771 %}
 11773 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11774   predicate(UseSSE<=1);
 11775   match(Set dst (RoundDouble src));
 11776   ins_cost(125);
 11777   format %{ "FST_D  $dst,$src\t# D-round" %}
 11778   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11779   ins_pipe( fpu_mem_reg );
 11780 %}
 11782 // Force rounding to 24-bit precision and 6-bit exponent
 11783 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11784   predicate(UseSSE==0);
 11785   match(Set dst (ConvD2F src));
 11786   format %{ "FST_S  $dst,$src\t# F-round" %}
 11787   expand %{
 11788     roundFloat_mem_reg(dst,src);
 11789   %}
 11790 %}
 11792 // Force rounding to 24-bit precision and 6-bit exponent
 11793 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11794   predicate(UseSSE==1);
 11795   match(Set dst (ConvD2F src));
 11796   effect( KILL cr );
 11797   format %{ "SUB    ESP,4\n\t"
 11798             "FST_S  [ESP],$src\t# F-round\n\t"
 11799             "MOVSS  $dst,[ESP]\n\t"
 11800             "ADD ESP,4" %}
 11801   ins_encode( D2X_encoding(dst, src) );
 11802   ins_pipe( pipe_slow );
 11803 %}
 11805 // Force rounding double precision to single precision
 11806 instruct convXD2X_reg(regX dst, regXD src) %{
 11807   predicate(UseSSE>=2);
 11808   match(Set dst (ConvD2F src));
 11809   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11810   opcode(0xF2, 0x0F, 0x5A);
 11811   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11812   ins_pipe( pipe_slow );
 11813 %}
 11815 instruct convF2D_reg_reg(regD dst, regF src) %{
 11816   predicate(UseSSE==0);
 11817   match(Set dst (ConvF2D src));
 11818   format %{ "FST_S  $dst,$src\t# D-round" %}
 11819   ins_encode( Pop_Reg_Reg_D(dst, src));
 11820   ins_pipe( fpu_reg_reg );
 11821 %}
 11823 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11824   predicate(UseSSE==1);
 11825   match(Set dst (ConvF2D src));
 11826   format %{ "FST_D  $dst,$src\t# D-round" %}
 11827   expand %{
 11828     roundDouble_mem_reg(dst,src);
 11829   %}
 11830 %}
 11832 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11833   predicate(UseSSE==1);
 11834   match(Set dst (ConvF2D src));
 11835   effect( KILL cr );
 11836   format %{ "SUB    ESP,4\n\t"
 11837             "MOVSS  [ESP] $src\n\t"
 11838             "FLD_S  [ESP]\n\t"
 11839             "ADD    ESP,4\n\t"
 11840             "FSTP   $dst\t# D-round" %}
 11841   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11842   ins_pipe( pipe_slow );
 11843 %}
 11845 instruct convX2XD_reg(regXD dst, regX src) %{
 11846   predicate(UseSSE>=2);
 11847   match(Set dst (ConvF2D src));
 11848   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11849   opcode(0xF3, 0x0F, 0x5A);
 11850   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11851   ins_pipe( pipe_slow );
 11852 %}
 11854 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11855 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11856   predicate(UseSSE<=1);
 11857   match(Set dst (ConvD2I src));
 11858   effect( KILL tmp, KILL cr );
 11859   format %{ "FLD    $src\t# Convert double to int \n\t"
 11860             "FLDCW  trunc mode\n\t"
 11861             "SUB    ESP,4\n\t"
 11862             "FISTp  [ESP + #0]\n\t"
 11863             "FLDCW  std/24-bit mode\n\t"
 11864             "POP    EAX\n\t"
 11865             "CMP    EAX,0x80000000\n\t"
 11866             "JNE,s  fast\n\t"
 11867             "FLD_D  $src\n\t"
 11868             "CALL   d2i_wrapper\n"
 11869       "fast:" %}
 11870   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11871   ins_pipe( pipe_slow );
 11872 %}
 11874 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11875 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11876   predicate(UseSSE>=2);
 11877   match(Set dst (ConvD2I src));
 11878   effect( KILL tmp, KILL cr );
 11879   format %{ "CVTTSD2SI $dst, $src\n\t"
 11880             "CMP    $dst,0x80000000\n\t"
 11881             "JNE,s  fast\n\t"
 11882             "SUB    ESP, 8\n\t"
 11883             "MOVSD  [ESP], $src\n\t"
 11884             "FLD_D  [ESP]\n\t"
 11885             "ADD    ESP, 8\n\t"
 11886             "CALL   d2i_wrapper\n"
 11887       "fast:" %}
 11888   opcode(0x1); // double-precision conversion
 11889   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11890   ins_pipe( pipe_slow );
 11891 %}
 11893 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11894   predicate(UseSSE<=1);
 11895   match(Set dst (ConvD2L src));
 11896   effect( KILL cr );
 11897   format %{ "FLD    $src\t# Convert double to long\n\t"
 11898             "FLDCW  trunc mode\n\t"
 11899             "SUB    ESP,8\n\t"
 11900             "FISTp  [ESP + #0]\n\t"
 11901             "FLDCW  std/24-bit mode\n\t"
 11902             "POP    EAX\n\t"
 11903             "POP    EDX\n\t"
 11904             "CMP    EDX,0x80000000\n\t"
 11905             "JNE,s  fast\n\t"
 11906             "TEST   EAX,EAX\n\t"
 11907             "JNE,s  fast\n\t"
 11908             "FLD    $src\n\t"
 11909             "CALL   d2l_wrapper\n"
 11910       "fast:" %}
 11911   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11912   ins_pipe( pipe_slow );
 11913 %}
 11915 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11916 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11917   predicate (UseSSE>=2);
 11918   match(Set dst (ConvD2L src));
 11919   effect( KILL cr );
 11920   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11921             "MOVSD  [ESP],$src\n\t"
 11922             "FLD_D  [ESP]\n\t"
 11923             "FLDCW  trunc mode\n\t"
 11924             "FISTp  [ESP + #0]\n\t"
 11925             "FLDCW  std/24-bit mode\n\t"
 11926             "POP    EAX\n\t"
 11927             "POP    EDX\n\t"
 11928             "CMP    EDX,0x80000000\n\t"
 11929             "JNE,s  fast\n\t"
 11930             "TEST   EAX,EAX\n\t"
 11931             "JNE,s  fast\n\t"
 11932             "SUB    ESP,8\n\t"
 11933             "MOVSD  [ESP],$src\n\t"
 11934             "FLD_D  [ESP]\n\t"
 11935             "CALL   d2l_wrapper\n"
 11936       "fast:" %}
 11937   ins_encode( XD2L_encoding(src) );
 11938   ins_pipe( pipe_slow );
 11939 %}
 11941 // Convert a double to an int.  Java semantics require we do complex
 11942 // manglations in the corner cases.  So we set the rounding mode to
 11943 // 'zero', store the darned double down as an int, and reset the
 11944 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11945 // if we would overflow or converted a NAN; we check for this and
 11946 // and go the slow path if needed.
 11947 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11948   predicate(UseSSE==0);
 11949   match(Set dst (ConvF2I src));
 11950   effect( KILL tmp, KILL cr );
 11951   format %{ "FLD    $src\t# Convert float to int \n\t"
 11952             "FLDCW  trunc mode\n\t"
 11953             "SUB    ESP,4\n\t"
 11954             "FISTp  [ESP + #0]\n\t"
 11955             "FLDCW  std/24-bit mode\n\t"
 11956             "POP    EAX\n\t"
 11957             "CMP    EAX,0x80000000\n\t"
 11958             "JNE,s  fast\n\t"
 11959             "FLD    $src\n\t"
 11960             "CALL   d2i_wrapper\n"
 11961       "fast:" %}
 11962   // D2I_encoding works for F2I
 11963   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11964   ins_pipe( pipe_slow );
 11965 %}
 11967 // Convert a float in xmm to an int reg.
