src/cpu/x86/vm/x86_32.ad

Sat, 06 Nov 2010 18:52:07 -0700

author
kvn
date
Sat, 06 Nov 2010 18:52:07 -0700
changeset 2275
2fe998383789
parent 2269
ae065c367d93
child 2350
2f644f85485d
permissions
-rw-r--r--

6997311: SIGFPE in new long division asm code
Summary: use unsigned DIV instruction
Reviewed-by: never

     1 //
     2 // Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_CC()
   357 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   358   unsigned char c = (unsigned char)( f1 | f2 );
   359   cbuf.insts()->emit_int8(c);
   360 }
   362 // EMIT_OPCODE()
   363 void emit_opcode(CodeBuffer &cbuf, int code) {
   364   cbuf.insts()->emit_int8((unsigned char) code);
   365 }
   367 // EMIT_OPCODE() w/ relocation information
   368 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   369   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   370   emit_opcode(cbuf, code);
   371 }
   373 // EMIT_D8()
   374 void emit_d8(CodeBuffer &cbuf, int d8) {
   375   cbuf.insts()->emit_int8((unsigned char) d8);
   376 }
   378 // EMIT_D16()
   379 void emit_d16(CodeBuffer &cbuf, int d16) {
   380   cbuf.insts()->emit_int16(d16);
   381 }
   383 // EMIT_D32()
   384 void emit_d32(CodeBuffer &cbuf, int d32) {
   385   cbuf.insts()->emit_int32(d32);
   386 }
   388 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   389 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   390         int format) {
   391   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   392   cbuf.insts()->emit_int32(d32);
   393 }
   395 // emit 32 bit value and construct relocation entry from RelocationHolder
   396 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   397         int format) {
   398 #ifdef ASSERT
   399   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   400     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   401   }
   402 #endif
   403   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   404   cbuf.insts()->emit_int32(d32);
   405 }
   407 // Access stack slot for load or store
   408 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   409   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   410   if( -128 <= disp && disp <= 127 ) {
   411     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   412     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   413     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   414   } else {
   415     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   416     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   417     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   418   }
   419 }
   421    // eRegI ereg, memory mem) %{    // emit_reg_mem
   422 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   423   // There is no index & no scale, use form without SIB byte
   424   if ((index == 0x4) &&
   425       (scale == 0) && (base != ESP_enc)) {
   426     // If no displacement, mode is 0x0; unless base is [EBP]
   427     if ( (displace == 0) && (base != EBP_enc) ) {
   428       emit_rm(cbuf, 0x0, reg_encoding, base);
   429     }
   430     else {                    // If 8-bit displacement, mode 0x1
   431       if ((displace >= -128) && (displace <= 127)
   432           && !(displace_is_oop) ) {
   433         emit_rm(cbuf, 0x1, reg_encoding, base);
   434         emit_d8(cbuf, displace);
   435       }
   436       else {                  // If 32-bit displacement
   437         if (base == -1) { // Special flag for absolute address
   438           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   439           // (manual lies; no SIB needed here)
   440           if ( displace_is_oop ) {
   441             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   442           } else {
   443             emit_d32      (cbuf, displace);
   444           }
   445         }
   446         else {                // Normal base + offset
   447           emit_rm(cbuf, 0x2, reg_encoding, base);
   448           if ( displace_is_oop ) {
   449             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   450           } else {
   451             emit_d32      (cbuf, displace);
   452           }
   453         }
   454       }
   455     }
   456   }
   457   else {                      // Else, encode with the SIB byte
   458     // If no displacement, mode is 0x0; unless base is [EBP]
   459     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   460       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   461       emit_rm(cbuf, scale, index, base);
   462     }
   463     else {                    // If 8-bit displacement, mode 0x1
   464       if ((displace >= -128) && (displace <= 127)
   465           && !(displace_is_oop) ) {
   466         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   467         emit_rm(cbuf, scale, index, base);
   468         emit_d8(cbuf, displace);
   469       }
   470       else {                  // If 32-bit displacement
   471         if (base == 0x04 ) {
   472           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   473           emit_rm(cbuf, scale, index, 0x04);
   474         } else {
   475           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   476           emit_rm(cbuf, scale, index, base);
   477         }
   478         if ( displace_is_oop ) {
   479           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   480         } else {
   481           emit_d32      (cbuf, displace);
   482         }
   483       }
   484     }
   485   }
   486 }
   489 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   490   if( dst_encoding == src_encoding ) {
   491     // reg-reg copy, use an empty encoding
   492   } else {
   493     emit_opcode( cbuf, 0x8B );
   494     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   495   }
   496 }
   498 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   499   if( dst_encoding == src_encoding ) {
   500     // reg-reg copy, use an empty encoding
   501   } else {
   502     MacroAssembler _masm(&cbuf);
   504     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   505   }
   506 }
   509 //=============================================================================
   510 #ifndef PRODUCT
   511 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   512   Compile* C = ra_->C;
   513   if( C->in_24_bit_fp_mode() ) {
   514     st->print("FLDCW  24 bit fpu control word");
   515     st->print_cr(""); st->print("\t");
   516   }
   518   int framesize = C->frame_slots() << LogBytesPerInt;
   519   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   520   // Remove two words for return addr and rbp,
   521   framesize -= 2*wordSize;
   523   // Calls to C2R adapters often do not accept exceptional returns.
   524   // We require that their callers must bang for them.  But be careful, because
   525   // some VM calls (such as call site linkage) can use several kilobytes of
   526   // stack.  But the stack safety zone should account for that.
   527   // See bugs 4446381, 4468289, 4497237.
   528   if (C->need_stack_bang(framesize)) {
   529     st->print_cr("# stack bang"); st->print("\t");
   530   }
   531   st->print_cr("PUSHL  EBP"); st->print("\t");
   533   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   534     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   535     st->print_cr(""); st->print("\t");
   536     framesize -= wordSize;
   537   }
   539   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   540     if (framesize) {
   541       st->print("SUB    ESP,%d\t# Create frame",framesize);
   542     }
   543   } else {
   544     st->print("SUB    ESP,%d\t# Create frame",framesize);
   545   }
   546 }
   547 #endif
   550 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   551   Compile* C = ra_->C;
   553   if (UseSSE >= 2 && VerifyFPU) {
   554     MacroAssembler masm(&cbuf);
   555     masm.verify_FPU(0, "FPU stack must be clean on entry");
   556   }
   558   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   559   // NativeJump::patch_verified_entry will be able to patch out the entry
   560   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   561   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   562   // 6 bytes. So if we don't do the fldcw or the push then we must
   563   // use the 6 byte frame allocation even if we have no frame. :-(
   564   // If method sets FPU control word do it now
   565   if( C->in_24_bit_fp_mode() ) {
   566     MacroAssembler masm(&cbuf);
   567     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   568   }
   570   int framesize = C->frame_slots() << LogBytesPerInt;
   571   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   572   // Remove two words for return addr and rbp,
   573   framesize -= 2*wordSize;
   575   // Calls to C2R adapters often do not accept exceptional returns.
   576   // We require that their callers must bang for them.  But be careful, because
   577   // some VM calls (such as call site linkage) can use several kilobytes of
   578   // stack.  But the stack safety zone should account for that.
   579   // See bugs 4446381, 4468289, 4497237.
   580   if (C->need_stack_bang(framesize)) {
   581     MacroAssembler masm(&cbuf);
   582     masm.generate_stack_overflow_check(framesize);
   583   }
   585   // We always push rbp, so that on return to interpreter rbp, will be
   586   // restored correctly and we can correct the stack.
   587   emit_opcode(cbuf, 0x50 | EBP_enc);
   589   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   590     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   591     emit_d32(cbuf, 0xbadb100d);
   592     framesize -= wordSize;
   593   }
   595   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   596     if (framesize) {
   597       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   598       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   599       emit_d8(cbuf, framesize);
   600     }
   601   } else {
   602     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   603     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   604     emit_d32(cbuf, framesize);
   605   }
   606   C->set_frame_complete(cbuf.insts_size());
   608 #ifdef ASSERT
   609   if (VerifyStackAtCalls) {
   610     Label L;
   611     MacroAssembler masm(&cbuf);
   612     masm.push(rax);
   613     masm.mov(rax, rsp);
   614     masm.andptr(rax, StackAlignmentInBytes-1);
   615     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   616     masm.pop(rax);
   617     masm.jcc(Assembler::equal, L);
   618     masm.stop("Stack is not properly aligned!");
   619     masm.bind(L);
   620   }
   621 #endif
   623 }
   625 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   626   return MachNode::size(ra_); // too many variables; just compute it the hard way
   627 }
   629 int MachPrologNode::reloc() const {
   630   return 0; // a large enough number
   631 }
   633 //=============================================================================
   634 #ifndef PRODUCT
   635 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   636   Compile *C = ra_->C;
   637   int framesize = C->frame_slots() << LogBytesPerInt;
   638   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   639   // Remove two words for return addr and rbp,
   640   framesize -= 2*wordSize;
   642   if( C->in_24_bit_fp_mode() ) {
   643     st->print("FLDCW  standard control word");
   644     st->cr(); st->print("\t");
   645   }
   646   if( framesize ) {
   647     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   648     st->cr(); st->print("\t");
   649   }
   650   st->print_cr("POPL   EBP"); st->print("\t");
   651   if( do_polling() && C->is_method_compilation() ) {
   652     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   653     st->cr(); st->print("\t");
   654   }
   655 }
   656 #endif
   658 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   659   Compile *C = ra_->C;
   661   // If method set FPU control word, restore to standard control word
   662   if( C->in_24_bit_fp_mode() ) {
   663     MacroAssembler masm(&cbuf);
   664     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   665   }
   667   int framesize = C->frame_slots() << LogBytesPerInt;
   668   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   669   // Remove two words for return addr and rbp,
   670   framesize -= 2*wordSize;
   672   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   674   if( framesize >= 128 ) {
   675     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   676     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   677     emit_d32(cbuf, framesize);
   678   }
   679   else if( framesize ) {
   680     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   681     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   682     emit_d8(cbuf, framesize);
   683   }
   685   emit_opcode(cbuf, 0x58 | EBP_enc);
   687   if( do_polling() && C->is_method_compilation() ) {
   688     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   689     emit_opcode(cbuf,0x85);
   690     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   691     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   692   }
   693 }
   695 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   696   Compile *C = ra_->C;
   697   // If method set FPU control word, restore to standard control word
   698   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   699   if( do_polling() && C->is_method_compilation() ) size += 6;
   701   int framesize = C->frame_slots() << LogBytesPerInt;
   702   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   703   // Remove two words for return addr and rbp,
   704   framesize -= 2*wordSize;
   706   size++; // popl rbp,
   708   if( framesize >= 128 ) {
   709     size += 6;
   710   } else {
   711     size += framesize ? 3 : 0;
   712   }
   713   return size;
   714 }
   716 int MachEpilogNode::reloc() const {
   717   return 0; // a large enough number
   718 }
   720 const Pipeline * MachEpilogNode::pipeline() const {
   721   return MachNode::pipeline_class();
   722 }
   724 int MachEpilogNode::safepoint_offset() const { return 0; }
   726 //=============================================================================
   728 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   729 static enum RC rc_class( OptoReg::Name reg ) {
   731   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   732   if (OptoReg::is_stack(reg)) return rc_stack;
   734   VMReg r = OptoReg::as_VMReg(reg);
   735   if (r->is_Register()) return rc_int;
   736   if (r->is_FloatRegister()) {
   737     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   738     return rc_float;
   739   }
   740   assert(r->is_XMMRegister(), "must be");
   741   return rc_xmm;
   742 }
   744 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   745                         int opcode, const char *op_str, int size, outputStream* st ) {
   746   if( cbuf ) {
   747     emit_opcode  (*cbuf, opcode );
   748     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   749 #ifndef PRODUCT
   750   } else if( !do_size ) {
   751     if( size != 0 ) st->print("\n\t");
   752     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   753       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   754       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   755     } else { // FLD, FST, PUSH, POP
   756       st->print("%s [ESP + #%d]",op_str,offset);
   757     }
   758 #endif
   759   }
   760   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   761   return size+3+offset_size;
   762 }
   764 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   765 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   766                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   767   if( cbuf ) {
   768     if( reg_lo+1 == reg_hi ) { // double move?
   769       if( is_load && !UseXmmLoadAndClearUpper )
   770         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   771       else
   772         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   773     } else {
   774       emit_opcode(*cbuf, 0xF3 );
   775     }
   776     emit_opcode(*cbuf, 0x0F );
   777     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   778       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   779     else
   780       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   781     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   782 #ifndef PRODUCT
   783   } else if( !do_size ) {
   784     if( size != 0 ) st->print("\n\t");
   785     if( reg_lo+1 == reg_hi ) { // double move?
   786       if( is_load ) st->print("%s %s,[ESP + #%d]",
   787                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   788                                Matcher::regName[reg_lo], offset);
   789       else          st->print("MOVSD  [ESP + #%d],%s",
   790                                offset, Matcher::regName[reg_lo]);
   791     } else {
   792       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   793                                Matcher::regName[reg_lo], offset);
   794       else          st->print("MOVSS  [ESP + #%d],%s",
   795                                offset, Matcher::regName[reg_lo]);
   796     }
   797 #endif
   798   }
   799   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   800   return size+5+offset_size;
   801 }
   804 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   805                             int src_hi, int dst_hi, int size, outputStream* st ) {
   806   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   807     if( cbuf ) {
   808       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   809         emit_opcode(*cbuf, 0x66 );
   810       }
   811       emit_opcode(*cbuf, 0x0F );
   812       emit_opcode(*cbuf, 0x28 );
   813       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   814 #ifndef PRODUCT
   815     } else if( !do_size ) {
   816       if( size != 0 ) st->print("\n\t");
   817       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   818         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   819       } else {
   820         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   821       }
   822 #endif
   823     }
   824     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   825   } else {
   826     if( cbuf ) {
   827       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   828       emit_opcode(*cbuf, 0x0F );
   829       emit_opcode(*cbuf, 0x10 );
   830       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   831 #ifndef PRODUCT
   832     } else if( !do_size ) {
   833       if( size != 0 ) st->print("\n\t");
   834       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   835         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   836       } else {
   837         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   838       }
   839 #endif
   840     }
   841     return size+4;
   842   }
   843 }
   845 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   846                             int src_hi, int dst_hi, int size, outputStream* st ) {
   847   // 32-bit
   848   if (cbuf) {
   849     emit_opcode(*cbuf, 0x66);
   850     emit_opcode(*cbuf, 0x0F);
   851     emit_opcode(*cbuf, 0x6E);
   852     emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
   853 #ifndef PRODUCT
   854   } else if (!do_size) {
   855     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   856 #endif
   857   }
   858   return 4;
   859 }
   862 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   863                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   864   // 32-bit
   865   if (cbuf) {
   866     emit_opcode(*cbuf, 0x66);
   867     emit_opcode(*cbuf, 0x0F);
   868     emit_opcode(*cbuf, 0x7E);
   869     emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
   870 #ifndef PRODUCT
   871   } else if (!do_size) {
   872     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   873 #endif
   874   }
   875   return 4;
   876 }
   878 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   879   if( cbuf ) {
   880     emit_opcode(*cbuf, 0x8B );
   881     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   882 #ifndef PRODUCT
   883   } else if( !do_size ) {
   884     if( size != 0 ) st->print("\n\t");
   885     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   886 #endif
   887   }
   888   return size+2;
   889 }
   891 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   892                                  int offset, int size, outputStream* st ) {
   893   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   894     if( cbuf ) {
   895       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   896       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   897 #ifndef PRODUCT
   898     } else if( !do_size ) {
   899       if( size != 0 ) st->print("\n\t");
   900       st->print("FLD    %s",Matcher::regName[src_lo]);
   901 #endif
   902     }
   903     size += 2;
   904   }
   906   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   907   const char *op_str;
   908   int op;
   909   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   910     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   911     op = 0xDD;
   912   } else {                   // 32-bit store
   913     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   914     op = 0xD9;
   915     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   916   }
   918   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   919 }
   921 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   922   // Get registers to move
   923   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   924   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   925   OptoReg::Name dst_second = ra_->get_reg_second(this );
   926   OptoReg::Name dst_first = ra_->get_reg_first(this );
   928   enum RC src_second_rc = rc_class(src_second);
   929   enum RC src_first_rc = rc_class(src_first);
   930   enum RC dst_second_rc = rc_class(dst_second);
   931   enum RC dst_first_rc = rc_class(dst_first);
   933   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   935   // Generate spill code!
   936   int size = 0;
   938   if( src_first == dst_first && src_second == dst_second )
   939     return size;            // Self copy, no move
   941   // --------------------------------------
   942   // Check for mem-mem move.  push/pop to move.
   943   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   944     if( src_second == dst_first ) { // overlapping stack copy ranges
   945       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   946       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   947       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   948       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   949     }
   950     // move low bits
   951     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   952     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   953     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   954       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   955       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   956     }
   957     return size;
   958   }
   960   // --------------------------------------
   961   // Check for integer reg-reg copy
   962   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   963     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   965   // Check for integer store
   966   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   967     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   969   // Check for integer load
   970   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   971     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   973   // Check for integer reg-xmm reg copy
   974   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   975     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   976             "no 64 bit integer-float reg moves" );
   977     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   978   }
   979   // --------------------------------------
   980   // Check for float reg-reg copy
   981   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   982     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   983             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   984     if( cbuf ) {
   986       // Note the mucking with the register encode to compensate for the 0/1
   987       // indexing issue mentioned in a comment in the reg_def sections
   988       // for FPR registers many lines above here.
   990       if( src_first != FPR1L_num ) {
   991         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   992         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   993         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   994         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   995      } else {
   996         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   997         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   998      }
   999 #ifndef PRODUCT
  1000     } else if( !do_size ) {
  1001       if( size != 0 ) st->print("\n\t");
  1002       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1003       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1004 #endif
  1006     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1009   // Check for float store
  1010   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1011     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1014   // Check for float load
  1015   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1016     int offset = ra_->reg2offset(src_first);
  1017     const char *op_str;
  1018     int op;
  1019     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1020       op_str = "FLD_D";
  1021       op = 0xDD;
  1022     } else {                   // 32-bit load
  1023       op_str = "FLD_S";
  1024       op = 0xD9;
  1025       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1027     if( cbuf ) {
  1028       emit_opcode  (*cbuf, op );
  1029       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1030       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1031       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1032 #ifndef PRODUCT
  1033     } else if( !do_size ) {
  1034       if( size != 0 ) st->print("\n\t");
  1035       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1036 #endif
  1038     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1039     return size + 3+offset_size+2;
  1042   // Check for xmm reg-reg copy
  1043   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1044     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1045             (src_first+1 == src_second && dst_first+1 == dst_second),
  1046             "no non-adjacent float-moves" );
  1047     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1050   // Check for xmm reg-integer reg copy
  1051   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1052     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1053             "no 64 bit float-integer reg moves" );
  1054     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1057   // Check for xmm store
  1058   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1059     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1062   // Check for float xmm load
  1063   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1064     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1067   // Copy from float reg to xmm reg
  1068   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1069     // copy to the top of stack from floating point reg
  1070     // and use LEA to preserve flags
  1071     if( cbuf ) {
  1072       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1073       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1074       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1075       emit_d8(*cbuf,0xF8);
  1076 #ifndef PRODUCT
  1077     } else if( !do_size ) {
  1078       if( size != 0 ) st->print("\n\t");
  1079       st->print("LEA    ESP,[ESP-8]");
  1080 #endif
  1082     size += 4;
  1084     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1086     // Copy from the temp memory to the xmm reg.
  1087     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1089     if( cbuf ) {
  1090       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1091       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1092       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1093       emit_d8(*cbuf,0x08);
  1094 #ifndef PRODUCT
  1095     } else if( !do_size ) {
  1096       if( size != 0 ) st->print("\n\t");
  1097       st->print("LEA    ESP,[ESP+8]");
  1098 #endif
  1100     size += 4;
  1101     return size;
  1104   assert( size > 0, "missed a case" );
  1106   // --------------------------------------------------------------------
  1107   // Check for second bits still needing moving.
  1108   if( src_second == dst_second )
  1109     return size;               // Self copy; no move
  1110   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1112   // Check for second word int-int move
  1113   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1114     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1116   // Check for second word integer store
  1117   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1118     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1120   // Check for second word integer load
  1121   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1122     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1125   Unimplemented();
  1128 #ifndef PRODUCT
  1129 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1130   implementation( NULL, ra_, false, st );
  1132 #endif
  1134 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1135   implementation( &cbuf, ra_, false, NULL );
  1138 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1139   return implementation( NULL, ra_, true, NULL );
  1142 //=============================================================================
  1143 #ifndef PRODUCT
  1144 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1145   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1147 #endif
  1149 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1150   MacroAssembler _masm(&cbuf);
  1151   __ nop(_count);
  1154 uint MachNopNode::size(PhaseRegAlloc *) const {
  1155   return _count;
  1159 //=============================================================================
  1160 #ifndef PRODUCT
  1161 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1162   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1163   int reg = ra_->get_reg_first(this);
  1164   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1166 #endif
  1168 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1169   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1170   int reg = ra_->get_encode(this);
  1171   if( offset >= 128 ) {
  1172     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1173     emit_rm(cbuf, 0x2, reg, 0x04);
  1174     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1175     emit_d32(cbuf, offset);
  1177   else {
  1178     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1179     emit_rm(cbuf, 0x1, reg, 0x04);
  1180     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1181     emit_d8(cbuf, offset);
  1185 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1186   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1187   if( offset >= 128 ) {
  1188     return 7;
  1190   else {
  1191     return 4;
  1195 //=============================================================================
  1197 // emit call stub, compiled java to interpreter
  1198 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1199   // Stub is fixed up when the corresponding call is converted from calling
  1200   // compiled code to calling interpreted code.
  1201   // mov rbx,0
  1202   // jmp -1
  1204   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1206   // Note that the code buffer's insts_mark is always relative to insts.
  1207   // That's why we must use the macroassembler to generate a stub.
  1208   MacroAssembler _masm(&cbuf);
  1210   address base =
  1211   __ start_a_stub(Compile::MAX_stubs_size);
  1212   if (base == NULL)  return;  // CodeBuffer::expand failed
  1213   // static stub relocation stores the instruction address of the call
  1214   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1215   // static stub relocation also tags the methodOop in the code-stream.
  1216   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1217   // This is recognized as unresolved by relocs/nativeInst/ic code
  1218   __ jump(RuntimeAddress(__ pc()));
  1220   __ end_a_stub();
  1221   // Update current stubs pointer and restore insts_end.
  1223 // size of call stub, compiled java to interpretor
  1224 uint size_java_to_interp() {
  1225   return 10;  // movl; jmp
  1227 // relocation entries for call stub, compiled java to interpretor
  1228 uint reloc_java_to_interp() {
  1229   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1232 //=============================================================================
  1233 #ifndef PRODUCT
  1234 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1235   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1236   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1237   st->print_cr("\tNOP");
  1238   st->print_cr("\tNOP");
  1239   if( !OptoBreakpoint )
  1240     st->print_cr("\tNOP");
  1242 #endif
  1244 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1245   MacroAssembler masm(&cbuf);
  1246 #ifdef ASSERT
  1247   uint insts_size = cbuf.insts_size();
  1248 #endif
  1249   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1250   masm.jump_cc(Assembler::notEqual,
  1251                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1252   /* WARNING these NOPs are critical so that verified entry point is properly
  1253      aligned for patching by NativeJump::patch_verified_entry() */
  1254   int nops_cnt = 2;
  1255   if( !OptoBreakpoint ) // Leave space for int3
  1256      nops_cnt += 1;
  1257   masm.nop(nops_cnt);
  1259   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1262 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1263   return OptoBreakpoint ? 11 : 12;
  1267 //=============================================================================
  1268 uint size_exception_handler() {
  1269   // NativeCall instruction size is the same as NativeJump.
  1270   // exception handler starts out as jump and can be patched to
  1271   // a call be deoptimization.  (4932387)
  1272   // Note that this value is also credited (in output.cpp) to
  1273   // the size of the code section.
  1274   return NativeJump::instruction_size;
  1277 // Emit exception handler code.  Stuff framesize into a register
  1278 // and call a VM stub routine.
  1279 int emit_exception_handler(CodeBuffer& cbuf) {
  1281   // Note that the code buffer's insts_mark is always relative to insts.
  1282   // That's why we must use the macroassembler to generate a handler.
  1283   MacroAssembler _masm(&cbuf);
  1284   address base =
  1285   __ start_a_stub(size_exception_handler());
  1286   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1287   int offset = __ offset();
  1288   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1289   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1290   __ end_a_stub();
  1291   return offset;
  1294 uint size_deopt_handler() {
  1295   // NativeCall instruction size is the same as NativeJump.
  1296   // exception handler starts out as jump and can be patched to
  1297   // a call be deoptimization.  (4932387)
  1298   // Note that this value is also credited (in output.cpp) to
  1299   // the size of the code section.
  1300   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1303 // Emit deopt handler code.
  1304 int emit_deopt_handler(CodeBuffer& cbuf) {
  1306   // Note that the code buffer's insts_mark is always relative to insts.
  1307   // That's why we must use the macroassembler to generate a handler.
  1308   MacroAssembler _masm(&cbuf);
  1309   address base =
  1310   __ start_a_stub(size_exception_handler());
  1311   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1312   int offset = __ offset();
  1313   InternalAddress here(__ pc());
  1314   __ pushptr(here.addr());
  1316   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1317   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1318   __ end_a_stub();
  1319   return offset;
  1323 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1324   int mark = cbuf.insts()->mark_off();
  1325   MacroAssembler _masm(&cbuf);
  1326   address double_address = __ double_constant(x);
  1327   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1328   emit_d32_reloc(cbuf,
  1329                  (int)double_address,
  1330                  internal_word_Relocation::spec(double_address),
  1331                  RELOC_DISP32);
  1334 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1335   int mark = cbuf.insts()->mark_off();
  1336   MacroAssembler _masm(&cbuf);
  1337   address float_address = __ float_constant(x);
  1338   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1339   emit_d32_reloc(cbuf,
  1340                  (int)float_address,
  1341                  internal_word_Relocation::spec(float_address),
  1342                  RELOC_DISP32);
  1346 const bool Matcher::match_rule_supported(int opcode) {
  1347   if (!has_match_rule(opcode))
  1348     return false;
  1350   return true;  // Per default match rules are supported.
  1353 int Matcher::regnum_to_fpu_offset(int regnum) {
  1354   return regnum - 32; // The FP registers are in the second chunk
  1357 bool is_positive_zero_float(jfloat f) {
  1358   return jint_cast(f) == jint_cast(0.0F);
  1361 bool is_positive_one_float(jfloat f) {
  1362   return jint_cast(f) == jint_cast(1.0F);
  1365 bool is_positive_zero_double(jdouble d) {
  1366   return jlong_cast(d) == jlong_cast(0.0);
  1369 bool is_positive_one_double(jdouble d) {
  1370   return jlong_cast(d) == jlong_cast(1.0);
  1373 // This is UltraSparc specific, true just means we have fast l2f conversion
  1374 const bool Matcher::convL2FSupported(void) {
  1375   return true;
  1378 // Vector width in bytes
  1379 const uint Matcher::vector_width_in_bytes(void) {
  1380   return UseSSE >= 2 ? 8 : 0;
  1383 // Vector ideal reg
  1384 const uint Matcher::vector_ideal_reg(void) {
  1385   return Op_RegD;
  1388 // Is this branch offset short enough that a short branch can be used?
  1389 //
  1390 // NOTE: If the platform does not provide any short branch variants, then
  1391 //       this method should return false for offset 0.
  1392 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1393   // the short version of jmpConUCF2 contains multiple branches,
  1394   // making the reach slightly less
  1395   if (rule == jmpConUCF2_rule)
  1396     return (-126 <= offset && offset <= 125);
  1397   return (-128 <= offset && offset <= 127);
  1400 const bool Matcher::isSimpleConstant64(jlong value) {
  1401   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1402   return false;
  1405 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1406 const bool Matcher::init_array_count_is_in_bytes = false;
  1408 // Threshold size for cleararray.
  1409 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1411 // Should the Matcher clone shifts on addressing modes, expecting them to
  1412 // be subsumed into complex addressing expressions or compute them into
  1413 // registers?  True for Intel but false for most RISCs
  1414 const bool Matcher::clone_shift_expressions = true;
  1416 bool Matcher::narrow_oop_use_complex_address() {
  1417   ShouldNotCallThis();
  1418   return true;
  1422 // Is it better to copy float constants, or load them directly from memory?
  1423 // Intel can load a float constant from a direct address, requiring no
  1424 // extra registers.  Most RISCs will have to materialize an address into a
  1425 // register first, so they would do better to copy the constant from stack.
  1426 const bool Matcher::rematerialize_float_constants = true;
  1428 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1429 // needed.  Else we split the double into 2 integer pieces and move it
  1430 // piece-by-piece.  Only happens when passing doubles into C code as the
  1431 // Java calling convention forces doubles to be aligned.
  1432 const bool Matcher::misaligned_doubles_ok = true;
  1435 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1436   // Get the memory operand from the node
  1437   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1438   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1439   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1440   uint opcnt     = 1;                 // First operand
  1441   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1442   while( idx >= skipped+num_edges ) {
  1443     skipped += num_edges;
  1444     opcnt++;                          // Bump operand count
  1445     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1446     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1449   MachOper *memory = node->_opnds[opcnt];
  1450   MachOper *new_memory = NULL;
  1451   switch (memory->opcode()) {
  1452   case DIRECT:
  1453   case INDOFFSET32X:
  1454     // No transformation necessary.
  1455     return;
  1456   case INDIRECT:
  1457     new_memory = new (C) indirect_win95_safeOper( );
  1458     break;
  1459   case INDOFFSET8:
  1460     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1461     break;
  1462   case INDOFFSET32:
  1463     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1464     break;
  1465   case INDINDEXOFFSET:
  1466     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1467     break;
  1468   case INDINDEXSCALE:
  1469     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1470     break;
  1471   case INDINDEXSCALEOFFSET:
  1472     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1473     break;
  1474   case LOAD_LONG_INDIRECT:
  1475   case LOAD_LONG_INDOFFSET32:
  1476     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1477     return;
  1478   default:
  1479     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1480     return;
  1482   node->_opnds[opcnt] = new_memory;
  1485 // Advertise here if the CPU requires explicit rounding operations
  1486 // to implement the UseStrictFP mode.
  1487 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1489 // Are floats conerted to double when stored to stack during deoptimization?
  1490 // On x32 it is stored with convertion only when FPU is used for floats.
  1491 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1493 // Do ints take an entire long register or just half?
  1494 const bool Matcher::int_in_long = false;
  1496 // Return whether or not this register is ever used as an argument.  This
  1497 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1498 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1499 // arguments in those registers not be available to the callee.
  1500 bool Matcher::can_be_java_arg( int reg ) {
  1501   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1502   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1503   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1504   return false;
  1507 bool Matcher::is_spillable_arg( int reg ) {
  1508   return can_be_java_arg(reg);
  1511 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1512   // Use hardware integer DIV instruction when
  1513   // it is faster than a code which use multiply.
  1514   // Only when constant divisor fits into 32 bit
  1515   // (min_jint is excluded to get only correct
  1516   // positive 32 bit values from negative).
  1517   return VM_Version::has_fast_idiv() &&
  1518          (divisor == (int)divisor && divisor != min_jint);
  1521 // Register for DIVI projection of divmodI
  1522 RegMask Matcher::divI_proj_mask() {
  1523   return EAX_REG_mask;
  1526 // Register for MODI projection of divmodI
  1527 RegMask Matcher::modI_proj_mask() {
  1528   return EDX_REG_mask;
  1531 // Register for DIVL projection of divmodL
  1532 RegMask Matcher::divL_proj_mask() {
  1533   ShouldNotReachHere();
  1534   return RegMask();
  1537 // Register for MODL projection of divmodL
  1538 RegMask Matcher::modL_proj_mask() {
  1539   ShouldNotReachHere();
  1540   return RegMask();
  1543 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1544   return EBP_REG_mask;
  1547 // Returns true if the high 32 bits of the value is known to be zero.
  1548 bool is_operand_hi32_zero(Node* n) {
  1549   int opc = n->Opcode();
  1550   if (opc == Op_LoadUI2L) {
  1551     return true;
  1553   if (opc == Op_AndL) {
  1554     Node* o2 = n->in(2);
  1555     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1556       return true;
  1559   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1560     return true;
  1562   return false;
  1565 %}
  1567 //----------ENCODING BLOCK-----------------------------------------------------
  1568 // This block specifies the encoding classes used by the compiler to output
  1569 // byte streams.  Encoding classes generate functions which are called by
  1570 // Machine Instruction Nodes in order to generate the bit encoding of the
  1571 // instruction.  Operands specify their base encoding interface with the
  1572 // interface keyword.  There are currently supported four interfaces,
  1573 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1574 // operand to generate a function which returns its register number when
  1575 // queried.   CONST_INTER causes an operand to generate a function which
  1576 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1577 // operand to generate four functions which return the Base Register, the
  1578 // Index Register, the Scale Value, and the Offset Value of the operand when
  1579 // queried.  COND_INTER causes an operand to generate six functions which
  1580 // return the encoding code (ie - encoding bits for the instruction)
  1581 // associated with each basic boolean condition for a conditional instruction.
  1582 // Instructions specify two basic values for encoding.  They use the
  1583 // ins_encode keyword to specify their encoding class (which must be one of
  1584 // the class names specified in the encoding block), and they use the
  1585 // opcode keyword to specify, in order, their primary, secondary, and
  1586 // tertiary opcode.  Only the opcode sections which a particular instruction
  1587 // needs for encoding need to be specified.
  1588 encode %{
  1589   // Build emit functions for each basic byte or larger field in the intel
  1590   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1591   // code in the enc_class source block.  Emit functions will live in the
  1592   // main source block for now.  In future, we can generalize this by
  1593   // adding a syntax that specifies the sizes of fields in an order,
  1594   // so that the adlc can build the emit functions automagically
  1596   // Emit primary opcode
  1597   enc_class OpcP %{
  1598     emit_opcode(cbuf, $primary);
  1599   %}
  1601   // Emit secondary opcode
  1602   enc_class OpcS %{
  1603     emit_opcode(cbuf, $secondary);
  1604   %}
  1606   // Emit opcode directly
  1607   enc_class Opcode(immI d8) %{
  1608     emit_opcode(cbuf, $d8$$constant);
  1609   %}
  1611   enc_class SizePrefix %{
  1612     emit_opcode(cbuf,0x66);
  1613   %}
  1615   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1616     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1617   %}
  1619   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1620     emit_opcode(cbuf,$opcode$$constant);
  1621     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1622   %}
  1624   enc_class mov_r32_imm0( eRegI dst ) %{
  1625     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1626     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1627   %}
  1629   enc_class cdq_enc %{
  1630     // Full implementation of Java idiv and irem; checks for
  1631     // special case as described in JVM spec., p.243 & p.271.
  1632     //
  1633     //         normal case                           special case
  1634     //
  1635     // input : rax,: dividend                         min_int
  1636     //         reg: divisor                          -1
  1637     //
  1638     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1639     //         rdx: remainder (= rax, irem reg)       0
  1640     //
  1641     //  Code sequnce:
  1642     //
  1643     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1644     //  0F 85 0B 00 00 00    jne         normal_case
  1645     //  33 D2                xor         rdx,edx
  1646     //  83 F9 FF             cmp         rcx,0FFh
  1647     //  0F 84 03 00 00 00    je          done
  1648     //                  normal_case:
  1649     //  99                   cdq
  1650     //  F7 F9                idiv        rax,ecx
  1651     //                  done:
  1652     //
  1653     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1654     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1655     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1656     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1657     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1658     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1659     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1660     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1661     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1662     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1663     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1664     // normal_case:
  1665     emit_opcode(cbuf,0x99);                                         // cdq
  1666     // idiv (note: must be emitted by the user of this rule)
  1667     // normal:
  1668   %}
  1670   // Dense encoding for older common ops
  1671   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1672     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1673   %}
  1676   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1677   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1678     // Check for 8-bit immediate, and set sign extend bit in opcode
  1679     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1680       emit_opcode(cbuf, $primary | 0x02);
  1682     else {                          // If 32-bit immediate
  1683       emit_opcode(cbuf, $primary);
  1685   %}
  1687   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1688     // Emit primary opcode and set sign-extend bit
  1689     // Check for 8-bit immediate, and set sign extend bit in opcode
  1690     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1691       emit_opcode(cbuf, $primary | 0x02);    }
  1692     else {                          // If 32-bit immediate
  1693       emit_opcode(cbuf, $primary);
  1695     // Emit r/m byte with secondary opcode, after primary opcode.
  1696     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1697   %}
  1699   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1700     // Check for 8-bit immediate, and set sign extend bit in opcode
  1701     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1702       $$$emit8$imm$$constant;
  1704     else {                          // If 32-bit immediate
  1705       // Output immediate
  1706       $$$emit32$imm$$constant;
  1708   %}
  1710   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1711     // Emit primary opcode and set sign-extend bit
  1712     // Check for 8-bit immediate, and set sign extend bit in opcode
  1713     int con = (int)$imm$$constant; // Throw away top bits
  1714     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1715     // Emit r/m byte with secondary opcode, after primary opcode.
  1716     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1717     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1718     else                               emit_d32(cbuf,con);
  1719   %}
  1721   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1722     // Emit primary opcode and set sign-extend bit
  1723     // Check for 8-bit immediate, and set sign extend bit in opcode
  1724     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1725     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1726     // Emit r/m byte with tertiary opcode, after primary opcode.
  1727     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1728     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1729     else                               emit_d32(cbuf,con);
  1730   %}
  1732   enc_class Lbl (label labl) %{ // JMP, CALL
  1733     Label *l = $labl$$label;
  1734     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
  1735   %}
  1737   enc_class LblShort (label labl) %{ // JMP, CALL
  1738     Label *l = $labl$$label;
  1739     int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
  1740     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1741     emit_d8(cbuf, disp);
  1742   %}
  1744   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1745     emit_cc(cbuf, $secondary, $dst$$reg );
  1746   %}
  1748   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1749     int destlo = $dst$$reg;
  1750     int desthi = HIGH_FROM_LOW(destlo);
  1751     // bswap lo
  1752     emit_opcode(cbuf, 0x0F);
  1753     emit_cc(cbuf, 0xC8, destlo);
  1754     // bswap hi
  1755     emit_opcode(cbuf, 0x0F);
  1756     emit_cc(cbuf, 0xC8, desthi);
  1757     // xchg lo and hi
  1758     emit_opcode(cbuf, 0x87);
  1759     emit_rm(cbuf, 0x3, destlo, desthi);
  1760   %}
  1762   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1763     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1764   %}
  1766   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1767     Label *l = $labl$$label;
  1768     $$$emit8$primary;
  1769     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1770     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
  1771   %}
  1773   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1774     Label *l = $labl$$label;
  1775     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1776     int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
  1777     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1778     emit_d8(cbuf, disp);
  1779   %}
  1781   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1782     $$$emit8$primary;
  1783     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1784   %}
  1786   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1787     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1788     emit_d8(cbuf, op >> 8 );
  1789     emit_d8(cbuf, op & 255);
  1790   %}
  1792   // emulate a CMOV with a conditional branch around a MOV
  1793   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1794     // Invert sense of branch from sense of CMOV
  1795     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1796     emit_d8( cbuf, $brOffs$$constant );
  1797   %}
  1799   enc_class enc_PartialSubtypeCheck( ) %{
  1800     Register Redi = as_Register(EDI_enc); // result register
  1801     Register Reax = as_Register(EAX_enc); // super class
  1802     Register Recx = as_Register(ECX_enc); // killed
  1803     Register Resi = as_Register(ESI_enc); // sub class
  1804     Label miss;
  1806     MacroAssembler _masm(&cbuf);
  1807     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1808                                      NULL, &miss,
  1809                                      /*set_cond_codes:*/ true);
  1810     if ($primary) {
  1811       __ xorptr(Redi, Redi);
  1813     __ bind(miss);
  1814   %}
  1816   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1817     MacroAssembler masm(&cbuf);
  1818     int start = masm.offset();
  1819     if (UseSSE >= 2) {
  1820       if (VerifyFPU) {
  1821         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1823     } else {
  1824       // External c_calling_convention expects the FPU stack to be 'clean'.
  1825       // Compiled code leaves it dirty.  Do cleanup now.
  1826       masm.empty_FPU_stack();
  1828     if (sizeof_FFree_Float_Stack_All == -1) {
  1829       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1830     } else {
  1831       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1833   %}
  1835   enc_class Verify_FPU_For_Leaf %{
  1836     if( VerifyFPU ) {
  1837       MacroAssembler masm(&cbuf);
  1838       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1840   %}
  1842   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1843     // This is the instruction starting address for relocation info.
  1844     cbuf.set_insts_mark();
  1845     $$$emit8$primary;
  1846     // CALL directly to the runtime
  1847     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1848                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1850     if (UseSSE >= 2) {
  1851       MacroAssembler _masm(&cbuf);
  1852       BasicType rt = tf()->return_type();
  1854       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1855         // A C runtime call where the return value is unused.  In SSE2+
  1856         // mode the result needs to be removed from the FPU stack.  It's
  1857         // likely that this function call could be removed by the
  1858         // optimizer if the C function is a pure function.
  1859         __ ffree(0);
  1860       } else if (rt == T_FLOAT) {
  1861         __ lea(rsp, Address(rsp, -4));
  1862         __ fstp_s(Address(rsp, 0));
  1863         __ movflt(xmm0, Address(rsp, 0));
  1864         __ lea(rsp, Address(rsp,  4));
  1865       } else if (rt == T_DOUBLE) {
  1866         __ lea(rsp, Address(rsp, -8));
  1867         __ fstp_d(Address(rsp, 0));
  1868         __ movdbl(xmm0, Address(rsp, 0));
  1869         __ lea(rsp, Address(rsp,  8));
  1872   %}
  1875   enc_class pre_call_FPU %{
  1876     // If method sets FPU control word restore it here
  1877     debug_only(int off0 = cbuf.insts_size());
  1878     if( Compile::current()->in_24_bit_fp_mode() ) {
  1879       MacroAssembler masm(&cbuf);
  1880       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1882     debug_only(int off1 = cbuf.insts_size());
  1883     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1884   %}
  1886   enc_class post_call_FPU %{
  1887     // If method sets FPU control word do it here also
  1888     if( Compile::current()->in_24_bit_fp_mode() ) {
  1889       MacroAssembler masm(&cbuf);
  1890       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1892   %}
  1894   enc_class preserve_SP %{
  1895     debug_only(int off0 = cbuf.insts_size());
  1896     MacroAssembler _masm(&cbuf);
  1897     // RBP is preserved across all calls, even compiled calls.
  1898     // Use it to preserve RSP in places where the callee might change the SP.
  1899     __ movptr(rbp_mh_SP_save, rsp);
  1900     debug_only(int off1 = cbuf.insts_size());
  1901     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1902   %}
  1904   enc_class restore_SP %{
  1905     MacroAssembler _masm(&cbuf);
  1906     __ movptr(rsp, rbp_mh_SP_save);
  1907   %}
  1909   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1910     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1911     // who we intended to call.
  1912     cbuf.set_insts_mark();
  1913     $$$emit8$primary;
  1914     if ( !_method ) {
  1915       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1916                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1917     } else if(_optimized_virtual) {
  1918       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1919                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1920     } else {
  1921       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1922                      static_call_Relocation::spec(), RELOC_IMM32 );
  1924     if( _method ) {  // Emit stub for static call
  1925       emit_java_to_interp(cbuf);
  1927   %}
  1929   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1930     // !!!!!
  1931     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1932     // emit_call_dynamic_prologue( cbuf );
  1933     cbuf.set_insts_mark();
  1934     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1935     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1936     address  virtual_call_oop_addr = cbuf.insts_mark();
  1937     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1938     // who we intended to call.
  1939     cbuf.set_insts_mark();
  1940     $$$emit8$primary;
  1941     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1942                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1943   %}
  1945   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1946     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1947     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1949     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1950     cbuf.set_insts_mark();
  1951     $$$emit8$primary;
  1952     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1953     emit_d8(cbuf, disp);             // Displacement
  1955   %}
  1957   enc_class Xor_Reg (eRegI dst) %{
  1958     emit_opcode(cbuf, 0x33);
  1959     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1960   %}
  1962 //   Following encoding is no longer used, but may be restored if calling
  1963 //   convention changes significantly.
  1964 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1965 //
  1966 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1967 //     // int ic_reg     = Matcher::inline_cache_reg();
  1968 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1969 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1970 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1971 //
  1972 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1973 //     // // so we load it immediately before the call
  1974 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1975 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1976 //
  1977 //     // xor rbp,ebp
  1978 //     emit_opcode(cbuf, 0x33);
  1979 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1980 //
  1981 //     // CALL to interpreter.
  1982 //     cbuf.set_insts_mark();
  1983 //     $$$emit8$primary;
  1984 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1985 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1986 //   %}
  1988   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1989     $$$emit8$primary;
  1990     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1991     $$$emit8$shift$$constant;
  1992   %}
  1994   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1995     // Load immediate does not have a zero or sign extended version
  1996     // for 8-bit immediates
  1997     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1998     $$$emit32$src$$constant;
  1999   %}
  2001   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  2002     // Load immediate does not have a zero or sign extended version
  2003     // for 8-bit immediates
  2004     emit_opcode(cbuf, $primary + $dst$$reg);
  2005     $$$emit32$src$$constant;
  2006   %}
  2008   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  2009     // Load immediate does not have a zero or sign extended version
  2010     // for 8-bit immediates
  2011     int dst_enc = $dst$$reg;
  2012     int src_con = $src$$constant & 0x0FFFFFFFFL;
  2013     if (src_con == 0) {
  2014       // xor dst, dst
  2015       emit_opcode(cbuf, 0x33);
  2016       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2017     } else {
  2018       emit_opcode(cbuf, $primary + dst_enc);
  2019       emit_d32(cbuf, src_con);
  2021   %}
  2023   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  2024     // Load immediate does not have a zero or sign extended version
  2025     // for 8-bit immediates
  2026     int dst_enc = $dst$$reg + 2;
  2027     int src_con = ((julong)($src$$constant)) >> 32;
  2028     if (src_con == 0) {
  2029       // xor dst, dst
  2030       emit_opcode(cbuf, 0x33);
  2031       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  2032     } else {
  2033       emit_opcode(cbuf, $primary + dst_enc);
  2034       emit_d32(cbuf, src_con);
  2036   %}
  2039   enc_class LdImmD (immD src) %{    // Load Immediate
  2040     if( is_positive_zero_double($src$$constant)) {
  2041       // FLDZ
  2042       emit_opcode(cbuf,0xD9);
  2043       emit_opcode(cbuf,0xEE);
  2044     } else if( is_positive_one_double($src$$constant)) {
  2045       // FLD1
  2046       emit_opcode(cbuf,0xD9);
  2047       emit_opcode(cbuf,0xE8);
  2048     } else {
  2049       emit_opcode(cbuf,0xDD);
  2050       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2051       emit_double_constant(cbuf, $src$$constant);
  2053   %}
  2056   enc_class LdImmF (immF src) %{    // Load Immediate
  2057     if( is_positive_zero_float($src$$constant)) {
  2058       emit_opcode(cbuf,0xD9);
  2059       emit_opcode(cbuf,0xEE);
  2060     } else if( is_positive_one_float($src$$constant)) {
  2061       emit_opcode(cbuf,0xD9);
  2062       emit_opcode(cbuf,0xE8);
  2063     } else {
  2064       $$$emit8$primary;
  2065       // Load immediate does not have a zero or sign extended version
  2066       // for 8-bit immediates
  2067       // First load to TOS, then move to dst
  2068       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2069       emit_float_constant(cbuf, $src$$constant);
  2071   %}
  2073   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  2074     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2075     emit_float_constant(cbuf, $con$$constant);
  2076   %}
  2078   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  2079     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2080     emit_double_constant(cbuf, $con$$constant);
  2081   %}
  2083   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  2084     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2085     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2086     emit_opcode(cbuf, 0x0F);
  2087     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2088     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2089     emit_double_constant(cbuf, $con$$constant);
  2090   %}
  2092   enc_class Opc_MemImm_F(immF src) %{
  2093     cbuf.set_insts_mark();
  2094     $$$emit8$primary;
  2095     emit_rm(cbuf, 0x0, $secondary, 0x5);
  2096     emit_float_constant(cbuf, $src$$constant);
  2097   %}
  2100   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2101     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2102     emit_opcode(cbuf, 0x0F );
  2103     emit_opcode(cbuf, 0x6E );
  2104     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2105   %}
  2107   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2108     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2109     emit_opcode(cbuf, 0x0F );
  2110     emit_opcode(cbuf, 0x7E );
  2111     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2112   %}
  2114   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2115     { // MOVD $dst,$src.lo
  2116       emit_opcode(cbuf,0x66);
  2117       emit_opcode(cbuf,0x0F);
  2118       emit_opcode(cbuf,0x6E);
  2119       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2121     { // MOVD $tmp,$src.hi
  2122       emit_opcode(cbuf,0x66);
  2123       emit_opcode(cbuf,0x0F);
  2124       emit_opcode(cbuf,0x6E);
  2125       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2127     { // PUNPCKLDQ $dst,$tmp
  2128       emit_opcode(cbuf,0x66);
  2129       emit_opcode(cbuf,0x0F);
  2130       emit_opcode(cbuf,0x62);
  2131       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2133   %}
  2135   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2136     { // MOVD $dst.lo,$src
  2137       emit_opcode(cbuf,0x66);
  2138       emit_opcode(cbuf,0x0F);
  2139       emit_opcode(cbuf,0x7E);
  2140       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2142     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2143       emit_opcode(cbuf,0xF2);
  2144       emit_opcode(cbuf,0x0F);
  2145       emit_opcode(cbuf,0x70);
  2146       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2147       emit_d8(cbuf, 0x4E);
  2149     { // MOVD $dst.hi,$tmp
  2150       emit_opcode(cbuf,0x66);
  2151       emit_opcode(cbuf,0x0F);
  2152       emit_opcode(cbuf,0x7E);
  2153       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2155   %}
  2158   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2159   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2160     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2161   %}
  2163   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2164     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2165   %}
  2167   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2168   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2169     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2170   %}
  2172   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2173     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2174   %}
  2176   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2177     $$$emit8$primary;
  2178     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2179   %}
  2181   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2182     $$$emit8$secondary;
  2183     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2184   %}
  2186   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2187     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2188   %}
  2190   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2191     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2192   %}
  2194   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2195     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2196   %}
  2198   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2199     // Output immediate
  2200     $$$emit32$src$$constant;
  2201   %}
  2203   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2204     // Output Float immediate bits
  2205     jfloat jf = $src$$constant;
  2206     int    jf_as_bits = jint_cast( jf );
  2207     emit_d32(cbuf, jf_as_bits);
  2208   %}
  2210   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2211     // Output Float immediate bits
  2212     jfloat jf = $src$$constant;
  2213     int    jf_as_bits = jint_cast( jf );
  2214     emit_d32(cbuf, jf_as_bits);
  2215   %}
  2217   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2218     // Output immediate
  2219     $$$emit16$src$$constant;
  2220   %}
  2222   enc_class Con_d32(immI src) %{
  2223     emit_d32(cbuf,$src$$constant);
  2224   %}
  2226   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2227     // Output immediate memory reference
  2228     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2229     emit_d32(cbuf, 0x00);
  2230   %}
  2232   enc_class lock_prefix( ) %{
  2233     if( os::is_MP() )
  2234       emit_opcode(cbuf,0xF0);         // [Lock]
  2235   %}
  2237   // Cmp-xchg long value.
  2238   // Note: we need to swap rbx, and rcx before and after the
  2239   //       cmpxchg8 instruction because the instruction uses
  2240   //       rcx as the high order word of the new value to store but
  2241   //       our register encoding uses rbx,.
  2242   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2244     // XCHG  rbx,ecx
  2245     emit_opcode(cbuf,0x87);
  2246     emit_opcode(cbuf,0xD9);
  2247     // [Lock]
  2248     if( os::is_MP() )
  2249       emit_opcode(cbuf,0xF0);
  2250     // CMPXCHG8 [Eptr]
  2251     emit_opcode(cbuf,0x0F);
  2252     emit_opcode(cbuf,0xC7);
  2253     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2254     // XCHG  rbx,ecx
  2255     emit_opcode(cbuf,0x87);
  2256     emit_opcode(cbuf,0xD9);
  2257   %}
  2259   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2260     // [Lock]
  2261     if( os::is_MP() )
  2262       emit_opcode(cbuf,0xF0);
  2264     // CMPXCHG [Eptr]
  2265     emit_opcode(cbuf,0x0F);
  2266     emit_opcode(cbuf,0xB1);
  2267     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2268   %}
  2270   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2271     int res_encoding = $res$$reg;
  2273     // MOV  res,0
  2274     emit_opcode( cbuf, 0xB8 + res_encoding);
  2275     emit_d32( cbuf, 0 );
  2276     // JNE,s  fail
  2277     emit_opcode(cbuf,0x75);
  2278     emit_d8(cbuf, 5 );
  2279     // MOV  res,1
  2280     emit_opcode( cbuf, 0xB8 + res_encoding);
  2281     emit_d32( cbuf, 1 );
  2282     // fail:
  2283   %}
  2285   enc_class set_instruction_start( ) %{
  2286     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2287   %}
  2289   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2290     int reg_encoding = $ereg$$reg;
  2291     int base  = $mem$$base;
  2292     int index = $mem$$index;
  2293     int scale = $mem$$scale;
  2294     int displace = $mem$$disp;
  2295     bool disp_is_oop = $mem->disp_is_oop();
  2296     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2297   %}
  2299   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2300     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2301     int base  = $mem$$base;
  2302     int index = $mem$$index;
  2303     int scale = $mem$$scale;
  2304     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2305     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2306     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2307   %}
  2309   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2310     int r1, r2;
  2311     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2312     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2313     emit_opcode(cbuf,0x0F);
  2314     emit_opcode(cbuf,$tertiary);
  2315     emit_rm(cbuf, 0x3, r1, r2);
  2316     emit_d8(cbuf,$cnt$$constant);
  2317     emit_d8(cbuf,$primary);
  2318     emit_rm(cbuf, 0x3, $secondary, r1);
  2319     emit_d8(cbuf,$cnt$$constant);
  2320   %}
  2322   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2323     emit_opcode( cbuf, 0x8B ); // Move
  2324     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2325     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2326       emit_d8(cbuf,$primary);
  2327       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2328       emit_d8(cbuf,$cnt$$constant-32);
  2330     emit_d8(cbuf,$primary);
  2331     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2332     emit_d8(cbuf,31);
  2333   %}
  2335   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2336     int r1, r2;
  2337     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2338     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2340     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2341     emit_rm(cbuf, 0x3, r1, r2);
  2342     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2343       emit_opcode(cbuf,$primary);
  2344       emit_rm(cbuf, 0x3, $secondary, r1);
  2345       emit_d8(cbuf,$cnt$$constant-32);
  2347     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2348     emit_rm(cbuf, 0x3, r2, r2);
  2349   %}
  2351   // Clone of RegMem but accepts an extra parameter to access each
  2352   // half of a double in memory; it never needs relocation info.
  2353   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2354     emit_opcode(cbuf,$opcode$$constant);
  2355     int reg_encoding = $rm_reg$$reg;
  2356     int base     = $mem$$base;
  2357     int index    = $mem$$index;
  2358     int scale    = $mem$$scale;
  2359     int displace = $mem$$disp + $disp_for_half$$constant;
  2360     bool disp_is_oop = false;
  2361     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2362   %}
  2364   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2365   //
  2366   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2367   // and it never needs relocation information.
  2368   // Frequently used to move data between FPU's Stack Top and memory.
  2369   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2370     int rm_byte_opcode = $rm_opcode$$constant;
  2371     int base     = $mem$$base;
  2372     int index    = $mem$$index;
  2373     int scale    = $mem$$scale;
  2374     int displace = $mem$$disp;
  2375     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2376     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2377   %}
  2379   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2380     int rm_byte_opcode = $rm_opcode$$constant;
  2381     int base     = $mem$$base;
  2382     int index    = $mem$$index;
  2383     int scale    = $mem$$scale;
  2384     int displace = $mem$$disp;
  2385     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2386     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2387   %}
  2389   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2390     int reg_encoding = $dst$$reg;
  2391     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2392     int index        = 0x04;            // 0x04 indicates no index
  2393     int scale        = 0x00;            // 0x00 indicates no scale
  2394     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2395     bool disp_is_oop = false;
  2396     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2397   %}
  2399   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2400     // Compare dst,src
  2401     emit_opcode(cbuf,0x3B);
  2402     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2403     // jmp dst < src around move
  2404     emit_opcode(cbuf,0x7C);
  2405     emit_d8(cbuf,2);
  2406     // move dst,src
  2407     emit_opcode(cbuf,0x8B);
  2408     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2409   %}
  2411   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2412     // Compare dst,src
  2413     emit_opcode(cbuf,0x3B);
  2414     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2415     // jmp dst > src around move
  2416     emit_opcode(cbuf,0x7F);
  2417     emit_d8(cbuf,2);
  2418     // move dst,src
  2419     emit_opcode(cbuf,0x8B);
  2420     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2421   %}
  2423   enc_class enc_FP_store(memory mem, regD src) %{
  2424     // If src is FPR1, we can just FST to store it.
  2425     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2426     int reg_encoding = 0x2; // Just store
  2427     int base  = $mem$$base;
  2428     int index = $mem$$index;
  2429     int scale = $mem$$scale;
  2430     int displace = $mem$$disp;
  2431     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2432     if( $src$$reg != FPR1L_enc ) {
  2433       reg_encoding = 0x3;  // Store & pop
  2434       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2435       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2437     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2438     emit_opcode(cbuf,$primary);
  2439     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2440   %}
  2442   enc_class neg_reg(eRegI dst) %{
  2443     // NEG $dst
  2444     emit_opcode(cbuf,0xF7);
  2445     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2446   %}
  2448   enc_class setLT_reg(eCXRegI dst) %{
  2449     // SETLT $dst
  2450     emit_opcode(cbuf,0x0F);
  2451     emit_opcode(cbuf,0x9C);
  2452     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2453   %}
  2455   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2456     int tmpReg = $tmp$$reg;
  2458     // SUB $p,$q
  2459     emit_opcode(cbuf,0x2B);
  2460     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2461     // SBB $tmp,$tmp
  2462     emit_opcode(cbuf,0x1B);
  2463     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2464     // AND $tmp,$y
  2465     emit_opcode(cbuf,0x23);
  2466     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2467     // ADD $p,$tmp
  2468     emit_opcode(cbuf,0x03);
  2469     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2470   %}
  2472   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2473     int tmpReg = $tmp$$reg;
  2475     // SUB $p,$q
  2476     emit_opcode(cbuf,0x2B);
  2477     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2478     // SBB $tmp,$tmp
  2479     emit_opcode(cbuf,0x1B);
  2480     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2481     // AND $tmp,$y
  2482     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2483     emit_opcode(cbuf,0x23);
  2484     int reg_encoding = tmpReg;
  2485     int base  = $mem$$base;
  2486     int index = $mem$$index;
  2487     int scale = $mem$$scale;
  2488     int displace = $mem$$disp;
  2489     bool disp_is_oop = $mem->disp_is_oop();
  2490     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2491     // ADD $p,$tmp
  2492     emit_opcode(cbuf,0x03);
  2493     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2494   %}
  2496   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2497     // TEST shift,32
  2498     emit_opcode(cbuf,0xF7);
  2499     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2500     emit_d32(cbuf,0x20);
  2501     // JEQ,s small
  2502     emit_opcode(cbuf, 0x74);
  2503     emit_d8(cbuf, 0x04);
  2504     // MOV    $dst.hi,$dst.lo
  2505     emit_opcode( cbuf, 0x8B );
  2506     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2507     // CLR    $dst.lo
  2508     emit_opcode(cbuf, 0x33);
  2509     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2510 // small:
  2511     // SHLD   $dst.hi,$dst.lo,$shift
  2512     emit_opcode(cbuf,0x0F);
  2513     emit_opcode(cbuf,0xA5);
  2514     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2515     // SHL    $dst.lo,$shift"
  2516     emit_opcode(cbuf,0xD3);
  2517     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2518   %}
  2520   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2521     // TEST shift,32
  2522     emit_opcode(cbuf,0xF7);
  2523     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2524     emit_d32(cbuf,0x20);
  2525     // JEQ,s small
  2526     emit_opcode(cbuf, 0x74);
  2527     emit_d8(cbuf, 0x04);
  2528     // MOV    $dst.lo,$dst.hi
  2529     emit_opcode( cbuf, 0x8B );
  2530     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2531     // CLR    $dst.hi
  2532     emit_opcode(cbuf, 0x33);
  2533     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2534 // small:
  2535     // SHRD   $dst.lo,$dst.hi,$shift
  2536     emit_opcode(cbuf,0x0F);
  2537     emit_opcode(cbuf,0xAD);
  2538     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2539     // SHR    $dst.hi,$shift"
  2540     emit_opcode(cbuf,0xD3);
  2541     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2542   %}
  2544   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2545     // TEST shift,32
  2546     emit_opcode(cbuf,0xF7);
  2547     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2548     emit_d32(cbuf,0x20);
  2549     // JEQ,s small
  2550     emit_opcode(cbuf, 0x74);
  2551     emit_d8(cbuf, 0x05);
  2552     // MOV    $dst.lo,$dst.hi
  2553     emit_opcode( cbuf, 0x8B );
  2554     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2555     // SAR    $dst.hi,31
  2556     emit_opcode(cbuf, 0xC1);
  2557     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2558     emit_d8(cbuf, 0x1F );
  2559 // small:
  2560     // SHRD   $dst.lo,$dst.hi,$shift
  2561     emit_opcode(cbuf,0x0F);
  2562     emit_opcode(cbuf,0xAD);
  2563     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2564     // SAR    $dst.hi,$shift"
  2565     emit_opcode(cbuf,0xD3);
  2566     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2567   %}
  2570   // ----------------- Encodings for floating point unit -----------------
  2571   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2572   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2573     $$$emit8$primary;
  2574     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2575   %}
  2577   // Pop argument in FPR0 with FSTP ST(0)
  2578   enc_class PopFPU() %{
  2579     emit_opcode( cbuf, 0xDD );
  2580     emit_d8( cbuf, 0xD8 );
  2581   %}
  2583   // !!!!! equivalent to Pop_Reg_F
  2584   enc_class Pop_Reg_D( regD dst ) %{
  2585     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2586     emit_d8( cbuf, 0xD8+$dst$$reg );
  2587   %}
  2589   enc_class Push_Reg_D( regD dst ) %{
  2590     emit_opcode( cbuf, 0xD9 );
  2591     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2592   %}
  2594   enc_class strictfp_bias1( regD dst ) %{
  2595     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2596     emit_opcode( cbuf, 0x2D );
  2597     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2598     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2599     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2600   %}
  2602   enc_class strictfp_bias2( regD dst ) %{
  2603     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2604     emit_opcode( cbuf, 0x2D );
  2605     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2606     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2607     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2608   %}
  2610   // Special case for moving an integer register to a stack slot.
  2611   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2612     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2613   %}
  2615   // Special case for moving a register to a stack slot.
  2616   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2617     // Opcode already emitted
  2618     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2619     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2620     emit_d32(cbuf, $dst$$disp);   // Displacement
  2621   %}
  2623   // Push the integer in stackSlot 'src' onto FP-stack
  2624   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2625     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2626   %}
  2628   // Push the float in stackSlot 'src' onto FP-stack
  2629   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2630     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2631   %}
  2633   // Push the double in stackSlot 'src' onto FP-stack
  2634   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2635     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2636   %}
  2638   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2639   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2640     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2641   %}
  2643   // Same as Pop_Mem_F except for opcode
  2644   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2645   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2646     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2647   %}
  2649   enc_class Pop_Reg_F( regF dst ) %{
  2650     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2651     emit_d8( cbuf, 0xD8+$dst$$reg );
  2652   %}
  2654   enc_class Push_Reg_F( regF dst ) %{
  2655     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2656     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2657   %}
  2659   // Push FPU's float to a stack-slot, and pop FPU-stack
  2660   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2661     int pop = 0x02;
  2662     if ($src$$reg != FPR1L_enc) {
  2663       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2664       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2665       pop = 0x03;
  2667     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2668   %}
  2670   // Push FPU's double to a stack-slot, and pop FPU-stack
  2671   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2672     int pop = 0x02;
  2673     if ($src$$reg != FPR1L_enc) {
  2674       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2675       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2676       pop = 0x03;
  2678     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2679   %}
  2681   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2682   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2683     int pop = 0xD0 - 1; // -1 since we skip FLD
  2684     if ($src$$reg != FPR1L_enc) {
  2685       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2686       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2687       pop = 0xD8;
  2689     emit_opcode( cbuf, 0xDD );
  2690     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2691   %}
  2694   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2695     MacroAssembler masm(&cbuf);
  2696     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2697     masm.fmul(   $src2$$reg+0);   // value at TOS
  2698     masm.fadd(   $src$$reg+0);    // value at TOS
  2699     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2700   %}
  2703   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2704     // load dst in FPR0
  2705     emit_opcode( cbuf, 0xD9 );
  2706     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2707     if ($src$$reg != FPR1L_enc) {
  2708       // fincstp
  2709       emit_opcode (cbuf, 0xD9);
  2710       emit_opcode (cbuf, 0xF7);
  2711       // swap src with FPR1:
  2712       // FXCH FPR1 with src
  2713       emit_opcode(cbuf, 0xD9);
  2714       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2715       // fdecstp
  2716       emit_opcode (cbuf, 0xD9);
  2717       emit_opcode (cbuf, 0xF6);
  2719   %}
  2721   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2722     // Allocate a word
  2723     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2724     emit_opcode(cbuf,0xEC);
  2725     emit_d8(cbuf,0x08);
  2727     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2728     emit_opcode  (cbuf, 0x0F );
  2729     emit_opcode  (cbuf, 0x11 );
  2730     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2732     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2733     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2735     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2736     emit_opcode  (cbuf, 0x0F );
  2737     emit_opcode  (cbuf, 0x11 );
  2738     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2740     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2741     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2743   %}
  2745   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2746     // Allocate a word
  2747     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2748     emit_opcode(cbuf,0xEC);
  2749     emit_d8(cbuf,0x04);
  2751     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2752     emit_opcode  (cbuf, 0x0F );
  2753     emit_opcode  (cbuf, 0x11 );
  2754     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2756     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2757     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2759     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2760     emit_opcode  (cbuf, 0x0F );
  2761     emit_opcode  (cbuf, 0x11 );
  2762     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2764     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2765     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2767   %}
  2769   enc_class Push_ResultXD(regXD dst) %{
  2770     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2772     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2773     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2774     emit_opcode  (cbuf, 0x0F );
  2775     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2776     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2778     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2779     emit_opcode(cbuf,0xC4);
  2780     emit_d8(cbuf,0x08);
  2781   %}
  2783   enc_class Push_ResultX(regX dst, immI d8) %{
  2784     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2786     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2787     emit_opcode  (cbuf, 0x0F );
  2788     emit_opcode  (cbuf, 0x10 );
  2789     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2791     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2792     emit_opcode(cbuf,0xC4);
  2793     emit_d8(cbuf,$d8$$constant);
  2794   %}
  2796   enc_class Push_SrcXD(regXD src) %{
  2797     // Allocate a word
  2798     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2799     emit_opcode(cbuf,0xEC);
  2800     emit_d8(cbuf,0x08);
  2802     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2803     emit_opcode  (cbuf, 0x0F );
  2804     emit_opcode  (cbuf, 0x11 );
  2805     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2807     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2808     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2809   %}
  2811   enc_class push_stack_temp_qword() %{
  2812     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2813     emit_opcode(cbuf,0xEC);
  2814     emit_d8    (cbuf,0x08);
  2815   %}
  2817   enc_class pop_stack_temp_qword() %{
  2818     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2819     emit_opcode(cbuf,0xC4);
  2820     emit_d8    (cbuf,0x08);
  2821   %}
  2823   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2824     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2825     emit_opcode  (cbuf, 0x0F );
  2826     emit_opcode  (cbuf, 0x11 );
  2827     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2829     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2830     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2831   %}
  2833   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2834   // Otherwise return a NaN.
  2835   enc_class pow_exp_core_encoding %{
  2836     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2837     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2838     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2839     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2840     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2841     emit_opcode(cbuf,0x1C);
  2842     emit_d8(cbuf,0x24);
  2843     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2844     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2845     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2846     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2847     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2848     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2849     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2850     emit_d32(cbuf,0xFFFFF800);
  2851     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2852     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2853     emit_d32(cbuf,1023);
  2854     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2855     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2856     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2857     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2858     emit_d8(cbuf,20);
  2859     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2860     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2861     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2862     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2863     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2864     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2865     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2866     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2867     emit_d32(cbuf,0);
  2868     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2869     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2870   %}
  2872 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2873 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2875   enc_class Push_Result_Mod_D( regD src) %{
  2876     if ($src$$reg != FPR1L_enc) {
  2877       // fincstp
  2878       emit_opcode (cbuf, 0xD9);
  2879       emit_opcode (cbuf, 0xF7);
  2880       // FXCH FPR1 with src
  2881       emit_opcode(cbuf, 0xD9);
  2882       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2883       // fdecstp
  2884       emit_opcode (cbuf, 0xD9);
  2885       emit_opcode (cbuf, 0xF6);
  2887     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2888     // // FSTP   FPR$dst$$reg
  2889     // emit_opcode( cbuf, 0xDD );
  2890     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2891   %}
  2893   enc_class fnstsw_sahf_skip_parity() %{
  2894     // fnstsw ax
  2895     emit_opcode( cbuf, 0xDF );
  2896     emit_opcode( cbuf, 0xE0 );
  2897     // sahf
  2898     emit_opcode( cbuf, 0x9E );
  2899     // jnp  ::skip
  2900     emit_opcode( cbuf, 0x7B );
  2901     emit_opcode( cbuf, 0x05 );
  2902   %}
  2904   enc_class emitModD() %{
  2905     // fprem must be iterative
  2906     // :: loop
  2907     // fprem
  2908     emit_opcode( cbuf, 0xD9 );
  2909     emit_opcode( cbuf, 0xF8 );
  2910     // wait
  2911     emit_opcode( cbuf, 0x9b );
  2912     // fnstsw ax
  2913     emit_opcode( cbuf, 0xDF );
  2914     emit_opcode( cbuf, 0xE0 );
  2915     // sahf
  2916     emit_opcode( cbuf, 0x9E );
  2917     // jp  ::loop
  2918     emit_opcode( cbuf, 0x0F );
  2919     emit_opcode( cbuf, 0x8A );
  2920     emit_opcode( cbuf, 0xF4 );
  2921     emit_opcode( cbuf, 0xFF );
  2922     emit_opcode( cbuf, 0xFF );
  2923     emit_opcode( cbuf, 0xFF );
  2924   %}
  2926   enc_class fpu_flags() %{
  2927     // fnstsw_ax
  2928     emit_opcode( cbuf, 0xDF);
  2929     emit_opcode( cbuf, 0xE0);
  2930     // test ax,0x0400
  2931     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2932     emit_opcode( cbuf, 0xA9 );
  2933     emit_d16   ( cbuf, 0x0400 );
  2934     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2935     // // test rax,0x0400
  2936     // emit_opcode( cbuf, 0xA9 );
  2937     // emit_d32   ( cbuf, 0x00000400 );
  2938     //
  2939     // jz exit (no unordered comparison)
  2940     emit_opcode( cbuf, 0x74 );
  2941     emit_d8    ( cbuf, 0x02 );
  2942     // mov ah,1 - treat as LT case (set carry flag)
  2943     emit_opcode( cbuf, 0xB4 );
  2944     emit_d8    ( cbuf, 0x01 );
  2945     // sahf
  2946     emit_opcode( cbuf, 0x9E);
  2947   %}
  2949   enc_class cmpF_P6_fixup() %{
  2950     // Fixup the integer flags in case comparison involved a NaN
  2951     //
  2952     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2953     emit_opcode( cbuf, 0x7B );
  2954     emit_d8    ( cbuf, 0x03 );
  2955     // MOV AH,1 - treat as LT case (set carry flag)
  2956     emit_opcode( cbuf, 0xB4 );
  2957     emit_d8    ( cbuf, 0x01 );
  2958     // SAHF
  2959     emit_opcode( cbuf, 0x9E);
  2960     // NOP     // target for branch to avoid branch to branch
  2961     emit_opcode( cbuf, 0x90);
  2962   %}
  2964 //     fnstsw_ax();
  2965 //     sahf();
  2966 //     movl(dst, nan_result);
  2967 //     jcc(Assembler::parity, exit);
  2968 //     movl(dst, less_result);
  2969 //     jcc(Assembler::below, exit);
  2970 //     movl(dst, equal_result);
  2971 //     jcc(Assembler::equal, exit);
  2972 //     movl(dst, greater_result);
  2974 // less_result     =  1;
  2975 // greater_result  = -1;
  2976 // equal_result    = 0;
  2977 // nan_result      = -1;
  2979   enc_class CmpF_Result(eRegI dst) %{
  2980     // fnstsw_ax();
  2981     emit_opcode( cbuf, 0xDF);
  2982     emit_opcode( cbuf, 0xE0);
  2983     // sahf
  2984     emit_opcode( cbuf, 0x9E);
  2985     // movl(dst, nan_result);
  2986     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2987     emit_d32( cbuf, -1 );
  2988     // jcc(Assembler::parity, exit);
  2989     emit_opcode( cbuf, 0x7A );
  2990     emit_d8    ( cbuf, 0x13 );
  2991     // movl(dst, less_result);
  2992     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2993     emit_d32( cbuf, -1 );
  2994     // jcc(Assembler::below, exit);
  2995     emit_opcode( cbuf, 0x72 );
  2996     emit_d8    ( cbuf, 0x0C );
  2997     // movl(dst, equal_result);
  2998     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2999     emit_d32( cbuf, 0 );
  3000     // jcc(Assembler::equal, exit);
  3001     emit_opcode( cbuf, 0x74 );
  3002     emit_d8    ( cbuf, 0x05 );
  3003     // movl(dst, greater_result);
  3004     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  3005     emit_d32( cbuf, 1 );
  3006   %}
  3009   // XMM version of CmpF_Result. Because the XMM compare
  3010   // instructions set the EFLAGS directly. It becomes simpler than
  3011   // the float version above.
  3012   enc_class CmpX_Result(eRegI dst) %{
  3013     MacroAssembler _masm(&cbuf);
  3014     Label nan, inc, done;
  3016     __ jccb(Assembler::parity, nan);
  3017     __ jccb(Assembler::equal,  done);
  3018     __ jccb(Assembler::above,  inc);
  3019     __ bind(nan);
  3020     __ decrement(as_Register($dst$$reg)); // NO L qqq
  3021     __ jmpb(done);
  3022     __ bind(inc);
  3023     __ increment(as_Register($dst$$reg)); // NO L qqq
  3024     __ bind(done);
  3025   %}
  3027   // Compare the longs and set flags
  3028   // BROKEN!  Do Not use as-is
  3029   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  3030     // CMP    $src1.hi,$src2.hi
  3031     emit_opcode( cbuf, 0x3B );
  3032     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3033     // JNE,s  done
  3034     emit_opcode(cbuf,0x75);
  3035     emit_d8(cbuf, 2 );
  3036     // CMP    $src1.lo,$src2.lo
  3037     emit_opcode( cbuf, 0x3B );
  3038     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3039 // done:
  3040   %}
  3042   enc_class convert_int_long( regL dst, eRegI src ) %{
  3043     // mov $dst.lo,$src
  3044     int dst_encoding = $dst$$reg;
  3045     int src_encoding = $src$$reg;
  3046     encode_Copy( cbuf, dst_encoding  , src_encoding );
  3047     // mov $dst.hi,$src
  3048     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  3049     // sar $dst.hi,31
  3050     emit_opcode( cbuf, 0xC1 );
  3051     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  3052     emit_d8(cbuf, 0x1F );
  3053   %}
  3055   enc_class convert_long_double( eRegL src ) %{
  3056     // push $src.hi
  3057     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3058     // push $src.lo
  3059     emit_opcode(cbuf, 0x50+$src$$reg  );
  3060     // fild 64-bits at [SP]
  3061     emit_opcode(cbuf,0xdf);
  3062     emit_d8(cbuf, 0x6C);
  3063     emit_d8(cbuf, 0x24);
  3064     emit_d8(cbuf, 0x00);
  3065     // pop stack
  3066     emit_opcode(cbuf, 0x83); // add  SP, #8
  3067     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3068     emit_d8(cbuf, 0x8);
  3069   %}
  3071   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  3072     // IMUL   EDX:EAX,$src1
  3073     emit_opcode( cbuf, 0xF7 );
  3074     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  3075     // SAR    EDX,$cnt-32
  3076     int shift_count = ((int)$cnt$$constant) - 32;
  3077     if (shift_count > 0) {
  3078       emit_opcode(cbuf, 0xC1);
  3079       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  3080       emit_d8(cbuf, shift_count);
  3082   %}
  3084   // this version doesn't have add sp, 8
  3085   enc_class convert_long_double2( eRegL src ) %{
  3086     // push $src.hi
  3087     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3088     // push $src.lo
  3089     emit_opcode(cbuf, 0x50+$src$$reg  );
  3090     // fild 64-bits at [SP]
  3091     emit_opcode(cbuf,0xdf);
  3092     emit_d8(cbuf, 0x6C);
  3093     emit_d8(cbuf, 0x24);
  3094     emit_d8(cbuf, 0x00);
  3095   %}
  3097   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3098     // Basic idea: long = (long)int * (long)int
  3099     // IMUL EDX:EAX, src
  3100     emit_opcode( cbuf, 0xF7 );
  3101     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3102   %}
  3104   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3105     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3106     // MUL EDX:EAX, src
  3107     emit_opcode( cbuf, 0xF7 );
  3108     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3109   %}
  3111   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3112     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3113     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3114     // MOV    $tmp,$src.lo
  3115     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3116     // IMUL   $tmp,EDX
  3117     emit_opcode( cbuf, 0x0F );
  3118     emit_opcode( cbuf, 0xAF );
  3119     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3120     // MOV    EDX,$src.hi
  3121     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3122     // IMUL   EDX,EAX
  3123     emit_opcode( cbuf, 0x0F );
  3124     emit_opcode( cbuf, 0xAF );
  3125     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3126     // ADD    $tmp,EDX
  3127     emit_opcode( cbuf, 0x03 );
  3128     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3129     // MUL   EDX:EAX,$src.lo
  3130     emit_opcode( cbuf, 0xF7 );
  3131     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3132     // ADD    EDX,ESI
  3133     emit_opcode( cbuf, 0x03 );
  3134     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3135   %}
  3137   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3138     // Basic idea: lo(result) = lo(src * y_lo)
  3139     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3140     // IMUL   $tmp,EDX,$src
  3141     emit_opcode( cbuf, 0x6B );
  3142     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3143     emit_d8( cbuf, (int)$src$$constant );
  3144     // MOV    EDX,$src
  3145     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3146     emit_d32( cbuf, (int)$src$$constant );
  3147     // MUL   EDX:EAX,EDX
  3148     emit_opcode( cbuf, 0xF7 );
  3149     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3150     // ADD    EDX,ESI
  3151     emit_opcode( cbuf, 0x03 );
  3152     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3153   %}
  3155   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3156     // PUSH src1.hi
  3157     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3158     // PUSH src1.lo
  3159     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3160     // PUSH src2.hi
  3161     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3162     // PUSH src2.lo
  3163     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3164     // CALL directly to the runtime
  3165     cbuf.set_insts_mark();
  3166     emit_opcode(cbuf,0xE8);       // Call into runtime
  3167     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3168     // Restore stack
  3169     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3170     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3171     emit_d8(cbuf, 4*4);
  3172   %}
  3174   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3175     // PUSH src1.hi
  3176     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3177     // PUSH src1.lo
  3178     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3179     // PUSH src2.hi
  3180     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3181     // PUSH src2.lo
  3182     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3183     // CALL directly to the runtime
  3184     cbuf.set_insts_mark();
  3185     emit_opcode(cbuf,0xE8);       // Call into runtime
  3186     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3187     // Restore stack
  3188     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3189     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3190     emit_d8(cbuf, 4*4);
  3191   %}
  3193   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3194     // MOV   $tmp,$src.lo
  3195     emit_opcode(cbuf, 0x8B);
  3196     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3197     // OR    $tmp,$src.hi
  3198     emit_opcode(cbuf, 0x0B);
  3199     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3200   %}
  3202   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3203     // CMP    $src1.lo,$src2.lo
  3204     emit_opcode( cbuf, 0x3B );
  3205     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3206     // JNE,s  skip
  3207     emit_cc(cbuf, 0x70, 0x5);
  3208     emit_d8(cbuf,2);
  3209     // CMP    $src1.hi,$src2.hi
  3210     emit_opcode( cbuf, 0x3B );
  3211     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3212   %}
  3214   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3215     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3216     emit_opcode( cbuf, 0x3B );
  3217     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3218     // MOV    $tmp,$src1.hi
  3219     emit_opcode( cbuf, 0x8B );
  3220     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3221     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3222     emit_opcode( cbuf, 0x1B );
  3223     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3224   %}
  3226   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3227     // XOR    $tmp,$tmp
  3228     emit_opcode(cbuf,0x33);  // XOR
  3229     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3230     // CMP    $tmp,$src.lo
  3231     emit_opcode( cbuf, 0x3B );
  3232     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3233     // SBB    $tmp,$src.hi
  3234     emit_opcode( cbuf, 0x1B );
  3235     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3236   %}
  3238  // Sniff, sniff... smells like Gnu Superoptimizer
  3239   enc_class neg_long( eRegL dst ) %{
  3240     emit_opcode(cbuf,0xF7);    // NEG hi
  3241     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3242     emit_opcode(cbuf,0xF7);    // NEG lo
  3243     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3244     emit_opcode(cbuf,0x83);    // SBB hi,0
  3245     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3246     emit_d8    (cbuf,0 );
  3247   %}
  3249   enc_class movq_ld(regXD dst, memory mem) %{
  3250     MacroAssembler _masm(&cbuf);
  3251     __ movq($dst$$XMMRegister, $mem$$Address);
  3252   %}
  3254   enc_class movq_st(memory mem, regXD src) %{
  3255     MacroAssembler _masm(&cbuf);
  3256     __ movq($mem$$Address, $src$$XMMRegister);
  3257   %}
  3259   enc_class pshufd_8x8(regX dst, regX src) %{
  3260     MacroAssembler _masm(&cbuf);
  3262     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3263     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3264     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3265   %}
  3267   enc_class pshufd_4x16(regX dst, regX src) %{
  3268     MacroAssembler _masm(&cbuf);
  3270     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3271   %}
  3273   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3274     MacroAssembler _masm(&cbuf);
  3276     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3277   %}
  3279   enc_class pxor(regXD dst, regXD src) %{
  3280     MacroAssembler _masm(&cbuf);
  3282     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3283   %}
  3285   enc_class mov_i2x(regXD dst, eRegI src) %{
  3286     MacroAssembler _masm(&cbuf);
  3288     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3289   %}
  3292   // Because the transitions from emitted code to the runtime
  3293   // monitorenter/exit helper stubs are so slow it's critical that
  3294   // we inline both the stack-locking fast-path and the inflated fast path.
  3295   //
  3296   // See also: cmpFastLock and cmpFastUnlock.
  3297   //
  3298   // What follows is a specialized inline transliteration of the code
  3299   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3300   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3301   // at startup-time.  These methods would accept arguments as
  3302   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3303   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3304   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3305   // In practice, however, the # of lock sites is bounded and is usually small.
  3306   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3307   // if the processor uses simple bimodal branch predictors keyed by EIP
  3308   // Since the helper routines would be called from multiple synchronization
  3309   // sites.
  3310   //
  3311   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3312   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3313   // to those specialized methods.  That'd give us a mostly platform-independent
  3314   // implementation that the JITs could optimize and inline at their pleasure.
  3315   // Done correctly, the only time we'd need to cross to native could would be
  3316   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3317   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3318   // (b) explicit barriers or fence operations.
  3319   //
  3320   // TODO:
  3321   //
  3322   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3323   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3324   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3325   //    the lock operators would typically be faster than reifying Self.
  3326   //
  3327   // *  Ideally I'd define the primitives as:
  3328   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3329   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3330   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3331   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3332   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3333   //    sub-optimal code near the synchronization site.
  3334   //
  3335   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3336   //    Alternately, use a better sp-proximity test.
  3337   //
  3338   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3339   //    Either one is sufficient to uniquely identify a thread.
  3340   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3341   //
  3342   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3343   //    object is locked by the calling thread but the waitlist is empty.
  3344   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3345   //
  3346   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3347   //    But beware of excessive branch density on AMD Opterons.
  3348   //
  3349   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3350   //    or failure of the fast-path.  If the fast-path fails then we pass
  3351   //    control to the slow-path, typically in C.  In Fast_Lock and
  3352   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3353   //    will emit a conditional branch immediately after the node.
  3354   //    So we have branches to branches and lots of ICC.ZF games.
  3355   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3356   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3357   //    will drop through the node.  ICC.ZF is undefined at exit.
  3358   //    In the case of failure, the node will branch directly to the
  3359   //    FailureLabel
  3362   // obj: object to lock
  3363   // box: on-stack box address (displaced header location) - KILLED
  3364   // rax,: tmp -- KILLED
  3365   // scr: tmp -- KILLED
  3366   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3368     Register objReg = as_Register($obj$$reg);
  3369     Register boxReg = as_Register($box$$reg);
  3370     Register tmpReg = as_Register($tmp$$reg);
  3371     Register scrReg = as_Register($scr$$reg);
  3373     // Ensure the register assignents are disjoint
  3374     guarantee (objReg != boxReg, "") ;
  3375     guarantee (objReg != tmpReg, "") ;
  3376     guarantee (objReg != scrReg, "") ;
  3377     guarantee (boxReg != tmpReg, "") ;
  3378     guarantee (boxReg != scrReg, "") ;
  3379     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3381     MacroAssembler masm(&cbuf);
  3383     if (_counters != NULL) {
  3384       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3386     if (EmitSync & 1) {
  3387         // set box->dhw = unused_mark (3)
  3388         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3389         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3390         masm.cmpptr (rsp, (int32_t)0) ;                        
  3391     } else 
  3392     if (EmitSync & 2) { 
  3393         Label DONE_LABEL ;           
  3394         if (UseBiasedLocking) {
  3395            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3396            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3399         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3400         masm.orptr (tmpReg, 0x1);
  3401         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3402         if (os::is_MP()) { masm.lock();  }
  3403         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3404         masm.jcc(Assembler::equal, DONE_LABEL);
  3405         // Recursive locking
  3406         masm.subptr(tmpReg, rsp);
  3407         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3408         masm.movptr(Address(boxReg, 0), tmpReg);
  3409         masm.bind(DONE_LABEL) ; 
  3410     } else {  
  3411       // Possible cases that we'll encounter in fast_lock 
  3412       // ------------------------------------------------
  3413       // * Inflated
  3414       //    -- unlocked
  3415       //    -- Locked
  3416       //       = by self
  3417       //       = by other
  3418       // * biased
  3419       //    -- by Self
  3420       //    -- by other
  3421       // * neutral
  3422       // * stack-locked
  3423       //    -- by self
  3424       //       = sp-proximity test hits
  3425       //       = sp-proximity test generates false-negative
  3426       //    -- by other
  3427       //
  3429       Label IsInflated, DONE_LABEL, PopDone ;
  3431       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3432       // order to reduce the number of conditional branches in the most common cases.
  3433       // Beware -- there's a subtle invariant that fetch of the markword
  3434       // at [FETCH], below, will never observe a biased encoding (*101b).
  3435       // If this invariant is not held we risk exclusion (safety) failure.
  3436       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3437         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3440       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3441       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3442       masm.jccb  (Assembler::notZero, IsInflated) ;
  3444       // Attempt stack-locking ...
  3445       masm.orptr (tmpReg, 0x1);
  3446       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3447       if (os::is_MP()) { masm.lock();  }
  3448       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3449       if (_counters != NULL) {
  3450         masm.cond_inc32(Assembler::equal,
  3451                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3453       masm.jccb (Assembler::equal, DONE_LABEL);
  3455       // Recursive locking
  3456       masm.subptr(tmpReg, rsp);
  3457       masm.andptr(tmpReg, 0xFFFFF003 );
  3458       masm.movptr(Address(boxReg, 0), tmpReg);
  3459       if (_counters != NULL) {
  3460         masm.cond_inc32(Assembler::equal,
  3461                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3463       masm.jmp  (DONE_LABEL) ;
  3465       masm.bind (IsInflated) ;
  3467       // The object is inflated.
  3468       //
  3469       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3470       //   Use markOopDesc::monitor_value instead of "2".
  3471       //   use markOop::unused_mark() instead of "3".
  3472       // The tmpReg value is an objectMonitor reference ORed with
  3473       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3474       // objectmonitor pointer by masking off the "2" bit or we can just
  3475       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3476       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3477       //
  3478       // I use the latter as it avoids AGI stalls.
  3479       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3480       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3481       //
  3482       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3484       // boxReg refers to the on-stack BasicLock in the current frame.
  3485       // We'd like to write:
  3486       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3487       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3488       // additional latency as we have another ST in the store buffer that must drain.
  3490       if (EmitSync & 8192) { 
  3491          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3492          masm.get_thread (scrReg) ; 
  3493          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3494          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3495          if (os::is_MP()) { masm.lock(); } 
  3496          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3497       } else 
  3498       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3499          masm.movptr(scrReg, boxReg) ; 
  3500          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3502          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3503          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3504             // prefetchw [eax + Offset(_owner)-2]
  3505             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3508          if ((EmitSync & 64) == 0) {
  3509            // Optimistic form: consider XORL tmpReg,tmpReg
  3510            masm.movptr(tmpReg, NULL_WORD) ; 
  3511          } else { 
  3512            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3513            // Test-And-CAS instead of CAS
  3514            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3515            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3516            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3519          // Appears unlocked - try to swing _owner from null to non-null.
  3520          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3521          // to CAS the register containing Self into m->Owner.
  3522          // But we don't have enough registers, so instead we can either try to CAS
  3523          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3524          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3525          // (rsp or the address of the box) into  m->owner is harmless.
  3526          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3527          if (os::is_MP()) { masm.lock();  }
  3528          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3529          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3530          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3531          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3532          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3533          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3535          // If the CAS fails we can either retry or pass control to the slow-path.  
  3536          // We use the latter tactic.  
  3537          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3538          // If the CAS was successful ...
  3539          //   Self has acquired the lock
  3540          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3541          // Intentional fall-through into DONE_LABEL ...
  3542       } else {
  3543          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3544          masm.movptr(boxReg, tmpReg) ; 
  3546          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3547          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3548             // prefetchw [eax + Offset(_owner)-2]
  3549             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3552          if ((EmitSync & 64) == 0) {
  3553            // Optimistic form
  3554            masm.xorptr  (tmpReg, tmpReg) ; 
  3555          } else { 
  3556            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3557            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3558            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3559            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3562          // Appears unlocked - try to swing _owner from null to non-null.
  3563          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3564          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3565          masm.get_thread (scrReg) ;
  3566          if (os::is_MP()) { masm.lock(); }
  3567          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3569          // If the CAS fails we can either retry or pass control to the slow-path.
  3570          // We use the latter tactic.
  3571          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3572          // If the CAS was successful ...
  3573          //   Self has acquired the lock
  3574          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3575          // Intentional fall-through into DONE_LABEL ...
  3578       // DONE_LABEL is a hot target - we'd really like to place it at the
  3579       // start of cache line by padding with NOPs.
  3580       // See the AMD and Intel software optimization manuals for the
  3581       // most efficient "long" NOP encodings.
  3582       // Unfortunately none of our alignment mechanisms suffice.
  3583       masm.bind(DONE_LABEL);
  3585       // Avoid branch-to-branch on AMD processors
  3586       // This appears to be superstition.
  3587       if (EmitSync & 32) masm.nop() ;
  3590       // At DONE_LABEL the icc ZFlag is set as follows ...
  3591       // Fast_Unlock uses the same protocol.
  3592       // ZFlag == 1 -> Success
  3593       // ZFlag == 0 -> Failure - force control through the slow-path
  3595   %}
  3597   // obj: object to unlock
  3598   // box: box address (displaced header location), killed.  Must be EAX.
  3599   // rbx,: killed tmp; cannot be obj nor box.
  3600   //
  3601   // Some commentary on balanced locking:
  3602   //
  3603   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3604   // Methods that don't have provably balanced locking are forced to run in the
  3605   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3606   // The interpreter provides two properties:
  3607   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3608   //      objects acquired the current activation (frame).  Recall that the
  3609   //      interpreter maintains an on-stack list of locks currently held by
  3610   //      a frame.
  3611   // I2:  If a method attempts to unlock an object that is not held by the
  3612   //      the frame the interpreter throws IMSX.
  3613   //
  3614   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3615   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3616   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3617   // is still locked by A().
  3618   //
  3619   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3620   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3621   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3622   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3624   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3626     Register objReg = as_Register($obj$$reg);
  3627     Register boxReg = as_Register($box$$reg);
  3628     Register tmpReg = as_Register($tmp$$reg);
  3630     guarantee (objReg != boxReg, "") ;
  3631     guarantee (objReg != tmpReg, "") ;
  3632     guarantee (boxReg != tmpReg, "") ;
  3633     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3634     MacroAssembler masm(&cbuf);
  3636     if (EmitSync & 4) {
  3637       // Disable - inhibit all inlining.  Force control through the slow-path
  3638       masm.cmpptr (rsp, 0) ; 
  3639     } else 
  3640     if (EmitSync & 8) {
  3641       Label DONE_LABEL ;
  3642       if (UseBiasedLocking) {
  3643          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3645       // classic stack-locking code ...
  3646       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3647       masm.testptr(tmpReg, tmpReg) ;
  3648       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3649       if (os::is_MP()) { masm.lock(); }
  3650       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3651       masm.bind(DONE_LABEL);
  3652     } else {
  3653       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3655       // Critically, the biased locking test must have precedence over
  3656       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3657       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3658          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3661       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3662       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3663       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3665       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3666       masm.jccb  (Assembler::zero, Stacked) ;
  3668       masm.bind  (Inflated) ;
  3669       // It's inflated.
  3670       // Despite our balanced locking property we still check that m->_owner == Self
  3671       // as java routines or native JNI code called by this thread might
  3672       // have released the lock.
  3673       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3674       // state in _succ so we can avoid fetching EntryList|cxq.
  3675       //
  3676       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3677       // such as recursive enter and exit -- but we have to be wary of
  3678       // I$ bloat, T$ effects and BP$ effects.
  3679       //
  3680       // If there's no contention try a 1-0 exit.  That is, exit without
  3681       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3682       // we detect and recover from the race that the 1-0 exit admits.
  3683       //
  3684       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3685       // before it STs null into _owner, releasing the lock.  Updates
  3686       // to data protected by the critical section must be visible before
  3687       // we drop the lock (and thus before any other thread could acquire
  3688       // the lock and observe the fields protected by the lock).
  3689       // IA32's memory-model is SPO, so STs are ordered with respect to
  3690       // each other and there's no need for an explicit barrier (fence).
  3691       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3693       masm.get_thread (boxReg) ;
  3694       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3695         // prefetchw [ebx + Offset(_owner)-2]
  3696         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3699       // Note that we could employ various encoding schemes to reduce
  3700       // the number of loads below (currently 4) to just 2 or 3.
  3701       // Refer to the comments in synchronizer.cpp.
  3702       // In practice the chain of fetches doesn't seem to impact performance, however.
  3703       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3704          // Attempt to reduce branch density - AMD's branch predictor.
  3705          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3706          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3707          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3708          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3709          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3710          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3711          masm.jmpb  (DONE_LABEL) ; 
  3712       } else { 
  3713          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3714          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3715          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3716          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3717          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3718          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3719          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3720          masm.jmpb  (DONE_LABEL) ; 
  3723       // The Following code fragment (EmitSync & 65536) improves the performance of
  3724       // contended applications and contended synchronization microbenchmarks.
  3725       // Unfortunately the emission of the code - even though not executed - causes regressions
  3726       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3727       // with an equal number of never-executed NOPs results in the same regression.
  3728       // We leave it off by default.
  3730       if ((EmitSync & 65536) != 0) {
  3731          Label LSuccess, LGoSlowPath ;
  3733          masm.bind  (CheckSucc) ;
  3735          // Optional pre-test ... it's safe to elide this
  3736          if ((EmitSync & 16) == 0) { 
  3737             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3738             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3741          // We have a classic Dekker-style idiom:
  3742          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3743          // There are a number of ways to implement the barrier:
  3744          // (1) lock:andl &m->_owner, 0
  3745          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3746          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3747          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3748          // (2) If supported, an explicit MFENCE is appealing.
  3749          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3750          //     particularly if the write-buffer is full as might be the case if
  3751          //     if stores closely precede the fence or fence-equivalent instruction.
  3752          //     In more modern implementations MFENCE appears faster, however.
  3753          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3754          //     The $lines underlying the top-of-stack should be in M-state.
  3755          //     The locked add instruction is serializing, of course.
  3756          // (4) Use xchg, which is serializing
  3757          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3758          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3759          //     The integer condition codes will tell us if succ was 0.
  3760          //     Since _succ and _owner should reside in the same $line and
  3761          //     we just stored into _owner, it's likely that the $line
  3762          //     remains in M-state for the lock:orl.
  3763          //
  3764          // We currently use (3), although it's likely that switching to (2)
  3765          // is correct for the future.
  3767          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3768          if (os::is_MP()) { 
  3769             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3770               masm.mfence();
  3771             } else { 
  3772               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3775          // Ratify _succ remains non-null
  3776          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3777          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3779          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3780          if (os::is_MP()) { masm.lock(); }
  3781          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3782          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3783          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3784          // Now install Self over rsp.  This is safe as we're transitioning from
  3785          // non-null to non=null
  3786          masm.get_thread (boxReg) ;
  3787          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3788          // Intentional fall-through into LGoSlowPath ...
  3790          masm.bind  (LGoSlowPath) ; 
  3791          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3792          masm.jmpb  (DONE_LABEL) ; 
  3794          masm.bind  (LSuccess) ; 
  3795          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3796          masm.jmpb  (DONE_LABEL) ; 
  3799       masm.bind (Stacked) ;
  3800       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3801       // It must be stack-locked.
  3802       // Try to reset the header to displaced header.
  3803       // The "box" value on the stack is stable, so we can reload
  3804       // and be assured we observe the same value as above.
  3805       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3806       if (os::is_MP()) {   masm.lock();    }
  3807       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3808       // Intention fall-thru into DONE_LABEL
  3811       // DONE_LABEL is a hot target - we'd really like to place it at the
  3812       // start of cache line by padding with NOPs.
  3813       // See the AMD and Intel software optimization manuals for the
  3814       // most efficient "long" NOP encodings.
  3815       // Unfortunately none of our alignment mechanisms suffice.
  3816       if ((EmitSync & 65536) == 0) {
  3817          masm.bind (CheckSucc) ;
  3819       masm.bind(DONE_LABEL);
  3821       // Avoid branch to branch on AMD processors
  3822       if (EmitSync & 32768) { masm.nop() ; }
  3824   %}
  3827   enc_class enc_pop_rdx() %{
  3828     emit_opcode(cbuf,0x5A);
  3829   %}
  3831   enc_class enc_rethrow() %{
  3832     cbuf.set_insts_mark();
  3833     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3834     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3835                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3836   %}
  3839   // Convert a double to an int.  Java semantics require we do complex
  3840   // manglelations in the corner cases.  So we set the rounding mode to
  3841   // 'zero', store the darned double down as an int, and reset the
  3842   // rounding mode to 'nearest'.  The hardware throws an exception which
  3843   // patches up the correct value directly to the stack.
  3844   enc_class D2I_encoding( regD src ) %{
  3845     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3846     // exceptions here, so that a NAN or other corner-case value will
  3847     // thrown an exception (but normal values get converted at full speed).
  3848     // However, I2C adapters and other float-stack manglers leave pending
  3849     // invalid-op exceptions hanging.  We would have to clear them before
  3850     // enabling them and that is more expensive than just testing for the
  3851     // invalid value Intel stores down in the corner cases.
  3852     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3853     emit_opcode(cbuf,0x2D);
  3854     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3855     // Allocate a word
  3856     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3857     emit_opcode(cbuf,0xEC);
  3858     emit_d8(cbuf,0x04);
  3859     // Encoding assumes a double has been pushed into FPR0.
  3860     // Store down the double as an int, popping the FPU stack
  3861     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3862     emit_opcode(cbuf,0x1C);
  3863     emit_d8(cbuf,0x24);
  3864     // Restore the rounding mode; mask the exception
  3865     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3866     emit_opcode(cbuf,0x2D);
  3867     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3868         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3869         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3871     // Load the converted int; adjust CPU stack
  3872     emit_opcode(cbuf,0x58);       // POP EAX
  3873     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3874     emit_d32   (cbuf,0x80000000); //         0x80000000
  3875     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3876     emit_d8    (cbuf,0x07);       // Size of slow_call
  3877     // Push src onto stack slow-path
  3878     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3879     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3880     // CALL directly to the runtime
  3881     cbuf.set_insts_mark();
  3882     emit_opcode(cbuf,0xE8);       // Call into runtime
  3883     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3884     // Carry on here...
  3885   %}
  3887   enc_class D2L_encoding( regD src ) %{
  3888     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3889     emit_opcode(cbuf,0x2D);
  3890     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3891     // Allocate a word
  3892     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3893     emit_opcode(cbuf,0xEC);
  3894     emit_d8(cbuf,0x08);
  3895     // Encoding assumes a double has been pushed into FPR0.
  3896     // Store down the double as a long, popping the FPU stack
  3897     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3898     emit_opcode(cbuf,0x3C);
  3899     emit_d8(cbuf,0x24);
  3900     // Restore the rounding mode; mask the exception
  3901     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3902     emit_opcode(cbuf,0x2D);
  3903     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3904         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3905         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3907     // Load the converted int; adjust CPU stack
  3908     emit_opcode(cbuf,0x58);       // POP EAX
  3909     emit_opcode(cbuf,0x5A);       // POP EDX
  3910     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3911     emit_d8    (cbuf,0xFA);       // rdx
  3912     emit_d32   (cbuf,0x80000000); //         0x80000000
  3913     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3914     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3915     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3916     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3917     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3918     emit_d8    (cbuf,0x07);       // Size of slow_call
  3919     // Push src onto stack slow-path
  3920     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3921     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3922     // CALL directly to the runtime
  3923     cbuf.set_insts_mark();
  3924     emit_opcode(cbuf,0xE8);       // Call into runtime
  3925     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3926     // Carry on here...
  3927   %}
  3929   enc_class X2L_encoding( regX src ) %{
  3930     // Allocate a word
  3931     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3932     emit_opcode(cbuf,0xEC);
  3933     emit_d8(cbuf,0x08);
  3935     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3936     emit_opcode  (cbuf, 0x0F );
  3937     emit_opcode  (cbuf, 0x11 );
  3938     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3940     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3941     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3943     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3944     emit_opcode(cbuf,0x2D);
  3945     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3947     // Encoding assumes a double has been pushed into FPR0.
  3948     // Store down the double as a long, popping the FPU stack
  3949     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3950     emit_opcode(cbuf,0x3C);
  3951     emit_d8(cbuf,0x24);
  3953     // Restore the rounding mode; mask the exception
  3954     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3955     emit_opcode(cbuf,0x2D);
  3956     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3957       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3958       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3960     // Load the converted int; adjust CPU stack
  3961     emit_opcode(cbuf,0x58);      // POP EAX
  3963     emit_opcode(cbuf,0x5A);      // POP EDX
  3965     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3966     emit_d8    (cbuf,0xFA);      // rdx
  3967     emit_d32   (cbuf,0x80000000);//         0x80000000
  3969     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3970     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3972     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3973     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3975     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3976     emit_d8    (cbuf,0x13);      // Size of slow_call
  3978     // Allocate a word
  3979     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3980     emit_opcode(cbuf,0xEC);
  3981     emit_d8(cbuf,0x04);
  3983     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3984     emit_opcode  (cbuf, 0x0F );
  3985     emit_opcode  (cbuf, 0x11 );
  3986     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3988     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3989     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3991     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3992     emit_opcode(cbuf,0xC4);
  3993     emit_d8(cbuf,0x04);
  3995     // CALL directly to the runtime
  3996     cbuf.set_insts_mark();
  3997     emit_opcode(cbuf,0xE8);       // Call into runtime
  3998     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3999     // Carry on here...
  4000   %}
  4002   enc_class XD2L_encoding( regXD src ) %{
  4003     // Allocate a word
  4004     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4005     emit_opcode(cbuf,0xEC);
  4006     emit_d8(cbuf,0x08);
  4008     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4009     emit_opcode  (cbuf, 0x0F );
  4010     emit_opcode  (cbuf, 0x11 );
  4011     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4013     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4014     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4016     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  4017     emit_opcode(cbuf,0x2D);
  4018     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  4020     // Encoding assumes a double has been pushed into FPR0.