 11968 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11969   predicate(UseSSE>=1);
 11970   match(Set dst (ConvF2I src));
 11971   effect( KILL tmp, KILL cr );
 11972   format %{ "CVTTSS2SI $dst, $src\n\t"
 11973             "CMP    $dst,0x80000000\n\t"
 11974             "JNE,s  fast\n\t"
 11975             "SUB    ESP, 4\n\t"
 11976             "MOVSS  [ESP], $src\n\t"
 11977             "FLD    [ESP]\n\t"
 11978             "ADD    ESP, 4\n\t"
 11979             "CALL   d2i_wrapper\n"
 11980       "fast:" %}
 11981   opcode(0x0); // single-precision conversion
 11982   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11983   ins_pipe( pipe_slow );
 11984 %}
 11986 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11987   predicate(UseSSE==0);
 11988   match(Set dst (ConvF2L src));
 11989   effect( KILL cr );
 11990   format %{ "FLD    $src\t# Convert float to long\n\t"
 11991             "FLDCW  trunc mode\n\t"
 11992             "SUB    ESP,8\n\t"
 11993             "FISTp  [ESP + #0]\n\t"
 11994             "FLDCW  std/24-bit mode\n\t"
 11995             "POP    EAX\n\t"
 11996             "POP    EDX\n\t"
 11997             "CMP    EDX,0x80000000\n\t"
 11998             "JNE,s  fast\n\t"
 11999             "TEST   EAX,EAX\n\t"
 12000             "JNE,s  fast\n\t"
 12001             "FLD    $src\n\t"
 12002             "CALL   d2l_wrapper\n"
 12003       "fast:" %}
 12004   // D2L_encoding works for F2L
 12005   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 12006   ins_pipe( pipe_slow );
 12007 %}
 12009 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 12010 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 12011   predicate (UseSSE>=1);
 12012   match(Set dst (ConvF2L src));
 12013   effect( KILL cr );
 12014   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 12015             "MOVSS  [ESP],$src\n\t"
 12016             "FLD_S  [ESP]\n\t"
 12017             "FLDCW  trunc mode\n\t"
 12018             "FISTp  [ESP + #0]\n\t"
 12019             "FLDCW  std/24-bit mode\n\t"
 12020             "POP    EAX\n\t"
 12021             "POP    EDX\n\t"
 12022             "CMP    EDX,0x80000000\n\t"
 12023             "JNE,s  fast\n\t"
 12024             "TEST   EAX,EAX\n\t"
 12025             "JNE,s  fast\n\t"
 12026             "SUB    ESP,4\t# Convert float to long\n\t"
 12027             "MOVSS  [ESP],$src\n\t"
 12028             "FLD_S  [ESP]\n\t"
 12029             "ADD    ESP,4\n\t"
 12030             "CALL   d2l_wrapper\n"
 12031       "fast:" %}
 12032   ins_encode( X2L_encoding(src) );
 12033   ins_pipe( pipe_slow );
 12034 %}
 12036 instruct convI2D_reg(regD dst, stackSlotI src) %{
 12037   predicate( UseSSE<=1 );
 12038   match(Set dst (ConvI2D src));
 12039   format %{ "FILD   $src\n\t"
 12040             "FSTP   $dst" %}
 12041   opcode(0xDB, 0x0);  /* DB /0 */
 12042   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 12043   ins_pipe( fpu_reg_mem );
 12044 %}
 12046 instruct convI2XD_reg(regXD dst, eRegI src) %{
 12047   predicate( UseSSE>=2 && !UseXmmI2D );
 12048   match(Set dst (ConvI2D src));
 12049   format %{ "CVTSI2SD $dst,$src" %}
 12050   opcode(0xF2, 0x0F, 0x2A);
 12051   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 12052   ins_pipe( pipe_slow );
 12053 %}
 12055 instruct convI2XD_mem(regXD dst, memory mem) %{
 12056   predicate( UseSSE>=2 );
 12057   match(Set dst (ConvI2D (LoadI mem)));
 12058   format %{ "CVTSI2SD $dst,$mem" %}
 12059   opcode(0xF2, 0x0F, 0x2A);
 12060   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 12061   ins_pipe( pipe_slow );
 12062 %}
 12064 instruct convXI2XD_reg(regXD dst, eRegI src)
 12065 %{
 12066   predicate( UseSSE>=2 && UseXmmI2D );
 12067   match(Set dst (ConvI2D src));
 12069   format %{ "MOVD  $dst,$src\n\t"
 12070             "CVTDQ2PD $dst,$dst\t# i2d" %}
 12071   ins_encode %{
 12072     __ movdl($dst$$XMMRegister, $src$$Register);
 12073     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 12074   %}
 12075   ins_pipe(pipe_slow); // XXX
 12076 %}
 12078 instruct convI2D_mem(regD dst, memory mem) %{
 12079   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 12080   match(Set dst (ConvI2D (LoadI mem)));
 12081   format %{ "FILD   $mem\n\t"
 12082             "FSTP   $dst" %}
 12083   opcode(0xDB);      /* DB /0 */
 12084   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12085               Pop_Reg_D(dst));
 12086   ins_pipe( fpu_reg_mem );
 12087 %}
 12089 // Convert a byte to a float; no rounding step needed.
 12090 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 12091   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 12092   match(Set dst (ConvI2F src));
 12093   format %{ "FILD   $src\n\t"
 12094             "FSTP   $dst" %}
 12096   opcode(0xDB, 0x0);  /* DB /0 */
 12097   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 12098   ins_pipe( fpu_reg_mem );
 12099 %}
 12101 // In 24-bit mode, force exponent rounding by storing back out
 12102 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 12103   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 12104   match(Set dst (ConvI2F src));
 12105   ins_cost(200);
 12106   format %{ "FILD   $src\n\t"
 12107             "FSTP_S $dst" %}
 12108   opcode(0xDB, 0x0);  /* DB /0 */
 12109   ins_encode( Push_Mem_I(src),
 12110               Pop_Mem_F(dst));
 12111   ins_pipe( fpu_mem_mem );
 12112 %}
 12114 // In 24-bit mode, force exponent rounding by storing back out
 12115 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 12116   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 12117   match(Set dst (ConvI2F (LoadI mem)));
 12118   ins_cost(200);
 12119   format %{ "FILD   $mem\n\t"
 12120             "FSTP_S $dst" %}
 12121   opcode(0xDB);  /* DB /0 */
 12122   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12123               Pop_Mem_F(dst));
 12124   ins_pipe( fpu_mem_mem );
 12125 %}
 12127 // This instruction does not round to 24-bits
 12128 instruct convI2F_reg(regF dst, stackSlotI src) %{
 12129   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 12130   match(Set dst (ConvI2F src));
 12131   format %{ "FILD   $src\n\t"
 12132             "FSTP   $dst" %}
 12133   opcode(0xDB, 0x0);  /* DB /0 */
 12134   ins_encode( Push_Mem_I(src),
 12135               Pop_Reg_F(dst));
 12136   ins_pipe( fpu_reg_mem );
 12137 %}
 12139 // This instruction does not round to 24-bits
 12140 instruct convI2F_mem(regF dst, memory mem) %{
 12141   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 12142   match(Set dst (ConvI2F (LoadI mem)));
 12143   format %{ "FILD   $mem\n\t"
 12144             "FSTP   $dst" %}
 12145   opcode(0xDB);      /* DB /0 */
 12146   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12147               Pop_Reg_F(dst));
 12148   ins_pipe( fpu_reg_mem );
 12149 %}
 12151 // Convert an int to a float in xmm; no rounding step needed.
 12152 instruct convI2X_reg(regX dst, eRegI src) %{
 12153   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 12154   match(Set dst (ConvI2F src));
 12155   format %{ "CVTSI2SS $dst, $src" %}
 12157   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 12158   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 12159   ins_pipe( pipe_slow );
 12160 %}
 12162  instruct convXI2X_reg(regX dst, eRegI src)
 12163 %{
 12164   predicate( UseSSE>=2 && UseXmmI2F );
 12165   match(Set dst (ConvI2F src));
 12167   format %{ "MOVD  $dst,$src\n\t"
 12168             "CVTDQ2PS $dst,$dst\t# i2f" %}
 12169   ins_encode %{
 12170     __ movdl($dst$$XMMRegister, $src$$Register);
 12171     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 12172   %}
 12173   ins_pipe(pipe_slow); // XXX
 12174 %}
 12176 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 12177   match(Set dst (ConvI2L src));
 12178   effect(KILL cr);
 12179   ins_cost(375);
 12180   format %{ "MOV    $dst.lo,$src\n\t"
 12181             "MOV    $dst.hi,$src\n\t"
 12182             "SAR    $dst.hi,31" %}
 12183   ins_encode(convert_int_long(dst,src));
 12184   ins_pipe( ialu_reg_reg_long );
 12185 %}
 12187 // Zero-extend convert int to long
 12188 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 12189   match(Set dst (AndL (ConvI2L src) mask) );
 12190   effect( KILL flags );
 12191   ins_cost(250);
 12192   format %{ "MOV    $dst.lo,$src\n\t"
 12193             "XOR    $dst.hi,$dst.hi" %}
 12194   opcode(0x33); // XOR
 12195   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12196   ins_pipe( ialu_reg_reg_long );
 12197 %}
 12199 // Zero-extend long
 12200 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 12201   match(Set dst (AndL src mask) );
 12202   effect( KILL flags );
 12203   ins_cost(250);
 12204   format %{ "MOV    $dst.lo,$src.lo\n\t"
 12205             "XOR    $dst.hi,$dst.hi\n\t" %}
 12206   opcode(0x33); // XOR
 12207   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12208   ins_pipe( ialu_reg_reg_long );
 12209 %}
 12211 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 12212   predicate (UseSSE<=1);
 12213   match(Set dst (ConvL2D src));
 12214   effect( KILL cr );
 12215   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12216             "PUSH   $src.lo\n\t"
 12217             "FILD   ST,[ESP + #0]\n\t"
 12218             "ADD    ESP,8\n\t"
 12219             "FSTP_D $dst\t# D-round" %}
 12220   opcode(0xDF, 0x5);  /* DF /5 */
 12221   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 12222   ins_pipe( pipe_slow );
 12223 %}
 12225 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 12226   predicate (UseSSE>=2);
 12227   match(Set dst (ConvL2D src));
 12228   effect( KILL cr );
 12229   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12230             "PUSH   $src.lo\n\t"
 12231             "FILD_D [ESP]\n\t"
 12232             "FSTP_D [ESP]\n\t"
 12233             "MOVSD  $dst,[ESP]\n\t"
 12234             "ADD    ESP,8" %}
 12235   opcode(0xDF, 0x5);  /* DF /5 */
 12236   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 12237   ins_pipe( pipe_slow );
 12238 %}
 12240 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12241   predicate (UseSSE>=1);
 12242   match(Set dst (ConvL2F src));
 12243   effect( KILL cr );
 12244   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12245             "PUSH   $src.lo\n\t"
 12246             "FILD_D [ESP]\n\t"
 12247             "FSTP_S [ESP]\n\t"
 12248             "MOVSS  $dst,[ESP]\n\t"
 12249             "ADD    ESP,8" %}
 12250   opcode(0xDF, 0x5);  /* DF /5 */
 12251   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12252   ins_pipe( pipe_slow );
 12253 %}
 12255 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12256   match(Set dst (ConvL2F src));
 12257   effect( KILL cr );
 12258   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12259             "PUSH   $src.lo\n\t"
 12260             "FILD   ST,[ESP + #0]\n\t"
 12261             "ADD    ESP,8\n\t"
 12262             "FSTP_S $dst\t# F-round" %}
 12263   opcode(0xDF, 0x5);  /* DF /5 */
 12264   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12265   ins_pipe( pipe_slow );
 12266 %}
 12268 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12269   match(Set dst (ConvL2I src));
 12270   effect( DEF dst, USE src );
 12271   format %{ "MOV    $dst,$src.lo" %}
 12272   ins_encode(enc_CopyL_Lo(dst,src));
 12273   ins_pipe( ialu_reg_reg );
 12274 %}
 12277 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12278   match(Set dst (MoveF2I src));
 12279   effect( DEF dst, USE src );
 12280   ins_cost(100);
 12281   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12282   opcode(0x8B);
 12283   ins_encode( OpcP, RegMem(dst,src));
 12284   ins_pipe( ialu_reg_mem );
 12285 %}
 12287 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12288   predicate(UseSSE==0);
 12289   match(Set dst (MoveF2I src));
 12290   effect( DEF dst, USE src );
 12292   ins_cost(125);
 12293   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12294   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12295   ins_pipe( fpu_mem_reg );
 12296 %}
 12298 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12299   predicate(UseSSE>=1);
 12300   match(Set dst (MoveF2I src));
 12301   effect( DEF dst, USE src );
 12303   ins_cost(95);
 12304   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12305   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12306   ins_pipe( pipe_slow );
 12307 %}
 12309 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12310   predicate(UseSSE>=2);
 12311   match(Set dst (MoveF2I src));
 12312   effect( DEF dst, USE src );
 12313   ins_cost(85);
 12314   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12315   ins_encode( MovX2I_reg(dst, src));
 12316   ins_pipe( pipe_slow );
 12317 %}
 12319 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12320   match(Set dst (MoveI2F src));
 12321   effect( DEF dst, USE src );
 12323   ins_cost(100);
 12324   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12325   opcode(0x89);
 12326   ins_encode( OpcPRegSS( dst, src ) );
 12327   ins_pipe( ialu_mem_reg );
 12328 %}
 12331 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12332   predicate(UseSSE==0);
 12333   match(Set dst (MoveI2F src));
 12334   effect(DEF dst, USE src);
 12336   ins_cost(125);
 12337   format %{ "FLD_S  $src\n\t"
 12338             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12339   opcode(0xD9);               /* D9 /0, FLD m32real */
 12340   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12341               Pop_Reg_F(dst) );
 12342   ins_pipe( fpu_reg_mem );
 12343 %}
 12345 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12346   predicate(UseSSE>=1);
 12347   match(Set dst (MoveI2F src));
 12348   effect( DEF dst, USE src );
 12350   ins_cost(95);
 12351   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12352   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12353   ins_pipe( pipe_slow );
 12354 %}
 12356 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12357   predicate(UseSSE>=2);
 12358   match(Set dst (MoveI2F src));
 12359   effect( DEF dst, USE src );
 12361   ins_cost(85);
 12362   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12363   ins_encode( MovI2X_reg(dst, src) );
 12364   ins_pipe( pipe_slow );
 12365 %}
 12367 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12368   match(Set dst (MoveD2L src));
 12369   effect(DEF dst, USE src);
 12371   ins_cost(250);
 12372   format %{ "MOV    $dst.lo,$src\n\t"
 12373             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12374   opcode(0x8B, 0x8B);
 12375   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12376   ins_pipe( ialu_mem_long_reg );
 12377 %}
 12379 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12380   predicate(UseSSE<=1);
 12381   match(Set dst (MoveD2L src));
 12382   effect(DEF dst, USE src);
 12384   ins_cost(125);
 12385   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12386   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12387   ins_pipe( fpu_mem_reg );
 12388 %}
 12390 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12391   predicate(UseSSE>=2);
 12392   match(Set dst (MoveD2L src));
 12393   effect(DEF dst, USE src);
 12394   ins_cost(95);
 12396   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12397   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12398   ins_pipe( pipe_slow );
 12399 %}
 12401 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12402   predicate(UseSSE>=2);
 12403   match(Set dst (MoveD2L src));
 12404   effect(DEF dst, USE src, TEMP tmp);
 12405   ins_cost(85);
 12406   format %{ "MOVD   $dst.lo,$src\n\t"
 12407             "PSHUFLW $tmp,$src,0x4E\n\t"
 12408             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12409   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12410   ins_pipe( pipe_slow );
 12411 %}
 12413 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12414   match(Set dst (MoveL2D src));
 12415   effect(DEF dst, USE src);
 12417   ins_cost(200);
 12418   format %{ "MOV    $dst,$src.lo\n\t"
 12419             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12420   opcode(0x89, 0x89);
 12421   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12422   ins_pipe( ialu_mem_long_reg );
 12423 %}
 12426 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12427   predicate(UseSSE<=1);
 12428   match(Set dst (MoveL2D src));
 12429   effect(DEF dst, USE src);
 12430   ins_cost(125);
 12432   format %{ "FLD_D  $src\n\t"
 12433             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12434   opcode(0xDD);               /* DD /0, FLD m64real */
 12435   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12436               Pop_Reg_D(dst) );
 12437   ins_pipe( fpu_reg_mem );
 12438 %}
 12441 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12442   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12443   match(Set dst (MoveL2D src));
 12444   effect(DEF dst, USE src);
 12446   ins_cost(95);
 12447   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12448   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12449   ins_pipe( pipe_slow );
 12450 %}
 12452 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12453   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12454   match(Set dst (MoveL2D src));
 12455   effect(DEF dst, USE src);
 12457   ins_cost(95);
 12458   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12459   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12460   ins_pipe( pipe_slow );
 12461 %}
 12463 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12464   predicate(UseSSE>=2);
 12465   match(Set dst (MoveL2D src));
 12466   effect(TEMP dst, USE src, TEMP tmp);
 12467   ins_cost(85);
 12468   format %{ "MOVD   $dst,$src.lo\n\t"
 12469             "MOVD   $tmp,$src.hi\n\t"
 12470             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12471   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12472   ins_pipe( pipe_slow );
 12473 %}
 12475 // Replicate scalar to packed byte (1 byte) values in xmm
 12476 instruct Repl8B_reg(regXD dst, regXD src) %{
 12477   predicate(UseSSE>=2);
 12478   match(Set dst (Replicate8B src));
 12479   format %{ "MOVDQA  $dst,$src\n\t"
 12480             "PUNPCKLBW $dst,$dst\n\t"
 12481             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12482   ins_encode( pshufd_8x8(dst, src));
 12483   ins_pipe( pipe_slow );
 12484 %}
 12486 // Replicate scalar to packed byte (1 byte) values in xmm
 12487 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12488   predicate(UseSSE>=2);
 12489   match(Set dst (Replicate8B src));
 12490   format %{ "MOVD    $dst,$src\n\t"
 12491             "PUNPCKLBW $dst,$dst\n\t"
 12492             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12493   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12494   ins_pipe( pipe_slow );
 12495 %}
 12497 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12498 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12499   predicate(UseSSE>=2);
 12500   match(Set dst (Replicate8B zero));
 12501   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12502   ins_encode( pxor(dst, dst));
 12503   ins_pipe( fpu_reg_reg );
 12504 %}
 12506 // Replicate scalar to packed shore (2 byte) values in xmm
 12507 instruct Repl4S_reg(regXD dst, regXD src) %{
 12508   predicate(UseSSE>=2);
 12509   match(Set dst (Replicate4S src));
 12510   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12511   ins_encode( pshufd_4x16(dst, src));
 12512   ins_pipe( fpu_reg_reg );
 12513 %}
 12515 // Replicate scalar to packed shore (2 byte) values in xmm
 12516 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12517   predicate(UseSSE>=2);
 12518   match(Set dst (Replicate4S src));
 12519   format %{ "MOVD    $dst,$src\n\t"
 12520             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12521   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12522   ins_pipe( fpu_reg_reg );
 12523 %}
 12525 // Replicate scalar zero to packed short (2 byte) values in xmm
 12526 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12527   predicate(UseSSE>=2);
 12528   match(Set dst (Replicate4S zero));
 12529   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12530   ins_encode( pxor(dst, dst));
 12531   ins_pipe( fpu_reg_reg );
 12532 %}
 12534 // Replicate scalar to packed char (2 byte) values in xmm
 12535 instruct Repl4C_reg(regXD dst, regXD src) %{
 12536   predicate(UseSSE>=2);
 12537   match(Set dst (Replicate4C src));
 12538   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12539   ins_encode( pshufd_4x16(dst, src));
 12540   ins_pipe( fpu_reg_reg );
 12541 %}
 12543 // Replicate scalar to packed char (2 byte) values in xmm
 12544 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12545   predicate(UseSSE>=2);
 12546   match(Set dst (Replicate4C src));
 12547   format %{ "MOVD    $dst,$src\n\t"
 12548             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12549   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12550   ins_pipe( fpu_reg_reg );
 12551 %}
 12553 // Replicate scalar zero to packed char (2 byte) values in xmm
 12554 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12555   predicate(UseSSE>=2);
 12556   match(Set dst (Replicate4C zero));
 12557   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12558   ins_encode( pxor(dst, dst));
 12559   ins_pipe( fpu_reg_reg );
 12560 %}
 12562 // Replicate scalar to packed integer (4 byte) values in xmm
 12563 instruct Repl2I_reg(regXD dst, regXD src) %{
 12564   predicate(UseSSE>=2);
 12565   match(Set dst (Replicate2I src));
 12566   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12567   ins_encode( pshufd(dst, src, 0x00));