  4021     // Store down the double as a long, popping the FPU stack
  4022     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  4023     emit_opcode(cbuf,0x3C);
  4024     emit_d8(cbuf,0x24);
  4026     // Restore the rounding mode; mask the exception
  4027     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  4028     emit_opcode(cbuf,0x2D);
  4029     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  4030       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  4031       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  4033     // Load the converted int; adjust CPU stack
  4034     emit_opcode(cbuf,0x58);      // POP EAX
  4036     emit_opcode(cbuf,0x5A);      // POP EDX
  4038     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  4039     emit_d8    (cbuf,0xFA);      // rdx
  4040     emit_d32   (cbuf,0x80000000); //         0x80000000
  4042     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4043     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  4045     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  4046     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  4048     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  4049     emit_d8    (cbuf,0x13);      // Size of slow_call
  4051     // Push src onto stack slow-path
  4052     // Allocate a word
  4053     emit_opcode(cbuf,0x83);      // SUB ESP,8
  4054     emit_opcode(cbuf,0xEC);
  4055     emit_d8(cbuf,0x08);
  4057     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4058     emit_opcode  (cbuf, 0x0F );
  4059     emit_opcode  (cbuf, 0x11 );
  4060     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4062     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4063     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4065     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4066     emit_opcode(cbuf,0xC4);
  4067     emit_d8(cbuf,0x08);
  4069     // CALL directly to the runtime
  4070     cbuf.set_insts_mark();
  4071     emit_opcode(cbuf,0xE8);      // Call into runtime
  4072     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4073     // Carry on here...
  4074   %}
  4076   enc_class D2X_encoding( regX dst, regD src ) %{
  4077     // Allocate a word
  4078     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4079     emit_opcode(cbuf,0xEC);
  4080     emit_d8(cbuf,0x04);
  4081     int pop = 0x02;
  4082     if ($src$$reg != FPR1L_enc) {
  4083       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4084       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4085       pop = 0x03;
  4087     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4089     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4090     emit_opcode  (cbuf, 0x0F );
  4091     emit_opcode  (cbuf, 0x10 );
  4092     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4094     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4095     emit_opcode(cbuf,0xC4);
  4096     emit_d8(cbuf,0x04);
  4097     // Carry on here...
  4098   %}
  4100   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4101     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4103     // Compare the result to see if we need to go to the slow path
  4104     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4105     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4106     emit_d32   (cbuf,0x80000000); //         0x80000000
  4108     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4109     emit_d8    (cbuf,0x13);       // Size of slow_call
  4110     // Store xmm to a temp memory
  4111     // location and push it onto stack.
  4113     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4114     emit_opcode(cbuf,0xEC);
  4115     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4117     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4118     emit_opcode  (cbuf, 0x0F );
  4119     emit_opcode  (cbuf, 0x11 );
  4120     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4122     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4123     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4125     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4126     emit_opcode(cbuf,0xC4);
  4127     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4129     // CALL directly to the runtime
  4130     cbuf.set_insts_mark();
  4131     emit_opcode(cbuf,0xE8);       // Call into runtime
  4132     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4134     // Carry on here...
  4135   %}
  4137   enc_class X2D_encoding( regD dst, regX src ) %{
  4138     // Allocate a word
  4139     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4140     emit_opcode(cbuf,0xEC);
  4141     emit_d8(cbuf,0x04);
  4143     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4144     emit_opcode  (cbuf, 0x0F );
  4145     emit_opcode  (cbuf, 0x11 );
  4146     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4148     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4149     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4151     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4152     emit_opcode(cbuf,0xC4);
  4153     emit_d8(cbuf,0x04);
  4155     // Carry on here...
  4156   %}
  4158   enc_class AbsXF_encoding(regX dst) %{
  4159     address signmask_address=(address)float_signmask_pool;
  4160     // andpd:\tANDPS  $dst,[signconst]
  4161     emit_opcode(cbuf, 0x0F);
  4162     emit_opcode(cbuf, 0x54);
  4163     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4164     emit_d32(cbuf, (int)signmask_address);
  4165   %}
  4167   enc_class AbsXD_encoding(regXD dst) %{
  4168     address signmask_address=(address)double_signmask_pool;
  4169     // andpd:\tANDPD  $dst,[signconst]
  4170     emit_opcode(cbuf, 0x66);
  4171     emit_opcode(cbuf, 0x0F);
  4172     emit_opcode(cbuf, 0x54);
  4173     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4174     emit_d32(cbuf, (int)signmask_address);
  4175   %}
  4177   enc_class NegXF_encoding(regX dst) %{
  4178     address signmask_address=(address)float_signflip_pool;
  4179     // andpd:\tXORPS  $dst,[signconst]
  4180     emit_opcode(cbuf, 0x0F);
  4181     emit_opcode(cbuf, 0x57);
  4182     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4183     emit_d32(cbuf, (int)signmask_address);
  4184   %}
  4186   enc_class NegXD_encoding(regXD dst) %{
  4187     address signmask_address=(address)double_signflip_pool;
  4188     // andpd:\tXORPD  $dst,[signconst]
  4189     emit_opcode(cbuf, 0x66);
  4190     emit_opcode(cbuf, 0x0F);
  4191     emit_opcode(cbuf, 0x57);
  4192     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4193     emit_d32(cbuf, (int)signmask_address);
  4194   %}
  4196   enc_class FMul_ST_reg( eRegF src1 ) %{
  4197     // Operand was loaded from memory into fp ST (stack top)
  4198     // FMUL   ST,$src  /* D8 C8+i */
  4199     emit_opcode(cbuf, 0xD8);
  4200     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4201   %}
  4203   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4204     // FADDP  ST,src2  /* D8 C0+i */
  4205     emit_opcode(cbuf, 0xD8);
  4206     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4207     //could use FADDP  src2,fpST  /* DE C0+i */
  4208   %}
  4210   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4211     // FADDP  src2,ST  /* DE C0+i */
  4212     emit_opcode(cbuf, 0xDE);
  4213     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4214   %}
  4216   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4217     // Operand has been loaded into fp ST (stack top)
  4218       // FSUB   ST,$src1
  4219       emit_opcode(cbuf, 0xD8);
  4220       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4222       // FDIV
  4223       emit_opcode(cbuf, 0xD8);
  4224       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4225   %}
  4227   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4228     // Operand was loaded from memory into fp ST (stack top)
  4229     // FADD   ST,$src  /* D8 C0+i */
  4230     emit_opcode(cbuf, 0xD8);
  4231     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4233     // FMUL  ST,src2  /* D8 C*+i */
  4234     emit_opcode(cbuf, 0xD8);
  4235     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4236   %}
  4239   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4240     // Operand was loaded from memory into fp ST (stack top)
  4241     // FADD   ST,$src  /* D8 C0+i */
  4242     emit_opcode(cbuf, 0xD8);
  4243     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4245     // FMULP  src2,ST  /* DE C8+i */
  4246     emit_opcode(cbuf, 0xDE);
  4247     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4248   %}
  4250   // Atomically load the volatile long
  4251   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4252     emit_opcode(cbuf,0xDF);
  4253     int rm_byte_opcode = 0x05;
  4254     int base     = $mem$$base;
  4255     int index    = $mem$$index;
  4256     int scale    = $mem$$scale;
  4257     int displace = $mem$$disp;
  4258     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4259     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4260     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4261   %}
  4263   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4264     { // Atomic long load
  4265       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4266       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4267       emit_opcode(cbuf,0x0F);
  4268       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4269       int base     = $mem$$base;
  4270       int index    = $mem$$index;
  4271       int scale    = $mem$$scale;
  4272       int displace = $mem$$disp;
  4273       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4274       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4276     { // MOVSD $dst,$tmp ! atomic long store
  4277       emit_opcode(cbuf,0xF2);
  4278       emit_opcode(cbuf,0x0F);
  4279       emit_opcode(cbuf,0x11);
  4280       int base     = $dst$$base;
  4281       int index    = $dst$$index;
  4282       int scale    = $dst$$scale;
  4283       int displace = $dst$$disp;
  4284       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4285       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4287   %}
  4289   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4290     { // Atomic long load
  4291       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4292       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4293       emit_opcode(cbuf,0x0F);
  4294       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4295       int base     = $mem$$base;
  4296       int index    = $mem$$index;
  4297       int scale    = $mem$$scale;
  4298       int displace = $mem$$disp;
  4299       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4300       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4302     { // MOVD $dst.lo,$tmp
  4303       emit_opcode(cbuf,0x66);
  4304       emit_opcode(cbuf,0x0F);
  4305       emit_opcode(cbuf,0x7E);
  4306       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4308     { // PSRLQ $tmp,32
  4309       emit_opcode(cbuf,0x66);
  4310       emit_opcode(cbuf,0x0F);
  4311       emit_opcode(cbuf,0x73);
  4312       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4313       emit_d8(cbuf, 0x20);
  4315     { // MOVD $dst.hi,$tmp
  4316       emit_opcode(cbuf,0x66);
  4317       emit_opcode(cbuf,0x0F);
  4318       emit_opcode(cbuf,0x7E);
  4319       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4321   %}
  4323   // Volatile Store Long.  Must be atomic, so move it into
  4324   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4325   // target address before the store (for null-ptr checks)
  4326   // so the memory operand is used twice in the encoding.
  4327   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4328     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4329     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  4330     emit_opcode(cbuf,0xDF);
  4331     int rm_byte_opcode = 0x07;
  4332     int base     = $mem$$base;
  4333     int index    = $mem$$index;
  4334     int scale    = $mem$$scale;
  4335     int displace = $mem$$disp;
  4336     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4337     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4338   %}
  4340   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4341     { // Atomic long load
  4342       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4343       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4344       emit_opcode(cbuf,0x0F);
  4345       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4346       int base     = $src$$base;
  4347       int index    = $src$$index;
  4348       int scale    = $src$$scale;
  4349       int displace = $src$$disp;
  4350       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4351       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4353     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4354     { // MOVSD $mem,$tmp ! atomic long store
  4355       emit_opcode(cbuf,0xF2);
  4356       emit_opcode(cbuf,0x0F);
  4357       emit_opcode(cbuf,0x11);
  4358       int base     = $mem$$base;
  4359       int index    = $mem$$index;
  4360       int scale    = $mem$$scale;
  4361       int displace = $mem$$disp;
  4362       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4363       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4365   %}
  4367   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4368     { // MOVD $tmp,$src.lo
  4369       emit_opcode(cbuf,0x66);
  4370       emit_opcode(cbuf,0x0F);
  4371       emit_opcode(cbuf,0x6E);
  4372       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4374     { // MOVD $tmp2,$src.hi
  4375       emit_opcode(cbuf,0x66);
  4376       emit_opcode(cbuf,0x0F);
  4377       emit_opcode(cbuf,0x6E);
  4378       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4380     { // PUNPCKLDQ $tmp,$tmp2
  4381       emit_opcode(cbuf,0x66);
  4382       emit_opcode(cbuf,0x0F);
  4383       emit_opcode(cbuf,0x62);
  4384       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4386     cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
  4387     { // MOVSD $mem,$tmp ! atomic long store
  4388       emit_opcode(cbuf,0xF2);
  4389       emit_opcode(cbuf,0x0F);
  4390       emit_opcode(cbuf,0x11);
  4391       int base     = $mem$$base;
  4392       int index    = $mem$$index;
  4393       int scale    = $mem$$scale;
  4394       int displace = $mem$$disp;
  4395       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4396       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4398   %}
  4400   // Safepoint Poll.  This polls the safepoint page, and causes an
  4401   // exception if it is not readable. Unfortunately, it kills the condition code
  4402   // in the process
  4403   // We current use TESTL [spp],EDI
  4404   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4406   enc_class Safepoint_Poll() %{
  4407     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  4408     emit_opcode(cbuf,0x85);
  4409     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4410     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4411   %}
  4412 %}
  4415 //----------FRAME--------------------------------------------------------------
  4416 // Definition of frame structure and management information.
  4417 //
  4418 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4419 //                             |   (to get allocators register number
  4420 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4421 //  r   CALLER     |        |
  4422 //  o     |        +--------+      pad to even-align allocators stack-slot
  4423 //  w     V        |  pad0  |        numbers; owned by CALLER
  4424 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4425 //  h     ^        |   in   |  5
  4426 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4427 //  |     |        |        |  3
  4428 //  |     |        +--------+
  4429 //  V     |        | old out|      Empty on Intel, window on Sparc
  4430 //        |    old |preserve|      Must be even aligned.
  4431 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4432 //        |        |   in   |  3   area for Intel ret address
  4433 //     Owned by    |preserve|      Empty on Sparc.
  4434 //       SELF      +--------+
  4435 //        |        |  pad2  |  2   pad to align old SP
  4436 //        |        +--------+  1
  4437 //        |        | locks  |  0
  4438 //        |        +--------+----> OptoReg::stack0(), even aligned
  4439 //        |        |  pad1  | 11   pad to align new SP
  4440 //        |        +--------+
  4441 //        |        |        | 10
  4442 //        |        | spills |  9   spills
  4443 //        V        |        |  8   (pad0 slot for callee)
  4444 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4445 //        ^        |  out   |  7
  4446 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4447 //     Owned by    +--------+
  4448 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4449 //        |    new |preserve|      Must be even-aligned.
  4450 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4451 //        |        |        |
  4452 //
  4453 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4454 //         known from SELF's arguments and the Java calling convention.
  4455 //         Region 6-7 is determined per call site.
  4456 // Note 2: If the calling convention leaves holes in the incoming argument
  4457 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4458 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4459 //         incoming area, as the Java calling convention is completely under
  4460 //         the control of the AD file.  Doubles can be sorted and packed to
  4461 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4462 //         varargs C calling conventions.
  4463 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4464 //         even aligned with pad0 as needed.
  4465 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4466 //         region 6-11 is even aligned; it may be padded out more so that
  4467 //         the region from SP to FP meets the minimum stack alignment.
  4469 frame %{
  4470   // What direction does stack grow in (assumed to be same for C & Java)
  4471   stack_direction(TOWARDS_LOW);
  4473   // These three registers define part of the calling convention
  4474   // between compiled code and the interpreter.
  4475   inline_cache_reg(EAX);                // Inline Cache Register
  4476   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4478   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4479   cisc_spilling_operand_name(indOffset32);
  4481   // Number of stack slots consumed by locking an object
  4482   sync_stack_slots(1);
  4484   // Compiled code's Frame Pointer
  4485   frame_pointer(ESP);
  4486   // Interpreter stores its frame pointer in a register which is
  4487   // stored to the stack by I2CAdaptors.
  4488   // I2CAdaptors convert from interpreted java to compiled java.
  4489   interpreter_frame_pointer(EBP);
  4491   // Stack alignment requirement
  4492   // Alignment size in bytes (128-bit -> 16 bytes)
  4493   stack_alignment(StackAlignmentInBytes);
  4495   // Number of stack slots between incoming argument block and the start of
  4496   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4497   // EPILOG must remove this many slots.  Intel needs one slot for
  4498   // return address and one for rbp, (must save rbp)
  4499   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4501   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4502   // for calls to C.  Supports the var-args backing area for register parms.
  4503   varargs_C_out_slots_killed(0);
  4505   // The after-PROLOG location of the return address.  Location of
  4506   // return address specifies a type (REG or STACK) and a number
  4507   // representing the register number (i.e. - use a register name) or
  4508   // stack slot.
  4509   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4510   // Otherwise, it is above the locks and verification slot and alignment word
  4511   return_addr(STACK - 1 +
  4512               round_to(1+VerifyStackAtCalls+
  4513               Compile::current()->fixed_slots(),
  4514               (StackAlignmentInBytes/wordSize)));
  4516   // Body of function which returns an integer array locating
  4517   // arguments either in registers or in stack slots.  Passed an array
  4518   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4519   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4520   // arguments for a CALLEE.  Incoming stack arguments are
  4521   // automatically biased by the preserve_stack_slots field above.
  4522   calling_convention %{
  4523     // No difference between ingoing/outgoing just pass false
  4524     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4525   %}
  4528   // Body of function which returns an integer array locating
  4529   // arguments either in registers or in stack slots.  Passed an array
  4530   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4531   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4532   // arguments for a CALLEE.  Incoming stack arguments are
  4533   // automatically biased by the preserve_stack_slots field above.
  4534   c_calling_convention %{
  4535     // This is obviously always outgoing
  4536     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4537   %}
  4539   // Location of C & interpreter return values
  4540   c_return_value %{
  4541     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4542     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4543     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4545     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4546     // that C functions return float and double results in XMM0.
  4547     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4548       return OptoRegPair(XMM0b_num,XMM0a_num);
  4549     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4550       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4552     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4553   %}
  4555   // Location of return values
  4556   return_value %{
  4557     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4558     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4559     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4560     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4561       return OptoRegPair(XMM0b_num,XMM0a_num);
  4562     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4563       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4564     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4565   %}
  4567 %}
  4569 //----------ATTRIBUTES---------------------------------------------------------
  4570 //----------Operand Attributes-------------------------------------------------
  4571 op_attrib op_cost(0);        // Required cost attribute
  4573 //----------Instruction Attributes---------------------------------------------
  4574 ins_attrib ins_cost(100);       // Required cost attribute
  4575 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4576 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4577 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4578                                 // non-matching short branch variant of some
  4579                                                             // long branch?
  4580 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4581                                 // specifies the alignment that some part of the instruction (not
  4582                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4583                                 // function must be provided for the instruction
  4585 //----------OPERANDS-----------------------------------------------------------
  4586 // Operand definitions must precede instruction definitions for correct parsing
  4587 // in the ADLC because operands constitute user defined types which are used in
  4588 // instruction definitions.
  4590 //----------Simple Operands----------------------------------------------------
  4591 // Immediate Operands
  4592 // Integer Immediate
  4593 operand immI() %{
  4594   match(ConI);
  4596   op_cost(10);
  4597   format %{ %}
  4598   interface(CONST_INTER);
  4599 %}
  4601 // Constant for test vs zero
  4602 operand immI0() %{
  4603   predicate(n->get_int() == 0);
  4604   match(ConI);
  4606   op_cost(0);
  4607   format %{ %}
  4608   interface(CONST_INTER);
  4609 %}
  4611 // Constant for increment
  4612 operand immI1() %{
  4613   predicate(n->get_int() == 1);
  4614   match(ConI);
  4616   op_cost(0);
  4617   format %{ %}
  4618   interface(CONST_INTER);
  4619 %}
  4621 // Constant for decrement
  4622 operand immI_M1() %{
  4623   predicate(n->get_int() == -1);
  4624   match(ConI);
  4626   op_cost(0);
  4627   format %{ %}
  4628   interface(CONST_INTER);
  4629 %}
  4631 // Valid scale values for addressing modes
  4632 operand immI2() %{
  4633   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4634   match(ConI);
  4636   format %{ %}
  4637   interface(CONST_INTER);
  4638 %}
  4640 operand immI8() %{
  4641   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4642   match(ConI);
  4644   op_cost(5);
  4645   format %{ %}
  4646   interface(CONST_INTER);
  4647 %}
  4649 operand immI16() %{
  4650   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4651   match(ConI);
  4653   op_cost(10);
  4654   format %{ %}
  4655   interface(CONST_INTER);
  4656 %}
  4658 // Constant for long shifts
  4659 operand immI_32() %{
  4660   predicate( n->get_int() == 32 );
  4661   match(ConI);
  4663   op_cost(0);
  4664   format %{ %}
  4665   interface(CONST_INTER);
  4666 %}
  4668 operand immI_1_31() %{
  4669   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4670   match(ConI);
  4672   op_cost(0);
  4673   format %{ %}
  4674   interface(CONST_INTER);
  4675 %}
  4677 operand immI_32_63() %{
  4678   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4679   match(ConI);
  4680   op_cost(0);
  4682   format %{ %}
  4683   interface(CONST_INTER);
  4684 %}
  4686 operand immI_1() %{
  4687   predicate( n->get_int() == 1 );
  4688   match(ConI);
  4690   op_cost(0);
  4691   format %{ %}
  4692   interface(CONST_INTER);
  4693 %}
  4695 operand immI_2() %{
  4696   predicate( n->get_int() == 2 );
  4697   match(ConI);
  4699   op_cost(0);
  4700   format %{ %}
  4701   interface(CONST_INTER);
  4702 %}
  4704 operand immI_3() %{
  4705   predicate( n->get_int() == 3 );
  4706   match(ConI);
  4708   op_cost(0);
  4709   format %{ %}
  4710   interface(CONST_INTER);
  4711 %}
  4713 // Pointer Immediate
  4714 operand immP() %{
  4715   match(ConP);
  4717   op_cost(10);
  4718   format %{ %}
  4719   interface(CONST_INTER);
  4720 %}
  4722 // NULL Pointer Immediate
  4723 operand immP0() %{
  4724   predicate( n->get_ptr() == 0 );
  4725   match(ConP);
  4726   op_cost(0);
  4728   format %{ %}
  4729   interface(CONST_INTER);
  4730 %}
  4732 // Long Immediate
  4733 operand immL() %{
  4734   match(ConL);
  4736   op_cost(20);
  4737   format %{ %}
  4738   interface(CONST_INTER);
  4739 %}
  4741 // Long Immediate zero
  4742 operand immL0() %{
  4743   predicate( n->get_long() == 0L );
  4744   match(ConL);
  4745   op_cost(0);
  4747   format %{ %}
  4748   interface(CONST_INTER);
  4749 %}
  4751 // Long Immediate zero
  4752 operand immL_M1() %{
  4753   predicate( n->get_long() == -1L );
  4754   match(ConL);
  4755   op_cost(0);
  4757   format %{ %}
  4758   interface(CONST_INTER);
  4759 %}
  4761 // Long immediate from 0 to 127.
  4762 // Used for a shorter form of long mul by 10.
  4763 operand immL_127() %{
  4764   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4765   match(ConL);
  4766   op_cost(0);
  4768   format %{ %}
  4769   interface(CONST_INTER);
  4770 %}
  4772 // Long Immediate: low 32-bit mask
  4773 operand immL_32bits() %{
  4774   predicate(n->get_long() == 0xFFFFFFFFL);
  4775   match(ConL);
  4776   op_cost(0);
  4778   format %{ %}
  4779   interface(CONST_INTER);
  4780 %}
  4782 // Long Immediate: low 32-bit mask
  4783 operand immL32() %{
  4784   predicate(n->get_long() == (int)(n->get_long()));
  4785   match(ConL);
  4786   op_cost(20);
  4788   format %{ %}
  4789   interface(CONST_INTER);
  4790 %}
  4792 //Double Immediate zero
  4793 operand immD0() %{
  4794   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4795   // bug that generates code such that NaNs compare equal to 0.0
  4796   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4797   match(ConD);
  4799   op_cost(5);
  4800   format %{ %}
  4801   interface(CONST_INTER);
  4802 %}
  4804 // Double Immediate
  4805 operand immD1() %{
  4806   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4807   match(ConD);
  4809   op_cost(5);
  4810   format %{ %}
  4811   interface(CONST_INTER);
  4812 %}
  4814 // Double Immediate
  4815 operand immD() %{
  4816   predicate(UseSSE<=1);
  4817   match(ConD);
  4819   op_cost(5);
  4820   format %{ %}
  4821   interface(CONST_INTER);
  4822 %}
  4824 operand immXD() %{
  4825   predicate(UseSSE>=2);
  4826   match(ConD);
  4828   op_cost(5);
  4829   format %{ %}
  4830   interface(CONST_INTER);
  4831 %}
  4833 // Double Immediate zero
  4834 operand immXD0() %{
  4835   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4836   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4837   // compare equal to -0.0.
  4838   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4839   match(ConD);
  4841   format %{ %}
  4842   interface(CONST_INTER);
  4843 %}
  4845 // Float Immediate zero
  4846 operand immF0() %{
  4847   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4848   match(ConF);
  4850   op_cost(5);
  4851   format %{ %}
  4852   interface(CONST_INTER);
  4853 %}
  4855 // Float Immediate
  4856 operand immF() %{
  4857   predicate( UseSSE == 0 );
  4858   match(ConF);
  4860   op_cost(5);
  4861   format %{ %}
  4862   interface(CONST_INTER);
  4863 %}
  4865 // Float Immediate
  4866 operand immXF() %{
  4867   predicate(UseSSE >= 1);
  4868   match(ConF);
  4870   op_cost(5);
  4871   format %{ %}
  4872   interface(CONST_INTER);
  4873 %}
  4875 // Float Immediate zero.  Zero and not -0.0
  4876 operand immXF0() %{
  4877   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4878   match(ConF);
  4880   op_cost(5);
  4881   format %{ %}
  4882   interface(CONST_INTER);
  4883 %}
  4885 // Immediates for special shifts (sign extend)
  4887 // Constants for increment
  4888 operand immI_16() %{
  4889   predicate( n->get_int() == 16 );
  4890   match(ConI);
  4892   format %{ %}
  4893   interface(CONST_INTER);
  4894 %}
  4896 operand immI_24() %{
  4897   predicate( n->get_int() == 24 );
  4898   match(ConI);
  4900   format %{ %}
  4901   interface(CONST_INTER);
  4902 %}
  4904 // Constant for byte-wide masking
  4905 operand immI_255() %{
  4906   predicate( n->get_int() == 255 );
  4907   match(ConI);
  4909   format %{ %}
  4910   interface(CONST_INTER);
  4911 %}
  4913 // Constant for short-wide masking
  4914 operand immI_65535() %{
  4915   predicate(n->get_int() == 65535);
  4916   match(ConI);
  4918   format %{ %}
  4919   interface(CONST_INTER);
  4920 %}
  4922 // Register Operands
  4923 // Integer Register
  4924 operand eRegI() %{
  4925   constraint(ALLOC_IN_RC(e_reg));
  4926   match(RegI);
  4927   match(xRegI);
  4928   match(eAXRegI);
  4929   match(eBXRegI);
  4930   match(eCXRegI);
  4931   match(eDXRegI);
  4932   match(eDIRegI);
  4933   match(eSIRegI);
  4935   format %{ %}
  4936   interface(REG_INTER);
  4937 %}
  4939 // Subset of Integer Register
  4940 operand xRegI(eRegI reg) %{
  4941   constraint(ALLOC_IN_RC(x_reg));
  4942   match(reg);
  4943   match(eAXRegI);
  4944   match(eBXRegI);
  4945   match(eCXRegI);
  4946   match(eDXRegI);
  4948   format %{ %}
  4949   interface(REG_INTER);
  4950 %}
  4952 // Special Registers
  4953 operand eAXRegI(xRegI reg) %{
  4954   constraint(ALLOC_IN_RC(eax_reg));
  4955   match(reg);
  4956   match(eRegI);
  4958   format %{ "EAX" %}
  4959   interface(REG_INTER);
  4960 %}
  4962 // Special Registers
  4963 operand eBXRegI(xRegI reg) %{
  4964   constraint(ALLOC_IN_RC(ebx_reg));
  4965   match(reg);
  4966   match(eRegI);
  4968   format %{ "EBX" %}
  4969   interface(REG_INTER);
  4970 %}
  4972 operand eCXRegI(xRegI reg) %{
  4973   constraint(ALLOC_IN_RC(ecx_reg));
  4974   match(reg);
  4975   match(eRegI);
  4977   format %{ "ECX" %}
  4978   interface(REG_INTER);
  4979 %}
  4981 operand eDXRegI(xRegI reg) %{
  4982   constraint(ALLOC_IN_RC(edx_reg));
  4983   match(reg);
  4984   match(eRegI);
  4986   format %{ "EDX" %}
  4987   interface(REG_INTER);
  4988 %}
  4990 operand eDIRegI(xRegI reg) %{
  4991   constraint(ALLOC_IN_RC(edi_reg));
  4992   match(reg);
  4993   match(eRegI);
  4995   format %{ "EDI" %}
  4996   interface(REG_INTER);
  4997 %}
  4999 operand naxRegI() %{
  5000   constraint(ALLOC_IN_RC(nax_reg));
  5001   match(RegI);
  5002   match(eCXRegI);
  5003   match(eDXRegI);
  5004   match(eSIRegI);
  5005   match(eDIRegI);
  5007   format %{ %}
  5008   interface(REG_INTER);
  5009 %}
  5011 operand nadxRegI() %{
  5012   constraint(ALLOC_IN_RC(nadx_reg));
  5013   match(RegI);
  5014   match(eBXRegI);
  5015   match(eCXRegI);
  5016   match(eSIRegI);
  5017   match(eDIRegI);
  5019   format %{ %}
  5020   interface(REG_INTER);
  5021 %}
  5023 operand ncxRegI() %{
  5024   constraint(ALLOC_IN_RC(ncx_reg));
  5025   match(RegI);
  5026   match(eAXRegI);
  5027   match(eDXRegI);
  5028   match(eSIRegI);
  5029   match(eDIRegI);
  5031   format %{ %}
  5032   interface(REG_INTER);
  5033 %}
  5035 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  5036 // //
  5037 operand eSIRegI(xRegI reg) %{
  5038    constraint(ALLOC_IN_RC(esi_reg));
  5039    match(reg);
  5040    match(eRegI);
  5042    format %{ "ESI" %}
  5043    interface(REG_INTER);
  5044 %}
  5046 // Pointer Register
  5047 operand anyRegP() %{
  5048   constraint(ALLOC_IN_RC(any_reg));
  5049   match(RegP);
  5050   match(eAXRegP);
  5051   match(eBXRegP);
  5052   match(eCXRegP);
  5053   match(eDIRegP);
  5054   match(eRegP);
  5056   format %{ %}
  5057   interface(REG_INTER);
  5058 %}
  5060 operand eRegP() %{
  5061   constraint(ALLOC_IN_RC(e_reg));
  5062   match(RegP);
  5063   match(eAXRegP);
  5064   match(eBXRegP);
  5065   match(eCXRegP);
  5066   match(eDIRegP);
  5068   format %{ %}
  5069   interface(REG_INTER);
  5070 %}
  5072 // On windows95, EBP is not safe to use for implicit null tests.
  5073 operand eRegP_no_EBP() %{
  5074   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5075   match(RegP);
  5076   match(eAXRegP);
  5077   match(eBXRegP);
  5078   match(eCXRegP);
  5079   match(eDIRegP);
  5081   op_cost(100);
  5082   format %{ %}
  5083   interface(REG_INTER);
  5084 %}
  5086 operand naxRegP() %{
  5087   constraint(ALLOC_IN_RC(nax_reg));
  5088   match(RegP);
  5089   match(eBXRegP);
  5090   match(eDXRegP);
  5091   match(eCXRegP);
  5092   match(eSIRegP);
  5093   match(eDIRegP);
  5095   format %{ %}
  5096   interface(REG_INTER);
  5097 %}
  5099 operand nabxRegP() %{
  5100   constraint(ALLOC_IN_RC(nabx_reg));
  5101   match(RegP);
  5102   match(eCXRegP);
  5103   match(eDXRegP);
  5104   match(eSIRegP);
  5105   match(eDIRegP);
  5107   format %{ %}
  5108   interface(REG_INTER);
  5109 %}
  5111 operand pRegP() %{
  5112   constraint(ALLOC_IN_RC(p_reg));
  5113   match(RegP);
  5114   match(eBXRegP);
  5115   match(eDXRegP);
  5116   match(eSIRegP);
  5117   match(eDIRegP);
  5119   format %{ %}
  5120   interface(REG_INTER);
  5121 %}
  5123 // Special Registers
  5124 // Return a pointer value
  5125 operand eAXRegP(eRegP reg) %{
  5126   constraint(ALLOC_IN_RC(eax_reg));
  5127   match(reg);
  5128   format %{ "EAX" %}
  5129   interface(REG_INTER);
  5130 %}
  5132 // Used in AtomicAdd
  5133 operand eBXRegP(eRegP reg) %{
  5134   constraint(ALLOC_IN_RC(ebx_reg));
  5135   match(reg);
  5136   format %{ "EBX" %}
  5137   interface(REG_INTER);
  5138 %}
  5140 // Tail-call (interprocedural jump) to interpreter
  5141 operand eCXRegP(eRegP reg) %{
  5142   constraint(ALLOC_IN_RC(ecx_reg));
  5143   match(reg);
  5144   format %{ "ECX" %}
  5145   interface(REG_INTER);
  5146 %}
  5148 operand eSIRegP(eRegP reg) %{
  5149   constraint(ALLOC_IN_RC(esi_reg));
  5150   match(reg);
  5151   format %{ "ESI" %}
  5152   interface(REG_INTER);
  5153 %}
  5155 // Used in rep stosw
  5156 operand eDIRegP(eRegP reg) %{
  5157   constraint(ALLOC_IN_RC(edi_reg));
  5158   match(reg);
  5159   format %{ "EDI" %}
  5160   interface(REG_INTER);
  5161 %}
  5163 operand eBPRegP() %{
  5164   constraint(ALLOC_IN_RC(ebp_reg));
  5165   match(RegP);
  5166   format %{ "EBP" %}
  5167   interface(REG_INTER);
  5168 %}
  5170 operand eRegL() %{
  5171   constraint(ALLOC_IN_RC(long_reg));
  5172   match(RegL);
  5173   match(eADXRegL);
  5175   format %{ %}
  5176   interface(REG_INTER);
  5177 %}
  5179 operand eADXRegL( eRegL reg ) %{
  5180   constraint(ALLOC_IN_RC(eadx_reg));
  5181   match(reg);
  5183   format %{ "EDX:EAX" %}
  5184   interface(REG_INTER);
  5185 %}
  5187 operand eBCXRegL( eRegL reg ) %{
  5188   constraint(ALLOC_IN_RC(ebcx_reg));
  5189   match(reg);
  5191   format %{ "EBX:ECX" %}
  5192   interface(REG_INTER);
  5193 %}
  5195 // Special case for integer high multiply
  5196 operand eADXRegL_low_only() %{
  5197   constraint(ALLOC_IN_RC(eadx_reg));
  5198   match(RegL);
  5200   format %{ "EAX" %}
  5201   interface(REG_INTER);
  5202 %}
  5204 // Flags register, used as output of compare instructions
  5205 operand eFlagsReg() %{
  5206   constraint(ALLOC_IN_RC(int_flags));
  5207   match(RegFlags);
  5209   format %{ "EFLAGS" %}
  5210   interface(REG_INTER);
  5211 %}
  5213 // Flags register, used as output of FLOATING POINT compare instructions
  5214 operand eFlagsRegU() %{
  5215   constraint(ALLOC_IN_RC(int_flags));
  5216   match(RegFlags);
  5218   format %{ "EFLAGS_U" %}
  5219   interface(REG_INTER);
  5220 %}
  5222 operand eFlagsRegUCF() %{
  5223   constraint(ALLOC_IN_RC(int_flags));
  5224   match(RegFlags);
  5225   predicate(false);
  5227   format %{ "EFLAGS_U_CF" %}
  5228   interface(REG_INTER);
  5229 %}
  5231 // Condition Code Register used by long compare
  5232 operand flagsReg_long_LTGE() %{
  5233   constraint(ALLOC_IN_RC(int_flags));
  5234   match(RegFlags);
  5235   format %{ "FLAGS_LTGE" %}
  5236   interface(REG_INTER);
  5237 %}
  5238 operand flagsReg_long_EQNE() %{
  5239   constraint(ALLOC_IN_RC(int_flags));
  5240   match(RegFlags);
  5241   format %{ "FLAGS_EQNE" %}
  5242   interface(REG_INTER);
  5243 %}
  5244 operand flagsReg_long_LEGT() %{
  5245   constraint(ALLOC_IN_RC(int_flags));
  5246   match(RegFlags);
  5247   format %{ "FLAGS_LEGT" %}
  5248   interface(REG_INTER);
  5249 %}
  5251 // Float register operands
  5252 operand regD() %{
  5253   predicate( UseSSE < 2 );
  5254   constraint(ALLOC_IN_RC(dbl_reg));
  5255   match(RegD);
  5256   match(regDPR1);
  5257   match(regDPR2);
  5258   format %{ %}
  5259   interface(REG_INTER);
  5260 %}
  5262 operand regDPR1(regD reg) %{
  5263   predicate( UseSSE < 2 );
  5264   constraint(ALLOC_IN_RC(dbl_reg0));
  5265   match(reg);
  5266   format %{ "FPR1" %}
  5267   interface(REG_INTER);
  5268 %}
  5270 operand regDPR2(regD reg) %{
  5271   predicate( UseSSE < 2 );
  5272   constraint(ALLOC_IN_RC(dbl_reg1));
  5273   match(reg);
  5274   format %{ "FPR2" %}
  5275   interface(REG_INTER);
  5276 %}
  5278 operand regnotDPR1(regD reg) %{
  5279   predicate( UseSSE < 2 );
  5280   constraint(ALLOC_IN_RC(dbl_notreg0));
  5281   match(reg);
  5282   format %{ %}
  5283   interface(REG_INTER);
  5284 %}
  5286 // XMM Double register operands
  5287 operand regXD() %{
  5288   predicate( UseSSE>=2 );
  5289   constraint(ALLOC_IN_RC(xdb_reg));
  5290   match(RegD);
  5291   match(regXD6);
  5292   match(regXD7);
  5293   format %{ %}
  5294   interface(REG_INTER);
  5295 %}
  5297 // XMM6 double register operands
  5298 operand regXD6(regXD reg) %{
  5299   predicate( UseSSE>=2 );
  5300   constraint(ALLOC_IN_RC(xdb_reg6));
  5301   match(reg);
  5302   format %{ "XMM6" %}
  5303   interface(REG_INTER);
  5304 %}
  5306 // XMM7 double register operands
  5307 operand regXD7(regXD reg) %{
  5308   predicate( UseSSE>=2 );
  5309   constraint(ALLOC_IN_RC(xdb_reg7));
  5310   match(reg);
  5311   format %{ "XMM7" %}
  5312   interface(REG_INTER);
  5313 %}
  5315 // Float register operands
  5316 operand regF() %{
  5317   predicate( UseSSE < 2 );
  5318   constraint(ALLOC_IN_RC(flt_reg));
  5319   match(RegF);
  5320   match(regFPR1);
  5321   format %{ %}
  5322   interface(REG_INTER);
  5323 %}
  5325 // Float register operands
  5326 operand regFPR1(regF reg) %{
  5327   predicate( UseSSE < 2 );
  5328   constraint(ALLOC_IN_RC(flt_reg0));
  5329   match(reg);
  5330   format %{ "FPR1" %}
  5331   interface(REG_INTER);
  5332 %}
  5334 // XMM register operands
  5335 operand regX() %{
  5336   predicate( UseSSE>=1 );
  5337   constraint(ALLOC_IN_RC(xmm_reg));
  5338   match(RegF);
  5339   format %{ %}
  5340   interface(REG_INTER);
  5341 %}
  5344 //----------Memory Operands----------------------------------------------------
  5345 // Direct Memory Operand
  5346 operand direct(immP addr) %{
  5347   match(addr);
  5349   format %{ "[$addr]" %}
  5350   interface(MEMORY_INTER) %{
  5351     base(0xFFFFFFFF);
  5352     index(0x4);
  5353     scale(0x0);
  5354     disp($addr);
  5355   %}
  5356 %}
  5358 // Indirect Memory Operand
  5359 operand indirect(eRegP reg) %{
  5360   constraint(ALLOC_IN_RC(e_reg));
  5361   match(reg);
  5363   format %{ "[$reg]" %}
  5364   interface(MEMORY_INTER) %{
  5365     base($reg);
  5366     index(0x4);
  5367     scale(0x0);
  5368     disp(0x0);
  5369   %}
  5370 %}
  5372 // Indirect Memory Plus Short Offset Operand
  5373 operand indOffset8(eRegP reg, immI8 off) %{
  5374   match(AddP reg off);
  5376   format %{ "[$reg + $off]" %}
  5377   interface(MEMORY_INTER) %{
  5378     base($reg);
  5379     index(0x4);
  5380     scale(0x0);
  5381     disp($off);
  5382   %}
  5383 %}
  5385 // Indirect Memory Plus Long Offset Operand
  5386 operand indOffset32(eRegP reg, immI off) %{
  5387   match(AddP reg off);
  5389   format %{ "[$reg + $off]" %}
  5390   interface(MEMORY_INTER) %{
  5391     base($reg);
  5392     index(0x4);
  5393     scale(0x0);
  5394     disp($off);
  5395   %}
  5396 %}
  5398 // Indirect Memory Plus Long Offset Operand
  5399 operand indOffset32X(eRegI reg, immP off) %{
  5400   match(AddP off reg);
  5402   format %{ "[$reg + $off]" %}
  5403   interface(MEMORY_INTER) %{
  5404     base($reg);
  5405     index(0x4);
  5406     scale(0x0);
  5407     disp($off);
  5408   %}
  5409 %}
  5411 // Indirect Memory Plus Index Register Plus Offset Operand
  5412 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5413   match(AddP (AddP reg ireg) off);
  5415   op_cost(10);
  5416   format %{"[$reg + $off + $ireg]" %}
  5417   interface(MEMORY_INTER) %{
  5418     base($reg);
  5419     index($ireg);
  5420     scale(0x0);
  5421     disp($off);
  5422   %}
  5423 %}
  5425 // Indirect Memory Plus Index Register Plus Offset Operand
  5426 operand indIndex(eRegP reg, eRegI ireg) %{
  5427   match(AddP reg ireg);
  5429   op_cost(10);
  5430   format %{"[$reg + $ireg]" %}
  5431   interface(MEMORY_INTER) %{
  5432     base($reg);
  5433     index($ireg);
  5434     scale(0x0);
  5435     disp(0x0);
  5436   %}
  5437 %}
  5439 // // -------------------------------------------------------------------------
  5440 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5441 // // -------------------------------------------------------------------------
  5442 // // Scaled Memory Operands
  5443 // // Indirect Memory Times Scale Plus Offset Operand
  5444 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5445 //   match(AddP off (LShiftI ireg scale));
  5446 //
  5447 //   op_cost(10);
  5448 //   format %{"[$off + $ireg << $scale]" %}
  5449 //   interface(MEMORY_INTER) %{
  5450 //     base(0x4);
  5451 //     index($ireg);
  5452 //     scale($scale);
  5453 //     disp($off);
  5454 //   %}
  5455 // %}
  5457 // Indirect Memory Times Scale Plus Index Register
  5458 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5459   match(AddP reg (LShiftI ireg scale));
  5461   op_cost(10);
  5462   format %{"[$reg + $ireg << $scale]" %}
  5463   interface(MEMORY_INTER) %{
  5464     base($reg);
  5465     index($ireg);
  5466     scale($scale);
  5467     disp(0x0);
  5468   %}
  5469 %}
  5471 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5472 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5473   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5475   op_cost(10);
  5476   format %{"[$reg + $off + $ireg << $scale]" %}
  5477   interface(MEMORY_INTER) %{
  5478     base($reg);
  5479     index($ireg);
  5480     scale($scale);
  5481     disp($off);
  5482   %}
  5483 %}
  5485 //----------Load Long Memory Operands------------------------------------------
  5486 // The load-long idiom will use it's address expression again after loading
  5487 // the first word of the long.  If the load-long destination overlaps with
  5488 // registers used in the addressing expression, the 2nd half will be loaded
  5489 // from a clobbered address.  Fix this by requiring that load-long use
  5490 // address registers that do not overlap with the load-long target.
  5492 // load-long support
  5493 operand load_long_RegP() %{
  5494   constraint(ALLOC_IN_RC(esi_reg));
  5495   match(RegP);
  5496   match(eSIRegP);
  5497   op_cost(100);
  5498   format %{  %}
  5499   interface(REG_INTER);
  5500 %}
  5502 // Indirect Memory Operand Long
  5503 operand load_long_indirect(load_long_RegP reg) %{
  5504   constraint(ALLOC_IN_RC(esi_reg));
  5505   match(reg);
  5507   format %{ "[$reg]" %}
  5508   interface(MEMORY_INTER) %{
  5509     base($reg);
  5510     index(0x4);
  5511     scale(0x0);
  5512     disp(0x0);
  5513   %}
  5514 %}
  5516 // Indirect Memory Plus Long Offset Operand
  5517 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5518   match(AddP reg off);
  5520   format %{ "[$reg + $off]" %}
  5521   interface(MEMORY_INTER) %{
  5522     base($reg);
  5523     index(0x4);
  5524     scale(0x0);
  5525     disp($off);
  5526   %}
  5527 %}
  5529 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5532 //----------Special Memory Operands--------------------------------------------
  5533 // Stack Slot Operand - This operand is used for loading and storing temporary
  5534 //                      values on the stack where a match requires a value to
  5535 //                      flow through memory.
  5536 operand stackSlotP(sRegP reg) %{
  5537   constraint(ALLOC_IN_RC(stack_slots));
  5538   // No match rule because this operand is only generated in matching
  5539   format %{ "[$reg]" %}
  5540   interface(MEMORY_INTER) %{
  5541     base(0x4);   // ESP
  5542     index(0x4);  // No Index
  5543     scale(0x0);  // No Scale
  5544     disp($reg);  // Stack Offset
  5545   %}
  5546 %}
  5548 operand stackSlotI(sRegI reg) %{
  5549   constraint(ALLOC_IN_RC(stack_slots));
  5550   // No match rule because this operand is only generated in matching
  5551   format %{ "[$reg]" %}
  5552   interface(MEMORY_INTER) %{
  5553     base(0x4);   // ESP
  5554     index(0x4);  // No Index
  5555     scale(0x0);  // No Scale
  5556     disp($reg);  // Stack Offset
  5557   %}
  5558 %}
  5560 operand stackSlotF(sRegF reg) %{
  5561   constraint(ALLOC_IN_RC(stack_slots));
  5562   // No match rule because this operand is only generated in matching
  5563   format %{ "[$reg]" %}
  5564   interface(MEMORY_INTER) %{
  5565     base(0x4);   // ESP
  5566     index(0x4);  // No Index
  5567     scale(0x0);  // No Scale
  5568     disp($reg);  // Stack Offset
  5569   %}
  5570 %}
  5572 operand stackSlotD(sRegD reg) %{
  5573   constraint(ALLOC_IN_RC(stack_slots));
  5574   // No match rule because this operand is only generated in matching
  5575   format %{ "[$reg]" %}
  5576   interface(MEMORY_INTER) %{
  5577     base(0x4);   // ESP
  5578     index(0x4);  // No Index
  5579     scale(0x0);  // No Scale
  5580     disp($reg);  // Stack Offset
  5581   %}
  5582 %}
  5584 operand stackSlotL(sRegL reg) %{
  5585   constraint(ALLOC_IN_RC(stack_slots));
  5586   // No match rule because this operand is only generated in matching
  5587   format %{ "[$reg]" %}
  5588   interface(MEMORY_INTER) %{
  5589     base(0x4);   // ESP
  5590     index(0x4);  // No Index
  5591     scale(0x0);  // No Scale
  5592     disp($reg);  // Stack Offset
  5593   %}
  5594 %}
  5596 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5597 // Indirect Memory Operand
  5598 operand indirect_win95_safe(eRegP_no_EBP reg)
  5599 %{
  5600   constraint(ALLOC_IN_RC(e_reg));
  5601   match(reg);
  5603   op_cost(100);
  5604   format %{ "[$reg]" %}
  5605   interface(MEMORY_INTER) %{
  5606     base($reg);
  5607     index(0x4);
  5608     scale(0x0);
  5609     disp(0x0);
  5610   %}
  5611 %}
  5613 // Indirect Memory Plus Short Offset Operand
  5614 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5615 %{
  5616   match(AddP reg off);
  5618   op_cost(100);
  5619   format %{ "[$reg + $off]" %}
  5620   interface(MEMORY_INTER) %{
  5621     base($reg);
  5622     index(0x4);
  5623     scale(0x0);
  5624     disp($off);
  5625   %}
  5626 %}
  5628 // Indirect Memory Plus Long Offset Operand
  5629 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5630 %{
  5631   match(AddP reg off);
  5633   op_cost(100);
  5634   format %{ "[$reg + $off]" %}
  5635   interface(MEMORY_INTER) %{
  5636     base($reg);
  5637     index(0x4);
  5638     scale(0x0);
  5639     disp($off);
  5640   %}
  5641 %}
  5643 // Indirect Memory Plus Index Register Plus Offset Operand
  5644 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5645 %{
  5646   match(AddP (AddP reg ireg) off);
  5648   op_cost(100);
  5649   format %{"[$reg + $off + $ireg]" %}
  5650   interface(MEMORY_INTER) %{
  5651     base($reg);
  5652     index($ireg);
  5653     scale(0x0);
  5654     disp($off);
  5655   %}
  5656 %}
  5658 // Indirect Memory Times Scale Plus Index Register
  5659 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5660 %{
  5661   match(AddP reg (LShiftI ireg scale));
  5663   op_cost(100);
  5664   format %{"[$reg + $ireg << $scale]" %}
  5665   interface(MEMORY_INTER) %{
  5666     base($reg);
  5667     index($ireg);
  5668     scale($scale);
  5669     disp(0x0);
  5670   %}
  5671 %}
  5673 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5674 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5675 %{
  5676   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5678   op_cost(100);
  5679   format %{"[$reg + $off + $ireg << $scale]" %}
  5680   interface(MEMORY_INTER) %{
  5681     base($reg);
  5682     index($ireg);
  5683     scale($scale);
  5684     disp($off);
  5685   %}
  5686 %}
  5688 //----------Conditional Branch Operands----------------------------------------
  5689 // Comparison Op  - This is the operation of the comparison, and is limited to
  5690 //                  the following set of codes:
  5691 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5692 //
  5693 // Other attributes of the comparison, such as unsignedness, are specified
  5694 // by the comparison instruction that sets a condition code flags register.
  5695 // That result is represented by a flags operand whose subtype is appropriate
  5696 // to the unsignedness (etc.) of the comparison.
  5697 //
  5698 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5699 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5700 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5702 // Comparision Code
  5703 operand cmpOp() %{
  5704   match(Bool);
  5706   format %{ "" %}
  5707   interface(COND_INTER) %{
  5708     equal(0x4, "e");
  5709     not_equal(0x5, "ne");
  5710     less(0xC, "l");
  5711     greater_equal(0xD, "ge");
  5712     less_equal(0xE, "le");
  5713     greater(0xF, "g");
  5714   %}
  5715 %}
  5717 // Comparison Code, unsigned compare.  Used by FP also, with
  5718 // C2 (unordered) turned into GT or LT already.  The other bits
  5719 // C0 and C3 are turned into Carry & Zero flags.
  5720 operand cmpOpU() %{
  5721   match(Bool);
  5723   format %{ "" %}
  5724   interface(COND_INTER) %{
  5725     equal(0x4, "e");
  5726     not_equal(0x5, "ne");
  5727     less(0x2, "b");
  5728     greater_equal(0x3, "nb");
  5729     less_equal(0x6, "be");
  5730     greater(0x7, "nbe");
  5731   %}
  5732 %}
  5734 // Floating comparisons that don't require any fixup for the unordered case
  5735 operand cmpOpUCF() %{
  5736   match(Bool);
  5737   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5738             n->as_Bool()->_test._test == BoolTest::ge ||
  5739             n->as_Bool()->_test._test == BoolTest::le ||
  5740             n->as_Bool()->_test._test == BoolTest::gt);
  5741   format %{ "" %}
  5742   interface(COND_INTER) %{
  5743     equal(0x4, "e");
  5744     not_equal(0x5, "ne");
  5745     less(0x2, "b");
  5746     greater_equal(0x3, "nb");
  5747     less_equal(0x6, "be");
  5748     greater(0x7, "nbe");
  5749   %}
  5750 %}
  5753 // Floating comparisons that can be fixed up with extra conditional jumps
  5754 operand cmpOpUCF2() %{
  5755   match(Bool);
  5756   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5757             n->as_Bool()->_test._test == BoolTest::eq);
  5758   format %{ "" %}
  5759   interface(COND_INTER) %{
  5760     equal(0x4, "e");
  5761     not_equal(0x5, "ne");
  5762     less(0x2, "b");
  5763     greater_equal(0x3, "nb");
  5764     less_equal(0x6, "be");
  5765     greater(0x7, "nbe");
  5766   %}
  5767 %}
  5769 // Comparison Code for FP conditional move
  5770 operand cmpOp_fcmov() %{
  5771   match(Bool);
  5773   format %{ "" %}
  5774   interface(COND_INTER) %{
  5775     equal        (0x0C8);
  5776     not_equal    (0x1C8);
  5777     less         (0x0C0);
  5778     greater_equal(0x1C0);
  5779     less_equal   (0x0D0);
  5780     greater      (0x1D0);
  5781   %}
  5782 %}
  5784 // Comparision Code used in long compares
  5785 operand cmpOp_commute() %{
  5786   match(Bool);
  5788   format %{ "" %}
  5789   interface(COND_INTER) %{
  5790     equal(0x4, "e");
  5791     not_equal(0x5, "ne");
  5792     less(0xF, "g");
  5793     greater_equal(0xE, "le");
  5794     less_equal(0xD, "ge");
  5795     greater(0xC, "l");
  5796   %}
  5797 %}
  5799 //----------OPERAND CLASSES----------------------------------------------------
  5800 // Operand Classes are groups of operands that are used as to simplify
  5801 // instruction definitions by not requiring the AD writer to specify separate
  5802 // instructions for every form of operand when the instruction accepts
  5803 // multiple operand types with the same basic encoding and format.  The classic
  5804 // case of this is memory operands.
  5806 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5807                indIndex, indIndexScale, indIndexScaleOffset);
  5809 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5810 // This means some kind of offset is always required and you cannot use
  5811 // an oop as the offset (done when working on static globals).
  5812 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5813                     indIndex, indIndexScale, indIndexScaleOffset);
  5816 //----------PIPELINE-----------------------------------------------------------
  5817 // Rules which define the behavior of the target architectures pipeline.