 12568   ins_pipe( fpu_reg_reg );
 12569 %}
 12571 // Replicate scalar to packed integer (4 byte) values in xmm
 12572 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12573   predicate(UseSSE>=2);
 12574   match(Set dst (Replicate2I src));
 12575   format %{ "MOVD   $dst,$src\n\t"
 12576             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12577   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12578   ins_pipe( fpu_reg_reg );
 12579 %}
 12581 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12582 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12583   predicate(UseSSE>=2);
 12584   match(Set dst (Replicate2I zero));
 12585   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12586   ins_encode( pxor(dst, dst));
 12587   ins_pipe( fpu_reg_reg );
 12588 %}
 12590 // Replicate scalar to packed single precision floating point values in xmm
 12591 instruct Repl2F_reg(regXD dst, regXD src) %{
 12592   predicate(UseSSE>=2);
 12593   match(Set dst (Replicate2F src));
 12594   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12595   ins_encode( pshufd(dst, src, 0xe0));
 12596   ins_pipe( fpu_reg_reg );
 12597 %}
 12599 // Replicate scalar to packed single precision floating point values in xmm
 12600 instruct Repl2F_regX(regXD dst, regX src) %{
 12601   predicate(UseSSE>=2);
 12602   match(Set dst (Replicate2F src));
 12603   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12604   ins_encode( pshufd(dst, src, 0xe0));
 12605   ins_pipe( fpu_reg_reg );
 12606 %}
 12608 // Replicate scalar to packed single precision floating point values in xmm
 12609 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12610   predicate(UseSSE>=2);
 12611   match(Set dst (Replicate2F zero));
 12612   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12613   ins_encode( pxor(dst, dst));
 12614   ins_pipe( fpu_reg_reg );
 12615 %}
 12617 // =======================================================================
 12618 // fast clearing of an array
 12619 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12620   match(Set dummy (ClearArray cnt base));
 12621   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12622   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12623             "XOR    EAX,EAX\n\t"
 12624             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12625   opcode(0,0x4);
 12626   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12627               OpcRegReg(0x33,EAX,EAX),
 12628               Opcode(0xF3), Opcode(0xAB) );
 12629   ins_pipe( pipe_slow );
 12630 %}
 12632 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12633                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12634   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12635   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12637   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12638   ins_encode %{
 12639     __ string_compare($str1$$Register, $str2$$Register,
 12640                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12641                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12642   %}
 12643   ins_pipe( pipe_slow );
 12644 %}
 12646 // fast string equals
 12647 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12648                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12649   match(Set result (StrEquals (Binary str1 str2) cnt));
 12650   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12652   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12653   ins_encode %{
 12654     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12655                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12656                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12657   %}
 12658   ins_pipe( pipe_slow );
 12659 %}
 12661 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12662                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12663   predicate(UseSSE42Intrinsics);
 12664   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12665   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12667   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12668   ins_encode %{
 12669     __ string_indexof($str1$$Register, $str2$$Register,
 12670                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12671                       $tmp1$$XMMRegister, $tmp2$$Register);
 12672   %}
 12673   ins_pipe( pipe_slow );
 12674 %}
 12676 // fast array equals
 12677 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12678                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12679 %{
 12680   match(Set result (AryEq ary1 ary2));
 12681   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12682   //ins_cost(300);
 12684   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12685   ins_encode %{
 12686     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12687                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12688                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12689   %}
 12690   ins_pipe( pipe_slow );
 12691 %}
 12693 //----------Control Flow Instructions------------------------------------------
 12694 // Signed compare Instructions
 12695 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12696   match(Set cr (CmpI op1 op2));
 12697   effect( DEF cr, USE op1, USE op2 );
 12698   format %{ "CMP    $op1,$op2" %}
 12699   opcode(0x3B);  /* Opcode 3B /r */
 12700   ins_encode( OpcP, RegReg( op1, op2) );
 12701   ins_pipe( ialu_cr_reg_reg );
 12702 %}
 12704 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12705   match(Set cr (CmpI op1 op2));
 12706   effect( DEF cr, USE op1 );
 12707   format %{ "CMP    $op1,$op2" %}
 12708   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12709   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12710   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12711   ins_pipe( ialu_cr_reg_imm );
 12712 %}
 12714 // Cisc-spilled version of cmpI_eReg
 12715 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12716   match(Set cr (CmpI op1 (LoadI op2)));
 12718   format %{ "CMP    $op1,$op2" %}
 12719   ins_cost(500);
 12720   opcode(0x3B);  /* Opcode 3B /r */
 12721   ins_encode( OpcP, RegMem( op1, op2) );
 12722   ins_pipe( ialu_cr_reg_mem );
 12723 %}
 12725 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12726   match(Set cr (CmpI src zero));
 12727   effect( DEF cr, USE src );
 12729   format %{ "TEST   $src,$src" %}
 12730   opcode(0x85);
 12731   ins_encode( OpcP, RegReg( src, src ) );
 12732   ins_pipe( ialu_cr_reg_imm );
 12733 %}
 12735 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12736   match(Set cr (CmpI (AndI src con) zero));
 12738   format %{ "TEST   $src,$con" %}
 12739   opcode(0xF7,0x00);
 12740   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12741   ins_pipe( ialu_cr_reg_imm );
 12742 %}
 12744 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12745   match(Set cr (CmpI (AndI src mem) zero));
 12747   format %{ "TEST   $src,$mem" %}
 12748   opcode(0x85);
 12749   ins_encode( OpcP, RegMem( src, mem ) );
 12750   ins_pipe( ialu_cr_reg_mem );
 12751 %}
 12753 // Unsigned compare Instructions; really, same as signed except they
 12754 // produce an eFlagsRegU instead of eFlagsReg.
 12755 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12756   match(Set cr (CmpU op1 op2));
 12758   format %{ "CMPu   $op1,$op2" %}
 12759   opcode(0x3B);  /* Opcode 3B /r */
 12760   ins_encode( OpcP, RegReg( op1, op2) );
 12761   ins_pipe( ialu_cr_reg_reg );
 12762 %}
 12764 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12765   match(Set cr (CmpU op1 op2));
 12767   format %{ "CMPu   $op1,$op2" %}
 12768   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12769   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12770   ins_pipe( ialu_cr_reg_imm );
 12771 %}
 12773 // // Cisc-spilled version of cmpU_eReg
 12774 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12775   match(Set cr (CmpU op1 (LoadI op2)));
 12777   format %{ "CMPu   $op1,$op2" %}
 12778   ins_cost(500);
 12779   opcode(0x3B);  /* Opcode 3B /r */
 12780   ins_encode( OpcP, RegMem( op1, op2) );
 12781   ins_pipe( ialu_cr_reg_mem );
 12782 %}
 12784 // // Cisc-spilled version of cmpU_eReg
 12785 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12786 //  match(Set cr (CmpU (LoadI op1) op2));
 12787 //
 12788 //  format %{ "CMPu   $op1,$op2" %}
 12789 //  ins_cost(500);
 12790 //  opcode(0x39);  /* Opcode 39 /r */
 12791 //  ins_encode( OpcP, RegMem( op1, op2) );
 12792 //%}
 12794 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12795   match(Set cr (CmpU src zero));
 12797   format %{ "TESTu  $src,$src" %}
 12798   opcode(0x85);
 12799   ins_encode( OpcP, RegReg( src, src ) );
 12800   ins_pipe( ialu_cr_reg_imm );
 12801 %}
 12803 // Unsigned pointer compare Instructions
 12804 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12805   match(Set cr (CmpP op1 op2));
 12807   format %{ "CMPu   $op1,$op2" %}
 12808   opcode(0x3B);  /* Opcode 3B /r */
 12809   ins_encode( OpcP, RegReg( op1, op2) );
 12810   ins_pipe( ialu_cr_reg_reg );
 12811 %}
 12813 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12814   match(Set cr (CmpP op1 op2));
 12816   format %{ "CMPu   $op1,$op2" %}
 12817   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12818   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12819   ins_pipe( ialu_cr_reg_imm );
 12820 %}
 12822 // // Cisc-spilled version of cmpP_eReg
 12823 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12824   match(Set cr (CmpP op1 (LoadP op2)));
 12826   format %{ "CMPu   $op1,$op2" %}
 12827   ins_cost(500);
 12828   opcode(0x3B);  /* Opcode 3B /r */
 12829   ins_encode( OpcP, RegMem( op1, op2) );
 12830   ins_pipe( ialu_cr_reg_mem );
 12831 %}
 12833 // // Cisc-spilled version of cmpP_eReg
 12834 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12835 //  match(Set cr (CmpP (LoadP op1) op2));
 12836 //
 12837 //  format %{ "CMPu   $op1,$op2" %}
 12838 //  ins_cost(500);
 12839 //  opcode(0x39);  /* Opcode 39 /r */
 12840 //  ins_encode( OpcP, RegMem( op1, op2) );
 12841 //%}
 12843 // Compare raw pointer (used in out-of-heap check).
 12844 // Only works because non-oop pointers must be raw pointers
 12845 // and raw pointers have no anti-dependencies.
 12846 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12847   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12848   match(Set cr (CmpP op1 (LoadP op2)));
 12850   format %{ "CMPu   $op1,$op2" %}
 12851   opcode(0x3B);  /* Opcode 3B /r */
 12852   ins_encode( OpcP, RegMem( op1, op2) );
 12853   ins_pipe( ialu_cr_reg_mem );
 12854 %}
 12856 //
 12857 // This will generate a signed flags result. This should be ok
 12858 // since any compare to a zero should be eq/neq.
 12859 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12860   match(Set cr (CmpP src zero));
 12862   format %{ "TEST   $src,$src" %}
 12863   opcode(0x85);
 12864   ins_encode( OpcP, RegReg( src, src ) );
 12865   ins_pipe( ialu_cr_reg_imm );
 12866 %}
 12868 // Cisc-spilled version of testP_reg
 12869 // This will generate a signed flags result. This should be ok
 12870 // since any compare to a zero should be eq/neq.
 12871 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12872   match(Set cr (CmpP (LoadP op) zero));
 12874   format %{ "TEST   $op,0xFFFFFFFF" %}
 12875   ins_cost(500);
 12876   opcode(0xF7);               /* Opcode F7 /0 */
 12877   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12878   ins_pipe( ialu_cr_reg_imm );
 12879 %}
 12881 // Yanked all unsigned pointer compare operations.
 12882 // Pointer compares are done with CmpP which is already unsigned.
 12884 //----------Max and Min--------------------------------------------------------
 12885 // Min Instructions
 12886 ////
 12887 //   *** Min and Max using the conditional move are slower than the
 12888 //   *** branch version on a Pentium III.
 12889 // // Conditional move for min
 12890 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12891 //  effect( USE_DEF op2, USE op1, USE cr );
 12892 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12893 //  opcode(0x4C,0x0F);
 12894 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12895 //  ins_pipe( pipe_cmov_reg );
 12896 //%}
 12897 //
 12898 //// Min Register with Register (P6 version)
 12899 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12900 //  predicate(VM_Version::supports_cmov() );
 12901 //  match(Set op2 (MinI op1 op2));
 12902 //  ins_cost(200);
 12903 //  expand %{
 12904 //    eFlagsReg cr;
 12905 //    compI_eReg(cr,op1,op2);
 12906 //    cmovI_reg_lt(op2,op1,cr);
 12907 //  %}
 12908 //%}
 12910 // Min Register with Register (generic version)
 12911 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12912   match(Set dst (MinI dst src));
 12913   effect(KILL flags);
 12914   ins_cost(300);
 12916   format %{ "MIN    $dst,$src" %}
 12917   opcode(0xCC);
 12918   ins_encode( min_enc(dst,src) );
 12919   ins_pipe( pipe_slow );
 12920 %}
 12922 // Max Register with Register
 12923 //   *** Min and Max using the conditional move are slower than the
 12924 //   *** branch version on a Pentium III.
 12925 // // Conditional move for max
 12926 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12927 //  effect( USE_DEF op2, USE op1, USE cr );
 12928 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12929 //  opcode(0x4F,0x0F);
 12930 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12931 //  ins_pipe( pipe_cmov_reg );
 12932 //%}
 12933 //
 12934 // // Max Register with Register (P6 version)
 12935 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12936 //  predicate(VM_Version::supports_cmov() );
 12937 //  match(Set op2 (MaxI op1 op2));
 12938 //  ins_cost(200);
 12939 //  expand %{
 12940 //    eFlagsReg cr;
 12941 //    compI_eReg(cr,op1,op2);
 12942 //    cmovI_reg_gt(op2,op1,cr);
 12943 //  %}
 12944 //%}
 12946 // Max Register with Register (generic version)
 12947 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12948   match(Set dst (MaxI dst src));
 12949   effect(KILL flags);
 12950   ins_cost(300);
 12952   format %{ "MAX    $dst,$src" %}
 12953   opcode(0xCC);
 12954   ins_encode( max_enc(dst,src) );
 12955   ins_pipe( pipe_slow );
 12956 %}
 12958 // ============================================================================
 12959 // Branch Instructions
 12960 // Jump Table
 12961 instruct jumpXtnd(eRegI switch_val) %{
 12962   match(Jump switch_val);
 12963   ins_cost(350);
 12964   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12965   ins_encode %{
 12966     // Jump to Address(table_base + switch_reg)
 12967     Address index(noreg, $switch_val$$Register, Address::times_1);
 12968     __ jump(ArrayAddress($constantaddress, index));
 12969   %}
 12970   ins_pc_relative(1);
 12971   ins_pipe(pipe_jmp);
 12972 %}
 12974 // Jump Direct - Label defines a relative address from JMP+1
 12975 instruct jmpDir(label labl) %{
 12976   match(Goto);
 12977   effect(USE labl);
 12979   ins_cost(300);
 12980   format %{ "JMP    $labl" %}
 12981   size(5);
 12982   opcode(0xE9);
 12983   ins_encode( OpcP, Lbl( labl ) );
 12984   ins_pipe( pipe_jmp );
 12985   ins_pc_relative(1);
 12986 %}
 12988 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12989 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12990   match(If cop cr);
 12991   effect(USE labl);
 12993   ins_cost(300);
 12994   format %{ "J$cop    $labl" %}
 12995   size(6);
 12996   opcode(0x0F, 0x80);
 12997   ins_encode( Jcc( cop, labl) );
 12998   ins_pipe( pipe_jcc );
 12999   ins_pc_relative(1);
 13000 %}
 13002 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13003 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 13004   match(CountedLoopEnd cop cr);
 13005   effect(USE labl);
 13007   ins_cost(300);
 13008   format %{ "J$cop    $labl\t# Loop end" %}
 13009   size(6);
 13010   opcode(0x0F, 0x80);
 13011   ins_encode( Jcc( cop, labl) );
 13012   ins_pipe( pipe_jcc );
 13013   ins_pc_relative(1);
 13014 %}
 13016 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13017 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13018   match(CountedLoopEnd cop cmp);
 13019   effect(USE labl);
 13021   ins_cost(300);
 13022   format %{ "J$cop,u  $labl\t# Loop end" %}
 13023   size(6);
 13024   opcode(0x0F, 0x80);
 13025   ins_encode( Jcc( cop, labl) );
 13026   ins_pipe( pipe_jcc );
 13027   ins_pc_relative(1);
 13028 %}
 13030 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13031   match(CountedLoopEnd cop cmp);
 13032   effect(USE labl);
 13034   ins_cost(200);
 13035   format %{ "J$cop,u  $labl\t# Loop end" %}
 13036   size(6);
 13037   opcode(0x0F, 0x80);
 13038   ins_encode( Jcc( cop, labl) );
 13039   ins_pipe( pipe_jcc );
 13040   ins_pc_relative(1);
 13041 %}
 13043 // Jump Direct Conditional - using unsigned comparison
 13044 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13045   match(If cop cmp);
 13046   effect(USE labl);
 13048   ins_cost(300);
 13049   format %{ "J$cop,u  $labl" %}
 13050   size(6);
 13051   opcode(0x0F, 0x80);
 13052   ins_encode(Jcc(cop, labl));
 13053   ins_pipe(pipe_jcc);
 13054   ins_pc_relative(1);
 13055 %}
 13057 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13058   match(If cop cmp);
 13059   effect(USE labl);
 13061   ins_cost(200);
 13062   format %{ "J$cop,u  $labl" %}
 13063   size(6);
 13064   opcode(0x0F, 0x80);
 13065   ins_encode(Jcc(cop, labl));
 13066   ins_pipe(pipe_jcc);
 13067   ins_pc_relative(1);
 13068 %}
 13070 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13071   match(If cop cmp);
 13072   effect(USE labl);
 13074   ins_cost(200);
 13075   format %{ $$template
 13076     if ($cop$$cmpcode == Assembler::notEqual) {
 13077       $$emit$$"JP,u   $labl\n\t"
 13078       $$emit$$"J$cop,u   $labl"
 13079     } else {
 13080       $$emit$$"JP,u   done\n\t"
 13081       $$emit$$"J$cop,u   $labl\n\t"
 13082       $$emit$$"done:"
 13084   %}
 13085   size(12);
 13086   opcode(0x0F, 0x80);
 13087   ins_encode %{
 13088     Label* l = $labl$$label;
 13089     $$$emit8$primary;
 13090     emit_cc(cbuf, $secondary, Assembler::parity);
 13091     int parity_disp = -1;
 13092     bool ok = false;
 13093     if ($cop$$cmpcode == Assembler::notEqual) {
 13094        // the two jumps 6 bytes apart so the jump distances are too
 13095        parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
 13096     } else if ($cop$$cmpcode == Assembler::equal) {
 13097        parity_disp = 6;
 13098        ok = true;
 13099     } else {
 13100        ShouldNotReachHere();
 13102     emit_d32(cbuf, parity_disp);
 13103     $$$emit8$primary;
 13104     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 13105     int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
 13106     emit_d32(cbuf, disp);
 13107   %}
 13108   ins_pipe(pipe_jcc);
 13109   ins_pc_relative(1);
 13110 %}
 13112 // ============================================================================
 13113 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 13114 // array for an instance of the superklass.  Set a hidden internal cache on a
 13115 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 13116 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 13117 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 13118   match(Set result (PartialSubtypeCheck sub super));
 13119   effect( KILL rcx, KILL cr );
 13121   ins_cost(1100);  // slightly larger than the next version
 13122   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 13123             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 13124             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 13125             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 13126             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 13127             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 13128             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 13129      "miss:\t" %}
 13131   opcode(0x1); // Force a XOR of EDI
 13132   ins_encode( enc_PartialSubtypeCheck() );
 13133   ins_pipe( pipe_slow );
 13134 %}
 13136 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 13137   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 13138   effect( KILL rcx, KILL result );
 13140   ins_cost(1000);
 13141   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 13142             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 13143             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 13144             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 13145             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 13146             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 13147      "miss:\t" %}
 13149   opcode(0x0);  // No need to XOR EDI
 13150   ins_encode( enc_PartialSubtypeCheck() );
 13151   ins_pipe( pipe_slow );
 13152 %}
 13154 // ============================================================================
 13155 // Branch Instructions -- short offset versions
 13156 //
 13157 // These instructions are used to replace jumps of a long offset (the default
 13158 // match) with jumps of a shorter offset.  These instructions are all tagged
 13159 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 13160 // match rules in general matching.  Instead, the ADLC generates a conversion
 13161 // method in the MachNode which can be used to do in-place replacement of the
 13162 // long variant with the shorter variant.  The compiler will determine if a
 13163 // branch can be taken by the is_short_branch_offset() predicate in the machine
 13164 // specific code section of the file.