  5818 pipeline %{
  5820 //----------ATTRIBUTES---------------------------------------------------------
  5821 attributes %{
  5822   variable_size_instructions;        // Fixed size instructions
  5823   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5824   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5825   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5826   instruction_fetch_units = 1;       // of 16 bytes
  5828   // List of nop instructions
  5829   nops( MachNop );
  5830 %}
  5832 //----------RESOURCES----------------------------------------------------------
  5833 // Resources are the functional units available to the machine
  5835 // Generic P2/P3 pipeline
  5836 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5837 // 3 instructions decoded per cycle.
  5838 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5839 // 2 ALU op, only ALU0 handles mul/div instructions.
  5840 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5841            MS0, MS1, MEM = MS0 | MS1,
  5842            BR, FPU,
  5843            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5845 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5846 // Pipeline Description specifies the stages in the machine's pipeline
  5848 // Generic P2/P3 pipeline
  5849 pipe_desc(S0, S1, S2, S3, S4, S5);
  5851 //----------PIPELINE CLASSES---------------------------------------------------
  5852 // Pipeline Classes describe the stages in which input and output are
  5853 // referenced by the hardware pipeline.
  5855 // Naming convention: ialu or fpu
  5856 // Then: _reg
  5857 // Then: _reg if there is a 2nd register
  5858 // Then: _long if it's a pair of instructions implementing a long
  5859 // Then: _fat if it requires the big decoder
  5860 //   Or: _mem if it requires the big decoder and a memory unit.
  5862 // Integer ALU reg operation
  5863 pipe_class ialu_reg(eRegI dst) %{
  5864     single_instruction;
  5865     dst    : S4(write);
  5866     dst    : S3(read);
  5867     DECODE : S0;        // any decoder
  5868     ALU    : S3;        // any alu
  5869 %}
  5871 // Long ALU reg operation
  5872 pipe_class ialu_reg_long(eRegL dst) %{
  5873     instruction_count(2);
  5874     dst    : S4(write);
  5875     dst    : S3(read);
  5876     DECODE : S0(2);     // any 2 decoders
  5877     ALU    : S3(2);     // both alus
  5878 %}
  5880 // Integer ALU reg operation using big decoder
  5881 pipe_class ialu_reg_fat(eRegI dst) %{
  5882     single_instruction;
  5883     dst    : S4(write);
  5884     dst    : S3(read);
  5885     D0     : S0;        // big decoder only
  5886     ALU    : S3;        // any alu
  5887 %}
  5889 // Long ALU reg operation using big decoder
  5890 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5891     instruction_count(2);
  5892     dst    : S4(write);
  5893     dst    : S3(read);
  5894     D0     : S0(2);     // big decoder only; twice
  5895     ALU    : S3(2);     // any 2 alus
  5896 %}
  5898 // Integer ALU reg-reg operation
  5899 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5900     single_instruction;
  5901     dst    : S4(write);
  5902     src    : S3(read);
  5903     DECODE : S0;        // any decoder
  5904     ALU    : S3;        // any alu
  5905 %}
  5907 // Long ALU reg-reg operation
  5908 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5909     instruction_count(2);
  5910     dst    : S4(write);
  5911     src    : S3(read);
  5912     DECODE : S0(2);     // any 2 decoders
  5913     ALU    : S3(2);     // both alus
  5914 %}
  5916 // Integer ALU reg-reg operation
  5917 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5918     single_instruction;
  5919     dst    : S4(write);
  5920     src    : S3(read);
  5921     D0     : S0;        // big decoder only
  5922     ALU    : S3;        // any alu
  5923 %}
  5925 // Long ALU reg-reg operation
  5926 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5927     instruction_count(2);
  5928     dst    : S4(write);
  5929     src    : S3(read);
  5930     D0     : S0(2);     // big decoder only; twice
  5931     ALU    : S3(2);     // both alus
  5932 %}
  5934 // Integer ALU reg-mem operation
  5935 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5936     single_instruction;
  5937     dst    : S5(write);
  5938     mem    : S3(read);
  5939     D0     : S0;        // big decoder only
  5940     ALU    : S4;        // any alu
  5941     MEM    : S3;        // any mem
  5942 %}
  5944 // Long ALU reg-mem operation
  5945 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5946     instruction_count(2);
  5947     dst    : S5(write);
  5948     mem    : S3(read);
  5949     D0     : S0(2);     // big decoder only; twice
  5950     ALU    : S4(2);     // any 2 alus
  5951     MEM    : S3(2);     // both mems
  5952 %}
  5954 // Integer mem operation (prefetch)
  5955 pipe_class ialu_mem(memory mem)
  5956 %{
  5957     single_instruction;
  5958     mem    : S3(read);
  5959     D0     : S0;        // big decoder only
  5960     MEM    : S3;        // any mem
  5961 %}
  5963 // Integer Store to Memory
  5964 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5965     single_instruction;
  5966     mem    : S3(read);
  5967     src    : S5(read);
  5968     D0     : S0;        // big decoder only
  5969     ALU    : S4;        // any alu
  5970     MEM    : S3;
  5971 %}
  5973 // Long Store to Memory
  5974 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5975     instruction_count(2);
  5976     mem    : S3(read);
  5977     src    : S5(read);
  5978     D0     : S0(2);     // big decoder only; twice
  5979     ALU    : S4(2);     // any 2 alus
  5980     MEM    : S3(2);     // Both mems
  5981 %}
  5983 // Integer Store to Memory
  5984 pipe_class ialu_mem_imm(memory mem) %{
  5985     single_instruction;
  5986     mem    : S3(read);
  5987     D0     : S0;        // big decoder only
  5988     ALU    : S4;        // any alu
  5989     MEM    : S3;
  5990 %}
  5992 // Integer ALU0 reg-reg operation
  5993 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5994     single_instruction;
  5995     dst    : S4(write);
  5996     src    : S3(read);
  5997     D0     : S0;        // Big decoder only
  5998     ALU0   : S3;        // only alu0
  5999 %}
  6001 // Integer ALU0 reg-mem operation
  6002 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  6003     single_instruction;
  6004     dst    : S5(write);
  6005     mem    : S3(read);
  6006     D0     : S0;        // big decoder only
  6007     ALU0   : S4;        // ALU0 only
  6008     MEM    : S3;        // any mem
  6009 %}
  6011 // Integer ALU reg-reg operation
  6012 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  6013     single_instruction;
  6014     cr     : S4(write);
  6015     src1   : S3(read);
  6016     src2   : S3(read);
  6017     DECODE : S0;        // any decoder
  6018     ALU    : S3;        // any alu
  6019 %}
  6021 // Integer ALU reg-imm operation
  6022 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  6023     single_instruction;
  6024     cr     : S4(write);
  6025     src1   : S3(read);
  6026     DECODE : S0;        // any decoder
  6027     ALU    : S3;        // any alu
  6028 %}
  6030 // Integer ALU reg-mem operation
  6031 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  6032     single_instruction;
  6033     cr     : S4(write);
  6034     src1   : S3(read);
  6035     src2   : S3(read);
  6036     D0     : S0;        // big decoder only
  6037     ALU    : S4;        // any alu
  6038     MEM    : S3;
  6039 %}
  6041 // Conditional move reg-reg
  6042 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  6043     instruction_count(4);
  6044     y      : S4(read);
  6045     q      : S3(read);
  6046     p      : S3(read);
  6047     DECODE : S0(4);     // any decoder
  6048 %}
  6050 // Conditional move reg-reg
  6051 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  6052     single_instruction;
  6053     dst    : S4(write);
  6054     src    : S3(read);
  6055     cr     : S3(read);
  6056     DECODE : S0;        // any decoder
  6057 %}
  6059 // Conditional move reg-mem
  6060 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6061     single_instruction;
  6062     dst    : S4(write);
  6063     src    : S3(read);
  6064     cr     : S3(read);
  6065     DECODE : S0;        // any decoder
  6066     MEM    : S3;
  6067 %}
  6069 // Conditional move reg-reg long
  6070 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6071     single_instruction;
  6072     dst    : S4(write);
  6073     src    : S3(read);
  6074     cr     : S3(read);
  6075     DECODE : S0(2);     // any 2 decoders
  6076 %}
  6078 // Conditional move double reg-reg
  6079 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6080     single_instruction;
  6081     dst    : S4(write);
  6082     src    : S3(read);
  6083     cr     : S3(read);
  6084     DECODE : S0;        // any decoder
  6085 %}
  6087 // Float reg-reg operation
  6088 pipe_class fpu_reg(regD dst) %{
  6089     instruction_count(2);
  6090     dst    : S3(read);
  6091     DECODE : S0(2);     // any 2 decoders
  6092     FPU    : S3;
  6093 %}
  6095 // Float reg-reg operation
  6096 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6097     instruction_count(2);
  6098     dst    : S4(write);
  6099     src    : S3(read);
  6100     DECODE : S0(2);     // any 2 decoders
  6101     FPU    : S3;
  6102 %}
  6104 // Float reg-reg operation
  6105 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6106     instruction_count(3);
  6107     dst    : S4(write);
  6108     src1   : S3(read);
  6109     src2   : S3(read);
  6110     DECODE : S0(3);     // any 3 decoders
  6111     FPU    : S3(2);
  6112 %}
  6114 // Float reg-reg operation
  6115 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6116     instruction_count(4);
  6117     dst    : S4(write);
  6118     src1   : S3(read);
  6119     src2   : S3(read);
  6120     src3   : S3(read);
  6121     DECODE : S0(4);     // any 3 decoders
  6122     FPU    : S3(2);
  6123 %}
  6125 // Float reg-reg operation
  6126 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6127     instruction_count(4);
  6128     dst    : S4(write);
  6129     src1   : S3(read);
  6130     src2   : S3(read);
  6131     src3   : S3(read);
  6132     DECODE : S1(3);     // any 3 decoders
  6133     D0     : S0;        // Big decoder only
  6134     FPU    : S3(2);
  6135     MEM    : S3;
  6136 %}
  6138 // Float reg-mem operation
  6139 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6140     instruction_count(2);
  6141     dst    : S5(write);
  6142     mem    : S3(read);
  6143     D0     : S0;        // big decoder only
  6144     DECODE : S1;        // any decoder for FPU POP
  6145     FPU    : S4;
  6146     MEM    : S3;        // any mem
  6147 %}
  6149 // Float reg-mem operation
  6150 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6151     instruction_count(3);
  6152     dst    : S5(write);
  6153     src1   : S3(read);
  6154     mem    : S3(read);
  6155     D0     : S0;        // big decoder only
  6156     DECODE : S1(2);     // any decoder for FPU POP
  6157     FPU    : S4;
  6158     MEM    : S3;        // any mem
  6159 %}
  6161 // Float mem-reg operation
  6162 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6163     instruction_count(2);
  6164     src    : S5(read);
  6165     mem    : S3(read);
  6166     DECODE : S0;        // any decoder for FPU PUSH
  6167     D0     : S1;        // big decoder only
  6168     FPU    : S4;
  6169     MEM    : S3;        // any mem
  6170 %}
  6172 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6173     instruction_count(3);
  6174     src1   : S3(read);
  6175     src2   : S3(read);
  6176     mem    : S3(read);
  6177     DECODE : S0(2);     // any decoder for FPU PUSH
  6178     D0     : S1;        // big decoder only
  6179     FPU    : S4;
  6180     MEM    : S3;        // any mem
  6181 %}
  6183 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6184     instruction_count(3);
  6185     src1   : S3(read);
  6186     src2   : S3(read);
  6187     mem    : S4(read);
  6188     DECODE : S0;        // any decoder for FPU PUSH
  6189     D0     : S0(2);     // big decoder only
  6190     FPU    : S4;
  6191     MEM    : S3(2);     // any mem
  6192 %}
  6194 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6195     instruction_count(2);
  6196     src1   : S3(read);
  6197     dst    : S4(read);
  6198     D0     : S0(2);     // big decoder only
  6199     MEM    : S3(2);     // any mem
  6200 %}
  6202 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6203     instruction_count(3);
  6204     src1   : S3(read);
  6205     src2   : S3(read);
  6206     dst    : S4(read);
  6207     D0     : S0(3);     // big decoder only
  6208     FPU    : S4;
  6209     MEM    : S3(3);     // any mem
  6210 %}
  6212 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6213     instruction_count(3);
  6214     src1   : S4(read);
  6215     mem    : S4(read);
  6216     DECODE : S0;        // any decoder for FPU PUSH
  6217     D0     : S0(2);     // big decoder only
  6218     FPU    : S4;
  6219     MEM    : S3(2);     // any mem
  6220 %}
  6222 // Float load constant
  6223 pipe_class fpu_reg_con(regD dst) %{
  6224     instruction_count(2);
  6225     dst    : S5(write);
  6226     D0     : S0;        // big decoder only for the load
  6227     DECODE : S1;        // any decoder for FPU POP
  6228     FPU    : S4;
  6229     MEM    : S3;        // any mem
  6230 %}
  6232 // Float load constant
  6233 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6234     instruction_count(3);
  6235     dst    : S5(write);
  6236     src    : S3(read);
  6237     D0     : S0;        // big decoder only for the load
  6238     DECODE : S1(2);     // any decoder for FPU POP
  6239     FPU    : S4;
  6240     MEM    : S3;        // any mem
  6241 %}
  6243 // UnConditional branch
  6244 pipe_class pipe_jmp( label labl ) %{
  6245     single_instruction;
  6246     BR   : S3;
  6247 %}
  6249 // Conditional branch
  6250 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6251     single_instruction;
  6252     cr    : S1(read);
  6253     BR    : S3;
  6254 %}
  6256 // Allocation idiom
  6257 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6258     instruction_count(1); force_serialization;
  6259     fixed_latency(6);
  6260     heap_ptr : S3(read);
  6261     DECODE   : S0(3);
  6262     D0       : S2;
  6263     MEM      : S3;
  6264     ALU      : S3(2);
  6265     dst      : S5(write);
  6266     BR       : S5;
  6267 %}
  6269 // Generic big/slow expanded idiom
  6270 pipe_class pipe_slow(  ) %{
  6271     instruction_count(10); multiple_bundles; force_serialization;
  6272     fixed_latency(100);
  6273     D0  : S0(2);
  6274     MEM : S3(2);
  6275 %}
  6277 // The real do-nothing guy
  6278 pipe_class empty( ) %{
  6279     instruction_count(0);
  6280 %}
  6282 // Define the class for the Nop node
  6283 define %{
  6284    MachNop = empty;
  6285 %}
  6287 %}
  6289 //----------INSTRUCTIONS-------------------------------------------------------
  6290 //
  6291 // match      -- States which machine-independent subtree may be replaced
  6292 //               by this instruction.
  6293 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6294 //               selection to identify a minimum cost tree of machine
  6295 //               instructions that matches a tree of machine-independent
  6296 //               instructions.
  6297 // format     -- A string providing the disassembly for this instruction.
  6298 //               The value of an instruction's operand may be inserted
  6299 //               by referring to it with a '$' prefix.
  6300 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6301 //               to within an encode class as $primary, $secondary, and $tertiary
  6302 //               respectively.  The primary opcode is commonly used to
  6303 //               indicate the type of machine instruction, while secondary
  6304 //               and tertiary are often used for prefix options or addressing
  6305 //               modes.
  6306 // ins_encode -- A list of encode classes with parameters. The encode class
  6307 //               name must have been defined in an 'enc_class' specification
  6308 //               in the encode section of the architecture description.
  6310 //----------BSWAP-Instruction--------------------------------------------------
  6311 instruct bytes_reverse_int(eRegI dst) %{
  6312   match(Set dst (ReverseBytesI dst));
  6314   format %{ "BSWAP  $dst" %}
  6315   opcode(0x0F, 0xC8);
  6316   ins_encode( OpcP, OpcSReg(dst) );
  6317   ins_pipe( ialu_reg );
  6318 %}
  6320 instruct bytes_reverse_long(eRegL dst) %{
  6321   match(Set dst (ReverseBytesL dst));
  6323   format %{ "BSWAP  $dst.lo\n\t"
  6324             "BSWAP  $dst.hi\n\t"
  6325             "XCHG   $dst.lo $dst.hi" %}
  6327   ins_cost(125);
  6328   ins_encode( bswap_long_bytes(dst) );
  6329   ins_pipe( ialu_reg_reg);
  6330 %}
  6332 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  6333   match(Set dst (ReverseBytesUS dst));
  6335   format %{ "BSWAP  $dst\n\t" 
  6336             "SHR    $dst,16\n\t" %}
  6337   ins_encode %{
  6338     __ bswapl($dst$$Register);
  6339     __ shrl($dst$$Register, 16); 
  6340   %}
  6341   ins_pipe( ialu_reg );
  6342 %}
  6344 instruct bytes_reverse_short(eRegI dst) %{
  6345   match(Set dst (ReverseBytesS dst));
  6347   format %{ "BSWAP  $dst\n\t" 
  6348             "SAR    $dst,16\n\t" %}
  6349   ins_encode %{
  6350     __ bswapl($dst$$Register);
  6351     __ sarl($dst$$Register, 16); 
  6352   %}
  6353   ins_pipe( ialu_reg );
  6354 %}
  6357 //---------- Zeros Count Instructions ------------------------------------------
  6359 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6360   predicate(UseCountLeadingZerosInstruction);
  6361   match(Set dst (CountLeadingZerosI src));
  6362   effect(KILL cr);
  6364   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6365   ins_encode %{
  6366     __ lzcntl($dst$$Register, $src$$Register);
  6367   %}
  6368   ins_pipe(ialu_reg);
  6369 %}
  6371 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6372   predicate(!UseCountLeadingZerosInstruction);
  6373   match(Set dst (CountLeadingZerosI src));
  6374   effect(KILL cr);
  6376   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6377             "JNZ    skip\n\t"
  6378             "MOV    $dst, -1\n"
  6379       "skip:\n\t"
  6380             "NEG    $dst\n\t"
  6381             "ADD    $dst, 31" %}
  6382   ins_encode %{
  6383     Register Rdst = $dst$$Register;
  6384     Register Rsrc = $src$$Register;
  6385     Label skip;
  6386     __ bsrl(Rdst, Rsrc);
  6387     __ jccb(Assembler::notZero, skip);
  6388     __ movl(Rdst, -1);
  6389     __ bind(skip);
  6390     __ negl(Rdst);
  6391     __ addl(Rdst, BitsPerInt - 1);
  6392   %}
  6393   ins_pipe(ialu_reg);
  6394 %}
  6396 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6397   predicate(UseCountLeadingZerosInstruction);
  6398   match(Set dst (CountLeadingZerosL src));
  6399   effect(TEMP dst, KILL cr);
  6401   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6402             "JNC    done\n\t"
  6403             "LZCNT  $dst, $src.lo\n\t"
  6404             "ADD    $dst, 32\n"
  6405       "done:" %}
  6406   ins_encode %{
  6407     Register Rdst = $dst$$Register;
  6408     Register Rsrc = $src$$Register;
  6409     Label done;
  6410     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6411     __ jccb(Assembler::carryClear, done);
  6412     __ lzcntl(Rdst, Rsrc);
  6413     __ addl(Rdst, BitsPerInt);
  6414     __ bind(done);
  6415   %}
  6416   ins_pipe(ialu_reg);
  6417 %}
  6419 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6420   predicate(!UseCountLeadingZerosInstruction);
  6421   match(Set dst (CountLeadingZerosL src));
  6422   effect(TEMP dst, KILL cr);
  6424   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6425             "JZ     msw_is_zero\n\t"
  6426             "ADD    $dst, 32\n\t"
  6427             "JMP    not_zero\n"
  6428       "msw_is_zero:\n\t"
  6429             "BSR    $dst, $src.lo\n\t"
  6430             "JNZ    not_zero\n\t"
  6431             "MOV    $dst, -1\n"
  6432       "not_zero:\n\t"
  6433             "NEG    $dst\n\t"
  6434             "ADD    $dst, 63\n" %}
  6435  ins_encode %{
  6436     Register Rdst = $dst$$Register;
  6437     Register Rsrc = $src$$Register;
  6438     Label msw_is_zero;
  6439     Label not_zero;
  6440     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6441     __ jccb(Assembler::zero, msw_is_zero);
  6442     __ addl(Rdst, BitsPerInt);
  6443     __ jmpb(not_zero);
  6444     __ bind(msw_is_zero);
  6445     __ bsrl(Rdst, Rsrc);
  6446     __ jccb(Assembler::notZero, not_zero);
  6447     __ movl(Rdst, -1);
  6448     __ bind(not_zero);
  6449     __ negl(Rdst);
  6450     __ addl(Rdst, BitsPerLong - 1);
  6451   %}
  6452   ins_pipe(ialu_reg);
  6453 %}
  6455 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6456   match(Set dst (CountTrailingZerosI src));
  6457   effect(KILL cr);
  6459   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6460             "JNZ    done\n\t"
  6461             "MOV    $dst, 32\n"
  6462       "done:" %}
  6463   ins_encode %{
  6464     Register Rdst = $dst$$Register;
  6465     Label done;
  6466     __ bsfl(Rdst, $src$$Register);
  6467     __ jccb(Assembler::notZero, done);
  6468     __ movl(Rdst, BitsPerInt);
  6469     __ bind(done);
  6470   %}
  6471   ins_pipe(ialu_reg);
  6472 %}
  6474 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6475   match(Set dst (CountTrailingZerosL src));
  6476   effect(TEMP dst, KILL cr);
  6478   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6479             "JNZ    done\n\t"
  6480             "BSF    $dst, $src.hi\n\t"
  6481             "JNZ    msw_not_zero\n\t"
  6482             "MOV    $dst, 32\n"
  6483       "msw_not_zero:\n\t"
  6484             "ADD    $dst, 32\n"
  6485       "done:" %}
  6486   ins_encode %{
  6487     Register Rdst = $dst$$Register;
  6488     Register Rsrc = $src$$Register;
  6489     Label msw_not_zero;
  6490     Label done;
  6491     __ bsfl(Rdst, Rsrc);
  6492     __ jccb(Assembler::notZero, done);
  6493     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6494     __ jccb(Assembler::notZero, msw_not_zero);
  6495     __ movl(Rdst, BitsPerInt);
  6496     __ bind(msw_not_zero);
  6497     __ addl(Rdst, BitsPerInt);
  6498     __ bind(done);
  6499   %}
  6500   ins_pipe(ialu_reg);
  6501 %}
  6504 //---------- Population Count Instructions -------------------------------------
  6506 instruct popCountI(eRegI dst, eRegI src) %{
  6507   predicate(UsePopCountInstruction);
  6508   match(Set dst (PopCountI src));
  6510   format %{ "POPCNT $dst, $src" %}
  6511   ins_encode %{
  6512     __ popcntl($dst$$Register, $src$$Register);
  6513   %}
  6514   ins_pipe(ialu_reg);
  6515 %}
  6517 instruct popCountI_mem(eRegI dst, memory mem) %{
  6518   predicate(UsePopCountInstruction);
  6519   match(Set dst (PopCountI (LoadI mem)));
  6521   format %{ "POPCNT $dst, $mem" %}
  6522   ins_encode %{
  6523     __ popcntl($dst$$Register, $mem$$Address);
  6524   %}
  6525   ins_pipe(ialu_reg);
  6526 %}
  6528 // Note: Long.bitCount(long) returns an int.
  6529 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6530   predicate(UsePopCountInstruction);
  6531   match(Set dst (PopCountL src));
  6532   effect(KILL cr, TEMP tmp, TEMP dst);
  6534   format %{ "POPCNT $dst, $src.lo\n\t"
  6535             "POPCNT $tmp, $src.hi\n\t"
  6536             "ADD    $dst, $tmp" %}
  6537   ins_encode %{
  6538     __ popcntl($dst$$Register, $src$$Register);
  6539     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6540     __ addl($dst$$Register, $tmp$$Register);
  6541   %}
  6542   ins_pipe(ialu_reg);
  6543 %}
  6545 // Note: Long.bitCount(long) returns an int.
  6546 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6547   predicate(UsePopCountInstruction);
  6548   match(Set dst (PopCountL (LoadL mem)));
  6549   effect(KILL cr, TEMP tmp, TEMP dst);
  6551   format %{ "POPCNT $dst, $mem\n\t"
  6552             "POPCNT $tmp, $mem+4\n\t"
  6553             "ADD    $dst, $tmp" %}
  6554   ins_encode %{
  6555     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6556     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6557     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6558     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6559     __ addl($dst$$Register, $tmp$$Register);
  6560   %}
  6561   ins_pipe(ialu_reg);
  6562 %}
  6565 //----------Load/Store/Move Instructions---------------------------------------
  6566 //----------Load Instructions--------------------------------------------------
  6567 // Load Byte (8bit signed)
  6568 instruct loadB(xRegI dst, memory mem) %{
  6569   match(Set dst (LoadB mem));
  6571   ins_cost(125);
  6572   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6574   ins_encode %{
  6575     __ movsbl($dst$$Register, $mem$$Address);
  6576   %}
  6578   ins_pipe(ialu_reg_mem);
  6579 %}
  6581 // Load Byte (8bit signed) into Long Register
  6582 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6583   match(Set dst (ConvI2L (LoadB mem)));
  6584   effect(KILL cr);
  6586   ins_cost(375);
  6587   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6588             "MOV    $dst.hi,$dst.lo\n\t"
  6589             "SAR    $dst.hi,7" %}
  6591   ins_encode %{
  6592     __ movsbl($dst$$Register, $mem$$Address);
  6593     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6594     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6595   %}
  6597   ins_pipe(ialu_reg_mem);
  6598 %}
  6600 // Load Unsigned Byte (8bit UNsigned)
  6601 instruct loadUB(xRegI dst, memory mem) %{
  6602   match(Set dst (LoadUB mem));
  6604   ins_cost(125);
  6605   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6607   ins_encode %{
  6608     __ movzbl($dst$$Register, $mem$$Address);
  6609   %}
  6611   ins_pipe(ialu_reg_mem);
  6612 %}
  6614 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6615 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6616   match(Set dst (ConvI2L (LoadUB mem)));
  6617   effect(KILL cr);
  6619   ins_cost(250);
  6620   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6621             "XOR    $dst.hi,$dst.hi" %}
  6623   ins_encode %{
  6624     Register Rdst = $dst$$Register;
  6625     __ movzbl(Rdst, $mem$$Address);
  6626     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6627   %}
  6629   ins_pipe(ialu_reg_mem);
  6630 %}
  6632 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6633 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6634   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6635   effect(KILL cr);
  6637   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6638             "XOR    $dst.hi,$dst.hi\n\t"
  6639             "AND    $dst.lo,$mask" %}
  6640   ins_encode %{
  6641     Register Rdst = $dst$$Register;
  6642     __ movzbl(Rdst, $mem$$Address);
  6643     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6644     __ andl(Rdst, $mask$$constant);
  6645   %}
  6646   ins_pipe(ialu_reg_mem);
  6647 %}
  6649 // Load Short (16bit signed)
  6650 instruct loadS(eRegI dst, memory mem) %{
  6651   match(Set dst (LoadS mem));
  6653   ins_cost(125);
  6654   format %{ "MOVSX  $dst,$mem\t# short" %}
  6656   ins_encode %{
  6657     __ movswl($dst$$Register, $mem$$Address);
  6658   %}
  6660   ins_pipe(ialu_reg_mem);
  6661 %}
  6663 // Load Short (16 bit signed) to Byte (8 bit signed)
  6664 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6665   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6667   ins_cost(125);
  6668   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6669   ins_encode %{
  6670     __ movsbl($dst$$Register, $mem$$Address);
  6671   %}
  6672   ins_pipe(ialu_reg_mem);
  6673 %}
  6675 // Load Short (16bit signed) into Long Register
  6676 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6677   match(Set dst (ConvI2L (LoadS mem)));
  6678   effect(KILL cr);
  6680   ins_cost(375);
  6681   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6682             "MOV    $dst.hi,$dst.lo\n\t"
  6683             "SAR    $dst.hi,15" %}
  6685   ins_encode %{
  6686     __ movswl($dst$$Register, $mem$$Address);
  6687     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6688     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6689   %}
  6691   ins_pipe(ialu_reg_mem);
  6692 %}
  6694 // Load Unsigned Short/Char (16bit unsigned)
  6695 instruct loadUS(eRegI dst, memory mem) %{
  6696   match(Set dst (LoadUS mem));
  6698   ins_cost(125);
  6699   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6701   ins_encode %{
  6702     __ movzwl($dst$$Register, $mem$$Address);
  6703   %}
  6705   ins_pipe(ialu_reg_mem);
  6706 %}
  6708 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6709 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6710   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6712   ins_cost(125);
  6713   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6714   ins_encode %{
  6715     __ movsbl($dst$$Register, $mem$$Address);
  6716   %}
  6717   ins_pipe(ialu_reg_mem);
  6718 %}
  6720 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6721 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6722   match(Set dst (ConvI2L (LoadUS mem)));
  6723   effect(KILL cr);
  6725   ins_cost(250);
  6726   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6727             "XOR    $dst.hi,$dst.hi" %}
  6729   ins_encode %{
  6730     __ movzwl($dst$$Register, $mem$$Address);
  6731     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6732   %}
  6734   ins_pipe(ialu_reg_mem);
  6735 %}
  6737 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6738 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6739   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6740   effect(KILL cr);
  6742   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6743             "XOR    $dst.hi,$dst.hi" %}
  6744   ins_encode %{
  6745     Register Rdst = $dst$$Register;
  6746     __ movzbl(Rdst, $mem$$Address);
  6747     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6748   %}
  6749   ins_pipe(ialu_reg_mem);
  6750 %}
  6752 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6753 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6754   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6755   effect(KILL cr);
  6757   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6758             "XOR    $dst.hi,$dst.hi\n\t"
  6759             "AND    $dst.lo,$mask" %}
  6760   ins_encode %{
  6761     Register Rdst = $dst$$Register;
  6762     __ movzwl(Rdst, $mem$$Address);
  6763     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6764     __ andl(Rdst, $mask$$constant);
  6765   %}
  6766   ins_pipe(ialu_reg_mem);
  6767 %}
  6769 // Load Integer
  6770 instruct loadI(eRegI dst, memory mem) %{
  6771   match(Set dst (LoadI mem));
  6773   ins_cost(125);
  6774   format %{ "MOV    $dst,$mem\t# int" %}
  6776   ins_encode %{
  6777     __ movl($dst$$Register, $mem$$Address);
  6778   %}
  6780   ins_pipe(ialu_reg_mem);
  6781 %}
  6783 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6784 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6785   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6787   ins_cost(125);
  6788   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6789   ins_encode %{
  6790     __ movsbl($dst$$Register, $mem$$Address);
  6791   %}
  6792   ins_pipe(ialu_reg_mem);
  6793 %}
  6795 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6796 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6797   match(Set dst (AndI (LoadI mem) mask));
  6799   ins_cost(125);
  6800   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6801   ins_encode %{
  6802     __ movzbl($dst$$Register, $mem$$Address);
  6803   %}
  6804   ins_pipe(ialu_reg_mem);
  6805 %}
  6807 // Load Integer (32 bit signed) to Short (16 bit signed)
  6808 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6809   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6811   ins_cost(125);
  6812   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6813   ins_encode %{
  6814     __ movswl($dst$$Register, $mem$$Address);
  6815   %}
  6816   ins_pipe(ialu_reg_mem);
  6817 %}
  6819 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6820 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6821   match(Set dst (AndI (LoadI mem) mask));
  6823   ins_cost(125);
  6824   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6825   ins_encode %{
  6826     __ movzwl($dst$$Register, $mem$$Address);
  6827   %}
  6828   ins_pipe(ialu_reg_mem);
  6829 %}
  6831 // Load Integer into Long Register
  6832 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6833   match(Set dst (ConvI2L (LoadI mem)));
  6834   effect(KILL cr);
  6836   ins_cost(375);
  6837   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6838             "MOV    $dst.hi,$dst.lo\n\t"
  6839             "SAR    $dst.hi,31" %}
  6841   ins_encode %{
  6842     __ movl($dst$$Register, $mem$$Address);
  6843     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6844     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6845   %}
  6847   ins_pipe(ialu_reg_mem);
  6848 %}
  6850 // Load Integer with mask 0xFF into Long Register
  6851 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6852   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6853   effect(KILL cr);
  6855   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6856             "XOR    $dst.hi,$dst.hi" %}
  6857   ins_encode %{
  6858     Register Rdst = $dst$$Register;
  6859     __ movzbl(Rdst, $mem$$Address);
  6860     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6861   %}
  6862   ins_pipe(ialu_reg_mem);
  6863 %}
  6865 // Load Integer with mask 0xFFFF into Long Register
  6866 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6867   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6868   effect(KILL cr);
  6870   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6871             "XOR    $dst.hi,$dst.hi" %}
  6872   ins_encode %{
  6873     Register Rdst = $dst$$Register;
  6874     __ movzwl(Rdst, $mem$$Address);
  6875     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6876   %}
  6877   ins_pipe(ialu_reg_mem);
  6878 %}
  6880 // Load Integer with 32-bit mask into Long Register
  6881 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6882   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6883   effect(KILL cr);
  6885   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6886             "XOR    $dst.hi,$dst.hi\n\t"
  6887             "AND    $dst.lo,$mask" %}
  6888   ins_encode %{
  6889     Register Rdst = $dst$$Register;
  6890     __ movl(Rdst, $mem$$Address);
  6891     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6892     __ andl(Rdst, $mask$$constant);
  6893   %}
  6894   ins_pipe(ialu_reg_mem);
  6895 %}
  6897 // Load Unsigned Integer into Long Register
  6898 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6899   match(Set dst (LoadUI2L mem));
  6900   effect(KILL cr);
  6902   ins_cost(250);
  6903   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6904             "XOR    $dst.hi,$dst.hi" %}
  6906   ins_encode %{
  6907     __ movl($dst$$Register, $mem$$Address);
  6908     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6909   %}
  6911   ins_pipe(ialu_reg_mem);
  6912 %}
  6914 // Load Long.  Cannot clobber address while loading, so restrict address
  6915 // register to ESI
  6916 instruct loadL(eRegL dst, load_long_memory mem) %{
  6917   predicate(!((LoadLNode*)n)->require_atomic_access());
  6918   match(Set dst (LoadL mem));
  6920   ins_cost(250);
  6921   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6922             "MOV    $dst.hi,$mem+4" %}
  6924   ins_encode %{
  6925     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6926     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6927     __ movl($dst$$Register, Amemlo);
  6928     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6929   %}
  6931   ins_pipe(ialu_reg_long_mem);
  6932 %}
  6934 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6935 // then store it down to the stack and reload on the int
  6936 // side.
  6937 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6938   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6939   match(Set dst (LoadL mem));
  6941   ins_cost(200);
  6942   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6943             "FISTp  $dst" %}
  6944   ins_encode(enc_loadL_volatile(mem,dst));
  6945   ins_pipe( fpu_reg_mem );
  6946 %}
  6948 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6949   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6950   match(Set dst (LoadL mem));
  6951   effect(TEMP tmp);
  6952   ins_cost(180);
  6953   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6954             "MOVSD  $dst,$tmp" %}
  6955   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6956   ins_pipe( pipe_slow );
  6957 %}
  6959 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6960   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6961   match(Set dst (LoadL mem));
  6962   effect(TEMP tmp);
  6963   ins_cost(160);
  6964   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6965             "MOVD   $dst.lo,$tmp\n\t"
  6966             "PSRLQ  $tmp,32\n\t"
  6967             "MOVD   $dst.hi,$tmp" %}
  6968   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6969   ins_pipe( pipe_slow );
  6970 %}
  6972 // Load Range
  6973 instruct loadRange(eRegI dst, memory mem) %{
  6974   match(Set dst (LoadRange mem));
  6976   ins_cost(125);
  6977   format %{ "MOV    $dst,$mem" %}
  6978   opcode(0x8B);
  6979   ins_encode( OpcP, RegMem(dst,mem));
  6980   ins_pipe( ialu_reg_mem );
  6981 %}
  6984 // Load Pointer
  6985 instruct loadP(eRegP dst, memory mem) %{
  6986   match(Set dst (LoadP mem));
  6988   ins_cost(125);
  6989   format %{ "MOV    $dst,$mem" %}
  6990   opcode(0x8B);
  6991   ins_encode( OpcP, RegMem(dst,mem));
  6992   ins_pipe( ialu_reg_mem );
  6993 %}
  6995 // Load Klass Pointer
  6996 instruct loadKlass(eRegP dst, memory mem) %{
  6997   match(Set dst (LoadKlass mem));
  6999   ins_cost(125);
  7000   format %{ "MOV    $dst,$mem" %}
  7001   opcode(0x8B);
  7002   ins_encode( OpcP, RegMem(dst,mem));
  7003   ins_pipe( ialu_reg_mem );
  7004 %}
  7006 // Load Double
  7007 instruct loadD(regD dst, memory mem) %{
  7008   predicate(UseSSE<=1);
  7009   match(Set dst (LoadD mem));
  7011   ins_cost(150);
  7012   format %{ "FLD_D  ST,$mem\n\t"
  7013             "FSTP   $dst" %}
  7014   opcode(0xDD);               /* DD /0 */
  7015   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7016               Pop_Reg_D(dst) );
  7017   ins_pipe( fpu_reg_mem );
  7018 %}
  7020 // Load Double to XMM
  7021 instruct loadXD(regXD dst, memory mem) %{
  7022   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  7023   match(Set dst (LoadD mem));
  7024   ins_cost(145);
  7025   format %{ "MOVSD  $dst,$mem" %}
  7026   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  7027   ins_pipe( pipe_slow );
  7028 %}
  7030 instruct loadXD_partial(regXD dst, memory mem) %{
  7031   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  7032   match(Set dst (LoadD mem));
  7033   ins_cost(145);
  7034   format %{ "MOVLPD $dst,$mem" %}
  7035   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  7036   ins_pipe( pipe_slow );
  7037 %}
  7039 // Load to XMM register (single-precision floating point)
  7040 // MOVSS instruction
  7041 instruct loadX(regX dst, memory mem) %{
  7042   predicate(UseSSE>=1);
  7043   match(Set dst (LoadF mem));
  7044   ins_cost(145);
  7045   format %{ "MOVSS  $dst,$mem" %}
  7046   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  7047   ins_pipe( pipe_slow );
  7048 %}
  7050 // Load Float
  7051 instruct loadF(regF dst, memory mem) %{
  7052   predicate(UseSSE==0);
  7053   match(Set dst (LoadF mem));
  7055   ins_cost(150);
  7056   format %{ "FLD_S  ST,$mem\n\t"
  7057             "FSTP   $dst" %}
  7058   opcode(0xD9);               /* D9 /0 */
  7059   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  7060               Pop_Reg_F(dst) );
  7061   ins_pipe( fpu_reg_mem );
  7062 %}
  7064 // Load Aligned Packed Byte to XMM register
  7065 instruct loadA8B(regXD dst, memory mem) %{
  7066   predicate(UseSSE>=1);
  7067   match(Set dst (Load8B mem));
  7068   ins_cost(125);
  7069   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  7070   ins_encode( movq_ld(dst, mem));
  7071   ins_pipe( pipe_slow );
  7072 %}
  7074 // Load Aligned Packed Short to XMM register
  7075 instruct loadA4S(regXD dst, memory mem) %{
  7076   predicate(UseSSE>=1);
  7077   match(Set dst (Load4S mem));
  7078   ins_cost(125);
  7079   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  7080   ins_encode( movq_ld(dst, mem));
  7081   ins_pipe( pipe_slow );
  7082 %}
  7084 // Load Aligned Packed Char to XMM register
  7085 instruct loadA4C(regXD dst, memory mem) %{
  7086   predicate(UseSSE>=1);
  7087   match(Set dst (Load4C mem));
  7088   ins_cost(125);
  7089   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7090   ins_encode( movq_ld(dst, mem));
  7091   ins_pipe( pipe_slow );
  7092 %}
  7094 // Load Aligned Packed Integer to XMM register
  7095 instruct load2IU(regXD dst, memory mem) %{
  7096   predicate(UseSSE>=1);
  7097   match(Set dst (Load2I mem));
  7098   ins_cost(125);
  7099   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7100   ins_encode( movq_ld(dst, mem));
  7101   ins_pipe( pipe_slow );
  7102 %}
  7104 // Load Aligned Packed Single to XMM
  7105 instruct loadA2F(regXD dst, memory mem) %{
  7106   predicate(UseSSE>=1);
  7107   match(Set dst (Load2F mem));
  7108   ins_cost(145);
  7109   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7110   ins_encode( movq_ld(dst, mem));
  7111   ins_pipe( pipe_slow );
  7112 %}
  7114 // Load Effective Address
  7115 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7116   match(Set dst mem);
  7118   ins_cost(110);
  7119   format %{ "LEA    $dst,$mem" %}
  7120   opcode(0x8D);
  7121   ins_encode( OpcP, RegMem(dst,mem));
  7122   ins_pipe( ialu_reg_reg_fat );
  7123 %}
  7125 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7126   match(Set dst mem);
  7128   ins_cost(110);
  7129   format %{ "LEA    $dst,$mem" %}
  7130   opcode(0x8D);
  7131   ins_encode( OpcP, RegMem(dst,mem));
  7132   ins_pipe( ialu_reg_reg_fat );
  7133 %}
  7135 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7136   match(Set dst mem);
  7138   ins_cost(110);
  7139   format %{ "LEA    $dst,$mem" %}
  7140   opcode(0x8D);
  7141   ins_encode( OpcP, RegMem(dst,mem));
  7142   ins_pipe( ialu_reg_reg_fat );
  7143 %}
  7145 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7146   match(Set dst mem);
  7148   ins_cost(110);
  7149   format %{ "LEA    $dst,$mem" %}
  7150   opcode(0x8D);
  7151   ins_encode( OpcP, RegMem(dst,mem));
  7152   ins_pipe( ialu_reg_reg_fat );
  7153 %}
  7155 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7156   match(Set dst mem);
  7158   ins_cost(110);
  7159   format %{ "LEA    $dst,$mem" %}
  7160   opcode(0x8D);
  7161   ins_encode( OpcP, RegMem(dst,mem));
  7162   ins_pipe( ialu_reg_reg_fat );
  7163 %}
  7165 // Load Constant
  7166 instruct loadConI(eRegI dst, immI src) %{
  7167   match(Set dst src);
  7169   format %{ "MOV    $dst,$src" %}
  7170   ins_encode( LdImmI(dst, src) );
  7171   ins_pipe( ialu_reg_fat );
  7172 %}
  7174 // Load Constant zero
  7175 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7176   match(Set dst src);
  7177   effect(KILL cr);
  7179   ins_cost(50);
  7180   format %{ "XOR    $dst,$dst" %}
  7181   opcode(0x33);  /* + rd */
  7182   ins_encode( OpcP, RegReg( dst, dst ) );
  7183   ins_pipe( ialu_reg );
  7184 %}
  7186 instruct loadConP(eRegP dst, immP src) %{
  7187   match(Set dst src);
  7189   format %{ "MOV    $dst,$src" %}
  7190   opcode(0xB8);  /* + rd */
  7191   ins_encode( LdImmP(dst, src) );
  7192   ins_pipe( ialu_reg_fat );
  7193 %}
  7195 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7196   match(Set dst src);
  7197   effect(KILL cr);
  7198   ins_cost(200);
  7199   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7200             "MOV    $dst.hi,$src.hi" %}
  7201   opcode(0xB8);
  7202   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7203   ins_pipe( ialu_reg_long_fat );
  7204 %}
  7206 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7207   match(Set dst src);
  7208   effect(KILL cr);
  7209   ins_cost(150);
  7210   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7211             "XOR    $dst.hi,$dst.hi" %}
  7212   opcode(0x33,0x33);
  7213   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7214   ins_pipe( ialu_reg_long );
  7215 %}
  7217 // The instruction usage is guarded by predicate in operand immF().
  7218 instruct loadConF(regF dst, immF src) %{
  7219   match(Set dst src);
  7220   ins_cost(125);
  7222   format %{ "FLD_S  ST,$src\n\t"
  7223             "FSTP   $dst" %}
  7224   opcode(0xD9, 0x00);       /* D9 /0 */
  7225   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  7226   ins_pipe( fpu_reg_con );
  7227 %}
  7229 // The instruction usage is guarded by predicate in operand immXF().
  7230 instruct loadConX(regX dst, immXF con) %{
  7231   match(Set dst con);
  7232   ins_cost(125);
  7233   format %{ "MOVSS  $dst,[$con]" %}
  7234   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  7235   ins_pipe( pipe_slow );
  7236 %}
  7238 // The instruction usage is guarded by predicate in operand immXF0().
  7239 instruct loadConX0(regX dst, immXF0 src) %{
  7240   match(Set dst src);
  7241   ins_cost(100);
  7242   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7243   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7244   ins_pipe( pipe_slow );
  7245 %}
  7247 // The instruction usage is guarded by predicate in operand immD().
  7248 instruct loadConD(regD dst, immD src) %{
  7249   match(Set dst src);
  7250   ins_cost(125);
  7252   format %{ "FLD_D  ST,$src\n\t"
  7253             "FSTP   $dst" %}
  7254   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  7255   ins_pipe( fpu_reg_con );
  7256 %}
  7258 // The instruction usage is guarded by predicate in operand immXD().
  7259 instruct loadConXD(regXD dst, immXD con) %{
  7260   match(Set dst con);
  7261   ins_cost(125);
  7262   format %{ "MOVSD  $dst,[$con]" %}
  7263   ins_encode(load_conXD(dst, con));
  7264   ins_pipe( pipe_slow );
  7265 %}
  7267 // The instruction usage is guarded by predicate in operand immXD0().
  7268 instruct loadConXD0(regXD dst, immXD0 src) %{
  7269   match(Set dst src);
  7270   ins_cost(100);
  7271   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7272   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7273   ins_pipe( pipe_slow );
  7274 %}
  7276 // Load Stack Slot
  7277 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7278   match(Set dst src);
  7279   ins_cost(125);
  7281   format %{ "MOV    $dst,$src" %}
  7282   opcode(0x8B);
  7283   ins_encode( OpcP, RegMem(dst,src));
  7284   ins_pipe( ialu_reg_mem );
  7285 %}
  7287 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7288   match(Set dst src);
  7290   ins_cost(200);
  7291   format %{ "MOV    $dst,$src.lo\n\t"
  7292             "MOV    $dst+4,$src.hi" %}
  7293   opcode(0x8B, 0x8B);
  7294   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7295   ins_pipe( ialu_mem_long_reg );
  7296 %}
  7298 // Load Stack Slot
  7299 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7300   match(Set dst src);
  7301   ins_cost(125);
  7303   format %{ "MOV    $dst,$src" %}
  7304   opcode(0x8B);
  7305   ins_encode( OpcP, RegMem(dst,src));
  7306   ins_pipe( ialu_reg_mem );
  7307 %}
  7309 // Load Stack Slot
  7310 instruct loadSSF(regF dst, stackSlotF src) %{
  7311   match(Set dst src);
  7312   ins_cost(125);
  7314   format %{ "FLD_S  $src\n\t"
  7315             "FSTP   $dst" %}
  7316   opcode(0xD9);               /* D9 /0, FLD m32real */
  7317   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7318               Pop_Reg_F(dst) );
  7319   ins_pipe( fpu_reg_mem );
  7320 %}
  7322 // Load Stack Slot
  7323 instruct loadSSD(regD dst, stackSlotD src) %{
  7324   match(Set dst src);
  7325   ins_cost(125);
  7327   format %{ "FLD_D  $src\n\t"
  7328             "FSTP   $dst" %}
  7329   opcode(0xDD);               /* DD /0, FLD m64real */
  7330   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7331               Pop_Reg_D(dst) );
  7332   ins_pipe( fpu_reg_mem );
  7333 %}
  7335 // Prefetch instructions.
  7336 // Must be safe to execute with invalid address (cannot fault).
  7338 instruct prefetchr0( memory mem ) %{
  7339   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7340   match(PrefetchRead mem);
  7341   ins_cost(0);
  7342   size(0);
  7343   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7344   ins_encode();
  7345   ins_pipe(empty);
  7346 %}
  7348 instruct prefetchr( memory mem ) %{
  7349   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7350   match(PrefetchRead mem);
  7351   ins_cost(100);
  7353   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7354   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7355   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7356   ins_pipe(ialu_mem);
  7357 %}
  7359 instruct prefetchrNTA( memory mem ) %{
  7360   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7361   match(PrefetchRead mem);
  7362   ins_cost(100);
  7364   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7365   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7366   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7367   ins_pipe(ialu_mem);
  7368 %}
  7370 instruct prefetchrT0( memory mem ) %{
  7371   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7372   match(PrefetchRead mem);
  7373   ins_cost(100);
  7375   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7376   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7377   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7378   ins_pipe(ialu_mem);
  7379 %}
  7381 instruct prefetchrT2( memory mem ) %{
  7382   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7383   match(PrefetchRead mem);
  7384   ins_cost(100);
  7386   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7387   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7388   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7389   ins_pipe(ialu_mem);
  7390 %}
  7392 instruct prefetchw0( memory mem ) %{
  7393   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7394   match(PrefetchWrite mem);
  7395   ins_cost(0);
  7396   size(0);
  7397   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7398   ins_encode();
  7399   ins_pipe(empty);
  7400 %}
  7402 instruct prefetchw( memory mem ) %{
  7403   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7404   match( PrefetchWrite mem );
  7405   ins_cost(100);
  7407   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7408   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7409   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7410   ins_pipe(ialu_mem);
  7411 %}
  7413 instruct prefetchwNTA( memory mem ) %{
  7414   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7415   match(PrefetchWrite mem);
  7416   ins_cost(100);
  7418   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7419   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7420   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7421   ins_pipe(ialu_mem);
  7422 %}
  7424 instruct prefetchwT0( memory mem ) %{
  7425   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7426   match(PrefetchWrite mem);
  7427   ins_cost(100);
  7429   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7430   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7431   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7432   ins_pipe(ialu_mem);
  7433 %}
  7435 instruct prefetchwT2( memory mem ) %{
  7436   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7437   match(PrefetchWrite mem);
  7438   ins_cost(100);
  7440   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7441   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7442   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7443   ins_pipe(ialu_mem);
  7444 %}
  7446 //----------Store Instructions-------------------------------------------------
  7448 // Store Byte
  7449 instruct storeB(memory mem, xRegI src) %{
  7450   match(Set mem (StoreB mem src));
  7452   ins_cost(125);
  7453   format %{ "MOV8   $mem,$src" %}
  7454   opcode(0x88);
  7455   ins_encode( OpcP, RegMem( src, mem ) );
  7456   ins_pipe( ialu_mem_reg );
  7457 %}
  7459 // Store Char/Short
  7460 instruct storeC(memory mem, eRegI src) %{
  7461   match(Set mem (StoreC mem src));
  7463   ins_cost(125);
  7464   format %{ "MOV16  $mem,$src" %}
  7465   opcode(0x89, 0x66);
  7466   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7467   ins_pipe( ialu_mem_reg );
  7468 %}
  7470 // Store Integer
  7471 instruct storeI(memory mem, eRegI src) %{
  7472   match(Set mem (StoreI mem src));
  7474   ins_cost(125);
  7475   format %{ "MOV    $mem,$src" %}
  7476   opcode(0x89);
  7477   ins_encode( OpcP, RegMem( src, mem ) );
  7478   ins_pipe( ialu_mem_reg );
  7479 %}
  7481 // Store Long
  7482 instruct storeL(long_memory mem, eRegL src) %{
  7483   predicate(!((StoreLNode*)n)->require_atomic_access());
  7484   match(Set mem (StoreL mem src));
  7486   ins_cost(200);
  7487   format %{ "MOV    $mem,$src.lo\n\t"
  7488             "MOV    $mem+4,$src.hi" %}
  7489   opcode(0x89, 0x89);
  7490   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7491   ins_pipe( ialu_mem_long_reg );
  7492 %}
  7494 // Store Long to Integer
  7495 instruct storeL2I(memory mem, eRegL src) %{
  7496   match(Set mem (StoreI mem (ConvL2I src)));
  7498   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7499   ins_encode %{
  7500     __ movl($mem$$Address, $src$$Register);
  7501   %}
  7502   ins_pipe(ialu_mem_reg);
  7503 %}
  7505 // Volatile Store Long.  Must be atomic, so move it into
  7506 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7507 // target address before the store (for null-ptr checks)
  7508 // so the memory operand is used twice in the encoding.