 13166 // Jump Direct - Label defines a relative address from JMP+1
 13167 instruct jmpDir_short(label labl) %{
 13168   match(Goto);
 13169   effect(USE labl);
 13171   ins_cost(300);
 13172   format %{ "JMP,s  $labl" %}
 13173   size(2);
 13174   opcode(0xEB);
 13175   ins_encode( OpcP, LblShort( labl ) );
 13176   ins_pipe( pipe_jmp );
 13177   ins_pc_relative(1);
 13178   ins_short_branch(1);
 13179 %}
 13181 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13182 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13183   match(If cop cr);
 13184   effect(USE labl);
 13186   ins_cost(300);
 13187   format %{ "J$cop,s  $labl" %}
 13188   size(2);
 13189   opcode(0x70);
 13190   ins_encode( JccShort( cop, labl) );
 13191   ins_pipe( pipe_jcc );
 13192   ins_pc_relative(1);
 13193   ins_short_branch(1);
 13194 %}
 13196 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13197 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13198   match(CountedLoopEnd cop cr);
 13199   effect(USE labl);
 13201   ins_cost(300);
 13202   format %{ "J$cop,s  $labl\t# Loop end" %}
 13203   size(2);
 13204   opcode(0x70);
 13205   ins_encode( JccShort( cop, labl) );
 13206   ins_pipe( pipe_jcc );
 13207   ins_pc_relative(1);
 13208   ins_short_branch(1);
 13209 %}
 13211 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13212 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13213   match(CountedLoopEnd cop cmp);
 13214   effect(USE labl);
 13216   ins_cost(300);
 13217   format %{ "J$cop,us $labl\t# Loop end" %}
 13218   size(2);
 13219   opcode(0x70);
 13220   ins_encode( JccShort( cop, labl) );
 13221   ins_pipe( pipe_jcc );
 13222   ins_pc_relative(1);
 13223   ins_short_branch(1);
 13224 %}
 13226 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13227   match(CountedLoopEnd cop cmp);
 13228   effect(USE labl);
 13230   ins_cost(300);
 13231   format %{ "J$cop,us $labl\t# Loop end" %}
 13232   size(2);
 13233   opcode(0x70);
 13234   ins_encode( JccShort( cop, labl) );
 13235   ins_pipe( pipe_jcc );
 13236   ins_pc_relative(1);
 13237   ins_short_branch(1);
 13238 %}
 13240 // Jump Direct Conditional - using unsigned comparison
 13241 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13242   match(If cop cmp);
 13243   effect(USE labl);
 13245   ins_cost(300);
 13246   format %{ "J$cop,us $labl" %}
 13247   size(2);
 13248   opcode(0x70);
 13249   ins_encode( JccShort( cop, labl) );
 13250   ins_pipe( pipe_jcc );
 13251   ins_pc_relative(1);
 13252   ins_short_branch(1);
 13253 %}
 13255 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13256   match(If cop cmp);
 13257   effect(USE labl);
 13259   ins_cost(300);
 13260   format %{ "J$cop,us $labl" %}
 13261   size(2);
 13262   opcode(0x70);
 13263   ins_encode( JccShort( cop, labl) );
 13264   ins_pipe( pipe_jcc );
 13265   ins_pc_relative(1);
 13266   ins_short_branch(1);
 13267 %}
 13269 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13270   match(If cop cmp);
 13271   effect(USE labl);
 13273   ins_cost(300);
 13274   format %{ $$template
 13275     if ($cop$$cmpcode == Assembler::notEqual) {
 13276       $$emit$$"JP,u,s   $labl\n\t"
 13277       $$emit$$"J$cop,u,s   $labl"
 13278     } else {
 13279       $$emit$$"JP,u,s   done\n\t"
 13280       $$emit$$"J$cop,u,s  $labl\n\t"
 13281       $$emit$$"done:"
 13283   %}
 13284   size(4);
 13285   opcode(0x70);
 13286   ins_encode %{
 13287     Label* l = $labl$$label;
 13288     emit_cc(cbuf, $primary, Assembler::parity);
 13289     int parity_disp = -1;
 13290     if ($cop$$cmpcode == Assembler::notEqual) {
 13291       parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
 13292     } else if ($cop$$cmpcode == Assembler::equal) {
 13293       parity_disp = 2;
 13294     } else {
 13295       ShouldNotReachHere();
 13297     emit_d8(cbuf, parity_disp);
 13298     emit_cc(cbuf, $primary, $cop$$cmpcode);
 13299     int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
 13300     emit_d8(cbuf, disp);
 13301     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 13302     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 13303   %}
 13304   ins_pipe(pipe_jcc);
 13305   ins_pc_relative(1);
 13306   ins_short_branch(1);
 13307 %}
 13309 // ============================================================================
 13310 // Long Compare
 13311 //
 13312 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13313 // is tricky.  The flavor of compare used depends on whether we are testing
 13314 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13315 // The GE test is the negated LT test.  The LE test can be had by commuting
 13316 // the operands (yielding a GE test) and then negating; negate again for the
 13317 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13318 // NE test is negated from that.
 13320 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13321 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13322 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13323 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13324 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13325 // foo match ends up with the wrong leaf.  One fix is to not match both
 13326 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13327 // both forms beat the trinary form of long-compare and both are very useful
 13328 // on Intel which has so few registers.
 13330 // Manifest a CmpL result in an integer register.  Very painful.
 13331 // This is the test to avoid.
 13332 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13333   match(Set dst (CmpL3 src1 src2));
 13334   effect( KILL flags );
 13335   ins_cost(1000);
 13336   format %{ "XOR    $dst,$dst\n\t"
 13337             "CMP    $src1.hi,$src2.hi\n\t"
 13338             "JLT,s  m_one\n\t"
 13339             "JGT,s  p_one\n\t"
 13340             "CMP    $src1.lo,$src2.lo\n\t"
 13341             "JB,s   m_one\n\t"
 13342             "JEQ,s  done\n"
 13343     "p_one:\tINC    $dst\n\t"
 13344             "JMP,s  done\n"
 13345     "m_one:\tDEC    $dst\n"
 13346      "done:" %}
 13347   ins_encode %{
 13348     Label p_one, m_one, done;
 13349     __ xorptr($dst$$Register, $dst$$Register);
 13350     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13351     __ jccb(Assembler::less,    m_one);
 13352     __ jccb(Assembler::greater, p_one);
 13353     __ cmpl($src1$$Register, $src2$$Register);
 13354     __ jccb(Assembler::below,   m_one);
 13355     __ jccb(Assembler::equal,   done);
 13356     __ bind(p_one);
 13357     __ incrementl($dst$$Register);
 13358     __ jmpb(done);
 13359     __ bind(m_one);
 13360     __ decrementl($dst$$Register);
 13361     __ bind(done);
 13362   %}
 13363   ins_pipe( pipe_slow );
 13364 %}
 13366 //======
 13367 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13368 // compares.  Can be used for LE or GT compares by reversing arguments.
 13369 // NOT GOOD FOR EQ/NE tests.
 13370 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13371   match( Set flags (CmpL src zero ));
 13372   ins_cost(100);
 13373   format %{ "TEST   $src.hi,$src.hi" %}
 13374   opcode(0x85);
 13375   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13376   ins_pipe( ialu_cr_reg_reg );
 13377 %}
 13379 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13380 // compares.  Can be used for LE or GT compares by reversing arguments.
 13381 // NOT GOOD FOR EQ/NE tests.
 13382 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13383   match( Set flags (CmpL src1 src2 ));
 13384   effect( TEMP tmp );
 13385   ins_cost(300);
 13386   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13387             "MOV    $tmp,$src1.hi\n\t"
 13388             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13389   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13390   ins_pipe( ialu_cr_reg_reg );
 13391 %}
 13393 // Long compares reg < zero/req OR reg >= zero/req.
 13394 // Just a wrapper for a normal branch, plus the predicate test.
 13395 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13396   match(If cmp flags);
 13397   effect(USE labl);
 13398   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13399   expand %{
 13400     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13401   %}
 13402 %}
 13404 // Compare 2 longs and CMOVE longs.
 13405 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13406   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13407   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13408   ins_cost(400);
 13409   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13410             "CMOV$cmp $dst.hi,$src.hi" %}
 13411   opcode(0x0F,0x40);
 13412   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13413   ins_pipe( pipe_cmov_reg_long );
 13414 %}
 13416 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13417   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13418   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13419   ins_cost(500);
 13420   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13421             "CMOV$cmp $dst.hi,$src.hi" %}
 13422   opcode(0x0F,0x40);
 13423   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13424   ins_pipe( pipe_cmov_reg_long );
 13425 %}
 13427 // Compare 2 longs and CMOVE ints.
 13428 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13429   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13430   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13431   ins_cost(200);
 13432   format %{ "CMOV$cmp $dst,$src" %}
 13433   opcode(0x0F,0x40);
 13434   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13435   ins_pipe( pipe_cmov_reg );
 13436 %}
 13438 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13439   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13440   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13441   ins_cost(250);
 13442   format %{ "CMOV$cmp $dst,$src" %}
 13443   opcode(0x0F,0x40);
 13444   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13445   ins_pipe( pipe_cmov_mem );
 13446 %}
 13448 // Compare 2 longs and CMOVE ints.
 13449 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13450   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13451   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13452   ins_cost(200);
 13453   format %{ "CMOV$cmp $dst,$src" %}
 13454   opcode(0x0F,0x40);
 13455   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13456   ins_pipe( pipe_cmov_reg );
 13457 %}
 13459 // Compare 2 longs and CMOVE doubles
 13460 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13461   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13462   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13463   ins_cost(200);
 13464   expand %{
 13465     fcmovD_regS(cmp,flags,dst,src);
 13466   %}
 13467 %}
 13469 // Compare 2 longs and CMOVE doubles
 13470 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13471   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13472   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13473   ins_cost(200);
 13474   expand %{
 13475     fcmovXD_regS(cmp,flags,dst,src);
 13476   %}
 13477 %}
 13479 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13480   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13481   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13482   ins_cost(200);
 13483   expand %{
 13484     fcmovF_regS(cmp,flags,dst,src);
 13485   %}
 13486 %}
 13488 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13489   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13490   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13491   ins_cost(200);
 13492   expand %{
 13493     fcmovX_regS(cmp,flags,dst,src);
 13494   %}
 13495 %}
 13497 //======
 13498 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13499 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13500   match( Set flags (CmpL src zero ));
 13501   effect(TEMP tmp);
 13502   ins_cost(200);
 13503   format %{ "MOV    $tmp,$src.lo\n\t"
 13504             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13505   ins_encode( long_cmp_flags0( src, tmp ) );
 13506   ins_pipe( ialu_reg_reg_long );
 13507 %}
 13509 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13510 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13511   match( Set flags (CmpL src1 src2 ));
 13512   ins_cost(200+300);
 13513   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13514             "JNE,s  skip\n\t"
 13515             "CMP    $src1.hi,$src2.hi\n\t"
 13516      "skip:\t" %}
 13517   ins_encode( long_cmp_flags1( src1, src2 ) );
 13518   ins_pipe( ialu_cr_reg_reg );
 13519 %}
 13521 // Long compare reg == zero/reg OR reg != zero/reg
 13522 // Just a wrapper for a normal branch, plus the predicate test.
 13523 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13524   match(If cmp flags);
 13525   effect(USE labl);
 13526   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13527   expand %{
 13528     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13529   %}
 13530 %}
 13532 // Compare 2 longs and CMOVE longs.
 13533 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13534   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13535   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13536   ins_cost(400);
 13537   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13538             "CMOV$cmp $dst.hi,$src.hi" %}
 13539   opcode(0x0F,0x40);
 13540   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13541   ins_pipe( pipe_cmov_reg_long );
 13542 %}
 13544 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13545   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13546   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13547   ins_cost(500);
 13548   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13549             "CMOV$cmp $dst.hi,$src.hi" %}
 13550   opcode(0x0F,0x40);
 13551   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13552   ins_pipe( pipe_cmov_reg_long );
 13553 %}
 13555 // Compare 2 longs and CMOVE ints.
 13556 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13557   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13558   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13559   ins_cost(200);
 13560   format %{ "CMOV$cmp $dst,$src" %}
 13561   opcode(0x0F,0x40);
 13562   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13563   ins_pipe( pipe_cmov_reg );
 13564 %}
 13566 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13567   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13568   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13569   ins_cost(250);
 13570   format %{ "CMOV$cmp $dst,$src" %}
 13571   opcode(0x0F,0x40);
 13572   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13573   ins_pipe( pipe_cmov_mem );
 13574 %}
 13576 // Compare 2 longs and CMOVE ints.
 13577 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13578   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13579   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13580   ins_cost(200);
 13581   format %{ "CMOV$cmp $dst,$src" %}
 13582   opcode(0x0F,0x40);
 13583   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13584   ins_pipe( pipe_cmov_reg );
 13585 %}
 13587 // Compare 2 longs and CMOVE doubles
 13588 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13589   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13590   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13591   ins_cost(200);
 13592   expand %{
 13593     fcmovD_regS(cmp,flags,dst,src);
 13594   %}
 13595 %}
 13597 // Compare 2 longs and CMOVE doubles
 13598 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13599   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13600   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13601   ins_cost(200);
 13602   expand %{
 13603     fcmovXD_regS(cmp,flags,dst,src);
 13604   %}
 13605 %}
 13607 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13608   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13609   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13610   ins_cost(200);
 13611   expand %{
 13612     fcmovF_regS(cmp,flags,dst,src);
 13613   %}
 13614 %}
 13616 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13617   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13618   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13619   ins_cost(200);
 13620   expand %{
 13621     fcmovX_regS(cmp,flags,dst,src);
 13622   %}
 13623 %}
 13625 //======
 13626 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13627 // Same as cmpL_reg_flags_LEGT except must negate src
 13628 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13629   match( Set flags (CmpL src zero ));
 13630   effect( TEMP tmp );
 13631   ins_cost(300);
 13632   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13633             "CMP    $tmp,$src.lo\n\t"
 13634             "SBB    $tmp,$src.hi\n\t" %}
 13635   ins_encode( long_cmp_flags3(src, tmp) );
 13636   ins_pipe( ialu_reg_reg_long );
 13637 %}
 13639 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13640 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13641 // requires a commuted test to get the same result.
 13642 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13643   match( Set flags (CmpL src1 src2 ));
 13644   effect( TEMP tmp );
 13645   ins_cost(300);
 13646   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13647             "MOV    $tmp,$src2.hi\n\t"
 13648             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13649   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13650   ins_pipe( ialu_cr_reg_reg );
 13651 %}
 13653 // Long compares reg < zero/req OR reg >= zero/req.
 13654 // Just a wrapper for a normal branch, plus the predicate test
 13655 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13656   match(If cmp flags);
 13657   effect(USE labl);
 13658   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13659   ins_cost(300);
 13660   expand %{
 13661     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13662   %}
 13663 %}
 13665 // Compare 2 longs and CMOVE longs.
 13666 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13667   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13668   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13669   ins_cost(400);
 13670   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13671             "CMOV$cmp $dst.hi,$src.hi" %}
 13672   opcode(0x0F,0x40);
 13673   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13674   ins_pipe( pipe_cmov_reg_long );
 13675 %}
 13677 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13678   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13679   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13680   ins_cost(500);
 13681   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13682             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13683   opcode(0x0F,0x40);
 13684   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13685   ins_pipe( pipe_cmov_reg_long );
 13686 %}
 13688 // Compare 2 longs and CMOVE ints.
 13689 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13690   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13691   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13692   ins_cost(200);
 13693   format %{ "CMOV$cmp $dst,$src" %}
 13694   opcode(0x0F,0x40);
 13695   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13696   ins_pipe( pipe_cmov_reg );
 13697 %}
 13699 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13700   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13701   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13702   ins_cost(250);
 13703   format %{ "CMOV$cmp $dst,$src" %}
 13704   opcode(0x0F,0x40);
 13705   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13706   ins_pipe( pipe_cmov_mem );
 13707 %}
 13709 // Compare 2 longs and CMOVE ptrs.
 13710 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13711   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13712   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13713   ins_cost(200);
 13714   format %{ "CMOV$cmp $dst,$src" %}
 13715   opcode(0x0F,0x40);
 13716   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13717   ins_pipe( pipe_cmov_reg );
 13718 %}
 13720 // Compare 2 longs and CMOVE doubles
 13721 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13722   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13723   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13724   ins_cost(200);
 13725   expand %{
 13726     fcmovD_regS(cmp,flags,dst,src);
 13727   %}
 13728 %}
 13730 // Compare 2 longs and CMOVE doubles
 13731 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13732   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13733   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13734   ins_cost(200);
 13735   expand %{
 13736     fcmovXD_regS(cmp,flags,dst,src);
 13737   %}
 13738 %}
 13740 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13741   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13742   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13743   ins_cost(200);
 13744   expand %{
 13745     fcmovF_regS(cmp,flags,dst,src);
 13746   %}
 13747 %}
 13750 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13751   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13752   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13753   ins_cost(200);
 13754   expand %{
 13755     fcmovX_regS(cmp,flags,dst,src);
 13756   %}
 13757 %}
 13760 // ============================================================================
 13761 // Procedure Call/Return Instructions
 13762 // Call Java Static Instruction
 13763 // Note: If this code changes, the corresponding ret_addr_offset() and
 13764 //       compute_padding() functions will have to be adjusted.
 13765 instruct CallStaticJavaDirect(method meth) %{
 13766   match(CallStaticJava);
 13767   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13768   effect(USE meth);
 13770   ins_cost(300);
 13771   format %{ "CALL,static " %}
 13772   opcode(0xE8); /* E8 cd */
 13773   ins_encode( pre_call_FPU,
 13774               Java_Static_Call( meth ),
 13775               call_epilog,
 13776               post_call_FPU );
 13777   ins_pipe( pipe_slow );
 13778   ins_pc_relative(1);
 13779   ins_alignment(4);
 13780 %}
 13782 // Call Java Static Instruction (method handle version)
 13783 // Note: If this code changes, the corresponding ret_addr_offset() and
 13784 //       compute_padding() functions will have to be adjusted.
 13785 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13786   match(CallStaticJava);
 13787   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13788   effect(USE meth);
 13789   // EBP is saved by all callees (for interpreter stack correction).
 13790   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13792   ins_cost(300);
 13793   format %{ "CALL,static/MethodHandle " %}
 13794   opcode(0xE8); /* E8 cd */
 13795   ins_encode( pre_call_FPU,
 13796               preserve_SP,
 13797               Java_Static_Call( meth ),
 13798               restore_SP,
 13799               call_epilog,
 13800               post_call_FPU );
 13801   ins_pipe( pipe_slow );
 13802   ins_pc_relative(1);
 13803   ins_alignment(4);
 13804 %}
 13806 // Call Java Dynamic Instruction
 13807 // Note: If this code changes, the corresponding ret_addr_offset() and
 13808 //       compute_padding() functions will have to be adjusted.