  7509 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7510   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7511   match(Set mem (StoreL mem src));
  7512   effect( KILL cr );
  7513   ins_cost(400);
  7514   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7515             "FILD   $src\n\t"
  7516             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7517   opcode(0x3B);
  7518   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7519   ins_pipe( fpu_reg_mem );
  7520 %}
  7522 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7523   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7524   match(Set mem (StoreL mem src));
  7525   effect( TEMP tmp, KILL cr );
  7526   ins_cost(380);
  7527   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7528             "MOVSD  $tmp,$src\n\t"
  7529             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7530   opcode(0x3B);
  7531   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7532   ins_pipe( pipe_slow );
  7533 %}
  7535 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7536   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7537   match(Set mem (StoreL mem src));
  7538   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7539   ins_cost(360);
  7540   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7541             "MOVD   $tmp,$src.lo\n\t"
  7542             "MOVD   $tmp2,$src.hi\n\t"
  7543             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7544             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7545   opcode(0x3B);
  7546   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7547   ins_pipe( pipe_slow );
  7548 %}
  7550 // Store Pointer; for storing unknown oops and raw pointers
  7551 instruct storeP(memory mem, anyRegP src) %{
  7552   match(Set mem (StoreP mem src));
  7554   ins_cost(125);
  7555   format %{ "MOV    $mem,$src" %}
  7556   opcode(0x89);
  7557   ins_encode( OpcP, RegMem( src, mem ) );
  7558   ins_pipe( ialu_mem_reg );
  7559 %}
  7561 // Store Integer Immediate
  7562 instruct storeImmI(memory mem, immI src) %{
  7563   match(Set mem (StoreI mem src));
  7565   ins_cost(150);
  7566   format %{ "MOV    $mem,$src" %}
  7567   opcode(0xC7);               /* C7 /0 */
  7568   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7569   ins_pipe( ialu_mem_imm );
  7570 %}
  7572 // Store Short/Char Immediate
  7573 instruct storeImmI16(memory mem, immI16 src) %{
  7574   predicate(UseStoreImmI16);
  7575   match(Set mem (StoreC mem src));
  7577   ins_cost(150);
  7578   format %{ "MOV16  $mem,$src" %}
  7579   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7580   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7581   ins_pipe( ialu_mem_imm );
  7582 %}
  7584 // Store Pointer Immediate; null pointers or constant oops that do not
  7585 // need card-mark barriers.
  7586 instruct storeImmP(memory mem, immP src) %{
  7587   match(Set mem (StoreP mem src));
  7589   ins_cost(150);
  7590   format %{ "MOV    $mem,$src" %}
  7591   opcode(0xC7);               /* C7 /0 */
  7592   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7593   ins_pipe( ialu_mem_imm );
  7594 %}
  7596 // Store Byte Immediate
  7597 instruct storeImmB(memory mem, immI8 src) %{
  7598   match(Set mem (StoreB mem src));
  7600   ins_cost(150);
  7601   format %{ "MOV8   $mem,$src" %}
  7602   opcode(0xC6);               /* C6 /0 */
  7603   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7604   ins_pipe( ialu_mem_imm );
  7605 %}
  7607 // Store Aligned Packed Byte XMM register to memory
  7608 instruct storeA8B(memory mem, regXD src) %{
  7609   predicate(UseSSE>=1);
  7610   match(Set mem (Store8B mem src));
  7611   ins_cost(145);
  7612   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7613   ins_encode( movq_st(mem, src));
  7614   ins_pipe( pipe_slow );
  7615 %}
  7617 // Store Aligned Packed Char/Short XMM register to memory
  7618 instruct storeA4C(memory mem, regXD src) %{
  7619   predicate(UseSSE>=1);
  7620   match(Set mem (Store4C mem src));
  7621   ins_cost(145);
  7622   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7623   ins_encode( movq_st(mem, src));
  7624   ins_pipe( pipe_slow );
  7625 %}
  7627 // Store Aligned Packed Integer XMM register to memory
  7628 instruct storeA2I(memory mem, regXD src) %{
  7629   predicate(UseSSE>=1);
  7630   match(Set mem (Store2I mem src));
  7631   ins_cost(145);
  7632   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7633   ins_encode( movq_st(mem, src));
  7634   ins_pipe( pipe_slow );
  7635 %}
  7637 // Store CMS card-mark Immediate
  7638 instruct storeImmCM(memory mem, immI8 src) %{
  7639   match(Set mem (StoreCM mem src));
  7641   ins_cost(150);
  7642   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7643   opcode(0xC6);               /* C6 /0 */
  7644   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7645   ins_pipe( ialu_mem_imm );
  7646 %}
  7648 // Store Double
  7649 instruct storeD( memory mem, regDPR1 src) %{
  7650   predicate(UseSSE<=1);
  7651   match(Set mem (StoreD mem src));
  7653   ins_cost(100);
  7654   format %{ "FST_D  $mem,$src" %}
  7655   opcode(0xDD);       /* DD /2 */
  7656   ins_encode( enc_FP_store(mem,src) );
  7657   ins_pipe( fpu_mem_reg );
  7658 %}
  7660 // Store double does rounding on x86
  7661 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7662   predicate(UseSSE<=1);
  7663   match(Set mem (StoreD mem (RoundDouble src)));
  7665   ins_cost(100);
  7666   format %{ "FST_D  $mem,$src\t# round" %}
  7667   opcode(0xDD);       /* DD /2 */
  7668   ins_encode( enc_FP_store(mem,src) );
  7669   ins_pipe( fpu_mem_reg );
  7670 %}
  7672 // Store XMM register to memory (double-precision floating points)
  7673 // MOVSD instruction
  7674 instruct storeXD(memory mem, regXD src) %{
  7675   predicate(UseSSE>=2);
  7676   match(Set mem (StoreD mem src));
  7677   ins_cost(95);
  7678   format %{ "MOVSD  $mem,$src" %}
  7679   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7680   ins_pipe( pipe_slow );
  7681 %}
  7683 // Store XMM register to memory (single-precision floating point)
  7684 // MOVSS instruction
  7685 instruct storeX(memory mem, regX src) %{
  7686   predicate(UseSSE>=1);
  7687   match(Set mem (StoreF mem src));
  7688   ins_cost(95);
  7689   format %{ "MOVSS  $mem,$src" %}
  7690   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7691   ins_pipe( pipe_slow );
  7692 %}
  7694 // Store Aligned Packed Single Float XMM register to memory
  7695 instruct storeA2F(memory mem, regXD src) %{
  7696   predicate(UseSSE>=1);
  7697   match(Set mem (Store2F mem src));
  7698   ins_cost(145);
  7699   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7700   ins_encode( movq_st(mem, src));
  7701   ins_pipe( pipe_slow );
  7702 %}
  7704 // Store Float
  7705 instruct storeF( memory mem, regFPR1 src) %{
  7706   predicate(UseSSE==0);
  7707   match(Set mem (StoreF mem src));
  7709   ins_cost(100);
  7710   format %{ "FST_S  $mem,$src" %}
  7711   opcode(0xD9);       /* D9 /2 */
  7712   ins_encode( enc_FP_store(mem,src) );
  7713   ins_pipe( fpu_mem_reg );
  7714 %}
  7716 // Store Float does rounding on x86
  7717 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7718   predicate(UseSSE==0);
  7719   match(Set mem (StoreF mem (RoundFloat src)));
  7721   ins_cost(100);
  7722   format %{ "FST_S  $mem,$src\t# round" %}
  7723   opcode(0xD9);       /* D9 /2 */
  7724   ins_encode( enc_FP_store(mem,src) );
  7725   ins_pipe( fpu_mem_reg );
  7726 %}
  7728 // Store Float does rounding on x86
  7729 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7730   predicate(UseSSE<=1);
  7731   match(Set mem (StoreF mem (ConvD2F src)));
  7733   ins_cost(100);
  7734   format %{ "FST_S  $mem,$src\t# D-round" %}
  7735   opcode(0xD9);       /* D9 /2 */
  7736   ins_encode( enc_FP_store(mem,src) );
  7737   ins_pipe( fpu_mem_reg );
  7738 %}
  7740 // Store immediate Float value (it is faster than store from FPU register)
  7741 // The instruction usage is guarded by predicate in operand immF().
  7742 instruct storeF_imm( memory mem, immF src) %{
  7743   match(Set mem (StoreF mem src));
  7745   ins_cost(50);
  7746   format %{ "MOV    $mem,$src\t# store float" %}
  7747   opcode(0xC7);               /* C7 /0 */
  7748   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7749   ins_pipe( ialu_mem_imm );
  7750 %}
  7752 // Store immediate Float value (it is faster than store from XMM register)
  7753 // The instruction usage is guarded by predicate in operand immXF().
  7754 instruct storeX_imm( memory mem, immXF src) %{
  7755   match(Set mem (StoreF mem src));
  7757   ins_cost(50);
  7758   format %{ "MOV    $mem,$src\t# store float" %}
  7759   opcode(0xC7);               /* C7 /0 */
  7760   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7761   ins_pipe( ialu_mem_imm );
  7762 %}
  7764 // Store Integer to stack slot
  7765 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7766   match(Set dst src);
  7768   ins_cost(100);
  7769   format %{ "MOV    $dst,$src" %}
  7770   opcode(0x89);
  7771   ins_encode( OpcPRegSS( dst, src ) );
  7772   ins_pipe( ialu_mem_reg );
  7773 %}
  7775 // Store Integer to stack slot
  7776 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7777   match(Set dst src);
  7779   ins_cost(100);
  7780   format %{ "MOV    $dst,$src" %}
  7781   opcode(0x89);
  7782   ins_encode( OpcPRegSS( dst, src ) );
  7783   ins_pipe( ialu_mem_reg );
  7784 %}
  7786 // Store Long to stack slot
  7787 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7788   match(Set dst src);
  7790   ins_cost(200);
  7791   format %{ "MOV    $dst,$src.lo\n\t"
  7792             "MOV    $dst+4,$src.hi" %}
  7793   opcode(0x89, 0x89);
  7794   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7795   ins_pipe( ialu_mem_long_reg );
  7796 %}
  7798 //----------MemBar Instructions-----------------------------------------------
  7799 // Memory barrier flavors
  7801 instruct membar_acquire() %{
  7802   match(MemBarAcquire);
  7803   ins_cost(400);
  7805   size(0);
  7806   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7807   ins_encode();
  7808   ins_pipe(empty);
  7809 %}
  7811 instruct membar_acquire_lock() %{
  7812   match(MemBarAcquire);
  7813   predicate(Matcher::prior_fast_lock(n));
  7814   ins_cost(0);
  7816   size(0);
  7817   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7818   ins_encode( );
  7819   ins_pipe(empty);
  7820 %}
  7822 instruct membar_release() %{
  7823   match(MemBarRelease);
  7824   ins_cost(400);
  7826   size(0);
  7827   format %{ "MEMBAR-release ! (empty encoding)" %}
  7828   ins_encode( );
  7829   ins_pipe(empty);
  7830 %}
  7832 instruct membar_release_lock() %{
  7833   match(MemBarRelease);
  7834   predicate(Matcher::post_fast_unlock(n));
  7835   ins_cost(0);
  7837   size(0);
  7838   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7839   ins_encode( );
  7840   ins_pipe(empty);
  7841 %}
  7843 instruct membar_volatile(eFlagsReg cr) %{
  7844   match(MemBarVolatile);
  7845   effect(KILL cr);
  7846   ins_cost(400);
  7848   format %{ 
  7849     $$template
  7850     if (os::is_MP()) {
  7851       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7852     } else {
  7853       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7855   %}
  7856   ins_encode %{
  7857     __ membar(Assembler::StoreLoad);
  7858   %}
  7859   ins_pipe(pipe_slow);
  7860 %}
  7862 instruct unnecessary_membar_volatile() %{
  7863   match(MemBarVolatile);
  7864   predicate(Matcher::post_store_load_barrier(n));
  7865   ins_cost(0);
  7867   size(0);
  7868   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7869   ins_encode( );
  7870   ins_pipe(empty);
  7871 %}
  7873 //----------Move Instructions--------------------------------------------------
  7874 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7875   match(Set dst (CastX2P src));
  7876   format %{ "# X2P  $dst, $src" %}
  7877   ins_encode( /*empty encoding*/ );
  7878   ins_cost(0);
  7879   ins_pipe(empty);
  7880 %}
  7882 instruct castP2X(eRegI dst, eRegP src ) %{
  7883   match(Set dst (CastP2X src));
  7884   ins_cost(50);
  7885   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7886   ins_encode( enc_Copy( dst, src) );
  7887   ins_pipe( ialu_reg_reg );
  7888 %}
  7890 //----------Conditional Move---------------------------------------------------
  7891 // Conditional move
  7892 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7893   predicate(VM_Version::supports_cmov() );
  7894   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7895   ins_cost(200);
  7896   format %{ "CMOV$cop $dst,$src" %}
  7897   opcode(0x0F,0x40);
  7898   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7899   ins_pipe( pipe_cmov_reg );
  7900 %}
  7902 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7903   predicate(VM_Version::supports_cmov() );
  7904   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7905   ins_cost(200);
  7906   format %{ "CMOV$cop $dst,$src" %}
  7907   opcode(0x0F,0x40);
  7908   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7909   ins_pipe( pipe_cmov_reg );
  7910 %}
  7912 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7913   predicate(VM_Version::supports_cmov() );
  7914   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7915   ins_cost(200);
  7916   expand %{
  7917     cmovI_regU(cop, cr, dst, src);
  7918   %}
  7919 %}
  7921 // Conditional move
  7922 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7923   predicate(VM_Version::supports_cmov() );
  7924   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7925   ins_cost(250);
  7926   format %{ "CMOV$cop $dst,$src" %}
  7927   opcode(0x0F,0x40);
  7928   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7929   ins_pipe( pipe_cmov_mem );
  7930 %}
  7932 // Conditional move
  7933 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7934   predicate(VM_Version::supports_cmov() );
  7935   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7936   ins_cost(250);
  7937   format %{ "CMOV$cop $dst,$src" %}
  7938   opcode(0x0F,0x40);
  7939   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7940   ins_pipe( pipe_cmov_mem );
  7941 %}
  7943 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7944   predicate(VM_Version::supports_cmov() );
  7945   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7946   ins_cost(250);
  7947   expand %{
  7948     cmovI_memU(cop, cr, dst, src);
  7949   %}
  7950 %}
  7952 // Conditional move
  7953 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7954   predicate(VM_Version::supports_cmov() );
  7955   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7956   ins_cost(200);
  7957   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7958   opcode(0x0F,0x40);
  7959   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7960   ins_pipe( pipe_cmov_reg );
  7961 %}
  7963 // Conditional move (non-P6 version)
  7964 // Note:  a CMoveP is generated for  stubs and native wrappers
  7965 //        regardless of whether we are on a P6, so we
  7966 //        emulate a cmov here
  7967 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7968   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7969   ins_cost(300);
  7970   format %{ "Jn$cop   skip\n\t"
  7971           "MOV    $dst,$src\t# pointer\n"
  7972       "skip:" %}
  7973   opcode(0x8b);
  7974   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7975   ins_pipe( pipe_cmov_reg );
  7976 %}
  7978 // Conditional move
  7979 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7980   predicate(VM_Version::supports_cmov() );
  7981   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7982   ins_cost(200);
  7983   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7984   opcode(0x0F,0x40);
  7985   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7986   ins_pipe( pipe_cmov_reg );
  7987 %}
  7989 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7990   predicate(VM_Version::supports_cmov() );
  7991   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7992   ins_cost(200);
  7993   expand %{
  7994     cmovP_regU(cop, cr, dst, src);
  7995   %}
  7996 %}
  7998 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7999 // correctly meets the two pointer arguments; one is an incoming
  8000 // register but the other is a memory operand.  ALSO appears to
  8001 // be buggy with implicit null checks.
  8002 //
  8003 //// Conditional move
  8004 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  8005 //  predicate(VM_Version::supports_cmov() );
  8006 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8007 //  ins_cost(250);
  8008 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8009 //  opcode(0x0F,0x40);
  8010 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8011 //  ins_pipe( pipe_cmov_mem );
  8012 //%}
  8013 //
  8014 //// Conditional move
  8015 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  8016 //  predicate(VM_Version::supports_cmov() );
  8017 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  8018 //  ins_cost(250);
  8019 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  8020 //  opcode(0x0F,0x40);
  8021 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  8022 //  ins_pipe( pipe_cmov_mem );
  8023 //%}
  8025 // Conditional move
  8026 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  8027   predicate(UseSSE<=1);
  8028   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8029   ins_cost(200);
  8030   format %{ "FCMOV$cop $dst,$src\t# double" %}
  8031   opcode(0xDA);
  8032   ins_encode( enc_cmov_d(cop,src) );
  8033   ins_pipe( pipe_cmovD_reg );
  8034 %}
  8036 // Conditional move
  8037 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  8038   predicate(UseSSE==0);
  8039   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8040   ins_cost(200);
  8041   format %{ "FCMOV$cop $dst,$src\t# float" %}
  8042   opcode(0xDA);
  8043   ins_encode( enc_cmov_d(cop,src) );
  8044   ins_pipe( pipe_cmovD_reg );
  8045 %}
  8047 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8048 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  8049   predicate(UseSSE<=1);
  8050   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8051   ins_cost(200);
  8052   format %{ "Jn$cop   skip\n\t"
  8053             "MOV    $dst,$src\t# double\n"
  8054       "skip:" %}
  8055   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8056   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  8057   ins_pipe( pipe_cmovD_reg );
  8058 %}
  8060 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  8061 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  8062   predicate(UseSSE==0);
  8063   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8064   ins_cost(200);
  8065   format %{ "Jn$cop    skip\n\t"
  8066             "MOV    $dst,$src\t# float\n"
  8067       "skip:" %}
  8068   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  8069   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  8070   ins_pipe( pipe_cmovD_reg );
  8071 %}
  8073 // No CMOVE with SSE/SSE2
  8074 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  8075   predicate (UseSSE>=1);
  8076   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8077   ins_cost(200);
  8078   format %{ "Jn$cop   skip\n\t"
  8079             "MOVSS  $dst,$src\t# float\n"
  8080       "skip:" %}
  8081   ins_encode %{
  8082     Label skip;
  8083     // Invert sense of branch from sense of CMOV
  8084     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8085     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8086     __ bind(skip);
  8087   %}
  8088   ins_pipe( pipe_slow );
  8089 %}
  8091 // No CMOVE with SSE/SSE2
  8092 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8093   predicate (UseSSE>=2);
  8094   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8095   ins_cost(200);
  8096   format %{ "Jn$cop   skip\n\t"
  8097             "MOVSD  $dst,$src\t# float\n"
  8098       "skip:" %}
  8099   ins_encode %{
  8100     Label skip;
  8101     // Invert sense of branch from sense of CMOV
  8102     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8103     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8104     __ bind(skip);
  8105   %}
  8106   ins_pipe( pipe_slow );
  8107 %}
  8109 // unsigned version
  8110 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8111   predicate (UseSSE>=1);
  8112   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8113   ins_cost(200);
  8114   format %{ "Jn$cop   skip\n\t"
  8115             "MOVSS  $dst,$src\t# float\n"
  8116       "skip:" %}
  8117   ins_encode %{
  8118     Label skip;
  8119     // Invert sense of branch from sense of CMOV
  8120     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8121     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8122     __ bind(skip);
  8123   %}
  8124   ins_pipe( pipe_slow );
  8125 %}
  8127 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8128   predicate (UseSSE>=1);
  8129   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8130   ins_cost(200);
  8131   expand %{
  8132     fcmovX_regU(cop, cr, dst, src);
  8133   %}
  8134 %}
  8136 // unsigned version
  8137 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8138   predicate (UseSSE>=2);
  8139   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8140   ins_cost(200);
  8141   format %{ "Jn$cop   skip\n\t"
  8142             "MOVSD  $dst,$src\t# float\n"
  8143       "skip:" %}
  8144   ins_encode %{
  8145     Label skip;
  8146     // Invert sense of branch from sense of CMOV
  8147     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8148     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8149     __ bind(skip);
  8150   %}
  8151   ins_pipe( pipe_slow );
  8152 %}
  8154 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8155   predicate (UseSSE>=2);
  8156   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8157   ins_cost(200);
  8158   expand %{
  8159     fcmovXD_regU(cop, cr, dst, src);
  8160   %}
  8161 %}
  8163 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8164   predicate(VM_Version::supports_cmov() );
  8165   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8166   ins_cost(200);
  8167   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8168             "CMOV$cop $dst.hi,$src.hi" %}
  8169   opcode(0x0F,0x40);
  8170   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8171   ins_pipe( pipe_cmov_reg_long );
  8172 %}
  8174 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8175   predicate(VM_Version::supports_cmov() );
  8176   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8177   ins_cost(200);
  8178   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8179             "CMOV$cop $dst.hi,$src.hi" %}
  8180   opcode(0x0F,0x40);
  8181   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8182   ins_pipe( pipe_cmov_reg_long );
  8183 %}
  8185 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8186   predicate(VM_Version::supports_cmov() );
  8187   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8188   ins_cost(200);
  8189   expand %{
  8190     cmovL_regU(cop, cr, dst, src);
  8191   %}
  8192 %}
  8194 //----------Arithmetic Instructions--------------------------------------------
  8195 //----------Addition Instructions----------------------------------------------
  8196 // Integer Addition Instructions
  8197 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8198   match(Set dst (AddI dst src));
  8199   effect(KILL cr);
  8201   size(2);
  8202   format %{ "ADD    $dst,$src" %}
  8203   opcode(0x03);
  8204   ins_encode( OpcP, RegReg( dst, src) );
  8205   ins_pipe( ialu_reg_reg );
  8206 %}
  8208 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8209   match(Set dst (AddI dst src));
  8210   effect(KILL cr);
  8212   format %{ "ADD    $dst,$src" %}
  8213   opcode(0x81, 0x00); /* /0 id */
  8214   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8215   ins_pipe( ialu_reg );
  8216 %}
  8218 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8219   predicate(UseIncDec);
  8220   match(Set dst (AddI dst src));
  8221   effect(KILL cr);
  8223   size(1);
  8224   format %{ "INC    $dst" %}
  8225   opcode(0x40); /*  */
  8226   ins_encode( Opc_plus( primary, dst ) );
  8227   ins_pipe( ialu_reg );
  8228 %}
  8230 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8231   match(Set dst (AddI src0 src1));
  8232   ins_cost(110);
  8234   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8235   opcode(0x8D); /* 0x8D /r */
  8236   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8237   ins_pipe( ialu_reg_reg );
  8238 %}
  8240 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8241   match(Set dst (AddP src0 src1));
  8242   ins_cost(110);
  8244   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8245   opcode(0x8D); /* 0x8D /r */
  8246   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8247   ins_pipe( ialu_reg_reg );
  8248 %}
  8250 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8251   predicate(UseIncDec);
  8252   match(Set dst (AddI dst src));
  8253   effect(KILL cr);
  8255   size(1);
  8256   format %{ "DEC    $dst" %}
  8257   opcode(0x48); /*  */
  8258   ins_encode( Opc_plus( primary, dst ) );
  8259   ins_pipe( ialu_reg );
  8260 %}
  8262 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8263   match(Set dst (AddP dst src));
  8264   effect(KILL cr);
  8266   size(2);
  8267   format %{ "ADD    $dst,$src" %}
  8268   opcode(0x03);
  8269   ins_encode( OpcP, RegReg( dst, src) );
  8270   ins_pipe( ialu_reg_reg );
  8271 %}
  8273 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8274   match(Set dst (AddP dst src));
  8275   effect(KILL cr);
  8277   format %{ "ADD    $dst,$src" %}
  8278   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8279   // ins_encode( RegImm( dst, src) );
  8280   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8281   ins_pipe( ialu_reg );
  8282 %}
  8284 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8285   match(Set dst (AddI dst (LoadI src)));
  8286   effect(KILL cr);
  8288   ins_cost(125);
  8289   format %{ "ADD    $dst,$src" %}
  8290   opcode(0x03);
  8291   ins_encode( OpcP, RegMem( dst, src) );
  8292   ins_pipe( ialu_reg_mem );
  8293 %}
  8295 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8296   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8297   effect(KILL cr);
  8299   ins_cost(150);
  8300   format %{ "ADD    $dst,$src" %}
  8301   opcode(0x01);  /* Opcode 01 /r */
  8302   ins_encode( OpcP, RegMem( src, dst ) );
  8303   ins_pipe( ialu_mem_reg );
  8304 %}
  8306 // Add Memory with Immediate
  8307 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8308   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8309   effect(KILL cr);
  8311   ins_cost(125);
  8312   format %{ "ADD    $dst,$src" %}
  8313   opcode(0x81);               /* Opcode 81 /0 id */
  8314   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8315   ins_pipe( ialu_mem_imm );
  8316 %}
  8318 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8319   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8320   effect(KILL cr);
  8322   ins_cost(125);
  8323   format %{ "INC    $dst" %}
  8324   opcode(0xFF);               /* Opcode FF /0 */
  8325   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8326   ins_pipe( ialu_mem_imm );
  8327 %}
  8329 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8330   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8331   effect(KILL cr);
  8333   ins_cost(125);
  8334   format %{ "DEC    $dst" %}
  8335   opcode(0xFF);               /* Opcode FF /1 */
  8336   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8337   ins_pipe( ialu_mem_imm );
  8338 %}
  8341 instruct checkCastPP( eRegP dst ) %{
  8342   match(Set dst (CheckCastPP dst));
  8344   size(0);
  8345   format %{ "#checkcastPP of $dst" %}
  8346   ins_encode( /*empty encoding*/ );
  8347   ins_pipe( empty );
  8348 %}
  8350 instruct castPP( eRegP dst ) %{
  8351   match(Set dst (CastPP dst));
  8352   format %{ "#castPP of $dst" %}
  8353   ins_encode( /*empty encoding*/ );
  8354   ins_pipe( empty );
  8355 %}
  8357 instruct castII( eRegI dst ) %{
  8358   match(Set dst (CastII dst));
  8359   format %{ "#castII of $dst" %}
  8360   ins_encode( /*empty encoding*/ );
  8361   ins_cost(0);
  8362   ins_pipe( empty );
  8363 %}
  8366 // Load-locked - same as a regular pointer load when used with compare-swap
  8367 instruct loadPLocked(eRegP dst, memory mem) %{
  8368   match(Set dst (LoadPLocked mem));
  8370   ins_cost(125);
  8371   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8372   opcode(0x8B);
  8373   ins_encode( OpcP, RegMem(dst,mem));
  8374   ins_pipe( ialu_reg_mem );
  8375 %}
  8377 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8378 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8379   predicate(UseSSE<=1);
  8380   match(Set dst (LoadLLocked mem));
  8382   ins_cost(200);
  8383   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8384             "FISTp  $dst" %}
  8385   ins_encode(enc_loadL_volatile(mem,dst));
  8386   ins_pipe( fpu_reg_mem );
  8387 %}
  8389 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8390   predicate(UseSSE>=2);
  8391   match(Set dst (LoadLLocked mem));
  8392   effect(TEMP tmp);
  8393   ins_cost(180);
  8394   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8395             "MOVSD  $dst,$tmp" %}
  8396   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8397   ins_pipe( pipe_slow );
  8398 %}
  8400 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8401   predicate(UseSSE>=2);
  8402   match(Set dst (LoadLLocked mem));
  8403   effect(TEMP tmp);
  8404   ins_cost(160);
  8405   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8406             "MOVD   $dst.lo,$tmp\n\t"
  8407             "PSRLQ  $tmp,32\n\t"
  8408             "MOVD   $dst.hi,$tmp" %}
  8409   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8410   ins_pipe( pipe_slow );
  8411 %}
  8413 // Conditional-store of the updated heap-top.
  8414 // Used during allocation of the shared heap.
  8415 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8416 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8417   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8418   // EAX is killed if there is contention, but then it's also unused.
  8419   // In the common case of no contention, EAX holds the new oop address.
  8420   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8421   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8422   ins_pipe( pipe_cmpxchg );
  8423 %}
  8425 // Conditional-store of an int value.
  8426 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8427 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8428   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8429   effect(KILL oldval);
  8430   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8431   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8432   ins_pipe( pipe_cmpxchg );
  8433 %}
  8435 // Conditional-store of a long value.
  8436 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8437 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8438   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8439   effect(KILL oldval);
  8440   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8441             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8442             "XCHG   EBX,ECX"
  8443   %}
  8444   ins_encode %{
  8445     // Note: we need to swap rbx, and rcx before and after the
  8446     //       cmpxchg8 instruction because the instruction uses
  8447     //       rcx as the high order word of the new value to store but
  8448     //       our register encoding uses rbx.
  8449     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8450     if( os::is_MP() )
  8451       __ lock();
  8452     __ cmpxchg8($mem$$Address);
  8453     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8454   %}
  8455   ins_pipe( pipe_cmpxchg );
  8456 %}
  8458 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8460 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8461   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8462   effect(KILL cr, KILL oldval);
  8463   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8464             "MOV    $res,0\n\t"
  8465             "JNE,s  fail\n\t"
  8466             "MOV    $res,1\n"
  8467           "fail:" %}
  8468   ins_encode( enc_cmpxchg8(mem_ptr),
  8469               enc_flags_ne_to_boolean(res) );
  8470   ins_pipe( pipe_cmpxchg );
  8471 %}
  8473 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8474   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8475   effect(KILL cr, KILL oldval);
  8476   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8477             "MOV    $res,0\n\t"
  8478             "JNE,s  fail\n\t"
  8479             "MOV    $res,1\n"
  8480           "fail:" %}
  8481   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8482   ins_pipe( pipe_cmpxchg );
  8483 %}
  8485 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8486   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8487   effect(KILL cr, KILL oldval);
  8488   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8489             "MOV    $res,0\n\t"
  8490             "JNE,s  fail\n\t"
  8491             "MOV    $res,1\n"
  8492           "fail:" %}
  8493   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8494   ins_pipe( pipe_cmpxchg );
  8495 %}
  8497 //----------Subtraction Instructions-------------------------------------------
  8498 // Integer Subtraction Instructions
  8499 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8500   match(Set dst (SubI dst src));
  8501   effect(KILL cr);
  8503   size(2);
  8504   format %{ "SUB    $dst,$src" %}
  8505   opcode(0x2B);
  8506   ins_encode( OpcP, RegReg( dst, src) );
  8507   ins_pipe( ialu_reg_reg );
  8508 %}
  8510 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8511   match(Set dst (SubI dst src));
  8512   effect(KILL cr);
  8514   format %{ "SUB    $dst,$src" %}
  8515   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8516   // ins_encode( RegImm( dst, src) );
  8517   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8518   ins_pipe( ialu_reg );
  8519 %}
  8521 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8522   match(Set dst (SubI dst (LoadI src)));
  8523   effect(KILL cr);
  8525   ins_cost(125);
  8526   format %{ "SUB    $dst,$src" %}
  8527   opcode(0x2B);
  8528   ins_encode( OpcP, RegMem( dst, src) );
  8529   ins_pipe( ialu_reg_mem );
  8530 %}
  8532 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8533   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8534   effect(KILL cr);
  8536   ins_cost(150);
  8537   format %{ "SUB    $dst,$src" %}
  8538   opcode(0x29);  /* Opcode 29 /r */
  8539   ins_encode( OpcP, RegMem( src, dst ) );
  8540   ins_pipe( ialu_mem_reg );
  8541 %}
  8543 // Subtract from a pointer
  8544 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8545   match(Set dst (AddP dst (SubI zero src)));
  8546   effect(KILL cr);
  8548   size(2);
  8549   format %{ "SUB    $dst,$src" %}
  8550   opcode(0x2B);
  8551   ins_encode( OpcP, RegReg( dst, src) );
  8552   ins_pipe( ialu_reg_reg );
  8553 %}
  8555 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8556   match(Set dst (SubI zero dst));
  8557   effect(KILL cr);
  8559   size(2);
  8560   format %{ "NEG    $dst" %}
  8561   opcode(0xF7,0x03);  // Opcode F7 /3
  8562   ins_encode( OpcP, RegOpc( dst ) );
  8563   ins_pipe( ialu_reg );
  8564 %}
  8567 //----------Multiplication/Division Instructions-------------------------------
  8568 // Integer Multiplication Instructions
  8569 // Multiply Register
  8570 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8571   match(Set dst (MulI dst src));
  8572   effect(KILL cr);
  8574   size(3);
  8575   ins_cost(300);
  8576   format %{ "IMUL   $dst,$src" %}
  8577   opcode(0xAF, 0x0F);
  8578   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8579   ins_pipe( ialu_reg_reg_alu0 );
  8580 %}
  8582 // Multiply 32-bit Immediate
  8583 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8584   match(Set dst (MulI src imm));
  8585   effect(KILL cr);
  8587   ins_cost(300);
  8588   format %{ "IMUL   $dst,$src,$imm" %}
  8589   opcode(0x69);  /* 69 /r id */
  8590   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8591   ins_pipe( ialu_reg_reg_alu0 );
  8592 %}
  8594 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8595   match(Set dst src);
  8596   effect(KILL cr);
  8598   // Note that this is artificially increased to make it more expensive than loadConL
  8599   ins_cost(250);
  8600   format %{ "MOV    EAX,$src\t// low word only" %}
  8601   opcode(0xB8);
  8602   ins_encode( LdImmL_Lo(dst, src) );
  8603   ins_pipe( ialu_reg_fat );
  8604 %}
  8606 // Multiply by 32-bit Immediate, taking the shifted high order results
  8607 //  (special case for shift by 32)
  8608 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8609   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8610   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8611              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8612              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8613   effect(USE src1, KILL cr);
  8615   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8616   ins_cost(0*100 + 1*400 - 150);
  8617   format %{ "IMUL   EDX:EAX,$src1" %}
  8618   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8619   ins_pipe( pipe_slow );
  8620 %}
  8622 // Multiply by 32-bit Immediate, taking the shifted high order results
  8623 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8624   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8625   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8626              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8627              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8628   effect(USE src1, KILL cr);
  8630   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8631   ins_cost(1*100 + 1*400 - 150);
  8632   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8633             "SAR    EDX,$cnt-32" %}
  8634   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8635   ins_pipe( pipe_slow );
  8636 %}
  8638 // Multiply Memory 32-bit Immediate
  8639 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8640   match(Set dst (MulI (LoadI src) imm));
  8641   effect(KILL cr);
  8643   ins_cost(300);
  8644   format %{ "IMUL   $dst,$src,$imm" %}
  8645   opcode(0x69);  /* 69 /r id */
  8646   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8647   ins_pipe( ialu_reg_mem_alu0 );
  8648 %}
  8650 // Multiply Memory
  8651 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8652   match(Set dst (MulI dst (LoadI src)));
  8653   effect(KILL cr);
  8655   ins_cost(350);
  8656   format %{ "IMUL   $dst,$src" %}
  8657   opcode(0xAF, 0x0F);
  8658   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8659   ins_pipe( ialu_reg_mem_alu0 );
  8660 %}
  8662 // Multiply Register Int to Long
  8663 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8664   // Basic Idea: long = (long)int * (long)int
  8665   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8666   effect(DEF dst, USE src, USE src1, KILL flags);
  8668   ins_cost(300);
  8669   format %{ "IMUL   $dst,$src1" %}
  8671   ins_encode( long_int_multiply( dst, src1 ) );
  8672   ins_pipe( ialu_reg_reg_alu0 );
  8673 %}
  8675 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8676   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8677   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8678   effect(KILL flags);
  8680   ins_cost(300);
  8681   format %{ "MUL    $dst,$src1" %}
  8683   ins_encode( long_uint_multiply(dst, src1) );
  8684   ins_pipe( ialu_reg_reg_alu0 );
  8685 %}
  8687 // Multiply Register Long
  8688 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8689   match(Set dst (MulL dst src));
  8690   effect(KILL cr, TEMP tmp);
  8691   ins_cost(4*100+3*400);
  8692 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8693 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8694   format %{ "MOV    $tmp,$src.lo\n\t"
  8695             "IMUL   $tmp,EDX\n\t"
  8696             "MOV    EDX,$src.hi\n\t"
  8697             "IMUL   EDX,EAX\n\t"
  8698             "ADD    $tmp,EDX\n\t"
  8699             "MUL    EDX:EAX,$src.lo\n\t"
  8700             "ADD    EDX,$tmp" %}
  8701   ins_encode( long_multiply( dst, src, tmp ) );
  8702   ins_pipe( pipe_slow );
  8703 %}
  8705 // Multiply Register Long where the left operand's high 32 bits are zero
  8706 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8707   predicate(is_operand_hi32_zero(n->in(1)));
  8708   match(Set dst (MulL dst src));
  8709   effect(KILL cr, TEMP tmp);
  8710   ins_cost(2*100+2*400);
  8711 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8712 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8713   format %{ "MOV    $tmp,$src.hi\n\t"
  8714             "IMUL   $tmp,EAX\n\t"
  8715             "MUL    EDX:EAX,$src.lo\n\t"
  8716             "ADD    EDX,$tmp" %}
  8717   ins_encode %{
  8718     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8719     __ imull($tmp$$Register, rax);
  8720     __ mull($src$$Register);
  8721     __ addl(rdx, $tmp$$Register);
  8722   %}
  8723   ins_pipe( pipe_slow );
  8724 %}
  8726 // Multiply Register Long where the right operand's high 32 bits are zero
  8727 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8728   predicate(is_operand_hi32_zero(n->in(2)));
  8729   match(Set dst (MulL dst src));
  8730   effect(KILL cr, TEMP tmp);
  8731   ins_cost(2*100+2*400);
  8732 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8733 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8734   format %{ "MOV    $tmp,$src.lo\n\t"
  8735             "IMUL   $tmp,EDX\n\t"
  8736             "MUL    EDX:EAX,$src.lo\n\t"
  8737             "ADD    EDX,$tmp" %}
  8738   ins_encode %{
  8739     __ movl($tmp$$Register, $src$$Register);
  8740     __ imull($tmp$$Register, rdx);
  8741     __ mull($src$$Register);
  8742     __ addl(rdx, $tmp$$Register);
  8743   %}
  8744   ins_pipe( pipe_slow );
  8745 %}
  8747 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8748 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8749   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8750   match(Set dst (MulL dst src));
  8751   effect(KILL cr);
  8752   ins_cost(1*400);
  8753 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8754 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8755   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8756   ins_encode %{
  8757     __ mull($src$$Register);
  8758   %}
  8759   ins_pipe( pipe_slow );
  8760 %}
  8762 // Multiply Register Long by small constant
  8763 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8764   match(Set dst (MulL dst src));
  8765   effect(KILL cr, TEMP tmp);
  8766   ins_cost(2*100+2*400);
  8767   size(12);
  8768 // Basic idea: lo(result) = lo(src * EAX)
  8769 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8770   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8771             "MOV    EDX,$src\n\t"
  8772             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8773             "ADD    EDX,$tmp" %}
  8774   ins_encode( long_multiply_con( dst, src, tmp ) );
  8775   ins_pipe( pipe_slow );
  8776 %}
  8778 // Integer DIV with Register
  8779 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8780   match(Set rax (DivI rax div));
  8781   effect(KILL rdx, KILL cr);
  8782   size(26);
  8783   ins_cost(30*100+10*100);
  8784   format %{ "CMP    EAX,0x80000000\n\t"
  8785             "JNE,s  normal\n\t"
  8786             "XOR    EDX,EDX\n\t"
  8787             "CMP    ECX,-1\n\t"
  8788             "JE,s   done\n"
  8789     "normal: CDQ\n\t"
  8790             "IDIV   $div\n\t"
  8791     "done:"        %}
  8792   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8793   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8794   ins_pipe( ialu_reg_reg_alu0 );
  8795 %}
  8797 // Divide Register Long
  8798 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8799   match(Set dst (DivL src1 src2));
  8800   effect( KILL cr, KILL cx, KILL bx );
  8801   ins_cost(10000);
  8802   format %{ "PUSH   $src1.hi\n\t"
  8803             "PUSH   $src1.lo\n\t"
  8804             "PUSH   $src2.hi\n\t"
  8805             "PUSH   $src2.lo\n\t"
  8806             "CALL   SharedRuntime::ldiv\n\t"
  8807             "ADD    ESP,16" %}
  8808   ins_encode( long_div(src1,src2) );
  8809   ins_pipe( pipe_slow );
  8810 %}
  8812 // Integer DIVMOD with Register, both quotient and mod results
  8813 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8814   match(DivModI rax div);
  8815   effect(KILL cr);
  8816   size(26);
  8817   ins_cost(30*100+10*100);
  8818   format %{ "CMP    EAX,0x80000000\n\t"
  8819             "JNE,s  normal\n\t"
  8820             "XOR    EDX,EDX\n\t"
  8821             "CMP    ECX,-1\n\t"
  8822             "JE,s   done\n"
  8823     "normal: CDQ\n\t"
  8824             "IDIV   $div\n\t"
  8825     "done:"        %}
  8826   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8827   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8828   ins_pipe( pipe_slow );
  8829 %}
  8831 // Integer MOD with Register
  8832 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8833   match(Set rdx (ModI rax div));
  8834   effect(KILL rax, KILL cr);
  8836   size(26);
  8837   ins_cost(300);
  8838   format %{ "CDQ\n\t"
  8839             "IDIV   $div" %}
  8840   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8841   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8842   ins_pipe( ialu_reg_reg_alu0 );
  8843 %}
  8845 // Remainder Register Long
  8846 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8847   match(Set dst (ModL src1 src2));
  8848   effect( KILL cr, KILL cx, KILL bx );
  8849   ins_cost(10000);
  8850   format %{ "PUSH   $src1.hi\n\t"
  8851             "PUSH   $src1.lo\n\t"
  8852             "PUSH   $src2.hi\n\t"
  8853             "PUSH   $src2.lo\n\t"
  8854             "CALL   SharedRuntime::lrem\n\t"
  8855             "ADD    ESP,16" %}
  8856   ins_encode( long_mod(src1,src2) );
  8857   ins_pipe( pipe_slow );
  8858 %}
  8860 // Divide Register Long (no special case since divisor != -1)
  8861 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8862   match(Set dst (DivL dst imm));
  8863   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8864   ins_cost(1000);
  8865   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8866             "XOR    $tmp2,$tmp2\n\t"
  8867             "CMP    $tmp,EDX\n\t"
  8868             "JA,s   fast\n\t"
  8869             "MOV    $tmp2,EAX\n\t"
  8870             "MOV    EAX,EDX\n\t"
  8871             "MOV    EDX,0\n\t"
  8872             "JLE,s  pos\n\t"
  8873             "LNEG   EAX : $tmp2\n\t"
  8874             "DIV    $tmp # unsigned division\n\t"
  8875             "XCHG   EAX,$tmp2\n\t"
  8876             "DIV    $tmp\n\t"
  8877             "LNEG   $tmp2 : EAX\n\t"
  8878             "JMP,s  done\n"
  8879     "pos:\n\t"
  8880             "DIV    $tmp\n\t"
  8881             "XCHG   EAX,$tmp2\n"
  8882     "fast:\n\t"
  8883             "DIV    $tmp\n"
  8884     "done:\n\t"
  8885             "MOV    EDX,$tmp2\n\t"
  8886             "NEG    EDX:EAX # if $imm < 0" %}
  8887   ins_encode %{
  8888     int con = (int)$imm$$constant;
  8889     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8890     int pcon = (con > 0) ? con : -con;
  8891     Label Lfast, Lpos, Ldone;
  8893     __ movl($tmp$$Register, pcon);
  8894     __ xorl($tmp2$$Register,$tmp2$$Register);
  8895     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8896     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8898     __ movl($tmp2$$Register, $dst$$Register); // save
  8899     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8900     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8901     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8903     // Negative dividend.
  8904     // convert value to positive to use unsigned division
  8905     __ lneg($dst$$Register, $tmp2$$Register);
  8906     __ divl($tmp$$Register);
  8907     __ xchgl($dst$$Register, $tmp2$$Register);
  8908     __ divl($tmp$$Register);
  8909     // revert result back to negative
  8910     __ lneg($tmp2$$Register, $dst$$Register);
  8911     __ jmpb(Ldone);
  8913     __ bind(Lpos);
  8914     __ divl($tmp$$Register); // Use unsigned division
  8915     __ xchgl($dst$$Register, $tmp2$$Register);
  8916     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8918     __ bind(Lfast);
  8919     // fast path: src is positive
  8920     __ divl($tmp$$Register); // Use unsigned division
  8922     __ bind(Ldone);
  8923     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8924     if (con < 0) {
  8925       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8927   %}
  8928   ins_pipe( pipe_slow );
  8929 %}
  8931 // Remainder Register Long (remainder fit into 32 bits)
  8932 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8933   match(Set dst (ModL dst imm));
  8934   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8935   ins_cost(1000);
  8936   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8937             "CMP    $tmp,EDX\n\t"
  8938             "JA,s   fast\n\t"
  8939             "MOV    $tmp2,EAX\n\t"
  8940             "MOV    EAX,EDX\n\t"
  8941             "MOV    EDX,0\n\t"
  8942             "JLE,s  pos\n\t"
  8943             "LNEG   EAX : $tmp2\n\t"
  8944             "DIV    $tmp # unsigned division\n\t"
  8945             "MOV    EAX,$tmp2\n\t"
  8946             "DIV    $tmp\n\t"
  8947             "NEG    EDX\n\t"
  8948             "JMP,s  done\n"
  8949     "pos:\n\t"
  8950             "DIV    $tmp\n\t"
  8951             "MOV    EAX,$tmp2\n"
  8952     "fast:\n\t"
  8953             "DIV    $tmp\n"
  8954     "done:\n\t"
  8955             "MOV    EAX,EDX\n\t"
  8956             "SAR    EDX,31\n\t" %}
  8957   ins_encode %{
  8958     int con = (int)$imm$$constant;
  8959     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8960     int pcon = (con > 0) ? con : -con;
  8961     Label  Lfast, Lpos, Ldone;
  8963     __ movl($tmp$$Register, pcon);
  8964     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8965     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8967     __ movl($tmp2$$Register, $dst$$Register); // save
  8968     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8969     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8970     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8972     // Negative dividend.
  8973     // convert value to positive to use unsigned division
  8974     __ lneg($dst$$Register, $tmp2$$Register);
  8975     __ divl($tmp$$Register);
  8976     __ movl($dst$$Register, $tmp2$$Register);
  8977     __ divl($tmp$$Register);
  8978     // revert remainder back to negative
  8979     __ negl(HIGH_FROM_LOW($dst$$Register));
  8980     __ jmpb(Ldone);
  8982     __ bind(Lpos);
  8983     __ divl($tmp$$Register);
  8984     __ movl($dst$$Register, $tmp2$$Register);
  8986     __ bind(Lfast);
  8987     // fast path: src is positive
  8988     __ divl($tmp$$Register);
  8990     __ bind(Ldone);
  8991     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8992     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8994   %}
  8995   ins_pipe( pipe_slow );
  8996 %}
  8998 // Integer Shift Instructions
  8999 // Shift Left by one
  9000 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9001   match(Set dst (LShiftI dst shift));
  9002   effect(KILL cr);
  9004   size(2);
  9005   format %{ "SHL    $dst,$shift" %}
  9006   opcode(0xD1, 0x4);  /* D1 /4 */
  9007   ins_encode( OpcP, RegOpc( dst ) );
  9008   ins_pipe( ialu_reg );
  9009 %}
  9011 // Shift Left by 8-bit immediate
  9012 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9013   match(Set dst (LShiftI dst shift));
  9014   effect(KILL cr);
  9016   size(3);
  9017   format %{ "SHL    $dst,$shift" %}
  9018   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9019   ins_encode( RegOpcImm( dst, shift) );
  9020   ins_pipe( ialu_reg );
  9021 %}
  9023 // Shift Left by variable
  9024 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9025   match(Set dst (LShiftI dst shift));
  9026   effect(KILL cr);
  9028   size(2);
  9029   format %{ "SHL    $dst,$shift" %}
  9030   opcode(0xD3, 0x4);  /* D3 /4 */
  9031   ins_encode( OpcP, RegOpc( dst ) );
  9032   ins_pipe( ialu_reg_reg );
  9033 %}
  9035 // Arithmetic shift right by one
  9036 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9037   match(Set dst (RShiftI dst shift));
  9038   effect(KILL cr);
  9040   size(2);
  9041   format %{ "SAR    $dst,$shift" %}
  9042   opcode(0xD1, 0x7);  /* D1 /7 */
  9043   ins_encode( OpcP, RegOpc( dst ) );
  9044   ins_pipe( ialu_reg );
  9045 %}
  9047 // Arithmetic shift right by one
  9048 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  9049   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9050   effect(KILL cr);
  9051   format %{ "SAR    $dst,$shift" %}
  9052   opcode(0xD1, 0x7);  /* D1 /7 */
  9053   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  9054   ins_pipe( ialu_mem_imm );
  9055 %}
  9057 // Arithmetic Shift Right by 8-bit immediate
  9058 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9059   match(Set dst (RShiftI dst shift));
  9060   effect(KILL cr);
  9062   size(3);
  9063   format %{ "SAR    $dst,$shift" %}
  9064   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9065   ins_encode( RegOpcImm( dst, shift ) );
  9066   ins_pipe( ialu_mem_imm );
  9067 %}
  9069 // Arithmetic Shift Right by 8-bit immediate
  9070 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  9071   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  9072   effect(KILL cr);
  9074   format %{ "SAR    $dst,$shift" %}
  9075   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9076   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  9077   ins_pipe( ialu_mem_imm );
  9078 %}
  9080 // Arithmetic Shift Right by variable
  9081 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9082   match(Set dst (RShiftI dst shift));
  9083   effect(KILL cr);
  9085   size(2);
  9086   format %{ "SAR    $dst,$shift" %}
  9087   opcode(0xD3, 0x7);  /* D3 /7 */
  9088   ins_encode( OpcP, RegOpc( dst ) );
  9089   ins_pipe( ialu_reg_reg );
  9090 %}
  9092 // Logical shift right by one
  9093 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9094   match(Set dst (URShiftI dst shift));
  9095   effect(KILL cr);
  9097   size(2);
  9098   format %{ "SHR    $dst,$shift" %}
  9099   opcode(0xD1, 0x5);  /* D1 /5 */
  9100   ins_encode( OpcP, RegOpc( dst ) );
  9101   ins_pipe( ialu_reg );
  9102 %}
  9104 // Logical Shift Right by 8-bit immediate
  9105 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9106   match(Set dst (URShiftI dst shift));
  9107   effect(KILL cr);
  9109   size(3);
  9110   format %{ "SHR    $dst,$shift" %}
  9111   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9112   ins_encode( RegOpcImm( dst, shift) );
  9113   ins_pipe( ialu_reg );
  9114 %}
  9117 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  9118 // This idiom is used by the compiler for the i2b bytecode.
  9119 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  9120   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  9122   size(3);
  9123   format %{ "MOVSX  $dst,$src :8" %}
  9124   ins_encode %{
  9125     __ movsbl($dst$$Register, $src$$Register);
  9126   %}
  9127   ins_pipe(ialu_reg_reg);
  9128 %}
  9130 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  9131 // This idiom is used by the compiler the i2s bytecode.
  9132 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  9133   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  9135   size(3);
  9136   format %{ "MOVSX  $dst,$src :16" %}
  9137   ins_encode %{
  9138     __ movswl($dst$$Register, $src$$Register);
  9139   %}
  9140   ins_pipe(ialu_reg_reg);
  9141 %}
  9144 // Logical Shift Right by variable
  9145 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9146   match(Set dst (URShiftI dst shift));
  9147   effect(KILL cr);
  9149   size(2);
  9150   format %{ "SHR    $dst,$shift" %}
  9151   opcode(0xD3, 0x5);  /* D3 /5 */
  9152   ins_encode( OpcP, RegOpc( dst ) );
  9153   ins_pipe( ialu_reg_reg );
  9154 %}
  9157 //----------Logical Instructions-----------------------------------------------
  9158 //----------Integer Logical Instructions---------------------------------------
  9159 // And Instructions
  9160 // And Register with Register
  9161 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9162   match(Set dst (AndI dst src));
  9163   effect(KILL cr);
  9165   size(2);
  9166   format %{ "AND    $dst,$src" %}
  9167   opcode(0x23);
  9168   ins_encode( OpcP, RegReg( dst, src) );
  9169   ins_pipe( ialu_reg_reg );
  9170 %}
  9172 // And Register with Immediate
  9173 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9174   match(Set dst (AndI dst src));
  9175   effect(KILL cr);
  9177   format %{ "AND    $dst,$src" %}
  9178   opcode(0x81,0x04);  /* Opcode 81 /4 */
  9179   // ins_encode( RegImm( dst, src) );
  9180   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9181   ins_pipe( ialu_reg );
  9182 %}
  9184 // And Register with Memory
  9185 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9186   match(Set dst (AndI dst (LoadI src)));
  9187   effect(KILL cr);
  9189   ins_cost(125);
  9190   format %{ "AND    $dst,$src" %}
  9191   opcode(0x23);
  9192   ins_encode( OpcP, RegMem( dst, src) );
  9193   ins_pipe( ialu_reg_mem );
  9194 %}
  9196 // And Memory with Register
  9197 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9198   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9199   effect(KILL cr);
  9201   ins_cost(150);
  9202   format %{ "AND    $dst,$src" %}
  9203   opcode(0x21);  /* Opcode 21 /r */
  9204   ins_encode( OpcP, RegMem( src, dst ) );
  9205   ins_pipe( ialu_mem_reg );
  9206 %}
  9208 // And Memory with Immediate
  9209 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9210   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9211   effect(KILL cr);
  9213   ins_cost(125);
  9214   format %{ "AND    $dst,$src" %}
  9215   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  9216   // ins_encode( MemImm( dst, src) );
  9217   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9218   ins_pipe( ialu_mem_imm );
  9219 %}
  9221 // Or Instructions
  9222 // Or Register with Register
  9223 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9224   match(Set dst (OrI dst src));
  9225   effect(KILL cr);
  9227   size(2);
  9228   format %{ "OR     $dst,$src" %}
  9229   opcode(0x0B);
  9230   ins_encode( OpcP, RegReg( dst, src) );
  9231   ins_pipe( ialu_reg_reg );
  9232 %}
  9234 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9235   match(Set dst (OrI dst (CastP2X src)));
  9236   effect(KILL cr);
  9238   size(2);
  9239   format %{ "OR     $dst,$src" %}
  9240   opcode(0x0B);
  9241   ins_encode( OpcP, RegReg( dst, src) );
  9242   ins_pipe( ialu_reg_reg );
  9243 %}
  9246 // Or Register with Immediate
  9247 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9248   match(Set dst (OrI dst src));
  9249   effect(KILL cr);
  9251   format %{ "OR     $dst,$src" %}
  9252   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9253   // ins_encode( RegImm( dst, src) );
  9254   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9255   ins_pipe( ialu_reg );
  9256 %}
  9258 // Or Register with Memory
  9259 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9260   match(Set dst (OrI dst (LoadI src)));
  9261   effect(KILL cr);
  9263   ins_cost(125);
  9264   format %{ "OR     $dst,$src" %}
  9265   opcode(0x0B);
  9266   ins_encode( OpcP, RegMem( dst, src) );
  9267   ins_pipe( ialu_reg_mem );
  9268 %}
  9270 // Or Memory with Register
  9271 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9272   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9273   effect(KILL cr);
  9275   ins_cost(150);
  9276   format %{ "OR     $dst,$src" %}
  9277   opcode(0x09);  /* Opcode 09 /r */
  9278   ins_encode( OpcP, RegMem( src, dst ) );
  9279   ins_pipe( ialu_mem_reg );
  9280 %}
  9282 // Or Memory with Immediate
  9283 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9284   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9285   effect(KILL cr);
  9287   ins_cost(125);
  9288   format %{ "OR     $dst,$src" %}
  9289   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9290   // ins_encode( MemImm( dst, src) );
  9291   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9292   ins_pipe( ialu_mem_imm );
  9293 %}
  9295 // ROL/ROR
  9296 // ROL expand
  9297 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9298   effect(USE_DEF dst, USE shift, KILL cr);
  9300   format %{ "ROL    $dst, $shift" %}
  9301   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9302   ins_encode( OpcP, RegOpc( dst ));
  9303   ins_pipe( ialu_reg );
  9304 %}
  9306 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9307   effect(USE_DEF dst, USE shift, KILL cr);
  9309   format %{ "ROL    $dst, $shift" %}
  9310   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9311   ins_encode( RegOpcImm(dst, shift) );
  9312   ins_pipe(ialu_reg);
  9313 %}
  9315 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9316   effect(USE_DEF dst, USE shift, KILL cr);
  9318   format %{ "ROL    $dst, $shift" %}
  9319   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9320   ins_encode(OpcP, RegOpc(dst));
  9321   ins_pipe( ialu_reg_reg );
  9322 %}
  9323 // end of ROL expand
  9325 // ROL 32bit by one once
  9326 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9327   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9329   expand %{
  9330     rolI_eReg_imm1(dst, lshift, cr);
  9331   %}
  9332 %}
  9334 // ROL 32bit var by imm8 once
  9335 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9336   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9337   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9339   expand %{
  9340     rolI_eReg_imm8(dst, lshift, cr);
  9341   %}
  9342 %}
  9344 // ROL 32bit var by var once
  9345 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9346   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9348   expand %{
  9349     rolI_eReg_CL(dst, shift, cr);
  9350   %}
  9351 %}
  9353 // ROL 32bit var by var once
  9354 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9355   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9357   expand %{
  9358     rolI_eReg_CL(dst, shift, cr);
  9359   %}
  9360 %}
  9362 // ROR expand
  9363 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9364   effect(USE_DEF dst, USE shift, KILL cr);
  9366   format %{ "ROR    $dst, $shift" %}
  9367   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9368   ins_encode( OpcP, RegOpc( dst ) );
  9369   ins_pipe( ialu_reg );
  9370 %}
  9372 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9373   effect (USE_DEF dst, USE shift, KILL cr);
  9375   format %{ "ROR    $dst, $shift" %}
  9376   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9377   ins_encode( RegOpcImm(dst, shift) );
  9378   ins_pipe( ialu_reg );
  9379 %}
  9381 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9382   effect(USE_DEF dst, USE shift, KILL cr);
  9384   format %{ "ROR    $dst, $shift" %}
  9385   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9386   ins_encode(OpcP, RegOpc(dst));
  9387   ins_pipe( ialu_reg_reg );
  9388 %}
  9389 // end of ROR expand
  9391 // ROR right once
  9392 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9393   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9395   expand %{
  9396     rorI_eReg_imm1(dst, rshift, cr);
  9397   %}
  9398 %}
  9400 // ROR 32bit by immI8 once
  9401 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9402   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9403   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9405   expand %{
  9406     rorI_eReg_imm8(dst, rshift, cr);
  9407   %}
  9408 %}
  9410 // ROR 32bit var by var once
  9411 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9412   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9414   expand %{
  9415     rorI_eReg_CL(dst, shift, cr);
  9416   %}
  9417 %}
  9419 // ROR 32bit var by var once
  9420 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9421   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9423   expand %{
  9424     rorI_eReg_CL(dst, shift, cr);
  9425   %}
  9426 %}
  9428 // Xor Instructions
  9429 // Xor Register with Register
  9430 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9431   match(Set dst (XorI dst src));
  9432   effect(KILL cr);
  9434   size(2);
  9435   format %{ "XOR    $dst,$src" %}
  9436   opcode(0x33);
  9437   ins_encode( OpcP, RegReg( dst, src) );
  9438   ins_pipe( ialu_reg_reg );
  9439 %}
  9441 // Xor Register with Immediate -1
  9442 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9443   match(Set dst (XorI dst imm));  
  9445   size(2);
  9446   format %{ "NOT    $dst" %}  
  9447   ins_encode %{
  9448      __ notl($dst$$Register);
  9449   %}
  9450   ins_pipe( ialu_reg );
  9451 %}
  9453 // Xor Register with Immediate
  9454 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9455   match(Set dst (XorI dst src));
  9456   effect(KILL cr);
  9458   format %{ "XOR    $dst,$src" %}
  9459   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9460   // ins_encode( RegImm( dst, src) );
  9461   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9462   ins_pipe( ialu_reg );
  9463 %}
  9465 // Xor Register with Memory
  9466 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9467   match(Set dst (XorI dst (LoadI src)));
  9468   effect(KILL cr);
  9470   ins_cost(125);
  9471   format %{ "XOR    $dst,$src" %}
  9472   opcode(0x33);
  9473   ins_encode( OpcP, RegMem(dst, src) );
  9474   ins_pipe( ialu_reg_mem );
  9475 %}
  9477 // Xor Memory with Register
  9478 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9479   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9480   effect(KILL cr);
  9482   ins_cost(150);
  9483   format %{ "XOR    $dst,$src" %}
  9484   opcode(0x31);  /* Opcode 31 /r */
  9485   ins_encode( OpcP, RegMem( src, dst ) );
  9486   ins_pipe( ialu_mem_reg );
  9487 %}
  9489 // Xor Memory with Immediate
  9490 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9491   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9492   effect(KILL cr);
  9494   ins_cost(125);
  9495   format %{ "XOR    $dst,$src" %}
  9496   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9497   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9498   ins_pipe( ialu_mem_imm );
  9499 %}
  9501 //----------Convert Int to Boolean---------------------------------------------
  9503 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9504   effect( DEF dst, USE src );
  9505   format %{ "MOV    $dst,$src" %}
  9506   ins_encode( enc_Copy( dst, src) );
  9507   ins_pipe( ialu_reg_reg );
  9508 %}
  9510 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9511   effect( USE_DEF dst, USE src, KILL cr );
  9513   size(4);
  9514   format %{ "NEG    $dst\n\t"
  9515             "ADC    $dst,$src" %}
  9516   ins_encode( neg_reg(dst),
  9517               OpcRegReg(0x13,dst,src) );
  9518   ins_pipe( ialu_reg_reg_long );
  9519 %}
  9521 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9522   match(Set dst (Conv2B src));
  9524   expand %{
  9525     movI_nocopy(dst,src);
  9526     ci2b(dst,src,cr);
  9527   %}
  9528 %}
  9530 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9531   effect( DEF dst, USE src );
  9532   format %{ "MOV    $dst,$src" %}
  9533   ins_encode( enc_Copy( dst, src) );
  9534   ins_pipe( ialu_reg_reg );
  9535 %}
  9537 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9538   effect( USE_DEF dst, USE src, KILL cr );
  9539   format %{ "NEG    $dst\n\t"
  9540             "ADC    $dst,$src" %}
  9541   ins_encode( neg_reg(dst),
  9542               OpcRegReg(0x13,dst,src) );
  9543   ins_pipe( ialu_reg_reg_long );
  9544 %}
  9546 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9547   match(Set dst (Conv2B src));
  9549   expand %{
  9550     movP_nocopy(dst,src);
  9551     cp2b(dst,src,cr);
  9552   %}
  9553 %}
  9555 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9556   match(Set dst (CmpLTMask p q));
  9557   effect( KILL cr );
  9558   ins_cost(400);
  9560   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9561   format %{ "XOR    $dst,$dst\n\t"
  9562             "CMP    $p,$q\n\t"
  9563             "SETlt  $dst\n\t"
  9564             "NEG    $dst" %}
  9565   ins_encode( OpcRegReg(0x33,dst,dst),
  9566               OpcRegReg(0x3B,p,q),
  9567               setLT_reg(dst), neg_reg(dst) );
  9568   ins_pipe( pipe_slow );
  9569 %}
  9571 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9572   match(Set dst (CmpLTMask dst zero));
  9573   effect( DEF dst, KILL cr );
  9574   ins_cost(100);
  9576   format %{ "SAR    $dst,31" %}
  9577   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9578   ins_encode( RegOpcImm( dst, 0x1F ) );
  9579   ins_pipe( ialu_reg );
  9580 %}
  9583 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9584   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9585   effect( KILL tmp, KILL cr );
  9586   ins_cost(400);
  9587   // annoyingly, $tmp has no edges so you cant ask for it in
  9588   // any format or encoding
  9589   format %{ "SUB    $p,$q\n\t"
  9590             "SBB    ECX,ECX\n\t"
  9591             "AND    ECX,$y\n\t"
  9592             "ADD    $p,ECX" %}
  9593   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9594   ins_pipe( pipe_cmplt );
  9595 %}
  9597 /* If I enable this, I encourage spilling in the inner loop of compress.
  9598 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9599   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9600   effect( USE_KILL tmp, KILL cr );
  9601   ins_cost(400);
  9603   format %{ "SUB    $p,$q\n\t"
  9604             "SBB    ECX,ECX\n\t"
  9605             "AND    ECX,$y\n\t"
  9606             "ADD    $p,ECX" %}
  9607   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9608 %}
  9609 */
  9611 //----------Long Instructions------------------------------------------------
  9612 // Add Long Register with Register
  9613 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9614   match(Set dst (AddL dst src));
  9615   effect(KILL cr);
  9616   ins_cost(200);
  9617   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9618             "ADC    $dst.hi,$src.hi" %}
  9619   opcode(0x03, 0x13);
  9620   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9621   ins_pipe( ialu_reg_reg_long );
  9622 %}
  9624 // Add Long Register with Immediate
  9625 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9626   match(Set dst (AddL dst src));
  9627   effect(KILL cr);
  9628   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9629             "ADC    $dst.hi,$src.hi" %}
  9630   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9631   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9632   ins_pipe( ialu_reg_long );
  9633 %}
  9635 // Add Long Register with Memory
  9636 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9637   match(Set dst (AddL dst (LoadL mem)));
  9638   effect(KILL cr);
  9639   ins_cost(125);
  9640   format %{ "ADD    $dst.lo,$mem\n\t"
  9641             "ADC    $dst.hi,$mem+4" %}
  9642   opcode(0x03, 0x13);
  9643   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9644   ins_pipe( ialu_reg_long_mem );
  9645 %}
  9647 // Subtract Long Register with Register.
  9648 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9649   match(Set dst (SubL dst src));
  9650   effect(KILL cr);
  9651   ins_cost(200);
  9652   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9653             "SBB    $dst.hi,$src.hi" %}
  9654   opcode(0x2B, 0x1B);
  9655   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9656   ins_pipe( ialu_reg_reg_long );
  9657 %}
  9659 // Subtract Long Register with Immediate
  9660 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9661   match(Set dst (SubL dst src));
  9662   effect(KILL cr);
  9663   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9664             "SBB    $dst.hi,$src.hi" %}
  9665   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9666   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9667   ins_pipe( ialu_reg_long );
  9668 %}
  9670 // Subtract Long Register with Memory
  9671 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9672   match(Set dst (SubL dst (LoadL mem)));
  9673   effect(KILL cr);
  9674   ins_cost(125);
  9675   format %{ "SUB    $dst.lo,$mem\n\t"
  9676             "SBB    $dst.hi,$mem+4" %}
  9677   opcode(0x2B, 0x1B);
  9678   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9679   ins_pipe( ialu_reg_long_mem );
  9680 %}
  9682 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9683   match(Set dst (SubL zero dst));
  9684   effect(KILL cr);
  9685   ins_cost(300);
  9686   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9687   ins_encode( neg_long(dst) );
  9688   ins_pipe( ialu_reg_reg_long );
  9689 %}
  9691 // And Long Register with Register
  9692 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9693   match(Set dst (AndL dst src));
  9694   effect(KILL cr);
  9695   format %{ "AND    $dst.lo,$src.lo\n\t"
  9696             "AND    $dst.hi,$src.hi" %}
  9697   opcode(0x23,0x23);
  9698   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9699   ins_pipe( ialu_reg_reg_long );
  9700 %}
  9702 // And Long Register with Immediate
  9703 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9704   match(Set dst (AndL dst src));
  9705   effect(KILL cr);
  9706   format %{ "AND    $dst.lo,$src.lo\n\t"
  9707             "AND    $dst.hi,$src.hi" %}
  9708   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9709   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9710   ins_pipe( ialu_reg_long );
  9711 %}
  9713 // And Long Register with Memory
  9714 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9715   match(Set dst (AndL dst (LoadL mem)));
  9716   effect(KILL cr);
  9717   ins_cost(125);
  9718   format %{ "AND    $dst.lo,$mem\n\t"
  9719             "AND    $dst.hi,$mem+4" %}
  9720   opcode(0x23, 0x23);
  9721   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9722   ins_pipe( ialu_reg_long_mem );
  9723 %}
  9725 // Or Long Register with Register
  9726 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9727   match(Set dst (OrL dst src));
  9728   effect(KILL cr);
  9729   format %{ "OR     $dst.lo,$src.lo\n\t"
  9730             "OR     $dst.hi,$src.hi" %}
  9731   opcode(0x0B,0x0B);
  9732   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9733   ins_pipe( ialu_reg_reg_long );
  9734 %}
  9736 // Or Long Register with Immediate
  9737 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9738   match(Set dst (OrL dst src));
  9739   effect(KILL cr);
  9740   format %{ "OR     $dst.lo,$src.lo\n\t"
  9741             "OR     $dst.hi,$src.hi" %}
  9742   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9743   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9744   ins_pipe( ialu_reg_long );
  9745 %}
  9747 // Or Long Register with Memory
  9748 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9749   match(Set dst (OrL dst (LoadL mem)));
  9750   effect(KILL cr);
  9751   ins_cost(125);
  9752   format %{ "OR     $dst.lo,$mem\n\t"
  9753             "OR     $dst.hi,$mem+4" %}
  9754   opcode(0x0B,0x0B);
  9755   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9756   ins_pipe( ialu_reg_long_mem );
  9757 %}
  9759 // Xor Long Register with Register
  9760 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9761   match(Set dst (XorL dst src));
  9762   effect(KILL cr);
  9763   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9764             "XOR    $dst.hi,$src.hi" %}
  9765   opcode(0x33,0x33);
  9766   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9767   ins_pipe( ialu_reg_reg_long );
  9768 %}
  9770 // Xor Long Register with Immediate -1
  9771 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9772   match(Set dst (XorL dst imm));  
  9773   format %{ "NOT    $dst.lo\n\t"
  9774             "NOT    $dst.hi" %}
  9775   ins_encode %{
  9776      __ notl($dst$$Register);
  9777      __ notl(HIGH_FROM_LOW($dst$$Register));
  9778   %}
  9779   ins_pipe( ialu_reg_long );
  9780 %}
  9782 // Xor Long Register with Immediate
  9783 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9784   match(Set dst (XorL dst src));
  9785   effect(KILL cr);
  9786   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9787             "XOR    $dst.hi,$src.hi" %}
  9788   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9789   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9790   ins_pipe( ialu_reg_long );
  9791 %}
  9793 // Xor Long Register with Memory
  9794 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9795   match(Set dst (XorL dst (LoadL mem)));
  9796   effect(KILL cr);
  9797   ins_cost(125);
  9798   format %{ "XOR    $dst.lo,$mem\n\t"
  9799             "XOR    $dst.hi,$mem+4" %}
  9800   opcode(0x33,0x33);
  9801   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9802   ins_pipe( ialu_reg_long_mem );
  9803 %}
  9805 // Shift Left Long by 1
  9806 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9807   predicate(UseNewLongLShift);
  9808   match(Set dst (LShiftL dst cnt));
  9809   effect(KILL cr);
  9810   ins_cost(100);
  9811   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9812             "ADC    $dst.hi,$dst.hi" %}
  9813   ins_encode %{
  9814     __ addl($dst$$Register,$dst$$Register);
  9815     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9816   %}
  9817   ins_pipe( ialu_reg_long );
  9818 %}
  9820 // Shift Left Long by 2
  9821 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9822   predicate(UseNewLongLShift);
  9823   match(Set dst (LShiftL dst cnt));
  9824   effect(KILL cr);
  9825   ins_cost(100);
  9826   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9827             "ADC    $dst.hi,$dst.hi\n\t" 
  9828             "ADD    $dst.lo,$dst.lo\n\t"
  9829             "ADC    $dst.hi,$dst.hi" %}
  9830   ins_encode %{
  9831     __ addl($dst$$Register,$dst$$Register);
  9832     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9833     __ addl($dst$$Register,$dst$$Register);
  9834     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9835   %}
  9836   ins_pipe( ialu_reg_long );
  9837 %}
  9839 // Shift Left Long by 3
  9840 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9841   predicate(UseNewLongLShift);
  9842   match(Set dst (LShiftL dst cnt));
  9843   effect(KILL cr);
  9844   ins_cost(100);
  9845   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9846             "ADC    $dst.hi,$dst.hi\n\t" 
  9847             "ADD    $dst.lo,$dst.lo\n\t"
  9848             "ADC    $dst.hi,$dst.hi\n\t" 
  9849             "ADD    $dst.lo,$dst.lo\n\t"
  9850             "ADC    $dst.hi,$dst.hi" %}
  9851   ins_encode %{
  9852     __ addl($dst$$Register,$dst$$Register);
  9853     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9854     __ addl($dst$$Register,$dst$$Register);
  9855     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9856     __ addl($dst$$Register,$dst$$Register);
  9857     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9858   %}
  9859   ins_pipe( ialu_reg_long );
  9860 %}
  9862 // Shift Left Long by 1-31
  9863 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9864   match(Set dst (LShiftL dst cnt));
  9865   effect(KILL cr);
  9866   ins_cost(200);
  9867   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9868             "SHL    $dst.lo,$cnt" %}
  9869   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9870   ins_encode( move_long_small_shift(dst,cnt) );
  9871   ins_pipe( ialu_reg_long );
  9872 %}
  9874 // Shift Left Long by 32-63
  9875 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9876   match(Set dst (LShiftL dst cnt));
  9877   effect(KILL cr);
  9878   ins_cost(300);
  9879   format %{ "MOV    $dst.hi,$dst.lo\n"
  9880           "\tSHL    $dst.hi,$cnt-32\n"
  9881           "\tXOR    $dst.lo,$dst.lo" %}
  9882   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9883   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9884   ins_pipe( ialu_reg_long );
  9885 %}
  9887 // Shift Left Long by variable
  9888 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9889   match(Set dst (LShiftL dst shift));
  9890   effect(KILL cr);
  9891   ins_cost(500+200);
  9892   size(17);
  9893   format %{ "TEST   $shift,32\n\t"
  9894             "JEQ,s  small\n\t"
  9895             "MOV    $dst.hi,$dst.lo\n\t"
  9896             "XOR    $dst.lo,$dst.lo\n"
  9897     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9898             "SHL    $dst.lo,$shift" %}
  9899   ins_encode( shift_left_long( dst, shift ) );
  9900   ins_pipe( pipe_slow );
  9901 %}
  9903 // Shift Right Long by 1-31
  9904 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9905   match(Set dst (URShiftL dst cnt));
  9906   effect(KILL cr);
  9907   ins_cost(200);
  9908   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9909             "SHR    $dst.hi,$cnt" %}
  9910   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9911   ins_encode( move_long_small_shift(dst,cnt) );
  9912   ins_pipe( ialu_reg_long );
  9913 %}
  9915 // Shift Right Long by 32-63
  9916 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9917   match(Set dst (URShiftL dst cnt));
  9918   effect(KILL cr);
  9919   ins_cost(300);
  9920   format %{ "MOV    $dst.lo,$dst.hi\n"
  9921           "\tSHR    $dst.lo,$cnt-32\n"
  9922           "\tXOR    $dst.hi,$dst.hi" %}
  9923   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9924   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9925   ins_pipe( ialu_reg_long );
  9926 %}
  9928 // Shift Right Long by variable
  9929 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9930   match(Set dst (URShiftL dst shift));
  9931   effect(KILL cr);
  9932   ins_cost(600);
  9933   size(17);
  9934   format %{ "TEST   $shift,32\n\t"
  9935             "JEQ,s  small\n\t"
  9936             "MOV    $dst.lo,$dst.hi\n\t"
  9937             "XOR    $dst.hi,$dst.hi\n"
  9938     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9939             "SHR    $dst.hi,$shift" %}
  9940   ins_encode( shift_right_long( dst, shift ) );
  9941   ins_pipe( pipe_slow );
  9942 %}
  9944 // Shift Right Long by 1-31
  9945 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9946   match(Set dst (RShiftL dst cnt));
  9947   effect(KILL cr);
  9948   ins_cost(200);
  9949   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9950             "SAR    $dst.hi,$cnt" %}
  9951   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9952   ins_encode( move_long_small_shift(dst,cnt) );
  9953   ins_pipe( ialu_reg_long );
  9954 %}
  9956 // Shift Right Long by 32-63
  9957 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9958   match(Set dst (RShiftL dst cnt));
  9959   effect(KILL cr);
  9960   ins_cost(300);
  9961   format %{ "MOV    $dst.lo,$dst.hi\n"
  9962           "\tSAR    $dst.lo,$cnt-32\n"
  9963           "\tSAR    $dst.hi,31" %}
  9964   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9965   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9966   ins_pipe( ialu_reg_long );
  9967 %}
  9969 // Shift Right arithmetic Long by variable
  9970 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9971   match(Set dst (RShiftL dst shift));
  9972   effect(KILL cr);
  9973   ins_cost(600);
  9974   size(18);
  9975   format %{ "TEST   $shift,32\n\t"
  9976             "JEQ,s  small\n\t"
  9977             "MOV    $dst.lo,$dst.hi\n\t"
  9978             "SAR    $dst.hi,31\n"
  9979     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9980             "SAR    $dst.hi,$shift" %}
  9981   ins_encode( shift_right_arith_long( dst, shift ) );
  9982   ins_pipe( pipe_slow );
  9983 %}
  9986 //----------Double Instructions------------------------------------------------
  9987 // Double Math
  9989 // Compare & branch
  9991 // P6 version of float compare, sets condition codes in EFLAGS
  9992 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9993   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9994   match(Set cr (CmpD src1 src2));
  9995   effect(KILL rax);
  9996   ins_cost(150);
  9997   format %{ "FLD    $src1\n\t"
  9998             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9999             "JNP    exit\n\t"
 10000             "MOV    ah,1       // saw a NaN, set CF\n\t"
 10001             "SAHF\n"
 10002      "exit:\tNOP               // avoid branch to branch" %}
 10003   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10004   ins_encode( Push_Reg_D(src1),
 10005               OpcP, RegOpc(src2),
 10006               cmpF_P6_fixup );
 10007   ins_pipe( pipe_slow );
 10008 %}
 10010 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
 10011   predicate(VM_Version::supports_cmov() && UseSSE <=1);
 10012   match(Set cr (CmpD src1 src2));
 10013   ins_cost(150);
 10014   format %{ "FLD    $src1\n\t"
 10015             "FUCOMIP ST,$src2  // P6 instruction" %}
 10016   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10017   ins_encode( Push_Reg_D(src1),
 10018               OpcP, RegOpc(src2));
 10019   ins_pipe( pipe_slow );
 10020 %}
 10022 // Compare & branch
 10023 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
 10024   predicate(UseSSE<=1);
 10025   match(Set cr (CmpD src1 src2));
 10026   effect(KILL rax);
 10027   ins_cost(200);
 10028   format %{ "FLD    $src1\n\t"
 10029             "FCOMp  $src2\n\t"
 10030             "FNSTSW AX\n\t"
 10031             "TEST   AX,0x400\n\t"
 10032             "JZ,s   flags\n\t"
 10033             "MOV    AH,1\t# unordered treat as LT\n"
 10034     "flags:\tSAHF" %}
 10035   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10036   ins_encode( Push_Reg_D(src1),
 10037               OpcP, RegOpc(src2),
 10038               fpu_flags);
 10039   ins_pipe( pipe_slow );
 10040 %}
 10042 // Compare vs zero into -1,0,1
 10043 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
 10044   predicate(UseSSE<=1);
 10045   match(Set dst (CmpD3 src1 zero));
 10046   effect(KILL cr, KILL rax);
 10047   ins_cost(280);
 10048   format %{ "FTSTD  $dst,$src1" %}
 10049   opcode(0xE4, 0xD9);
 10050   ins_encode( Push_Reg_D(src1),
 10051               OpcS, OpcP, PopFPU,
 10052               CmpF_Result(dst));
 10053   ins_pipe( pipe_slow );
 10054 %}
 10056 // Compare into -1,0,1
 10057 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
 10058   predicate(UseSSE<=1);
 10059   match(Set dst (CmpD3 src1 src2));
 10060   effect(KILL cr, KILL rax);
 10061   ins_cost(300);
 10062   format %{ "FCMPD  $dst,$src1,$src2" %}
 10063   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10064   ins_encode( Push_Reg_D(src1),
 10065               OpcP, RegOpc(src2),
 10066               CmpF_Result(dst));
 10067   ins_pipe( pipe_slow );
 10068 %}
 10070 // float compare and set condition codes in EFLAGS by XMM regs
 10071 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
 10072   predicate(UseSSE>=2);
 10073   match(Set cr (CmpD dst src));
 10074   effect(KILL rax);
 10075   ins_cost(125);
 10076   format %{ "COMISD $dst,$src\n"
 10077           "\tJNP    exit\n"
 10078           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10079           "\tSAHF\n"
 10080      "exit:\tNOP               // avoid branch to branch" %}
 10081   opcode(0x66, 0x0F, 0x2F);
 10082   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
 10083   ins_pipe( pipe_slow );
 10084 %}
 10086 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
 10087   predicate(UseSSE>=2);
 10088   match(Set cr (CmpD dst src));
 10089   ins_cost(100);
 10090   format %{ "COMISD $dst,$src" %}
 10091   opcode(0x66, 0x0F, 0x2F);
 10092   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 10093   ins_pipe( pipe_slow );
 10094 %}
 10096 // float compare and set condition codes in EFLAGS by XMM regs
 10097 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
 10098   predicate(UseSSE>=2);
 10099   match(Set cr (CmpD dst (LoadD src)));
 10100   effect(KILL rax);
 10101   ins_cost(145);
 10102   format %{ "COMISD $dst,$src\n"
 10103           "\tJNP    exit\n"
 10104           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10105           "\tSAHF\n"
 10106      "exit:\tNOP               // avoid branch to branch" %}
 10107   opcode(0x66, 0x0F, 0x2F);
 10108   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
 10109   ins_pipe( pipe_slow );
 10110 %}
 10112 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
 10113   predicate(UseSSE>=2);
 10114   match(Set cr (CmpD dst (LoadD src)));
 10115   ins_cost(100);
 10116   format %{ "COMISD $dst,$src" %}
 10117   opcode(0x66, 0x0F, 0x2F);
 10118   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
 10119   ins_pipe( pipe_slow );
 10120 %}
 10122 // Compare into -1,0,1 in XMM
 10123 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
 10124   predicate(UseSSE>=2);
 10125   match(Set dst (CmpD3 src1 src2));
 10126   effect(KILL cr);
 10127   ins_cost(255);
 10128   format %{ "XOR    $dst,$dst\n"
 10129           "\tCOMISD $src1,$src2\n"
 10130           "\tJP,s   nan\n"
 10131           "\tJEQ,s  exit\n"
 10132           "\tJA,s   inc\n"
 10133       "nan:\tDEC    $dst\n"
 10134           "\tJMP,s  exit\n"
 10135       "inc:\tINC    $dst\n"
 10136       "exit:"
 10137                 %}
 10138   opcode(0x66, 0x0F, 0x2F);
 10139   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
 10140              CmpX_Result(dst));
 10141   ins_pipe( pipe_slow );
 10142 %}
 10144 // Compare into -1,0,1 in XMM and memory
 10145 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
 10146   predicate(UseSSE>=2);
 10147   match(Set dst (CmpD3 src1 (LoadD mem)));
 10148   effect(KILL cr);
 10149   ins_cost(275);
 10150   format %{ "COMISD $src1,$mem\n"
 10151           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10152           "\tJP,s   nan\n"
 10153           "\tJEQ,s  exit\n"
 10154           "\tJA,s   inc\n"
 10155       "nan:\tDEC    $dst\n"
 10156           "\tJMP,s  exit\n"
 10157       "inc:\tINC    $dst\n"
 10158       "exit:"
 10159                 %}
 10160   opcode(0x66, 0x0F, 0x2F);
 10161   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
 10162              LdImmI(dst,0x0), CmpX_Result(dst));
 10163   ins_pipe( pipe_slow );
 10164 %}
 10167 instruct subD_reg(regD dst, regD src) %{
 10168   predicate (UseSSE <=1);
 10169   match(Set dst (SubD dst src));
 10171   format %{ "FLD    $src\n\t"
 10172             "DSUBp  $dst,ST" %}
 10173   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10174   ins_cost(150);
 10175   ins_encode( Push_Reg_D(src),
 10176               OpcP, RegOpc(dst) );
 10177   ins_pipe( fpu_reg_reg );
 10178 %}
 10180 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10181   predicate (UseSSE <=1);
 10182   match(Set dst (RoundDouble (SubD src1 src2)));
 10183   ins_cost(250);
 10185   format %{ "FLD    $src2\n\t"
 10186             "DSUB   ST,$src1\n\t"
 10187             "FSTP_D $dst\t# D-round" %}
 10188   opcode(0xD8, 0x5);
 10189   ins_encode( Push_Reg_D(src2),
 10190               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10191   ins_pipe( fpu_mem_reg_reg );
 10192 %}
 10195 instruct subD_reg_mem(regD dst, memory src) %{
 10196   predicate (UseSSE <=1);
 10197   match(Set dst (SubD dst (LoadD src)));
 10198   ins_cost(150);
 10200   format %{ "FLD    $src\n\t"
 10201             "DSUBp  $dst,ST" %}
 10202   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10203   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10204               OpcP, RegOpc(dst) );
 10205   ins_pipe( fpu_reg_mem );
 10206 %}
 10208 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
 10209   predicate (UseSSE<=1);
 10210   match(Set dst (AbsD src));
 10211   ins_cost(100);
 10212   format %{ "FABS" %}
 10213   opcode(0xE1, 0xD9);
 10214   ins_encode( OpcS, OpcP );
 10215   ins_pipe( fpu_reg_reg );
 10216 %}
 10218 instruct absXD_reg( regXD dst ) %{
 10219   predicate(UseSSE>=2);
 10220   match(Set dst (AbsD dst));
 10221   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10222   ins_encode( AbsXD_encoding(dst));
 10223   ins_pipe( pipe_slow );
 10224 %}
 10226 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10227   predicate(UseSSE<=1);
 10228   match(Set dst (NegD src));
 10229   ins_cost(100);
 10230   format %{ "FCHS" %}
 10231   opcode(0xE0, 0xD9);
 10232   ins_encode( OpcS, OpcP );
 10233   ins_pipe( fpu_reg_reg );
 10234 %}
 10236 instruct negXD_reg( regXD dst ) %{
 10237   predicate(UseSSE>=2);
 10238   match(Set dst (NegD dst));
 10239   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10240   ins_encode %{
 10241      __ xorpd($dst$$XMMRegister,
 10242               ExternalAddress((address)double_signflip_pool));
 10243   %}
 10244   ins_pipe( pipe_slow );
 10245 %}
 10247 instruct addD_reg(regD dst, regD src) %{
 10248   predicate(UseSSE<=1);
 10249   match(Set dst (AddD dst src));
 10250   format %{ "FLD    $src\n\t"
 10251             "DADD   $dst,ST" %}
 10252   size(4);
 10253   ins_cost(150);
 10254   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10255   ins_encode( Push_Reg_D(src),
 10256               OpcP, RegOpc(dst) );
 10257   ins_pipe( fpu_reg_reg );
 10258 %}
 10261 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10262   predicate(UseSSE<=1);
 10263   match(Set dst (RoundDouble (AddD src1 src2)));
 10264   ins_cost(250);
 10266   format %{ "FLD    $src2\n\t"
 10267             "DADD   ST,$src1\n\t"
 10268             "FSTP_D $dst\t# D-round" %}
 10269   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10270   ins_encode( Push_Reg_D(src2),
 10271               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10272   ins_pipe( fpu_mem_reg_reg );
 10273 %}
 10276 instruct addD_reg_mem(regD dst, memory src) %{
 10277   predicate(UseSSE<=1);
 10278   match(Set dst (AddD dst (LoadD src)));
 10279   ins_cost(150);
 10281   format %{ "FLD    $src\n\t"
 10282             "DADDp  $dst,ST" %}
 10283   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10284   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10285               OpcP, RegOpc(dst) );
 10286   ins_pipe( fpu_reg_mem );
 10287 %}
 10289 // add-to-memory
 10290 instruct addD_mem_reg(memory dst, regD src) %{
 10291   predicate(UseSSE<=1);
 10292   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10293   ins_cost(150);
 10295   format %{ "FLD_D  $dst\n\t"
 10296             "DADD   ST,$src\n\t"
 10297             "FST_D  $dst" %}
 10298   opcode(0xDD, 0x0);
 10299   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10300               Opcode(0xD8), RegOpc(src),
 10301               set_instruction_start,
 10302               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10303   ins_pipe( fpu_reg_mem );
 10304 %}
 10306 instruct addD_reg_imm1(regD dst, immD1 src) %{
 10307   predicate(UseSSE<=1);
 10308   match(Set dst (AddD dst src));
 10309   ins_cost(125);
 10310   format %{ "FLD1\n\t"
 10311             "DADDp  $dst,ST" %}
 10312   opcode(0xDE, 0x00);
 10313   ins_encode( LdImmD(src),
 10314               OpcP, RegOpc(dst) );
 10315   ins_pipe( fpu_reg );
 10316 %}
 10318 instruct addD_reg_imm(regD dst, immD src) %{
 10319   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10320   match(Set dst (AddD dst src));
 10321   ins_cost(200);
 10322   format %{ "FLD_D  [$src]\n\t"
 10323             "DADDp  $dst,ST" %}
 10324   opcode(0xDE, 0x00);       /* DE /0 */
 10325   ins_encode( LdImmD(src),
 10326               OpcP, RegOpc(dst));
 10327   ins_pipe( fpu_reg_mem );
 10328 %}
 10330 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10331   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10332   match(Set dst (RoundDouble (AddD src con)));
 10333   ins_cost(200);
 10334   format %{ "FLD_D  [$con]\n\t"
 10335             "DADD   ST,$src\n\t"
 10336             "FSTP_D $dst\t# D-round" %}
 10337   opcode(0xD8, 0x00);       /* D8 /0 */
 10338   ins_encode( LdImmD(con),
 10339               OpcP, RegOpc(src), Pop_Mem_D(dst));
 10340   ins_pipe( fpu_mem_reg_con );
 10341 %}
 10343 // Add two double precision floating point values in xmm
 10344 instruct addXD_reg(regXD dst, regXD src) %{
 10345   predicate(UseSSE>=2);
 10346   match(Set dst (AddD dst src));
 10347   format %{ "ADDSD  $dst,$src" %}
 10348   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10349   ins_pipe( pipe_slow );
 10350 %}
 10352 instruct addXD_imm(regXD dst, immXD con) %{
 10353   predicate(UseSSE>=2);
 10354   match(Set dst (AddD dst con));
 10355   format %{ "ADDSD  $dst,[$con]" %}
 10356   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
 10357   ins_pipe( pipe_slow );
 10358 %}
 10360 instruct addXD_mem(regXD dst, memory mem) %{
 10361   predicate(UseSSE>=2);
 10362   match(Set dst (AddD dst (LoadD mem)));
 10363   format %{ "ADDSD  $dst,$mem" %}
 10364   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10365   ins_pipe( pipe_slow );
 10366 %}
 10368 // Sub two double precision floating point values in xmm
 10369 instruct subXD_reg(regXD dst, regXD src) %{
 10370   predicate(UseSSE>=2);
 10371   match(Set dst (SubD dst src));
 10372   format %{ "SUBSD  $dst,$src" %}
 10373   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10374   ins_pipe( pipe_slow );
 10375 %}
 10377 instruct subXD_imm(regXD dst, immXD con) %{
 10378   predicate(UseSSE>=2);
 10379   match(Set dst (SubD dst con));
 10380   format %{ "SUBSD  $dst,[$con]" %}
 10381   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
 10382   ins_pipe( pipe_slow );
 10383 %}
 10385 instruct subXD_mem(regXD dst, memory mem) %{
 10386   predicate(UseSSE>=2);
 10387   match(Set dst (SubD dst (LoadD mem)));
 10388   format %{ "SUBSD  $dst,$mem" %}
 10389   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10390   ins_pipe( pipe_slow );
 10391 %}
 10393 // Mul two double precision floating point values in xmm
 10394 instruct mulXD_reg(regXD dst, regXD src) %{
 10395   predicate(UseSSE>=2);
 10396   match(Set dst (MulD dst src));
 10397   format %{ "MULSD  $dst,$src" %}
 10398   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10399   ins_pipe( pipe_slow );
 10400 %}
 10402 instruct mulXD_imm(regXD dst, immXD con) %{
 10403   predicate(UseSSE>=2);
 10404   match(Set dst (MulD dst con));
 10405   format %{ "MULSD  $dst,[$con]" %}
 10406   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
 10407   ins_pipe( pipe_slow );
 10408 %}
 10410 instruct mulXD_mem(regXD dst, memory mem) %{
 10411   predicate(UseSSE>=2);
 10412   match(Set dst (MulD dst (LoadD mem)));
 10413   format %{ "MULSD  $dst,$mem" %}
 10414   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10415   ins_pipe( pipe_slow );
 10416 %}
 10418 // Div two double precision floating point values in xmm
 10419 instruct divXD_reg(regXD dst, regXD src) %{
 10420   predicate(UseSSE>=2);
 10421   match(Set dst (DivD dst src));
 10422   format %{ "DIVSD  $dst,$src" %}
 10423   opcode(0xF2, 0x0F, 0x5E);
 10424   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10425   ins_pipe( pipe_slow );
 10426 %}
 10428 instruct divXD_imm(regXD dst, immXD con) %{
 10429   predicate(UseSSE>=2);
 10430   match(Set dst (DivD dst con));
 10431   format %{ "DIVSD  $dst,[$con]" %}
 10432   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
 10433   ins_pipe( pipe_slow );
 10434 %}
 10436 instruct divXD_mem(regXD dst, memory mem) %{
 10437   predicate(UseSSE>=2);
 10438   match(Set dst (DivD dst (LoadD mem)));
 10439   format %{ "DIVSD  $dst,$mem" %}
 10440   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10441   ins_pipe( pipe_slow );
 10442 %}
 10445 instruct mulD_reg(regD dst, regD src) %{
 10446   predicate(UseSSE<=1);
 10447   match(Set dst (MulD dst src));
 10448   format %{ "FLD    $src\n\t"
 10449             "DMULp  $dst,ST" %}
 10450   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10451   ins_cost(150);
 10452   ins_encode( Push_Reg_D(src),
 10453               OpcP, RegOpc(dst) );
 10454   ins_pipe( fpu_reg_reg );
 10455 %}
 10457 // Strict FP instruction biases argument before multiply then
 10458 // biases result to avoid double rounding of subnormals.
 10459 //
 10460 // scale arg1 by multiplying arg1 by 2^(-15360)
 10461 // load arg2
 10462 // multiply scaled arg1 by arg2
 10463 // rescale product by 2^(15360)
 10464 //
 10465 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10466   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10467   match(Set dst (MulD dst src));
 10468   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10470   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10471             "DMULp  $dst,ST\n\t"
 10472             "FLD    $src\n\t"
 10473             "DMULp  $dst,ST\n\t"
 10474             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10475             "DMULp  $dst,ST\n\t" %}
 10476   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10477   ins_encode( strictfp_bias1(dst),
 10478               Push_Reg_D(src),
 10479               OpcP, RegOpc(dst),
 10480               strictfp_bias2(dst) );
 10481   ins_pipe( fpu_reg_reg );
 10482 %}
 10484 instruct mulD_reg_imm(regD dst, immD src) %{
 10485   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10486   match(Set dst (MulD dst src));
 10487   ins_cost(200);
 10488   format %{ "FLD_D  [$src]\n\t"
 10489             "DMULp  $dst,ST" %}
 10490   opcode(0xDE, 0x1); /* DE /1 */
 10491   ins_encode( LdImmD(src),
 10492               OpcP, RegOpc(dst) );
 10493   ins_pipe( fpu_reg_mem );
 10494 %}
 10497 instruct mulD_reg_mem(regD dst, memory src) %{
 10498   predicate( UseSSE<=1 );
 10499   match(Set dst (MulD dst (LoadD src)));
 10500   ins_cost(200);
 10501   format %{ "FLD_D  $src\n\t"
 10502             "DMULp  $dst,ST" %}
 10503   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10504   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10505               OpcP, RegOpc(dst) );
 10506   ins_pipe( fpu_reg_mem );
 10507 %}
 10509 //
 10510 // Cisc-alternate to reg-reg multiply
 10511 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10512   predicate( UseSSE<=1 );
 10513   match(Set dst (MulD src (LoadD mem)));
 10514   ins_cost(250);
 10515   format %{ "FLD_D  $mem\n\t"
 10516             "DMUL   ST,$src\n\t"
 10517             "FSTP_D $dst" %}
 10518   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10519   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10520               OpcReg_F(src),
 10521               Pop_Reg_D(dst) );
 10522   ins_pipe( fpu_reg_reg_mem );
 10523 %}
 10526 // MACRO3 -- addD a mulD
 10527 // This instruction is a '2-address' instruction in that the result goes
 10528 // back to src2.  This eliminates a move from the macro; possibly the
 10529 // register allocator will have to add it back (and maybe not).
 10530 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10531   predicate( UseSSE<=1 );
 10532   match(Set src2 (AddD (MulD src0 src1) src2));
 10533   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10534             "DMUL   ST,$src1\n\t"
 10535             "DADDp  $src2,ST" %}
 10536   ins_cost(250);
 10537   opcode(0xDD); /* LoadD DD /0 */
 10538   ins_encode( Push_Reg_F(src0),
 10539               FMul_ST_reg(src1),
 10540               FAddP_reg_ST(src2) );
 10541   ins_pipe( fpu_reg_reg_reg );
 10542 %}
 10545 // MACRO3 -- subD a mulD
 10546 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10547   predicate( UseSSE<=1 );
 10548   match(Set src2 (SubD (MulD src0 src1) src2));
 10549   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10550             "DMUL   ST,$src1\n\t"
 10551             "DSUBRp $src2,ST" %}
 10552   ins_cost(250);
 10553   ins_encode( Push_Reg_F(src0),
 10554               FMul_ST_reg(src1),
 10555               Opcode(0xDE), Opc_plus(0xE0,src2));
 10556   ins_pipe( fpu_reg_reg_reg );
 10557 %}
 10560 instruct divD_reg(regD dst, regD src) %{
 10561   predicate( UseSSE<=1 );
 10562   match(Set dst (DivD dst src));
 10564   format %{ "FLD    $src\n\t"
 10565             "FDIVp  $dst,ST" %}
 10566   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10567   ins_cost(150);
 10568   ins_encode( Push_Reg_D(src),
 10569               OpcP, RegOpc(dst) );
 10570   ins_pipe( fpu_reg_reg );
 10571 %}
 10573 // Strict FP instruction biases argument before division then
 10574 // biases result, to avoid double rounding of subnormals.