 13809 instruct CallDynamicJavaDirect(method meth) %{
 13810   match(CallDynamicJava);
 13811   effect(USE meth);
 13813   ins_cost(300);
 13814   format %{ "MOV    EAX,(oop)-1\n\t"
 13815             "CALL,dynamic" %}
 13816   opcode(0xE8); /* E8 cd */
 13817   ins_encode( pre_call_FPU,
 13818               Java_Dynamic_Call( meth ),
 13819               call_epilog,
 13820               post_call_FPU );
 13821   ins_pipe( pipe_slow );
 13822   ins_pc_relative(1);
 13823   ins_alignment(4);
 13824 %}
 13826 // Call Runtime Instruction
 13827 instruct CallRuntimeDirect(method meth) %{
 13828   match(CallRuntime );
 13829   effect(USE meth);
 13831   ins_cost(300);
 13832   format %{ "CALL,runtime " %}
 13833   opcode(0xE8); /* E8 cd */
 13834   // Use FFREEs to clear entries in float stack
 13835   ins_encode( pre_call_FPU,
 13836               FFree_Float_Stack_All,
 13837               Java_To_Runtime( meth ),
 13838               post_call_FPU );
 13839   ins_pipe( pipe_slow );
 13840   ins_pc_relative(1);
 13841 %}
 13843 // Call runtime without safepoint
 13844 instruct CallLeafDirect(method meth) %{
 13845   match(CallLeaf);
 13846   effect(USE meth);
 13848   ins_cost(300);
 13849   format %{ "CALL_LEAF,runtime " %}
 13850   opcode(0xE8); /* E8 cd */
 13851   ins_encode( pre_call_FPU,
 13852               FFree_Float_Stack_All,
 13853               Java_To_Runtime( meth ),
 13854               Verify_FPU_For_Leaf, post_call_FPU );
 13855   ins_pipe( pipe_slow );
 13856   ins_pc_relative(1);
 13857 %}
 13859 instruct CallLeafNoFPDirect(method meth) %{
 13860   match(CallLeafNoFP);
 13861   effect(USE meth);
 13863   ins_cost(300);
 13864   format %{ "CALL_LEAF_NOFP,runtime " %}
 13865   opcode(0xE8); /* E8 cd */
 13866   ins_encode(Java_To_Runtime(meth));
 13867   ins_pipe( pipe_slow );
 13868   ins_pc_relative(1);
 13869 %}
 13872 // Return Instruction
 13873 // Remove the return address & jump to it.
 13874 instruct Ret() %{
 13875   match(Return);
 13876   format %{ "RET" %}
 13877   opcode(0xC3);
 13878   ins_encode(OpcP);
 13879   ins_pipe( pipe_jmp );
 13880 %}
 13882 // Tail Call; Jump from runtime stub to Java code.
 13883 // Also known as an 'interprocedural jump'.
 13884 // Target of jump will eventually return to caller.
 13885 // TailJump below removes the return address.
 13886 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13887   match(TailCall jump_target method_oop );
 13888   ins_cost(300);
 13889   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13890   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13891   ins_encode( OpcP, RegOpc(jump_target) );
 13892   ins_pipe( pipe_jmp );
 13893 %}
 13896 // Tail Jump; remove the return address; jump to target.
 13897 // TailCall above leaves the return address around.
 13898 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13899   match( TailJump jump_target ex_oop );
 13900   ins_cost(300);
 13901   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13902             "JMP    $jump_target " %}
 13903   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13904   ins_encode( enc_pop_rdx,
 13905               OpcP, RegOpc(jump_target) );
 13906   ins_pipe( pipe_jmp );
 13907 %}
 13909 // Create exception oop: created by stack-crawling runtime code.
 13910 // Created exception is now available to this handler, and is setup
 13911 // just prior to jumping to this handler.  No code emitted.
 13912 instruct CreateException( eAXRegP ex_oop )
 13913 %{
 13914   match(Set ex_oop (CreateEx));
 13916   size(0);
 13917   // use the following format syntax
 13918   format %{ "# exception oop is in EAX; no code emitted" %}
 13919   ins_encode();
 13920   ins_pipe( empty );
 13921 %}
 13924 // Rethrow exception:
 13925 // The exception oop will come in the first argument position.
 13926 // Then JUMP (not call) to the rethrow stub code.
 13927 instruct RethrowException()
 13928 %{
 13929   match(Rethrow);
 13931   // use the following format syntax
 13932   format %{ "JMP    rethrow_stub" %}
 13933   ins_encode(enc_rethrow);
 13934   ins_pipe( pipe_jmp );
 13935 %}
 13937 // inlined locking and unlocking
 13940 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13941   match( Set cr (FastLock object box) );
 13942   effect( TEMP tmp, TEMP scr );
 13943   ins_cost(300);
 13944   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13945   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13946   ins_pipe( pipe_slow );
 13947   ins_pc_relative(1);
 13948 %}
 13950 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13951   match( Set cr (FastUnlock object box) );
 13952   effect( TEMP tmp );
 13953   ins_cost(300);
 13954   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13955   ins_encode( Fast_Unlock(object,box,tmp) );
 13956   ins_pipe( pipe_slow );
 13957   ins_pc_relative(1);
 13958 %}
 13962 // ============================================================================
 13963 // Safepoint Instruction
 13964 instruct safePoint_poll(eFlagsReg cr) %{
 13965   match(SafePoint);
 13966   effect(KILL cr);
 13968   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13969   // On SPARC that might be acceptable as we can generate the address with
 13970   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13971   // putting additional pressure on the index-0 in the D$.  Because of
 13972   // alignment (just like the situation at hand) the lower indices tend
 13973   // to see more traffic.  It'd be better to change the polling address
 13974   // to offset 0 of the last $line in the polling page.
 13976   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13977   ins_cost(125);
 13978   size(6) ;
 13979   ins_encode( Safepoint_Poll() );
 13980   ins_pipe( ialu_reg_mem );
 13981 %}
 13983 //----------PEEPHOLE RULES-----------------------------------------------------
 13984 // These must follow all instruction definitions as they use the names
 13985 // defined in the instructions definitions.
 13986 //
 13987 // peepmatch ( root_instr_name [preceding_instruction]* );
 13988 //
 13989 // peepconstraint %{
 13990 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13991 //  [, ...] );
 13992 // // instruction numbers are zero-based using left to right order in peepmatch
 13993 //
 13994 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13995 // // provide an instruction_number.operand_name for each operand that appears
 13996 // // in the replacement instruction's match rule
 13997 //
 13998 // ---------VM FLAGS---------------------------------------------------------
 13999 //
 14000 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 14001 //
 14002 // Each peephole rule is given an identifying number starting with zero and
 14003 // increasing by one in the order seen by the parser.  An individual peephole
 14004 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 14005 // on the command-line.
 14006 //
 14007 // ---------CURRENT LIMITATIONS----------------------------------------------
 14008 //
 14009 // Only match adjacent instructions in same basic block
 14010 // Only equality constraints
 14011 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 14012 // Only one replacement instruction
 14013 //
 14014 // ---------EXAMPLE----------------------------------------------------------
 14015 //
 14016 // // pertinent parts of existing instructions in architecture description
 14017 // instruct movI(eRegI dst, eRegI src) %{
 14018 //   match(Set dst (CopyI src));
 14019 // %}
 14020 //
 14021 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 14022 //   match(Set dst (AddI dst src));
 14023 //   effect(KILL cr);
 14024 // %}
 14025 //
 14026 // // Change (inc mov) to lea
 14027 // peephole %{
 14028 //   // increment preceeded by register-register move
 14029 //   peepmatch ( incI_eReg movI );
 14030 //   // require that the destination register of the increment
 14031 //   // match the destination register of the move
 14032 //   peepconstraint ( 0.dst == 1.dst );
 14033 //   // construct a replacement instruction that sets
 14034 //   // the destination to ( move's source register + one )
 14035 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14036 // %}
 14037 //
 14038 // Implementation no longer uses movX instructions since
 14039 // machine-independent system no longer uses CopyX nodes.
 14040 //
 14041 // peephole %{
 14042 //   peepmatch ( incI_eReg movI );
 14043 //   peepconstraint ( 0.dst == 1.dst );
 14044 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14045 // %}
 14046 //
 14047 // peephole %{
 14048 //   peepmatch ( decI_eReg movI );
 14049 //   peepconstraint ( 0.dst == 1.dst );
 14050 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14051 // %}
 14052 //
 14053 // peephole %{
 14054 //   peepmatch ( addI_eReg_imm movI );
 14055 //   peepconstraint ( 0.dst == 1.dst );
 14056 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14057 // %}
 14058 //
 14059 // peephole %{
 14060 //   peepmatch ( addP_eReg_imm movP );
 14061 //   peepconstraint ( 0.dst == 1.dst );
 14062 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 14063 // %}
 14065 // // Change load of spilled value to only a spill
 14066 // instruct storeI(memory mem, eRegI src) %{
 14067 //   match(Set mem (StoreI mem src));
 14068 // %}
 14069 //
 14070 // instruct loadI(eRegI dst, memory mem) %{
 14071 //   match(Set dst (LoadI mem));
 14072 // %}
 14073 //
 14074 peephole %{
 14075   peepmatch ( loadI storeI );
 14076   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 14077   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 14078 %}
 14080 //----------SMARTSPILL RULES---------------------------------------------------
 14081 // These must follow all instruction definitions as they use the names
 14082 // defined in the instructions definitions.

mercurial