 10575 //
 10576 // scale dividend by multiplying dividend by 2^(-15360)
 10577 // load divisor
 10578 // divide scaled dividend by divisor
 10579 // rescale quotient by 2^(15360)
 10580 //
 10581 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10582   predicate (UseSSE<=1);
 10583   match(Set dst (DivD dst src));
 10584   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10585   ins_cost(01);
 10587   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10588             "DMULp  $dst,ST\n\t"
 10589             "FLD    $src\n\t"
 10590             "FDIVp  $dst,ST\n\t"
 10591             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10592             "DMULp  $dst,ST\n\t" %}
 10593   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10594   ins_encode( strictfp_bias1(dst),
 10595               Push_Reg_D(src),
 10596               OpcP, RegOpc(dst),
 10597               strictfp_bias2(dst) );
 10598   ins_pipe( fpu_reg_reg );
 10599 %}
 10601 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10602   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10603   match(Set dst (RoundDouble (DivD src1 src2)));
 10605   format %{ "FLD    $src1\n\t"
 10606             "FDIV   ST,$src2\n\t"
 10607             "FSTP_D $dst\t# D-round" %}
 10608   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10609   ins_encode( Push_Reg_D(src1),
 10610               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10611   ins_pipe( fpu_mem_reg_reg );
 10612 %}
 10615 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10616   predicate(UseSSE<=1);
 10617   match(Set dst (ModD dst src));
 10618   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10620   format %{ "DMOD   $dst,$src" %}
 10621   ins_cost(250);
 10622   ins_encode(Push_Reg_Mod_D(dst, src),
 10623               emitModD(),
 10624               Push_Result_Mod_D(src),
 10625               Pop_Reg_D(dst));
 10626   ins_pipe( pipe_slow );
 10627 %}
 10629 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10630   predicate(UseSSE>=2);
 10631   match(Set dst (ModD src0 src1));
 10632   effect(KILL rax, KILL cr);
 10634   format %{ "SUB    ESP,8\t # DMOD\n"
 10635           "\tMOVSD  [ESP+0],$src1\n"
 10636           "\tFLD_D  [ESP+0]\n"
 10637           "\tMOVSD  [ESP+0],$src0\n"
 10638           "\tFLD_D  [ESP+0]\n"
 10639      "loop:\tFPREM\n"
 10640           "\tFWAIT\n"
 10641           "\tFNSTSW AX\n"
 10642           "\tSAHF\n"
 10643           "\tJP     loop\n"
 10644           "\tFSTP_D [ESP+0]\n"
 10645           "\tMOVSD  $dst,[ESP+0]\n"
 10646           "\tADD    ESP,8\n"
 10647           "\tFSTP   ST0\t # Restore FPU Stack"
 10648     %}
 10649   ins_cost(250);
 10650   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10651   ins_pipe( pipe_slow );
 10652 %}
 10654 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10655   predicate (UseSSE<=1);
 10656   match(Set dst (SinD src));
 10657   ins_cost(1800);
 10658   format %{ "DSIN   $dst" %}
 10659   opcode(0xD9, 0xFE);
 10660   ins_encode( OpcP, OpcS );
 10661   ins_pipe( pipe_slow );
 10662 %}
 10664 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10665   predicate (UseSSE>=2);
 10666   match(Set dst (SinD dst));
 10667   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10668   ins_cost(1800);
 10669   format %{ "DSIN   $dst" %}
 10670   opcode(0xD9, 0xFE);
 10671   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10672   ins_pipe( pipe_slow );
 10673 %}
 10675 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10676   predicate (UseSSE<=1);
 10677   match(Set dst (CosD src));
 10678   ins_cost(1800);
 10679   format %{ "DCOS   $dst" %}
 10680   opcode(0xD9, 0xFF);
 10681   ins_encode( OpcP, OpcS );
 10682   ins_pipe( pipe_slow );
 10683 %}
 10685 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10686   predicate (UseSSE>=2);
 10687   match(Set dst (CosD dst));
 10688   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10689   ins_cost(1800);
 10690   format %{ "DCOS   $dst" %}
 10691   opcode(0xD9, 0xFF);
 10692   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10693   ins_pipe( pipe_slow );
 10694 %}
 10696 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10697   predicate (UseSSE<=1);
 10698   match(Set dst(TanD src));
 10699   format %{ "DTAN   $dst" %}
 10700   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10701               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10702   ins_pipe( pipe_slow );
 10703 %}
 10705 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10706   predicate (UseSSE>=2);
 10707   match(Set dst(TanD dst));
 10708   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10709   format %{ "DTAN   $dst" %}
 10710   ins_encode( Push_SrcXD(dst),
 10711               Opcode(0xD9), Opcode(0xF2),    // fptan
 10712               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10713               Push_ResultXD(dst) );
 10714   ins_pipe( pipe_slow );
 10715 %}
 10717 instruct atanD_reg(regD dst, regD src) %{
 10718   predicate (UseSSE<=1);
 10719   match(Set dst(AtanD dst src));
 10720   format %{ "DATA   $dst,$src" %}
 10721   opcode(0xD9, 0xF3);
 10722   ins_encode( Push_Reg_D(src),
 10723               OpcP, OpcS, RegOpc(dst) );
 10724   ins_pipe( pipe_slow );
 10725 %}
 10727 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10728   predicate (UseSSE>=2);
 10729   match(Set dst(AtanD dst src));
 10730   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10731   format %{ "DATA   $dst,$src" %}
 10732   opcode(0xD9, 0xF3);
 10733   ins_encode( Push_SrcXD(src),
 10734               OpcP, OpcS, Push_ResultXD(dst) );
 10735   ins_pipe( pipe_slow );
 10736 %}
 10738 instruct sqrtD_reg(regD dst, regD src) %{
 10739   predicate (UseSSE<=1);
 10740   match(Set dst (SqrtD src));
 10741   format %{ "DSQRT  $dst,$src" %}
 10742   opcode(0xFA, 0xD9);
 10743   ins_encode( Push_Reg_D(src),
 10744               OpcS, OpcP, Pop_Reg_D(dst) );
 10745   ins_pipe( pipe_slow );
 10746 %}
 10748 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10749   predicate (UseSSE<=1);
 10750   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10751   effect(KILL rax, KILL rbx, KILL rcx);
 10752   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10753             "FLD_D  $X\n\t"
 10754             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10756             "FDUP   \t\t\t# Q Q\n\t"
 10757             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10758             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10759             "FISTP  dword [ESP]\n\t"
 10760             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10761             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10762             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10763             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10764             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10765             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10766             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10767             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10768             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10769             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10770             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10771             "MOV    [ESP+0],0\n\t"
 10772             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10774             "ADD    ESP,8"
 10775              %}
 10776   ins_encode( push_stack_temp_qword,
 10777               Push_Reg_D(X),
 10778               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10779               pow_exp_core_encoding,
 10780               pop_stack_temp_qword);
 10781   ins_pipe( pipe_slow );
 10782 %}
 10784 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10785   predicate (UseSSE>=2);
 10786   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10787   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10788   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10789             "MOVSD  [ESP],$src1\n\t"
 10790             "FLD    FPR1,$src1\n\t"
 10791             "MOVSD  [ESP],$src0\n\t"
 10792             "FLD    FPR1,$src0\n\t"
 10793             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10795             "FDUP   \t\t\t# Q Q\n\t"
 10796             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10797             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10798             "FISTP  dword [ESP]\n\t"
 10799             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10800             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10801             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10802             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10803             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10804             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10805             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10806             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10807             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10808             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10809             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10810             "MOV    [ESP+0],0\n\t"
 10811             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10813             "FST_D  [ESP]\n\t"
 10814             "MOVSD  $dst,[ESP]\n\t"
 10815             "ADD    ESP,8"
 10816              %}
 10817   ins_encode( push_stack_temp_qword,
 10818               push_xmm_to_fpr1(src1),
 10819               push_xmm_to_fpr1(src0),
 10820               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10821               pow_exp_core_encoding,
 10822               Push_ResultXD(dst) );
 10823   ins_pipe( pipe_slow );
 10824 %}
 10827 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10828   predicate (UseSSE<=1);
 10829   match(Set dpr1 (ExpD dpr1));
 10830   effect(KILL rax, KILL rbx, KILL rcx);
 10831   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10832             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10833             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10835             "FDUP   \t\t\t# Q Q\n\t"
 10836             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10837             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10838             "FISTP  dword [ESP]\n\t"
 10839             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10840             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10841             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10842             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10843             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10844             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10845             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10846             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10847             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10848             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10849             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10850             "MOV    [ESP+0],0\n\t"
 10851             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10853             "ADD    ESP,8"
 10854              %}
 10855   ins_encode( push_stack_temp_qword,
 10856               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10857               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10858               pow_exp_core_encoding,
 10859               pop_stack_temp_qword);
 10860   ins_pipe( pipe_slow );
 10861 %}
 10863 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10864   predicate (UseSSE>=2);
 10865   match(Set dst (ExpD src));
 10866   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10867   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10868             "MOVSD  [ESP],$src\n\t"
 10869             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10870             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10872             "FDUP   \t\t\t# Q Q\n\t"
 10873             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10874             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10875             "FISTP  dword [ESP]\n\t"
 10876             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10877             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10878             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10879             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10880             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10881             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10882             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10883             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10884             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10885             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10886             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10887             "MOV    [ESP+0],0\n\t"
 10888             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10890             "FST_D  [ESP]\n\t"
 10891             "MOVSD  $dst,[ESP]\n\t"
 10892             "ADD    ESP,8"
 10893              %}
 10894   ins_encode( Push_SrcXD(src),
 10895               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10896               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10897               pow_exp_core_encoding,
 10898               Push_ResultXD(dst) );
 10899   ins_pipe( pipe_slow );
 10900 %}
 10904 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10905   predicate (UseSSE<=1);
 10906   // The source Double operand on FPU stack
 10907   match(Set dst (Log10D src));
 10908   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10909   // fxch         ; swap ST(0) with ST(1)
 10910   // fyl2x        ; compute log_10(2) * log_2(x)
 10911   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10912             "FXCH   \n\t"
 10913             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10914          %}
 10915   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10916               Opcode(0xD9), Opcode(0xC9),   // fxch
 10917               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10919   ins_pipe( pipe_slow );
 10920 %}
 10922 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10923   predicate (UseSSE>=2);
 10924   effect(KILL cr);
 10925   match(Set dst (Log10D src));
 10926   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10927   // fyl2x        ; compute log_10(2) * log_2(x)
 10928   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10929             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10930          %}
 10931   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10932               Push_SrcXD(src),
 10933               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10934               Push_ResultXD(dst));
 10936   ins_pipe( pipe_slow );
 10937 %}
 10939 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10940   predicate (UseSSE<=1);
 10941   // The source Double operand on FPU stack
 10942   match(Set dst (LogD src));
 10943   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10944   // fxch         ; swap ST(0) with ST(1)
 10945   // fyl2x        ; compute log_e(2) * log_2(x)
 10946   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10947             "FXCH   \n\t"
 10948             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10949          %}
 10950   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10951               Opcode(0xD9), Opcode(0xC9),   // fxch
 10952               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10954   ins_pipe( pipe_slow );
 10955 %}
 10957 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10958   predicate (UseSSE>=2);
 10959   effect(KILL cr);
 10960   // The source and result Double operands in XMM registers
 10961   match(Set dst (LogD src));
 10962   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10963   // fyl2x        ; compute log_e(2) * log_2(x)
 10964   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10965             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10966          %}
 10967   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10968               Push_SrcXD(src),
 10969               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10970               Push_ResultXD(dst));
 10971   ins_pipe( pipe_slow );
 10972 %}
 10974 //-------------Float Instructions-------------------------------
 10975 // Float Math
 10977 // Code for float compare:
 10978 //     fcompp();
 10979 //     fwait(); fnstsw_ax();
 10980 //     sahf();
 10981 //     movl(dst, unordered_result);
 10982 //     jcc(Assembler::parity, exit);
 10983 //     movl(dst, less_result);
 10984 //     jcc(Assembler::below, exit);
 10985 //     movl(dst, equal_result);
 10986 //     jcc(Assembler::equal, exit);
 10987 //     movl(dst, greater_result);
 10988 //   exit:
 10990 // P6 version of float compare, sets condition codes in EFLAGS
 10991 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10992   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10993   match(Set cr (CmpF src1 src2));
 10994   effect(KILL rax);
 10995   ins_cost(150);
 10996   format %{ "FLD    $src1\n\t"
 10997             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10998             "JNP    exit\n\t"
 10999             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 11000             "SAHF\n"
 11001      "exit:\tNOP               // avoid branch to branch" %}
 11002   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 11003   ins_encode( Push_Reg_D(src1),
 11004               OpcP, RegOpc(src2),
 11005               cmpF_P6_fixup );
 11006   ins_pipe( pipe_slow );
 11007 %}
 11009 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 11010   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 11011   match(Set cr (CmpF src1 src2));
 11012   ins_cost(100);
 11013   format %{ "FLD    $src1\n\t"
 11014             "FUCOMIP ST,$src2  // P6 instruction" %}
 11015   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 11016   ins_encode( Push_Reg_D(src1),
 11017               OpcP, RegOpc(src2));
 11018   ins_pipe( pipe_slow );
 11019 %}
 11022 // Compare & branch
 11023 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 11024   predicate(UseSSE == 0);
 11025   match(Set cr (CmpF src1 src2));
 11026   effect(KILL rax);
 11027   ins_cost(200);
 11028   format %{ "FLD    $src1\n\t"
 11029             "FCOMp  $src2\n\t"
 11030             "FNSTSW AX\n\t"
 11031             "TEST   AX,0x400\n\t"
 11032             "JZ,s   flags\n\t"
 11033             "MOV    AH,1\t# unordered treat as LT\n"
 11034     "flags:\tSAHF" %}
 11035   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 11036   ins_encode( Push_Reg_D(src1),
 11037               OpcP, RegOpc(src2),
 11038               fpu_flags);
 11039   ins_pipe( pipe_slow );
 11040 %}
 11042 // Compare vs zero into -1,0,1
 11043 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 11044   predicate(UseSSE == 0);
 11045   match(Set dst (CmpF3 src1 zero));
 11046   effect(KILL cr, KILL rax);
 11047   ins_cost(280);
 11048   format %{ "FTSTF  $dst,$src1" %}
 11049   opcode(0xE4, 0xD9);
 11050   ins_encode( Push_Reg_D(src1),
 11051               OpcS, OpcP, PopFPU,
 11052               CmpF_Result(dst));
 11053   ins_pipe( pipe_slow );
 11054 %}
 11056 // Compare into -1,0,1
 11057 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11058   predicate(UseSSE == 0);
 11059   match(Set dst (CmpF3 src1 src2));
 11060   effect(KILL cr, KILL rax);
 11061   ins_cost(300);
 11062   format %{ "FCMPF  $dst,$src1,$src2" %}
 11063   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 11064   ins_encode( Push_Reg_D(src1),
 11065               OpcP, RegOpc(src2),
 11066               CmpF_Result(dst));
 11067   ins_pipe( pipe_slow );
 11068 %}
 11070 // float compare and set condition codes in EFLAGS by XMM regs
 11071 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 11072   predicate(UseSSE>=1);
 11073   match(Set cr (CmpF dst src));
 11074   effect(KILL rax);
 11075   ins_cost(145);
 11076   format %{ "COMISS $dst,$src\n"
 11077           "\tJNP    exit\n"
 11078           "\tMOV    ah,1       // saw a NaN, set CF\n"
 11079           "\tSAHF\n"
 11080      "exit:\tNOP               // avoid branch to branch" %}
 11081   opcode(0x0F, 0x2F);
 11082   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 11083   ins_pipe( pipe_slow );
 11084 %}
 11086 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 11087   predicate(UseSSE>=1);
 11088   match(Set cr (CmpF dst src));
 11089   ins_cost(100);
 11090   format %{ "COMISS $dst,$src" %}
 11091   opcode(0x0F, 0x2F);
 11092   ins_encode(OpcP, OpcS, RegReg(dst, src));
 11093   ins_pipe( pipe_slow );
 11094 %}
 11096 // float compare and set condition codes in EFLAGS by XMM regs
 11097 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 11098   predicate(UseSSE>=1);
 11099   match(Set cr (CmpF dst (LoadF src)));
 11100   effect(KILL rax);
 11101   ins_cost(165);
 11102   format %{ "COMISS $dst,$src\n"
 11103           "\tJNP    exit\n"
 11104           "\tMOV    ah,1       // saw a NaN, set CF\n"
 11105           "\tSAHF\n"
 11106      "exit:\tNOP               // avoid branch to branch" %}
 11107   opcode(0x0F, 0x2F);
 11108   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 11109   ins_pipe( pipe_slow );
 11110 %}
 11112 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 11113   predicate(UseSSE>=1);
 11114   match(Set cr (CmpF dst (LoadF src)));
 11115   ins_cost(100);
 11116   format %{ "COMISS $dst,$src" %}
 11117   opcode(0x0F, 0x2F);
 11118   ins_encode(OpcP, OpcS, RegMem(dst, src));
 11119   ins_pipe( pipe_slow );
 11120 %}
 11122 // Compare into -1,0,1 in XMM
 11123 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 11124   predicate(UseSSE>=1);
 11125   match(Set dst (CmpF3 src1 src2));
 11126   effect(KILL cr);
 11127   ins_cost(255);
 11128   format %{ "XOR    $dst,$dst\n"
 11129           "\tCOMISS $src1,$src2\n"
 11130           "\tJP,s   nan\n"
 11131           "\tJEQ,s  exit\n"
 11132           "\tJA,s   inc\n"
 11133       "nan:\tDEC    $dst\n"
 11134           "\tJMP,s  exit\n"
 11135       "inc:\tINC    $dst\n"
 11136       "exit:"
 11137                 %}
 11138   opcode(0x0F, 0x2F);
 11139   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 11140   ins_pipe( pipe_slow );
 11141 %}
 11143 // Compare into -1,0,1 in XMM and memory
 11144 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 11145   predicate(UseSSE>=1);
 11146   match(Set dst (CmpF3 src1 (LoadF mem)));
 11147   effect(KILL cr);
 11148   ins_cost(275);
 11149   format %{ "COMISS $src1,$mem\n"
 11150           "\tMOV    $dst,0\t\t# do not blow flags\n"
 11151           "\tJP,s   nan\n"
 11152           "\tJEQ,s  exit\n"
 11153           "\tJA,s   inc\n"
 11154       "nan:\tDEC    $dst\n"
 11155           "\tJMP,s  exit\n"
 11156       "inc:\tINC    $dst\n"
 11157       "exit:"
 11158                 %}
 11159   opcode(0x0F, 0x2F);
 11160   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 11161   ins_pipe( pipe_slow );
 11162 %}
 11164 // Spill to obtain 24-bit precision
 11165 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11166   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11167   match(Set dst (SubF src1 src2));
 11169   format %{ "FSUB   $dst,$src1 - $src2" %}
 11170   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 11171   ins_encode( Push_Reg_F(src1),
 11172               OpcReg_F(src2),
 11173               Pop_Mem_F(dst) );
 11174   ins_pipe( fpu_mem_reg_reg );
 11175 %}
 11176 //
 11177 // This instruction does not round to 24-bits
 11178 instruct subF_reg(regF dst, regF src) %{
 11179   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11180   match(Set dst (SubF dst src));
 11182   format %{ "FSUB   $dst,$src" %}
 11183   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 11184   ins_encode( Push_Reg_F(src),
 11185               OpcP, RegOpc(dst) );
 11186   ins_pipe( fpu_reg_reg );
 11187 %}
 11189 // Spill to obtain 24-bit precision
 11190 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11191   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11192   match(Set dst (AddF src1 src2));
 11194   format %{ "FADD   $dst,$src1,$src2" %}
 11195   opcode(0xD8, 0x0); /* D8 C0+i */
 11196   ins_encode( Push_Reg_F(src2),
 11197               OpcReg_F(src1),
 11198               Pop_Mem_F(dst) );
 11199   ins_pipe( fpu_mem_reg_reg );
 11200 %}
 11201 //
 11202 // This instruction does not round to 24-bits
 11203 instruct addF_reg(regF dst, regF src) %{
 11204   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11205   match(Set dst (AddF dst src));
 11207   format %{ "FLD    $src\n\t"
 11208             "FADDp  $dst,ST" %}
 11209   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 11210   ins_encode( Push_Reg_F(src),
 11211               OpcP, RegOpc(dst) );
 11212   ins_pipe( fpu_reg_reg );
 11213 %}
 11215 // Add two single precision floating point values in xmm
 11216 instruct addX_reg(regX dst, regX src) %{
 11217   predicate(UseSSE>=1);
 11218   match(Set dst (AddF dst src));
 11219   format %{ "ADDSS  $dst,$src" %}
 11220   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11221   ins_pipe( pipe_slow );
 11222 %}
 11224 instruct addX_imm(regX dst, immXF con) %{
 11225   predicate(UseSSE>=1);
 11226   match(Set dst (AddF dst con));
 11227   format %{ "ADDSS  $dst,[$con]" %}
 11228   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 11229   ins_pipe( pipe_slow );
 11230 %}
 11232 instruct addX_mem(regX dst, memory mem) %{
 11233   predicate(UseSSE>=1);
 11234   match(Set dst (AddF dst (LoadF mem)));
 11235   format %{ "ADDSS  $dst,$mem" %}
 11236   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11237   ins_pipe( pipe_slow );
 11238 %}
 11240 // Subtract two single precision floating point values in xmm
 11241 instruct subX_reg(regX dst, regX src) %{
 11242   predicate(UseSSE>=1);
 11243   match(Set dst (SubF dst src));
 11244   format %{ "SUBSS  $dst,$src" %}
 11245   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11246   ins_pipe( pipe_slow );
 11247 %}
 11249 instruct subX_imm(regX dst, immXF con) %{
 11250   predicate(UseSSE>=1);
 11251   match(Set dst (SubF dst con));
 11252   format %{ "SUBSS  $dst,[$con]" %}
 11253   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 11254   ins_pipe( pipe_slow );
 11255 %}
 11257 instruct subX_mem(regX dst, memory mem) %{
 11258   predicate(UseSSE>=1);
 11259   match(Set dst (SubF dst (LoadF mem)));
 11260   format %{ "SUBSS  $dst,$mem" %}
 11261   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11262   ins_pipe( pipe_slow );
 11263 %}
 11265 // Multiply two single precision floating point values in xmm
 11266 instruct mulX_reg(regX dst, regX src) %{
 11267   predicate(UseSSE>=1);
 11268   match(Set dst (MulF dst src));
 11269   format %{ "MULSS  $dst,$src" %}
 11270   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11271   ins_pipe( pipe_slow );
 11272 %}
 11274 instruct mulX_imm(regX dst, immXF con) %{
 11275   predicate(UseSSE>=1);
 11276   match(Set dst (MulF dst con));
 11277   format %{ "MULSS  $dst,[$con]" %}
 11278   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 11279   ins_pipe( pipe_slow );
 11280 %}
 11282 instruct mulX_mem(regX dst, memory mem) %{
 11283   predicate(UseSSE>=1);
 11284   match(Set dst (MulF dst (LoadF mem)));
 11285   format %{ "MULSS  $dst,$mem" %}
 11286   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11287   ins_pipe( pipe_slow );
 11288 %}
 11290 // Divide two single precision floating point values in xmm
 11291 instruct divX_reg(regX dst, regX src) %{
 11292   predicate(UseSSE>=1);
 11293   match(Set dst (DivF dst src));
 11294   format %{ "DIVSS  $dst,$src" %}
 11295   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11296   ins_pipe( pipe_slow );
 11297 %}
 11299 instruct divX_imm(regX dst, immXF con) %{
 11300   predicate(UseSSE>=1);
 11301   match(Set dst (DivF dst con));
 11302   format %{ "DIVSS  $dst,[$con]" %}
 11303   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 11304   ins_pipe( pipe_slow );
 11305 %}
 11307 instruct divX_mem(regX dst, memory mem) %{
 11308   predicate(UseSSE>=1);
 11309   match(Set dst (DivF dst (LoadF mem)));
 11310   format %{ "DIVSS  $dst,$mem" %}
 11311   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11312   ins_pipe( pipe_slow );
 11313 %}
 11315 // Get the square root of a single precision floating point values in xmm
 11316 instruct sqrtX_reg(regX dst, regX src) %{
 11317   predicate(UseSSE>=1);
 11318   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11319   format %{ "SQRTSS $dst,$src" %}
 11320   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11321   ins_pipe( pipe_slow );
 11322 %}
 11324 instruct sqrtX_mem(regX dst, memory mem) %{
 11325   predicate(UseSSE>=1);
 11326   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11327   format %{ "SQRTSS $dst,$mem" %}
 11328   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11329   ins_pipe( pipe_slow );
 11330 %}
 11332 // Get the square root of a double precision floating point values in xmm
 11333 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11334   predicate(UseSSE>=2);
 11335   match(Set dst (SqrtD src));
 11336   format %{ "SQRTSD $dst,$src" %}
 11337   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11338   ins_pipe( pipe_slow );
 11339 %}
 11341 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11342   predicate(UseSSE>=2);
 11343   match(Set dst (SqrtD (LoadD mem)));
 11344   format %{ "SQRTSD $dst,$mem" %}
 11345   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11346   ins_pipe( pipe_slow );
 11347 %}
 11349 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11350   predicate(UseSSE==0);
 11351   match(Set dst (AbsF src));
 11352   ins_cost(100);
 11353   format %{ "FABS" %}
 11354   opcode(0xE1, 0xD9);
 11355   ins_encode( OpcS, OpcP );
 11356   ins_pipe( fpu_reg_reg );
 11357 %}
 11359 instruct absX_reg(regX dst ) %{
 11360   predicate(UseSSE>=1);
 11361   match(Set dst (AbsF dst));
 11362   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11363   ins_encode( AbsXF_encoding(dst));
 11364   ins_pipe( pipe_slow );
 11365 %}
 11367 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11368   predicate(UseSSE==0);
 11369   match(Set dst (NegF src));
 11370   ins_cost(100);
 11371   format %{ "FCHS" %}
 11372   opcode(0xE0, 0xD9);
 11373   ins_encode( OpcS, OpcP );
 11374   ins_pipe( fpu_reg_reg );
 11375 %}
 11377 instruct negX_reg( regX dst ) %{
 11378   predicate(UseSSE>=1);
 11379   match(Set dst (NegF dst));
 11380   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11381   ins_encode( NegXF_encoding(dst));
 11382   ins_pipe( pipe_slow );
 11383 %}
 11385 // Cisc-alternate to addF_reg
 11386 // Spill to obtain 24-bit precision
 11387 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11388   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11389   match(Set dst (AddF src1 (LoadF src2)));
 11391   format %{ "FLD    $src2\n\t"
 11392             "FADD   ST,$src1\n\t"
 11393             "FSTP_S $dst" %}
 11394   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11395   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11396               OpcReg_F(src1),
 11397               Pop_Mem_F(dst) );
 11398   ins_pipe( fpu_mem_reg_mem );
 11399 %}
 11400 //
 11401 // Cisc-alternate to addF_reg
 11402 // This instruction does not round to 24-bits
 11403 instruct addF_reg_mem(regF dst, memory src) %{
 11404   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11405   match(Set dst (AddF dst (LoadF src)));
 11407   format %{ "FADD   $dst,$src" %}
 11408   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11409   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11410               OpcP, RegOpc(dst) );
 11411   ins_pipe( fpu_reg_mem );
 11412 %}
 11414 // // Following two instructions for _222_mpegaudio
 11415 // Spill to obtain 24-bit precision
 11416 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11417   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11418   match(Set dst (AddF src1 src2));
 11420   format %{ "FADD   $dst,$src1,$src2" %}
 11421   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11422   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11423               OpcReg_F(src2),
 11424               Pop_Mem_F(dst) );
 11425   ins_pipe( fpu_mem_reg_mem );
 11426 %}
 11428 // Cisc-spill variant
 11429 // Spill to obtain 24-bit precision
 11430 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11431   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11432   match(Set dst (AddF src1 (LoadF src2)));
 11434   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11435   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11436   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11437               set_instruction_start,
 11438               OpcP, RMopc_Mem(secondary,src1),
 11439               Pop_Mem_F(dst) );
 11440   ins_pipe( fpu_mem_mem_mem );
 11441 %}
 11443 // Spill to obtain 24-bit precision
 11444 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11445   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11446   match(Set dst (AddF src1 src2));
 11448   format %{ "FADD   $dst,$src1,$src2" %}
 11449   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11450   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11451               set_instruction_start,
 11452               OpcP, RMopc_Mem(secondary,src1),
 11453               Pop_Mem_F(dst) );
 11454   ins_pipe( fpu_mem_mem_mem );
 11455 %}
 11458 // Spill to obtain 24-bit precision
 11459 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11460   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11461   match(Set dst (AddF src1 src2));
 11462   format %{ "FLD    $src1\n\t"
 11463             "FADD   $src2\n\t"
 11464             "FSTP_S $dst"  %}
 11465   opcode(0xD8, 0x00);       /* D8 /0 */
 11466   ins_encode( Push_Reg_F(src1),
 11467               Opc_MemImm_F(src2),
 11468               Pop_Mem_F(dst));
 11469   ins_pipe( fpu_mem_reg_con );
 11470 %}
 11471 //
 11472 // This instruction does not round to 24-bits
 11473 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 11474   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11475   match(Set dst (AddF src1 src2));
 11476   format %{ "FLD    $src1\n\t"
 11477             "FADD   $src2\n\t"
 11478             "FSTP_S $dst"  %}
 11479   opcode(0xD8, 0x00);       /* D8 /0 */
 11480   ins_encode( Push_Reg_F(src1),
 11481               Opc_MemImm_F(src2),
 11482               Pop_Reg_F(dst));
 11483   ins_pipe( fpu_reg_reg_con );
 11484 %}
 11486 // Spill to obtain 24-bit precision
 11487 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11488   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11489   match(Set dst (MulF src1 src2));
 11491   format %{ "FLD    $src1\n\t"
 11492             "FMUL   $src2\n\t"
 11493             "FSTP_S $dst"  %}
 11494   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11495   ins_encode( Push_Reg_F(src1),
 11496               OpcReg_F(src2),
 11497               Pop_Mem_F(dst) );
 11498   ins_pipe( fpu_mem_reg_reg );
 11499 %}
 11500 //
 11501 // This instruction does not round to 24-bits
 11502 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11503   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11504   match(Set dst (MulF src1 src2));
 11506   format %{ "FLD    $src1\n\t"
 11507             "FMUL   $src2\n\t"
 11508             "FSTP_S $dst"  %}
 11509   opcode(0xD8, 0x1); /* D8 C8+i */
 11510   ins_encode( Push_Reg_F(src2),
 11511               OpcReg_F(src1),
 11512               Pop_Reg_F(dst) );
 11513   ins_pipe( fpu_reg_reg_reg );
 11514 %}
 11517 // Spill to obtain 24-bit precision
 11518 // Cisc-alternate to reg-reg multiply
 11519 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11520   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11521   match(Set dst (MulF src1 (LoadF src2)));
 11523   format %{ "FLD_S  $src2\n\t"
 11524             "FMUL   $src1\n\t"
 11525             "FSTP_S $dst"  %}
 11526   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11527   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11528               OpcReg_F(src1),
 11529               Pop_Mem_F(dst) );
 11530   ins_pipe( fpu_mem_reg_mem );
 11531 %}
 11532 //
 11533 // This instruction does not round to 24-bits
 11534 // Cisc-alternate to reg-reg multiply
 11535 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11536   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11537   match(Set dst (MulF src1 (LoadF src2)));
 11539   format %{ "FMUL   $dst,$src1,$src2" %}
 11540   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11541   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11542               OpcReg_F(src1),
 11543               Pop_Reg_F(dst) );
 11544   ins_pipe( fpu_reg_reg_mem );
 11545 %}
 11547 // Spill to obtain 24-bit precision
 11548 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11549   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11550   match(Set dst (MulF src1 src2));
 11552   format %{ "FMUL   $dst,$src1,$src2" %}
 11553   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11554   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11555               set_instruction_start,
 11556               OpcP, RMopc_Mem(secondary,src1),
 11557               Pop_Mem_F(dst) );
 11558   ins_pipe( fpu_mem_mem_mem );
 11559 %}
 11561 // Spill to obtain 24-bit precision
 11562 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11563   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11564   match(Set dst (MulF src1 src2));
 11566   format %{ "FMULc $dst,$src1,$src2" %}
 11567   opcode(0xD8, 0x1);  /* D8 /1*/
 11568   ins_encode( Push_Reg_F(src1),
 11569               Opc_MemImm_F(src2),
 11570               Pop_Mem_F(dst));
 11571   ins_pipe( fpu_mem_reg_con );
 11572 %}
 11573 //
 11574 // This instruction does not round to 24-bits
 11575 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11576   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11577   match(Set dst (MulF src1 src2));
 11579   format %{ "FMULc $dst. $src1, $src2" %}
 11580   opcode(0xD8, 0x1);  /* D8 /1*/
 11581   ins_encode( Push_Reg_F(src1),
 11582               Opc_MemImm_F(src2),
 11583               Pop_Reg_F(dst));
 11584   ins_pipe( fpu_reg_reg_con );
 11585 %}
 11588 //
 11589 // MACRO1 -- subsume unshared load into mulF
 11590 // This instruction does not round to 24-bits
 11591 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11592   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11593   match(Set dst (MulF (LoadF mem1) src));
 11595   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11596             "FMUL   ST,$src\n\t"
 11597             "FSTP   $dst" %}
 11598   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11599   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11600               OpcReg_F(src),
 11601               Pop_Reg_F(dst) );
 11602   ins_pipe( fpu_reg_reg_mem );
 11603 %}
 11604 //
 11605 // MACRO2 -- addF a mulF which subsumed an unshared load
 11606 // This instruction does not round to 24-bits
 11607 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11608   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11609   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11610   ins_cost(95);
 11612   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11613             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11614             "FADD   ST,$src2\n\t"
 11615             "FSTP   $dst" %}
 11616   opcode(0xD9); /* LoadF D9 /0 */
 11617   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11618               FMul_ST_reg(src1),
 11619               FAdd_ST_reg(src2),
 11620               Pop_Reg_F(dst) );
 11621   ins_pipe( fpu_reg_mem_reg_reg );
 11622 %}
 11624 // MACRO3 -- addF a mulF
 11625 // This instruction does not round to 24-bits.  It is a '2-address'
 11626 // instruction in that the result goes back to src2.  This eliminates
 11627 // a move from the macro; possibly the register allocator will have
 11628 // to add it back (and maybe not).
 11629 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11630   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11631   match(Set src2 (AddF (MulF src0 src1) src2));
 11633   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11634             "FMUL   ST,$src1\n\t"
 11635             "FADDP  $src2,ST" %}
 11636   opcode(0xD9); /* LoadF D9 /0 */
 11637   ins_encode( Push_Reg_F(src0),
 11638               FMul_ST_reg(src1),
 11639               FAddP_reg_ST(src2) );
 11640   ins_pipe( fpu_reg_reg_reg );
 11641 %}
 11643 // MACRO4 -- divF subF
 11644 // This instruction does not round to 24-bits
 11645 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11646   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11647   match(Set dst (DivF (SubF src2 src1) src3));
 11649   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11650             "FSUB   ST,$src1\n\t"
 11651             "FDIV   ST,$src3\n\t"
 11652             "FSTP  $dst" %}
 11653   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11654   ins_encode( Push_Reg_F(src2),
 11655               subF_divF_encode(src1,src3),
 11656               Pop_Reg_F(dst) );
 11657   ins_pipe( fpu_reg_reg_reg_reg );
 11658 %}
 11660 // Spill to obtain 24-bit precision
 11661 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11662   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11663   match(Set dst (DivF src1 src2));
 11665   format %{ "FDIV   $dst,$src1,$src2" %}
 11666   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11667   ins_encode( Push_Reg_F(src1),
 11668               OpcReg_F(src2),
 11669               Pop_Mem_F(dst) );
 11670   ins_pipe( fpu_mem_reg_reg );
 11671 %}
 11672 //
 11673 // This instruction does not round to 24-bits
 11674 instruct divF_reg(regF dst, regF src) %{
 11675   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11676   match(Set dst (DivF dst src));
 11678   format %{ "FDIV   $dst,$src" %}
 11679   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11680   ins_encode( Push_Reg_F(src),
 11681               OpcP, RegOpc(dst) );
 11682   ins_pipe( fpu_reg_reg );
 11683 %}
 11686 // Spill to obtain 24-bit precision
 11687 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11688   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11689   match(Set dst (ModF src1 src2));
 11690   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11692   format %{ "FMOD   $dst,$src1,$src2" %}
 11693   ins_encode( Push_Reg_Mod_D(src1, src2),
 11694               emitModD(),
 11695               Push_Result_Mod_D(src2),
 11696               Pop_Mem_F(dst));
 11697   ins_pipe( pipe_slow );
 11698 %}
 11699 //
 11700 // This instruction does not round to 24-bits
 11701 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11702   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11703   match(Set dst (ModF dst src));
 11704   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11706   format %{ "FMOD   $dst,$src" %}
 11707   ins_encode(Push_Reg_Mod_D(dst, src),
 11708               emitModD(),
 11709               Push_Result_Mod_D(src),
 11710               Pop_Reg_F(dst));
 11711   ins_pipe( pipe_slow );
 11712 %}
 11714 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11715   predicate(UseSSE>=1);
 11716   match(Set dst (ModF src0 src1));
 11717   effect(KILL rax, KILL cr);
 11718   format %{ "SUB    ESP,4\t # FMOD\n"
 11719           "\tMOVSS  [ESP+0],$src1\n"
 11720           "\tFLD_S  [ESP+0]\n"
 11721           "\tMOVSS  [ESP+0],$src0\n"
 11722           "\tFLD_S  [ESP+0]\n"
 11723      "loop:\tFPREM\n"
 11724           "\tFWAIT\n"
 11725           "\tFNSTSW AX\n"
 11726           "\tSAHF\n"
 11727           "\tJP     loop\n"
 11728           "\tFSTP_S [ESP+0]\n"
 11729           "\tMOVSS  $dst,[ESP+0]\n"
 11730           "\tADD    ESP,4\n"
 11731           "\tFSTP   ST0\t # Restore FPU Stack"
 11732     %}
 11733   ins_cost(250);
 11734   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11735   ins_pipe( pipe_slow );
 11736 %}
 11739 //----------Arithmetic Conversion Instructions---------------------------------
 11740 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11742 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11743   predicate(UseSSE==0);
 11744   match(Set dst (RoundFloat src));
 11745   ins_cost(125);
 11746   format %{ "FST_S  $dst,$src\t# F-round" %}
 11747   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11748   ins_pipe( fpu_mem_reg );
 11749 %}
 11751 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11752   predicate(UseSSE<=1);
 11753   match(Set dst (RoundDouble src));
 11754   ins_cost(125);
 11755   format %{ "FST_D  $dst,$src\t# D-round" %}
 11756   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11757   ins_pipe( fpu_mem_reg );
 11758 %}
 11760 // Force rounding to 24-bit precision and 6-bit exponent
 11761 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11762   predicate(UseSSE==0);
 11763   match(Set dst (ConvD2F src));
 11764   format %{ "FST_S  $dst,$src\t# F-round" %}
 11765   expand %{
 11766     roundFloat_mem_reg(dst,src);
 11767   %}
 11768 %}
 11770 // Force rounding to 24-bit precision and 6-bit exponent
 11771 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11772   predicate(UseSSE==1);
 11773   match(Set dst (ConvD2F src));
 11774   effect( KILL cr );
 11775   format %{ "SUB    ESP,4\n\t"
 11776             "FST_S  [ESP],$src\t# F-round\n\t"
 11777             "MOVSS  $dst,[ESP]\n\t"
 11778             "ADD ESP,4" %}
 11779   ins_encode( D2X_encoding(dst, src) );
 11780   ins_pipe( pipe_slow );
 11781 %}
 11783 // Force rounding double precision to single precision
 11784 instruct convXD2X_reg(regX dst, regXD src) %{
 11785   predicate(UseSSE>=2);
 11786   match(Set dst (ConvD2F src));
 11787   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11788   opcode(0xF2, 0x0F, 0x5A);
 11789   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11790   ins_pipe( pipe_slow );
 11791 %}
 11793 instruct convF2D_reg_reg(regD dst, regF src) %{
 11794   predicate(UseSSE==0);
 11795   match(Set dst (ConvF2D src));
 11796   format %{ "FST_S  $dst,$src\t# D-round" %}
 11797   ins_encode( Pop_Reg_Reg_D(dst, src));
 11798   ins_pipe( fpu_reg_reg );
 11799 %}
 11801 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11802   predicate(UseSSE==1);
 11803   match(Set dst (ConvF2D src));
 11804   format %{ "FST_D  $dst,$src\t# D-round" %}
 11805   expand %{
 11806     roundDouble_mem_reg(dst,src);
 11807   %}
 11808 %}
 11810 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11811   predicate(UseSSE==1);
 11812   match(Set dst (ConvF2D src));
 11813   effect( KILL cr );
 11814   format %{ "SUB    ESP,4\n\t"
 11815             "MOVSS  [ESP] $src\n\t"
 11816             "FLD_S  [ESP]\n\t"
 11817             "ADD    ESP,4\n\t"
 11818             "FSTP   $dst\t# D-round" %}
 11819   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11820   ins_pipe( pipe_slow );
 11821 %}
 11823 instruct convX2XD_reg(regXD dst, regX src) %{
 11824   predicate(UseSSE>=2);
 11825   match(Set dst (ConvF2D src));
 11826   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11827   opcode(0xF3, 0x0F, 0x5A);
 11828   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11829   ins_pipe( pipe_slow );
 11830 %}
 11832 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11833 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11834   predicate(UseSSE<=1);
 11835   match(Set dst (ConvD2I src));
 11836   effect( KILL tmp, KILL cr );
 11837   format %{ "FLD    $src\t# Convert double to int \n\t"
 11838             "FLDCW  trunc mode\n\t"
 11839             "SUB    ESP,4\n\t"
 11840             "FISTp  [ESP + #0]\n\t"
 11841             "FLDCW  std/24-bit mode\n\t"
 11842             "POP    EAX\n\t"
 11843             "CMP    EAX,0x80000000\n\t"
 11844             "JNE,s  fast\n\t"
 11845             "FLD_D  $src\n\t"
 11846             "CALL   d2i_wrapper\n"
 11847       "fast:" %}
 11848   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11849   ins_pipe( pipe_slow );
 11850 %}
 11852 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11853 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11854   predicate(UseSSE>=2);
 11855   match(Set dst (ConvD2I src));
 11856   effect( KILL tmp, KILL cr );
 11857   format %{ "CVTTSD2SI $dst, $src\n\t"
 11858             "CMP    $dst,0x80000000\n\t"
 11859             "JNE,s  fast\n\t"
 11860             "SUB    ESP, 8\n\t"
 11861             "MOVSD  [ESP], $src\n\t"
 11862             "FLD_D  [ESP]\n\t"
 11863             "ADD    ESP, 8\n\t"
 11864             "CALL   d2i_wrapper\n"
 11865       "fast:" %}
 11866   opcode(0x1); // double-precision conversion
 11867   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11868   ins_pipe( pipe_slow );
 11869 %}
 11871 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11872   predicate(UseSSE<=1);
 11873   match(Set dst (ConvD2L src));
 11874   effect( KILL cr );
 11875   format %{ "FLD    $src\t# Convert double to long\n\t"
 11876             "FLDCW  trunc mode\n\t"
 11877             "SUB    ESP,8\n\t"
 11878             "FISTp  [ESP + #0]\n\t"
 11879             "FLDCW  std/24-bit mode\n\t"
 11880             "POP    EAX\n\t"
 11881             "POP    EDX\n\t"
 11882             "CMP    EDX,0x80000000\n\t"
 11883             "JNE,s  fast\n\t"
 11884             "TEST   EAX,EAX\n\t"
 11885             "JNE,s  fast\n\t"
 11886             "FLD    $src\n\t"
 11887             "CALL   d2l_wrapper\n"
 11888       "fast:" %}
 11889   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11890   ins_pipe( pipe_slow );
 11891 %}
 11893 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11894 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11895   predicate (UseSSE>=2);
 11896   match(Set dst (ConvD2L src));
 11897   effect( KILL cr );
 11898   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11899             "MOVSD  [ESP],$src\n\t"
 11900             "FLD_D  [ESP]\n\t"
 11901             "FLDCW  trunc mode\n\t"
 11902             "FISTp  [ESP + #0]\n\t"
 11903             "FLDCW  std/24-bit mode\n\t"
 11904             "POP    EAX\n\t"
 11905             "POP    EDX\n\t"
 11906             "CMP    EDX,0x80000000\n\t"
 11907             "JNE,s  fast\n\t"
 11908             "TEST   EAX,EAX\n\t"
 11909             "JNE,s  fast\n\t"
 11910             "SUB    ESP,8\n\t"
 11911             "MOVSD  [ESP],$src\n\t"
 11912             "FLD_D  [ESP]\n\t"
 11913             "CALL   d2l_wrapper\n"
 11914       "fast:" %}
 11915   ins_encode( XD2L_encoding(src) );
 11916   ins_pipe( pipe_slow );
 11917 %}
 11919 // Convert a double to an int.  Java semantics require we do complex
 11920 // manglations in the corner cases.  So we set the rounding mode to
 11921 // 'zero', store the darned double down as an int, and reset the
 11922 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11923 // if we would overflow or converted a NAN; we check for this and
 11924 // and go the slow path if needed.
 11925 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11926   predicate(UseSSE==0);
 11927   match(Set dst (ConvF2I src));
 11928   effect( KILL tmp, KILL cr );
 11929   format %{ "FLD    $src\t# Convert float to int \n\t"
 11930             "FLDCW  trunc mode\n\t"
 11931             "SUB    ESP,4\n\t"
 11932             "FISTp  [ESP + #0]\n\t"
 11933             "FLDCW  std/24-bit mode\n\t"
 11934             "POP    EAX\n\t"
 11935             "CMP    EAX,0x80000000\n\t"
 11936             "JNE,s  fast\n\t"
 11937             "FLD    $src\n\t"
 11938             "CALL   d2i_wrapper\n"
 11939       "fast:" %}
 11940   // D2I_encoding works for F2I
 11941   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11942   ins_pipe( pipe_slow );
 11943 %}
 11945 // Convert a float in xmm to an int reg.
 11946 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11947   predicate(UseSSE>=1);
 11948   match(Set dst (ConvF2I src));
 11949   effect( KILL tmp, KILL cr );
 11950   format %{ "CVTTSS2SI $dst, $src\n\t"
 11951             "CMP    $dst,0x80000000\n\t"
 11952             "JNE,s  fast\n\t"
 11953             "SUB    ESP, 4\n\t"
 11954             "MOVSS  [ESP], $src\n\t"
 11955             "FLD    [ESP]\n\t"
 11956             "ADD    ESP, 4\n\t"
 11957             "CALL   d2i_wrapper\n"
 11958       "fast:" %}
 11959   opcode(0x0); // single-precision conversion
 11960   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11961   ins_pipe( pipe_slow );
 11962 %}
 11964 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11965   predicate(UseSSE==0);
 11966   match(Set dst (ConvF2L src));
 11967   effect( KILL cr );
 11968   format %{ "FLD    $src\t# Convert float to long\n\t"
 11969             "FLDCW  trunc mode\n\t"
 11970             "SUB    ESP,8\n\t"
 11971             "FISTp  [ESP + #0]\n\t"
 11972             "FLDCW  std/24-bit mode\n\t"
 11973             "POP    EAX\n\t"
 11974             "POP    EDX\n\t"
 11975             "CMP    EDX,0x80000000\n\t"
 11976             "JNE,s  fast\n\t"
 11977             "TEST   EAX,EAX\n\t"
 11978             "JNE,s  fast\n\t"
 11979             "FLD    $src\n\t"
 11980             "CALL   d2l_wrapper\n"
 11981       "fast:" %}
 11982   // D2L_encoding works for F2L
 11983   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11984   ins_pipe( pipe_slow );
 11985 %}
 11987 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11988 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11989   predicate (UseSSE>=1);
 11990   match(Set dst (ConvF2L src));
 11991   effect( KILL cr );
 11992   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11993             "MOVSS  [ESP],$src\n\t"
 11994             "FLD_S  [ESP]\n\t"
 11995             "FLDCW  trunc mode\n\t"
 11996             "FISTp  [ESP + #0]\n\t"
 11997             "FLDCW  std/24-bit mode\n\t"
 11998             "POP    EAX\n\t"
 11999             "POP    EDX\n\t"
 12000             "CMP    EDX,0x80000000\n\t"
 12001             "JNE,s  fast\n\t"
 12002             "TEST   EAX,EAX\n\t"
 12003             "JNE,s  fast\n\t"
 12004             "SUB    ESP,4\t# Convert float to long\n\t"
 12005             "MOVSS  [ESP],$src\n\t"
 12006             "FLD_S  [ESP]\n\t"
 12007             "ADD    ESP,4\n\t"
 12008             "CALL   d2l_wrapper\n"
 12009       "fast:" %}
 12010   ins_encode( X2L_encoding(src) );
 12011   ins_pipe( pipe_slow );
 12012 %}
 12014 instruct convI2D_reg(regD dst, stackSlotI src) %{
 12015   predicate( UseSSE<=1 );
 12016   match(Set dst (ConvI2D src));
 12017   format %{ "FILD   $src\n\t"
 12018             "FSTP   $dst" %}
 12019   opcode(0xDB, 0x0);  /* DB /0 */
 12020   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 12021   ins_pipe( fpu_reg_mem );
 12022 %}
 12024 instruct convI2XD_reg(regXD dst, eRegI src) %{
 12025   predicate( UseSSE>=2 && !UseXmmI2D );
 12026   match(Set dst (ConvI2D src));
 12027   format %{ "CVTSI2SD $dst,$src" %}
 12028   opcode(0xF2, 0x0F, 0x2A);
 12029   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 12030   ins_pipe( pipe_slow );
 12031 %}
 12033 instruct convI2XD_mem(regXD dst, memory mem) %{
 12034   predicate( UseSSE>=2 );
 12035   match(Set dst (ConvI2D (LoadI mem)));
 12036   format %{ "CVTSI2SD $dst,$mem" %}
 12037   opcode(0xF2, 0x0F, 0x2A);
 12038   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 12039   ins_pipe( pipe_slow );
 12040 %}
 12042 instruct convXI2XD_reg(regXD dst, eRegI src)
 12043 %{
 12044   predicate( UseSSE>=2 && UseXmmI2D );
 12045   match(Set dst (ConvI2D src));
 12047   format %{ "MOVD  $dst,$src\n\t"
 12048             "CVTDQ2PD $dst,$dst\t# i2d" %}
 12049   ins_encode %{
 12050     __ movdl($dst$$XMMRegister, $src$$Register);
 12051     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 12052   %}
 12053   ins_pipe(pipe_slow); // XXX
 12054 %}
 12056 instruct convI2D_mem(regD dst, memory mem) %{
 12057   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 12058   match(Set dst (ConvI2D (LoadI mem)));
 12059   format %{ "FILD   $mem\n\t"
 12060             "FSTP   $dst" %}
 12061   opcode(0xDB);      /* DB /0 */
 12062   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12063               Pop_Reg_D(dst));
 12064   ins_pipe( fpu_reg_mem );
 12065 %}
 12067 // Convert a byte to a float; no rounding step needed.
 12068 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 12069   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 12070   match(Set dst (ConvI2F src));
 12071   format %{ "FILD   $src\n\t"
 12072             "FSTP   $dst" %}
 12074   opcode(0xDB, 0x0);  /* DB /0 */
 12075   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 12076   ins_pipe( fpu_reg_mem );
 12077 %}
 12079 // In 24-bit mode, force exponent rounding by storing back out
 12080 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 12081   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 12082   match(Set dst (ConvI2F src));
 12083   ins_cost(200);
 12084   format %{ "FILD   $src\n\t"
 12085             "FSTP_S $dst" %}
 12086   opcode(0xDB, 0x0);  /* DB /0 */
 12087   ins_encode( Push_Mem_I(src),
 12088               Pop_Mem_F(dst));
 12089   ins_pipe( fpu_mem_mem );
 12090 %}
 12092 // In 24-bit mode, force exponent rounding by storing back out
 12093 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 12094   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 12095   match(Set dst (ConvI2F (LoadI mem)));
 12096   ins_cost(200);
 12097   format %{ "FILD   $mem\n\t"
 12098             "FSTP_S $dst" %}
 12099   opcode(0xDB);  /* DB /0 */
 12100   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12101               Pop_Mem_F(dst));
 12102   ins_pipe( fpu_mem_mem );
 12103 %}
 12105 // This instruction does not round to 24-bits
 12106 instruct convI2F_reg(regF dst, stackSlotI src) %{
 12107   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 12108   match(Set dst (ConvI2F src));
 12109   format %{ "FILD   $src\n\t"
 12110             "FSTP   $dst" %}
 12111   opcode(0xDB, 0x0);  /* DB /0 */
 12112   ins_encode( Push_Mem_I(src),
 12113               Pop_Reg_F(dst));
 12114   ins_pipe( fpu_reg_mem );
 12115 %}
 12117 // This instruction does not round to 24-bits
 12118 instruct convI2F_mem(regF dst, memory mem) %{
 12119   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 12120   match(Set dst (ConvI2F (LoadI mem)));
 12121   format %{ "FILD   $mem\n\t"
 12122             "FSTP   $dst" %}
 12123   opcode(0xDB);      /* DB /0 */
 12124   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 12125               Pop_Reg_F(dst));
 12126   ins_pipe( fpu_reg_mem );
 12127 %}
 12129 // Convert an int to a float in xmm; no rounding step needed.
 12130 instruct convI2X_reg(regX dst, eRegI src) %{
 12131   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 12132   match(Set dst (ConvI2F src));
 12133   format %{ "CVTSI2SS $dst, $src" %}
 12135   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 12136   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 12137   ins_pipe( pipe_slow );
 12138 %}
 12140  instruct convXI2X_reg(regX dst, eRegI src)
 12141 %{
 12142   predicate( UseSSE>=2 && UseXmmI2F );
 12143   match(Set dst (ConvI2F src));
 12145   format %{ "MOVD  $dst,$src\n\t"
 12146             "CVTDQ2PS $dst,$dst\t# i2f" %}
 12147   ins_encode %{
 12148     __ movdl($dst$$XMMRegister, $src$$Register);
 12149     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 12150   %}
 12151   ins_pipe(pipe_slow); // XXX
 12152 %}
 12154 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 12155   match(Set dst (ConvI2L src));
 12156   effect(KILL cr);
 12157   ins_cost(375);
 12158   format %{ "MOV    $dst.lo,$src\n\t"
 12159             "MOV    $dst.hi,$src\n\t"
 12160             "SAR    $dst.hi,31" %}
 12161   ins_encode(convert_int_long(dst,src));
 12162   ins_pipe( ialu_reg_reg_long );
 12163 %}
 12165 // Zero-extend convert int to long
 12166 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 12167   match(Set dst (AndL (ConvI2L src) mask) );
 12168   effect( KILL flags );
 12169   ins_cost(250);
 12170   format %{ "MOV    $dst.lo,$src\n\t"
 12171             "XOR    $dst.hi,$dst.hi" %}
 12172   opcode(0x33); // XOR
 12173   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12174   ins_pipe( ialu_reg_reg_long );
 12175 %}
 12177 // Zero-extend long
 12178 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 12179   match(Set dst (AndL src mask) );
 12180   effect( KILL flags );
 12181   ins_cost(250);
 12182   format %{ "MOV    $dst.lo,$src.lo\n\t"
 12183             "XOR    $dst.hi,$dst.hi\n\t" %}
 12184   opcode(0x33); // XOR
 12185   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 12186   ins_pipe( ialu_reg_reg_long );
 12187 %}
 12189 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 12190   predicate (UseSSE<=1);
 12191   match(Set dst (ConvL2D src));
 12192   effect( KILL cr );
 12193   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12194             "PUSH   $src.lo\n\t"
 12195             "FILD   ST,[ESP + #0]\n\t"
 12196             "ADD    ESP,8\n\t"
 12197             "FSTP_D $dst\t# D-round" %}
 12198   opcode(0xDF, 0x5);  /* DF /5 */
 12199   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 12200   ins_pipe( pipe_slow );
 12201 %}
 12203 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 12204   predicate (UseSSE>=2);
 12205   match(Set dst (ConvL2D src));
 12206   effect( KILL cr );
 12207   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 12208             "PUSH   $src.lo\n\t"
 12209             "FILD_D [ESP]\n\t"
 12210             "FSTP_D [ESP]\n\t"
 12211             "MOVSD  $dst,[ESP]\n\t"
 12212             "ADD    ESP,8" %}
 12213   opcode(0xDF, 0x5);  /* DF /5 */
 12214   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 12215   ins_pipe( pipe_slow );
 12216 %}
 12218 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12219   predicate (UseSSE>=1);
 12220   match(Set dst (ConvL2F src));
 12221   effect( KILL cr );
 12222   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12223             "PUSH   $src.lo\n\t"
 12224             "FILD_D [ESP]\n\t"
 12225             "FSTP_S [ESP]\n\t"
 12226             "MOVSS  $dst,[ESP]\n\t"
 12227             "ADD    ESP,8" %}
 12228   opcode(0xDF, 0x5);  /* DF /5 */
 12229   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12230   ins_pipe( pipe_slow );
 12231 %}
 12233 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12234   match(Set dst (ConvL2F src));
 12235   effect( KILL cr );
 12236   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12237             "PUSH   $src.lo\n\t"
 12238             "FILD   ST,[ESP + #0]\n\t"
 12239             "ADD    ESP,8\n\t"
 12240             "FSTP_S $dst\t# F-round" %}
 12241   opcode(0xDF, 0x5);  /* DF /5 */
 12242   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12243   ins_pipe( pipe_slow );
 12244 %}
 12246 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12247   match(Set dst (ConvL2I src));
 12248   effect( DEF dst, USE src );
 12249   format %{ "MOV    $dst,$src.lo" %}
 12250   ins_encode(enc_CopyL_Lo(dst,src));
 12251   ins_pipe( ialu_reg_reg );
 12252 %}
 12255 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12256   match(Set dst (MoveF2I src));
 12257   effect( DEF dst, USE src );
 12258   ins_cost(100);
 12259   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12260   opcode(0x8B);
 12261   ins_encode( OpcP, RegMem(dst,src));
 12262   ins_pipe( ialu_reg_mem );
 12263 %}
 12265 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12266   predicate(UseSSE==0);
 12267   match(Set dst (MoveF2I src));
 12268   effect( DEF dst, USE src );
 12270   ins_cost(125);
 12271   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12272   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12273   ins_pipe( fpu_mem_reg );
 12274 %}
 12276 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12277   predicate(UseSSE>=1);
 12278   match(Set dst (MoveF2I src));
 12279   effect( DEF dst, USE src );
 12281   ins_cost(95);
 12282   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12283   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12284   ins_pipe( pipe_slow );
 12285 %}
 12287 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12288   predicate(UseSSE>=2);
 12289   match(Set dst (MoveF2I src));
 12290   effect( DEF dst, USE src );
 12291   ins_cost(85);
 12292   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12293   ins_encode( MovX2I_reg(dst, src));
 12294   ins_pipe( pipe_slow );
 12295 %}
 12297 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12298   match(Set dst (MoveI2F src));
 12299   effect( DEF dst, USE src );
 12301   ins_cost(100);
 12302   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12303   opcode(0x89);
 12304   ins_encode( OpcPRegSS( dst, src ) );
 12305   ins_pipe( ialu_mem_reg );
 12306 %}
 12309 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12310   predicate(UseSSE==0);
 12311   match(Set dst (MoveI2F src));
 12312   effect(DEF dst, USE src);
 12314   ins_cost(125);
 12315   format %{ "FLD_S  $src\n\t"
 12316             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12317   opcode(0xD9);               /* D9 /0, FLD m32real */
 12318   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12319               Pop_Reg_F(dst) );
 12320   ins_pipe( fpu_reg_mem );
 12321 %}
 12323 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12324   predicate(UseSSE>=1);
 12325   match(Set dst (MoveI2F src));
 12326   effect( DEF dst, USE src );
 12328   ins_cost(95);
 12329   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12330   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12331   ins_pipe( pipe_slow );
 12332 %}
 12334 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12335   predicate(UseSSE>=2);
 12336   match(Set dst (MoveI2F src));
 12337   effect( DEF dst, USE src );
 12339   ins_cost(85);
 12340   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12341   ins_encode( MovI2X_reg(dst, src) );
 12342   ins_pipe( pipe_slow );
 12343 %}
 12345 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12346   match(Set dst (MoveD2L src));
 12347   effect(DEF dst, USE src);
 12349   ins_cost(250);
 12350   format %{ "MOV    $dst.lo,$src\n\t"
 12351             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12352   opcode(0x8B, 0x8B);
 12353   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12354   ins_pipe( ialu_mem_long_reg );
 12355 %}
 12357 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12358   predicate(UseSSE<=1);
 12359   match(Set dst (MoveD2L src));
 12360   effect(DEF dst, USE src);
 12362   ins_cost(125);
 12363   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12364   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12365   ins_pipe( fpu_mem_reg );
 12366 %}
 12368 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12369   predicate(UseSSE>=2);
 12370   match(Set dst (MoveD2L src));
 12371   effect(DEF dst, USE src);
 12372   ins_cost(95);
 12374   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12375   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12376   ins_pipe( pipe_slow );
 12377 %}
 12379 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12380   predicate(UseSSE>=2);
 12381   match(Set dst (MoveD2L src));
 12382   effect(DEF dst, USE src, TEMP tmp);
 12383   ins_cost(85);
 12384   format %{ "MOVD   $dst.lo,$src\n\t"
 12385             "PSHUFLW $tmp,$src,0x4E\n\t"
 12386             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12387   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12388   ins_pipe( pipe_slow );
 12389 %}
 12391 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12392   match(Set dst (MoveL2D src));
 12393   effect(DEF dst, USE src);
 12395   ins_cost(200);
 12396   format %{ "MOV    $dst,$src.lo\n\t"
 12397             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12398   opcode(0x89, 0x89);
 12399   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12400   ins_pipe( ialu_mem_long_reg );
 12401 %}
 12404 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12405   predicate(UseSSE<=1);
 12406   match(Set dst (MoveL2D src));
 12407   effect(DEF dst, USE src);
 12408   ins_cost(125);
 12410   format %{ "FLD_D  $src\n\t"
 12411             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12412   opcode(0xDD);               /* DD /0, FLD m64real */
 12413   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12414               Pop_Reg_D(dst) );
 12415   ins_pipe( fpu_reg_mem );
 12416 %}
 12419 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12420   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12421   match(Set dst (MoveL2D src));
 12422   effect(DEF dst, USE src);
 12424   ins_cost(95);
 12425   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12426   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12427   ins_pipe( pipe_slow );
 12428 %}
 12430 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12431   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12432   match(Set dst (MoveL2D src));
 12433   effect(DEF dst, USE src);
 12435   ins_cost(95);
 12436   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12437   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12438   ins_pipe( pipe_slow );
 12439 %}
 12441 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12442   predicate(UseSSE>=2);
 12443   match(Set dst (MoveL2D src));
 12444   effect(TEMP dst, USE src, TEMP tmp);
 12445   ins_cost(85);
 12446   format %{ "MOVD   $dst,$src.lo\n\t"
 12447             "MOVD   $tmp,$src.hi\n\t"
 12448             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12449   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12450   ins_pipe( pipe_slow );
 12451 %}
 12453 // Replicate scalar to packed byte (1 byte) values in xmm
 12454 instruct Repl8B_reg(regXD dst, regXD src) %{
 12455   predicate(UseSSE>=2);
 12456   match(Set dst (Replicate8B src));
 12457   format %{ "MOVDQA  $dst,$src\n\t"
 12458             "PUNPCKLBW $dst,$dst\n\t"
 12459             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12460   ins_encode( pshufd_8x8(dst, src));
 12461   ins_pipe( pipe_slow );
 12462 %}
 12464 // Replicate scalar to packed byte (1 byte) values in xmm
 12465 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12466   predicate(UseSSE>=2);
 12467   match(Set dst (Replicate8B src));
 12468   format %{ "MOVD    $dst,$src\n\t"
 12469             "PUNPCKLBW $dst,$dst\n\t"
 12470             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12471   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12472   ins_pipe( pipe_slow );
 12473 %}
 12475 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12476 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12477   predicate(UseSSE>=2);
 12478   match(Set dst (Replicate8B zero));
 12479   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12480   ins_encode( pxor(dst, dst));
 12481   ins_pipe( fpu_reg_reg );
 12482 %}
 12484 // Replicate scalar to packed shore (2 byte) values in xmm
 12485 instruct Repl4S_reg(regXD dst, regXD src) %{
 12486   predicate(UseSSE>=2);
 12487   match(Set dst (Replicate4S src));
 12488   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12489   ins_encode( pshufd_4x16(dst, src));
 12490   ins_pipe( fpu_reg_reg );
 12491 %}
 12493 // Replicate scalar to packed shore (2 byte) values in xmm
 12494 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12495   predicate(UseSSE>=2);
 12496   match(Set dst (Replicate4S src));
 12497   format %{ "MOVD    $dst,$src\n\t"
 12498             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12499   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12500   ins_pipe( fpu_reg_reg );
 12501 %}
 12503 // Replicate scalar zero to packed short (2 byte) values in xmm
 12504 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12505   predicate(UseSSE>=2);
 12506   match(Set dst (Replicate4S zero));
 12507   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12508   ins_encode( pxor(dst, dst));
 12509   ins_pipe( fpu_reg_reg );
 12510 %}
 12512 // Replicate scalar to packed char (2 byte) values in xmm
 12513 instruct Repl4C_reg(regXD dst, regXD src) %{
 12514   predicate(UseSSE>=2);
 12515   match(Set dst (Replicate4C src));
 12516   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12517   ins_encode( pshufd_4x16(dst, src));
 12518   ins_pipe( fpu_reg_reg );
 12519 %}
 12521 // Replicate scalar to packed char (2 byte) values in xmm
 12522 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12523   predicate(UseSSE>=2);
 12524   match(Set dst (Replicate4C src));
 12525   format %{ "MOVD    $dst,$src\n\t"
 12526             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12527   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12528   ins_pipe( fpu_reg_reg );
 12529 %}
 12531 // Replicate scalar zero to packed char (2 byte) values in xmm
 12532 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12533   predicate(UseSSE>=2);
 12534   match(Set dst (Replicate4C zero));
 12535   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12536   ins_encode( pxor(dst, dst));
 12537   ins_pipe( fpu_reg_reg );
 12538 %}
 12540 // Replicate scalar to packed integer (4 byte) values in xmm
 12541 instruct Repl2I_reg(regXD dst, regXD src) %{
 12542   predicate(UseSSE>=2);
 12543   match(Set dst (Replicate2I src));
 12544   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12545   ins_encode( pshufd(dst, src, 0x00));
 12546   ins_pipe( fpu_reg_reg );
 12547 %}
 12549 // Replicate scalar to packed integer (4 byte) values in xmm
 12550 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12551   predicate(UseSSE>=2);
 12552   match(Set dst (Replicate2I src));
 12553   format %{ "MOVD   $dst,$src\n\t"
 12554             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12555   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12556   ins_pipe( fpu_reg_reg );
 12557 %}
 12559 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12560 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12561   predicate(UseSSE>=2);
 12562   match(Set dst (Replicate2I zero));
 12563   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12564   ins_encode( pxor(dst, dst));
 12565   ins_pipe( fpu_reg_reg );
 12566 %}
 12568 // Replicate scalar to packed single precision floating point values in xmm
 12569 instruct Repl2F_reg(regXD dst, regXD src) %{
 12570   predicate(UseSSE>=2);
 12571   match(Set dst (Replicate2F src));
 12572   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12573   ins_encode( pshufd(dst, src, 0xe0));
 12574   ins_pipe( fpu_reg_reg );
 12575 %}
 12577 // Replicate scalar to packed single precision floating point values in xmm
 12578 instruct Repl2F_regX(regXD dst, regX src) %{
 12579   predicate(UseSSE>=2);
 12580   match(Set dst (Replicate2F src));
 12581   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12582   ins_encode( pshufd(dst, src, 0xe0));
 12583   ins_pipe( fpu_reg_reg );
 12584 %}
 12586 // Replicate scalar to packed single precision floating point values in xmm
 12587 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12588   predicate(UseSSE>=2);
 12589   match(Set dst (Replicate2F zero));
 12590   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12591   ins_encode( pxor(dst, dst));
 12592   ins_pipe( fpu_reg_reg );
 12593 %}
 12595 // =======================================================================
 12596 // fast clearing of an array
 12597 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12598   match(Set dummy (ClearArray cnt base));
 12599   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12600   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12601             "XOR    EAX,EAX\n\t"
 12602             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12603   opcode(0,0x4);
 12604   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12605               OpcRegReg(0x33,EAX,EAX),
 12606               Opcode(0xF3), Opcode(0xAB) );
 12607   ins_pipe( pipe_slow );
 12608 %}
 12610 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12611                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12612   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12613   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12615   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12616   ins_encode %{
 12617     __ string_compare($str1$$Register, $str2$$Register,
 12618                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12619                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12620   %}
 12621   ins_pipe( pipe_slow );
 12622 %}
 12624 // fast string equals
 12625 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12626                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12627   match(Set result (StrEquals (Binary str1 str2) cnt));
 12628   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12630   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12631   ins_encode %{
 12632     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12633                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12634                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12635   %}
 12636   ins_pipe( pipe_slow );
 12637 %}
 12639 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12640                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12641   predicate(UseSSE42Intrinsics);
 12642   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12643   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12645   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12646   ins_encode %{
 12647     __ string_indexof($str1$$Register, $str2$$Register,
 12648                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12649                       $tmp1$$XMMRegister, $tmp2$$Register);
 12650   %}
 12651   ins_pipe( pipe_slow );
 12652 %}
 12654 // fast array equals
 12655 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12656                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12657 %{
 12658   match(Set result (AryEq ary1 ary2));
 12659   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12660   //ins_cost(300);
 12662   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12663   ins_encode %{
 12664     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12665                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12666                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12667   %}
 12668   ins_pipe( pipe_slow );
 12669 %}
 12671 //----------Control Flow Instructions------------------------------------------
 12672 // Signed compare Instructions
 12673 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12674   match(Set cr (CmpI op1 op2));
 12675   effect( DEF cr, USE op1, USE op2 );
 12676   format %{ "CMP    $op1,$op2" %}
 12677   opcode(0x3B);  /* Opcode 3B /r */
 12678   ins_encode( OpcP, RegReg( op1, op2) );
 12679   ins_pipe( ialu_cr_reg_reg );
 12680 %}
 12682 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12683   match(Set cr (CmpI op1 op2));
 12684   effect( DEF cr, USE op1 );
 12685   format %{ "CMP    $op1,$op2" %}
 12686   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12687   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12688   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12689   ins_pipe( ialu_cr_reg_imm );
 12690 %}
 12692 // Cisc-spilled version of cmpI_eReg
 12693 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12694   match(Set cr (CmpI op1 (LoadI op2)));
 12696   format %{ "CMP    $op1,$op2" %}
 12697   ins_cost(500);
 12698   opcode(0x3B);  /* Opcode 3B /r */
 12699   ins_encode( OpcP, RegMem( op1, op2) );
 12700   ins_pipe( ialu_cr_reg_mem );
 12701 %}
 12703 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12704   match(Set cr (CmpI src zero));
 12705   effect( DEF cr, USE src );
 12707   format %{ "TEST   $src,$src" %}
 12708   opcode(0x85);
 12709   ins_encode( OpcP, RegReg( src, src ) );
 12710   ins_pipe( ialu_cr_reg_imm );
 12711 %}
 12713 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12714   match(Set cr (CmpI (AndI src con) zero));
 12716   format %{ "TEST   $src,$con" %}
 12717   opcode(0xF7,0x00);
 12718   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12719   ins_pipe( ialu_cr_reg_imm );
 12720 %}
 12722 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12723   match(Set cr (CmpI (AndI src mem) zero));
 12725   format %{ "TEST   $src,$mem" %}
 12726   opcode(0x85);
 12727   ins_encode( OpcP, RegMem( src, mem ) );
 12728   ins_pipe( ialu_cr_reg_mem );
 12729 %}
 12731 // Unsigned compare Instructions; really, same as signed except they
 12732 // produce an eFlagsRegU instead of eFlagsReg.
 12733 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12734   match(Set cr (CmpU op1 op2));
 12736   format %{ "CMPu   $op1,$op2" %}
 12737   opcode(0x3B);  /* Opcode 3B /r */
 12738   ins_encode( OpcP, RegReg( op1, op2) );
 12739   ins_pipe( ialu_cr_reg_reg );
 12740 %}
 12742 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12743   match(Set cr (CmpU op1 op2));
 12745   format %{ "CMPu   $op1,$op2" %}
 12746   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12747   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12748   ins_pipe( ialu_cr_reg_imm );
 12749 %}
 12751 // // Cisc-spilled version of cmpU_eReg
 12752 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12753   match(Set cr (CmpU op1 (LoadI op2)));
 12755   format %{ "CMPu   $op1,$op2" %}
 12756   ins_cost(500);
 12757   opcode(0x3B);  /* Opcode 3B /r */
 12758   ins_encode( OpcP, RegMem( op1, op2) );
 12759   ins_pipe( ialu_cr_reg_mem );
 12760 %}
 12762 // // Cisc-spilled version of cmpU_eReg
 12763 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12764 //  match(Set cr (CmpU (LoadI op1) op2));
 12765 //
 12766 //  format %{ "CMPu   $op1,$op2" %}
 12767 //  ins_cost(500);
 12768 //  opcode(0x39);  /* Opcode 39 /r */
 12769 //  ins_encode( OpcP, RegMem( op1, op2) );
 12770 //%}
 12772 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12773   match(Set cr (CmpU src zero));
 12775   format %{ "TESTu  $src,$src" %}
 12776   opcode(0x85);
 12777   ins_encode( OpcP, RegReg( src, src ) );
 12778   ins_pipe( ialu_cr_reg_imm );
 12779 %}
 12781 // Unsigned pointer compare Instructions
 12782 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12783   match(Set cr (CmpP op1 op2));
 12785   format %{ "CMPu   $op1,$op2" %}
 12786   opcode(0x3B);  /* Opcode 3B /r */
 12787   ins_encode( OpcP, RegReg( op1, op2) );
 12788   ins_pipe( ialu_cr_reg_reg );
 12789 %}
 12791 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12792   match(Set cr (CmpP op1 op2));
 12794   format %{ "CMPu   $op1,$op2" %}
 12795   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12796   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12797   ins_pipe( ialu_cr_reg_imm );
 12798 %}
 12800 // // Cisc-spilled version of cmpP_eReg
 12801 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12802   match(Set cr (CmpP op1 (LoadP op2)));
 12804   format %{ "CMPu   $op1,$op2" %}
 12805   ins_cost(500);
 12806   opcode(0x3B);  /* Opcode 3B /r */
 12807   ins_encode( OpcP, RegMem( op1, op2) );
 12808   ins_pipe( ialu_cr_reg_mem );
 12809 %}
 12811 // // Cisc-spilled version of cmpP_eReg
 12812 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12813 //  match(Set cr (CmpP (LoadP op1) op2));
 12814 //
 12815 //  format %{ "CMPu   $op1,$op2" %}
 12816 //  ins_cost(500);
 12817 //  opcode(0x39);  /* Opcode 39 /r */
 12818 //  ins_encode( OpcP, RegMem( op1, op2) );
 12819 //%}
 12821 // Compare raw pointer (used in out-of-heap check).
 12822 // Only works because non-oop pointers must be raw pointers
 12823 // and raw pointers have no anti-dependencies.
 12824 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12825   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12826   match(Set cr (CmpP op1 (LoadP op2)));
 12828   format %{ "CMPu   $op1,$op2" %}
 12829   opcode(0x3B);  /* Opcode 3B /r */
 12830   ins_encode( OpcP, RegMem( op1, op2) );
 12831   ins_pipe( ialu_cr_reg_mem );
 12832 %}
 12834 //
 12835 // This will generate a signed flags result. This should be ok
 12836 // since any compare to a zero should be eq/neq.
 12837 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12838   match(Set cr (CmpP src zero));
 12840   format %{ "TEST   $src,$src" %}
 12841   opcode(0x85);
 12842   ins_encode( OpcP, RegReg( src, src ) );
 12843   ins_pipe( ialu_cr_reg_imm );
 12844 %}
 12846 // Cisc-spilled version of testP_reg
 12847 // This will generate a signed flags result. This should be ok
 12848 // since any compare to a zero should be eq/neq.
 12849 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12850   match(Set cr (CmpP (LoadP op) zero));
 12852   format %{ "TEST   $op,0xFFFFFFFF" %}
 12853   ins_cost(500);
 12854   opcode(0xF7);               /* Opcode F7 /0 */
 12855   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12856   ins_pipe( ialu_cr_reg_imm );
 12857 %}
 12859 // Yanked all unsigned pointer compare operations.
 12860 // Pointer compares are done with CmpP which is already unsigned.
 12862 //----------Max and Min--------------------------------------------------------
 12863 // Min Instructions
 12864 ////
 12865 //   *** Min and Max using the conditional move are slower than the
 12866 //   *** branch version on a Pentium III.
 12867 // // Conditional move for min
 12868 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12869 //  effect( USE_DEF op2, USE op1, USE cr );
 12870 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12871 //  opcode(0x4C,0x0F);
 12872 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12873 //  ins_pipe( pipe_cmov_reg );
 12874 //%}
 12875 //
 12876 //// Min Register with Register (P6 version)
 12877 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12878 //  predicate(VM_Version::supports_cmov() );
 12879 //  match(Set op2 (MinI op1 op2));
 12880 //  ins_cost(200);
 12881 //  expand %{
 12882 //    eFlagsReg cr;
 12883 //    compI_eReg(cr,op1,op2);
 12884 //    cmovI_reg_lt(op2,op1,cr);
 12885 //  %}
 12886 //%}
 12888 // Min Register with Register (generic version)
 12889 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12890   match(Set dst (MinI dst src));
 12891   effect(KILL flags);
 12892   ins_cost(300);
 12894   format %{ "MIN    $dst,$src" %}
 12895   opcode(0xCC);
 12896   ins_encode( min_enc(dst,src) );
 12897   ins_pipe( pipe_slow );
 12898 %}
 12900 // Max Register with Register
 12901 //   *** Min and Max using the conditional move are slower than the
 12902 //   *** branch version on a Pentium III.
 12903 // // Conditional move for max
 12904 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12905 //  effect( USE_DEF op2, USE op1, USE cr );
 12906 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12907 //  opcode(0x4F,0x0F);
 12908 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12909 //  ins_pipe( pipe_cmov_reg );
 12910 //%}
 12911 //
 12912 // // Max Register with Register (P6 version)
 12913 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12914 //  predicate(VM_Version::supports_cmov() );
 12915 //  match(Set op2 (MaxI op1 op2));
 12916 //  ins_cost(200);
 12917 //  expand %{
 12918 //    eFlagsReg cr;
 12919 //    compI_eReg(cr,op1,op2);
 12920 //    cmovI_reg_gt(op2,op1,cr);
 12921 //  %}
 12922 //%}
 12924 // Max Register with Register (generic version)
 12925 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12926   match(Set dst (MaxI dst src));
 12927   effect(KILL flags);
 12928   ins_cost(300);
 12930   format %{ "MAX    $dst,$src" %}
 12931   opcode(0xCC);
 12932   ins_encode( max_enc(dst,src) );
 12933   ins_pipe( pipe_slow );
 12934 %}
 12936 // ============================================================================
 12937 // Branch Instructions
 12938 // Jump Table
 12939 instruct jumpXtnd(eRegI switch_val) %{
 12940   match(Jump switch_val);
 12941   ins_cost(350);
 12943   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12945   ins_encode %{
 12946     address table_base  = __ address_table_constant(_index2label);
 12948     // Jump to Address(table_base + switch_reg)
 12949     InternalAddress table(table_base);
 12950     Address index(noreg, $switch_val$$Register, Address::times_1);
 12951     __ jump(ArrayAddress(table, index));
 12952   %}
 12953   ins_pc_relative(1);
 12954   ins_pipe(pipe_jmp);
 12955 %}
 12957 // Jump Direct - Label defines a relative address from JMP+1
 12958 instruct jmpDir(label labl) %{
 12959   match(Goto);
 12960   effect(USE labl);
 12962   ins_cost(300);
 12963   format %{ "JMP    $labl" %}
 12964   size(5);
 12965   opcode(0xE9);
 12966   ins_encode( OpcP, Lbl( labl ) );
 12967   ins_pipe( pipe_jmp );
 12968   ins_pc_relative(1);
 12969 %}
 12971 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12972 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12973   match(If cop cr);
 12974   effect(USE labl);
 12976   ins_cost(300);
 12977   format %{ "J$cop    $labl" %}
 12978   size(6);
 12979   opcode(0x0F, 0x80);
 12980   ins_encode( Jcc( cop, labl) );
 12981   ins_pipe( pipe_jcc );
 12982   ins_pc_relative(1);
 12983 %}
 12985 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12986 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12987   match(CountedLoopEnd cop cr);
 12988   effect(USE labl);
 12990   ins_cost(300);
 12991   format %{ "J$cop    $labl\t# Loop end" %}
 12992   size(6);
 12993   opcode(0x0F, 0x80);
 12994   ins_encode( Jcc( cop, labl) );
 12995   ins_pipe( pipe_jcc );
 12996   ins_pc_relative(1);
 12997 %}
 12999 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13000 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13001   match(CountedLoopEnd cop cmp);
 13002   effect(USE labl);
 13004   ins_cost(300);
 13005   format %{ "J$cop,u  $labl\t# Loop end" %}
 13006   size(6);
 13007   opcode(0x0F, 0x80);
 13008   ins_encode( Jcc( cop, labl) );
 13009   ins_pipe( pipe_jcc );
 13010   ins_pc_relative(1);
 13011 %}
 13013 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13014   match(CountedLoopEnd cop cmp);
 13015   effect(USE labl);
 13017   ins_cost(200);
 13018   format %{ "J$cop,u  $labl\t# Loop end" %}
 13019   size(6);
 13020   opcode(0x0F, 0x80);
 13021   ins_encode( Jcc( cop, labl) );
 13022   ins_pipe( pipe_jcc );
 13023   ins_pc_relative(1);
 13024 %}
 13026 // Jump Direct Conditional - using unsigned comparison
 13027 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13028   match(If cop cmp);
 13029   effect(USE labl);
 13031   ins_cost(300);
 13032   format %{ "J$cop,u  $labl" %}
 13033   size(6);
 13034   opcode(0x0F, 0x80);
 13035   ins_encode(Jcc(cop, labl));
 13036   ins_pipe(pipe_jcc);
 13037   ins_pc_relative(1);
 13038 %}
 13040 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13041   match(If cop cmp);
 13042   effect(USE labl);
 13044   ins_cost(200);
 13045   format %{ "J$cop,u  $labl" %}
 13046   size(6);
 13047   opcode(0x0F, 0x80);
 13048   ins_encode(Jcc(cop, labl));
 13049   ins_pipe(pipe_jcc);
 13050   ins_pc_relative(1);
 13051 %}
 13053 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13054   match(If cop cmp);
 13055   effect(USE labl);
 13057   ins_cost(200);
 13058   format %{ $$template
 13059     if ($cop$$cmpcode == Assembler::notEqual) {
 13060       $$emit$$"JP,u   $labl\n\t"
 13061       $$emit$$"J$cop,u   $labl"
 13062     } else {
 13063       $$emit$$"JP,u   done\n\t"
 13064       $$emit$$"J$cop,u   $labl\n\t"
 13065       $$emit$$"done:"
 13067   %}
 13068   size(12);
 13069   opcode(0x0F, 0x80);
 13070   ins_encode %{
 13071     Label* l = $labl$$label;
 13072     $$$emit8$primary;
 13073     emit_cc(cbuf, $secondary, Assembler::parity);
 13074     int parity_disp = -1;
 13075     bool ok = false;
 13076     if ($cop$$cmpcode == Assembler::notEqual) {
 13077        // the two jumps 6 bytes apart so the jump distances are too
 13078        parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
 13079     } else if ($cop$$cmpcode == Assembler::equal) {
 13080        parity_disp = 6;
 13081        ok = true;
 13082     } else {
 13083        ShouldNotReachHere();
 13085     emit_d32(cbuf, parity_disp);
 13086     $$$emit8$primary;
 13087     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 13088     int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
 13089     emit_d32(cbuf, disp);
 13090   %}
 13091   ins_pipe(pipe_jcc);
 13092   ins_pc_relative(1);
 13093 %}
 13095 // ============================================================================
 13096 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 13097 // array for an instance of the superklass.  Set a hidden internal cache on a
 13098 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 13099 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 13100 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 13101   match(Set result (PartialSubtypeCheck sub super));
 13102   effect( KILL rcx, KILL cr );
 13104   ins_cost(1100);  // slightly larger than the next version
 13105   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 13106             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 13107             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 13108             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 13109             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 13110             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 13111             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 13112      "miss:\t" %}
 13114   opcode(0x1); // Force a XOR of EDI
 13115   ins_encode( enc_PartialSubtypeCheck() );
 13116   ins_pipe( pipe_slow );
 13117 %}
 13119 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 13120   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 13121   effect( KILL rcx, KILL result );
 13123   ins_cost(1000);
 13124   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 13125             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 13126             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 13127             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 13128             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 13129             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 13130      "miss:\t" %}
 13132   opcode(0x0);  // No need to XOR EDI
 13133   ins_encode( enc_PartialSubtypeCheck() );
 13134   ins_pipe( pipe_slow );
 13135 %}
 13137 // ============================================================================
 13138 // Branch Instructions -- short offset versions
 13139 //
 13140 // These instructions are used to replace jumps of a long offset (the default
 13141 // match) with jumps of a shorter offset.  These instructions are all tagged
 13142 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 13143 // match rules in general matching.  Instead, the ADLC generates a conversion
 13144 // method in the MachNode which can be used to do in-place replacement of the
 13145 // long variant with the shorter variant.  The compiler will determine if a
 13146 // branch can be taken by the is_short_branch_offset() predicate in the machine
 13147 // specific code section of the file.
 13149 // Jump Direct - Label defines a relative address from JMP+1
 13150 instruct jmpDir_short(label labl) %{
 13151   match(Goto);
 13152   effect(USE labl);
 13154   ins_cost(300);
 13155   format %{ "JMP,s  $labl" %}
 13156   size(2);
 13157   opcode(0xEB);
 13158   ins_encode( OpcP, LblShort( labl ) );
 13159   ins_pipe( pipe_jmp );
 13160   ins_pc_relative(1);
 13161   ins_short_branch(1);
 13162 %}
 13164 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13165 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13166   match(If cop cr);
 13167   effect(USE labl);
 13169   ins_cost(300);
 13170   format %{ "J$cop,s  $labl" %}
 13171   size(2);
 13172   opcode(0x70);
 13173   ins_encode( JccShort( cop, labl) );
 13174   ins_pipe( pipe_jcc );
 13175   ins_pc_relative(1);
 13176   ins_short_branch(1);
 13177 %}
 13179 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13180 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 13181   match(CountedLoopEnd cop cr);
 13182   effect(USE labl);
 13184   ins_cost(300);
 13185   format %{ "J$cop,s  $labl\t# Loop end" %}
 13186   size(2);
 13187   opcode(0x70);
 13188   ins_encode( JccShort( cop, labl) );
 13189   ins_pipe( pipe_jcc );
 13190   ins_pc_relative(1);
 13191   ins_short_branch(1);
 13192 %}
 13194 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 13195 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13196   match(CountedLoopEnd cop cmp);
 13197   effect(USE labl);
 13199   ins_cost(300);
 13200   format %{ "J$cop,us $labl\t# Loop end" %}
 13201   size(2);
 13202   opcode(0x70);
 13203   ins_encode( JccShort( cop, labl) );
 13204   ins_pipe( pipe_jcc );
 13205   ins_pc_relative(1);
 13206   ins_short_branch(1);
 13207 %}
 13209 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13210   match(CountedLoopEnd cop cmp);
 13211   effect(USE labl);
 13213   ins_cost(300);
 13214   format %{ "J$cop,us $labl\t# Loop end" %}
 13215   size(2);
 13216   opcode(0x70);
 13217   ins_encode( JccShort( cop, labl) );
 13218   ins_pipe( pipe_jcc );
 13219   ins_pc_relative(1);
 13220   ins_short_branch(1);
 13221 %}
 13223 // Jump Direct Conditional - using unsigned comparison
 13224 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13225   match(If cop cmp);
 13226   effect(USE labl);
 13228   ins_cost(300);
 13229   format %{ "J$cop,us $labl" %}
 13230   size(2);
 13231   opcode(0x70);
 13232   ins_encode( JccShort( cop, labl) );
 13233   ins_pipe( pipe_jcc );
 13234   ins_pc_relative(1);
 13235   ins_short_branch(1);
 13236 %}
 13238 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13239   match(If cop cmp);
 13240   effect(USE labl);
 13242   ins_cost(300);
 13243   format %{ "J$cop,us $labl" %}
 13244   size(2);
 13245   opcode(0x70);
 13246   ins_encode( JccShort( cop, labl) );
 13247   ins_pipe( pipe_jcc );
 13248   ins_pc_relative(1);
 13249   ins_short_branch(1);
 13250 %}
 13252 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13253   match(If cop cmp);
 13254   effect(USE labl);
 13256   ins_cost(300);
 13257   format %{ $$template
 13258     if ($cop$$cmpcode == Assembler::notEqual) {
 13259       $$emit$$"JP,u,s   $labl\n\t"
 13260       $$emit$$"J$cop,u,s   $labl"
 13261     } else {
 13262       $$emit$$"JP,u,s   done\n\t"
 13263       $$emit$$"J$cop,u,s  $labl\n\t"
 13264       $$emit$$"done:"
 13266   %}
 13267   size(4);
 13268   opcode(0x70);
 13269   ins_encode %{
 13270     Label* l = $labl$$label;
 13271     emit_cc(cbuf, $primary, Assembler::parity);
 13272     int parity_disp = -1;
 13273     if ($cop$$cmpcode == Assembler::notEqual) {
 13274       parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
 13275     } else if ($cop$$cmpcode == Assembler::equal) {
 13276       parity_disp = 2;
 13277     } else {
 13278       ShouldNotReachHere();
 13280     emit_d8(cbuf, parity_disp);
 13281     emit_cc(cbuf, $primary, $cop$$cmpcode);
 13282     int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
 13283     emit_d8(cbuf, disp);
 13284     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 13285     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 13286   %}
 13287   ins_pipe(pipe_jcc);
 13288   ins_pc_relative(1);
 13289   ins_short_branch(1);
 13290 %}
 13292 // ============================================================================
 13293 // Long Compare
 13294 //
 13295 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13296 // is tricky.  The flavor of compare used depends on whether we are testing
 13297 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13298 // The GE test is the negated LT test.  The LE test can be had by commuting
 13299 // the operands (yielding a GE test) and then negating; negate again for the
 13300 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13301 // NE test is negated from that.
 13303 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13304 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13305 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13306 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13307 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13308 // foo match ends up with the wrong leaf.  One fix is to not match both
 13309 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13310 // both forms beat the trinary form of long-compare and both are very useful
 13311 // on Intel which has so few registers.
 13313 // Manifest a CmpL result in an integer register.  Very painful.
 13314 // This is the test to avoid.
 13315 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13316   match(Set dst (CmpL3 src1 src2));
 13317   effect( KILL flags );
 13318   ins_cost(1000);
 13319   format %{ "XOR    $dst,$dst\n\t"
 13320             "CMP    $src1.hi,$src2.hi\n\t"
 13321             "JLT,s  m_one\n\t"
 13322             "JGT,s  p_one\n\t"
 13323             "CMP    $src1.lo,$src2.lo\n\t"
 13324             "JB,s   m_one\n\t"
 13325             "JEQ,s  done\n"
 13326     "p_one:\tINC    $dst\n\t"
 13327             "JMP,s  done\n"
 13328     "m_one:\tDEC    $dst\n"
 13329      "done:" %}
 13330   ins_encode %{
 13331     Label p_one, m_one, done;
 13332     __ xorptr($dst$$Register, $dst$$Register);
 13333     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13334     __ jccb(Assembler::less,    m_one);
 13335     __ jccb(Assembler::greater, p_one);
 13336     __ cmpl($src1$$Register, $src2$$Register);
 13337     __ jccb(Assembler::below,   m_one);
 13338     __ jccb(Assembler::equal,   done);
 13339     __ bind(p_one);
 13340     __ incrementl($dst$$Register);
 13341     __ jmpb(done);
 13342     __ bind(m_one);
 13343     __ decrementl($dst$$Register);
 13344     __ bind(done);
 13345   %}
 13346   ins_pipe( pipe_slow );
 13347 %}
 13349 //======
 13350 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13351 // compares.  Can be used for LE or GT compares by reversing arguments.
 13352 // NOT GOOD FOR EQ/NE tests.
 13353 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13354   match( Set flags (CmpL src zero ));
 13355   ins_cost(100);
 13356   format %{ "TEST   $src.hi,$src.hi" %}
 13357   opcode(0x85);
 13358   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13359   ins_pipe( ialu_cr_reg_reg );
 13360 %}
 13362 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13363 // compares.  Can be used for LE or GT compares by reversing arguments.
 13364 // NOT GOOD FOR EQ/NE tests.
 13365 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13366   match( Set flags (CmpL src1 src2 ));
 13367   effect( TEMP tmp );
 13368   ins_cost(300);
 13369   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13370             "MOV    $tmp,$src1.hi\n\t"
 13371             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13372   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13373   ins_pipe( ialu_cr_reg_reg );
 13374 %}
 13376 // Long compares reg < zero/req OR reg >= zero/req.
 13377 // Just a wrapper for a normal branch, plus the predicate test.
 13378 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13379   match(If cmp flags);
 13380   effect(USE labl);
 13381   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13382   expand %{
 13383     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13384   %}
 13385 %}
 13387 // Compare 2 longs and CMOVE longs.
 13388 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13389   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13390   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13391   ins_cost(400);
 13392   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13393             "CMOV$cmp $dst.hi,$src.hi" %}
 13394   opcode(0x0F,0x40);
 13395   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13396   ins_pipe( pipe_cmov_reg_long );
 13397 %}
 13399 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13400   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13401   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13402   ins_cost(500);
 13403   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13404             "CMOV$cmp $dst.hi,$src.hi" %}
 13405   opcode(0x0F,0x40);
 13406   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13407   ins_pipe( pipe_cmov_reg_long );
 13408 %}
 13410 // Compare 2 longs and CMOVE ints.
 13411 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13412   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13413   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13414   ins_cost(200);
 13415   format %{ "CMOV$cmp $dst,$src" %}
 13416   opcode(0x0F,0x40);
 13417   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13418   ins_pipe( pipe_cmov_reg );
 13419 %}
 13421 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13422   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13423   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13424   ins_cost(250);
 13425   format %{ "CMOV$cmp $dst,$src" %}
 13426   opcode(0x0F,0x40);
 13427   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13428   ins_pipe( pipe_cmov_mem );
 13429 %}
 13431 // Compare 2 longs and CMOVE ints.
 13432 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13433   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13434   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13435   ins_cost(200);
 13436   format %{ "CMOV$cmp $dst,$src" %}
 13437   opcode(0x0F,0x40);
 13438   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13439   ins_pipe( pipe_cmov_reg );
 13440 %}
 13442 // Compare 2 longs and CMOVE doubles
 13443 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13444   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13445   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13446   ins_cost(200);
 13447   expand %{
 13448     fcmovD_regS(cmp,flags,dst,src);
 13449   %}
 13450 %}
 13452 // Compare 2 longs and CMOVE doubles
 13453 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13454   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13455   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13456   ins_cost(200);
 13457   expand %{
 13458     fcmovXD_regS(cmp,flags,dst,src);
 13459   %}
 13460 %}
 13462 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13463   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13464   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13465   ins_cost(200);
 13466   expand %{
 13467     fcmovF_regS(cmp,flags,dst,src);
 13468   %}
 13469 %}
 13471 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13472   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13473   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13474   ins_cost(200);
 13475   expand %{
 13476     fcmovX_regS(cmp,flags,dst,src);
 13477   %}
 13478 %}
 13480 //======
 13481 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13482 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13483   match( Set flags (CmpL src zero ));
 13484   effect(TEMP tmp);
 13485   ins_cost(200);
 13486   format %{ "MOV    $tmp,$src.lo\n\t"
 13487             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13488   ins_encode( long_cmp_flags0( src, tmp ) );
 13489   ins_pipe( ialu_reg_reg_long );
 13490 %}
 13492 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13493 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13494   match( Set flags (CmpL src1 src2 ));
 13495   ins_cost(200+300);
 13496   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13497             "JNE,s  skip\n\t"
 13498             "CMP    $src1.hi,$src2.hi\n\t"
 13499      "skip:\t" %}
 13500   ins_encode( long_cmp_flags1( src1, src2 ) );
 13501   ins_pipe( ialu_cr_reg_reg );
 13502 %}
 13504 // Long compare reg == zero/reg OR reg != zero/reg
 13505 // Just a wrapper for a normal branch, plus the predicate test.
 13506 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13507   match(If cmp flags);
 13508   effect(USE labl);
 13509   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13510   expand %{
 13511     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13512   %}
 13513 %}
 13515 // Compare 2 longs and CMOVE longs.
 13516 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13517   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13518   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13519   ins_cost(400);
 13520   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13521             "CMOV$cmp $dst.hi,$src.hi" %}
 13522   opcode(0x0F,0x40);
 13523   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13524   ins_pipe( pipe_cmov_reg_long );
 13525 %}
 13527 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13528   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13529   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13530   ins_cost(500);
 13531   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13532             "CMOV$cmp $dst.hi,$src.hi" %}
 13533   opcode(0x0F,0x40);
 13534   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13535   ins_pipe( pipe_cmov_reg_long );
 13536 %}
 13538 // Compare 2 longs and CMOVE ints.
 13539 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13540   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13541   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13542   ins_cost(200);
 13543   format %{ "CMOV$cmp $dst,$src" %}
 13544   opcode(0x0F,0x40);
 13545   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13546   ins_pipe( pipe_cmov_reg );
 13547 %}
 13549 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13550   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13551   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13552   ins_cost(250);
 13553   format %{ "CMOV$cmp $dst,$src" %}
 13554   opcode(0x0F,0x40);
 13555   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13556   ins_pipe( pipe_cmov_mem );
 13557 %}
 13559 // Compare 2 longs and CMOVE ints.
 13560 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13561   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13562   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13563   ins_cost(200);
 13564   format %{ "CMOV$cmp $dst,$src" %}
 13565   opcode(0x0F,0x40);
 13566   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13567   ins_pipe( pipe_cmov_reg );
 13568 %}
 13570 // Compare 2 longs and CMOVE doubles
 13571 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13572   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13573   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13574   ins_cost(200);
 13575   expand %{
 13576     fcmovD_regS(cmp,flags,dst,src);
 13577   %}
 13578 %}
 13580 // Compare 2 longs and CMOVE doubles
 13581 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13582   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13583   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13584   ins_cost(200);
 13585   expand %{
 13586     fcmovXD_regS(cmp,flags,dst,src);
 13587   %}
 13588 %}
 13590 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13591   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13592   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13593   ins_cost(200);
 13594   expand %{
 13595     fcmovF_regS(cmp,flags,dst,src);
 13596   %}
 13597 %}
 13599 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13600   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13601   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13602   ins_cost(200);
 13603   expand %{
 13604     fcmovX_regS(cmp,flags,dst,src);
 13605   %}
 13606 %}
 13608 //======
 13609 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13610 // Same as cmpL_reg_flags_LEGT except must negate src
 13611 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13612   match( Set flags (CmpL src zero ));
 13613   effect( TEMP tmp );
 13614   ins_cost(300);
 13615   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13616             "CMP    $tmp,$src.lo\n\t"
 13617             "SBB    $tmp,$src.hi\n\t" %}
 13618   ins_encode( long_cmp_flags3(src, tmp) );
 13619   ins_pipe( ialu_reg_reg_long );
 13620 %}
 13622 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13623 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13624 // requires a commuted test to get the same result.
 13625 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13626   match( Set flags (CmpL src1 src2 ));
 13627   effect( TEMP tmp );
 13628   ins_cost(300);
 13629   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13630             "MOV    $tmp,$src2.hi\n\t"
 13631             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13632   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13633   ins_pipe( ialu_cr_reg_reg );
 13634 %}
 13636 // Long compares reg < zero/req OR reg >= zero/req.
 13637 // Just a wrapper for a normal branch, plus the predicate test
 13638 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13639   match(If cmp flags);
 13640   effect(USE labl);
 13641   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13642   ins_cost(300);
 13643   expand %{
 13644     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13645   %}
 13646 %}
 13648 // Compare 2 longs and CMOVE longs.
 13649 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13650   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13651   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13652   ins_cost(400);
 13653   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13654             "CMOV$cmp $dst.hi,$src.hi" %}
 13655   opcode(0x0F,0x40);
 13656   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13657   ins_pipe( pipe_cmov_reg_long );
 13658 %}
 13660 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13661   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13662   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13663   ins_cost(500);
 13664   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13665             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13666   opcode(0x0F,0x40);
 13667   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13668   ins_pipe( pipe_cmov_reg_long );
 13669 %}
 13671 // Compare 2 longs and CMOVE ints.
 13672 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13673   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13674   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13675   ins_cost(200);
 13676   format %{ "CMOV$cmp $dst,$src" %}
 13677   opcode(0x0F,0x40);
 13678   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13679   ins_pipe( pipe_cmov_reg );
 13680 %}
 13682 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13683   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13684   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13685   ins_cost(250);
 13686   format %{ "CMOV$cmp $dst,$src" %}
 13687   opcode(0x0F,0x40);
 13688   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13689   ins_pipe( pipe_cmov_mem );
 13690 %}
 13692 // Compare 2 longs and CMOVE ptrs.
 13693 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13694   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13695   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13696   ins_cost(200);
 13697   format %{ "CMOV$cmp $dst,$src" %}
 13698   opcode(0x0F,0x40);
 13699   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13700   ins_pipe( pipe_cmov_reg );
 13701 %}
 13703 // Compare 2 longs and CMOVE doubles
 13704 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13705   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13706   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13707   ins_cost(200);
 13708   expand %{
 13709     fcmovD_regS(cmp,flags,dst,src);
 13710   %}
 13711 %}
 13713 // Compare 2 longs and CMOVE doubles
 13714 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13715   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13716   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13717   ins_cost(200);
 13718   expand %{
 13719     fcmovXD_regS(cmp,flags,dst,src);
 13720   %}
 13721 %}
 13723 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13724   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13725   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13726   ins_cost(200);
 13727   expand %{
 13728     fcmovF_regS(cmp,flags,dst,src);
 13729   %}
 13730 %}
 13733 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13734   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13735   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13736   ins_cost(200);
 13737   expand %{
 13738     fcmovX_regS(cmp,flags,dst,src);
 13739   %}
 13740 %}
 13743 // ============================================================================
 13744 // Procedure Call/Return Instructions
 13745 // Call Java Static Instruction
 13746 // Note: If this code changes, the corresponding ret_addr_offset() and
 13747 //       compute_padding() functions will have to be adjusted.
 13748 instruct CallStaticJavaDirect(method meth) %{
 13749   match(CallStaticJava);
 13750   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13751   effect(USE meth);
 13753   ins_cost(300);
 13754   format %{ "CALL,static " %}
 13755   opcode(0xE8); /* E8 cd */
 13756   ins_encode( pre_call_FPU,
 13757               Java_Static_Call( meth ),
 13758               call_epilog,
 13759               post_call_FPU );
 13760   ins_pipe( pipe_slow );
 13761   ins_pc_relative(1);
 13762   ins_alignment(4);
 13763 %}
 13765 // Call Java Static Instruction (method handle version)
 13766 // Note: If this code changes, the corresponding ret_addr_offset() and
 13767 //       compute_padding() functions will have to be adjusted.
 13768 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13769   match(CallStaticJava);
 13770   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13771   effect(USE meth);
 13772   // EBP is saved by all callees (for interpreter stack correction).
 13773   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13775   ins_cost(300);
 13776   format %{ "CALL,static/MethodHandle " %}
 13777   opcode(0xE8); /* E8 cd */
 13778   ins_encode( pre_call_FPU,
 13779               preserve_SP,
 13780               Java_Static_Call( meth ),
 13781               restore_SP,
 13782               call_epilog,
 13783               post_call_FPU );
 13784   ins_pipe( pipe_slow );
 13785   ins_pc_relative(1);
 13786   ins_alignment(4);
 13787 %}
 13789 // Call Java Dynamic Instruction
 13790 // Note: If this code changes, the corresponding ret_addr_offset() and
 13791 //       compute_padding() functions will have to be adjusted.
 13792 instruct CallDynamicJavaDirect(method meth) %{
 13793   match(CallDynamicJava);
 13794   effect(USE meth);
 13796   ins_cost(300);
 13797   format %{ "MOV    EAX,(oop)-1\n\t"
 13798             "CALL,dynamic" %}
 13799   opcode(0xE8); /* E8 cd */
 13800   ins_encode( pre_call_FPU,
 13801               Java_Dynamic_Call( meth ),
 13802               call_epilog,
 13803               post_call_FPU );
 13804   ins_pipe( pipe_slow );
 13805   ins_pc_relative(1);
 13806   ins_alignment(4);
 13807 %}
 13809 // Call Runtime Instruction
 13810 instruct CallRuntimeDirect(method meth) %{
 13811   match(CallRuntime );
 13812   effect(USE meth);
 13814   ins_cost(300);
 13815   format %{ "CALL,runtime " %}
 13816   opcode(0xE8); /* E8 cd */
 13817   // Use FFREEs to clear entries in float stack
 13818   ins_encode( pre_call_FPU,
 13819               FFree_Float_Stack_All,
 13820               Java_To_Runtime( meth ),
 13821               post_call_FPU );
 13822   ins_pipe( pipe_slow );
 13823   ins_pc_relative(1);
 13824 %}
 13826 // Call runtime without safepoint
 13827 instruct CallLeafDirect(method meth) %{
 13828   match(CallLeaf);
 13829   effect(USE meth);
 13831   ins_cost(300);
 13832   format %{ "CALL_LEAF,runtime " %}
 13833   opcode(0xE8); /* E8 cd */
 13834   ins_encode( pre_call_FPU,
 13835               FFree_Float_Stack_All,
 13836               Java_To_Runtime( meth ),
 13837               Verify_FPU_For_Leaf, post_call_FPU );
 13838   ins_pipe( pipe_slow );
 13839   ins_pc_relative(1);
 13840 %}
 13842 instruct CallLeafNoFPDirect(method meth) %{
 13843   match(CallLeafNoFP);
 13844   effect(USE meth);
 13846   ins_cost(300);
 13847   format %{ "CALL_LEAF_NOFP,runtime " %}
 13848   opcode(0xE8); /* E8 cd */
 13849   ins_encode(Java_To_Runtime(meth));
 13850   ins_pipe( pipe_slow );
 13851   ins_pc_relative(1);
 13852 %}
 13855 // Return Instruction
 13856 // Remove the return address & jump to it.
 13857 instruct Ret() %{
 13858   match(Return);
 13859   format %{ "RET" %}
 13860   opcode(0xC3);
 13861   ins_encode(OpcP);
 13862   ins_pipe( pipe_jmp );
 13863 %}
 13865 // Tail Call; Jump from runtime stub to Java code.
 13866 // Also known as an 'interprocedural jump'.
 13867 // Target of jump will eventually return to caller.
 13868 // TailJump below removes the return address.
 13869 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13870   match(TailCall jump_target method_oop );
 13871   ins_cost(300);
 13872   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13873   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13874   ins_encode( OpcP, RegOpc(jump_target) );
 13875   ins_pipe( pipe_jmp );
 13876 %}
 13879 // Tail Jump; remove the return address; jump to target.
 13880 // TailCall above leaves the return address around.
 13881 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13882   match( TailJump jump_target ex_oop );
 13883   ins_cost(300);
 13884   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13885             "JMP    $jump_target " %}
 13886   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13887   ins_encode( enc_pop_rdx,
 13888               OpcP, RegOpc(jump_target) );
 13889   ins_pipe( pipe_jmp );
 13890 %}
 13892 // Create exception oop: created by stack-crawling runtime code.
 13893 // Created exception is now available to this handler, and is setup
 13894 // just prior to jumping to this handler.  No code emitted.
 13895 instruct CreateException( eAXRegP ex_oop )
 13896 %{
 13897   match(Set ex_oop (CreateEx));
 13899   size(0);
 13900   // use the following format syntax
 13901   format %{ "# exception oop is in EAX; no code emitted" %}
 13902   ins_encode();
 13903   ins_pipe( empty );
 13904 %}
 13907 // Rethrow exception:
 13908 // The exception oop will come in the first argument position.
 13909 // Then JUMP (not call) to the rethrow stub code.
 13910 instruct RethrowException()
 13911 %{
 13912   match(Rethrow);
 13914   // use the following format syntax
 13915   format %{ "JMP    rethrow_stub" %}
 13916   ins_encode(enc_rethrow);
 13917   ins_pipe( pipe_jmp );
 13918 %}
 13920 // inlined locking and unlocking
 13923 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13924   match( Set cr (FastLock object box) );
 13925   effect( TEMP tmp, TEMP scr );
 13926   ins_cost(300);
 13927   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13928   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13929   ins_pipe( pipe_slow );
 13930   ins_pc_relative(1);
 13931 %}
 13933 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13934   match( Set cr (FastUnlock object box) );
 13935   effect( TEMP tmp );
 13936   ins_cost(300);
 13937   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13938   ins_encode( Fast_Unlock(object,box,tmp) );
 13939   ins_pipe( pipe_slow );
 13940   ins_pc_relative(1);
 13941 %}
 13945 // ============================================================================
 13946 // Safepoint Instruction
 13947 instruct safePoint_poll(eFlagsReg cr) %{
 13948   match(SafePoint);
 13949   effect(KILL cr);
 13951   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13952   // On SPARC that might be acceptable as we can generate the address with
 13953   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13954   // putting additional pressure on the index-0 in the D$.  Because of
 13955   // alignment (just like the situation at hand) the lower indices tend
 13956   // to see more traffic.  It'd be better to change the polling address
 13957   // to offset 0 of the last $line in the polling page.
 13959   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13960   ins_cost(125);
 13961   size(6) ;
 13962   ins_encode( Safepoint_Poll() );
 13963   ins_pipe( ialu_reg_mem );
 13964 %}
 13966 //----------PEEPHOLE RULES-----------------------------------------------------
 13967 // These must follow all instruction definitions as they use the names
 13968 // defined in the instructions definitions.
 13969 //
 13970 // peepmatch ( root_instr_name [preceding_instruction]* );
 13971 //
 13972 // peepconstraint %{
 13973 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13974 //  [, ...] );
 13975 // // instruction numbers are zero-based using left to right order in peepmatch
 13976 //
 13977 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13978 // // provide an instruction_number.operand_name for each operand that appears
 13979 // // in the replacement instruction's match rule
 13980 //
 13981 // ---------VM FLAGS---------------------------------------------------------
 13982 //
 13983 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13984 //
 13985 // Each peephole rule is given an identifying number starting with zero and
 13986 // increasing by one in the order seen by the parser.  An individual peephole
 13987 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13988 // on the command-line.
 13989 //
 13990 // ---------CURRENT LIMITATIONS----------------------------------------------
 13991 //
 13992 // Only match adjacent instructions in same basic block
 13993 // Only equality constraints
 13994 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13995 // Only one replacement instruction
 13996 //
 13997 // ---------EXAMPLE----------------------------------------------------------
 13998 //
 13999 // // pertinent parts of existing instructions in architecture description
 14000 // instruct movI(eRegI dst, eRegI src) %{
 14001 //   match(Set dst (CopyI src));
 14002 // %}
 14003 //
 14004 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 14005 //   match(Set dst (AddI dst src));
 14006 //   effect(KILL cr);
 14007 // %}
 14008 //
 14009 // // Change (inc mov) to lea
 14010 // peephole %{
 14011 //   // increment preceeded by register-register move
 14012 //   peepmatch ( incI_eReg movI );
 14013 //   // require that the destination register of the increment
 14014 //   // match the destination register of the move
 14015 //   peepconstraint ( 0.dst == 1.dst );
 14016 //   // construct a replacement instruction that sets
 14017 //   // the destination to ( move's source register + one )
 14018 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14019 // %}
 14020 //
 14021 // Implementation no longer uses movX instructions since
 14022 // machine-independent system no longer uses CopyX nodes.
 14023 //
 14024 // peephole %{
 14025 //   peepmatch ( incI_eReg movI );
 14026 //   peepconstraint ( 0.dst == 1.dst );
 14027 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14028 // %}
 14029 //
 14030 // peephole %{
 14031 //   peepmatch ( decI_eReg movI );
 14032 //   peepconstraint ( 0.dst == 1.dst );
 14033 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14034 // %}
 14035 //
 14036 // peephole %{
 14037 //   peepmatch ( addI_eReg_imm movI );
 14038 //   peepconstraint ( 0.dst == 1.dst );
 14039 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 14040 // %}
 14041 //
 14042 // peephole %{
 14043 //   peepmatch ( addP_eReg_imm movP );
 14044 //   peepconstraint ( 0.dst == 1.dst );
 14045 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 14046 // %}
 14048 // // Change load of spilled value to only a spill
 14049 // instruct storeI(memory mem, eRegI src) %{
 14050 //   match(Set mem (StoreI mem src));
 14051 // %}
 14052 //
 14053 // instruct loadI(eRegI dst, memory mem) %{
 14054 //   match(Set dst (LoadI mem));
 14055 // %}
 14056 //
 14057 peephole %{
 14058   peepmatch ( loadI storeI );
 14059   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 14060   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 14061 %}
 14063 //----------SMARTSPILL RULES---------------------------------------------------
 14064 // These must follow all instruction definitions as they use the names
 14065 // defined in the instructions definitions.

mercurial